
t

tJ

PATH PLANNING FOR

ASSE_LY OF
STRUT-BASED STRUCTURES

/v'A-__-13 3 3

= =

by

Roll Mtlnger

m

l

zi_

=_,_

m

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

May 1991

CIRSSE REPORT #91

lm

mm

R

mm

m

III

i

mmm

-::__ : :_:-!s ¸-_ - |

|
wm

i

|

m

m

il

m

m_ _

ill

I

i

m

m

qF --

II

U

w

N

-=i
h--

m

m

W

N

CONTENTS

LIST OF FIGURES iv

ACKNOWLEDGEMENT vi

ABSTRACT vii

1. INTRODUCTION 1

1.1 Nomenclature 3

2. LITERATURE REVIEW 4

3. GEOMETRIC MODELING 7

4. USING A ROBOT TO FOLLOW A PATH 14

4.1 Modeling the robot's geometry 14

4.2 Potential field method in the robot's joint space 14

4.2.1 Attraction Field 15

4.2.2 Obstacle Avoidance 20

4.2.3 Derivation of the manipulator Jacobian 24

4.2.4 Joint Range 25

4.2.5 Imposing restrictions in cartesian space 27

4.2.6 A method for solving general linear systems 30

5. COMBINING GLOBAL AND LOCAL PATH PLANNING METHODS . 35

5.1 Potential field methods and their probIems 35

5.2 Different ways of performing a given task 35

5.3 Splitting into subtasks using graph Se_$.rch 37

5.3.1 Application of the A* algorithm 38

5.3.2 Selecting subgoals for the truss structure problem 40

5.3.3 Extraction of tetrahedra 41

6. SOFTWARE DOCUMENTATION 44

6.1 Concepts 44

6.1.1 Global variables 44

6.1.2 Data types 45

6.1.3 Module hierarchy 46

6.1.4 Make 47

6.2 Documentationof modules 47

6.2.1 The "global" module 49

6.2.2 The "spec" module 49
6.2.3 The "lst" module 49

6.2.4 The "stack" module 50

6.2.5 The "vector" module 51

6.2.6 The "alg" module 51

6.2.7 The "graph" module 52

6.2.8 The "parser" module 55
6.2.9 The "model" module _.. 56

6.2.10 The "graphics" module 56
6.2.11 The "env" module 57

6.2.12 The "robot" module 57

6.2.13 The "Ipath" module 58

6.2.14 The "gpath" module 58
6.2.15 The "main" module........................ 59

6.3 Interface to CIRSSE 59

6.3.1 CIRSSEinterfaceprocedures................... 59

6.3.2 Input file 62

7. RESULTS 68

8. DISCUSSION AND CONCLUSIONS 76

8.1 Computational Complexity 76

8.2 Generalizationof geometricmodel 78

8.3 Experienceswith the potential field algorithm 78

8.4 Configurationsand singularities 80

LITERATURE CITED 82

APPENDICES 85

A. Simulation input file 85

B. Listings of headerfiles 86

°°.

In

m

E

|
m
i

m

[]

I

m
I

m

B

m

[]

m

[]

n

LIST OF FIGURES

= =
w

m

J

w

u

n

m

w

-!

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

An example structure

Basic geometric model

Shortest distance between two swept sphere cylinders

1.1

3.1

3.2

3.3 Shortest distance between two line segments 10

3.4 Distance computation 11

4.1 Overview 17

4.2 Sense of rotation 19

4.3 Basic collision avoidance procedure for a revolute joint 21

4.4 Basic collision avoidance procedure for a prismatic joint 23

4.5 Numbering convention for the joints and links of the robot 24

4.6 _q,.(q) 25

4.7 Domain mapping for joint range function 26

4.8 r(u) 27

5.1 Two ways of inserting a strut 36

5.2 Choosing the correct sense of rotation 37

5.3 Splitting a task into two subtasks 38

5.4 Intermediate steps placed around a tetrahedron 40

6.1 Module hierarchy 48

6.2 List structure 50

6.3 Data structures in the graph module 54

6.4 Conventions for specifying a strut in a structure 63

7.1 A robot arm of the CIRSSE testbed 69

7.2 A simple motion task 70

iv

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 8.1

Completing a tetrahedron 72

An example of a large angle of rotation 73

Initial state of obstacle avoidance demonstration 74

Obstacle avoidance demonstration 75

Step size selection 79

M

g

I

!

!

m

[]

J
R

I

|

m |
mm _
i |
m

U

m

z

!!

m

ACKNOWLEDGEMENT

I would like to express my thanks to Professor Arthur C. Sanderson, my thesis

advisor, for his guidance, encouragement and patience.

Special thanks go to Dr. Steve Murphy and Michael Eppinger for their help

in robotics issues and to Jonathan Weaver for reviewing the manuscript.

u

m

w

M

u

vi

b

ABSTRACT

i
i A path planning method with collision avoidance for a general single chain nonre-

-- dundant or redundant robot is proposed. Joint range boundary overruns are also

avoided. The result is a sequence of joint vectors which are passed to a trajectory

planner:;

A potential field algorithm in joint space computes incremental joint vectors

-' _ A_'= Aqa + Z_qe + Aqr. Adding z_q to the robot's current joint vector leads to

._ the next step in the path.

= _- Z_qa is obtained by computing the minimum norm solution of the underde-

termined linear system J_qa = xa where xa is a translational and rotational force

vector that attracts the robot to its goal position and orientation. J is the manipu-

lator Jacobian.

Aqe is a collision avoidance term encompassing collisions between the robot

(links and payload) and obstacles in the environment as well as collisions among

links and payload of the robot themselves. It is obtained in joint space directly.

Aqr is a function of the current joint vector and avoids joint range overruns.

A higher level discrete search over candidate safe positions is used to provide

alternatives in case the potential field algorithm encounters a local minimum and

thus fails to reach the goal. The best first search algorithm A* is used for graph

search. Symmetry properties of the payload and equivalent rotations are exploited
w

to further enlarge the number of alternatives passed to the potential field algorithm. !

vii

U

!

I

I
m
B

m

I

i ,

B

B

m
z

U

Q

m -:
|

m !

z

m -

I -

m

J

i _

I

I

w

CHAPTER 1

INTRODUCTION

In earlier applications of robotic systems and in most present systems, the task of

planning a feasible path is done by a human. The most basic way of entering the

path is typing a sequence of points in cartesian or even in joint space and having the

system perform a linear interpolation between the points. If the robot is operating

in a constant environment, this approach is often sufficient. Some variation in the

environment can be taken into account by prestoring a set of paths and selecting

the appropriate one depending on the current state of the environment.

In some applications, as for example spray painting a car part, a complex

continuous motion must be accomplished. This kind of motion would be very tedious

to enter by typing long lists of cartesian or joint coordinates. In this case, a method

known as "teach-in" is used, where a competent person is guiding the robot's end

effector, while the system is storing the motion. Later on, this motion can be

reproduced repeatedly and accurately.

The drawback of all these methods is their inability to work in a largely un-

known environment. If an unexpected obstacle is entering the workspace, the robot

will probably collide with it.

In many applications it is desirable to have more intelligent robotic systems ca-

pable of working more autonomously. The work herein has been done under CIRSSE

(Center for Intelligent Robotic Systems for SpaCe Exploration). The goal of CIRSSE

is the development of planning, sensing, and control methods that will eventually

allow mostly autonomous assembly of parts of a space station in outer space. Au-

tonomy is particularly important in outer space, since risk and costs of assembly

by humans are extremely high. _n_her application is autonomous exploration of

other planets, where teleoperation is impossible due to large communication delays.

)

Figure 1.1: An example structure

An example of a structure being assembled in space is the truss structure

shown in Figure 1.1. The basic cell in this structure is the tetrahedron. Tetrahedra

have two useful properties: They are mechanically stable and their six edges all have

the same length, so only one type of strut is needed. Using them as a unit cell, one

can build arbitrarily large, stable structures.

The first step in doing this automatically is determining an assembly sequence

such that subassemblies are stable whenever this is possible [6]. Once the sequence

has been determined, a path planner is needed to find a collision free path to move

the struts from their storage location to their goal position in the structure. This

project is proposing a solution to the path planning problem. It is a free motion

planner, so it does not cover the grasping and mating operations and the associated

fine motion planning which requires an online visual feedback and force feedback.

Another important part of the system is a high level supervisor which decides about

new strategies if a part of the plan turns out to be unfeasible or if other unexpected

events require a change of strategy.

i

I

m

m

i
!m

|

|

U

m

mm

[]

m _

[] l
I J

l

m

i

g

!

-- =
i •

m

m

m

z
m

m

R

Fw

The path planner is first requesting information about the current state of the

environment. It needs to know the positions of all struts currently in the environ-

ment and the current joint vector of the robot. After this initialization it accepts

motion commands telling it to move the end effector to a certain position and ori-

entation in cartesian space. It must also be informed of grasping and ungrasping

operations, since the changes in the environment have an influence on the path plan-

ning process. The path planner provides a sequence of joint vectors which is passed

to the trajectory planner. In this stage the velocity and acceleration information is

added and the result is passed to the low level robot controller.

This text is organized as follows: Chapter 2 gives an overview of the different

path planning strategies and algorithms that have been developed in the past. In

chapter 3, the geometric model for object representation used in this work is in-

troduced and a distance computation algorithm is presented. Chapter 4 covers the

description of the robot used to execute the tasks and presents the local path plan-

ning algorithm based on potential fields. The global path planning based on graph

search is covered in chapter 5. The documentation of the path planner's implemen-

tation is presented in chapter 6, and chapter 7 shows the results that have been

obtained. A discussion of the results and conclusions can be found in chapter 8. An

input file of a simulated task in included in appendix A and listings of the program's

header files can be found in appendix B.

1.1 Nomenclature

Throughout this text, scalars are printed in normal typeface (x or X), vectors

in lowercase bold face (x) and matrices in uppercase bold face letters (X).

CHAPTER 2

LITERATURE REVIEV¢

Currently known path planning algorithms fall into two categories: global and local.

The global methods typically consider the environment as a whole when plan-

ning a path. They generally have the advantage of finding a path if one exists, but

they are computationally expensive if the environment is complex. There are three

subgroups of global path planning algorithms:

• Cell decomposition methods

• Search algorithms on a visibility graph

• Optimization using calculus of variation

Cell decomposition methods can be further divided into exact and approximate

methods whereas exact methods decompose fr_ space into cells Complex enough to

exactly represent the free space. Approximate methods however split free space

into very simple units, for instance cubes, that cannot represent free space exactly.

There will be a number of cubes that contain both free and occupied space. These

cells are further subdivided into smaller cells, until the desired accuracy is obtained.

After the cell model is established, graph search techniques are used to generate the

shortest path that includes only cells representing free space [20], [21].

Instead of splitting the space into cells, one can also find a sufficiently large set

of feasible intermediate goals, usually located near corners of obstacles I and establish

a graph based on visibility between pairs of these goals. Both of these methods rely

on an efficient graph search algorithm. A suitable algorithm is A*, a best first search

algorithm that considers a lower bound estimate of the remaining distance in order

to expand the most promising nodes first [4], [18].

4

i

N

i

E

m

m

|
m
i

[]

m

J

m

m

i

i

i

m

i

u

w

A different approach that doesn't involve graph search is the optimization of a

cost function that typically includes path length and clearance from obstacles. This

approach uses methods from calculus of variation [19].

The oldest local path planning method is the "hypothesize and test" method.

The robot proceeds a step in the desired direction and checks the feasibility of the

path that leads to the new position. If the path is not feasible, another direction is

chosen according to some heuristic. This approach has not been very successful.

A more recent method is based onpotential fields [7], [8], [9], [17]. The gradient

of a potential field is guiding the robot towards the goal and keeps it at a safe

distance from obstacles. This potential field has very large values near obstacles

in order _o produce a repulsive force between the robot and the obstacles. The

potential assumes its lowest value at the goal position in order to attract the robot

to the goal. The drawback of all potential field methods is the fact that they do

not guarantee finding a collision free path even if one exists. If the potential field

function is not carefully chosen, it is likely to contain local minima, in which the

path planning algorithm can get stuck. An attempt to solve this problem is made

in [10] by adding vortex fields. However, even if a path can be found, it is not

guaranteed to be optimal.

Variations of the potential field methods include information about the dy-

namics of the robot and its payload. These methods have the advantage that they

generally produce paths which can be executed at a comparatively high speed [15],

[16].

If the robot is not assumed to be a point or a sphere, then its shape must be

included in the path planning process. A particular path might be feasible depending

on the orientation of the robot as a function of its position. In order to account for

the robot's orientation, the path planning problem can be solved in configuration

space [221, [23], 124], [25]. The rotational degrees of freedom of the robot are added

6

asadditional dimensionsto the cartesianspace.If weconsidera three dimensional

spaceand a robot with another threedegreesof freedomfor rotation, the associated

configuration spaceis six dimensional. In configuration space,the robot is shrunk

to a point and the obstaclesareenlargedaccordingto the robot's orientation. This

reducesthe problem to planning apath for a point, howeverin a higher dimensional

space.

m

i

B

m

m

i

i

m

m

mmm

R

m

u ;

i

I

I

I

i

D i

J

k

CHAPTER 3

GEOMETRIC MODELING

Every path planning algorithm needs a geometric description of the objects it works

with. If a very simple model is used to represent the objects, it is in most cases

necessary to choose the model's volume considerably larger than the real object's

volume, since the object's volume must be completely enclosed in the volume of its

model. This restricts the path planning process and might lead to a failure even

though a path exists. On the other hand, distance computations on simple models

are typically performed very efficiently. More involved models allow for a better

approximation to the real shape of the objects, but they are computationally more

expensive.

In this work, cylinders with spherical caps have been chosen as the basic unit

for geometric modeling. An example is shown in Figure 3.1. It can also be viewed

as the volume that is swept by a sphere with radius r moving between the two

points Pl and p2 on a straight line. This volume can be described as a set S in the

following way:

L

m

L

m

l

s = P2-Pl

S(pl,p2,r)- {plp=pl+ts+q with tel0...1], Iql_<r} (3.1)

This model is particularly well suited for the objects of interest in strut-based

structure assembly, namely struts and robot links, but any kind of object can be

approximated by using a union of several basic cylinders.

This chapter presents the distance computation for this particular model in

detail, but every other model as for instance a polyhedral model can be used, as

long as the two points of closest distance between two objects can be computed.

7

8

w

Figure 3.1: Basic geometric model

A generalization of the swept sphere model discussed here is a swept sphere model

in which the sphere radius is a linear function of the sphere's position between the

endpoints: The radius is r (1-t)r1+tr2 where rl is the radius of the sphere at point

Pl and r2 the radius at point P2. This model allows for more accurate representation

of conic objects and also provides a very efficient distance computation method [26].

