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ABSTRACT

General models describing the interactions between a pair of piezoceramic patches and

elastic substructures consisting of a cylindrical shell, plate and beam are presented. In each

case, the manner in which tile patch loads enter both tile strong and weak forms of the time-

dependent structural equations of motion is described. Through force and moment balancing,

these loads are then determined in terms of material properties of the patch and substructure

(thickness, elastic properties, Poisson ratios), the geometry of the patch placement, and the

voltages into the patches. In the case of the shell, the coupling between bending and in-

plane deformations, which is due to the curvature, is retained. These models are sufficiently

general to allow for potentially different patch voltages which implies that they can be suit-

ably employed when using piezoceramic patches for controlling system dynamics when both

extensional and bending vibrations are present.
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1 Introduction

The use of piezoceramic elements as sensors and actuators has burgeoned in the last several

years in applications ranging from the measurement and damping of vibrations in large flexi-

ble structures to the control of noise in structural acoustics settings. Their utility as sensors

derives from the property that when the element is subjected to a mechanical strain, a voltage

proportional to the strain is produced. Conversely, they also exhibit the phenomenon that

an applied polarization voltage across the unconstrained element produces in-plane mechan-

ical strains in the material. Because of these properties, piezoceramic elements have found

increasing success both as sensors such as strain gauges and accelerometers and as distributed

actuators. Their success as actuators is augmented by the fact that they can be used to di-

rectly control local vibrations without applying rigid body forces and torques, and due to their

distributed nature, they are less prone to spillover effects in many control strategies. More-

over, the piezoceramic elements or patches are inexpensive, lightweight, space efficient and

can be easily shaped or bonded to a variety of surfaces. Hence a large number of patches can

be used to sense and control without significantly changing the mass or dynamic properties

of the system.

In order to obtain optimal results with the piezoceramic elements or patches in sensing

and control applications, it is necessary to have accurate models of the mechanics of induced

strain actuation. This modeling also provides knowledge of the physical limitations of the

piezoceramic patches as actuators in various settings. Detailed models have been developed

for piezoceramic patch interaction with Euler-Bernoulli beams [2, 3, 4, 5, 10] and thin plates

[6, 12]. Because many of the initial applications of piezoceramic elements were in settings

involving the sensing and control of bending deformations (these vibrations are dominant in

many low frequency vibration and noise control problems), most of these models concentrate

on patch configurations which excite pure bending motion of the substructure with more

limited discussions of pure extensional excitation. It was not until [10] that a model was

developed which provided for simultaneous excitation of both bending and extensional de-

formations in an Euler-Bernoulli beam. One motivation for developing such a model is the

observation that in complex coupled systems, in-plane vibrations with small displacements can

have large in-plane energy levels due to the property that beams are much stiffer in extension

than in bending. This in-plane energy can then couple into flexural vibrations at structural

discontinuities such as joints, thus necessitating the control of both bending and extensional

vibrations in such structures. As determined by Fuller et al [8] through experimental work,

simultaneous reductions in both flexural and extensional deformations in a beam can be ob-

tained through the use of asymmetric pairs of piezoceramic actuators and sensors in adaptive

control schemes, and the analytic work in [10] was a first step toward developing a model

which could be used in further such control settings. In that work, force and moment balanc-

ing were used to determine expressions for the moments and strains induced by the activation

of a single piezoceramic patch which was bonded to an Euler-Bernoulli beam.



In addition to beams and plates, thin elastic shells are often used to describevarious
structural componentsas well as whenmodeling the coupling betweenstructural vibrations
and their radiating or receivingacousticfields. Forexample,the transmissionof soundthrough
an airplane fuselagedue to low frequency, high amplitude exterior acoustic fields can be
modeledby a vibrating thin cylindrical shell which is coupledto an interior acousticpressure
field [9]. In order to optimally control the interior noisevia piezoceramicpatch actuation,
one first needsto accurately model the interactions betweenthe patchesand the shell. This
raisesmodeling issueswhich differ from thoseencounteredin the beam and plate analysesin
that the in-plane and bendingvibrations arecoupledin the cylindrical shell due to curvature
effects.

Analytical modelsdescribingpiezoceramicpatch/cyllndrical shell interactionshaveprimar-
ily beenbasedon layeredshell theory [i 1, 19] or the useof fiat plate piezoceramiccoupling
resultswhendetermining the resulting loadingon the shell [15]. In the first caseit is assumed
that the piezoceramicmaterial makesup an entire layer of the elastic structure and hence
this model is of limited usewhen consideringsmall patchesas actuators. When using tile
fiat plate theory, it is assumedthat the patch dimensionsare small in comparisonwith the
cylinder radius. Curvaturepropertiesare then neglectedwhenmodelingthe couplingbetween
the patch and shell and determining the loading due to activation of the patch.

In this work, wepresentgeneralmodelsfor tile interactionsbetweena pair of piezoceramic
patchesand elastic substructures consistingof a beam,plate or thin shell. In the caseof a
shell, the patchesare assumedto be curved and tile coupling betweenbending and in-plane
deformations,which is due to the curvature, is retained. The techniquesusedto developthe
shell/patch interaction model arealsousedto developgeneralmodelsdescribingthe moments
and forceswhich are generatedby the activation of piezoceramicpatches which have been
bonded to a fiat plate or beam. Thesemodels(lifter from those in [6, 12] and [2, 3, 4, 5] in
that they allow for different voltagesinto the individual patchesthus admitting the analysis
of simultaneousexcitations of both bending and extensionalcomponents. In the caseof the
beam, the model is slightly more generalthan that in [10] sinceit is derived for two active
patches. Henceit is appropriate for models in which both patchesactuate with potentially
different voltagesinto the patches. In the caseof one actuating patch, however,tile model
reducesto that in [10]. From a control perspective, these models are important since they

provide for greater latitude in designing control strategies involving tile use of piezoceramic

elements to affect both the bending and extensional properties of a structure.

As a prelude to the development of the patch interaction models, equations of motion for

the underlying substructures are presented with special attention paid to the contributions

due to externally applied moments and forces since ttils is where the interactions between

the patches and substructure occur. The analysis leading up to the structural equations also

motivates many of the techniques which are used to develop the patch interaction models.

To this end, a synopsis of the derivation of the strong form of the time-dependent Donnell-

Mushtari thin shell equations from Newtonian principles (force and moment balancing) is

presented in Section 2. A complete treatment of this topic can be found in [13, 14, 16, 17,

18] and the included discussion is limited to summarizing that material which is needed for

developing the shell/patch interaction model as presented in the following section. The choice

of tile Donnell-Mushtari model is for ease of presentation and as noted at various points in the

discussion, the patcii/sheli interaction model Can be easily extended to higher order models



as warranted by tile physical situation.

An inherent disadvantage of the strong form for the equilibrium equations when the ex-

ternal loads are generated by piezoceramic elements is the resulting presence of tile first and

second derivatives of the Heaviside function due to the finite support of the patches. As a

result of this as well as other identification and approximation issues, we then develop the

weak form of the time-dependent Donnell-Mushtari shell equations. This is done in more

detail since this development is less readily available in tile tile literature. This formulation is

advantageous in many approximation schemes, admits the identification of discontinuous ma-

terial parameters, and eliminates the problem of differentiating the Heaviside function since

the derivatives are transferred onto the test functions.

