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Electromagnetic Potential Vectors

and the Lagrangian of a Charged Particle

John V. Shebalin 1
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Abstract

Maxwell's equations can be shown to imply the existence of two independent three-dimensional

potential vectors. A comparison between the potential vectors and the electric and magnetic field

vectors, using a spatial Fourier transformation, reveals six independent potential components but

only four independent electromagnetic field components for each mode. Although the

electromagnetic fields determined by Maxwell's equations give a complete description of all

possible classical electromagnetic phenomena, potential vectors contain more information and

allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A

new result is that a charged particle Lagrangian written in terms of potential vectors automatically

contains a 'spontaneous symmetry breaking' potential.
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Introduction

It is well known that the electric field E and the magnetic field H can be determined through

the four-potential (tp,A). However, the scalar potential tp is merely an 'auxiliary' variable since, as

will be shown here, it is only the three-vector A which is dynamically important. In transforming

to a potential formulation, the first-order Maxwell's equations for E and H are replaced by second-

order equations for the vector potential A. These second-order equations for A can be expressed

as first-order equations for A and C, where C - a,A (C and A must be treated as independent

vectors, unless A is known for all time a priori). Thus, a formulation of classical electrodynamics

in terms E and H (the electromagnetic fields) is embedded in a formulation in terms of A and C

(the 'potential vectors'), which serves to describe electrodynamics in both classical and quantum

mechanics.

Maxwell's equations contain dynamic (i.e., time-evolution) equations only for the curls of

E and H, while their divergences are prescribed. The equations for the potential vectors A and C,

on the other hand, dynamically determine both their curls and divergences. If these systems of

vector fields and partial differential equations are spatially Fourier transformed, then these

preceding statements can be given in terms of the Fourier coefficients associated with the various

spatial modes (which are identified by their wave vector k). Maxwell's equations dynamically

determine only the transverse parts of the electromagnetic fields (i.e., kxE(k,t) and kxH(k,t)),

while the longitudinal parts (i.e., k.E(k,t) and k-H(k,t)) are prescribed. The potential vector

equations, on the other hand, dynamically determine all the components associated with a given

mode: kxA(k,t), kxC(k,t), k-A(k,t), and k-C(k,t). Maxwell's equations thus dynamically

determine only four components for each mode (the transverse ones) which is sufficient

classically, while the potential vector equations determine six components (both longitudinal and

transverse) which is needed quantum mechanically.

A direct, algebraic transformation from the set of modal vectors A(k,t) and C(k,t) to the set

E(k,t) and H(k,t) will be given, and will show that the transformation is, in fact, a projection from

(for each mode) a six dimensional space onto a four dimensional space. Again, a knowledge of



A(k,t) and C(k,t) for all modesgives a description of electromagneticphenomenawhich

encompassesbothclassicalandquantummechanics,while aknowledgeof E(k,t) andH(k,t) for

all modesgives adescriptionwhich is restrictedto classicalmechanicsalone. For example,an

understandingof the Aharonov-Bohm effect requires that we recognize that A hasa direct

influenceon physical processes;in classicalelectrodynamics,A is a convenientmathematical

artifice,apotentialwhichentersintophysicsonly throughits derivatives.

In this paper,theprecedingconceptswill bepresentedin detail, utilizing spatialFourier

expansions. (TemporalFourier expansionsarenot utilized becausethe coupling betweenthe

electromagneticfield andmatteris, in general,non-linear,which precludesassigninga specific

frequency to each spatial mode.) In the end, one important result will becomeclear: the

Lagrangianof anysystemcontainingelectromagneticallyinteractingmattermustcontaina term

lineraandatermquadraticin theparticle. Sincethesechargedensitycoefficientsarethemselves

quadraticfunctionsof quantummechanicalwavefunctions, the Lagrangian of any electrically

charged particle must contain a term which is quadratic and a term which is quartic in the wave

function associated with that particle. These naturally occurring terms are similar to the ad hoc

'spontaneous symmetry breaking' potentials which have been introduced into current theories of

elementary particles.