In the following the distance computation algorithm for the cylindrical model

is presented (Figure 3.2). In order to find the distance d between two objects, we

find the distance d, between the two line segments in the center of the cylinders and

subtract the radii of the cylinders rp and rq.

_m

I

m

I

II

m

m

m

iron

R

i
[]

u

[]

m

m

d=d,-rp-rq (3.2)

The line segment in the center of a cylinder S(pl, P2, r) can be described as

s(pl, p2, 0).

The remainder of this chapter discusses the computation of d,, the distance

between the line segments of two cylinders.

m

_ 7-

m

m

u

•It

m

l

m

(iI...........................i)
dsl:t.........

D

m

Figure 3.2: Shortest distance between two swept sphere cylinders

The distance between two line segments Sp(pl, P2, 0) and Sq(ql, q2, 0) can be

obtained by first finding the distance between the two unbounded lines defined by

the endpoints of the line segments. The two unbounded lines can be described as

follows (see also Figure 3.3):

Sp = P2 -- Pl

Sq = q2 -- ql

P = Pl + tpSp

q = ql +tqSq

(3.3)

(3.4)

The parameters tp and tq are real numbers. If the lines are not parallel, then

the two points of minimal distance

Pmin -- Pl + tpmiaSp (3.5)

qmin - ql "{-tqm_nSq (3.6)

dp

"''" _ p2
" ,. , prriin_ -----

ql

Figure 3.3: Shortest distance between two llne segments

z

l

11

i

1

i

m

ll

l
ll

can be obtained by solving the following linear system for tp,,,in and tqmi,_:
II

Pl + _pminSp "_- Z(Sp × Sq) = ql + tqminSq (3.7)

If these points are also on the line segments (tpm,. E [0... 1] and tqmin E

[0... 1]), then the distance IPmin - qmlnl is the distance between the line segments

and the desired distance d between the cylinders is:

=-

Ira

I

u i

d = IPmin - qmin[- rp - rq (3.8)

If tp or tq or both are not element of [0... 1] as it is the case in Figure 3.3,

then we define an auxiliary distance dp as follows:

ll

ll

Ira - Pminl
d_= IP2 P_a_l

0

for tp < 0

fortp > 1

otherwise

(3.9)

_m

I

I

im

I

11

i

. p2

q2

dp

pl _.- u
Y

ql

°.

¥

pmin

.°

"°

qmin

m

Figure 3.4: Distance computation

An equivalent distance dq for the other line is also defined. The values dp and

dq represent the distances between the points Pmin and qmin and their line segments

Sp(pl, P2, 0) and Sq(ql, q2, 0) respectively. Let us also define the two points Zp and

Zq of minimal distance on the two line segments:

min]Zp -Zq[subject to zp E Sp(pl, p2,0) and Zq E Sq(ql, q2, 0) (3.10)

For the remainder of the discussion we can assume without loss of generality

that dp > dq, tp < 0 and tq < 0. Consider Figure 3.4 which shows a projection of the

two line segments on a plane perpendicular to the line defined by Pmin and oanin.

Let us also assume that angle a _ 90 °.

Under these assumptions we can state that zp = pl.

12

Proof: Consider the orthogonal coordinate system (u, v) in Figure 3.4. Let us first

state that the v coordinate of ql is always negative, since dp > dq. We can also

state that if Zp _ P! then the v coordinate of Zq must be positive and equal to the

v coordinate of Zp (not considering the case that Zp = P2). If the v coordinate of

q2 is negative, then a Zq with a positive v coordinate does not exist. Otherwise Zq

must be an element of S' = S(y, q2, 0)--,y. y is the element of S(qx, q_, 0) with a

zero v coordinate. But since S' is an open set, there is a point Zq' E S' in every

neighborhood of Zq such that IZp - Zq' I < [Zp - Zql , so Zp y_ pl does not exist, t3

This reduces the problem to finding the minimum distance between point Pl

and line segment S(ql,q2,0). The point qmin on the unbounded line defined in

equation 3.4 closest to Pl is defined by:

I

=_

m

!

[]

in

I

ml

qmin -- ql q- tqrninSq

Sq" (Pl --ql)
_qrnin _"

Sq • Sq

From thiswe can findZq as follows:

(3.11)

qx for tq,,i,_ < 0
Zq = q2 for t_,_in > 1 (3.12)

qmin otherwise

Then d, = [Zp- zql and we can find the distance between the cylinders

using equation 3.2. This concludes the discussion of the distance computation for

nonparallel line segments.

If the line segments are parallel, then we compute the four distances
.......................

dl : distance between Pl andSq(ql, q2, 0)

d2 : distance between p2 andSq(ql, q2, O)

d3 : distance between ql andSp(pl, p2,0)

d4 : distance between c_ andSp(pl, P2, O)

B

I

i

I

II

u

I

I

m

II

13

using the algorithm described above. It turns out that at least two of the four

distances will be equal to the minimum distance de, so it is sufficient to compute any

three of the four distances and find the minimum, for instance ds = min (dl,d2, d3).

z

z_

R

m
!

CHAPTER 4

USING A ROBOT TO FOLLOW A PATH

In real applications, objects are moved from their start to their goal positions by a

robot, so the robot's geometry must be taken into consideration. The robot imposes

constraints on the path in that the path must entirely lie in the robot's workspace.

It also adds to the list of parts that may be involved in a collision. There may be

collisions between obstacles and parts of the robot, and there may even be collisions

among different parts of the robot itself. The limited range of the robot's joints

further complicate things.

In this work, a single robot that holds a cylindrical object at its center is

considered. The method presented could be used for all single chain robots with at

least six degrees of freedom. All joints can be either revolute or prismatic.

Z

m

m
i

J

i

i

I

i

4.1 Modeling the robot's geometry

In the process of path planning, we must consider collisions between different

struts, collisions between a strut and a part of the robot and collisions among parts

of the robot. In order to simplify distance computations, it makes sense to use the

same model for robot links and other parts. The cylindrical model as shown in

Figure 3.1 can also provide sufficient modeling accuracy for the robot links when

performing free motion planning. Distance computation is done as described in

chapter 3.

i

i

Z _-

i '

4.2 Potential field method in the robot's joint space
m

I

Potential field methods as outlined in chapter 2 work in cartesian space. All

gradients of the potential fields are vectors in normal three dimensional space. They

define the direction of motion of the robot's end effector, so the new location is

14

m

i

m

u

m

W

w

w

15

first given in cartesian space. This means that an inverse kinematics routine is

required to find the new joint vector. Since this must be done at every step of the

path, the algorithm becomes very computationally expensive, since in general the

inverse kinematics problem can only be solved iteratively. In this work, however,

an alternate strategy is taken whereby the robot's new location is first obtained in

joint space, rather than in cartesian space. To find the location in cartesian space,

a simple forward kinematics routine is required.

Thus the goal of the algorithm is to find a joint vector increment Aq that is

added to the current joint vector q to obtain the next step of the path. Aq is the

sum of several components each performing a different task:

Aq = Aqa + Aqr (4.1)

Aqa is the joint vector increment that moves the payload closer to its goal

position and orientation (attractive forces), while Aqr is the sum of all joint vector

increments that keep the robot from colliding or running out of joint range (repulsive

forces).

Aqr = Aqr e + Aqr r (4.2)

where Aqre is doing the collision avoidance and Aqrr keeps the robot from

running out of joint range.

Note that all fields are defined as gradient fields and not as potential fields.

This often leads to a more natural definition and also saves the derivation of the

field's gradient.

4.2.1 Attraction Field

The attractive field is the only field that must be defined in cartesian space.

First the definition of the cartesian vector xa is given, then the transformation into

16

J

joint space is shown.

Xa is a 6 by 1 vector. The first three elements (Xat) represent the translational

part (force) while the last three elements (xar) represent the rotational part (torque):

m
I

_1

l

Xat

Xa = (4.3)

Xar

If Pc is the cartesian position of the center of the strut in the robot's gripper

(current position) and ge the cartesian position of the center of the strut in its goal

position, then

ge -- PC

xat = Catlgc Pcl

Cat is the field constant of the translational attraction field.

(4.4)

The rotational

part Xar is more difficult to obtain. Let px and P2 be the endpoints of the object

in the robot's gripper and let gl and g2 be the endpoints of the same object in its

goal position. Furthermore let ap be the approach vector of the end effector in its

current orientation and let ag be the approach vector of the end effector when it

reaches its goal orientation. The approach vector represents the direction the end

effector must move to properly approach an object before grasping it. Both ap and

ag are unit vectors. We also need two unit vectors that point along the axes of the

struts:

P2 - Pl

PP = Ip2 - Pxl

g2 - gl

Pg = [g2-gxl : _ -

The approach vectors are perpendicular to the axes of the struts:

ap I pp

ag ± pg

(4.5)

(4.6)

z

I

mI

m

1
I

m

I

m

m

m

g

t :

mm

m

E

i i

i

D

17

B ,

current

pl

-... ap xat

gl _ lag

Figure 4.1: Overview

All these vectors are illustrated in Figure 4.1. The current orientation and

the goal orientation can be represented by rotation matrices that give the respective

orientations with respect to the world coordinate system:

Tp= [pp (apXpp) ap] (4.7)

w

Since rotation matrices are orthonormal, their inverse is equal to their trans-

pose. Thus the rotation matrix that rotates the current gripper into the gripper in

its goal orientation is defined as

T = TgTp T (4.9)

w

18

This is the rotation we are interested in, but we need the axis of rotation and

not the rotation matrix. In order to find the axis of rotation, an eigenvalue problem

must be solved. Every rotation matrix has an eigenvalue of 1 and a corresponding

eigenvector a. The axis of the rotation performed by the rotation matrix and eigen-

vector a have the same orientation. Vector a can be found by solving the following

linear system:

(T - I)a = 0 (4.10)

This system can be solved by first setting the first component of a to 1. If

solving for the other two components fails, then we set the second component to 1

and try to solve for the other two components. If this also fails, we set the third

component to 1 and solve for the first two.

The vector a represents the axis of rotation, but it doesn't give any information

about the sense of rotation, since -a is a valid eigenvector if a is an eigenvector.

We can of course rotate both ways to reach the goal orientation but in most cases it

is preferable to rotate in the sense that involves a smaller angle of rotation. For the

method used to find the correct sense of rotation or the correct sign of a consider

Figure 4.2.

It is assumed that p can be rotated into g by using a as the axis of rotation.

The angle of rotation is less than or equal to 180 ° if the following condition holds:

g. (a × p) > 0 (4.11)

If the condition doesn't hold, we just change the sign of a to get the correct

sense of rotation. Then the rotational part from equation 4.3 is:

!

m

z

J

m
m

m

=_

m

m

I

I

|

I

U

m

m

m

I

m

t

Xar = Cara (4.12) m

i

I

I

u

19

B

p _°_ _

_ _ _S_°_'_

Figure 4.2: Sense of rotation

w

w

Car is again a field constant. All this yields xa, a direction vector in cartesian

space. In order to avoid inverse kinematics, a direction vector in joint space is

needed. The direction vectors in either space can be considered velocity vectors,

so the manipulator Jacobian J can be used to transform the direction vector from

cartesian to joint space. The derivation of J is discussed in subsection 4.2.3, so let

us assume for now that it is available to us. In order to obtain Aqa from equation

4.1 we need to solve the following linear system:

JAqa = Xa (4.13)

The Jacobian J is a 6 by n matrix, where n is the number of degrees of freedom

of the manipulator. If n > 6 then the linear system is underdetermined, so there is

an infinite number of solutions for _qa- In this case the term Acl_QZkqa will be

minimized, where Q is a weight matrix that will normally have nonzero terms on

the diagonal only. This weight matrix is important for robots with both revolute

and prismatic joints, since vector qa has mixed units in this case. A method for

solving this minimization problem is presented in subsection 4.2.6.

This method is a variation of iterative inverse kinematics algorithms that have

been developed for redundant robots or for nonredundant robots with kinematic

20

properties for which no closed form inverse kinematics solution exists. [1], [2], [3],

[11], [121 , [131 , [14].

4.2.2 Obstacle Avoidance

The goal of this part of the algorithm is to keep the moving objects (the links

and the payload of the robot) from colliding with items in the environment and

also to avoid collisions among the moving parts. These goals are achieved by two

separate algorithms that both contribute a joint vector to Aqrc from equation 4.2.

Aqr c = Aqenv + Aqself (4.14)

Before beginning the discussion of the two methods, it is worth mentioning that

the moving parts are the manipulator links and the object held by the manipulator.

The payload is treated exactly like a manipulator link.

The idea behind both methods for collision avoidance is to go through all pairs

of items that may collide and for each pair go through all joints that may change

the distance between the items of the pair. The joints that have an influence on

the distance of two objects are located between the objects in the kinematic chain.

Adding an increment to these joint values may increase or decrease the distance or it

may have no effect on the distance at all. Figure 4.3 shows two items modeled using

the cylindrical model presented in chapter 3. The joint in Figure 4.3 is a revolute

joint; prismatic joints are discussed later.

The points Zp and zq are the two closest possible points on the line segments of

the models, they are found using the algorithm described in chapter 3. The distance

d is the minimum distance between the models (see equation 3.2). The vectors ao

and ad represent the axis of rotation of the joint under consideration, ao is the

origin of the frame rotated by that joint and ad is a unit vector representing the

direction of the axis of rotation. Now we define a unit vector r pointing from Zp

I

m

g

i
m

I

u

III

l
m

Ill

M

II

mm

I

z

I

I

D

k.,

21

L .

,......... axis

°I......r
i ":.T.:: r..--..--._................

! zq
moving

Figure 4.3: Basic collision avoidance procedure for a revolute joint

towards Zq:

Zq -- Zp
r = , • (4.15)

I_q- Zpl

We assume that model Sq is moving and model Sp is fixed, then vector r is the

best possible direction in which model sq and point Zq in particular can be moved

in order to avoid a collision between the two models. We also define a vector s as

follows:

s = aa × (zq-ao) (4._e)

Vector s represents the direction in which point Zq will move when the joint

is rotated in positive sense of rotation. Vector s is really this joint's column of the

Jacobian matrix for point Zq. Note that the absolute value of s is equal to the

distance between Zq and the axis of rotation. Now we can define the joint increment

6q, that will be added to the component of this joint in the joint vector increment:

22

_'S

,Sq,= (4.17)

It turns out that a degree of repulsion proportional to d -2 leads to good results.

