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Summary

In this grant period, the focus has been on the effects

of thermo-chemical nonequilibrium in low-density gases,

and on interactions between such gases and solid surfaces.

Such conditions apply to hypersonic flows of re-entry ve-

hicles, and to the expansion plumes of small rockets. Due

to the nonequilibriumnature of these flows, a particle ap-

proach has been adopted. The method continues to undergo

refinement and application to typical flows of interest.

A number of studies have been performed for flows in

thermo-chemical nonequilibrium. The effects of vibra-

tional nonequilibrium on the rate of dissociation were stud-

ied for diatomic nitrogen. It was found that a new model

reproduced the nonequilibrium behavior observed experi-

mentally. This work is described in AppendixA: a reprint

from the Physics of Fluids. A further study made compari-

son between the chemistry models employed in particle and

more traditional continuum computational methods. It was

found that the 2 approaches did give good agreement under

conditions favorable to the continuum approach: this in-

vestigation is included in Appendix B which is a preprint



for an article to be published in the Journal of Thermo-

physics and Heat Transfer. Finally, a study has been com-

pleted which considers the effects of using particle meth-

ods to predict the radiative emission produced in strong

shock-waves in air. In comparisons of particle and contin-

uum results, the total radiative intensity was found to be

the same, although details in the profiles showed signif-

icant differences. This work was reported at the AIAA 23rd

Plasmadynamics Conference in Nashville, July 1992 and is

included as Appendix C.

The particle method was used for analysis of aerody-

namic torques for stability of the Magellan spacecraft en-

tering the atmosphere of Venus at non-zero pitch and yaw at

hypersonic, rarefied conditions. This work is submitted

for presentation at the AIAA Atmospheric Flight Mechanics

Conference, August 1993 (see Appendix D). Newmodels were

developed for computing vehicle surface temperatures di-

rectly in the particle simulation which account for sur-

face radiation, heat capacity and conductivity of the ma-

terial, and the transient nature of the aerodynamic heat-

ing pulse during aerobraking. This work was presented at

the 18th International Symposium on Rarefied Gas Dynamics

in Vancouver, Canada, July 1992 (see Appendix E). A para-

metric study was initiated which determines the accuracy



of particle flow solutions over a wide range of Mach num-

ber, Knudsen number, and wall temperature for Hard-sphere

and Maxwell molecules, depending upon the grid resolution

and flow domain employed in the simulation. This work is

submitted for presentation at the AIAA 28th Thermophysics

Conference, July 1993 (see Appendix F) .
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Analysis of vibration-dissociation-recombination processes behind strong
shock waves of nitrogen

lain D. Boyd a)
Eloret Institute, 3788 Fabian Way, Palo Alto. California 94303

(Received 9 April 1991; accepted 23 July 1991 )

Computations are presented for the relaxation zone behind strong, one-dimensional shock

waves of nitrogen. The numerical results are compared with existing experimental data. It is

indicated that the derivation of chemical rate coefficients must account for the degree of

vibrational nonequilibrium in the flow. A nonequilibrium chemistry model is employed

together with equilibrium rate data to compute successfully the flow in several different

nitrogen shock waves. The analysis is performed with the direct simulation Monte Carlo

method (DSMC). The DSMC code is vectorized for efficient use on a supercomputer. The
code simulates translational, rotational, and vibrational energy exchange, and dissociative and

recombinative chemical reactions. A new model is proposed for the treatment of three-body

recombinative collisions in the DSMC technique, which usually simulates binary collision

events. The new formulation represents improvement over previous models in that it can be

employed with a wide range of chemical rate data, does not introduce into the flow field

troublesome pairs of atoms that may recombine upon further collision (pseudoparticles), and

is compatible with the vectorized code.

I. INTRODUCTION

The direct simulation Monte Carlo method (DSMC)

developed extensively by Bird ( Ref. 1, Chap. 7) is a powerful

technique for simulating flows of rarefied gases. The method

simulates the gas flow as a collection of mode/particles that

move through physical space undergoing the intermolecular

collisions and boundary interactions appropriate to the local
flow conditions. Collisions are simulated on a statistical

rather than deterministic basis, and local conditions are cap-
tured by dividing physical space into a network of ceils. The

numerical expense of the technique is directly proportional
to the density of the flow that has restricted its application to

flows in the transitional regime lying between continuum
and free molecular.

Because of the relative computational simplicity of the

one-dimensional normal shock wave, this problem provides

an opportunity to extend the use of the DSMC method into

the continuum regime. Previously, DSMC has been em-

ployed in normal shock waves to study translational. 2 rota-

tional.; and vibrational nonequilibrium, a Earlier. the com-

putation of dissociating nitrogen shock waves was
performed by Bird. 5 However, this study involved a finite-

difference type approach to the problem in which constant
volume relaxation was performed in each computational

cell. By comparing the simulated results with the corre-

sponding finite difference expressions, the values of tem-

perature, density, and velocity were adjusted in each cell

over each time step. This rather cumbersome procedure was

adopted because of the severe computational penalty asso-

ciated with performing a full DSMC calculation of the flow.

One of the purposes of this paper is to report upon the deve]-

"_ Mailing address: NASA Ames Research Center, SIS 230-2. Moffett
Fietd, California 94035.

opment of a DSMC code that simulates chemical reactions

and is highly vectorized for efficient performance on super-

computers. The speed-up attained through vectorization al-

lows the proper computation of normal shock waves with

the DSMC technique. For compatibility with the vectorized

procedures, a new model for simulating three-body recombi-

nation reactions in the DSMC technique is introduced. The
new model is described, and will be shown to have several

advantages over the previous recombination procedures.

The flow conditions of the shock waves computed in this

study have been chosen to correspond to some of those inves-

tigated previously in the literature.

II. VECTORIZED IMPLEMENTATION OF PHYSICAL

MODELS

As described by Bird ( Ref. 1, Chap. 7), the DSMC algo-

rithm consists of moving the particles, sorting the particles,

colliding the particles, and sampling the properties of the

particles. A vectorized implementation of the DSMC algo-
rithm for a single-species gas has been described by Boyd. _

The performance attained with this implementation is equal

to that first reported for such particle methods by Baganoff
and McDonald. 7 For the computation of reacting shock

waves, this implementation must be extended to simulate a

mixture of gases, and to include the additional collision

events of vibrational energy exchange, and dissociative and
recombinative chemical reactions.

Vectorized implementations of the tasks performed in

the DSMC algorithm are provided by Boyd. 6 Of these, only

the implementation for the sampling of the particle proper-

ties must be revised for the simulation of a multispecies gas

mixture. In the new implementation, a loop is made over the
total number of simulated particles. For each of these parti-
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cles, the current computational cell and species numbers are

identified. Then, several counters are updated for that par-

ticular cell and species. These counters consist of the individ-

ual velocity components, the squares of the velocity compo-

nents ( these two quantities are employed in the evaluation of

translational temperature), the rotational and vibrational

energies, and the number of particles sampled. If the parti-

cles are sufficiently well mixed within the simulation, then

vectorization of this implementation works perfectly. How-

ever, should two particles of the same species and cell num-

ber occur over the same vector length, then only the proper-
ties of the latter molecule will be recorded. While this means

that the information of the first particle is lost, this aspect

does not lead to any error. The number density in each cell is
recorded accurately as the sorting algorithm produces this

information.
The vectorized shock code simulates a number of differ-

ent collisional phenomena: translational, rotational, and vi-
brational energy exchange; dissociative and recombinative
chemical reactions. The total number of collisions that ex-

change translational energy is governed by the no-time-
counter technique) The number of these collisions that un-

dergo rotational energy exchange is given by the expression
developed by Boyd) In a revised form, this probability is

expressed as a function of the sum of the translational and

rotational collision energies. This aspect permits instanta-

neous evaluation 9 thus providing compatibility with the vec-

torized implementation.

The rate of exchange of energy involving the vibrational

modes is simulated through application of a variable proba-

bility that consists of two separate components, m The first is
derived from the Millikan and White" experimental corre-

lation for the vibrational relaxation time r_ and is given by

P_,t =--1 -_-t g2 ÷ "-'_exp(--_)= , (1)
•1,,7"I

where v is the collision rate, g is the relative collision veloc-

ity, and o0determines the nature of the interaction potential

in the variable hard sphere (VHS) collision model. _2 The

constants Z_ and g* are chosen to match the experimental
correlation for the vibrational relaxation time. For nitrogen,

this probability becomes unrealistically high at temperatures

greater than about I0 000 K. To simulate the relaxation time
at such elevated temperatures, an empirical correction term

r 2 is added to the relaxation time, where

p,.: = llvr 2 = ( 1/Z2)g2% (2)

The value for Z. for nitrogen is obtained by Haas and

Boyd._S The overall exchange probability is then given as

PL. - 1 _ 1 (3)
v(rt + r,.) 1/Pol + 1/P_.z

At low temperatures, the second term tends to zero, and the
vibrational relaxation time is given by the Millikan and

White expression. Conservety, at high temperatures, the sec-
ond term dominates.

As the vibrational energy exchange probability is not a
function of the sum of the translational and vibrational ener-

gies, the probability should not be evaluated instantaneous-

ly. Therefore the values of P_, and P_z must be obtained by

averaging over all collisions. In the vectorized implementa-
tion, an average vibrational exchange probability is assigned

to each computational cell. The probability is updated by

employing the relative velocity of every collision that occurs
in each cell over each time step. This process is performed

after the pairing of collision pairs, but before computation of

the collision mechanics, and is fully vectorized.
The mechanisms of both rotational and vibrational en-

ergy exchange follow the usual model of Borgnakke and Lar-

sen, t4 and are processed efficiently using precomputed look-

up tables. It has been observed in a recent study by Lumpkin
et al. _ that the mechanisms of energy transfer employed in

the DSMC technique affect the rate of energy transfer. For
the collision number of an internal mode, the precise rela-

tionship between DSMC and continuum definitions is given
in Ref. 15. It is shown that the value of the collision number

used in DSMC will be approximately half of that determined

experimentally and employed in a continuum or kinetic
computation. These adjustments have been included in the

probabilities of energy transfer to the rotational and the vi-
brational modes.

The chemistry model employed in the study is the vibra-

tionally-favored dissociation (VFD) model of Haas and

Boyd._3 The rate of dissociation is governed by a set of chem-

ical rate coefficients that are reproduced in the simulation

under conditions of equilibrium. The model also simulates

the important physical phenomenon of coupled vibration
dissociation. This causes a reduction in the rate of dissocia-

tion when the vibrational energy mode is out of equilibrium
with the translational and rotational modes, which often oc-

curs behind strong shock waves. The dissociation probabili-

ty takes the form

Pa = (1/Za) [(Ec -- E_ )e"/Ef:]E_, (4)

where E C is the total collision energy, Eo is the activation

energy of the reaction, and E_ is the vibrational energy of the

reacting molecule. The constant O determines the degree of
vibration-dissociation coupling, and the other constants, Z d,

0_, and 0:, are determined from molecular constants, the
chemical rate data, and the value of& By matching dissocia-

tion incubation distances observed experimentally to simu-

lated data, the appropriate value for nitrogen was estab-

lished by Haas and Boyd _ as a_= 3. For compatibility with

the VFD model and the vectorized implementation, it was

necessary to develop a new model for simulating recombina-
tion reactions in the DSMC technique. This model is de-

scribed in the following section.
The vectorized implementation of these physical models

proceeds by constructing lists of pairs of molecules that un-
dergo different collisionat events. Initially, a list of possible
collision candidates is formed; then a list of those that do

collide. The pairs of molecules that collide are then subdivid-
ed into lists of those that dissociate, those that recombine,

those that exchange vibrational energy, those that exchange

rotational energy, and the remainder just exchange transla-

tional energy. The list formed of particles that experience

each of these phenomena are then processed in computation-

ally effÉcient, vectorized loops. Finally, the collision me-
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chanics of all the molecules that collide are processed in a

vectorized loop. A symbolic representation of the vectorized

implementation of the collision algorithm is given in Fig. 1.

Each of the statements represents one loop; or a set of nested

loops in the code. Of the eleven such loops, only that entitled

"Create List Of Pairs Of Molecules" is not fully vectorized.

The vectorized coding provides a speed-up by a factor of 10

in comparison with the scalar implementation of the algo-
rithm.

III. RECOMBINATION MODEL

In the DSMC technique, collisions are usually consid-

ered between just two molecules. It therefore represents a

challenge to simulate three-body recombination reactions.

The first such model incorporated into the DSMC technique

was proposed by Bird. 5 In this model, a lifetime was assigned

to a binary pair, and a three-body collision treated as a

further collision with this intermediary, pseudoparticle.

This scheme requires a number of assumptions to be made

concerning the relationships between the various three-body
collision cross sections, and the model does not lend itself

readily to inclusion in the no-time-counter collision scheme.

Also, under exceptional conditions, the lifetimes assigned to

the intermediary pair can be very large, such that the pseu-

doparticle remains in the flow field for a considerable time.
This result is physically unrealistic, and computationally

troublesome. An improved recombination model was pro-
posed by Haas t6 for use in the particle method of Baganoff

and McDonald. 7 In this model, the pseudopartictes are

created at one time step, and then are either recombined or

are split apart into the constitutive atoms on the following

time step. While the scheme may be successfully incorporat-

ed into a vectorized implementation, it still has the disadvan-

tage of producing pseudoparticles that must be processed by

the whole algorithm (in this case, just for one time step).