The second section concludes with a synopsis of the strong and weak forms of the Kirchhoff

plate and Euler-Bernoulli beam equations. As in the shell discussion, particular emphasis is

placed on the contributions of externally applied forces and moments since this is where the

coupling between the substructure and piezoceramic patches occurs.

The patch contributions to the cylindrical shell equations are developed in Section 3. In

order to determine the loading due to patch moments and forces, it is useful to first express

them in terms of the normal strains and changes in curvature of the middle surface of the

cylindrical shell. To do this, the stress-strain relations in the patch and shell are developed

which then allows the moment and force resultants for the patch to be formulated in terms of

midsurface shell properties. The unknown normal strains and midsurface changes in curvature,

and hence the patch moments and forces, are then determined by moment and force balancing.

In this manner, the loading due to activation of the patches can be expressed in terms of

material properties of the patches and shell (thickness, elastic properties, and Poisson ratios),

the radius of curvature of the shell, and the voltage being applied to the patches.

In Section 4, the techniques of the third section are tailored to composite structures consist-

ing of piezoceramic patches which are bonded to plates and beams. The resulting plate/patch

interaction model is shown to be equivalent to that of [12] in the special case when pure

bending motion is excited (the model in [12] was derived by isolating the interface stress for

the system and treating it as the unknown to be determined). Due to its generality however,

our model also allows for more complex interactions involving both bending and extensional

components since the voltages into the individual patches can differ. As discussed earlier, the

beam/patch interaction model reduces to the model in [10] in the case of one actuating patch

but is slightly more general in that it also admits models in which two patches are used for

actuating with potentially different voltages into the patches. As with the shells, this provides

structure/patch interaction models which can be used in various structural and structural

acoustics control settings.
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2 Underlying Shell, Plate and Beam Equations

Throughout this discussion, we consider a thin circular cylindrical shell of radius R, thickness h

and having the axial coordinate z as shown in Figure 1. The variable z measures the distance

of a point on the shell from the corresponding point on the middle surface (z = 0) along the

normal to tile middle surface.

z--o/¢

Figure 1. Tile Cylindrical Thin Shell.

Strain-Displacement Relations

By combining Love's shell assumptions with tile strain-displacement equations of three

dimensional elasticity theory, one obtains the strain relations

ex = gx + Zt,;zc

e 0 --

1

1 + z/R (co + zao) (2.1)

17_o - 1 + z/R [e,:o+ z + z

where e_ and e0 are normal strains at an arbitrary point within the cylindrical shell and %=o is

the shear strain. Here ex, e0 and ex0 are the normal and shear strains in the middle surface and

_:_, a0 and r are the midsurface changes in curvature and midsurface twist (see [14], page 8).

Note that within the framework of infinitesimal elasticity, the equations (2.1) are exact

and in the Byrne-Ftfigge-Lur'ye shell theory, these represent the exact form of the kinematic



equations. In the Donnell-Mushtari theory,oneneglectsthe underlinedterms z/R with respect

to unity thus leaving
ex = Ex + ZKx

eo = _o + z_o (2.2)

%0=e_o+z 1+ r.

In terms of the axial, tangential and radial displacements u, v and w, respectively, tile

expressions for the midsurface strains and changes in curvature for the cylindrical shell are

OIl 02W

_X _ mOx , _x - Ox2

l Or w 1 02w 10v

co- R O0 +-R , no--R2002 + R---70--0

Ov 10u 2 02w 20v

exo = _ + -_ 0---0 , r - - t_ OxO0 + R 0_ "

(2.3)

As before, the underlined terms are retained in the Byrne, Flfigge and Lur'ye theory

and are discarded in the Donnell-Mushtari theory. We point out that the equations (2.1)

and (2.3) differ from those arising in the theory of flat plates both in the presence of the

length differential RdO as well as in the retention of the strain terms ex and e0 (only bending

contributions are considered in the corresponding models of the transverse vibrations of a flat

plate).

Stress-Strain Relations

To determine the constitutive properties of the shell, it is assumed that the shell material is

elastic and isotropic. Hooke's law in conjunction with the assumption that the transverse shear

stresses crxz and Cr0z as well as the normal strain component ez are small in comparison with

other stresses and strains (these conditions are part of Love's third and fourth assumptions)

then yields
E

crx - 1 - v 2(e_: + ueo)

E

o'o - 1 - r,2(e° -4- vex) (2.4)

E

a_0 = o'0_ - 2(1 + v) %:°

where o'_ and ao are normal stresses and crx0 and o'0_ are tangential shear stresses.

constants E and u are the Young's modulus and Poisson ratio for the shell.

The

5



Force and Moment Resultants

By integrating the stresses over the face of a fundamental element, the force resultants can

be expressed as

Nx
,%o

all d

O0

Similarly, the moment resultants are

mid

Cr_o 1 + dz
J-h�2

O'jg Z

O'Ox dz .

J-h/2 O'Oz

[M_ ] =fh/2 [cr* ] O-t--_)zdzMxo s-h�2 axe __

Mojc. J -hi2 O'Ox

The orientation of the various forces and moments are shown in Figure 2. We point out that

the transverse shear stresses er= and a0.. are used when obtaining the force resultants Q_ and

Qo even though they are omitted in the constitutive relations. This is one of the contradictions

which arises in the classical shell theory.

Qlt

Qo N_

°_N.__x d _ tins

O+-_l 9
No + -""77-_ d0

/- Nx+._xX dx ,,xu dx

Figure 2. Force and Moment Resultants for tile Cylindrical Shell.
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In the Donnell-Mushtari theory, the underlined terms z/R are neglected in comparison to

unity, and the integrals are determined accordingly to yield

Nx - (1 -,,_) b-7+" gO+ , Mx = 12(_- .') {0- 2 + R_00_J

NO --

Eh

(1 - _2)

10v w o,,]
Eh a [ 1 02w 02w], Mo=-12(l_v.2)R---gOO---g+v-:_-S.2] (2.5)

eh 1o,,]
Nxo= NO..- 2(1 + ,,) [b-7+ _ 00J '

Mxo = Mox =
Eh a 02w

12R(l + v) 0x00

Similar expressions are obtained in the higher order theories.

Strong Form of the Donnell-Mushtari Shell Equations

The equations of the dynamic equilibrium of the element are obtained by balancing the

internal force and moment resultants as shown in Figure 2 with any externally applied forces

and moments. Let

q = 0_5 + Ode+ 0,5,_

and

7fi = _hfi_ + 6zoio

denote the surface forces and moments due to an external field which is acting on the middle

surface. Hence c_ and rh have units of force and moment per unit area, respectively.

Considering equilibrium of the forces in the x, 0 and z directions yields

t_ONx ONO_
-aT + 0--U+ RO_=0,

ONe Nxo

oo- + R-=JT-x+ Qo+ ROe= 0,

OQoR + O----O---No+Rgt,_=O,

(2.6)

respectively. In the Donnell-Mushtari theory, the transverse shearing force Qo is considered to

be negligible in _tlie second equation of (2.6) and is subsequently neglected when determining

the final equilibrium equations. Similarly, with 0 as a reference origin, the balancing of

moments with respect to O, , and z yields

R OM_ OMox
-o7 + oo

OM_____o+ ROMeo
O0 Ox

Nxo - NO:r

RQx + RTho = 0 ,

RQo + RTh_ = 0, (2.7)

_/0.T

--0_
R



respectively. By referring to the integral definitions of N_o, No_ and Mo_, it can be seen that

the third expression in (2.7) is identically satisfied due to the symmetry of the stress tensor.