The repulsive force grows very fast when the models get close together. When the

distance gets larger, the force goes down fast enough, so that there is almost no

influence on the path when the distances to obstacles are reasonably large. The

force is also proportional to Isl increasing the contribution of joints that have their

axis of rotation far off the point of interest. These joints can cause a large increase in

distance between the objects with comparatively small angles of rotation. The force

is finally proportional to the dot product of r and s which is a degree of matching

between the optimal direction to increase the critical distance and the direction that

Zq will actually go if the current joint is moved. Note that this dot product can be

negative, which means that the joint must be rotated in negative sense of rotation

in order to increase the critical distance.

Figure 4.4 shows the same situation with a prismatic joint.

The variables Zp, Zq, r, ao, ad and d are defined as in the case of a revolute

joint. The vector ad is the direction of motion of this joint, so _Sqp is defined as

follows:

,Sqv = cvr _ ad (4.18)

Based on this elementary procedure we can define the joint vector increments

qenv and qself from equation 4.14. For this purpose we define a function fq(.,., .)

as follows:

fq(A, B, i) = [vl ... v,_]T where n is the number of joints (4.19)

U

m

I

m

|

I

|
m

m

I

z

I

I

I

g

U

m

u

23

= :

w

: = =

fixed

(i 'i...,.°q |

zq

r

.........i)
moving

Figure 4.4: Basic collision avoidance procedure for a prismatic joint

6q,
vj = 6qp

0

for j = i and joint i revolute

for j = i and joint i prismatic

for j -_ i

(4.20)

The points Zp and Zq and the distance d are found by applying the distance

computation algorithm described in chapter 3 to the models A and B.

Furthermore, let Oi, i E [1... o] be the model of the ith obstacle in the envi-

ronment and L j, j E [1 ... l] the model of the jth link of the robot. Thus there are

o obstacles and I links to be considered. Then qenv and _elf are defined as follows:

and

..... o I j

qeav=EEEq(O,,Lj,k)
i=1 j=l k----1

(4.21)

I i-1 i

elf=EE E fq(L.L,k)
i=2 j=l k=j+l

(4.22)

24

Figure 4.5:

link 2......
,.

°°°_.

-.o

joint 2d

link 1................

link 3

joint 3

• .. o. . . oB°°°°

_nt 4

°

°
°

"-link 4
joint 1.

Numbering convention for the joints and links of the robot

The numbering convention of the joints and links is shown in Figure 4.5. Note

that the robot's base must be modeled as an obstacle and not as a link.

This concludes the derivation of Aqre.

4.2.3 Derivation of the manipulator Jacobian

Before proceeding to the joint range problem, let us discuss the derivation

of the manipulator Jacobian J. The origins of the link frames (ao)i and the joint

axes (ad)i have been introduced in the previous subsection, as they are used for

collision avoidance. Once they have been computed, the manipulator Jacobian can

be obtained verb' easily and with relatively little computational effort:

with n being the number of degrees of freedom of the manipulator. Then

Ji =
(ad)i x (p- (ao)i)

if joint i is a revolute joint or

(4.04)

l

!

g

m

i

m
I

_±

U

[]

[]

I

l

I

I

Z
m
m

25

U U=- 1

I
qmin

_qr

I
u=O

ax

u=l

Figure 4.6: _q,(q)

=q

m

m

mml

m

if joint i is a prismatic joint; vector p is the current end effector position. The

computation of a row corresponding to a revolute joint involves a cross product and

a vector subtraction, while the rows corresponding to prismatic joints are already

fully computed.

4.2.4 Joint Range

Besides avoiding collisions, a path planner must also guarantee that every

joint vector on the path is in the robot's joint range. This goal can be achieved by

monitoring the joint angles and creating a corrective joint value _qn if an angle is

close to an end of its range. These values for all joints form the joint vector Aqr r

from equation 4.2. The value _qn is a function of the respective joint value q and

should behave similarly to the function shown in Figure 4.6.

qmax

-I

_q

26

Figure 4.7: Domain mapping for joint range function

In our current implementation, the function 6qn is defined as follows:

The domain of q, [am,,,... qm_:_], is first mapped onto the interval [-1 ... 1] by

applying the function

q-_/
u(q) = _ with q = Cmo.+q._,.2 and Rq = qm_:_ - q_in

A graph of this mapping is shown in Figure 4.7.

On the domain u, a function r(u) as shown in Figure 4.8 is defined:

(4.26)

a
r(u) = _+c (4.27)

u+b

This function is used to define 6qn(u) as follows:

-Car(1 - u) for u >__0 (4.28)= cRr(u + 1) for. < 0

The parameters a, b and c in equation 4.27 determine the shape of function

r(u), but their geometrical influence on the function is not intuitively clear. For this

reason We introduce the parameters xl and y0 also shown in Figure 4.8. From the

three equations

y0 -- r(0) (4.29)

m
n

m

m

[]

m
i
!
m

i

m

[]

z

|

|
m

m

I

[]

m
i

m

l

=-

m

m

z
i

!

B

m

[]

27

r(u)

yO-

0

0

I I
xl 1

Figure 4.8: r(u)

U

1 -" r(Xl)

0 = r(1)

we can find the expressions for a, b and c in terms of Xl and yo:

(4.30)

(4.31)

m

m

M

==

c = XlYo (4.32)
1 - Yo + xlYo

C

b = --- (4.33)
yo

a = -c(b+l) (4.34)

The values for xl and Yo must be found by trial and error, it was determined

that xl = 0.2 and yo = 10 lead to satisfactory results.

4.2.5 Imposing restrictions in cartesian space

Recall the attraction field described in subsection 4.2.1. Translation and ro-

tation to the goal position is achieved by finding a direction vector and an axis of

28

rotation that describe the necessary motion (equation 4.3). Then we solve for the

joint vector using the manipulator Jacobian (equation 4.13). The two algorithms

that provide direction vector and axis of rotation are independent and the length of

the direction vector as well as angle of rotation are constant for each step. A con-

sequence of this approach is the fact that rotation and translation are generally not

completed at the same time. In a given situation it might happen that the payload

has reached the correct orientation, but it has not reached the goal yet. In this case

we would detect that the correct orientation has been reached and thus set Xar in

equation 4.3 to zero. After solving equation 4.13 we obtain a joint vector increment

that will not rotate the end effector when it is added to the current joint vector of

the manipulator, so a rotation free motion is obtained during the remaining part of

the path.

A problem arises when the joint vector increments for collision avoidance and

joint range protection are added to Aqa to obtain the final joint vector increment

Aq (equation 4.1). Since the joint vector increments for obstacle avoidance and

joint range protection are computed in joint space, they will in general result in

both a translation and a rotation in cartesian space. This is undesirable, since it

will affect the orientation or position, that has been determined to be equal to the

goal.

To overcome this problem we add the two joint vector increments to obtain

Aqr as done in equation 4.2, and split the result into two orthogonal components

Aqr0 and Aqrx such that Aqr0 is in the null space of the Jacobian J:

Aqr = Aqr 0 + Aqrx (4.35)

J

m

m

m

m

m

m

Aqr0 • Aqrx = 0 (4.36)

JAqr0 = 0 (4.37)

i

[]

2_

m

a

L._

| ._

m

=

29

If we use Aq, o instead of Aq, in equation 4.1, then the collision avoidance will

not have any effect on the end effector position in cartesian space. Nevertheless, if

the robot is redundant, the robot's joint vector will still change and increase the

distance to obstacles and joint range boundaries.

As discussed earlier, we would like to stop either translational or rotational

motion, once either has reached its goal. If we reduced A_qr to the null space of

the full Jacobian, then Collision avoidance would have no effect on any cartesian

motion, neither translation nor rotation. But if we assume that the rotation was

completed first, then there is no reason to inhibit effects of collision avoidance on the

translational motion. However, any effect on the rotational motion must be avoided,

since the correct orientation has been reached. This partial effect on cartesian

motion can be obtained by reducing the joint vector to the null space of a part of

the Jacobian matrix. As we have seen in equations 4.24 and 4.25, the rows of the

Jacobian have a translational and a rotational part. In this sense we can split the

complete Jacobian matrix into a translational and a rotational part:

Jt

j = (4.38)
Jr

Both Jt and Jr are 3 by n matrices, where n is the number of degrees of

freedom of the manipulator. If we need to inhibit translational motion, we reduce

Aqr to the null space of Jt and if we need to inhibit rotation, we reduce it to Jr's

null space.

There remains the question of how to reduce a joint vector to the null space

of a Jacobian, complete or partial. The derivation follows:

JAch. = J(Aqro + AClrx) (4.39)

JAqr = JAqr o +JAqrx (4.40)

30

J_qro = 0 (4.41)

J_qr = JAqrx (4.42)

Here we can find the minimum norm solution for Aqrx as described in sub-

section 4.2.6 below. Then

Aqr0 = Aqr - _qrx (4.43)

provides the null space component of Aqr.

4.2.6 A method for solving general linear systems
=

Some of the methods discussed in the previous sections involve solving linear

systems of the form

AX = B (4.44)

so it is worthwhile to show a method of finding the solution X. A is an n by

m matrix, which leads to three different cases:

n = m A is a square matrix; there is one solution if A is nonsingular.

n > rn The linear system is overdetermined; in general there is no solution, but we

can find the least square error solution.

n < m The linear system is underdetermined; let's assume that in this case the un-

known is a vector (x). There is an infinite number of solutions. We are

interested in the solution that minimizes xTQx where Q is a weight matrix.

If Q = I, then the minimum norm solution is found.

Let us first describe the case of A being a square matrix, since the other two

cases are based on that case.

i

I

Z
[]

i

[]

|

B

[]

!

|

E

n

[]

m
i

m

g '

m

__-v= -

U

mmm

[]

[]

_=

31

A Gaussian elimination algorithm is used, so the original system must first be

transformed into an equivalent system A'X = B' in which A' is an upper triangular

matrix, and which has the same solution X. The new system can then easily be

solved by using back substitution. This transformation is done in n - 1 steps known

as Householder transformations. [5] A Householder transformation is a matrix H

that transforms a vector a into another vector b of equal norm:

Ha = b with lal = Ibl (4.45)

H can be found from a and b with reasonable computational effort:

a-b
H=I-2xx T with x=_ (4.46)

[a- b[

It is now possible to obtain the upper triangular matrix A' by applying n - 1

Householder transformations to parts of matrix A each one transforming a column

of A into a column of an upper triangular matrix. We start with the leftmost column

al of A and find its norm (na)l. Now we can find a Householder transformation H1

that transforms al into a vector with (na)l as the first element and all the other

elements equal to zero, since the two vectors will clearly have the same norm. We

obtain a new system of equations:

HIAX -" HIB

The new system matrix H1A has a particular structure:

H1A =

('rla) 1

0

0

a12 • .. aln

A2

(4.47)

(4.48)

32

This is clearly the first step towards an upper triangular matrix. We repeat

this procedurefor the submatrix A2 and an equivalentsubmatrix of H1B, namely

H1B with the first row omitted. After the secondstep, the secondcolumn will

contain all zeroesexcept the first two elements.It canbe seenthat this procedure

leadsto an upper triangular matrix after n - 1 steps.

The advantage of using Householder transformations as opposed to the simple

Gaussian elimination procedure is that Householder transformation exhibit better

numerical properties. The numerical behavior can be further improved by exchang-

ing the first column of the current submatrix with the column having the largest

norm. Then the elements on the diagonal of the resulting upper triangular matrix

will be sorted; the element in the top left corner will be the largest, the element in

the bottom right corner the smallest element in the diagonal. All elements on the

diagonal will be greater than zero, since they are the norms of the columns before

transformation. This fact provides a very convenient way of checking whether the

matrix is singular or not. If the determinant of a matrix is zero, then the matrix

itself is singular. The determinant of an upper triangular matrix is equal to the

product of the diagonal elements. Since the elements on the diagonal are sorted by

absolute value, we just have to check the last element on the diagonal. If it is equaI

to zero, the matrix is singular; if it is greater than zero, the matrix is nonsingular.

Note that the exchanges performed on the columns of the system matrix must also

be performed on the rows of X after back substitution.

This covers the case of A being a square matrix. The other two cases can

be reduced to the first case, as shown in the following. Let us begin with the case

n > rn, in which the system is overdetermined. In this case the least square error

solution to the system can be found by solving the following system:

ATAx = ATB (4.49)

m

=_

U

m

[]
[]

|
m
m

z

[]

J

[]

m

mm

g

mm

B

l

I

m

[]

mm

[]

33

Finally, let us consider the case n < m and let's assume that the unknown is

the vector x. We are interested in the solution that minimizes xTQx aubject to the

constraint equation Ax = b. This is a minimization problem that can be solved by

introducing a Lagrangian vector A:

1

_xTQx + AT(b- Ax)
rain

The partial derivatives with respect to x and A must equal zero:

(4.50)

Qx-ATA = 0 (4.51)

Ax-b = 0 (4.52)

Premultiplying 4.51 with Q-1 leads to

m

w

W

Q-1ATA = x (4.53)

Both A and x are unknown in this equation, so we have n + rn unknowns.

We can however obtain an equation with only A as an unknown which reduces the

number of unknowns to less than half, since A is an n by 1 vector and n < rn. So

let us premultiply 4.53 with A:

AQ-1ATA = Ax

From equation 4.52 this leads to

(4.54)

AQ-1ATA = b (4.55)

The inverse of Q can be obtained very easily if Q is a diagonal matrix: The

diagonal elements of Q-1 are the reciprocals of the diagonal elements of Q. A can

be solved for as described above. The solution x can be found from equation 4.51:

x = Q-IATA

34

(4.56)

M

mm

m

i

B

i

a

mm

m

z

B

B

!

m
m

R

u

i

. 7

m

CHAPTER 5

COMBINING GLOBAL AND LOCAL PATH PLANNING METHODS

5.1 Potential field methods and their problems

Potential fields can be used effectively to produce safe, smooth paths around

obstacles, but they have a serious drawback: If a path exists, but the potential field

contains local minima, then there is no guarantee that the path will be found. In

relatively simple two dimensional cases, it is often possible to choose the potential

field such that it can be proven to contain no minima other than the global minimum

in the goal. This task becomes very difficult when considering a strut modeled by

a line segment moving in an environment of other line segments, and it becomes

hopelessly complex when a reasonably accurate model of the manipulator is added.

Thus it is not possible to rely on a potential field method alone. This chapter

describes how a potential field approach can be embedded into a backtracking algo-

rithm that calls the potential field method under various conditions, until a path is

found.

5.2 Different ways of performing a given task

As an example of a task, consider the insertion of a strut into an existing

structure. For the case that a strut is symmetrical, there would be two ways to

complete this task. Figure 5.1 shows the two possibilities. The strut is drawn

asymmetrically for clarity.