This requirement stems from the structure of the algorithm

proposed by Baganoff and McDonald. A further disadvan-

tage of this model is that it requires assumptions to be made

for the form of the molecular interaction involving the pseu-
domolecule. The objective of the present model is to remove

FIG. i. Symbolic vectorized mp ementation of DSMC collision algorithm,

the troublesome elements of the method developed by Haas,

while retaining the ability to vectorize the algorithm.
In Vincenti and Kruger, _7 it is stated that, for the re-

combination reaction between two nitrogen atoms and any

third body M,

N + N + M-N_ + M, (5)

the rate of formation of N__is governed by

dnN_ _ (kbnNn _)r+t, (6)
dt

where nN and n_ are the number densities of atomic nitro-

gen and the third body M and k, is the backward (recombi-
nation) rate coefficient. This term is related to the forward

(dissociation) rate coefficient k/and the equilibrium con-

stant K_ in the following way:

k_ = k//K_ = (a]/ac)T _'-_, (7)

where Tis the temperature, a] and bf are the rate parameters
associated with the forward reaction, and a_ and b,. are those

associated with the equilibrium constant. The parentheses in

Eq. (6) indicate that, in the new recombination model for

the DSMC technique, the reaction is first treated as a binary
collision between two atoms. This allows the derivation of a

recombination probability in the same way as for a dissociat-

ing reaction. To reproduce the correct rate of recombina-

tion, the probability must then be multiplied by the number

density n_. The task for implementing this process in a
DSMC simulation is to relate the rate coefficient k_ to a

probability of recombination P,. This probability is ex-

pressed as a function of the collision energy E¢. When this

probability is integrated over all collision energies, and then

multiplied by the collision rate, it must lead to the value of
the backward rate coefficient at a particular temperature.

Simplification of this analysis leads to the following expres-
sion:

(5)(+)a]. TO,_ _ n vt crg P,(E¢)f d E+ (8)
Cl c

where (r is the collision cross section for atom-atom colli-

sions, and g is the relative velocity of collision. In the new

model, the possibility of recombination is assessed only

when two atoms collide. A third colliding body (either atom

or molecule) is then chosen at random to complete the ter-

nary collision. As the third colliding body is chosen random-

ly from those that exist in the cell, the recombination rate is

achieved in the simulation by multiplying the probability by

the total number density instead of n,,. In this implementa-

tion, the total collision energy E¢ is comprised of two compo-

nents. The first, E,, is the collision energy of the two collid-

ing atoms. The equilibrium distribution of this energy for the

VHS intermolecular potential is

= F(2- _) exp . (9)

When the two atoms come together, they form a pseudopar-
ticte and their center of mass velocity is then collided with a

third body to determine if recombination actually occurs.

Bird (Ref. I. Chap. 12) shows that the distribution function
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of the center of mass velocity for the two atoms is just the

thermal velocity distribution of the combined molecule. No

selection criteria are applied to the collision between the

third body and the pseudoparticle as the body is chosen at
random. Thus the distribution function of the collision ener-

gy E_ for the pseudoparticle and a third body is just that for

three degrees of freedom in translational energy, and _" de-

grees of freedom in internal energy:

f _ = I'(3/2+;/2)\-_Y expk-_T "
(10)

To obtain the distribution for the total collision energy

E, = E, + E_, it is necessary to multiply Eqs. (9) and (10)

together and then to integrate over either variable. The result
of this analysis is

f _ = r"("7/2 + ¢/2 - co) \_7_/

For mathematical convenience, the form of the recombina-

tion probability is chosen as

P,(E_) = (I/Z_)Er¢. (12)

Then, substituting into Eq. (8) and integrating, it is found
that the following result gives the correct temperature de-

pendence of the backward rate coefficient:

x=br-b_- 1/2 +co (13)

and

1/2 --

Z, 21"2 - " k hI- be (7°

(mr)" F(7/2 + _/2 - co)X 2(2 ---'£)kTo F(7/2 -+-_-/2 - oJ + Z) '

(14)

where rn, is the reduced mass of the atom-atom collision,

and (7o is a reference cross section for the atom-atom colli-

sion at temperature To in the VHS collision model. The value

of X employed in the simulation must satisfy the restriction

that the arguments of the gamma functions must be greater

than zero. This is satisfied by all of the combinations of the

values of b/and b_ found for nitrogen in the literature.
In the implementation of the recombination probability

P_ a multiplying factor of 100 or 1000 is usually employed,

and subsequently the recombination probability is only as-

sessed every I/I00 or 1/1000 times that two atoms collide.

This procedure is adopted due to the relative infrequency of
recombination reactions in most flows of interest, and thus

represents a more numerically efficient manner to treat the

problem.

IV. RESULTS AND DISCUSSION

The first test of the recombination model is performed

under equilibrium conditions. At a constant temperature

and density, the model must reproduce the theoretical value

for the average recombination probability. The results of an

equilibrium study are shown in Fig. 2. The simulation condi-

tions werep = 3 kg m - 3, T= 10 000 K, and the mass frac-

tion of atomic nitrogen a = 0.65. Time is normalized

through division by the mean time between collisions. The
recombination rate coefficients were determined from the

following rate data:

kf(N, -- N:) = 7.97X 10-13T -o.5

Xexp( -- 113 200/7") m3/molecule/sec,

(15a)

kf(N, - N) = 7.14X 10-ST - t-_

Xexp( - 113 200//') m3/molecule/sec,

(15b)

K_(N2)= 1.084X10 ;_exp(- 113 200/73 molecule/m 3.

(15c)

The dissociation rate coefficients are due to Byron _s and the

equilibrium constant is taken from Vincenti and Kruger. _7It

is shown that the model described in the previous section

does produce the average probability of recombination pre-
dicted by theory.

The next test is to ensure that the dissociation and re-

combination models allow a stationary gas, initially out of

equilibrium, to relax to the expected equilibrium state. Spe-

cifying the equilibrium ( constant ) value of densityp and the

initial temperature T_, the following equations are employed
to determine the equilibrium atomic mass fraction a and the

equilibrium temperature 7":

cr-'/(l-a) = (m,,/4p) K_ (16a)

and

7---_ T T, -- a , (16b)

where m,,, is the molecular mass. It is assumed initially that

the translational and rotational modes are in equilibrium,

and that the gas is purely diatomic. For the values ofp = 3

kg m- _ and Tt = 35 640 K, ir is found that cz = 0.5 and
T = I0 000 K. The study of constant volume relaxation is

employed to investigate different phenomena. First, it is nec-

essary to ensure that the dissociation and recombination

10 a

=
8

i0 ''_

I -- 5"-eoev ,N N-N21

..... 7_t,_"/tN-N-NI

20 ao _o 8o 1oo

! / I_C

FIG. 2. Comparison of average recombination probabilities.
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models lead to the correct equilibrium values predicted in

Eqs. (16). Second, the effect of using different chemical rate
coefficients is considered. The dissociation rates employed

are those in Eqs. (15) and the following coefficients due to

Kewley and Hornung:_9

k/(Nz- N2) = 3.82;< 10- tT-3s

m3/molecule/sec,

(17a)

kf(N, - N) -= 1.41X 10-_T -2._

Xexp( 113200) m3/molecule/sec.

(17b)

The temperature dependence of the rate coefficients in Eqs.
( 15 ) and (17) is significantly different. In these simulations,

a value ofq_ = 0 is employed in the dissociation model. Final-

ly, to assess the importance of three-body reactions, the sim-

ulation is performed without recombination reactions.

The results of each of these investigations are given in

Fig. 3, where the variation of a with time is shown. The solid

curve represents the relaxation behavior using Byron's rate

data. The chemistry models drive the mass fraction of atom-

ic nitrogen to its expected equilibrium value. The dotted

curve represents the simulation performed with the rate co-

efficients defined by Kewley. With these values the simula-

tion, again, attains the equilibrium value, but the rise in ct is

significantly slower than for the computations that em-

ployed the coefficients of Byron. This aspect of the simula-

tions will be given further consideration in the computations

behind strong shock waves. The dashed curve in Fig. 3
shows the relaxation behavior when the recombination reac-

tions are omitted. The value of a will continue to rise until

the gas consists purely of the atomic species. The effect of the

absence of the recombination reactions only becomes appar-

ent after the creation of a significant atomic nitrogen popula-

tion. Further results from these three simulations are given

in Fig. 4, where the vibrational temperature is shown. With

Byron's rate coefficients, the expected equilibrium tempera-
ture is attained after a small maximum in vibrational tem-

0.6

05

(34

0.3

02

01

80
0

.....R..o.,.ByronR_m0,1_a
ByronRJI*Oali (Norlcombbnalbo_)

I 1 [

1000 2000 3000 4C00

tll c

FIG. 3. Variation in time of the atomic mass fraction of a chemically relax-

ing gas.
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h .. I
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t/to

FIG. 4, Var:_ation in _ime of the _'ibrationa/ temperacure of a chemmally

relaxing gas.

perature is reached. With Kewley's data, the peak vibration-

al temperature is much higher. This effect is due to the

reduced rate of dissociation observed in Fig. 3. However, the

vibrational temperature does finally reach the same steady-

state value predicted in Eq. (16b). By failing to include the

recombination reactions, it is observed that the temperature
continues to decrease as dissociation continues unabated.

The results in Figs. 3 and 4 serve to verify the chemistry

models employed in the DSMC technique. The need for the
inclusion of recombination in the simulation is demonstrat-

ed. The simulations also indicate that significant differences

in flow properties may be computed with different rate coef-
ficients.

Having verified the chemistry, models under test condi-

tions, they are now applied to the relaxation zone behind

strong shock waves of nitrogen. Three different sets of condi-

tions are considered and are listed in Table I. The subscript 1

indicates upsteam conditions, subscript 2 indicates the point

immediately after the shock that is in translational and rota-

tional equilibrium, and no subscript indicates the down-

stream conditions. The flow parameters have been chosen to

correspond to the conditions investigated experimentally by

Kewley and Hornung, _9 and computationalIy by Bird. S In

Fig. 5, the density profile is shown for case 1. The two sets of

computations were performed first with the rate data of

Kewley, then with the data of Byron. In each case, the vibra-

tion-dissociation coupling parameter e_was set to zero. This

leads to a minimum of coupling between these phenomena.
It is satisfying that the computations performed with Kew-

ley's data does follow his experimental data. As may have

been anticipated from Fig. 3, the computation that employed

TABLE I. Experimental conditions of shock waves investigated computa-

tionally.

Case u, (km/secl p, (kg/m-') T:(K) p/p,

I 7.31 7.48"< 10 - _ 25 013 149

2 5.60 2.86X 10-" I5 I30 11.4

3 4.80 4.07 ;< 10 : 11405 10.0
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FIG. 5. Comparison of density profiles for case 1:computed with two differ-
ent sets of rate coefficients and the same chemistry model.

Byron's data dissociates at an elevated rate in comparison

with the experiment. The difference is primarily in the first

few millimeters of the flow behind the shock.

The degree of vibrational nonequilibrium in the flow

computed with Kewley's rate data is observed in Fig. 6,

where the translational and vibrational temperatures are

shown. For these flow conditions, the probabilities of vibra-

tional energy exchange and dissociation just behind the

shock are of the same order of magnitude. Hence, the cou-

pling of the vibrational and dissociative processes is signifi-

cant, and will limit the rate of reaction. Clearly, this phe-

nomenon is most significant in the first few millimeters of the

flow behind the shock. In the analysis performed by Kewley

and Hornung to derive the rate coefficients, no coupling

between vibration and dissociation was included. Hence the

vibrational nonequilibrium behavior had to be included in

the data by decreasing the temperature exponents and ad-

justing the leading constant. Alternatively, for Byron's ex-

periments, the shock temperatures were significantly lower,

so that the probability of vibrational energy exchange was

several orders of magnitude higher than the dissociation

probability. Under these conditions, the vibrational mode

will be fully equilibrated prior to the onset of dissociation.

Therefore it can be stated that the temperature dependence

of the rate coefficients of Byron represents the behavior in

vibrational equilibrium. Application of the equilibrium dis-

sociation model [_b = 0 in Eq. (4) ] in the nonequilibrium

flow therefore gives a rate of dissociation that is too high.

There may, therefore, exist the possibility that the density

profiles observed experimentally by Kewley and Hornung

can be reproduced with Byron's equilibrium rate coefficients

by applying an appropriate vibration-dissociation coupling

model that will include the nonequilibrium effects immedi-

ately behind the shock.

One result of this approach is given in Fig. 7, where the

density profiles behind the shock are again shown. By em-

ploying Byron's equilibrium rate data with the nonequilibri-

um model for nitrogen [& = 3 in Eq. (4) ], it is found that

the experimental data is very nearly reproduced. This en-

couraging result implies that rate data taken at moderate

temperatures may be applicable at much higher tempera-

tures, provided that an appropriate nonequilibrium model is

employed. In Fig. 8, a comparison is shown of the vibration-

al temperatures computed using Kewley's data with & = 0,

and Byron's data with (b = 3. The computations with these

rate coefficients were also performed for the experimental

cases 2 and 3. The comparisons of density profile are shown

in Figs. 9 and 10. Once again, it is found that the experimen-

tal data is reproduced with the combination of Byron's rate

coefficients and the nonequilibrium vibration-dissociation

coupled model.

Finally, the new models are applied to the flow condi-

tions investigated spectroscopically by Sharma. "-° The flow

was for nitrogen at an initial velocity and pressure of 6200

m/sec and 1 Tort at room temperature. The study provided

rotational and vibrational temperatures at two different lo-

cations through the shock wave. The first was in the highly

nonequilibrium region just after the shock front, and the

second was further downstream in the equilibrium zone far

behind the shock. For these conditions, the DSMC code was

configured to compute the entire shock wave flow, com-

mencing at the initial conditions. This differs from the other

shock computations presented above which were begun at

the point of translational-rotational equilibrium. In Fig. 11,

the experimental measurements are compared with the pro-

g
3

&

k--

25000

20000

151000

1GO00

5CC0

0

0.00

i [ I i i

0.05 010 0.15 0.20 025

Distance (cm)

020

FIG. 6. Comparison of temperatures for case l: computed with Kewley's
rate data.

.¢,-

/ [.E........OSMC; iKl*WIy Oil,t pn,..'.)l

" - OSMC (Byron 0== am,,,&

/
t

;P

i i i

0CO 3 05 O;0 0.t5 020 025 0.30

D,stance (cm)

FIG. 7. Comparison of density profiles for case 1:computed with tv,o differ-
ent sets of rate coefficients and two different chemistry models.

183 Phys. Fluids A, Vol. 4, No. 1, January 1992 lain 0 Boyd 183



g

_e
&
P

>

16000 l

I_ I Osuc Im,,,4_ o,,=. _,-o)

4000

000 0,05 0.10 0.15 0.20 0.25

Distance (cm)

030

FIG. 8. Comparison of vibrational temperatures for case 1: computed with

two different sets of rate coefficients and two different chemistry models.