Time enters the equilibrium equations through the inertial terms; hence for time-dependent
O2u ^

problems, tile force 0_ is replaced by -PhTir+q_ where p is the density in mass per unit volume

of the shell. Similar substitutions are made for qe and c_,_. By combining (2.6) and (2.7), one

arrives at the time-dependent Donnell-Mushtari equilibrium equations for a thin cylindrical
shell with radius of curvature R and thickness h

O:u _ R ONx ONox _ RCt_
Rph-_ _ O0

02v ONe t_N_° - t_Oo (2.8)
Rph --_ O0 Ox

Rph Ot_ ROox2 R O02 2 _ + No = R4,_+ n--g-f-z + O0

We note that the representation of the external loads as surface moments and forces is

convenient when deriving the strong form of the equations of motion, ttowever, in many

applications where it is necessary to actually determine expressions for these loads or when

using the weak form of the equations, it is advantageous to represent these loads in terms

of line forces and moments. To accomplish this, let Mx, Mo, N_, and No denote the external

resultants acting on the edge of an infinitesimal element which have the same orientation as

the internal resultants depicted in Figure 2 (with units of moment and force per unit length

of middle surface). Force and moment balancing can be used to write the area moments and

in-plane forces in terms of these line moments and forces, thus yielding

O/Q_ l OXo
_I_= , 4o-

Ox R O0

rh_- _o-
R O0 ' Ox

(2.9)

We point out that the first expression in (2.9) can be obtained from (2.6) simply by

replacing N, by N_ and deleting _0 in the first expression of (2.6). Similar analysis leads to

the other expressions in (2.9). The use of these line moments and forces in (2.8) is equivalent

to including the external resultants directly when determining the equations of moment and

force equilibrium for an infinitesimal shell element as done in (2.6) and (2.7).

The substitution of the internal moments and forces in (2.5) and the external resultants

from (2.9) then yields

1 02u 02u l-vO2u l+u 02v now (l-u 2) 0Nx

C_ Ot 2 Ox 2 2R 2 O0 2 2R OxO0 R Ox Eh Ox

1 02v 1-uO2v 1 02v l+u 02u 10w (1-u 2) 1 0fi_o

C_ Ot 2 2 Ox 2 R 2 002 2R OxO0 R 2 00 Eh R O0
(2.1o)

1 02w u Ou 10v 1 h 2 (1- u2) [ 1 02_I0 0_/_

c_ ot_ + _ + _ o-g+ _ + --V_w - [O,_12 Ef_ R 2 O0 z Ox 2
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whereagain, u, v and w are the axial, tangential and radial displacements, respectively [14].

The constant CL given by
1

is tile phase speed of axial waves in the cylinder wall. The external line forces firx and N0
and moments M_ and _/0 have units of force and moment per unit length of middle surface,

respectively, and are generated in our problem by the activation of tile piezoceramic patches.

The load 0,_ is left as a surface force since this is the form that it usually takes in problems

involving the excitation of a shell through normal forces (an example of a normal force in this

form is the pressure exerted on the shell due to an exterior or interior acoustic field).

We again emphasize that the resultant expressions in (2.9) (and hence the system (2.10))

were derived for an infinitesimal element; hence certain modifications must be made when

considering the global form of the resultants and equations (as is necessary when the resultants

are generated by a piezoceramic patch). In certain cases (e.g., for certain types of moments

and forces), the system (2.10) agrees with the strong form of the global shell equations. In

general, however, this is not true, and one must exercise extreme care in determining the form

of the global representations for the moments and forces.

Weak Form of the Donnell-Mushtari Cylindrical Shell Equations

In order to find the weak form of tile shell equations, the kinetic and strain energies of

the shell are needed. By combining the Kirchhoff shell hypothesis with the strain results

from classical elasticity theory, it follows that the strain energy stored in the shell during

deformation is given by

1[_1_ [2_ it
U = 7 ,-h/2Jo Jo (cr=e= + ooeo + o_07_0)(1 + z/R) RdxdOdz

where the stains and stresses are given in (2.1) and (2.4), respectively. Substitution and

integration (with (1 + z/R) -_ replaced by its geometric series expansion and neglecting powers

of z in the integrand which are greater than two) yields

v = _ (1-_,_) (_ + _°)_- 2(1- ,_) _o

+i_ (_ + _°)_- 2(1- .) _0 - T + _(_ - _0_0)

(1- u)¢_o ¢_ (1- u)¢_o])
r + + f RdxdO .2 R -_ 7 n_J

With the change of variables s = z/R, the total strain energy can be written as

v = <'',o(1Eh_,'1IS .+kI.  ld <tO

9



where k = h2/(12R2), IDM is the integrand corresponding to the Donnell-Mushtari theory

and 1BFL denotes the terms whMl are retained to yiehl the Byrne, Fliigge and Lur'ye strain

energy. These two components are given by

_" -- t a_,+_ +_ - 2(_ ,,)L°-' _ +" - ,_t0-,+ a0) J

and

, Ot, O'2w OvO2w 3 (Ov_ 2 OuO2w
IBFL = --2u---- -- 3(1-- u) + I u) +(1--u)--oo o_ o._o._oo 7( - \o._1 oo-osOO

+ _(1-- \OO/ -2as as2 -t-2w-_g-+ .

For simplicity of presentation, a weak form of the shell equations will be developed using

the Donnell-Mushtari strain expression; a corresponding set of equations can be derived in a

similar manner in the Byrne, Flfigge and Lnr'ye case.

The kinetic energy of the shell is given by

h +T=
7_0 t,0t_) t,<-_) + --O--fi-) R2dsdO"

Throughout this development, it is assumed that the shell satisfies shear diaphragm bound-

ary conditions at :r = 0, g; that is, it is assumed that

v=w=N_=Mx=O

at the ends. This is done merely to demonstrate the equivalence between the weak form which

follows and the strong form already discussed; other boundary conditions can be treated with

similar arguments. It should be noted that the conditions v = w = 0 at the ends are essential

boundary conditions and hence must be enforced on the chosen state space.

For an arbitrary time interval [to, tl], consider the action integral

flA[ff]= (T-U)dt (2.11)

wt,ere,7= [,_>,_>,_,}is consideredin the spaceV= Ud(fl) × m7(a) x H{(a). Herea denotes
the shell and the subscript b denotes the set of functions satisfying the essential t)oundary

conditions. One then considers variations of the form

u(t,r,O,x)

fi=ff+e_= v(t,r,O,x) + e

w(t, r, 0, z)

,_,(t)_,(,.,o,x)

][(,re _" = [711 , Y]2,/]31 and _ = [(_1, ¢2, ¢3] aye choseI1 so that

10



i.) _(t,.,., .) _ v

ii.) _(t0,.,-,-) = _(tl,., .,-).

Note that this enforces r_ C [H2(0, T)] 3, _'(t0) = _(t,) and q_C V.