In this example, the choice A is probably more likely to be successful than

choice B, since the angle of rotation is smaller. This is of course not more than a

heuristic statement and given certain joint angle configurations, it could very well

turn out that B is successful and A runs out of joint range. But it is still preferable

35

36

A:

4 4

° o° "

." o°
• o

• • j o.

• ° o•

o, o• ••

•° o.

°"

o° o•

B:
o°" o°°O,_ "°o

.....','.'.'. _.....:_,. %.
• -.Oo _.

°'°°_°Oo

Figure 5.1: Two ways of inserting a strut

to try A first, since the probability for success is still higher and the resulting

path also looks more natural. At this point we need an algorithm that finds the

preferable orientation. Instead of comparing the angles of rotation involved in the

two possibilities, which is somewhat difficult to find, we compare two much simpler

expressions:

I

i

I

Z

|

[]

m

[]

m

!

m
m

I

m

D = - + Ig2- p21 (5.1)

D is the sum of the distances between each end of the strut in its start and

its goal position. We compare DA and DB, the distances for either orientation

possibility; the smaller D value corresponds to the favorable orientation.

Once we have decided on an orientation, there are two possible ways to perform

the task. In subsection 4.2.1 of chapter 4 the rotation of the gripper from its current

orientation to its goal orientation was discussed. We obtained the axis of rotation

by finding the eigenvector of the rotation matrix, that corresponds to eigenvalue 1.

It was also mentioned that this eigenvect0r describes the axis of rotation that allows

m

i

I

m

u

m

i

I

I

37

()

Figure 5.2" Choosing the correct sense of rotation

the gripper to reach its goal orientation, but it provides no information about the

sense of rotation. In fact, we can reach the goal orientation no matter what sense of

rotation we choose, but the angles of rotation wiIl in general be different, since the

sum of the two angles is always 360 ° . Here we will of course first try the rotation

involving the smaller angle of rotation, but even this is not always the better choice.

Consider Figure 5.2.

The indicated sense of rotation is clearly the only possible choice in this par-

ticular case, even though the angle of rotation is greater than 180 ° .

This yields four possible ways of performing the same task of moving a strut

from a given start to a given goal position.

5.3 Splitting into subtasks using graph search

If none of the four cases leads to a successful completion of the potential field

method, then it is necessary to split the task into subtasks. An example is shown

in Figure 5.3.

38

°°°°_

".. ",intermediate step
• °° •

goal,,,
. • • "°°

iJ _' ". :..

• ". "

• ...* • •

z .-" " ",

Figure 5.3: Splitting a task into two subtasks

The figure shows only one of many ways the intermediate step could be chosen.

The idea is to provide a set of possible intermediate steps and use it to build an

undirected graph. The nodes of this graph are_ the intermediate stePS plus the start

and the goal position of the strut. The selection of suitable intermediate steps is

crucial for the success of the algorithm; it is described in _subsection 5.3.2. After

the nodes are created, edges are inserted such that every node is connected to every

other node. In the example of Figure 5.3, we would obtain a graph with three nodes

and three edges connecting them.

5.3.1 Application of the A* algorithm

Now we use the A* algorithm to find the shortest path leading from the start

to the goal node. [4] We introduce the notion of distance by assigning a weight to

every edge. Thi s weight is the sumof the distance between the centers of the two

node struts p and g attached to the edge and a measure for the degree of rotation

involved:

B

[]

B

il

m

m

m
i

i

!

m
ii

t

I

I

B

|

39

w(p,g) = 2 + Cw(l - (pp" pg)2) with ,s = IPl - P2] (5.2)

Consider Figure 4.1 for the meaning of the vectors; pp and pg are unit vectors,

s is the strut's length and C_ iS :a positive constant that determines the weight

assigned to rotation differences. If this value is large, more weight is assigned to

rotation. A rotation of 90 ° and a translation along the distance of sCw have the same

weight. Note that identical orientation and exactly opposite orientation are both

leading to zero orientation weight, so struts are again assumed to be symmetrical.

The A _' algorithm requires an estimate h of the cost of going from the node

it currently works on (p) to the goal node. This estimate must be lower than the

actual cost of reaching the goal in order to guarantee that A* will find the optimal

path. In this application h can be defined using the weight function defined above:

h(p) = w(p, goal) (5.3)

The first path found by the A* algorithm is very obvious: It consists of the one

edge connecting start and goal node directly. This result is passed to the potential

field stage, so before trying any intermediate steps, the algorithm will always give

the potential field method a chance to find a path by itself. If it fails (after trying

all four possibilities described in section 5.2), this edge is eliminated from the graph

and A* is applied to the rest of thegraph. The result will now include at least two

edges; the5" are both passed to the potential field stage. As soon as one of the edges

leads to a failure, this edge is removed from the graph and a new path is generated

by A _'. This procedure is repeated until the potential field method is successful on

all edges of a path or until no path connecting the start and the goal node is left.

In the latter case, all resources are exhausted and the program reports a failure to

the supervisor level.

4O

Figure 5.4: Intermediate steps placed around a tetrahedron

5.3.2 Selecting subgoals for the truss structure problem

The generation of subgoals is a very important step in every global path plan-

ner. There should not be too many intermediate steps, since the number of paths

grows exponentially with the number of nodes in the graph. The intermediate steps

should also be placed in positions where they can help to guide the potential field

algorithm around difficult areas. So examples of good intermediate steps are corners

of obstacles.

The approach taken for the specific case of truss structures is simple: Since

the tetrahedron is the unit of all larger structures, all tetrahedra are extracted from

the list of struts in the environment. When five of the six struts of a tetrahedron

are present, then the structure is recognized and treated as a tetrahedron. The

extraction algorithm is presented in subsection 5.3.3 below. Then an intermediate

step is placed along every edge of every tetrahedron, as shown in Figure 5.4 for one

tetrahedron.

This approach could be improved in the two following ways:

[]

m

m
I

[]

I

!
B

l

u

B

i

I

i

I

[] =

m

41

• Generate an approximate model of the robot's workspace and omit intermedi-

ate steps outside the workspace. If an inverse kinematics procedure is available,

apply it on every intermediate step and reject it, if the inverse kinematics has

no solution.

• Find the convex hull of the existing structure and accept only intermediate

steps outside the convex hull.

While this approach is described here for specific structural models, analogous meth-

ods may be used for many common polyhedral models of objects.

5.3.3 Extraction of tetrahedra

The input to the program is a list of struts given by their positions in cartesian

space. There is no a priori information about existence and location of tetrahedra,

and they must be extracted from the list of struts.

A tetrahedron as a three dimensional object consists of four different geometric

primitives:

• four vertices (O-dimensional)

• six edges (1-dimensional)

• four faces (2-dimensional)

• the tetrahedron itself (3-dimensional)

The edges represent the struts in the tetrahedron. The vertices are found by travers-

ing the edge fist and checking the two ends of each edge. If there is already a vertex

in the vertex list at the position of a given end, then we create a pointer from the

edge to that vertex, otherwise we create a new vertex at that position and a pointer

from the edge to the new vertex. Every new vertex is put into the vertex list.

42

The extraction of the facesis morecomplicated.Again we traverse the list of

edgesand do the following for eachedgee: It turns out that in a structure basedon

tetrahedra asshownin Figure 1.1everyvertex canhave at most 12 edges attached

to it. So for every end of e we traverse the edge list and store every edge that

points to the same vertex this end of e points to. This procedure produces two lists

with a maximum of twelve edges in it -- the neighbors of the two ends of e. Then

we traverse one of the lists of neighbors and for every neighbor nl we traverse the

other list of neighbors and call the elements in this list n2. If a pair (nl n2) has

a common node, then we detected a face bounded by the edges e, nl and n_. Now

we just have to make sure that this face was not detected before. This can be done

by computing the center of gravity of the new face and comparing it to the centers

of gravity of the other faces. If there is no face at the same position, we add it to

the face list. Note that in the structures we are considering, there are never two

different faces with the same center of gravity. If Pl, p2 and Ps are the vectors

representing the three vertices of a face, then the center of gravity can be obtained

as follows:

D

M

i

m
m

m

I

m

w

w

m

R

Pl + P2 + P3
pc = (5.4)

3

Having the list of faces, the extraction of the tetrahedra is not difficult. We

traverse the list of faces and for every face fl, we traverse the list of faces again

and call the current face f_. Now we compute the distance d between the centers of

gravity of fl and]'2. If the faces are part of a common tetrahedron, then d = s/3 if s

is the length of the struts. As mentioned before, we treat two faces of a tetrahedron

as a full tetrahedron, since at most one strut is missing once we detected two faces.

We again have to make sure that this tetrahedron was not detected earlier. This

can again be done by comparing the centers of gravity. If the four vertices in a

tetrahedron are represented by the vectors Pl, P2, P3 and P4, then the center of

E

i

R

-m

:- 43

k_

gravity is:

, . 7=::

Pl + P_ + Ps + P4
Pc =

4

This yields a list of tetrahedra found in the structure.

(5.5)

All comparisons of

vectors involved in the process must allow for a considerable error, since the position

inputs are noisy real world data. In order to create the intermediate steps, we

compute the vector pointing from the tetrahedron's center of gravity to the center

of the edge under consideration. This vector must be multiplied with a constant

that will specify the distance between the edges and the corresponding intermediate

steps. The ends of the step can be obtained by adding this scaled vector to the ends

of the edge in the tetrahedron.

=
mira

CHAPTER 6

SOFTWARE DOCUMENTATION

The path planning algorithm described in the previous chapters has been imple-

mented in C language under the UNIX operating system. It has been developed on

the SUN 3/60 and SPARC workstations in CIRSSE. The graphical user interface is

based on SUNcore, SUN Microsystems' graphics library, which restricts this imple-

mentation to SUN platforms_ However, all otherparts of the program are portable

to other platforms.

6.1 Concepts

The code is divided into 15 modules each consisting of a code file (filename. c)

and a header file (filena.me.h). The code files contain the public and private pro-

cedures, the private constants and type definitions and the private global variables.

The header files contain public constants, type definitions and procedure declara-

tions. After the declarations, every header file also contains a documentation of

the module with an overview and a detailed description of all public procedures.

Thus the header files should provide enough information to enable a user to use the

module effectively.

i

m

I

i

|

i

J

R

g

g

6.1.1 Global variables

It was decided that no global variables should be visible from outside a mod-

ule. All data transfer between the modules is carried out through procedure calls.

This makes module communication slightly slower, but changes in the module are

generally easier to accomplish without affecting the module interface.

J

l

U

44

I

m

=__
U

:i. L:

w

45

6.1.2 Data types

A module typically contains one or more data types on which the procedures

of the module operate. A typical data type as found in the module's header file may

be defined as follows:

typedef struct complex

{

float real;

float imag;

} COMPLEX;

This could be the data type of a module implementing operations on complex

numbers. As a convention, all instances of data types printed in all uppercase

(COMPLEX) are allocated in the heap memory. These data types all have a procedure

to make a new instance and a procedure to kill an instance associated to them:

COMPLEX *New_Complex ()

void Kill_Complex (c)

COMPLEX *c;

As a convention, other modules using the complex number module only use

the pointer returned by the creator procedure and never directly access data inside

the data structure. So instructions as

c->imag = 2.0;

x - c->real;

are not allowed outside the complex number module. A procedure that adds

the two complex numbers 4 + 5i and 2 - 8i would look as follows:

46
I

#include "complex. h"

void Addition_Example

{

COMPLEX *a, *b, *c;

}

()

a = New_Complex

b = New_Complex

c = New_Complex

Set_Complex Ca,

Set_Complex Cb,

();

C);
();
4.0, 5.0) ;

2.0, -8.0);

Add_Complex (a, b, c);

printf C"Result: %f + %f*i\n",

Real (c), Imag (c));

Kill_Complex (a);

Kill_Complex (b);

Kill_Complex (c);

/* make three new instances */

±i :L

/* set a to 4+5i */

/* set b to 2-8i */

/* add a and b, put result to c */

/* print result */

/* remove instances from heap */

It can be seen that the fields of the variables a, b and c are never accessed in

the code, even though the C compiler would allow this, since the definition of data

type COMPLEX resides in the header file which is included in the user module. If other

modules actually accessed the fields directly, then a change in data type COMPLEX

would necessitate changes in all modules that make use of complex numbers. With

this convention, changes in the data type COMPLEX don't affect other modules.

6.1.3 Module hierarchy

There are two ways in which module A can make use of module B. A can use

B's procedures and declare variables of a type defined in B. For this type of link,

A would include the header file of B into its source file. This is the more common

way of using another module. If A contains a public procedure that returns a value

of a type defined in B, then A must include the header file of B into its own header

file, in order to have B's type definitions available in A's header file. This leads to a

problem, if a third module makes use of both modules A and B, and thus includes

I

g

m
m

m

m

I

I

W

M

r

i

z

l

I

M

I

I

m

i

47

both headerfiles into its codefile. Sinceheaderfile B is included into headerfile A,

it will be included twice and all types and procedureswill be redeclared. In order

to avoid this, the codein everyheaderfile is inclosedin the following structure:

F

#ifndef MODULE_LABEL

#define MODULE_LABEL

definitions, declarations ...

#endif

It ensures that every header file is compiled only once. Figure 6.1 shows the

complete module hierarchy. Solid lines stand for normal links and dotted lines

represent an inclusion of a header file into another header file. Arrows point from

the including to the included module.

6.1.4 Make

The whole program can be compiled and linked using the UNIX utility make. It

checks the last update time of every file and decides which files need to be recompiled.

make needs information about the dependencies among the files of the program. This

information is stored in the makefile. Code files and header files are included in this

dependency tree, so a change in a header file will lead to an automatic recompilation

of all files that include this header file. The dependency tree reflects the hierarchy

shown in Figure 6.1.

6.2 Documentation of modules

This section includes a description of each module of the program. The same

descriptions appear in the overview sections of the module's header files.

The modules are ordered by increasing level in the hierarchy. This way the

reader becomes familiar with the prerequisites as they are needed to understand the

48
i

global

alg

v/

stack

¥

robot

env

1st

II

i

I

M

m

I

m

m

g

i

I

Figure 6.1: Module hierarchy
z

m

I

i

I

I

R

H

49

modules in higher levels.

k.--

6.2.1 The "global" module

This module is included by every other module of the program. It includes

the two standard header files stdio.h and math.h, defines the constant II and the

boolean data type and provides standard procedures for displaying error conditions

on the screen. It als0 contains a cust0m]zed version of the atan2 function.

6.2.2 The "spec" module

This module provides information about the machine the program is running

on. This includes availability of a graphics screen and whether or not the screen has

color capability.

6.2.3 The "Ist" module

w

The list module provides a way of putting any kind of data into a sequential list.