11

10

# ,

] ...... _SMC lay,on', 0==. _.31 ]

7

6 ; I I I

0.00 0.05 0.10 0. ; 5 0,20 0.25 0.30

Distance (crn I

FIG. 10. Comparison of density profiles for case 3: computed with two dif-

ferent sets of rate coefficients and two different chemistry models.

files of rotational and vibrational (and translational) tem-

perature computed with the DSMC technique. Good agree-
ment is found between the numerical and experimental data.

Near the shock front, the DSMC simulation reproduces

quite well the separation in the rotational and vibrational
temperatures. Further downstream, thermal equilibrium is

attained with values close to the measured equilibrium con-
dition. The small difference in the data in the downstream

region of the flow may be attributed to the omission of ion-

ized reactions, radiative cooling, and the presence of impuri-

ties in the experiment. The differences in the data in the

nonequilibrium region must be resolved through further nu-

merical and experimental studies. The computations were

performed using the equilibrium rate data of Byron, together

with the nonequilibrium vibration-dissociation-coupled
model.

Each of the shock wave solutions presented in this study

required about 4 h of CPU time on a Cray YMP supercom-

puter. In that time, over 3 × 109 collisions were computed for

the 100 000 particles in the computational domain. Without

a vectorized implementation of most of the DSMC algo-

rithm, the computational cost would be increased by one

order of magnitude on the supercomputer. Performing the
computations on a modem workstation would increase the

total computational time by a further factor of at least 5.

While it can be argued that the use of such workstations is

more cost effective (a supercomputer costs several million

dollars), it is proposed that a turnaround time of 200 h is
undesirable for most researchers.

V. CONCLUSIONS

The relaxation zone behind several strong shock waves

of nitrogen have been computed using the direct simulation

Monte Carlo method, and excellent agreement was found

with avai/ab/e experimental data. The intensive computa-
tional cost of the simulations was reduced dramatically

through execution on a supercomputer of a vectorized im-

plementation of the algorithm. For compatibility with the

vectorized implementation, a new scheme for treating three-
body recombination reactions was formulated. The model

represents an improvement on previous recombination

schemes, and reproduces the predicted results under test

conditions. The most important aspect of the study relates to

the interpretation of different sets of chemical rate coeffi-

cients. For shocks that exhibit significant vibrational non-

equilibrium, the experimental density profiles may be com-
puted successfully in two different ways. First, by employing

an equilibrium dissociation model, which has no vibration-

dissociation coupling, together with the rate data derived

from the experiment assuming vibrational equilibration.

Second. by employing a nonequilibrium, coupled vibration-
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FIG. 9. Comparison of density profiles for case 2: computed with two differ-

ent sets of rate coefficients and two different chemistry models.
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al-dissociation model, together with rate data taken in a sep-

arate investigation under equilibrium conditions. Clearly,

the latter course of action is preferred, and is an important

finding of the present investigation.
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Evaluation of Thermochemical Models for

Particle and Continuum Simulations of Hypersonic Flow

lain D. Boyd_ and Tahir G6kgen_

Eloret Institute, 3788 Fabian Way

Palo Alto, California.

Abstract

Computations are presented for one-dimensional, strong shock waves that are typical

of those that form in front of a reentering spacecraft. The fluid mechanics and the>

mochemistry are modeled using two differentapproaches. The firstemploys traditional

continuum techniques in solving the Navier-Stokes equations. The second approach em-

ploys a particle simulation technique, the direct simulation Monte Carlo method (DSMC).

The thermochemical models employed in these two techniques are quite different. The

present investigation presents an evaluation of thermochemicai models for nitrogen under

hypersonic flow conditions. Four separate cases are considered that are dominated in turn

by vibrational relaxation, weak dissociation, strong dissociation and weak ionization. In

near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in

continuum and particle simulations produce nearly identical solutions. Further, the two

approaches are evaluated successfullyagainst availableexperimentM data for weakly and

strongly dissociating flows.

Introduction

A space-vehicle passing through the earth's atmosphere will traverse a number of

different flow regimes..it lower altitudes, the fluid density is su_ciently large for the flow

to be considered in thermochemical equilibrium. However, as the vehicle ascends higher

into the atmosphere, the molecular collision rate falls, and low-density effects become

increasingly important.

t Research Scientist. MMling address: NASA Ames Research Center, MS 230-2, CA 94035.



Continuum methods are successfully applied to flows in which the collision rate of

the gas is su_cient to maintain Boltzmann energy distributions for the various thermal

modes of the gas. It is not necessary that the temperatures associated with each of the

different modes be equal, or that chemical equilibrium prevails. Particle methods, such as

the direct simulation Monte Carlo method (DSNI'C), are successfully applied to flows in

which a reduced collision rate no longer supports equilibrium energy distributions..ks the

numerical cost of this technique is proportional to the fluid density, application has mainly

been limited to rarefied flows.

The computation of flow properties for the flight trajectories of many space vehicles

require the use of both continuum and particle methods mentioned above. The interface

between the different flow regimes is :herefore of grea: importance. Cleariy_ it is desir-

able to obtain consistent results with these numerical methods in an overlapping near-

continuum flow regime. Although the thermochemical models employed in continuum and

particle methods are quite different, under conditions of _hermochemical equilibrium they

are expected to provide identical solutions. The relationship between the continuum and

particle simulation under conditions of thermochemical nonequilibrium, however, has not

been investigated thoroughly. It is therefore the purpose of :he present paper to study this

relationship by computing typical hypersonic flows with bosh the continuum and pardc!e

simulation methods.

Evaluation of the thermochemical models is made through the computation of four

different cases. The flow conditions in the studies are given in Table 1 and are chosen to

examine the effects of vibrational relaxation, dissociatiom and ionization. These processes

are considered in an accumulative sense through a gradual increase in the initial enthalpy

of the flow. The continuum and particle approaches employed in this work are briefly

described below.

Continuum Approach

In the continuum formulation, a nonequilibrium eleven species gas model for air (.V_,

2



02, N0, iV, O, iN"+, 0 +, NO +, N +, 0 +, e-) has been implemented. The thermal state

of the gas is described by three temperatures: translational, rotational and vibrational-

electronic. The governing Navier-Stokes equations are supplemented by the equations

accounting for thermochemical nonequilibrium processes. The equation set consists of

fifteen partial differentia/equations: eleven mass conservation equations for species, one

momentum equation for quasi one-dimensional flow, and three energy equations. Since the

experimental data is for nitrogen gas, the subset (N_, N; ._V2+ , _V+ , e- ) of the Mr model rel-

evant to the dissociation and ionization of nitrogen is active. The thermochemistry model

is basicallythat proposed by Park. I-2 The relaxation time for vibrational-translational

energy exchange is taken from Millikan and White 3 with Park's modification which ac-

counts forthe limitingcross-sectionat high temperatures. Another of Park's modifications

concerning the di_usive nature of vibrationalrelaxationisnot included, which isconsisten_

with the curren_ particlemodel. For vibration-dissociationcoupling, the average vibra-

tionalenergy lostor gained due to dissociationor recombination is taken as 30 percent

of the dissociationenergy.I The chemical reaction rates are prescribed by Park's model

where the basic dissociationrate is assumed to be governed by the geometric average of

translationaland vibrationaltemperatures.

The numerical approach to solve the governing equations is fully implicit for fluid

dynamics and chemistry, it uses flux vector splittingfor convective fluxes,and shock

capturing. An adaptive grid strategy isalso implemented. For the computations in this

paper, a quasi one-dimensionM code isused and a freestreamof pure nitrogen isprescribed.

The detailsof the numerical method can be found in Refs.4-6.

Particle Approach

The particlesimulation code employed in this investigationprovides modeling of the

translational,rotational,vibrational,and electron kineticenergy distributions.These are

complemented through simulation of dissociative,recombinative: ionizing,and exchange

reactions. The code is vectorized for efficientexecution on a Cray-YMP. Description of



the vectorized implenientation can be found in Refs. 7 and 8. The boundary conditions

employed in the one-dimensional flow are reflecting pistons set to the upstream and down-

stream velocities. The downstremn velocity is obtained either from the continuum catcu-

lations_ or from available experimental data. The present simulations compute the entire

shock structure from upstream to downstream conditions. Once the shock reaches a spec-

ified location, small adjustments are made to the coordinate system of the computational

grid to maintain a steady shock position.

The rate of energy exchange between the translational and rotational energy modes

is simulated using a probability function evaluated using the energy of each collision. 0

The mechanics of rotational energy exchange is performed by the Borgnakke-Larsen 10

approach. The rate of energy exchange involving the vibrational energy mode is simulated

using a high-temperature model. 11 The mechanics of vibrational energy exchange are

computed using two different schemes. The first uses the Borgnakke-Larsen approach with

a continuous vibrational energy distribution described by a fixed number of vibrational

degrees of freedoms (_. The second approach, due to McDonald. 12 allows sampling of

post-collision vibrational energy levels from the discrete form of the Simple Harmonic

Oscillator (SHO). This approach does not require the value of (_ to be estimated for the

whole flowfield. Instead, it effectively varies (_ according to the local enerD, content of

the flow, therefore it is the preferred approach from a phF'sical standpoint. "fhe manner in

which the mechanics of energy exchange is performed in the particle simulation is shown

by Lumpkin e_ al. _3 to affect the rate of relaxation. Therefore, all the rotational and

vibrational relaxation models employed in the particle simulations are adjusted to match

the continuum values by the correction developed in Ref. 13.

Dissociation reactions are modeled with the Vibrationally Favored Dissociation model

(VFD) proposed by Haas and Boy& 14 .is its name suggests, this model includes the

important physical phenomenon of vibration-dissociation coupling. The model contains a

flee parameter ¢ which controls the degree of coupling between vibrational and dissociative



relaxation processes. 'It was demonstrated in Ref. 14 that, by increasing the value of

¢, itis possible to increase the dissociationincubation time in the simulation. Also in

Ref. 14, through comparison with experimental data_ the value of 6 for nitrogen was

determined assuming Borgnal_ke-Larsen mechanics for vibrationalenergy exchange with a

fixed value for %_v.In the DSMC code, the model employed for the reverse recombination

reaction appropriate to VFD is that developed by Boyd. _ All other chemical reactions,

i.e.,ionization and exchange reactionsare simulated using the steriefactor developed by

Bird. is The inclusionof electronsin the simulation isdiscussedin detailin Ref. 16.

Chemical Rate Coefficients

The rate coefficients employed in the reactions of interest in the present study are

given in Table 2. These are described in the usual Arrhenius form:

;_(T) = aT bezp(-E_/I_T)

where a and b are empirically determined constants, E_ is the activation energy, and T is

the controlling temperature. Three different sets of coefficients are given corresponding Co

those used: in the continuum code; in previous DSMC investigations; and in the present

DSMC code. The values of the activation energy used in the three sets of rate data are

unchanged for each separate reaction. Therefore, the exponential term in the Arrhenius

form has been omitted from Table 2.

The rate expressions employed in the continuum code are those recommended in the

review by Park e_ el. 2 Generally, only the forward rate constants are specified. In the

dissociation reactions, reactions 1 and 2, the controlling temperature in the continuum

hvo-temperature approach is given by T_=(TT,_)[. For nitrogen dissociation, the particle

code employs the rates of Byron 17 in the Vibrationally Favored Dissociation model (VFD).

It was shown previously by Boyd 8 that these rates, when used with the VFD model, are

capable of reproducing vibration-dissociation coupling observed at high temperatures.

The reverse rates for each reaction are obtained by evaluating the foUowing temperature-



dependentform for the equilibrium constantsproposedby Park: i

Zn(X_(T)) = AI_ + & + AaZ_(:) + -</: + -4_If"

where the ,4i are constantsand z=10000/T. In the continuum code, the values of Ai for

reaction 3 are obtained from R,ef. 18 while those for reaction 4 are taken from Ref. 1.

Unfortunately, this form for the equilibrium constant is not mathematically convenient for

implementation in the DSMC chemistry models. However, a set of reverse reaction rates

for use in DSMC has been determined by Bird, i9 and these have been used in a number

of studies. These reverse reaction rates are determined by calculating an equilibrium

constant in which the exponential terms in the electronic pa_-tidon functions are evaluated

at a temperature of 1i,000 K. It is possible to compute the e_uilibrium constants employed

by Bird by considering the ratio of the forward and reverse rates for each reaction. This

has been performed for reactions 3 and 4 of Table 2. The equilibrium constant employed

by Bird and that used in the continuum code are shown as a function of temperature for

reaction 3 in Fig. 1. It should be noted that the exponential term has again been omitted

for the sake of simplicity. For this reaction, it is found that the equilibrium constant

employed by Bird is about 2 orders of magnitude higher than the continuum expression.

In reaction 4, the equilibrium constant used by Bird gives values which are again generally

higher than the continuum model.

It is to be noted that the goal of the present study is to evaluate differences in the

chemical models employed in the continuum and particle methods. To limit the number

of factors involved in our comparisons, i_ is the aim to maintain consistency between the

relaxation rates employed in the solution techniques. Therefore, a form for the equilibrium

constant which takes the traditional Arrhenius form is curve-fitted as a function of tem-

perature to Park's expression. The limitation on the Arrhenius form which may be used

conveniently in Bird's expression for the probability of chemical reaction i5 is discussed

by Boyd and Stack. 21 The curve fit for reaction S is also shown in Fig. 1. The resulting

rate constants for the reverse direction for reactions 3 and 4 are listed in Table 2. Gener-



ally,good agreement i'sobtained between the new DSMC expressionsand Park's results,

particularlyover the temperature range of interest,i.e.from 5,000 to 20,000 K.

For reaction 5, the temperature dependent form proposed in Ref. 2 isnot convenient

for use in the DSMC chemistry models. In comparing the forward rate constants employed

by Park and Bird for this reaction it is noted that Bird's reaction rates are several orders

of magnitude lower. Once again, a curve fit is made to Park's expression in an Arrhenius

form which may be employed in the particle chemistry models. The new form, which is

given in Table 2: gives closer correspondence to Park's results over the temperature range of

interest. Further analyses have been performed which improve the correspondence between

the chemical rates employed in continuum and particle simulation for all reactions in air

involving charged species and are reported in Ref. 16.