Hamilton's principle states that the motion of the shell must give a stationary value to the

action integral when compared to variations in the motion, thus leading to the requirement

that for all _,

±A r,7+ : 0
de i J

g_0

With the definition (2.1 1) for the action integral, Hamilton's principle leads to the condition

= ph _7-01 + ----_¢2 + ----A[fi] _=o so -_ Ot

Ow 0713 ]

Ot _ ¢3J
R2 d._dOdt

0¢1 Ov O6l Ou 06,_ Ou-(1 - u) ,l,W---_-a + rh O---_c.3---7-s+ q2c3--70---_+ '/3_-s b3

l Ov ]-aT + "_e')

[ 0211' 02¢3 02W 02¢3+k r/aV2WV2¢3 - (1 - u) [71a_- _s 2 + T}3082 0t92

02w 02cP3 }}dsd19d t--2_/3 0s0190S08

Note that this must hold for all arbitrary intervals [to, tl] and all admissible perturbations.

Temporal integration by parts in the first integral in conjunction with the underlying condition

1i



that r_(to) = r_(t_) then yields the coupled system of equations

w-g7 + o0 o_ 2 \o_ + N --N-]
dsdOdt = 0

_o - 2 -_ __ _ + -_ + _ oo

N oo 2 N + -_ -_7] d_dOd_= 0

_3(t)fo p(1 - ,,2)o2w R__ o_ o_ oudO -- E "_ ¢3 _ -1t- _ -1I- /-u ¢3 qt- (] __ /,,)_-_-s ¢ 3

-_ V2mV_¢3-(1 - _/t-aN _ + 0_ 002 _07NNb-b] d_d0dt

The weak form of the equations of motion for the unforced shell is thus

fo2_[e/R{ReO=u (Ou Ov )0¢, 1 (Or Ou) O¢,}ao '_L _ _' + --_s + "-_ q- uw --_-s +2 (l-u) +\o, gO -o-b-
dsdO = 0

=0.

ao _L Ot: ¢2 + u-_s + -_ + w --_+_(1-u) _-7+_--_ _ asgo = o

,o _b-7 _z+ "N+gO +_ _

{ r+k V2wVUC3 - (1 - u) [002 Os u

Oq2W 02q_3 02W 02¢3

+ Os 2 O0 _ 20sOOOsO0 } dsdO
=0

r E t 1/2
for all q_ E V. Again, the constant Ct, = [_l is the phase speed of axial waves in the

cylinder wall.

In terms of the moment and force resultants (see (2.5)) and the original axial variable x,
the weak form is

Rph--z-:-x_¢_ + RN,: + No_ dxdO = 0

f R hO' O< 0<},o _ p a-y¢_ + xo-N- + mv,-g 7 dxd0= 0 (2._2)

2,_ e fig h 02w 02¢3 1 . 0=¢3 02¢_]
- 2M.Ox--N] d dO= O.

12



The derivation thus far hasbeenfor the unforcedshell. To include the contributions of
appliedexternal forcesand momentswhichdo nonconservativework on the shell, onecanap-
peal to an extendedform of Hamilton's principle or moreformally include thesecontributions
directly in the system (2.12). Both techniquesyield identical final equations and for easeof
presentation,wewill take the latter approach.

The inclusion of the applied line forcesand momentsNx, N0 and ]//x, M0 and the surface

load 0n in the system then yields

0._;hNT¢,

fo2_fo*{ R h02vp -gF¢2

+ RNxO0@+mo=_'---RNxOo-_x} dxdO = O

+ XoOo@+ RX_o_x_ ^0¢2}No--_ dxdO = O

._n2_r ._g { Oq2W 02¢3 1 M 02¢3Rph---_da + No¢3- RM_ Ox 2 _ o -_

- R4_e3+ RMx-gTx_+ -_ o &dO = 0

02¢3

__ _ 2M_oo--_

(2.13)

for all ¢ C V as the weak form of the Donnell-Mushtari equations of motion for the forced

shell.

With the assumption of sufficient smoothness, the weak solution in this form is consistent

with the strong solution in (2.8). The vanishing of several of the boundary terms which arise

during integration by parts is a result of the choice V = //_(f_) x HO(ft) x H_(ft) for the

function space since the state variables and test functions are required to satisfy the essential

boundary conditions
V_---.W-.-_O

at x = 0, g.

We point out that in the weak form (2.13),one is not required to differentiate the applied

force and moment resultants fi¢_, N0, Mx and Mo as is required in the strong form (2.10). This

proves to be very beneficial when these terms are generated by finite piezoceramic patches as

discussed in the next section.

Plate Equations

Consider a thin rectangular plate whose edges lie along the coordinate lines x = 0, g and

y = 0, a. We assume that the plate subjected to both longitudinal and transverse loading

via the surface forces and moments _x, qo,0,_ and rh_,rh0. With u, v and w denoting the

displacements in the x, y and normal directions, respectively, the strong form of the Kirchhoff

plate equations is given by
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. 02u ON_ ON_

ph -g_ Ox Oy - _

.02v ONy N_y
Ph--5752 Oy Ox - _

(2.14)

02w O:M_ O:My
ph Or: Ox2 Oy: OxOy OyOx

where the moment and force resultants are

._- l_u2 +u , Ms=

Orhx O_,y

- On+--_y + o---;-

Eh 3 (02W 02tU_

12(1- u 2) \Ox 2 ÷ u Oy-_)

02M_y C_2 Myx

Eh (Or 0_)N_ - 1- _,2 \ Oy + Ox , M_- 12(_--.2) \ Oy_+ "-5Z]

Eh (Ov 0_)N_ = X_- 2(_+,,) \_+_
Eh 3 02w

, Mx_ = M_ = -12(1 + ,,) OxO_ "

The first two equations in (2.14) describe the longitudinal movement of the plate while the

third equation describes the transverse motion of the plate.

To find the weak form of the equations, the vector ff = [u, v, w] containing the displace-

ments in the x, y and normal directions is considered in the space V = H_(fl) x H_(ft) x H_(a)

where ft denotes the plate and the subscript b denotes the set of fimctions satisfying essential

boundary conditions for a specific problem. By using analysis similar to that just described

for cylindrical shells, the weak form of the equations of motion for the plate can be found to

be

e{ 02u. 0¢1 00__ ^ 0¢,'_O_O fO P h -'o-i'2 O l ÷ Nx -TO'-x-x ÷ _ryx N_ -_x J a x d y = O

f0°'{fo'_F_+°:_ _0_0_+x_0_0__ {_:l,.xe_o,_j : 0

a t ( h (_2w 102¢3 _3 f 02¢3 02¢3 02¢3/o/o ox- -
+ f/I v dxdy = 0

(2.1,5)

for all ¢ = [¢!'q_2' ¢3] C V. As in the case of the thin shell, the external line forces and

moments N_, Ny, Mx and _Iy are related in an infinitesimal sense to the corresponding area

forces and moments 05, c_y,Thu and gn_ appearing in the strong form of the equations by the
relations

0x_ 0_.
qx=- Ox , qy =- Oy

Oy Ox

(2.16)
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If the solution has sufficient smoothness, integration by parts can be used to show that tile

weak solution is consistent with the strong solution in (2.14).