A list consists of a main list data structure (LIST) and a number of list elements

(LIST_EL) representing the data elements. These list elements are dynamically

allocated, so no information about the list's length is needed. This is the main

advantage of using this module over using a simple array.

The LIST_EL datatype contains a pointer next pointing to the next LIST_EL

and a pointer data that points to the listed data element, thus a simple forward

chained list is implemented. However, this chaining mechanism is totally hidden in

the module, so the fact that the user's data types must be stored in a list has no

impact on their internal structure. The list structure is shown in figure 6.2.

Lists are built by adding elements to the end or the beginning of the list. The

most common way of reading a list is by sequential access using the procedures

Get_First and Get_Next.

5O

a

• .°.*.o..o.,°.o° • _..°°oo°°o°..°°l.°o°°°°,°*o,°°*o°°o°oo.° ° t

user module

lis[module

°.°°°° t°°.ooo°°..°°°o°°°.o o°°.°o.oo°°.°°_ °°°°°°°''°°'°° °°.°.°l°°.° oo°°°*°*°°°*

Figure 6.2: List structure

The module also provides random access, but since this procedure must go

through the chain of list elements, the access is slow for long lists. To improve

random access performance, the module allows the creation of an index array. This

index contains the pointers to the data elements in a contiguous block of memory

so that quick random access becomes possible. However it must be noted that every

change in the list caused by adding or deleting an element automatically destroys

the index, so indexed list access is only possible if the list is not changed after the

index is created.

6.2.4 The "stack" module

The stack module provides a way of organizing any data in stacks (LIFO -

buffers). Each data entry is represented by an instance of STACKEL. This data

structure holds a pointer to the user's data and the chaining information. Access to

the stack is accomplished by the procedures Push and Pop. The procedure Read_Top

allows reading the latest entry on the stack without removing it.

I

I

J

Z
m

I

i

i

m

i

|

g

!

m

m

I

I

M

u

51

k.3
6.2.5 The "vector" module

The vector module provides three data types:

• A column vector with 3 elements

• A 3x3 matrix

• A 4x4 homogeneous matrix with 4th row omitted (assumed [0 0 0 1])

:: t

w

The elements of the vector are floats, the columns of the 3x3 matrix are vectors

and the homogeneous matrix is comprised of a matrix and a vector as the 4th column.

All three data types are typically used for normal variable declarations; no instances

of these types are allocated in memory.

The module also provides a set of useful operations on vectors and matrices.

For instance the distance computation between two line segments as described in

section 3 is realized in this module.

w

I

6.2.6 The "alg" module

This module provides a set of operations on m by n matrices (linear algebra).

The basic data structure is a variable (Vkq) which may be a matrix, a vector or a

scalar. A variable automatically adapts its size to a matrix that is assigned to it, so

the user does not need to know the dimensions of the result of an operation ahead

of time.

There are some element oriented functions that require the specification of row

and column values (typically parameters r and c). As a convention, the first row

or column is number 0, so the element in the top left corner has row and column

indices (0, 0). Names of functions returning a value of type VAR begin with a capital

V (example: Vadd). All functions returning a BOOLEAN return TRUE, if they are

completed successfully and FALSE if a problem is encountered.

52

The algorithm for solving generallinear systemsas describedin subsection

4.2.6 is implementedin this moduleasfunction Vsolve.

The following exampleprogramwill assignvaluesto A, B and C, will evaluate

the expressionA + B • C, assign the result to X and print it on the screen.

[0j [0]A= B= C=
3 1 3 -1

I

mm

m

m

#include "alg.h"

main ()

{
VAR *A, *B, *C, *X;

Init_Var ();

A = New_Vat ();

B = New_Var ();

C = New_Var ();

D = New_Var ();

Put (Vuser (2,

Put (Vuser

Put (Vuser

Put (Vadd

Print_Var

Kill_Var (A) ;

Kill_Var (B) ;

Kill_Vat (C) ;

Kill_Var (X) ;

Exit_Var () ;

/* initialize module

/* make the variables

,/
,/

I, 1.0, /* makes A a 2xl variable [I] */

3.0), A) ; /* [3] */

(2, 2, 2.0, 0.0, /* makes B a 2x2 matrix [2 0] */

1.0, 3.0), B); /* [1 3] */
(2, 1, 0.0, /* makes C a 2xl variable [0] */

-1.0), c); /* [-13 */
(A, Vmult (B, C)), X); /* eval A+B*C, put result in X */

(X); /* print X on the screen */

/* free space */

/* exit module */

i

m
mm

mm

m

mm

m
I

I

I

m

D

l

6.2.7 The "graph" module

The graph module provides a means to organize any kind of data in a directed

or undirected graph. The data structure consists of a main structure (GKAPH) and

B --"

mm

i

m
I

z

m

w

W

i

53

the two structural elements G_NODE for the nodes (or vertices) and G_EDGE for the

edges of the graph.

The GRAPH data structure contains a list of the graph's nodes. Every node

in turn has a list of adjacent edges. If the graph is directed, then the node's list

contains only adjacent edges that are pointing away from that node. Every edge

has two pointers to the two nodes it is connected to. These two pointers are called

nodel and node2. If the graph is directed, the edges are always pointing from

nodel to node2. Both the edges and the nodes have a pointer to a data structure

in the user's module. In an example of a graph representing cities and connecting

roads the nodes would contain a pointer to CITY and the edges a pointer to ROAD.

Only the user's data structures are used for communication between the modules

so the internal structures G_NODE and G_EDGE are invisible for the user. These data

structures are shown on Figure 6.3.

An edge in a graph always has an associated weight that represents the cost

of traversing the edge. In directed graphs, the edges cannot be traversed in the

wrong direction, it is however possible to define two edges between the same two

nodes having opposite directions and different weight values. This weight value is

not passed to the edge at the time the graph is being established, but the user must

provide a weight function that returns the weight of any edge to the graph module.

This way the graph module can query the weights whenever they are needed and no

unnecessary weights are computed. If the computation of the weights is complicated,

then this feature can save a considerable amount of computing time. Once the weight

is computed, it is stored in the edge structure, so the computation is done only once

per edge. This implies that an edge's weight cannot change during the lifetime of

the graph.

The module offers procedures for building, changing and deleting graphs and

the graph search algorithm A _'.

w

54

mR

Data structure •

LIST

GRAPH

=_G NODE

- t

H G_NODE_

t

LIST

I
)

I

LIST

I

I
LIST

i G_EDGE
T!

j-G EDGE

r I

Graph"

()

()

()

|

|

|
!

|

1

1

[]

[]

|

|

i

[]

Figure 6.3: Data structures in the graph module

m

m
I

W

m

m

g
i

i

55

m

6.2.8 The "parser" module

The parser module provides a convenient way of reading information from an

input text file. The text in the file must conform to the following syntax:

S = {expression}

expression --keyword [par_list]

par_list = '('{parameter ','} parameter ')'

keyword = string

parameter = string

string = {char} char

char = 'A'..'Z' ['a'..'z' ['0'..'9']

'+' I '-' I'' I '_' I '_'

In this syntax description, S is the start symbol, lowercase words are nonter-

minal symbols and characters in single quotes are terminal symbols. An expression

in braces {} can be repeated any number of times (including zero times) and an

expression in square brackets [] is optional. If there are a number of expressions

separated by bars [then either expression is legal at this point.

Examples for legal commands are:

r

_m

ADD (5, 6, 7, -11.5)

Exit _Program

saveaquit (foo.c)

The parser module will first read a user specified source file, parse it according

to above syntax, store the data in a list of expressions and return this list to the

user. The order in the list corresponds to the order in which the expressions are

encountered in the source file. If there are syntax errors, they will be printed on

the screen. The module offers a variety of interface procedures that enables the

user to read the data in a convenient manner. Expressions can be read from the

list sequentially as it is normally done with lists. Lists can also be scanned for the

next occurrence of an expression with a particular keyword. An expression is a

56
m

data type (EXP) that also has some procedures associated to it. The user can read

an expression's keyword string, the number of parameters in the expression and a

particular parameter string given by its number in the parameter list. Finally there

are utility procedures that convert a parameter string to a real or an integer number.

This is necessary since all parameters are handled as arbitrary strings.

Z

m

6.2.9 The "model" module

This module provides a geometric primitive which is useful for modeling of

solids. The primitive is described by two points Pl and p2 and a radius r.

It is the object obtained by moving a sphere of radius r on a straight line from

point Pl to point P2 (a cylinder with spherical caps).

Procedures are provided to read and change the model's parameters and to

compute the minimum distance between two swept sphere models.

6.2.10 The ,graphics" module
(=

This module provides an interface to a subset of SUNcore that allows line

and character drawing in three dimensional space. Colors are used if the monitor

allows and if black and white mode is not explicitly selected. After initialization,

a three dimensional coordinate system is displayed. There are procedures to create

segments - an entity that holds a number of primitives - and others to create lines

and characters at arbitrary locations in three dimensional space.

Other procedures allow the user to insert primitives into a segment and delete

them from segments.

Yet another procedure allows the user to rotate the current picture around

the vertical and the horizontal screen axis by moving the mouse horizontally or

vertically respectively. This mode stops in the current orientation when the middle

mouse button is pressed.

|

i

i

m

U

m

m

m

I

m

k.-

57

The reason for using segments is the segment concept of SUNcore. The SUN-

core segments do not provide any way of deleting single primitives stored in them,

so the whole segment must be deleted and reconstructed in order to delete one prim-

itive. This module automatically deletes and reconstructs the SUNcore segments as

needed, but this process is visible on the screen, especially on slow machines. The

segment concept allows the user to split the picture into parts, in order to avoid

reconstruction of the whole picture when a single primitive is deleted.

6.2.11 The "env" module

m

w

m

"env" stands for environment, so this module holds the data about all items

that belong neither to the robot nor to its payload. At initialization, the module

reads the locations of the struts from the input file (see subsection 6.3.2 for strut

position descriptions) and from the CIRgSE interface. Then it automatically tries

to extract tetrahedra and places intermediate steps around the tetrahedra it found.

This process is described in subsection 5.3.3.

Procedures are provided to get models of the struts and intermediate steps

currently in the environment and to add and remove struts. Whenever a strut is

added or removed, all intermediate steps are deleted, tetrahedra are extracted and

the intermediate steps reestablished based on the new set of tetrahedra.

6.2.12 The "robot" module

This module contains a model of a single chain robot with an arbitrary number

of links. The description of the robot's kinematics, model geometry, joint ranges

and so forth are stored in the file robot .def, so that the files robot, c and robot .h

can be applied for any single chain robot without changes. The robot's kinemat-

ics are described using Modified Denavit Hartenberg parameters [27]. The module

maintains a set of transformation matrices that represent the transformation from

58
I

each link to world coordinates. They are derived from the modified Denavit Harten-

berg parameters and the current joint vector and are updated each time the robot

changes its joint vector. The module also maintains a swept sphere model of each

reasonably large link and a picture comprised of a set of lines for each link. The

model and the picture are not automatically updated when the joint vector changes,

since this process is time consuming and not always necessary.

The module provides three procedures to alter the robot's state. The robot's

joint vector can be set and a part can be added to or removed from the gripper.

The various readout procedures supply information about the current position

of the link models, the type of a particular link (revolute or prismatic), origin and

axis of the joints' current value and range of each joint and whether the robot is

carrying a payload or not.

6.2.13 The "lpath" module

The path planning algorithm using potential fields as described in section 4.2

is implemented in this module. The user must specify the initial joint vector and

the desired g0al position in cartesian space and the module will return a list of joint

vectors that describe a path leading there. If this is not possible, it returns a failure.

6.2.14 The "gpath" module

The global path planning algorithm as described in chapter 5 is implemented

in this module. It establishes a list of joint vectors describing a path that leads from

the current joint vector to a goal position defined in cartesian space. It may call the

local path planner several times on the whole task or on part of it.

I

W

[]

m

m

mm
i

i
m

m

n

m

m
I

m

m

m

m

59

6.2.15 The "main" module

The main module is responsible for initializing all other modules that require

initialization. Then it checks to see if there is a command sequence in the input file.

If it finds a START instruction, it takes the commands from the input file, otherwise

it calls a CIRSSE interface procedure to read commands. This procedure is the main

means of communication between this program and the higher level coordination

program. Through it, commands are received and paths are returned.

The set of available commands is described below for both input file and

CIRSSE interface.

6.3 Interface to CIRSSE

6.3.1 CIRSSE interface procedures

The communication of this program with other modules of the CIRSSE soft-

ware is handled by dedicated interface procedures. They are marked with the string

####, so they can be located easily using a text editor or the UNIX command grep.

They all have extensive comments and an example implementation to show their

purpose_ but most of them are not actually written, since they depend on how the

communication between the programs is implemented.

In the following, a list of the avaliable interface procedures is given:

• "main" : initialize communication

This procedure is called before any other interface procedure and can be used

to establish the communication channels to other programs.

• "main": command interface

The program receives commands and their parameters through this procedure.

The following commands can be sent:

- MOVE: initiate a path planning process

60 : _

B

- GRASP: grasp a strut from the environment

- UNGRASP: release a strut to a specified position

- UNGRASP_FREE: release a strut where the robot put it

ADD_STRUT: add a strut to the environment

- REHOVE_STRUT: remove a strut from the environment

- JOINTS: specify new joint vector

- VIEW: change orientation of screen display

- QUIT: quit program

"main": path output

The joint vectors describing the path are sent through this procedure.

called once after every successful HOVE command.

It is

• "main": report failure

If a MOVE command cannot be executed because no path can be found, this

procedure is called to report the failure to the coordinator.

• "robot": initial joint vector

This procedure is called once at initialization time to read the joint vector

of the robot. Then the program assumes that the robot follows its path. If

this is not the case, then the joint vector can be adjusted in the course of the

program by sending a JOINTS command.

• "env": initial strut positions

This procedure is called once at initialization time to read the positions of all

struts in cartesian space. The program will keep track of position changes in

the course of the program if they are caused by the robot. It can be notified

of other changes in the course of the program by using the ADD_STRUT and

REMOVE_STRUT commands.

z
1
m

m

[]

m

[]

[]

m
B

|

[]

m

[]

I

[]

R

i

R

I

[]

m

m

m
I

61

• "env": strut length

The length of the struts in use is passed to the program through this procedure.

"env": strut symmetry

This procedure reads information about symmetry of the struts. A strut is

considered symmetric in this context if it can be added to the structure upside

down. The path planner will take advantage of these geometric properties.

"robot": robot position

The coordinate frame used to specify the initial strut positions is assumed to

be the world coordinate system. If the robot's zero frame does not coincide

with the world frame, then the position and orientation of the robot's frame

with respect to the world frame can be specified here. If the 9 degrees of

freedom robot of CIRSSE is used, this procedure is obsolete. However, if the

6 degree of freedom PUMA robot is used, then the position of the PUMA's

base frame with respect to the lab's world frame must be specified here.