Presentation of Results

Computations are performed for four different sets of flow conditions for normal shock-

waves in pure nitrogen and these are listed in Table 1 in which subscripts 1 and 2 indicate

upstream and downstream conditions, respectively. The upstream temperature is pre-

scribed to be 300 K for all cases. The upstream density together with the length of the

computational domain simulated are chosen such that the flows are in the near-continuum

regime. In other words, Knudsen number is small enough that the thickness of the shock

wave is small compared to relaxation distance behind the shock. The different upstream

flow conditions also provide increasing enthalpy: thus, the flow behind the shock is char-

acterized in Case 1 by vibrational relaxation processes; in Case 2 by weak dissociation:

in Case 3 by strong dissociation; and in Case 4 by weak ionization. The conditions in

Cases 2 and 3 correspond to those investigated experimentally by Kewley and Hornung. o_o.

The results for each of these investigations are described in the following sub-sections. The

numerical parameters chosen for each DSMC computation followed the usual guidelines in

setting the cell size less than the mean free-path and the time-step to be a fraction of the

mean time between collisions. The cell size criterion is relaxed in re_ons far behind the

?



shock-frontwhere flow gradients are lesssevere. In each case considered, the number of

computational cellsis1,000 and the number of simulated particlesismaintained at about

lOO,O00.

Case I: Vibrationally Relaxing Flow

Density profiles for the first case investigated are shown in Fig. 2. Very good agreement

is found between the continuum and particle simulation results. Two different DSMC com-

putations are shown: the first corresponds to the use of the Borgnakke-Larsen approach

(BL) for performing the mechanics of vibrational energy exchange with a constant number

of vibrational degrees of freedom, (_=1.6. This value corresponds closely to that eval-

uated at the downstream equilibrium temperature. The second solution employed the

discrete vibrational energy sampling approach for the Simple Harmonic Oscillator (SHO)

of McDonald _ which automatically varies (_. This is the first time that a comprehensive

comparison is made between continuum and particle simulations for vibrational relaxation

behind a strong shock. It is very encouraging to observe that, under near-continuum

conditions, the two methods give such close agreement.

The variation in translationM and vibrational temperatures for this case are shown

in Fig. 3. The particle solutions are obtained with McDonald% variable (_ model. Once

again, very good agreement is obtained between the two solution techniques. Temperature

is generally a much more sensitive quantity to simulate than density. The close correspon-

dence between the continuum and particle results indicates that the vibrational relaxation

models of both approaches are very nearly equivalent. This comparison therefore lends

strong support to the use in the particle simulation of the vibrational energy exchange

probabilities developed for the DSMC method, 11 the correction term required to equate

the continuum and particle relaxation rates, 13 and the mechanics of vibrational energy

exchange. 1_. It should be noted that the degree of dissociation under these flow conditions

is less than 1%.

Case 2: Weakly Dissociating Flow

8



The second set ofconditions considered has an increased enthalpy which gives riseto

weak dissociationbehind the shock. This case is of additional interestas it was studied

experimentally by Kewley and Hornung 2_ who employed interferograms to measure the

variationin density behind strong shocks of nitrogen. The increase in enthalpy isrevealed

in the densityprofilesshown in Fig.4 inwhich the normalized densityrisereaches a value of

about I0 at the downstream boundary. Vv'hileboth solutionsgive good agreement with the

experimental data, itisclearthat the particlesolution provides the better correspondence.

The DSMC profileisobtained with the variable(_ model. Comparison of the translational

and vibrational temperatures computed through the shock are shown in Fig. 5. Again,

a very good agreement is observed for the two sets of results. Considering the excellent

agreement obtained in Fig.5 between the continuum and particlemethods, and alsofor the

case ofvibrationalrelaxation,itisconcluded that the differencesobserved in Fig.4 mus_ be

due to the dissociationmodels employed in each simulation technique. This indicatesthat

the continuum two-temperature model gives a dissociationrate which is slightlyslower

than that of experiment and DSMC. In other words, for a weakly dissociatinggas, the

effectof vibrational relaxationon dissociationisoverestimated in Park's two-temperature

model.

The results for the mole fractionsof molecular and atomic nitrogen are shown in

Fig. 6. As expected from the previous comparisons, there is close agreement between

the two numerical approaches with DSMC predicting slightlymore dissociationthan is

obtained in the continuum solution.

Case 3: Strongly Dissociating Flow

The further increase in enthalpy for Case 3 gives rise to stronger dissociation effects.

Once again, the flow conditions modeled match those considered experimentally by t(ewlev

and Hornung. 0.2 The experimental profile of density behind the shock is compared with

the computational results in Fig. 7. The comparison between the continuum solution and

the experimental data is excellent. The DSMC profile is computed using the variable (_



model and ¢=2. With this model configuration, the particle method providesexcellent

agreementwith both the experiment and the continuum solution. It should be noted that

this is the DSMC model configuration employedin the computations for Case2.

The translational and vibrational temperature profilescomputedwith the continuum

and DSMC techniquesare shown in Fig. 8. Generally, very good agreementis observed

betweenthe two. There is a noticeable differencein the peak vibrational temperatures

computedby the two methods. This hasquite significant implications for the estimation

of radiative emission in such flows. The difference is attributable to dissociation-vibration

coupling, i.e., how the vibrational energy distribution is affected by dissociation. This

process is modeled quite differently in the continuum and particle approaches. These

results indicate the need for experimental measurement of vibrational temperature profiles

behind shock waves under conditions similar to those considered here. For completeness,

the profiles of mole fractions of the neutral species are shown in Fig. 9. The stronger

degree of dissociation for these flow conditions is very evident and, as expected, very good

agreement is found between the two solutions.

For this strongly dissociating case, it is found that Park's two temperature model

reproduces the experimental data very well. It is very encouraging that the two temper-

ature model gives such a favorable comparison with the exDerimentM data in strongly

dissociating flow as this is the regime for which the mode! has been developed. Indeed.

the present comparison arguably provides the strongest evidence to date that, despite

its weak theoretical basis, the two-temperature model does produce adequate simulation

of strongly coupled vibration-dissociation processes. The present investigation is unique

in that evaluation of the model is performed through direct comparison with experimen-

tal measurements of a fundamental flow quantity. The model was previously calibrat.ed

against experimental data by Park 1 through comparison with radiation emission spectra.

and by Candler 2a through comparison wi_h shock stand-off distance. Due to the excellent

comparisons between DSMC and experiment in Figs. 4 and 7, it is recommended that .Mc-

10



Donald's collisionmechanics and the VFD model with ¢=2 be used forsimulating nitrogen

dissociationwith the particlemethod.

Case 4: Weakly Ionizing Flow

The increase in enthalpy for Case 4 is sufficient to give rise to significant ionization

effectsbehind the shock. In performing the DSMC computations of the ionizedflowfield;a

steady shock solution isfirstobtained with the ionizingreactionsomitted. After reaching

thispoint,the ionized speciesare included and a furthershort transientphase in the simu-

lationthen allowed beforesampling of flow propertiesiscommenced. These procedures are

adopted because the inclusionof electronsin the flowfleldrequires a reduc:ion in compu-

tationaltime-step by two orders of magnitude. To compute the entirefiov,_eldwith such

a small time-step would requiremuch largercomputational resources.The comparison for

density profilescomputed with the numerical techniques isshown in Fig. I0. As with the

previous cases, good agreement is obtained between the two solutions.The temperature

profilescomputed with the continuum and particlemethods for the translationaland vi-

brational modes are compared in Fig. II. The peak values for each energ-ymode are in

good agreement. It isobserved that the translationaltemperature shock computed with

DSMC is thicker than the continuum result.This is due to the relativelylow upstream

density employed in this investigation.A more thorough analysis of such behavior will

form the basis of future study. The computed variationsin mole fractionsfor the neutral

speciesobtained with the numerical techniques are compared in Fig. 12 and those for the

charged species are compared in Fig. 13. The agreement which is generally obtained is

very satisfactory.This comparison verifiesthat the new forms of the reversereaction rates

employed in the particlesimulation are nearly equivalent to the expressions used in the

continuum analysis.It should be noted _hat a degree of s_atisticalscatterisexhibited by

the DSMC resultsfor the lessabundant species.

To assess the effectof using the new reaction rates, a particlesimulation is also

performed with the rate data used by Bird.19 The variationin the mole fractionsof the

Ii



chargedspeciescomplited in this way are comparedwith the continuum results in Fig. 14.

None of the species profiles are found to be in good agreement. With Bird's rates, the most

populous ion is No + , whereas the new particle rate data agrees with the continuum solution

in giving N + as the most abundant ion. With Bird's rate data, the mole fraction of electrons

at the downstream boundary is about 2.5x10 -a whereas the continuum simulation gives a

value of about 1.8x10 -2. If it is accepted that the rate coefficients provided in Refs. 1 and 2

are the more physically realistic, these large differences observed with Bird's older data set

must calt into question previous DSMC investigations which employed those reaction ra_es.

Apparently, there has been a mistake in the reverse rate for reaction 3 used by Bird. 19 The

temperature exponent should be listed as -0.18 instead of the value of -0.52.20 This error

is qui_e serious as it was inciuded in codes employed in a fairI:7 large number of studies.

Concluding Remarks

This study was motivated by the requirement to evaluate the relationship between

continuum and particle simulations of hypersonic flows in the near-continuum regime. The

results obtained in the investigation have established tha_ a close correspondence exis;s

between the thermochemical nonequilibrium models employed in these solution techniques.

In the case of vibrational nonequilibrium, the agreement between the two sets of numerical

results validated a number of recent modeling developments for computing the rate and

mechanics of vibrational energy exchange in the particle simulation. In the cases of weak

and strong dissociation, both the continuum and particle models for vibration-dissociation

coupling were successfully evaluated against experimental data. This is a most interesting

result considering the large differences in the dissociation models employed in the _wo

techniques. In the case of weakly ionized flow, it was necessary to develop new forms

for some of the chemical rate constants for use in the particle simulation. These were

developed so as to be nearly consistent with the continuum expressions, and also to be

mathematically convenient for use in the particte chemistry models. The next stage in

this continuing investigation will be evaluation of these methods for flow conditions in the

12



transition regime, i.e. at higher Knudsennumbers. In such flows, rarefaction effectsmay

invalidate useof the Navier-Stokesequations,and give-riseto large differencesbetweenthe

continuum and particle simulation results.
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Table 1. Flow conditions.

Case

1

2

3

4

U1 (m/s)

4000

4800

7310

I0000

pl (k_/m3)

1.75x10 -3

4.67x10 -_-

7.48xi0 -3

5.00KlO -4

Pl (tort)

1.17

31.2

5.00

0.33

u__(m/s)

541

480

496

640
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Table 2. Leading constants in chemical rate data (ma/molecule/s).

Reaction Continuum2 Particle19

1. N2 + N2 --_2N + N2 1.16x10-s T -16 6.17x10-9 T -16

2. N2 + N _ 2N + N 4.98xi0 -s T -1"6 l.SSxl0-8 T -1"6

3a. N + + N2 --+N + N2 + 1.86xi0-Is T °'s 1.67xi0-17 T -°'18

3b. N + N2 + -_ N + + N2 See Ref. 1 2.37xi0 -Is T -°'52

4a. N + IN --+ N2 + + e- 7.31x10 -23 T 1"5 2.98x10 -2° T °'7<

4b. N2 + + e- --+N + N See Ref. 1 8.88xi0 -I° T -1"23

5. .N + e- --+N + + 2e- 4.15xi04 T -3'82 1.00xl0-14

Particle (present)

7.97x10-1a T-O._

?.14xt0-s T-l.s

1.66xi0-18 T o._

2.34:<10-14 T-o.61

7.31x10-2a TI.5

1.57x10 -lr T o.ss

5.81x10-s T-I.o

17



chemical rate data.

MI -GG t,_C">--
PRECF..I_tlNGP,_IGE-E'L--A-f¢_NOT _LM, ED

19



10

E 10
co
c-
o
o 10

E
"--1

"= 10
..f21

w 10

10

2

/ Continuum (Ref. 18)

................ Particle (Ref. 19)

...... Particle (present)
I I |

0.5 1.0 1.5

Temperature (K) x104

2.0



O
°--

G3
cc
_>,
O3
¢-

ch

m

m

, I

0

Continuum

• Particle (BL)
Particle (SHO)

I I I

1 2

Distance (cm)

3



0

y
v

_3
0..

E
(D
I-

10

8

6

4

2

0
0

m

- Z_

,#
!

/

Tt (continuum)

Tv (continuum)

A Tt (particle)

'V Tv (particle)
1 I 1 1

1 2

Distance (cm)



O

¢O
rr

°--
_O
t-

£3

12

8

4

0

- ,_ E3E3_

• Experiment
Continuum

[] Particie (VFD, 4)=2)

0.0

I I I

0.1 0.2

Oistance (cm)

0.3



12

o

"_ F-
y
v

8
-1

E 4 -
I--

0.0

Tt (continuum)
...... Tv (continuum)

A Tt (particle)
V Tv (particle)

' I I I

0.1 0.2

Distance (cm)



1.0

0.8
c-
O

o 0.6

IJ_

0,4
0

0.2

0.0

N2 (continuum)
............... N (continuum)

__ _ N2 (particle)
i O N (particle)

_. O.O.C_O.O-O O OOO'O O'O'O"O(
.4_ .O'X _ 1 1 1

0.0 0.1 0.2 0.3

Distance (cm)



o

_3
rr

_>,
°-

CO

r.-

16

12

4

0

Continuum

[] Partic!e (SHO, ¢=2)

0.0

I I I I

0.1 0.2

Distance (cm)

D•



O

x

.,./
v

a3

o_
E
(D
I-

3O

2O

10

0

Tt (continuum)

Tv (continuum)

h. Tt (particle)

_7 Tv (particle)

0.0

m

Z

D

m

_ _ _._.=_=

-

I I 1 I

0.1 0.2

Distance (cm)



1.0
c-
._o 0.8
U

ku 0.6
o
o
:s 0.4

0.2

0.0

N2 (continuum)

................ N (continuum)

_, 0 N2 (particle)

_ 0 N (particle)

Q

0.0

I I t

0.1 0.2

Distance (cm)

_. _. ,_ _ c_



16

12
o

o_

rr

-_ 8
r'-'

E)

4

0 I

[] Particle

I ! I

0.0 0.5 1.0 1.5 2.0 2.5

Distance (cm)

f
.t--.,



03

O

,,F

E

6O

4O

2O

Tt (continuum)

Tv (continuum)

A Tt (partic!e)

V Tv (particle)

!