Beam Equations

The motion of an undamped thin beam of length g and width 1 can be determined from

the dynamics of thin plate theory by considering only the vibrations in the x-direction along

with the usual transverse vibrations (in the z direction). From (2.14) this yields the strong

form of the Euler-Bernoulli beam equations

O:u ON_
Ph at: Ox - Ox '

O2w 02 M,: O6_,y

ph-_ Ox: - 4,_+ o---2-,

(2.17)

where

N_ = Eh_x

Eh a 0"2w EiO2wM_-- --
12 Ox 2 Ox "2

Note that I = ha/12 is the moment of inertia for a beam of width 1.

A corresponding weak or variational form of the equations can be determined by choosing

V = [I_ (f_) x H_(f2) for the space of trial functions where Ft denotes the beam and the subscript

b again denotes the set of functions which must satisfy the essential boundary conditions.

Through either an energy derivation such as that given for the thin shell, or simply integration

by parts, one arrives at the variational form

e f h 02u tYxOO_x} 0 ¢l C

e __ _ M_O_¢_}or o_w o'¢_ _,,¢_+ & = 0 for all ¢_ e H2(a){ph--O--5¢,- ag Ox,

(2.18)

of the beam equations. We point out that in this form, one is not required to differentiate the

external force or moment resultants, 2Q_ and 33I,_, which proves to be very useful when these

terms are generated by the activation of finite piezoceramic patches.

3 Patch Contributions to the Shell Equations

For a thin cylindrical shell, the strong and weak forms of the equations of motion are given

by (2.8) and (2.13), respectively. In the case of the weak _rm, it is seen that the loads
can be written in terms of the line forces and moments N_, No, M_ and _Io and the normal

surface load 0,_, while the strong form contains surface loads and the derivatives of surface

15



moments. In the problem under consideration, these quantities result from the activation of

piezoceramic patches of thickness T which are assumed to be perfectly bonded to a cylindrical

shell of thickness h with midsurface radius R (see Figure 3). As shown in Figure 4, the patches

are assumed to be situated so that their edges are parallel to lines of constant x and 0. Because

the patches generate no shear strains, the exterior load 4,, is taken to be 4,_ = 0. If tile weak

form (2.13) is used, the external line moments and forces are simply

i4_ = (M_)pe , %to = (Mo)pe (3.1)

where (Ms)p_, (Mo)p_, (N_)p_ and (N0)w are the respective moments and in-plane forces which

are generated by the patches. The subscript pe is used to denote patch properties and to

help differentiate them from shell properties which have no subscript. When it is necessary

to differentiate between the two patches, the outer will be denoted with a subscript pea with

a subscript pe2 being used to denote the inner patch.

However, if one is using the strong form (2.8) of the equations of motion with piezoceramic

actuators, the surface moments and forces to be used in (2.8) are given by

_ = 10(Mo)_ _o - O(M_)_

R O0 ' Ox (3.2)

tx_ _O_O(A_)p¢ ^ 10(No)m

For a patch with uniforn_ thickness and bounding values xl, x2, 0, and 02, the presence of the

indicator function

1 , x < (z, +x2)/2
= o , x = (x, + x )/2

-1 , x > (x, + x2)/2

(3.3)

derives from the fact that the forces generated by the patch in the x-direction are antisym-

metric (equal in magnitude but opposite in sign) about the line Yc = (x_ + x2)/2. The same

holds true for the forces in the 0-direction with S,,2(0) being defined in an analogous manner

to S,,2(x)in (3.3).

We point out that the differences between the external surface force expressions in (2.9)

and (3.2) are due to the fact that the former were derived for an infinitesimal element whereas

the latter are global expressions which preserve the overall signs of the forces generated by the

patches as well as reflect the discontinuities due to changes in sign. These differences result

from the property that the sense of the forces is highly dependent on the specified location

of the axis origin on the neutral surface. Hence the direction of t'orces throughout the patch

(lifters in some locations from those observed in the infinitesimal element thus necessitating

the inclusion of the indicator functions in (3.2).

Unlike the forces, the action of the moments is specified with respect to a fixed point on

the neutral surface (the point 0 for the element in Figure 2 or a point on the left edge of the

shell in Figure 1). As long as the orientation of the infinitesimal element and full shell with

patc!les ar e the same, the line moments derived for the infinitesimal element will be consistent
with those of the full structure. Thus the expressions for the general infinitesimal moments

in (2.9) need n0:modlficatlons when describing the surface moments generated by the patches

as given in (3.2).
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Figure 3. Strain Distribution for the Composite Structure.

0 2 -

O1-

X 1 X2

Figure 4. Piezoceramic Patch Placement.

\

In order to determine (M_)p_,(Me)pe,(Nx)p, and (Ne)p_ and hence the loads on the shell,

it is useful to write them in terms of the normal strains ex, ee and midsurface changes in

curvature n,, ne of the middle surface (z = 0) of the cylindrical shell. That is, we want to

express the patch moments and forces in terms of the reference surface characteristics of the

cylindrical shell.

We emphasize that due to the presence and activating nature of th e patches when a voltage

is applied, the normal strains and changes in curvature are no longer given by the expressions in

(2.3) which were derived for a homogeneous thin cylindrical shell. At this point, e_, co, _, and

no are considered to be unknown and are determined by formulating stress-strain relations in

tile patch and shell followed by the balancing of moments and forces in the combined structure.

In this manner, expressions for these midsurface characteristics (and hence tile resu]ting patch

moments and forces) can be found in terms of the material properties of the shell and patch,

the radius of curvature of the shell, and the voltages being applied to the patches.
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Stress-Strain Relations in the Patch

From (2.1), the infinitesimally exact strain relationships for a cylindrical shell with mid-
surfac6radius R are given by

1 (3.4)

eo - 1+ z/R (eo + z,¢o)

where e_ and ee are the nornaal strains at an arbitrary point on tile cylindrical shell. If

the patches and cylindrical shell are thin in comparison with the radius of curvature of the

shell, then it is reasonable to assume that the relationship (3.4) is maintained throughout the

combined thickness h + 2T as shown in Figure 3 (see also [12]). tlence we will take

= +
1 (3.5)

- 1+ z� R +

where (e_)v_ and (ce)v¢ are the normal strains at an arbitrary point on the patch. Note that

this assumption implies that the strains at the interface are continuous and that the centers

for the radii of curvature for the shell and patch are concurrent. As seen in (3.4) and (3.5),

the tangential strain distribution in the shell and patch is in general nonlinear in z (see also

Figure 3).

We point out that the model at this point differs from the fiat plate piezoceramic coupling

model [15] both in the presence of the term z/R in the tangential strain expression of (3.5)

and in the fact that the model retains the coupling between tile normal midsurface strains and

the changes in curvature (this is analogous to simultaneously considering both longitudinal

and transverse vibrations in a plate). Although the ratio z/R is neglected when deriving

the Donnell-Mushtari model (see (2.2)), we retain it here so that curvature effects are fully

included in the coupling between the patch and shell. The retention of this term also ensures

that the patch interaction model can be directly applied to higher order shell models without

necessitating changes to accommodate the greater accuracy.

From the constitutive relations in (2.4), it can be seen that the stress distributions within

the cylindrical shell are
E

ox - 1 - v 'a (e,: + vee)

E (3.6)

ae-l_l, .