"robot": robot definition

This is the point where the file robot .def is included into the robot module.

All information about a particular robot is stored in this file.

• "robot": calibration

This procedure reads a set of Modified Denavit Hartenberg parameters ob-

tained by some calibration procedure.

• "graphics": display coordinate transformation

This procedure specifies the way the world frame is displayed on the screen. All

three axes of the world frame can be displayed in six directions: up, down, left,

right, pointing out of the screen, or pointing into the screen. This specifies the

initial display which can be changed by user interaction when a VIEW command

62
m

is sent. 1

m

6.3.2 Input file

The input file is an auxiliary input source for the program that can be used for

testing. When the program is embedded in CIRSSE, it will not need an input file, it

will receive all input from the CIRSSE interface procedures. However, the two input

sources are not exclusive, information can be passed to the program by using both

CIRSSE interface procedures and an input file simultaneously. Usually the program

will first check the file and then the CIRSSE interface for input. Some concepts

are only available through the input file Commands since they are not useful in an

embedded system. For instance graphics display can only be activated through a

command in the input file.

There are two ways of describing the position of a strut in space. A strut can

be located anywhere in space, for instance in its storage location. In this case a con-

venient description is the position of the strut's endpoints in cartesian space. This

allows the description of every possible position in space. If we want to describe

the position of a strut that is part of the structure being assembled, the endpoint

coordinate description is not the most convenient one, since the endpoint coordi-

nates depend on the overall position and orientation of the structure and on the

strut's position in the structure. It requires some calculation to find the endpoint

coordinates. It is easier to specify the position and orientation of the structure once

at initialization time and then describe a strut by giving the tetrahedron it is part of

and the strut number in this tetrahedron, according to some numbering convention

for the six struts of a tetrahedron. Consider Figure 6.4.

The coordinate system (x0: y0_, Zg)!s_theworld_coordinate system. Vector

p describes the origin of the structure expressed in world coordinates. The vectors

rl and r2 specify the orientation Of the structure with respect to world coordinates.

[]

[]

z

m

R

i

R

[]

|

[]

m

m

u

m

i

J

I

z
i
I

63

h

r_

w

Z

4

o-

"" 5 4
°•°

.......... 2

. °. °. °. °. ° •.....'_I,,- y

!

zO // rl

onP "_ X
I

I

I

I

!

I

I

!

xO

r_ yO

Figure 6.4: Conventions for specifying a strut in a structure

w

64

The coordinate system (x, y, z) is used to specify a tetrahedron in the structure.

The lengths of this system's unit vectors ex, ey and ez are equal to the length of

the tetrahedra's edges. Then every triple of integer numbers describes the O point

of one particular tetrahedron. For instance (0,2,2) describes the O point of the

rightmost tetrahedron in the figure (O = p + 0ex + 2ey + 2ez). This tetrahedron

also shows the numbering convention used to specify a particular strut in a given

tetrahedron. Thus it is possible to describe a strut fully by giving the four integer

numbers (X, Y, Z, N) once strut length and structure position and orientation have

been specified.
L

In the following, the commands that can be used in input files are listed.

The unit of length is meters, angles are given in degrees. The parameters xl,

yl, zl, x2, y2, z2 will always denote a strut position defined by its endpoints

whereas parameters X, Y, Z, N denote a strut position defined by its position in

the structure. The first list contains the commands that supply "static" information

to the system. They are read at initialization time; their order in the input file is

unimportant, as long as they do not appear between STAR7' and QUIT.

• STRUT (xl, yl, zl, x2, y2, z2)

A strut defined by its endpoints is added to the environment. If necessary,

the strut's length is adjusted to the current strut length such that the center

stays fixed.

• STRUT (X, Y, Z, N)

A strut,defined by itspositionin the structureisadded to the environment.

• TETRA (X, Y, Z)

All six strutsof the specifiedtetrahedron are added to the environment at

once.

I

m

I

m

J

m

m

M

m
m
l

|
I

|

I

I

l

i

J

n

• STP,UTLENGTH (I)
mm

mm

mm

:- 65

w

2
w

Specifies the length of the struts.

• STRUCTURE_LOC (px, py, pz, rlx, rly, rlz, r2x, r2y, r2z)

Defines the location of the structure with respect to world coordinates. The

parameters are vectors p, rl and r 2 from Figure 6.4.

• GRAPHICS

Causes the path planning process to be shown on the screen.

• zoom (z)

Parameter z causes the display to shrink or expand.

• B_W

Causes the graphics to be displayed in black and white even if the program is

run on a machine with color screen. This is useful for making screendumps.

• ROBOT (px, py, pz, rlx, fly, rlz, r2x, r2y, r2z)

With this command the zero frame of the robot can be oriented arbitrarily

with respect to the world coordinate system. Vector p denotes the origin

of the robot's zero frame with respect to world coordinates, rl denotes the

orientationof the robot'sz0 axisand r2 denotes the orientationof itsYo axis.

The second list shows commands that can be used in a command sequence.

This sequence begins at the START command and ends at the QUIT command or at

the end of the input file. The commands in between are executed according to their

order in the file.

• START

Denotes the beginning ofthe command sequence.

• MOVE (xi, yl, zl, x2, y2, z2, dx' dy, dz)

MOVE (X, Y, Z, N, dx, dy, dz)

66

The program plans a path that leads the payload strut (imaginary or real) to

the indicated position without collision. The vector d specifies the direction

of approach. The path will be planned such that the last few steps of the

path will move the strut in this direction. This direction vector d is stored

and will determine the direction of start for the next M0VE command. The

end effector will start moving in direction -d and then turn towards the goal

location. The very first MflVE command immediately starts moving towards

the goal location.

GRASP (xl, yl, zi, x2, y2, z2)

GRASP (X, Y, Z, N)

The strut closest to th e position sp_ified is removed from the environment and

grasped by the robot. The path planner will treat this strut as another link.

Recomputation of the set of intermediate steps takes place in the environment

module.

• JOINTS (chetal, theCa2, ... ,thetaN)

The robot jumps to the new pose specified by the joint vector. The number

of parameters of this command is equal to the number of degrees of freedom

of the robot. Future MOVE commands start off with this joint vector. Units

are degrees for revolute joints and meters for prismatic joints. Note that

the CIRSSE interface procedure described above requires radians for revoIute

joints!

• UNGKASP

UNGRASP

(xl, yl, zl, x2, y2, z2)

(X,Y, Z, N)

The payload isreleasedand added to the environment at the specifiedposition.

The user may want to move the strut to a position just short of the goal

and leave the last few inches to a fine motion planner with visual feedback.

mm

l

[]

Z

Z
I

m

m
Z

I

m

[]
I

I :

m

I
m,,

-- =

m f
=

mm

nil

I

67

However the parameters of this command should be the precise goal position,

so that the path planner has a correct model of the world. All three versions

of UNGRASP also recompute the intermediate steps.

• UNGKASP

Unlike the other two UNGRASP commands, this command releases the strut

and places it in the environment exactly at the position the robot brought it

to. This position might be slightly different from the position given in the

previous MOVE command due to tolerances in the path planning algorithm.

• ADD_STRUT (xl, yl, zl, x2, y2, z2)

ADD_STRUT (X, Y, Z, N)

A strut is added to the environment at the indicated position. If the robot

is the on]}"tool used to manipulate the environment, then ADD_STRUT and

REM0VE.STRUT below should be obsolete.However the}"enable the coordinator

to inform this program of changes in the environment that occurred due to

other reasons.

• REMDVE_STRUT (xl, yl, zl, x2, y2, z2)

REM0VE_STRUT (X, Y, Z, N)

The strut closestto the indicatedpositionisremoved from the environment.

• VIEW

Execution of the command sequence is stopped and the user can use the mouse

to change the orientation of the display. Execution resumes when the user

presses the middle mouse button. This command has no effect if there is no

GRAPHICS command in the file.

• qUIT

Denotes the end of the command sequence.

CHAPTER 7

RESULTS

The performance of the proposed algorithm has been tested in various simulations,

the results are presented in this chapter.

A model of one of the robot arms at CIRSSE was used for all simulations.

This robot is shown on Figure 711. it is a PUMA arm with six degrees of freedom,

mounted on a platform with three degrees of freedom. Eight of the nine joints are

revolute, the first joint is prismatic. The axes of all joints are shown in the figure.

The model uses the correct kinematic parameters of the actual robot, however, the

outlines are not to scale.

Figure 7.2 shows the trivial path planning task of moving a strut from an

initial to a goal position. The same scene is shown from different points of view in

order to help visualization of the three dimensional model. The path is displayed

by showing the position of the strut in the robot's gripper at every iteration. In this

simulation, the direction of start is along the z axis and the direction of approach is

against the direction of the z axis. It can be seen that the program automatically

generates an intermediate goal above the true goal position in order to approach the

goal position in the specified direction. The seemingly unnecessary rotation during

the first few iterations is due to the fact that the program starts rotation towards

the goal orientation only after the distance of the end effector to its goal position

has decreased under a critical value, Before this phase, the end effector orientation

is dictated by collision avoidance and joint range requirements. In this case, the

purpose of the rotation is to move the joints in the wrist towards the middle of their

range.

Figure 7.3 shows the insertion of the last strut into a tetrahedron. This task

involves avoiding a collision with the partially completed tetrahedron. Note that

68

m

m

m

I

i

m

m

J

|
m

E

N

m

Im

t

m

i

Z

9

"°m

X

Figure 7.1:

.7_

A robot arm of the CII_SSE testbed

7O

m

iI

mi

m

I

I

I

R

|

I

initial

position

position

m

ii

Iil

U

B

I

Figure 7.2: A simple motion task
m

u

m

B

m

m

71

the strut is touching the tetrahedron in its goal position. This is possible because

all repulsive forces are reduced as the goal position and orientation are approached.

The repulsive forces are reduced to zero when

• the strut's orientation is correct,

• the end effector's distance to its goal position is small enough.

• the end effector has reached a position such that a motion along the specified

approach direction will lead to the goal position.

The same task is performed on Figure 7.4, but the approach direction is chosen

slightly different (compare the end effector orientation in Figure 7.3). This leads to

a failure when the natural rotation as in Figure 7.3 is attempted; the joint range is

violated. As a consequence, the algorithm performs the task with opposite sense of

rotation, which leads to a large angle of rotation. This case is discussed in section

5.2 and illustrated on Figure 5.2.

Figure 7.5 shows the initial situation of a more difficult problem. The robot

must move the strut to the marked goal position appoaching it in x direction.

The result is shown on Figure 7.6.

w

7_

!

i

|

i " • Z

Figure 7.3: Completing a tetrahedron

B

B

M

mm

mm

I

b .

°

Z

! i

73

L

u

/Ill
Figure 7.4:

Y

An example of a large angle of rotation

74
i

,z

goal] ..."""

|

|

[]

@

|

|

i

I ZA

li:

X

g_

V

Z

goal

i

|
m

i

m

i

m

i

i

Figure 7.5: Initial state of obstacle avoidance demonstration
i

m

i

m

m

il

75

w

w

i

w

I

Figure 7.6: Obstacle avoidance demonstration

CHAPTER 8

DISCUSSION AND CONCLUSIONS

[]

|

8.1 Computational Complexity _==_

In this section, the complexity of the path planning algorithm is discussed. Due

to their different structure, the local and the global stage are discussed separately.

The local path planner performs an !terati0n in three steps: It first finds the

attractive joint vector, which involves finding a solution of the Jacobian equation

as the limiting algorithm. The Jacobian is a 6 by n matrix, where n is the number

of degrees of freedom of the manipulator. The algorithm involves a transformation

of this redundant system to a nonredundant system with a 6 by 6 system matrix,

as shown in subsection 4.2.6. Thus the actual elimination algorithm takes a con-

stant computing time per iteration, but the transformation of the nonlinear system

involves some matrix multiplications; their complexity is O(n).

The second step in performing an iteration is the computation of the self

collision avoidance vector qself- If equation 4.22 is considered and the computing

time for fq is assumed to be constant, then the complexity of qself is O(n3).

The third step, the computation of the joint vector qenv avoiding collisions

between links of the robot arm and obstacles in the environment has a complexity

of O(n:m), where m is the number of obstacles in the environment. This can be

seen from equation 4.21. These three steps turned out to be the limiting parts of

the algorithm for all cases that have been examined.

Another step is the computation of the joint range vector Aqrr, which is linear

in n. However, the computing time for this step is negligible for all n.

The number of degrees of freedom of the manipulator n is not a critical pa-

rameter since it will never be very large. A much more critical parameter for the

mm

|
m
m

|

i

[]

I

m

I

J

i

76 z

I

77

L

i

l

I

local path planner is the number of obstacles m, even though computing time grows

only linearly with rn. A possible solution to this problem is the implementation of a

quick distance check between the manipulator and a given obstacle. If this distance

was large enough, then this obstacle would be ignored in the collision avoidance

procedure. Another method to reduce computing time is the exclusion of pairs of

objects from the collision avoidance procedure that cannot possibly collide. This is

typically the case for neighboring links and for collisions between very small links

and obstacles. The small links can normally be included in the model represent-

ing a neighboring link. This method has proven to be very effective and has been

implemented in the current software.

The global path planning stage is based on the A" algorithm, which is a very

efficient graph search algorithm, but it still doesn't solve the search problem in

polynomial time. So care must be taken to keep the number of subgoals as low

as possible. However, in all but very large cases the local path planning stage is

computationally much more expensive than the graph search.

If the local path planner fails to find a path between two given subgoals,

then the corresponding edge will be deleted from the graph and the path planning

algorithm will be restarted. If we assume that the number of subgoals is roughly

proportional to the number of obstacles, then the number of edges in the graph

grows quadratically with the number of obstacles, since every node in the graph

is connected to every other node. This leads to a complexity of the backtracking

algorithm of O(rn 2) in the number of obstacles.

Another stage in the global planning context is the selection of subgoals. In

the example of truss assembly, this is done by first extracting the tetrahedra and

then defining the subgoals close to their edges. The complexity of the extraction

algorithm is O(m 2) with rn being the number of struts. The computing time of this

part proved to be negligible compared to other parts.