1 1 1

0.0 0.5 1.0 1.5 2.0 2.5

Distance (cm)



1.0

0.8
E
O

",,_,

o 0.6

LL

0.4
o

0.2

0.0

'- <

- O

- N2 (continuum)
_ ) ................N (continuum)

0.0 0.5 1.0 1.5 2.0 2.5

Distance (cm)

jj. /2 _ E;Lc.__...._



10

-2
10

t-
O

•-- -4
'_ 10 -

IJ_

10 .6 _
0

10 -8 _

10 -10

0.0 0.5

N2+

Continuum { N+

i'q N2÷
r

Particle .,_ A. N+
L e-

l 1 I

1.0 1.5 2.0 2.5

Distance (cm)



0
10

-2
10 -

c-

.o -4
'_ 10 -

i.!_

__m 10 6 _
0

-8
10 -

10q°
0.0

r
Continuum -_ ..... N+

L
................ 8-

[] N2+
r

PartJde 4 _ N+
L _' e-

l 1 I

0.5 1.0 1.5 2.0

Distance (cm)

2.5



APPENDIX C



I U l I

AIAA-92-2971

Decoupled Predictions of

Radiative Heating in Air

Using a Particle Simulation Method

I. D. Boyd and E. E. Whiting

Eloret Institute

Palo Alto, CA 94303.

AIAA 23rd

Plasmadynamics & Lasers Conference
July 6-8, 1992/Nashville, TN

III

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024



DECOUPLED PREDICTIONS OF I_ADIATIVE HEATING IN AIR

USING A PARTICLE SIMULATION METHOD

lain D. Boyd* and Ellis E. Whiting"

Eloret Institute, 3788 Fabian Way

Palo Alto, California.

Abstract

The radiative emission along the stagnation stream-

line and the radiative heating at the stagnation point

of a blunt-nosed vehicle entering the Earth's atmo-

sphere at hypersonic speed are estimated using a par-

ticle simulation technique with decoupled radiation.

The fluid mechanics of the weakly ionized flow is

computed using the direct simulation Monte Carlo

method, DSMC. Analysis of radiation is decoupled

from the flowfield and is estimated using NEQAIlq.,

a computer code written by Park. The results are

compared with previous DSMC computations which

employed a simplified, coupled radiation model. The

effects of recent advances in modeling relaxation and

dissociative behavior with the DSMC technique are as-

sessed in terms of radiative emission. It is found that

the introduction of the new models decreases the'pre-

dicted total radiative heating at the stagnation point

of the vehicle by a factor of 15. The DSMC approach

is also compared with a continuum flow model: in each

case prediction of radiation is decoupled from the flow-

field. Similar sets of vibrational and chemical relax-

ation rates are employed in these simulations. Despite

large differences in the computed flowfield, which ex-

hibits strong thermo-chemical nonequilibrium, the to-

tal predicted radiative heating estimates agree within

a factor of 2.

Introduction

The motivation for the present study arises from

the requirement for accurate radiation estimates for

hypersonic flight vehicles. These are necessary for ad-

equate thermal protection of the spacecraft during en-

try into the Earth's atmosphere. A previous study for

the Aeroa.ssistFlightExperiment (AFE) has been re-

* Research Scientist. Mailing address:

NASA Ames Research Center, MS 230-2, CA 94035.

This paper m declared • work of the U.S. Government and is not
mubje_ to ¢Ol_right protection in the United States.

ported by Whiting and Park 1 in which flowfietd data

were obtained using the Navier-Stokes equations at the

lower altitudes traversed by the AFE during its sweep

through the upper atmosphere. However, at higher

altitudes, numerical difficulties were found in obtain-

ing solutions. These difficulties are presumed to arise

from the failure of the Navier-Stokes equations when

the Knudsen number of the flow is too high.

The primary aim of the present study is to obtain

radiation estimates using a particle simulation method

for low-density, hypersonic flows in which strong effects

due to thermo-chemical nonequilibrium are present

and to compare the results with those from Ref. 1 for

continuum flow. This is accomplished using the di-

rect simulation Monte Carlo method (DSMC) to pre-

dict the one-dimensional flowfield along the stagnation

streamline. The radiative emission is then computed

using the computer code NEQAIR 2 with the radiation

decoupled from the flowfield solution.

This is the first time that radiative heating has been

estimated from DSMC computations using the ap-

proach in which radiation is decoupled from the flow-

field solution. A new particle simulation code has been

developed for the study. The code contains many re-

cent developments which have improved considerabiy

the modeling of thermo-chemical relaxation with the

DSMC technique.

The new code is first evaluated througl_ comparison

against previously published particle computations of

hypersonic, low*density, radiating flow. These previ-

ous DSMC computations employed simplistic thermo-

chemistry models, and the effect of the introduction of

the improved models is assessed. Additionally, com-

parison is made between the new code and continuum

techniques for flow conditions corresponding to a tra-

jectory point of the AFE vehicle. The continuum code
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is SPRAP (Stagnation Point Radiation Program) writ-

ten by Park a which solves the Navier-Stokes equations.

Radiative emission for these continuum calculations is

also decoupled from the flowfield solution.

Description of the Particle Simulation

The particle simulation code for computing one-

dimensional shock waves in air is highly vectorized,

and has been extended from the implementation for a

reacting gas described by Boyd 4 to include electrons

and ionizing reactions. An eleven species (N2, N, 02,

O, NO, N2 +, N +, O: +, O +, NO +, E-) real air model

is employed. The code contains many recent model-

ing developments which have improved the ability of

the DSMC technique to simulate thermochemical re-

laxation phenomena.

The code simulates rotational s and vibrational 6 en-

ergy exchange using probability functions which are

evaluated using the energy of each collision. These

represent an improvement on previous models in which

constant probabilities were applied. The code employs

the Vibrationally-FavoredDissociationmodel ofHaas

and Boyd 7 and a correspondingrecombinationmodel.4

From the DSMC simulation,itisassumed that thevi-

brationaland electronictemperatures of the gas are

equalforthepurposesofcomputing the radiativeemis-

sion.Therefore,itisexpected thatthe improved phys-

icalmodels employed in the DSMC code may affect

significantlythe totalradiativeheatingpredicted.

The introductionofelectronsintothe code requires

specialconsideration.Due to theirvery low mass,

the collisionratesassociatedwith electronsare about

two orders of magnitude higher than those associated

with the heavy species which occur in air. This re-

quires the use of a numerical time-step which is two

orders of magnitude smaller than would be employed

were the electrons absent from the flowfield. In the

present implementation, this problem is solved by us-

ing a time-step hosed on the heavy species to move the

particles through the flowfield, and then subdividing

the time-step into one hundred sub-steps to perform

the collisions. Charge-neutrality is enforced through-

out the flowfield by forcing each electron to remain

in the same computational cell as the ion with which

it was initially formed. While this is physically un-

realistic, this approach should not affect the predic-

tion of radiative emission to any great extent. Also,

any charged particles which collide with the cold sur-

face of the vehicle are assumed to recombine to the

neutral species. The special considerations described

here for simulating charged species add a significant

numerical overhead to the calculations (although the

DSMC code is still highly vectorized). This overhead

is minimized by initially running the DSMC code with-

out the charged species until a steady state is reached.

The ionizition and charge-exchange reactions are then

turned on, and the system is allowed to reach a new

steady state, before sampling of flow variables begins.

Two different sets of chemical rate data are em-

ployed in the DSMC code. The first corresponds to

that used by Moss et al.. s This set was implemented

without coupled vibration-dissociation. In addition,

for each reaction, the reverse rate expressions were de-

termined by evaluating the electronic partition func-

tions in the equilibrium constants at a fixed tempera-

ture. The second set of rate constants is based on those

employed by Whiting and Park in the continuum code

SPRAP. In their analysis, the reverse reaction rates are

obtained by evaluating temperature-dependent curve

fits for the equilibrium constant. The curve fits take

the following form proposed by Parka:

K,(T) = ezp(A, + A2ln(z) + A3z + A4z':" + Asz a)

where the Ai are constants and z=10000/T. Unfortu-

nately, this form for the equilibrium constant is not

mathematically convenient for implementation in the

DSMC chemistry models.

The goal of this part of the present study is to evalu-

ate differences in the chemical models employed in the

continuum and particle methods. To limit the num-

ber of factors involved in these comparisons, it is the

aim to maintain consistency between the relaxation

rates employed in the solution techniques. Therefore,

a form for the equilibrium constant which takes the

traditional Arrhenius form is fit as a function of tem-

perature to Park's expression. This approach has been

very successfully applied by Boyd and GSk_en 9 to the

ionizing reactions for N:. By achieving good corre-

spondence between the two sets of chemical rate con-

stants, very good agreement was obtained for flow so-

lutions to hypersonic shock-waves in N2 using parti-

cle and continuum methods. For air, good agreement

is generally obtained between the new DSMC expres-
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sionsand Park'sresultsoverthe temperaturerangeof

interest,i.e.from 10,000to 20,000K.

Description of NEQAI'R.

The code employed toestimatethe radiativeemis-

sionfrom the flowfieldsolutioniscalledNEQAIR and

was developed originallyby Park._ NEQAIR calcu-

latesthe nonequilibriumelectronicexcitationof the

speciesin the flowand the radiationemittedby those

species.A principalassumption made in the code is

thatthe quasi-steadystate(QSS) model may be used

todetermine the populationofeach electronicstateof

a speciesafterthe speciesdensityisfound from the

reacting-flowsolution.

The QSS model assumes that the individualrates

of populatingand depopulatingeach electronicstate

are much fasterthan the rate of change of the pop-

ulationof the stateitself.Thus, the populationof a

stateisgiven by the differenceof two largenumbers

that are about equal.This assumption isnot validin

the flowimmediatelybehind the shock wave where the

populationsof the excitedstatesare low and increas-

ing rapidly. However, as the excitedstatesbecome

populated,the speciesbegin toemit radiation,and by

the time the radiationreachesa significantlevel,the

assumption isreasonablyvalid.

As the QSS model isappliedafterthe chemistry

portionof the calculationiscompleted,the electronic

excitationprocessesare assumed to be independentof

the chemical reactions.This simplifiesthe calculation

enormously. The QSS model allowsaseparateeffective

electronictemperature to be definedforeach excited

electronicstate. These temperaturesare definedby

comparing the populationof an excitedstateto the

populationofthe ground state.At each flowfielddata

point,the QSS model implemented in NEQAIR em-

ploys the translationaland vibrationaltemperatures

from the DSMC or continuum simulation.In addi-

tion,the QSS model assignsmany temperaturesfor

electronicexcitation(one for each excitedelectronic

stateof every species).

In the estimation of radiativeemission from the

flowfieldsolution,NEQAIR isexecuted over 12 differ-

ent spectralregionswhich are listedinTable 2.These

have been determined by Whiting and ParkI to be

thosewhich make significantcontributionstothetotal

radiativeheatingfor hypersonicflowsofair.The fol-

lowing molecular bands have been included: N: + (I-),

N: (1+), N_ (2+), N: (BH1), NOB, NO'r, 02 (SR).

The ultimate test of such codes is how well the re-

sults compare with experiment. Park 1° has compared

calculated radiative results with shock-tube, ballistic-

range, and Earth-entry data covering a wide range of

flight conditions and finds good agreement, generally
within a factor of two.

Results and Discussion

This section is divided into three sub-sections. In

the first, comparison is made between the new code

and DSMC computations reported previously by Moss

¢1 al.. s A number of different comparisons are made

to examine the ability of the new code to reproduce

exactly the results of Ref. 8 using the same physical

model and chemical reaction rates. Specifically, the

DSMC code employs constant rotational and vibra-

tional collision numbers of 5 and 50, and the chemical

reaction rates from Ref. 8 with the degree of vibration-

dissociation coupling set to zero. The second subsec-

tion investigates the effects of employing the improved

physical models. For this purpose, the DSMC code

employs variable rotational and vibrational collision

numbers, vibrationally-favored dissociation, and the

new chemical rate constants derived from the contin-

uum expressions. In the third sub-section, comparison

is made between the DSMC code using the new models

and the continuum computations of Ref. 1.

Comparison with Previous Results

Using Old DSMC Models

The new code is first assessed through comparison

with DSMC computations presented by Moss el al: s

for the AFE at an altitude of 78 km (the flow condi-

tions are given in Table 1). The free-stream tempera-

ture and Knudsen number were 188 K and 1.2x10 -3 re-

spectively. For compatability with the study reported

in Ref. 8, constant rotational and vibrational collision

numbers of 5 and 50 are employed. Also, the chemi-

cal reaction rates from Ref. 8 are used, the degree of

vibration-dissociation coupling is set to zero, and the

shock standoff distance is specified as 0.110 m from

the body. A total of 1,000 computational cells and

over 100,000 simulated particles are employed in each

of the calculations reported in the current work.

The temperatures computed in the present study



4 AIAA 92-2971

(lines) are compared with data taken from Ref. 8 (sym-

bols) in Fig. 1. It is clear that significant thermal

nonequilibrium effects are present. In comparison to

the profiles from Ref. 8, the present temperatures are

slightly higher. This effect is at least partially due to

the absence of radiative cooling in the current work.

The mole fractions of the major species computed in

the present study (lines) are compared with data taken

from Ref. 8 (symbols) in Fig. 2. The present study is in

very good agreement with the solutions from Ref. 8. In

addition to the general form of the computed l_rofiles

shown in Figs. 1 and 2, the peak electron temperature

of about 18,000 K and the maximum electron mole

fraction of about 0.013 are in good correspondence to

the results of Ref. 8.