The stress distribution in tlle patches will contain contributions from both the free piezo-

ceramic actuator strain and the strain distribution in (3.5). At this point we assume that

when voltage is applied and the patch is activated, in accordance with basic shell theory,

equal strains are induced in the x and 0 directions and the radius of curvature is not changed

in either direction. Patches satisfying this assumption could be made, for example, by taking

a portion of a thin-walled tubular piezoceramic element. For the outer patch, the magnitude
of the induced free strains is then taken to be

18



where (/31 is a piezoceramic strain constant and V1 is the applied voltage. We point out

that when a voltage is applied to a patch with edge coordinates xl, x2, 01 and 02, tile point

(2,0) = ((Xl + "r.,)/2, R(ei + 02)/2) win 1,ot move whereas the axially symmetric, points on

either side will move an equal amount in opposite directions. This motivates the use of the

indicator functions at various points throughout the development

Assuming that the two patches have the same Young's modulus, Eve, and Poisson's ratio,

i%, the stress distribution in the outer patch is given by

Eve (e_ + lep_eo - (1 + t,_,_)ep_, )
(_)_' - 1 - I%2

Eve (1 -t- 1"pe)eve, )
- 1- + -

(3.7)

with the negative signs resulting from conservation of forces. Silnilar expressions are used for

the induced free strain and stress distribution in the inner patch. By comparing (3.6) and

(3.7), it can be noted that a stress discontinuity occurs at the interface due to the different

material properties of the shell and patch.

Moments and Forces in the Patches

By integrating the stresses over the face of a fundamental element, it follows that the

moment and force resultants for the patches can be expressed as

i-h�2 (1 +-_) zdz=fh,,+T (1

( Mo)pel =

(Nx)pe 1 ----

hhl2+ T r-hi2 -1

Lh/,+T f-h/2 (1 +R) dZ
( k]

(o'x)p_, t, 1 + _1'-'"dz , (N.)p., = J-h/2-T(°")P_=II

(3.8)

th/2+T

(No)m = Jh/2 (°'°)mdz

I-h�2 .,

, (N0)m = J_hl2_r(_O)_,&

with units of moment per unit length and force per unit length, respectively. The explicit

dependence of the patch's moment and force resultants on the shell midsurface characteristics

e_,e0, te_ and tee can be seen by combining (3.5), (3.7) and (3.8) (we again point out that tl_e

lnidsurface strains e_, e0 and curvature changes te,, te0 are unknown and will be determined by

balancing moments and forces in the combined structure).

Patch Loadings

It should be noted that throughout this development, edge effects due to the patches have

been ignored and thus the expressions in (3.8) apply to patches covering the full circumference

of the shell and having infinite axial length. The equations can be modified for finite patches
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in the following manner. For a patch with bounding values xl, x_, 01 and 02 as shown in

Figure 4, the total line moments and forces are

(M_)ve = [(M0)p_, + (lI'IO)pe_][Hl(x)- H2(x)][H,(O)- H2(0)]

= [(/_)w, + (Mx)v_2][Hl(x) - H2(x)][HI(O)- H2(0)]

= [(N_)p_, + (Nx)w2] [Hi(z) - H2(/)] [H,(0) - H2(0)] Sl,2(X)S1,2(0)

(3.9)

(No)v_ = [(No)w, + (No)v_2] [Hl(x) - H2(x)] [H_(O) - H2(O)] Sa,2(x),_,,2(O)

where H is the Heaviside function and H_(x) - H(x-x_), i = 1,2, with a similar definition in

0. The indicator functions S_,2(x) and ,_,2(0) (see (3.3)) again derive from the property that

for homogeneous patches having uniform thickness, opposite but equal strains are generated

about the point (2,0) = ((x_ + x2)/2, R(01 + 02)/2) in the two coordinate directions.

The combination of the expressions (3.8) and (3.9) yields the patch moments and forces

(M,:)p_, (Mo)v_, (N_)w and (N0)w in terms of the middle surface characteristics of the the

cylindrical shell. Integrating the expressions in (3.8) is somewhat cumbersome however, and

the procedure can be facilitated by determining the patch moments and forces in terms of the

resultants of the forced shell. To accomplish this, force and moment balancing is employed.

Determination of the Patch Moments and Forces

The application of moment equilibrium about the center of the shell yields the two condi-

tions
M_ + (M_)v_ 1 + (i_)v_2 = 0

Mo + (Mo)pe, + (io)w2 = 0 (3.10)

where M_ and Mo are shell moments. Similarly, force equilibrium in the x and 0 directions

yields

N_ + (N_)p_, + (N_)v, _ = 0

No+(No)p_, +(Xo)w: =0. (3.11)

Thus the total patch resultants can be expressed as

[_/2 (l +-_) zdz(M_)_e_+ (Mx)_ = -M. = - _-h/: ('_

_ [_/2
(Mo)w, + (Mo)w2 = -Mo = j_h/ oozdz

(N2._ + (N_)_ = -N_ = __h/ _ 1+ az

_ [h/2
(No)_, + (No)_ = -No = j_h/ (.odz
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which yields

-Eh 3 [
12(1-u 2) [no

+

- e_ + ue0 +

(3.12)

+ --
1-u 2 Co+UCx+ 12 RJ

The two tangential expressions are approximate in the sense that the terms (1 + z/R) -1 are

replaced by the truncated geometric series 1 -z/R before integration (this is the same strategy

which is used when determining the moment and force resultants in the Byrne-Flfigge-Lur'ye

general shell theory). The patch resultants in (3.12) are then used in (3.9) to determine the

total line forces and moments generated by the finite patches. Because these resultants are

functions of the material properties as well as the midsurface characteristics, they can be

easily constructed once e_,eo, nx and n0 have been determined. This is again accomplished

by moment and force balancing.

Determination of the Midsurface Characteristics

In terms of the stresses, the moment and force equilibrium equations (3.10) and (3.11) can
be written as

t-h/2
oozdz + ah/2

=0

(3.13)
and

/2
h/2

r-h/2 (1 -_)dzOr_/e+T (1 -_) dz +

[hli fhi:+r r-hi:oodz + (<_o)p_,dz + = 0J-hl - "

(3.14)

The integrals appearing in (3.I3) and (3.14) are explicitly evaluated in the [1].

After collecting terms, this yields the 4 x 4 linear system

[Ashm + A1 + A._] e = %_,fl + %_f2 (3.15)

in the unknowns c = (e_,,eo, n_, KO)T. The shell contributions in A,hm, the outer patch

contributions in A1 and ./'1, and the inner patch terms in A2 and f2 are
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Ashell =

E1

R

0

E2

E2v'

0

E1

R

E2p

E2

El

Elu

R 12

0

El/]

E1

0

R 12

AI =

a2

_-+a3

a3Ppe

a3

-g + T

Tppe

a31.'pe

a2
----+a3

R

Tup_

if3

---+T
R

al

_+a2

a2Vpe

a3 t/pe

a 21,'pe

al

_+a2

a31]pe

a4
---- -}- a3

R

and

a2

-_-- a3

--a31]pe

A2 =
a3

--_ + T

ZPpe

fl = (1 + uw)