78
II

8.2 Generalization of geometric model

The current implementation of the path planner use s the swept sphere cylin-

drical model to represent objects. However, every geometric model can be used,

since the path planning algorithm only requires the computation of a distance vec-

tor between any two models. It is also required that the volume of the actual object

is completely enclosed in the volume of the model representing it.

i

i

M
i

8.3 Experiences with the potential field algorithm

Potential field methods have the advantage that various soft constraints can

be incorporated by adding up all components of the potential field. However, every

component of the field has a constant factor associated to it and these constants

must be carefully balanced in order to obtain good results. This is particularly

important for the attractive field and the obstacle avoidance field. If the obstacle

avoidance field is too strong compared to the attraction field, then a narrow but

feasible path between two obstacles may not be found. If the obstacle avoidance

field is chosen too weak, then collision avoidance cannot be guaranteed if the step

size is large.

The step size is defined by the norm of Aq, the incremental joint vector. If

this step size is chosen small, then the local path planning process will be slow,

since the computation time for one iteration is constant in a given environment.

But if the step size is chosen too large, then problems occur when approaching an

obstacle. One step might take the robot from a position with sufficient clearance

to a position verb' close to the obstacle or even to a collision. A position very close

to an obstacle leads to a strong repulsive force that drives the robot back out of

the field's immediate proximity, which leads to oscillations in the path, as shown in

Figure 8.I.

A related problem is the choice of the range of the repulsive force (equations

L

m

|

i:

i
m

m

ill

u

II

il

I

m

II

79

(

()

correct step size

)

oscillations

step size too large

©

()

()

collision

i

Figure 8.1: Step size selection

80
I

4.17 and 4.18). If the range is very small, then there will be a sudden increase

in the repulsive force as the robot approaches an obstacle. Then oscillations may

occur even if the step size is small. On the other hand, if the range is chosen too

large, then the repulsive field of a cluster of several obstacles accumulates to an

excessively strong field, which leads to a path with an unnecessarily large clearance

to the cluster. The repulsive field range must be particularly carefully chosen, if
:=

any part of the path lies in the inside of a truss structure. In these cases it may

be necessary to adapt the step size and the repulsive field range depending on the

proximity of obstacles. This has not been tested in the current implementation.

The last parameter discussed in this context is the function that keeps the

joints within their boundaries (see Figure 4.6). If this function permits the joints

to run very close to their boundaries and the step size is large, then the joints may

run out of range. However, if the function keeps the joints far off their boundaries,

then the workspace of the robot is restricted unnecessarily.

8.4 Configurations and singularities

Another component to the potential field could be a field that prevents the

robot from moving close to singularities. The potential field would be a function

of p = det2(JJT). If p = 0 then the robot is in a singular position. The distance

from singularities is related to the dexterity of the manipulator [14] in the sense

that the robot is more dextrous if its pose is not close to any singular position.

Another advantage of avoiding singular positions is that the Jacobian equation is

guaranteed to have a solution. Apart from begin very difficult to implement in an

efficient manner, singularity avoidance has another drawback: it prevents the robot

from changing configuration.

A nonredundant robot normally has several joint angles in which it reaches

a given end effector position and orientation. Every joint angle corresponds to a

i

B

h
l

|

E

m

m
L

=

m
m

B
mI

m

i

m

i

w

m

M

m

i

i

81

configuration of the robot. A redundant robot has in general infinitely many joint

angles for a given end effector position and orientation, but these joint angles lie on a

number of self motion manifolds in joint space that correspond to the configurations

of the nonredundant robot. The robot can only change these configuration manifolds

by passing through a singularity. Now assume the robot is in a given initial position

that lies in one of the configuration manifolds. It may not be possible to reach a goal

position within this manifold due to joint range restrictions. Then the only way to

reach the goal is to change configuration manifold, so it is necessary to pass through

a singularity. Our algorithm does not force the robot to explore all configuration

manifolds as part of the search process, but it also does not actively prohibit the

robot from changing manifold by driving it away from singularities.

This concludes the discussion of the proposed path planning algorithm.

w

[3]

LITERATURE CITED

[1] Jorge Angeles (1985). On the Numerical Solution of the Inverse Kinematic

Problem. International Journal of Robotics Research, Vol. 4 No. 2, Summer

1985, pp. 21 - 37.

[2] J. Angeles, K. Anderson, X. Cyril, B. Chen (1988). The Kinematic Inversion

of Robot Manipulators in the Presence of Singularities. Transactions of the

ASME, Vol. 110, September 1988, pp. 246 - 254.

Karen Anderson, Jorge Angeles (1989). I(in:ematic inversion of Robotic

Manipulators in the Presence of Redundancies International Journal of

Robotics Research, Vol. 8, No. 6, December 1989, pp. 80 - 97.

[4] Elaine Rich (1983). Artificial Intelligence. McGraw-Hill Series in Artificial

Intelligence, pp. 80 - 84.

[5] S. L. Campbell, C. D. Meyer Jr. (1979). Generalized Inverses of Linear

Transformations. p. 251, Pitman; London, San Francisco, Melbourne.

[6] R. K. Mathur, A. C. Sanderson (1990). A Hierarchical Planner for Space

Truss Assembly Proceedings SPIE Conference on Cooperative Intelligent

Robotics in Space, Vol. 1387, R. J. de Figueiredo and W. E. Stoney, Editors,

pp. 47-57.

[7] O. Khatib (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots. International Journal of Robotics Research, Vol. 5, No. 1, pp. 90 - 98.

[8] Pradeep Khosla, Richard Volpe (1988)' Superquadric Artificial Potentials for

Obstacle Avoidance and Approach IEEE 1988 International Conference On

Robotics & Automation, Vol. 3, pp. 1778 - 1784.

[9] Richard Volpe, Pradeep Khosla (1987). Artificial Potentials with Elliptical

Isopotential Contours for Obstacle Avoidance IEEE Proceedings of the 26th

Conference on Decision and Control, Vol. 1, December 1987. pp. 180 - 185.

[10] C. DeMedio, F. Nicolb, G. Oriolo. Robot Motion Planning Using _brtex

Fields. New Trends in System Theory, Genova, Italy, July 1990.

[11] M. S. Konstantinov, S. P. Patarinski, V. B. Zamanov, D. N. Nenchev. A

Contribution to the Inverse Kinematic Problem for Industrial Robots. 12th

International Symposium on Industrial Robots 1982, pp. 459 - 465.

82

m

|

i

m

I

I

u

R

R

83

w

w

L

z

w

w

w

k

[12]

[13]

[14]

[15]

[16]

[]7]

[18]

[19]

[20]

[21]

[22]

Vladimir J. Lumelsky (1984). Iterative Coordinate Transformation Procedure

for One Class of Robots IEEE Transactions on Systems, Man, and

Cybernetics, Vol. SMC-14, No. 3, May/June 1984, pp. 500 - 505.

Andrew A. Goldenberg, B. Benhabib, Robert G. Fenton (1985). A Complete

Generalized Solution to the Inverse Kinematics of Robots. IEEE Journal of

Robotics and Automation, Vol. RA-1, No. 1, March 1985, pp. 14 -19.

Charles A. Klein, Bruce E. Blaho (1987). Dexterity Measures for the Design

and Control of Kinematically Redundant Manipulators. International Journal

of Robotics Research, Vol. 6, No. 2, Summer 1987, pp. 72 - 83.

Shaygan Kheradpir, James S. Thorp (1987). Robust Real Time Control of

Robot Manipulators in the Presence of Obstacles. IEEE 1987 International

Conference On Robotics & Automation, Vol. 2, pp. 1146 - 1151.

Elon Rimon, Daniel E. Koditschek (1988). Exact Robot Navigation using Cost

Functions: The Case of Distinct Spherical Boundaries in E '_. IEEE 1987

International Conference OnRobotics & Automation, Vol. 1, pp. 1 - 6.

Bernard Faverjon, Pierre Fournassoud (1987). A Local Based Approach for

Path Planning of Manipulators With a High Number of Degrees of Freedom.

IEEE 1987 International Conference On Robotics & Automation, Vol. 2, pp.

1152- 1159.

R. F. Richbourg, Neil C. Rowe, Michael J. Zyda, Robert B. McGhee. Solving

Global, Two-Dimensional Routing Problems using Shell's Law and A * Search.

IEEE 1987 International Conference On Robotics & Automation, Vol. 3, pp.

1631 - 1636.

Yutaka Kanayama (1988). Least Cost Paths with Algebraic Cost Functions.

IEEE 1988 International Conference On Robotics & Automation, Vol. 1, pp.

75 - 80.

Sungteg Jun, Kang G. Shin (1988). A Probabilistic Approach to Collision-Free

Robot Path Planning. IEEE 1988 International Conference On Robotics &

Automation, Vol. 1, pp. 220- 225.

Brad Paden, Alistair Mees, Mike Fisher (1989). Path Planning Using a

Jacobian-Based Freespace Generation Algorithm. IEEE 1989 International

Conference On Robotics & Automation, Vol. 3, pp. 1732 - 1737.

TomLs Lozano Perez, M. A. Wesley (1979). An Algorithm for Planning

Collision-Free Paths Among Polyhedral Obstacles. Communications of the

ACM, Vol. 22, 10, October 1979, pp. 560 - 570.

84

[23] Tom£sLozanoPerez(1983). Spacial Planning: A Configuration Space

Approach. IEEE Transactions on Computers, Vol C-32, No. 2, February 1983,

pp. 108-120

[24] Francis Avnaim, Jean Daniel Boissonnat, Bernard Faverjon (1988). A

Practical Ezact Motion Planning Algorithm for Polygonal Objects Amidst

Polygonal Obstacles IEEE 1988 International Conference On Robotics &

Automation, Vol. 3, pp. 1656 - 1661.

[25] Walter Meyer, Powell Benedict (1988). Path Planning and the Geometry of

Joint Space Obstacles. IEEE 1988 International Conference On Robotics &

Automation, Vol. 1, pp. 2!5 - 2i9.

[26] Josep Tornero, Greg Hamlin (1990). Spherical-Object Representation and Fast

Distance Computation for Robotic Applications. CIRSSE Report #64,

Rensselaer Polytechnic Institute, Troy, New York, September 1990.

[27] John J. Craig (1989). Introduction to Robotics: Mechanics and Control. 2nd

edition, Addison-Wesley 1989, Chapter 3.

i

I

m

m

|

i

I

U

R

m

D

i

w

APPENDIX A

Simulation input file

m

=

{ Command sequence
.------..----.)

st:art

View

{ first stru_ }

move (1.79, -0.8, 1.0, 0.9, -0.8, 1.0, 0.0, 0.0, -1.0)

srasp (1.79, -0.8, 1.0, 0.9, -0.8, 1.0)

move (0, O, O, 1, 0.0, 0.0, -1.0)

ungrup (0, O, O, 1)

view

{ second strut }

move (1.79, -0.8, 0.9, 0.9, -0.8, 0.9, 0.0, 0.0, -1.0)

_rasp (1.79, -0.8, 0.9, 0.9, -0.8, 0.9)

move (0, O, O, 2, 0.0, 0.0, -1.0)

ungru p (0, O, O, 2)
view

{ third strut }

move (1.79, °0.8, 0.8, 0.9, -0.8, 0.8, 0.0, 0.0, -1.0)

grasp (1.79, -0.8, 0.8, 0.9, -0.8, 0.8)
move (0, O, O, 3, 0.0, 0.0, -1.0)

ungrup (0, O, O, 3)
view

{ fourth strut }

move (1.79, -0.8, 0.7, 0.9, -0.8, 0.7, 0,0, 0.0, -I.0)

grasp (1.79, -0.8, 0.7, 0.9, -0.8, 0.7)

move (0, O, O, 4, 1.0, 0.0, 0.0)

ungrup (0, O, O, 4)
vteu

{ fi_th s_rut }

move (1.79, -0.8, 0.6, 0.9, -0.8, 0.8, 0.0, 0.0, -1.0)

grasp (1.79, -0.8, 0.6, 0.9, -0.8, 0.8)

move (0, O, O, 5, 0.0, 1.0, -1.0)

ungrasp (0, O, O, 5)
vteu

{ SiXth strut }

move (1.79, -0.8, 0.$, 0.9, -0.8, O.S, 0:0, 0.0, -I.0)

grasp (1.79, -0.8, 0.5, 0.9, -0.8, 0.$)

move (0, O, O, 6, 1.0, 0.0, -1.0)

ungrasp (0, O, O, 8)

view

quit

Environment Into

._...-..-q)

graphics
structure_lot (0.8, -0.1, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0)

s_rut (1.79, -0.8, 1.0, 0.9, -0.8, 1.0)

strut (1.79, -0.8, 0.9, 0.9, -0.8, 0.9)

strut (1.79, -0.8, 0.8, 0.9, -0.8, 0.8)

strut (1.79, -0.8, 0.7, 0.9, -0.8, 0.7)

strut (1.79, -0.8, 0.6, 0.9, -0.8, 0.6)

strut (1.79, -0.8, 0.5, 0.9, -0.8, O.S)

strutlength (0.89)
zoom (2.0)

85

g

APPENDIX B

Listings of header files

[]

m

I

Module alg (linear algebra): i

Data types

typedef etruct var : : -

float *e;

Int r, c;

Int size;

} VAR;
wW---- "

A variable (matrix, vector or scalar). 'r' rows and 'c' coiuMns. _size' is r-c,

so the number of elements. 'e' is a pointer to a linear array of 'size' floats.

The order is left to right, ten top to bottom.

Procedure description

void Init_Vars ()

This procedure initializes the "ALG" module and must be called before doing

anything else.

void Exit.Vars ()

Can be cLlIed in order to free all memory space used by the module. |o function

should be called after 'Exit_Vats'

VAR *|ew_Var ()

Assigns a pointer to an initialized matrix to a pointer variable. Every pointer
variable must be initialized this say before using it.

After initialization the variable is umpty (a 0xO matrix).

BOOLEA| Put (a, b)

VAR *a;

VAR *b;

Puts the value of 'a'shith can be a variable or an expression, into 'b'.

This function must be used for every assignment operation!

VAR *VO (r, c)

int r;

int c;

Returns an rec matrix eith all elements equal to zsro.

VAR *VOnes (r, c)

int r;

Intc;

Returns an rec matrix eith all elements equal to one.

m

m

[]

m

[]

!
m

m
U

g

I

I

86
B

U

87

m

m

w

VAR *VI (dim)

int dim;

Returns a dim*dim unit matrix.

VAR *Vuser (r, c, vl, v2, v3)

inc r ;

intc ;

'rec' floats;

Returns an rec matrix with user defined contents. The floats in the parameter

list are filled in the matrix from left to right and from top to bottom.

The user must supply rs¢ floats in the parameter list,

Example:

Vuser (2, 3, 1.0, 2.0, 3.0, [I 2 3 J

5.0, 4.0, 3.0); creates [5 4 3]

VAR *Vscmult (v, s)

YAh *v;

float s;

Returns 'v' multiplied elementwise with 's'

Example:

[I 2 3] multiplied with 2.0 is [2 4 6].

float Vector.lorm (v)

VAR *v;

Returns the norm (len_h) of variable v. 'v' must be a vector, i. e. 'v' must

have either one row or one column.