The radiative emission along the stagnation stream-

line given by NEQAIR for the present DSMC flowfield

solution is shown in Fig. 3. This profile compares quite

well with the profile given in Ref. 8, although the peak

value is somewhat larger in the present study. Integra-

tion of the spontaneous emission along the streamline

to the body gives a one-dimensional radiative flux of

64.8 kW/m2/sr, which is about a factor of 1.6 greater

than the result of Moss e_ al.. The difference may

partly be accounted for in terms of radiative cooling

which is omitted in the present calculations by estimat-

ing radiative emission decoupled from the flowfield.

Considering the significant differences in the radiation

models employed in the two studies, the agreement is

acceptable.

The radiative heating at the stagnation point due to

the radiative flux given above is found using a spherical

cap model 1. First, the infinite slab result is obtained

for the total radiative heating flux at the stagnation

point by multiplying the one-dimensional value by 2,'r

for the optically thin gas part of the spectrum, and by

a"for the self-absorbing regions. The spherical cap re-

sult is then computed as about 80% of the infinite slab

value 1. This procedure gives a total radiative heating

value of about 340 kW/m 2, which is a very high value.

This value is even higher than the convective heating

rate reported in Ref. 8 as 248 kW/m 2.

The contributions to the total radiative heating

made by the various spectral regions which are ana-

lyzed are listed in Table 3 under Old Model. The rea-

sonable agreement found between the present DSMC

results and those obtained in Ref. 8 for the radiative

flux, indicates that the decoupled approach to radia-

tion assumed in this study is an appropriate solution

method for these flow conditions. In addition, analysis

of the rate of loss of energy from the flowfield showed

that only about 0.2% was due to radiative emission.

This confirms that simulation of radiation coupled to

the fluid mechanics is unnecessary for these fiowfields.

Comparison of Old and New DSMC models

Having established that the new DSMC code pro-

vides solutions which are similar to previous studies,

when using similar models, it is appropriate to assess

the effect on the radiative emission by the introduc-

tion of the improved physical models. Specifically,

variable rotational and vibrational collision numbers,

vibrationally-favored dissociation, and the new chemi-

cal rate constants derived from the continuum expres-

sions are implemented. The translational and vibra-

tional temperatures computed with the DSMC code

using the old and new models are shown in Fig. 4 for

the same conditions considered in the previous subsec-

tion. The relaxation zone is much larger with the im-

proved models. Note that the vibrational mode using

the new model does not equilibrate with the transla-

tional mode until the body surface is reached. This is

due mainly to the use of the variable vibrational col-

lision number. This quantity is a strong function of

temperature, and only reaches a maximum of about

50 at the peak translational temperature. For most

of the stagnation streamline, the vibrational collision

number is greater than 100 which reduces significantly

the rate of equilibration of the vibrational mode.

The species which radiate most energy in the ultra-

violet region of the spectrum (0.11-0.18_ m) are atomic

nitrogen and oxygen. The variation in the mole frac-

tions for these species is shown in Fig. 5. With the

new, improved models, the rise in N and O due to

dissociation is retarded significantly due to the use of

the vibrationally-favored dissociation models and the

lower vibrational temperatures. The strongest radi-

ator above 0.2/_m is N2 + and its variation in mole

fraction computed with the old and new DSMC mod-

els is compared in Fig. 6. The rise in N2 + is faster

with the old models although behind the shock the

two solutions show general agreement.

The profiles of radiative emission are compared in
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Fig. 7. The peak emission obtained with the new

models is significantly lower than that computed with

the previous models due to the lower electronic tem-

perature, which is set equal to the vibrational value

in NEQAIR. The computed three-dimensional inte-

grated radiative heating at the stagnation point is only

about 23.4 kW/m u, for the new model which is a fac-

tor of about 15 smaller than that predicted by the

old model. The contributions to the total radiative

heating made by the various spectral regions which

are analyzed using NEQAIR are listed in Table 3 un-

der New Model. The very large difference obtained in

the radiative heating estimates using the old and new

thermochemistry models demonstrates the sensitivity

of the calculations to the physical models.

Comparison with Continuum Results

The DSMC code using the new models is applied to

the flow conditions examined by Whiting and Park 1,

which are given in Table 1. These are slightly different

from those investigated in Re£ 8. The most important

difference involves the shock standoff distance which is

significantly larger in Ref. 1 (0.188 m) than in Ref. 8

(0.110 m). The freestream temperature is 188 K and

the Knudsen number is 1.7x10 -S. The DSMC compu-

tations again employed the energy-dependent proba-

bilities of rotational and vibrational energy exchange,

and the vibrationally-favored dissociation model dis-

cussed by Boyd. 4 The vibrational and chemical rate

constants are made consistent with those employed in

the continuum simulation as discussed earlier.

The continuum results taken from Ref. 1 were com-

puted using SPRAP which was developed by Park. _

This code computes the viscous, one-dimensional, con-

tinuum flow behind an infinitely thin normal shock

wave using the approach described in Ref. 3. The so-

lution for the one-dimensional, uniform area duct may

then be transformed to represent the flow along the

stagnation streamline of a spherical body. The initial

flow conditions immediately behind the shock are de-

termined from the Rankine-Hugoniot shock-jump rela-

tionships, assuming that the vibrational temperature

remains at the free-stream value. A viscous shock layer

treatment is applied for computation of the boundary

layer which forms next to the cold wall of the vehicle.

It is assumed that the flow in the boundary layer is

chemically frozen with a ratio of specific heats equal

to 11/9. Further, the wall is assumed to be noncat-

alytic for the dissociation reactions and fully catalytic

for the ionization reactions. In this approach, a two-

temperature dissociation model is used in generating

the reacting flow behind the normal shock wave. This

model equates the molecular rotational temperature to

the kinetic temperature of the atoms and molecules,

and also equates the electron kinetic and electronic

temperatures to the molecular vibrational tempera-

ture. In the two-temperature model, all molecules

have the same vibrational temperature, the degree of

ionization is small, and the chemical reactions occur

in the ground states of the atoms and molecules.

The computed temperature profiles are compared

in Fig. 8. The two-temperature continuum approach

provides a translation-rotation value, and a vibration-

electron-electronic value. The particle DSMC ap-

proach provides separate values for the translational,

rotational, and vibrational energy modes and equates

the electronic temperature to the vibrational temper-

ature to calculate the radiation.

The temperature profiles exhibit many differences.

The DSMC solution shows considerable shock thick-

ness and structure which is omitted in the continuum

calculation. In the DSMC computation, there is a sig-

nificant region of the shock where the translational

and rotational modes are not equilibrated, thereby

casting doubt on the validity of the continuum two-

temperature approach at least at these low densities.

The rise in vibrational temperature predicted by

DSMC is slower than that computed in the contin-

uum simulation. Further, the DSMC method pre-

dicts a higher degree of nonequilibrium between the
vibrational mode and the translational and rotational

modes all along the stagnation streamline. The rea-

sons for these differences in the two solutions are not

clear at this point. The factors involved include dif-

ferences in simulating viscosity, thermochemistry, and

transforming a one-dimensional calculation into a stag-

nation streamline flow. These factors need to be in-

vestigated more thoroughly.

The mole fractions of atomic nitrogen and oxygen

computed with the continuum method and the DSMC

code for these conditions are compared in Fig. 9.

Generally, the agreement is quite good except within

the shock wave itself which is omitted in the con-
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tinuum code. In the continuum technique, it is as-

sumed that no chemical reactions occur upstream of

the shock standoff location. The DSMC computation

indicates that significant chemical activity does take

place through the shock. This is due to the finite

thickness of the shock-wave and to diffusion effects.

Thus, the rise in atomic mole fractions computed by

DSMC preceeds the continuum results by a significant

distance. The profiles computed by the two methods

then follow similar paths until the last few centimeters

next to the body, where the continuum code assumes

the flow to be chemically frozen. The variation in mole

fraction of N2 + computed with the two techniques is

shown in Fig. 10. The rise in N2 + predicted by DSMC

occurs in the thick shock-front and therefore leads the

continuum solution. Behind the shock, the DSMC re-

sults provide a higher concentration of N2 + than the

continuum data.

The spontaneous radiative emission profiles ob-

tained from the continuum and DSMC solutions are

compared in Fig. 11. The peak emission obtained

with the new DSMC models is significantly lower than

that computed with the continuum method, due to the

smaller electronic (vibrational) temperature.

The integrated radiative heating at the stagnation

point computed with the DSMC calculation is about

47 kW/m 2 while the continuum solution gives a value

of 75.5 kW/m 2. The contributions to the total radia-

tive heating made by the various spectral regions are

listed in Table 4.

Despite the large differences observed in the flow-

field solutions, it is interesting to note that the con-

tinuum and DSMC total radiative heating estimates

lie within a factor of 2 of each other. It is also worth

noting that by increasing the shock standoff distance

from 0.110 m (from Ref. 8) to 0.188 m (from Ref. 1)

the total radiative heating predicted by the new DSMC

thermochemistry models is doubled, indicating nearly

linear scaling between these two quantities.

For the sake of completeness, the flow conditions

investigated in Ref. 1 were also computed with the

old DSMC thermochemistry models. The difference

in flow quantities computed with the old and new

models was similar to those shown in Figs. 4 through

6. The flow quantities were again interpretted in

terms of total radiative heating at the stagnation point

using NEQAIR. The solution obtained with the old

DSMC thermochemistry models gave a radiative heat-

ing which was ten times higher than that predicted

with the new models.

Concluding Remarks

A new approach has been evaluated for predict-

ing the radiative heating of a blunt-body entering the

Earth's atmosphere. In this approach, the fluid me-

chanics of the flow along the stagnation streamline was

predicted using a particle method (the direct simula-

tion Monte Carlo method, DSMC), which is deeoupled

from the radiative emission.

Comparison was made with a previous DSMC cal-

culation which employed outdated thermochemistry

models together with a simplified, coupled radiation

model. For the purpose of this comparison, the present

DSMC computation also employed the old DSMC

thermochemistry models. These two very different ap-

proaches gave agreement to within a factor of 2 for the

total radiative heating at the stagnation point. This

is viewed as acceptable considering the differences be-

tween the radiation models employed. The decoupled

approach gave the higher value which was attributed

in part to the absence of radiative cooling.

For the same flow conditions, the use of new DSMC

thermochemistry models led to a decrease by a factor

of 15 in the total radiative heating at the stagnation

point. This drastic reduction in heating illustrates the

sensitivity of the computed data to the physical models

employed in the simulations. It is proposed that the

new thermochemistry models, which have been suc-

cessfully evaluated in previous studies, should provide

more realistic simulation results. This decrease in ra-

diative heating indicates that it is not necessary to cou-

ple radiation to the fluid mechanics under these flow

conditions. To attain greater confidence in the numer-

ical simulations, it is clear that experimental data is

required for the validation of these physical phenom-

ena.

A further comparison of the new DSMC chemistry

models with a continuum calculation gave agreement

within a factor of 2 for the total radiative heating,

despite considerable differences in the flowfield solu-

tions. The main conclusion of this study is that there

remains a large degree of uncertainty in the applica-

tion of state-of-the-art numerical methods for the pre-
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diction of radiative heating to hypersonic vehicles fly-

ing in low-density regions of the Earth's atmosphere.

Considering the importance of such heating to many

future aerospace projects, there is a need for continued

numerical and experimental investigation in this area.
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Table 1. Freestream conditions.
ii I

Source Altitude U_ (m/s) p_ (kg/m a)

Ref. 8 78 km 9110 2.75x10 -s

Ref. 1 80 km 9756 2.05x10 -_
i=11

Table 2. Spectral regions analyzed with NEQAIR.

Description Absorption

N atomic lines Yes

N atomic lines Yes

N atomic lines Yes

N atomic lines Yes

N atomic lines Yes

N and O atomic lines Yes

N atomic lines Yes

N atomic lines Yes

N atomic lines Yes

N atomic lines Yes

N atomic lines Yes

Molecular lines No
!

Table 3. Total radiative heating (in kW]m _) using

DSMC for the flow conditions from Kef. 8.

_gion (_m)
0.1130-0.1140

0.1160-0.1170

0.1170-0.1180

O.1195-0.1205

0.1240-0.1250

0.1294-0.1314

0.1315-0.1325

0.1323-0.1333

0.1405-0.1415

0.1490-0.1500

0.1740-0.1750

0.2000-2.0000

I I

Region (_m) Old Model New Model

0.1130-0.1140 3.11 0.08

0.1160-0.1170 4.19 0.16

0.1170-0.1180 2.30 0.08

0.1195--0.1205 6.07 0.21

0.1240-0.1250 3.65 0.14

0.1294-0.1314 8.23 0.24

0.1315-0.1325 3.16 0.23

0.1323-0.1333 2.37 0.07

0.1405-0.1415 3.13 0.28

0.1490-0.1500 I1.94 0.72

0.1740-0.1750 19.30 2.21

Sub-Total 67.5 4.42

0.2000-2.0000 272.2 19.0

Total 339.7 23.4
!

Table 4. Continuum and DSMC contributions (in

kW/m 2) of the various spectral regions to the total

radiative heating at the stagnation point for the flow

conditions from Ref. 1 at an altitude of 80 km.
I , ' ,

Region (/_m) Continuum New Model

0.1130-0.1140 0.44 0.20

0.1160-0.1170 0.76 0.50

0.1170-0.1180 0.32 0.27

0.1195-0.1205 0.84 0.46

0.1240-0.1250 0.92 0.40

0.1294-0.1314 0.76 1.13

0.1315-0.1325 0.76 0.61

0.1323-0.1333 0.52 0.19

0.1405-0.1415 0.84 0.70

0.1490-0.1500 2.84 1.65

0.1740-0.1750 5.36 4.73

Sub-Total 14.4 10.8

0.2000-2.0000 61.1 36.2

Total 75.5 47.0
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Fig. 1. Temperature profiles along the stagnation

streamline: comparison of present calculatons and

Ref. 8 using the old DSMC thermochemistry models.
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Fig. 2. Profiles of atomic species mole fractions: com-

parison of present calculatons and Ref. 8 using the old

DSMC thermochemistry models.
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Fig. 3. Profiles of radiative emission along the stagna-

tion streamline: comparison of present calculatons and

Ref. 8 using the old DSMC thermochemistry models.
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Fig. 4. Temperature profiles along the stagnation

streamline: comparison of the old and new DSMC

thermochemistry models.
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Fig. 5. Profiles of atomic species mole fractions along

the stagnation streamline: comparison of the old and

new DSMC thermochemistry models.
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Fig. 9. Profiles of atomic species mole fractions: com-

parison of continuum and DSMC calculations using

the new thermochemistry models.
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streamline: comparison of continuum and DSMC cal-

culations using the new thermochemistry models.