Potential Vectors

To begin the discussion here, consider Maxwell's equations:

a) V.D = p b) V×E =-_t B

c) V-B = 0 d) V×H = _t D +j

D=EoE, B=poH (1)

Here, p is the total charge density andj is the total electric current density. Although (1) is written

in SI units, it will be more expedient to shift to 'natural' units where the electric permittivity is

unity: Eo=l, as is the magnetic permeability: _to=l. Maxwell's equations then become:
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a) V.E = p b) VxE = -0tH

c) V.H = 0 d) V×H = 0tE +j (2)

Equation (2b) states that V.H= constant and (2c) states that this constant is zero. Equation

(2a) can be viewed as equating charge density 9 to V.E. The rest of E is dynamically determined

by (2d); taking the divergence of (2d) and using (2a) we obtain the equation of continuity (or time-

evolution equation for V.E):

0tO +V.j = 0 (3)

The equations (2a) and (2d) ensure the existence of the equation of continuity, which has an

obvious physical meaning; alternatively, (3) can be viewed as merely mathematically defining

future values of V.E.

In a similar manner, taking the curls of (2b) and (2d) can produce time-evolution equations

for VxH and VxE, respectively. Presuming the values of E and H at infinity are known, then the

Helmholz theorem [1] states that the six component equations found in (2b) and (2d) serve as

independent, first-order, time-evolution equations which exactly determine the six components of

E and H, as is mathematically required [2].

The fields E and H can be represented in terms of a four-potential (% A):

a) E = -Vq0 -_t A b) H = VxA c) 0top +V. A = 0 (4)

These equations are well known: (4a) and (4b) satisfy (2b) and (2c) identically, while (4c) is the

Lorentz condition, which arises because the divergence of A needs to be defined (the curl of A is

defined by (4b)). However, the need for relativistic invariance requires the left-hand-side of (4c)

be defined, rather than just V.A. The fight-hand-side of (4c) can initially be an arbitrary (well-

behaved) scalar function _, rather than zero; however, a gauge transformation of (q_, A)_(g, +



Ot_,A-Vgt) canreturnthedivergenceconditionto theform it hasin (4c),aslong as_ satisfiesthe

inhomogeneous wave equation Ot2_ -V2gt=o. Thus, the Lorentz condition can always be regained

from an arbitrary choice of gauge.

Using (3), and (4), Maxwelrs equations (2a) and (2d) become:

a) V2_p-_t2cp=-p b) V2A-O2A=-j (5)

Here it would appear that the six (five non-trivial) independent evolution equations of (2) have

been replaced by at most four equations; at least this is what is implied by stating that E and H are

determined by 9 and A.

The source of the apparent over-determination is, of course, that Maxwelrs equations (2)

are first-order equations, while the equations (5) are second-order. Before changing (5) to a set of

f'trst-order equations, let us use (4c) and (5a) to obtain the following:

V2tp =-p -V. 0tA (6)

Now, defining C - OtA, equations (5b) and (6) can be written as:

a) V2tp =-p-V-C b) OtC = V2A +j c) OtA = C (7)

Thus we arrive at the realization that E and H can be found by determining A and C, and

not just A (and _) alone. The six independent evolution equations in (7b) and (7c) contain (2b)

and (2d), and (7a) simply determines tp at each instant that p and C are known (p is presumably

determined by using the equations of motion of whatever charged matter is present). If A is a

known vector function, then C is determined through (7c) and only in that special case can E and

H be found using A alone; otherwise, both A and C are needed for completeness. To continue

this discussion, let us bring in Fourier representations at this point.
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Fourier Representation

The electromagnetic field and vector potential formulations of electromagnetism can easily

be compared in terms of spatial Fourier expansions (here, the physical domain is assumed to be a

finite-sized box):

E(x) =(2rt) -3/2 Z E(k) e ik'x, etc.

Ikl<k_,,, (8)

In (8), the number of modes for Ikl< km,x is N, and the argument of E denotes whether we are in

physical space or in Fourier space; in either case, time is omitted from the argument for brevity. It

is presumed that the limit k_,x---> oo may be taken and also that summation over discrete k can be

transformed into a continuous integral over dk by expanding the size of the physical domain out to

infinity. (Fourier expansions in time are not utilized since the system in which the electromagnetic

fields arise must, in general be assumed to be non-linear, which does not allow for simple

dispersion relations, i.e., a single frequency to be assigned to each mode k.)

