
NASA-CR-191805

Final Technical Report

_.7 K" .""/ '

/'" '7

Aeroelastic Stability and Response of
Rotating Structures

NASA Grant NSG-3139

Theo G. Keith, Jr.

Department of Mechanical Engineering
University of Toledo

(NASA-CR-191803) AEROELASTIC

STABILITY AND RESPONSE OF ROTATING

STRUCTURES Final Technical Report

(Toledo Univ.) 7 p

N93-16500

Unclas

January 1993

G3/08 0140846



Aeroelastic Stability and Response of

Rotating Structures

Summary of Grant NSG-3139

A summary of the work performed under NASA grant number NSG-3139 is presented

herein. More details of these efforts can be found in the cited references. This grant has

led to the development of analysis methods for predicting loads and instabilities of

wind turbines, and the initiation and development of three new areas of research to aid

the Advanced Turboprop Project (ATP).

(A) Analysis of Wind Turbines

This work was started to assist the Department of Energy (DOE) to analyze and design

efficient wind turbines for extracting wind energy. Initially, two versions of a

commercially developed computer program (MOSTAS) for predicting loads and

instability of wind turbines, were evaluated by comparing with measured data for two

bladed machines. It was concluded that the version having the periodic coefficients

solution performed better than the version that used time averaging, Refs. A.1 and A.2.

At the same time, a simple model with five degrees of freedom, was developed for

investigating the whirl flutter stability of horizontal-axis wind turbines with a two-

bladed teetering rotor. This model accounted for the out of plane bending motion of

each blade, the teetering motion of the rotor, and both the pitching and yawing motions

of the rotor support. The results showed that the DOE/NASA Mod-2 design was free

from whirl flutter, Ref. A.3. A parametric study was performed showing the effect of

variations in rotor support damping, rotor support stiffness, and the effect of pitch-flap

coupling on pitching, yawing, teetering, and blade bending motions.

During this grant period, second degree non-linear governing equations for the analysis

of vertical axis and horizontal axis wind turbines were developed, Refs. A.4 and A.5.

These equations were then used to investigate the aeroelastic stability of many practical

wind turbines. These equations are nonlinear because of large deformations of the

flexible blades. A mathematical ordering scheme, which is consistent with the

assumption of a slender beam, was used to discard some higher order elastic and

inertial terms in the second-degree nonlinear equations. The blade aerodynamic loading

accounted for both wind shear and tower shadow; it was obtained from strip theory

based on a quasi-steady approximation of two-dimensional, incompressible, unsteady,

airfoil theory. The resulting equations had periodic coefficients.

The influence of second degree and third degree geometric nonlinear terms on the

vibration and stability characteristics of rotating, pre-twisted, and pre-coned blades,

was studied in Refs. A.6 and A.7. The equations were solved using the Galerkin

method. The predictions were compared with those obtained from MSC / NASTRAN

and also with measured data. It was shown that the spurious instabilities, observed for



thin, rotating blades when second degree geometric nonlinearities were used, could be

eliminated by induding the third degree elastic nonlinear terms. The inclusion of third

degree terms improved the correlation between theory and experiment. A study to

investigate the vibration and buckling of rotating, pre-twisted, pre-coned beams

including Coriolis effects was performed in Refs. A.8-A.10. It was shown that the

Coriolis effects were necessary for blades of moderate-to-large thickness ratios. Thus,

the linear Coriolis terms associated with pre-cone could be neglected in the dynamic

analysis of advanced turboprop (propfan) blades. The results also showed the

possibility of buckling due to centrifugal softening terms for large values of pre-cone

and rotation. During this study, an improved finite difference method was also

developed; this improvement eliminated most of the shortcomings associated with

conventional first order methods and also provided faster convergence, Refs. A.11-A.13.