--a3I]pe

a2
---- -- a3

R

T ;_'ve

a3

g+r

a2

_- -b a3

a3

a3

-_+r

T

al
---+a2

R

a 2 t,'pe

a4
__ _ a 3
R

--a31]pe

A : (1 + ._)

a2Vpe

al
---+a2

R

-- a312pe

a4
___ _ a 3

R

a2

-_-- a3

--a 3

a3

-g+T

T

with

E, : Eh3(1 - up2_) E2 = Eh(1 -u_)
12Ev_( 1 _ _2) , Ep_(1 --,2)

l[(h ), ] ]a,=_-_-16 _+T --h 4 , a3= _ 4 _+T -h 2

a2=-_ 8 +T -h 3 T [3h2+6hT+4T 2]
a4= E

Note that the coefiqcients ai , i = 1,..., 4, are of order at most three in h.
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We point out that Ash_u, A1, A2, fl and f12 depend on material properties of the patches

and shell (thickness, elastic properties, and Poisson ratios), the radius of curvature of the

shell, and the voltage being applied to the patches (recall that %_, = dai V1/T where V1 is the

applied voltage into the outer patch with a similar definition for epe2). The above formulation

isolates the contributions due to the individual patches and is useful if one wants to activate

only one of the patches. If both patches are present, the above formulation can be simplified

to yield the linear system

Ae = epelfl -Jr epe2f2

A

R(El + 2a2) 0 E1 + 2a2 Ely + 2a2uv_

1

0 --'_(E 1 + 2a2) ElY + 2a2Vpe E 1 + 2a2

1 /E2 h2 )E2 + 2T E2v + 2Type "-_ _-_'_ + 2a4 0

E2u + 2Tape E2 + 2T 0 -_ \---_ + 2a4

where

Algorithm for Determining the Shell/Patch Interactions

The steps which are necessary for solving for the shell loads due to the activation of the

patches call be summarized as follows.

(1) Set up the 4 x 4 system Ae = f and solve for c = (e,:,eo, tcx, t;o) r which contains the

midsurface strains and changes in curvature.

(2) Determine the line moments and forces which are generated by the individual patches as

set up in (3.12).

(3) The corresponding combined resultants for finite patches are given by (3.9).

(4) The resultants from (3.9) are directly substituted into (2.13) as the load on the shell if the

weak shell equations are being used (recall that in this case, On = 0 and tV_ = (N_),¢,

IVo = (No)p¢, M,: = (Mx)p¢, t_Io = (Mo)p¢ as summarized in (3.1)). For the strong form of

the equations of motion, the derivative expressions in (3.2) are formed and substituted

into (2.8) as the external load.

We point out that the substitution of the patch moments and forces into the strong form

of the shell equations results in one derivative of the Heaviside and indicator functions for

the forces and two derivatives of the Heaviside function for the moments whereas no such

differentiation is required in the weak form (the derivatives are transferred onto the test

functions and one simply integrates over the region covered by the patches). This is one

motivation for using the weak form of the shell equations in many applications.
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4 Patch Contributions to Plate and Beam Equations

Analysis similar to that used for the thin cylindrical shells can be used to determine the forces

and moments which are due to the activation of piezoceramic patches which have been bonded

to a flat plate or beam.

Plate/Patch Interactions

The patch interactions with a flat plate can be determined in a manner similar to that

used in the study of the interactions between a thin cylindrical shell and a pair of piezoceramic

patches as discussed in the last section. Direct force and moment balancing leads to the 4 x 4

system listed under Method 1, and this system can then be solved for the unknowns e_,ev, Kx

and _y. By then substituting these values into resultant expressions similar to those in (3.12),

one obtains the forces and moments generated by the patch. This procedure can be simplified

however, by noting that the strains in the x and y directions of a homogeneous flat plate are

equal when equal free strains are generated by the patch (see [6]). Hence two of the variables

can be eliminated which leads to the more easily solved 2 x 2 system given under Method 2.

It should be noted that the two methods yield the same final force and moment resultants.

Method I

Force and moment balancing similar to that used in tile study of the patch/shell interac-

tions yields the system

[Apme + A, + A2] e = eve ' fl -'}- epe2 f2

where c = (e., ev, _;x, _v) T. The matrices and vectors containing contributions due to the plate

and two patches are

Aplat e =

0 0 Ea Elu

0 0 Eiu E1

E2 E2v 0 0

E2v E2 0 0

A 1 =

a3

a3 l]pe

T

Tl/pe

a3l]pe

a3

Type

T

a2

a2Vpe

a3

a3b'pe

a2Vpe

a2

a31/pe

a3

, A2 =

-a3

-a3Vpe

T

Tupe

--a3Ppe

--a3

Type

T

a2

a2Vpe

--a3

--a3Vpe

a2upe

a2

--a3Ppe

--a3

and

fl = (1 +Upe)

a3

a3

T

T

, f2 : (1 + Upe)

--a3

--a3

T

T
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with

Eh (1 - G) = Eh(1 - G)
E_ = 12Ep_(1-v 2) ' Ev_(1-v 2)

Note that these matrices and vectors are identical to those of (3.15) if one takes R --+ ec in

the latter expressions. Once e,,ey, gx and _;_ have been determined, the moment and force
resultants can be found in a manner similar to that used for shells.

Method 2

Here we take advantage of the fact that for a homogeneous plate, the strains in tile x and y

directions will be equal when generated by equal free (unconstrained) strains from the patch.
Hence we take

e -'- e x _ ey _- _-Jr- h;Z

as the strain distribution in both the plate and the patch. This yields the stresses

in the plate and

E

o=ox=av- 1-v

Epe ( e - epel )

l_Pe ( e -- epe2 )
(o)vc2 = (o,:)pc2 = (ay)v_2 -- 1 - vpe

in the patch. The force and moment resultants for the patches can be found either by inte-

grating the stresses over the patches or by using force and moment balancing to express them

in terms of the resultants for the forced plate. As was done in the shell analysis, we will take

the latter approach since it yields simpler expressions for the external resultants. Force and

moment balancing in conjunction with integration of the forced plate resultants then yields

-Eh a

(M_)m + (M_)m = (MY)m + (MY)v_2- 12(1-v) _

-Eh

+ = + 1-.

As expected, these relations agree with those in (3.12) for the forced shell with tile exception

of the O(1/R) terms in the latter case which are due to the curvature.

The total resultants generated by a pair of patches with edges parallel to lines of constant

x and y can be determined in a manner similar to that used with the shells. For a patch with

bounding values xj, x2, yl and ya, the total resultants are

(M_)p_ = (My)v_ = [(M_)v_ , + (M_)v_2][H,(x) - H2(x)l[H,(y)- H2(y)]

(4.2)
(Nx)v_ = (Nu)v_ = [(N_)m + (N.)vc=][H,(x) - H2(x)][H,(y)- H_(y)] F_ .dx).¢, .a(y )
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whereagain, ft,(x) = H(x - xi) , i = 1,2, &,2(x) denotes the indicator function described in

(3.3), and Hi(y) and -ql,2(y) are defined in an analogous manner.

As before, ¢ and _: must be found in order to determine the resultants in (4.2). This is

accomplished via moment and force balancing which then yields the system

[Ap,_,t_ + A, + A2] c = ev_,f , + cp_f2 (4.3)

where c = (¢, to)T. The component matrices and vectors are

= A1 = , A2 =
Aptat_ E2 0 ' T aa T --a3

and

[a3] [a3]f_= T ' f2= T

The subscripts 1 and 2 again refer to the outer and inner patch contributions, respectively,

and the constants El, E.2, a.2 and a3 are given by

I _ h_T + + 3a2 = _ 8 + T - h z = _hT 2 1T3

a3=_ 4 _+T -h 2 =

Algorithm for Determining the Plate/Patch Interactions

As in the case of the shell, the steps necessary for determining the plate loads which are

due to the patches can be summarized in a simple algorithm.