SPRAP

DSMC

I w i i t ! i

10 20

Distance from body (cm)

3O

Fig. 10. Profiles of N: + mole fractions: comparison

of continuum and DSMC calculations using the new

thermochemistry models.

0 10

SPRAP

DSMC

---'1". I

20 30

Distance from body (cm)

Fig. 11. Profiles of radiative emission: comparison

of continuum and DSMC calculations using the new

thermochemistry models.



APPENDIX D



Abstract: Atmospheric Flight Mechanics Conference, 1993 (Haas & Schmitt) 1

SIMULATED PITCH, YAW, AND ROLL TORQUES
ON THE MAGELLAN SPACECRAFT DURING AEROBRAKING
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Eloret Institute, 3788 Fabian Way, Palo Alto, California 94303

Durwin Schmittt
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Aerodynamic loads upon the Magellan spacecraft dmSng proposed aerobraking through the atmo-

sphere of Venus are computed at off-design attitudes with a direct Monte Carlo particle simulation

method. This method is not restricted to the asstmTption of collisionless flow normally employed to

assess spacecraft aerodynamics. Simulated rare,qed flows at the nominal "altitude of I40 km and entry

speed of 8.6 km/s were compared to simulated and analytic free molecular results. The nominal space-

craft orientation is defined with the �low directed along the central body axis and perpendicular to the

solar panels. Aerodynamic moments and lift for rareSed entry at several angles of pitch and yaw were

at least 10% greater than free molecular results, while drag was about 20% lower. At each orientation,

the resulting aerodynamic center of pressure on the body axis was located behind the vehicle center of
gravity, provide'rig restoring torques and promoting spacecraR stability. Roll torques about the body axis

for entry at nominal orientation, but with the solar panels canted at various angles to the freestream flow,

were computed and compared to free molecular results. This configuration has been suggested as an inno-

vative experiment to assess gas-surface interaction dw_ng aerobraking. Periodic free-molecule boundary

conditions and a coarse computational grid and body resolution served to minimize the simulation size

and cost while maintaining solution accuracy

NOMENCLATURE

n number density
T temperature

u flow velocity

c_ intermolecular potential exponent

e. surface radiative emissivity

A gas mean free path

p gas density

Subscripts:

s stagnation value
freestream value

INTRODUCTION

The Magellan spacecraft has been mapping the surface

of Venus from a highly elliptic orbit (eccentricity, e = 0.39)

since September of 1990. Mission planners at NASA's Jet

Propulsion Laboratory (JPL) would like to circularize the

orbit to improve mapping but cannot perform the manuever

through thruster activity alone due to limited remaining pro-
pellant. The orbital maneuver may be achieved through a

series of gentle passes through the Venus atmosphere (1600
passes at u = - 1 m/s each)} Besides circularizing the orbit,

these maneuvers would provide considerable data related to

atmospheric entry of satellite spacecraft.

" Research Scientist. Member, AIAA.

Mailing Address: NASA Ames Research Center

M/S 230-2, Moffett Field, California 94035-1000
"["Retired. Member. AIAA.

paper i_ declart_l • work of the U.S. Goverrtmcmt and i_ not
subject to c_yright protection i_ the United States.

The spacecraft configuration is depicted in Fig. 1 in its

nominal entry orientation with flow directed (at orbit pe-

riapsis) along the central body axis. The solar panels in

this configuration are normal to the flow, but indeed may
be canted at any angle to form an effective "windmill" out

of the spacecraft during entry. Restoring roll torques on the

spacecraft may be measured along with surface heating and

orbit altitudes to deduce the flowfield density and the sur-

face accomodation coefficients in the normal and tangential

directions. Axes for pitch and yaw are indicated in the front
view.

Aerodynamic heating on the delicate solar panels dur-

ing each aeropass was one mission constraint. Direct parti-
cle simulations of entry at several altitudes from 125 km to
140 km in the nominal orientation 2 verified that this heat-

ing was within the specified tolerance at altitudes exceeding

135 km. At the nominal altitude of 140 kin, the heating and

drag results corresponding to the rarefied flow were very

close to those corresponding to free molecular (collision-
less) flow at that altitude.

Mission planners are now concerned with spacecraft sta-

bility during aerobraking, particularly if the entry orienta-
tion has a high angle of pitch or yaw. Simplified analyses

rely upon the assumption of free molecular flow which may

not be valid at nominal flight conditions. The objective of

the present study is to calculate body torques on the Magel-

lan spacecraft for several entry orientations at the nominal

entry altitude and periapsis velocity (u_ = 8.6 kin/s), em-
ploying a particle simulation method which is not restricted

to the free molecule flow assumption. The results of the
rarefied simulation may then be compared to free molecu-
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lar results to assess the significance of molecular collisions

in the flow. Roll torques associated with the windmill entry
configurations were also computed at nominal conditions

and compared to free molecule results. The rollresults are

not presented in tlu's abstract but will appear in the confer-

ence paper.

PARTICLE SIMULATION METHOD

Direct simulation Monte Carlo (DSMC) particle meth-
ods model the motion and interaction of thousands or mil-

lions of computational particles to simulate gas dynamics)

Specifics of the DSMC code employed in these studies are

provided in Ref. 2. Given a particular position, velocity,

and internal energy status, each particle in the flowfield
travels unobstructed along the linear trajectory of its veloc-

ity vector over the duration of a single time step. At this

time, neighboring particles are identified throughout the

flowfield and paired-off as potential collision candidates.
The flowfield is divided into a network of cells to facil-

itate identification of neighboring particles and to define

the finest resolution for sampling macroscopic flow prop-

erties. Employing probabilities as functions of individual

collision parameters such as collision cross-section and rel-
ative translational speed 4, the subset of all candidate pairs

which collide during the timestep are identified. In simulat-

ing free molecule flow, the probability of collision is arti-
ficially set to zero, representing an infinite molecular mean

free path.
The entire simulated flowfield is initialized with free

stream conditions. The particle simulation then runs

through a transient phase as the solution develops and flow-

field structures form. Upon reaching steady-state, the sim-

ulation collects statistical samples for measuring properties

of the flowfield and body surfaces.

The code employed in the present study was developed
by McDonald s for efficient implementation on vector su-

percomputers. This code simulates non-reactive 3D flow

of general gas mixtures about arbitrary geometries. Molec-

ular collisions pertain to the Variable Hard Sphere model

of Bird 6,4 with an inverse intermolecular potential expo-

nent of o_ = 5. The internal energy modes are modeled

with three fully-excited degrees of freedom to account for

molecular rotation and vibration. Internal energy excitation
is performed with the mechanics of Borgnakke and Larsen 7

employing a fixed probability of relaxation of 1/5.

Body Geometry and Grid

The geometry of the Magellan spacecraft is shown in

Fig. 1 and compared to the simulated geometry. Due to

the large mean free path in the flow about the spacecraft,
small features on the vehicle such as the altimeter antenna

(ALTA), the medium and low gain antennas (MGA,LGA),

and the rocket engine modules (REM) have negligible im-

pact on the flowfield as a whole and may be excluded to
simplify the simulation geometry, leading to two planes of

symmetry on the vehicle.

To represent a surface in the cubic cartesian grid network
of the simulation, it is necessary to approximate the surface

as a composite of planar facets. Each facet has a normal de-

fined from the intersections of the surface with the edges of
the cell. This faceted description of the body is appropriate

given that body radii are large in comparison to the cell size,
and that the intersection of different surfaces occurs at cell

boundaries. Since the solar panels are a dominant compo-
nent of the structure, the simulation cell network was scaled

such that the square simulated panels (measuring 8 cells x 8
cells) have the same frontal area as the actual solar panels.

This leads to the scaling factor, 1 cell = 31.44 cm. Such a

coarse grid and body resolution was used in this study to

reduce the computational expense associated with running
several simulauons.

Grid resolution greatly impacts the accuracy of solutions

for vehicle aerodynamics and heating in rarefied flows. An

established criterion for sufficient grid resolution is that the

local mean free path must exceed the cell dimension. For

cold-wall blunt-body rarefied flows, flowfield density will

likely be quite large near the body surface, leading to small

stagnation mean free paths. Simulated at nominal flight

conditions, the flow density n and temperature T along the

stagnation streamline at the center of the solar panel are

plotted in Figs. 3 and 4. Equilibrium kinetic theory pro-
vides the following estimate of the local mean free path s at

the body surface,

A n_ ( T__T_'_2/'_-- . (1)
aN _ \V_oJ

At nominal conditions 9 the freestream mean free path

is A_ = 23.4 m (74.43 celIs). The stagnation properties

lead to a stagnation mean flee path around As _ 4.2 cells,

exceeding the minimum accuracy criterion.

Body surfaces are modeled as if in radiative equilibrium

with deep space at a temperature of 4 K and emissivity
of e = 0.82, and employ a thermal accommodation coeffi-

cient of unity, typical of rough cool surfaces facing into the

flow. This model is simple to implement in the simulation,

it does not require a prescribed estimate of surface temper-
ature, and it allows each surface facet to reach its own tem-

perature independent of neighboring facets. It is assumed
that radiation from the flowfield or from other body surfaces

would contribute negligibly to the net heating of a given
surface facet.

Flow Boundary Conditions

In simulating highly-rarefied flows, the computational

flow domain must extend far enough upstream of the body

to provide ample opportunity for freestream molecules to
interact with those molecules that have reflected from the

body and are diffusing upstream. Insufficient upstream do-

main size leads to over-prediction of aerodynamic heating
and forces.

Taking advantage of body symmetry, the simulated flow-
field configuration is that of a wind tunnel depicted for pitch
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simulations in Fig. 2 (100 L x 120 H x 12 W in cells) with a

specularly-reflecting symmetry plane and a free-molecular

outer plane. Particles which strike the outer plane after re-
flecting off of a body surface are removed from the flow

field. All other particles striking the outer plane reflect

specularly back into the flow. This effectively reduces the

influence that the outer wall has upon the flow near the ve-

hicle in highly-rarefied or free molecular flows.

Particles enter the flow domain from the left plane at

the specified pitch angle, and exit normally from the right

plane. The top and bottom planes represent free-molecular

periodic boundary conditions. Again, particles which had

reflected from the body before striking these planes are re-

moved from the simulation. All other particles striking

one of these planes simply re-enter the flow domain from
the opposite plane, maintaining its original velocity vector.

This boundary condition still provides freestream flow ap-

proaching the body geometry while reducing the required

height of the wind tunnel, therefore minimizing the size and
cost of the simulation.

SIMULATION RESULTS

Employing a freestream flow speed of u_ = 8.6 km/s
and the day-side atmospheric data of Keating 9 at 140 km

altitude, simulations were performed for several entry ori-

entations of pitch and yaw. Results from the particle sim-

ulation for rarefied flows, employing the finite molecular

mean free path of A_o = 74.43 cells, were compared to free
molecular (collisionless) simulation results. These were, in

turn, compared to analytic free molecular results generated

with the FREEMAC code l° which employs ray-tracing al-

gorithms to assess aerodynamic coefficients of spacecraft

Limited computational resources and the large number

of cases investigated in the present study restricted the num-

ber of particles which could be employed in the simulation

to just four particles per cell in the frees_eam. However,

density gradients in the flowfield significantly increased the

particle densities near body surfaces such that 400,000 par-

ticles existed in the flow field at steady-state. Employing

roughly 4,000 transient steps and 6,000 steady-state sam-
piing steps in the simulation, the number of statistical sam-

ples was sufficiently large to yield accurate and meaning so-

lutions. Run-times averaged 1.0-2.0 CPU hours per case

on the Cray-YMP supercomputer. The simulation could

have employed ten times as many particles but would have

required a ten-fold increase in computational time per case

which was not warranted in the present study.

The simulation computes the net force and heat flux

upon each surface facet of the vehicle. Torques are com-

puted by the moments of body forces about a reference

point defined by the intersection of the central body axis

and the solar panel axis. This reference point is very close

to the spacecraft center of mass. Moment coefficients are

defined using the frontal area of the simulated geometry

(A 1 = 236.8 square cells), a reference length given by
the HGA diameter (D = 11.77 cells), the freestream den-

sity (Pod = 6.13 x 10 -9 kg/m3), and the freestream velocity.

The moment coefficients at each pitch attitude are given

in Fig. 5. Note that the free molecular results from the par-
ticle simulation agree very well with FREEMAC results.

Moment coefficients in the rarefied flow simulation, how-

ever, differ from free molecular results by as much as 40%.
For all cases, the moment was directed so as to reduce the

pitch of the vehicle. This was also observed in the yaw atti-
tude cases plotted in Fig. 6. Again there is good agreement
between the free molecule simulation and FREEMAC. Rar-

efied yaw results were not available at the time of writing

tlds abstract, but will appear in the conference paper,

Aerodynamic lift and drag are plotted in Fig. 7 for

the pitch cases. The limited data points available from
FREEMAC agree very well with the particle simulation re-

suits for drag in free molecular flow, but flowfield collisions

in the rarefied flow led to lower drag. Pitching the vehicle

led to a downward force (negative lift) which was nearly

twice as great in the rarefied flows than in the collisionless
flows.

Finally, the location z, v of the center of pressure be-

hind the moment reference point on the central body axis

is plotted in Fig. 8 for both pitch and yaw cases. At all

attitudes, z_ lies behind the center of gravity, promoting
spacecraft static stability. Again, molecular collisions in

the rarefied flows do have a noticeable effect upon z, v.
The conference paper will include a compazison between

FREEMAC results for the coarse geometry as used in the

particle simulation, and a very fine geometry which closely

resembles the actual spacecraft configuration. These msults
can be generated very quickly, but were not available at the

time of wtqdng tlu's abstracL

CONCLUDING REMARKS

The aerodynamics of the Magellan spacecraft during
proposed entry into the atmosphere of Venus may be com-

puted for free molecular flows with the FREEMAC code.