The various differential x-space relations can easily be transformed to the Fourier domain

by the substitution V--_ik. Thus, the fields E and H, as given in (4), and A, C, and ¢p, as given in

(7), can be algebraically related through their Fourier coefficients:

a) E(k) = -ik_(k) -C(k) b) H(k) = ikxA(k)

c) _(k)=k-2[p(k)+ik.C(k)] (9)

In particular,each Fourier coefficient of the magnetic field H(k) is clearly due only to the transverse

part of A(k); also, it is clear that k-A(k) does not play any role in determining the electromagnetic

field components E(k) and H(k).

The scalar function k-C(k), on the other hand, helps determine cp(k), as (9c) shows.

Placing (9c) into (9a) yields:



a) E(k)=-ikk-2p(k)-(I-k-2kk}.C(k) b) H(k) = ik×A(k) (10)

where I is the unit dyadic. In this set of equations, it is clear that the transverse parts of E(k) and

H(k) are determined only by the transverse parts of C(k) and A(k), respectively, and that ik-E(k)

= p(k) and ik.H(k) = 0, as required. Apparently, the six components of A(k) and C(k) project

onto only four components of E(k) and H(k).

The dynamic Maxwell's equations (2d) and (2b), and vector potential equations (7b) and

(7c), are, respectively:

a) dE(k)/dt = ik×H(k)-j(k) b) dH(k)/dt =-ikxE(k) (11)

a) dC(k)/dt =-k2A(k) +j(k) b) dA(k)/dt = C(k) (12)

Taking a dot product of (10a) and (1 la) with ik and combining the results yields the modal form of

the continuity equation (3):

dp(k)/dt +ik.j(k) = 0 (13)

This is not so much an evolution equation as an identity which must be satisfied by the dynamic

equations of both the electromagnetic fields and charged matter.

The Lorentz condition (4c), in terms of spatial Fourier expansions, appears as:

d(p(k)/dt +ik-A (k) = 0 (14)

Using (9c) and (14) yields (13), as it should. Also, a gauge transformation has the modal form:

{A(k), C(k)}--_ {A(k)- ik_(k), C(k)-ikd_(k)/dt}, where _(k) satisfies the modal wave

equation d2_(k)/dt 2 + k2_(k) = 0.



In (12), the occurrenceof two additional dynamic components in A(k)and C(k),

compared with E(k) and H(k), indicates that a vector potential formulation may have more explicit

physical information than a formulation in terms of electromagnetic fields alone. In particular, (10)

shows that neither V.A or V.C determine E or H. However, the longitudinal parts of A and C

and not just their transverse parts, may have observable effects. This implication has, in fact, been

realized for the longitudinal part of A in the Aharonov-Bohm effect [3]. Before discussing this and

other matters, however, let us consider the completeness and incompleteness of the various

dynamical representations.

Complete and Incomplete Dynamical Representations

So far, it has been shown that underlying Maxwell's equations there is a potential vector

formulation of electromagnetics. In particular, it was shown that in addition to the vector potential

A, we must have another independent vector C to complete the formulation. This additional vector

would, in fact, be equal to the partial time derivative of the original vector potential, if that vector

were already known. Otherwise, it must be treated as completely independent, similar to the

manner in which x and v are treated in the Lagrangian formulation of dynamics, or x and p in the

Hamiltonian formulation of dynamics.

The analogy to the canonically conjugate variables of particle mechanics can be made more

precise in the Fourier representation. Rather than the position xi and momentum Pi of the i •

particle serving as canonically conjugate variables, the coefficients of the electromagnetic field E(k)

and H(k) of the k _h mode are the canonically conjugate variables. In the vector potential

formulation the canonically conjugate variables are A(k)and C(k). (In either of these

formulations, it is the source vector j(k) which ultimately give rise to the coupled vector fields, and

also ties them into material motion.)