(B) Aeroelastic Analysis methods for cascades including blade and disk flexibility

The first new area of research aimed at helping the Advanced Turboprop Project is

cascade aeroelasticity i.e., an investigation of the response and stability of multibladed

structures, such as propfans, turbines, and compressors. This is an important topic in

the design of propulsive elements of any engine. The work started with the pioneering

paper on the development of methods for the stability analysis of mistuned rotors,

Ref. B.1. This paper used only a typical section structural model, with bending and

torsion motion, in incompressible flow. However, this formed the basis for all the

methods developed to date. The aerodynamic models were later improved to include

the effects of compressible flow in general and supersonic flow, in particular, Refs. B.2

and B.3. Even this simple model produced considerable insight into stability and

response aspects of cascades. The study showed that mistuning is beneficial for the

stability of the cascade; but not for its response. Since mistuning exists naturally, this

has to be studied very carefully. The study resulted in the development of computer

programs TUNEBT and MISER, which are widely used even today in the design and

testing of the stability and forced response of cascades.

The later studies concentrated mainly on the development of the structural model. The

typical section structural model was replaced by a beam model, Refs. B.4-B.8, and a

finite element model, Ref. B.9. The available two-dimensional theories were used in a

stripwise manner. The structural model was extended to include disk flexibility, which

required a special formulation to include the effect of both rotating and non-rotating

parts, Ref. B.10. The corresponding computer programs, BEAM, ASTROP3, and BEDE

are now routinely used for further research. During this period, methods to automate

flutter calculations were also developed. These methods drastically reduced the time

required to calculate the flutter conditions of a cascade, propfan or of a turbomachine,

Ref. B.11. All the developments until 1988 were included in the survey paper presented

at Lewis Structures Technology, Ref. B.12.



(C) Stall flutter analysis

The second area of research, which is of utmost importance for propellers and propfans,

concerns stability in separated flow regions. Separation of the flow in a vibrating

environment, increases loading levels up to three times the static loading, and results in

fatigue failure of the blades. Three available semi-empirical models suitable for the

calculation of the loading during stall were reviewed, Ref. C.1. It was concluded that the

ONERA model which involves fewer parameters, and is easy to apply, was the most

suitable candidate for development for application to propfans. A computer program

was developed to implement these models; this program was utilized in propfan blade

stall flutter analyses, Refs. C.2 and C.3. It was found that the models predicted the onset

of stall, as observed in experiments. However, static stall data for NACA 16 series

airfoils was required for good correlation. The associated computer program,

ASTROP2-STALL was delivered to Hamilton Standard for evaluation and use. The

publication Ref. C.3 was awarded the Structural Dynamics Branch best paper of the

year for 1990

(D) Computational Aeroelasticity

The third area of research, which was started under this grant and led to leading-edge

technology, is computational aeroelasticity. It was known that linear aerodynamic
theories used in the cascade aeroelastic studies mentioned above, could not account for

effects of airfoil shape, angle of attack, and transonic flow conditions. Only through

computational methods, could these effects be accounted for properly. Initially, to

become familiar with the broad area of computational aeroelasticity, a computer

program was developed to study isolated airfoils. The objective of the study was to

develop a Navier-Stokes / Euler solver and to couple it with a typical section structural

model. It was also aimed at evaluating the applicability of the solver to very thin

airfoils, such as those in propfans. The study, for attached flow conditions (no flow

separation) demonstrated that the computer program was able to handle thin airfoils,

Ref. D.1. This study was also directed to investigate the effects of rotational flow,

viscosity, thickness, and shape on transonic flutter dip phenomena. The predicted

flutter Mach number for a simulated SR5 propfan blade was about 4.5% less than that

obtained in experiment.

To reduce the computational times and to obtain a basic understanding of analysis

methods for cascades, a time accurate full potential solver was developed and used to

investigate the stability of a nine bladed cascade. Again, a typical section structural

model was used, Ref. D.2. To achieve good agreement with wind-tunnel experimental

data, a time domain method was proposed and verified, Ref. D.3. Since time domain

methods are time consuming, efficient methods were developed to reduce the

computational time for calculating the unsteady aerodynamic coefficients, Ref. D.4.

These methods, and a parametric study including mistuning, comparison of results

from both frequency domain, and time domain methods, were presented in a Ph.D.

thesis, Ref. D.5.
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