However, at the nominal altitude of 140 kin, the free molec-

ular flow assumption may no longer be valid. This study

computed the body torques on the spacecraft when enter-

ing with various-off-design attitudes, using a direct particle

simulation method for rarefied flow conditions. Repeating

these simulations for collisionless flow provided a direct

means of assessing the significance of molecular interac-
tions in the flow, as well as providing a means to validate the

technique through comparison to FREEMAC results. Use

of a coarse body resolution permitted repeated inexpensive

calculations without sacrificing solution accuracy. Results

indicate that body torques will act to restore the vehicle to

its nominal zero-pitch, zero-yaw attitude. The quantitative

results of this study may facilitate assessment of spacecraft

stability. Most importantly, this study demonstrates that the

assumption of free molecular flow underpredicts the result-

ing body torques and lift, while overpredicting drag.
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Fig, 1 Magellan spacecraft configuration versus simulated geometry shown at

nominal attitude (zero pitch and yaw).
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FLOW RESOLUTION AND DOMAIN OF INFLUENCE

IN RAREFIED HYPERSONIC BLUNT-BODY FLOWS

Brian L. Haas*

Eloret Institute, 3788 Fabian Way, Palo Alto, California 94303

A direct particle simulation method is used in tins parametric study to assess the influence of upstream

domain size and grid resolution upon flow propem'cs and body aerodynamics in rarefied flows over cold
blunt bodies. Insufficient gzYdresolution le_ds to over prediction of aerodynamic hcadng and drag, and

underprecliction of aerodynamic force perpendicular to the freestream flow direction. Solutionaccuracy

within one pement error is attained when the grid cell size is no larger than roughly two molecular mean

free paths near the body. Molecular diffusion from the body surface results in greater far-field domain

in/tuence as flow rarefacttbn increases. As a result, insufficient upstream domain size leads to overpre-

diction of hearing and drag along with underpre_'ction of perpendicular force. However, since the use of

short upstream domain size mimics free molecular flow, solution errors caused by the insufficient domain

size are of less consequence as freestrearn rarefaction increases. Defining zr_,," as the position ahead

of the body where peak temperature occurs, tins study shows that one percent error in solution accuracy

is attained when the upstream computational domain size exceeds 3zr.,," . Simulation of a hard-sphere

gas is more sensitive to grid resolution while simulation of a Maxwell gas is more sensitive to upstream
domain size.

NOMENCLATURE

D cylinder diameter

F aerodynamic force
Kn Knudsen Number

L / upstream domain size
M Mach number

n number density

q aerodynamic total heat flux

T temperature

z location relative to stagnation point

c_ intermolecular potential exponent

k gas mean free path

Subscripts:
s stagnation value
w wall value

_: in flow direction, drag

v perpendicular to flow direction
freestream value

INTRODUCTION

Flow field characteristics about blunt bodies during at-

mospheric entry lead to considerable challenges for com-

putational simulation. Highly rarefied flows, where the gas

density n is low and the mean free path A between molecu-

lar collisions is high, are better suited to particle simula-
tion methods, such as the direct simulation Monte Carlo

(DSMC) technique pioneered by Bird, t rather than condn-

uum techniques based upon the Navier-Stokes equations.

* Research Scientist. Member, AIAA.

Mailing Address: NASA Ames Research Center

M/S 230-2, Moffett Field, California 94035

This paper i._ declartd a wodc of the U.S. Govctrant_nt and is not
_bj_t to copyright proUmuo_ in the United Stat_.

DSMC methods employ many model particles whose mo-

tion and interaction simulate gas dynamics directly. The
simulated flowfield is divided into a network of small cells

to facilitate collision modeling and statistical sampling.
The computational burden of DSMC methods, however,

grows proportionally with local gas density and the size of

the computadonal domain. In typical entry flows, the body

surface temperature is rather low compared to the stagna-

tion temperature, leading to a steep density gradient near

the body surface. Accurate simulation of this flow requires

sufficient grid resolution near the body. Alternatively, the

extent of freestream rarefaction results in a leading shock

layer which is fully merged with the boundary layer of

the body, yet extends far upstream. Accurate simulation

therefore requires a large upstream computational flow do-

main. Together, these requirements rapidly drive the com-

putational cost of the particle simulation method upward.
The researcher must therefore understand what simulation

costs are necessary to obtain a solution of sufficient accu-

racy. The objective of this parameteric study is to assess
quantitatively the sensitivity of aerodynamic loads and gas

properties to grid resolution and simulation domain.

The present study employs an efficient particle simula-

tion technique z,3 to investigate the net heat flux q and aero-

dynamic forces F on two-dimensional circular cylinders of

diameter D, along with gas temperature T and number den-

sity n along the stagnation streamline, for hypersonic flows

at Mach number Moo = 20 over the range of Knudsen

numbers given by Kn= A/D = {0.1,0.3,1.0,3.0,10.0}.

The gas is modeled by hard-sphere panicles with two fixed

internal degrees of freedom. Interaction of the gas with

the cylinder surface at wall temperature T_/T, = 0.05
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is modeled as fully diffuse and thermally accommodated,
where T, is the stagnation (total) temperature of the flow.

All simulations employed between 10 and 20 particles per

cell as the input freestream number density, noo. For each
set of conditions, the simulation resolution and domain

were varied considerably and their effects upon solution ac-

curacy were determined. Although not presented in this ab-

stract, results for the conference paper will include studies

at M_o = {5, 10} andT_,/To = {0.1,0.5, 1.0}.
In the DSMC technique, any two particles in the flow

may collide only if they both reside in the same compu-

tational cell. Likewise, any two particles within a given

cell can collide regardless of their respective positions in
the cell. If the cell dimension near the cold body surface is

too large, then energetic particles at the far edge of the cell

are able to readily transmit momentum and energy to par-

ticles immediately adjacent to the surface. The latter par-

ticles may, in turn, transmit that energy and momentum to

the surface. This leads to over-prediction of both the surface

heat flux and the aerodynamic force on the body than would

occur in the real gas. This error is minimized by reducing
the cell dimension relative to the local mean free path of

molecules near the surface. From kinetic theory, the local

mean free path ,k is related to the local number density n

and temperature T as follows,

_- ,
where subscript _ denotes values at freestream conditions,
and _ is the exponent of the assumed inverse-power inter-

molecular potential which may vary between the limits of

the Maxwell molecule (c_ = 4) and the hard sphere (_ = oo).

As a consequence of Eq. (1), regions of high density lead

to short mean free paths, requiring finer cell resolution to

capture flow gradients accurately. Density profiles along

the stagnation streamline for the cylinder flows above are

plotted in Fig. 1. Note that the density at the cylinder sur-

face (at z/D = 0) is significantly higher than the freestream
value. This behavior is more pronounced, and the gradi-

ents are steeper, for flows at lower Knoo. This, combined

with the fact that lower Kn means that the freestream "_oo
is short, dictates that the cell resolution must be very fine

compared to more rarefied flows.

Temperature profiles along the stagnation streamline for

these same flows are also plotted in Fig. I. These curves

clearly demonstrate how far upstream of the body its pres-
ence affects the flow. This domain of influence increases

with Knoo as a result of upstream diffusion of particles

which reflected from the body surface.

Flow density and temperature at the stagnation point on

the cylinder may be used in Eq. (1) to determine the stag-

nation mean free path 3_,. As measured in units of cell-

lengths, ,_, is dependent upon the cylinder diameters D em-

ployed in the simulations and is plotted for each Kn_o flow
in Fig. 2.

The plot in Fig. 3 compares the local Knudsen number
along the stagnation streamline for a Maxwell-molecule gas

and a hard-sphere gas. The gradients for the hard-sphere are
steeper and lead to lower Kn at the stagnation point on the

body compared to the Maxwell-molecule. Alternatively,

the domain of influence extends much further upstream for

the Maxwell-molecule. As a consequence, accurate DSMC

solutions for hard-sphere gases require finer cell resolution

while solutions for Maxwell-molecule gases require larger

upstream computational fields.

For each of the flow conditions above, the grid resolution

is defined by the cylinder diameter D while the flow domain

size is defined by the distance L t of the computational field

upstream of the cylinder. These length scales are depicted

schematically in Fig. 4 along with zv=,x which represents

the position of the peak temperature along the stagnation

streamline upstream of the cylinder.

GRID RESOLUTION STUDY

For rarefied flows in the lower Knudsen number range

0.1 <Kn< 1.0, simulations were performed to assess the ef-

fects of grid resolution upon solution accuracy. At each

value of Knoo, the flow was simulated using several grid-
resolutions corresponding to cylinder diameters of D =

{5, 10, 20, 30, 50, 100,200} cells-lengths. For all cases, a
sufficient upstream domain size was used (LI/D = 2).

The density and temperature profiles along the stagna-

tion streamline ahead of the body are plotted for Knoo = 0.1

in Fig. 5. For the coarse grids, where D<50 ceils, the pro-
files were smeared considerably. For D>50, the profiles

coalesced to a single form and are therefore assumed to rep-
resent accurate solutions. This same general behavior was

observed for the other Kn cases, although the resolution re-

quired to capture the appropriate profiles did not need to be

as fine as in the Knoo = 0. I flow. Indeed, for Knoo = 1.0,

accurate profiles were obtained at D>20.

For each simulation, the aerodynamic heating q and

forces F: and F v were computed. Here, F: represents drag
force in the direction of the freestream flow. Fy is the net

force, perpendicular to the freestream flow, on the top half

of the body only. Note that the net lift force, integrated over
the top and bottom halves of any axisymetric body, would

equate to zero.

To assess the error corresponding to a given flow res-

olution, the body aerodynamics computed with the finest

resolution at each Kn value was assumed to represent the

"correct" solution for that flow. Employing the stagnation

density and temperature from that solution, the stagnation

mean free path, ),, is determined from Eq. (1) for each res-

olution case and plotted in Fig. 2. Errors in body aerody-

namics are plotted against )_, for all cases in Fig. 6. At all

resolutions, heating and drag were overpredicted while Fu

was underpredicted (the absolute value of its error is plot-
ted in the figure). These errors correlate fairly well with ,_,.

Note ttmt errors in heating are worse than errors in the forces

(which are roughly equal but opposite). These plots indi-

cate that aerodynamic errors will be less that one percent

for grids in which the stagnation mean free path is on the
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order of a half-ceU or greater, regardless of the freestream

rarefaction Knot. This conclusion, summarized by

A, > 0.5 cells --,Resolution Criterion (2)

represents an appropriate design-criterion for grid resolu-
tion in cold-wall blunt-body simulations.

FLOW DOMAIN STUDY

For rarefied flows in the higher Knudsen number

range (1.0<Kn<10.0), simulations were performed to as-

sess the influence of the upstream flow field domain upon

solution accuracy. In view of the results above, the cell res-

olution used in each case here was sufficiently fine such that

the stagnation mean free path was roughly one cell-length
near the body. All cases employed the hard-sphere molec-

ular model. The objective here was to employ different up-
stream computational field sizes, defined by length L I in

Fig. _t, to determine the minimum acceptable domain size

required for a given penalty in solution accuracy.

Flow density and temperature along the stagnation

streamline is plotted in Fig. 7 at KnoQ = 1.0 employing dif-

ferent domain sizes L t . With sufficiently large L t, all the

curves coalesced to a single curve to represent the assumed

correct profile as represented at Lt/D = 4.0. With insuf-

ficient upstream domain (i.e. L t is small), density is un-

derpredicted while temperature is overpredicted. However,
once the domain size that is used exceeds about twice the

distance of the peak temperature location zr,,,, the tem-
perature and density profiles followed the expected forms

predicted when ample upstream domain was employed.
This is observed in Fig. 7 at Lt/D = 0.7. It is somewhat

surprizing that, although the flow was not simulated fur-

ther upstream, the profiles matched the correct form as if

it were. Though not presented here, behavior for flows at

other Knot are qualitatively similar to the results above.
Quantitative assessment of the errors in aerodynamic

loads on the cylinder for simulations employing different

upstream domain sizes are presented in Fig. 8. The er-

rors for each case are computed relative to the aerodyan-
mic loads which were obtained using the largest domain L I

and presumably represent the correct values. Each plot em-

ploys a length scale normalized by zrm,z. AS expected,

the errors in predicted aerodynamics decrease as larger up-

stream domain sizes are used. Aerodynamic heating q and

drag force F_ were overpredicted in all cases while the force

perpendicular to the freestream flow direction, Fu, was un-

derpredicted.

Note that each curve begins to level off as Lr/zr,,.
drops below roughly 0.3. In the limit of decreasing up-

stream domain, the incoming flow is almost completely un-

affected by particles reflecting from the cylinder surface

such that the aerodynamic loads approach the values cor-

responding to the free molecular flow limit. For heating
and drag, the limit is less erroneous for flows at greater

freestream Knudsen numbers Knot since free molecular
flow represents the limit of greatest possible rarefaction.

The interesting paradox which has developed is that, while

the domain of upstream influence increases with Knot, the
computational penalty in terms of solution accuracy is less

dramatic compared to simulations at lower Kno_. Regard-

less, an appropriate criterion for defining a suitable compu-
tational flow domain for rarefied flow simulation is given

by

LI/zrm,. > 3. Domain Criterion (3)

CONCLUDING REMARKS

When employing direct particle simulation methods, ac-

curate simulation of highly rarefied flows about cold blunt

bodies requires sufficient computational grid resolution and

upstream flow domain size. The objectives of this para-
metric study were to assess quantitatively what penalty is

suffered in solution accuracy when minimizing computa-

tional expense by using short domains and coarse grids.

Qualitative results were similar for all freestream Knurl-
sen numbers. Solution errors on the order of one percent

for aerodynamic heating and forces are attained with grids
for which the molecular mean free path near the stagna-

tion point exceeds a half-cell in length while the upstream
domain size exceeds three times the distance to the peak

temperature point along the stagnation streamline. Simu-

lated hard-sphere gases are more sensitive to grid resolution

than Maxwell gases, but require less extensive upstream do-
mains. The results presented in this abstract required less

than two weeks to generate and will be duplicated in the

final paper to include solutions at other freestream Mach

numbers and surface temperatures.
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