The analogy with particle mechanics can be extended further: in the same way that the set

of positions and momenta {xl, pil i=l ..... N} defines a 6N-dimensional phase space, the set of

conjugate variables {A(k), C(k) I Ikl<kmax} on N modes also defines a 6N-dimensional phase



space.Herek and-k arecountedasseparatemodeseventhough,sinceA(x) andC(x) arereal,

A(k)=A*(-k) and C(k)=C*(-k). The complex vectors A(k) and C(k) are composedof 6

componentseach(i.e., A(k)= Aa(k)+iAi(k), whereAa.i arereal) and thepair (A(k), C(k)) thus

containtwelve 'degrees-of-freedom';however,thesearethesameasarefoundin thepair (A(-k),

C(-k)). Thenonly half of theN modes,suchthatIkl<kma,areindependentand 12×N/2=6N.

Thephasespaceassociatedwith theset {E(k), H(k); Ikl<kma.}of N modeshas,however,

a dimensionof only 4N becausek.E(k) andk.H(k) areprescribed.Transformation(10), which

takes{A(k), C(k); Ikl<km,x}--->{E(k),H(k); Ikl<_km,x} is actually a projection operation and is not

invertible. Although the set of vectors {E(k), H(k); Ikl<__,_} may be sufficient classically, it is

not, as has been mentioned, sufficient quantum mechanically. The classical phenomena described

by E and H thus fall into only a subset of all possible electromagnetic phenomena.

The Aharonov-Bohm Effect

Consider an infinitely long wire with a steady electric current 'I' coursing down it. In

order to determine the magnetic field, we solve Maxwell's equation (2d) in a time-independent

form, V×H = j, where j is zero outside the wire. The solution is elementary and well-known: in a

cylindrical coordinate system (r,dp,z), whose z-axis runs down the center of the current carrying

wire, outside of the wire the only non-zero component of H is H,=I(2_r) -1.

Consider, instead of a long current-carrying wire, a long, straight, and narrow solenoid.

This solenoid will completely contain a magnetic field of total flux O; the vector potential A will

now satisfy the equation V×A = H, where H is zero outside the solenoid. Since this situation is

mathematically the same as the current-carrying wire problem of the previous paragraph, we can

immediately give the solution outside the solenoid: the only non-zero component of A is

A_=O(2xr) -1.

Classically, an electron beam passing by the long solenoid would feel no electromagnetic

influence from the solenoid, since its motion is only affected by E and H, which are zero outside

the solenoid. Quantum mechanically, however, the electron's wave function is affected:



Depending on which path we trace the electron beam's motion along, the phase ® of the wave

function associated with the beam has an additional value of (here Planck's constant has a value of

unity)

X

AO=e A-dl

o (15)

compared to what it would have if A (due to the flux _) were absent [3].

In fact, a solenoid placed between the beams of a double slit electron diffraction experiment

will cause a different phase shift to occur for the wave function of each beam. The difference in

phase shift for the wave functions of the beams, one through the right-hand slit and the other

through the left hand slit, with the solenoid between them, will be given by the application of

Stokes theorem to (15) around a closed path:

I   ds:eO
(16)

Thus the phase difference, which will cause the diffraction pattern to shift as the solenoid's field is

varied, depends only on the total magnetic flux between the beams. This effect has been observed

in a number of careful experiments [4].

The vector potential outside of the solenoid due to the flux • satisfies VxA=0. Thus

k×A(k) = 0 and it is only the part of A(k) along k which can cause the effect, i.e., it is k.A(k)

which is important here. Since this is precisely what is projected out of the electromagnetic fields,

an effect such as that of Aharonov and Bohm can be overlooked if only E and H are assumed to

have physically observable effects.
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Charged Particle Lagrangians

At this point, let us consider what novel effects are uncovered when the Lagrangian for a

charged particle is expressed in terms of potential vectors. The Lagrangian density for any particle

of classical or quantum mechanical electric charge e will contain a part A, related to the

electromagnetic field:

Ae :-ep(p+ej-A + 2(E2-H 2) (17)

(Note: The symbols (p, j) will now be used to signify the particle four-current density; the electric

four-current density will now have components (ep, e j).)