(1) Set up and solve the 2×2 system Ac = f in (4.3) where e = (c,n) Tcontains the midsurface

strain and change in curvature.

(2) Determine the combined resultants for the finite patches through (4.2) in conjunction

with (4.1).

(3) Once determined, tile resultants from (4.2) can be substituted directly into tile weak form

of the plate equations (2.1,5) as the load on the system (with 4,_ = 0 and _'_ = (N_)p_,

_,ru = (Ny)p_,_l_ = (M_)v, it?/_ = (My)p_). If the strong form of tile plate equations is

being used, the surface loads can be determined via the expressions

Oy , ¢ny - Ox '

and these latter values can be substituted into the equilibrium equations (2.14).
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As in tile caseof the shells,tile useof the strong form results in up to two derivativesof tile
Heavisidefunction whereasthe useof the weak form alleviates this problem by transferring
the derivativesonto the test functions.

It should be noted that the voltage choice %e =em = %e2causespure extension
(patch pairs excited '% phase") in the plate while pure bending occurs with the choice
eve = -era = %e2 ("out of phase" excitation).

Special Case: eve = -em = epe2

In this case, the constants e and n have tile values

2a3

C = 0 , K -- epe
E1 + 2a_

which leads to tile total patch moments

Th(h + T) h=Te,e[&(x) - H2(x)][Hi(y) - H2(y)]
(Mx)pe= (_G)pe= h3_4_fl(6h2r .__12hT2+ 8T3)

where
Ep_(1 - u) Ep_

9 - E(1 - .v) ' _ - (1 - ,._) "

This line moment expression is equivalent to the relation

M x _ My _-
I + flp_(3 + p_ + 3p_)

h_%_ [H,(x)- H_(x)][H,(v)- H_(y)]

with pz = T/lz, ]z = h/2 which was obtained by Kim and Jones [12] in their development of a

model for the bending interactions between a flat plate and a piezoelectic actuator. In their

work, they consider a patch configuration which excites pure bending in the plate and then

determine the effective patch moment by first isolating the interface stress of the system.

Beam/Patch Interactions

The patch contributions to the dynamics of a thin beam can be determined directly from

the plate/patch interaction model if one considers only vibrations in the x-direction along

with the usual transverse vibrations. The system for the beam/patch configuration is then

identical to that found in (4.3) with the constants E1 and E2 now given by

h a E E
E1 - , E2 = h--

12 Ep_ Ep_

Once e and s; have been determined, the force and moment resultants for the patch are

expressed in terms of those of the forced beam and are given by

(M.)_e, + (M_)_e2= -EI_

(N_)_, + (X.)_= = -Ehe
(4.4)
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where I = ha/12 is the moment of inertia for the beam. For patches with bounding values x,

and x2, the effective moments and forces are

(Mx).c = +(M.:).o.][H(x-x,)- H(.- x,)]

(Nx)pe= [(Nx)pe, + (Nx)pe2][H(x- Xl)- n(x- x2)]Sl,2(x)

which can then be substituted d!rectly into tile weak equations (2.18) as loads on tile beam

(with _,, = 0 and .X_ = (Nx)p_,M_ = (Mx)p_). In order to determine tile patch loads for the

strong form of the beam equations, the corresponding surface moments and forces are found

via tile relationships

and these latter values are used in (2.17). We again point out that this results in the need to

differentiate the tteaviside function (once for the force and twice for the moment) whereas this

problem is avoided in the weak formulation since the derivatives are transferred onto the test

functions. In fact, the effect of the Heaviside functions in the latter case is to simply restrict

tile integrals to the region covered by the patches.

Special Case: Top Patch Activation

Consider the problem of a beam having only a top activating patch.

case i8

which implies that the midsurface constants are then given by

The system in this

Ep_T (Ep_T 3 + Eh 3)

E,_ 2 4Ep_T + 4EEp_T3h + 6EEp_T2h 2 + 4EET,_Th 3 + E2h 4 " %_'

6EEp_Th(T + h)
IC_ 2 4

ET,_T + 4EEI,_Tah + 6EEp_T2h 2 + 4EE_Th 3 + E2M " em .

These expressions for e and K are the same as those found by Gibbs and Fuller [10] when they

were investigating the moments and forces generated by a single patch which was bonded to

a thin beam (these expressions are equivalent to their (7) and (8) once the latter have been

simplified and h/2 has been substituted for h). The moment and force resultants (M_)m and

(N_)m can then be found by substituting _ and t_ into (4.4) (with (M,)p_= = (N_)p_= = 0 since

there is no bottom patch). We note that the resultants in this case are equivalent to those in

[10] although the forms and signs differ slightly due to a slight difference in the formulation

of the underlying beam equations.
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5 Conclusion

In this work, general models describing tile interactions between a pair of piezoceramic patches

and an underlying elastic structure have been presented. While tile presentation is for elastic

substructures consisting of a thin cylindrical shell, plate and beam, tlle techniques discussed

for determining ttle moments and forces generated by the patches can be directly extended to

more complex structures and geometries.

In the case of tile shell, the patches are assumed to be curved and tile coupling between

the in-plane strains and the bending, which is due to the curvature, is retained. By using force

and moment balancing to determine the midsurface strains and changes in curvature of the

combined structure, expressions for tile patch moment and force resultants can be developed.

In this manner, the loading due to an actuating pair of patches can be expressed in terms

of the material properties of the shell and patches (thickness, elastic properties and Poisson

ratios), the radius of curvature of the shell, and the voltage being applied to each of the

patches. This provides a shell/patch interaction model which retains the curvature effects

as well as admits potentially different voltages into the two patches. We point out that the

general techniques used for determining this cylindrical shell/patch model can also be used

to determine the interactions between pairs of piezoceramic patches and more general shells

(for example, in the case of a spherical shell, one would retain the curvature effects in both

coordinate directions).

The techniques for determining the patch interactions with a cylindrical shell were then

used to develop general interaction models for patches which are bonded to thin fiat plates

and beams. As in tlle shell case, the models are sufficiently general to allow for potentially

differing patch voltages which implies that they cat_ be used for controlling system dynamics

when both flexural and extensional vibrations are present. To compare with existing analyses,

tile plate/patch interaction model is shown to be equivalent to that of [12] in tile special case

when pure bending motion is excited. Also, the beam/patch model is equivalent to that of

[10] when there is one actuating patch. Hence tile beam and plate interaction models are

consistent with existing theories in tile special cases previously examined while also allowing

for more general structure/patch interactions which can arise in more complex applications

(for example, coupled systems).

For each of the shell, plate and beam interaction models, the contributions of the patches

are carefully described in both the strong and weak forms of the time-dependent structural

equations of motion. This provides models which can be used in a variety of applications

including numerical simulations, parameter identification, and control schemes. In each of

these applications, the models are sufficiently general to provide for a variety of approximation

techniques including modal, spectral, spline and finite element schemes. Finally, tile patch

loads determined by these interaction models can be applied to higher order structural models

in exactly the same manner, and analogous models can be used for multiple patch pairs and

more complex geometries.
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