The Lagrangian itself is defined as a volume integral of a Lagrangian density:

L(t) = f A(x,t) d3x
(18)

Since we have defined the system volume to be a periodic box with an associated Fourier

expansion (8), the Lagrangian could equally well be written in terms of Fourier coefficients:

L(t) -- Z A(k,t)

k (19)

where the k-space Lagrangian density is (surpressing explicit time dependence for brevity):

A(k) = Am(k)- ep*(k)q)(k) + ej*(k).A(k) + 2_ E(k)[2-[ H(k)[2) (20)

In (20), Am contains those terms which pertain only to the matter in the system; the specific form

of Am depends on whether a classical or quantum mechanical system is under condsideration. The

rest of the Lagrangian pertains equally to both classical or quantum mechanical systems. Notice

that if we set (E, H) equal to zero in (20), then the Lagrangian density is A(k) = Am(k) - ej_,A_,

10



i.e., it still dependson thefour-potenial. Thus,eventhough(E, H) are zero, the particle is not

free (for which the four-potential must also be zero), and effects such as that of Aharonov and

Bohm are possible.

If the expressions for (p(k), E(k), and H(k) ((9c), (10a), and (10b), respectively) are

placed into (20), the result may be written as:

A(k) = Am(k) + Ar(k) - Ap(k) (21)

where 'radiation' part A, and the 'potential' part At, of A_ are:

a) Ar(k) : 2_ C±(k)12- k21Al(k)[ 2}

e2k -2 p(k)l 2b) Ap(k) = p*(k)it(k) - ej*(k).A (k) +_-

(22)

Here Ca and Aa. are the transverse parts of C and A, respectively. The coefficient It(k) is:

It(k) = iek2k.C (k) (23)

Here we see that k.C(k), though it does not appear in the electromagnetic fields, does appear in

the Lagrangian density.

In the Lagrangian density (22), the 'potential' Ap(k) contains a term which is linear and one

which is quadratic in p(k): It(k)p*(k)+Q(k), where Q(k) = ½e2k219(k)l 2. What does Q(k) look

like in x-space? If we define (_(k) = p(k)/k for k>0 and or(k) = 0 for k=0, then we have:

_l_(k)12 -- I d3x -_[_(x)]2
k (24)

Here o(x) is the inverse Fourier transform of c(k), etc. Thus Q(x) = _e2 [(_(×)] 2.
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Although thepotential (22) is written in k-space,it hasa striking resemblanceto ad hoc

'spontaneous symmetry breaking' potentials found in current theories of particle physics [6]. (In

these theories, p(x) is the modulus of the quantum mechanical wave function squared.) The

naturally occuring term we have uncovered here would appear to deserve further study.

Conclusion

In this paper, four major points have been discussed. First, there is the potential vector

formulation of electromagnetic fields. It was seen that the divergence of the vector potential is

uniquely defined, up to a gauge transformation. The potential vector formulation contains

Maxwell's equations explicitly, while it might be said that Maxwell's equations, Lorentz

invariance, and gauge invariance, all taken together, implicitly contain the potential vector

formulation.

The second point was that of dynamical completeness. For a given number N of Fourier

modes, it was clear that the electromagnetic fields associated with these N modes span a phase

space which is only 2/3rds the dimension of that spanned by the potential vectors for the same

number of modes. Thus, the electromagnetic fields offer only an incomplete dynamical

representation, as compared to the potential vectors.

The third point was to review how this incompleteness could miss an observable effect,

albeit a quantum mechanical one. This observable effect is that of Aharonov and Bohm, where the

longitudinal part of A proved important. This clearly demonstrates how fruitful it is to have and to

use a conceptually complete dynamical representation of electromagnetic phenomena.

The fourth and final point was to recognize the existence of a naturally occuring

'spontaneous symmetry breaking' term in a charged particle Lagrangian. This term contains the

longitudinal part of C, indicating that it is also dynamically important. The detailed effect of this

term on quantum mechanical descriptions of charged particle dynamics is a separate issue from the

topics covered herein, though clearly an intriguing one.
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