VAR *Vadd (a, b)

VAR *a;

VAR *b;

Returns the elementgise addition of variables 'a' and 'b'. 'a' and 'b' must

have the same dimensions.

VAR *Vsub (a, b)

VAR *a;

VAR *b;

Returns the elementeise subtraction Of variables 'a' and Jb'. _a' and 'b' must

have the same dimensions.

VAR *Vmult (a, b)

¥AR ca;

VAR *b;

Returns the product of variables 'a' and 'b'. The number of rows of 'a' must

equal the number of columns of 'b'.

VAR *Vtranspose (v)

VAR -v;

Returns the transpose of variable v.

VAR *Vsolve (a, b, q, success)

VAR ca;

VAR .b;

VAR *q;

BOOLEA| *success;

Returns the solution of the linear system aex=b. 'a' and 'b' must have the

same number of rows. Yf 'a t is square, _Psolve _ returns the solution, if

one exists (if 'a' is nonsingular). If 'a' has more rows than columns'

S_

(system is overdetermined), then 'Vsolve' re_urns the least squar_

approxiRation. If 'a' has less rovs than columns (system is underdeterluined),

then the x minimizing x'Qx (' denotes the transpose) is returned. Q is the

I|VERSE of a diagonal matrix with the elements of vector 'q_ on the diagonal,

thus 'q' and 'x' have the same dimension. If 'q' is FJLL, then QzI

(unity matrix) is assumed and thus the minimum norm solution is returned.

I_ a solution was found, 'success' is sat to TRUE, otherwise to FALSE.

VAR *Vinv (a)
VAR *a;

Returns the inverse of variable 'a'. 'a' must be squared.

int |b.Cole (v)
VAR ev;

Returns the number of columns of variable 'v'.

int |b_Ross (v)

VAR ev;

Returns the number of rows of variable 'v'.

BOOL_! Fill.Var (v, r, c, hum, vl, v2, v3)
VAR ev;
int r;

int c;

int nmn;

'nun' floats;

This procedure is used to fill part of matrix 'v' with user defined values.
It star_s filling at the element at row 'r' and column 'c _ and fills up

from left to right and from top to bottom. It writes 'mum' values into

the matrix. It is the uJer's responsibility to supply 'num' floats after

the 'num' parameter. If the matrix would over_loe over the bottom right

corner, an error occurs and no values are written at all.

float Read_E1 (v, r, c)
VAR ev;
int r;

int c;

Returns the element at roe 'r' and colusm to' in variable 'v'

BOOLP_| Write_E1 (v, r, c, val)

VAR ev;

int r;

int c;

float val;

Vrites 'val' to the element at roe 'r' and column 'c' in variable 'v',

VAR sVcut (src, r_src, c.src, r_size, c.size)

VAR *src;

int r_src ;

int c_src;

int r_size;

int c_size;

Returns a piece of variable 'arc'. The top left corner of this piece is the
element at row 'r_src' and column 'c.src' in variable 'erc'. The piece
hu 'r_slze' rows and 'c.size' columns. An error occurs, if the specified

piece is not part of matrix 'src'.

BOOLEA| Paste (erc, dest, r_dest_c_dest)
VAR esrc;

i

U

|

m

in

W

|

i

i

J

m

i

u

m
N

i

89

mm

w

VAR *deer;

int r_dest;

int ¢_dest;

Puree variable 'src' into variable _dest'. 'src's top left corner goes

to row 'r_desz' and column 'c.desk' in variable 'deer j. An error occurs

if there is not enough room in 'deer' to coBple_e the operation.

BOOLEA| Swap.Roes (v, rl, r2)

VAR *v;

inz rl;

int r2;

Roes _rl and 'r2' in variable 'v' are exchanged.

BOOLEA! Swap.Cols (v, cl, c2)

YAR *v;

tnt cl;

lnt c2;

Coluems 'cl and 'c2' in variable 'v' are exchanged.

B00LEA| Print_Vat (v)

V_ *v;

Variable 'v' is printed to the screen, 'Print_Vat' doesn't care about the

screen size, so large matrices may be hard to read.

void Kill_Vat (v)

VAR *v;

The memory space of variable 'v' is freed. Pointer 'v' is invalid after

'Kill.Vat'.

m

L
u

m

w

Module env (environment):

9O

i

Procedure description

void Init_Env (source)

LIST *source;

Reads the locations of all struts that axe present in the onviroruHnt at

initialization time and the length of the struts in use. Both input file and
CIRSSE inter_ace axe read. Then tetrahedra are extracted and intermediate

steps are generated.

float Get_Strut_Len_h ()

Returns the strut length,

B00LF_| Syxletric ()
---m ----------

Returns TKUE if the struts are sywmetrie in the sense that the endpoints can

be exchanged for assembly. If this is not the case, FALSE is returned.

BOOLEA! Get_Tetra_Pos (xt, yt, z$, nb, pl, p2)

Ant xt; - _

int yt;

int xt;

Ant rib;

Vector *pl;

Vector op2;

Transforms a strut position given in tetrahedron coordinates to cartesian

coordinates of its endpoints pl and p2. (xt, yt, zt) denote a tetrahedron
in the structure alld 'nb' denotes the number of the strut in this tetrahedron

(1..6).

MODEL *Get_First.Strut_Model (ip)

LIST_EL **Ip;

MODEL *Get_Next.Strut_Model (lp)

LIST_EL **ip;

MODEL *Get_First_Inter_Step_Model (Ip)

LIST_EL **Ip;

MODEL *Get_|ext.Intsr.Step.Nodel (lp)

LIST_EL **lp;

These procedures are used to read the last of strut models and intermediate

step models and are equivalent to the standard list readout procedures

described in the last module.

BOOLFA! Add.Strut (pl, p2)

Vector pl;

Vector p2;

Adds a strut to the envirol_aent. Its endpoints are at 'pl' and 'p2'.

Intermediate steps are deleted, tetrahedra reextracted and interlediate steps

recomputed,

BOOLEA| Remove_Strut (pl, p2, red)

Vector pl;

Vector p2;

float *red;

El

I

u
m

El

E1

m

i

i

ul

i

Eg

BE

i

m

i

1

mR

91

mum

Removes the strut closest to an imaginary strut sith endpoints st 'pl' and

)p2). The closest strut is the strut ghose center is closest to the center

of the i_ginary strut between 'pl' and 'p2'. This strut's radius is returned

in 'rad'. FALSE is returned if there was no strut in the environment,

Inte_ediate steps are deleted, tetra_edra reextracted and inte_ediate steps

recomputed.

@IODEL *Get_Closest.Scrut_Nodel (pl, p2, dmin)

Vector pt ;

Vector p2 ;

float Idmin ;

Returns the model of the strut from etrutlist closest to the position

defined by 'all' and 'd2'. The distance is returned in 'd_in'. If there

is no strut in the etrutlist, 'dmin' takes a negative value, otherwise

'drain' is the distance beteeon the centers o_ the struts.

mm

u-m

m

R

r
m

Module globat:

#define PI 3.141592654

Data types

8define BOOLEA| int

#define TRUE 1

#define FALSE 0

Procedure description

void Varntng (procn_e, nsg)

char *procnsme;

char emsg;

Prints the calling procedure's name ('procnaJe') and a narning uossage ('meg')
and returns.

void Error (procname, mog)

char eprocnase;

char emsg;

Prints the calling procedure's nmle ('procname') and an error message ('Jamg')
and returns.

void Fatal (procname, meg)

char *procname;

char *meg;

Prints the calling procedure's name ('procname') and an error message ('msg')

and exits the program uith exit code 1.

void Fatal_Xalloc (procname)

char *procname;
...------.------.....----..--.....----.

Prints the calling procedure's na_s ('procna_e J) and the standard error

message "memory allocation failed" and exits the pro_rma.

This procedure is provided for convenience s_nce ever 7 memory allocation
must be checked for failure.

It also returns with exit code 1.

float Atan2 (x, y)

flour x, y;

Like the built in math function atan2, but Atan2 (0.0, 0.0) = 0.0

92

i

i

i

|

"i

|
l

B

i

?-

! i
EE

[]

i

93

Module gpath (global path planner applying graph search):

Procedure description
.Q--....------.--...

void InitºPatb ()

Must be called once before calling 'Find.Path' for initi_ization.

LIST *Find_Path (path, pi, p2, dir)

LIST epath;

Vector pl;

Vector p2;

Vector dir;

vectorPlans a path leading free the current Joint _ _ _ound in the robot module

to a position defined using the endpoints of the goal n_rut :pl and 'p2'

and the direction from which the goal is to be approached 'dir _ ,

The path Is returned in list _path _ . The eleRents are joint vectors (type VAR).

L

Module graph (graph theory):

94

E

Data types

t_rpedef struct graph
{

LXST enodelist;

float (*Weight) ();

BOOLF,A| directed;

} GIL_PH;

The data etruc¢ure for a graph. 'nodelist' is a list eith all nodes of the

graph. The data type of the nodes is 'G_|ODE' (see graph.c). 'Weight' is

a pointer to a function that returns the eeight of an edge. The graph is

directed if 'directed' is TRUE, undirected othereise.

Procedure description

GItAPH *Nee.Graph (Weight, directed)

float (eWeight) ();

BOOLF_| directed;

Creates a nee graph data structure. The user muut provide the function 'Weight'

ehich returns the eeight of an edge to the graph module. It is declaLred as
follows:

•loat Weight (nodal, node2, edge)

char $nodel, node2, edge;

If the graph is directed, the module expects the eeight of the edge going from

'nodel' to 'node2'. If parameter 'directed' is TRUE, then a directed graph is
created.

void Connect (graph, nodal, node2, edge)

GP.APX *graph;
char enodel;

char *node2;

char *edge;

'nodel _ and _node2' are connected by 'edge'. Any graph str_cture can be build

by just using this one procedure. If one o_ then?des has been used in a

previous call of 'Connect', then the new edge i_ added to it, othervise a

nee node is created automatically. In a directed graph an edge pointing _rom
Jnodel' to 'node2' is created.

void Connect_All (graph, nodells_, Get_Edge)

GRAPH egraph;

LIST enodeliet;

char $($_et_gdge) ();

This procedure is useful for creating graphs in which every node is connected

to every other node. 'nodeliet' contains the nodes of the graph and 'Get_Edge'

is a user provided procedure that is declared as folloeu:

char sCat_Edge (nodal, node2)

char enodel, anode2;

1_ni$ function must returll the data associated to the edse between _nodel' and

node2'. This can be a lULL pointer uhich Marts tha _hi.$ edge doesn,t have
in eqivalent data structure in the user's module. In _act, the 'Get_Edge'

p&rmeeter can be a IULL pointer, too. This is the came shah the edges in the

graph module generally don't have a_ equivalent data structure in the user's

module. In a directed graph e,ery pair of nodes will receive tee edges

pointing in opposite directions.

SS

J

i

m

SS

m

|

m

[]

[]

[]

i

95

N

m

=

rmi

void Connect.All_Cond (graph, nodelist, Get_Edge, Condition)

GRAPH *graph;

LIST *nodelist;

char *(*Get_Edge) ();

B00LFA| (*Condition) ();

This procedure works like 'Connect.Cond', the only difference is the

additional parameter 'Condition' which must be declared as follows:

BOOLEAN Condition (nodel, node2)

char enodel, anode2;

Before creation of an edge 'Connect_All_Cond' will call this function. If it

returns TRUE, the edge is created, otherwise it isn't. This feature is useful

to set up visibility graphs: 'Condition' must return TRUE if 'nodal' is visible

from 'node2' and FALSE otherwise.

BOOLEA| Disconnect (graph, node1, node2, edge)

GRAPH *graph;

char *nodal;

char *node2;

char *edge;

This procedure is used to remove a single edge from the graph. 'edge' between

'nodal' and 'node2' is removed. TRUE is returned if this edge existed, FALSE

otherwise.

void Disconnect.all (graph)

GRAPH *graph;

This procedure removes all edges from the graph. The nodes remain in the

graph!

LIST *A.Star (graph, Estimate, start, goal, edge_path)

GRAPH *graph;

float (*Estimate) ();

char *start;

char egoal;

LIST eeedge_path;

The A-Star algorithm tries to find the optimal path from 'start' to 'goal'.

Optimal means minimal sum of edge weights along the path.

'Esthete' is a pointer to a user provided function:

float Estimate (node)

char *node;

It _ust return an estimate of the cost to go from 'node' to 'goal'. If

this estimate is al_ays loser than the actual cost, A-Star sill find the

optimal path.

If a path exists, A-Star sill find it and return a list of the nodes it

passed. In parameter 'edge.path' it returns a list of the edges it went

through. The two lists have the same len_h: The first edge is the edge

between the first and the second node, so the last entry in the edge list

is always a _ULL. if no path exists,]_LL is returned,

void Kill_Graph (graph)

GRAPH *graph;

Deletes the nodes, edges and the graph data structure making 'graph'

invalid. The user's data for the nodes and edges are of course left intact.

!

96
I

Module graphics:
I

8define BLACK 0

#define MHITE 1

Sdefine RED 2

#define YELLOM 3

Sdefine BLUE 4

Sdefine GBEZI 5

Sdeftne GRAY 6

Data types

typedef etruct line

Vector pl;

Vector p2;

int color;

int style;

} LIME;
--. w......w

LIME represents a line on the screen. 'pl' and 'p2' are the endpoints,
'color' can take one of the values defined above and 'style' is either

SOLID, DASHED, or DOTTED.

t_edef struct character

{
char c;

Vector pos;

int color;

} CHAR;

CHAR represents a character 'c' on the screen. 'pos' indicates its position,

'color' is one of the colors defined above.

typedef struct seg

(
LIST elinelist;

LIST ecbarlist;

int se_'aum;

BOOLEAM active;

} SEG;

SEG represents a se_ent that contains a number of lines and characters. The
lines (LIME) are stored in 'linelist' and the characters (CH_) in 'charlist'.

'segnum' is the SU]Jcore se_aen_ number. 'active' is TRUE if the se_en_ is

nonempty and must be included in updates and rotations.

Procedure description

void Init_Graphice (source)

LIST eeource;

Initializes SUlcore in the current eindov and displays a coordinate system.

Parameter 'source' is a list of expressions from the parser. If expression

'_g' is found, the graphics are displayed in black and vhite, even on a

color screen. This can be useful for screendumps.

i

[]

[]

[]

!
mR

nn

i

I

[]

I

l

HM

m
mM

u

z

m

--k

r

= k

If a 'ZOOM (x)' expression is found, then the display is enlarged or

shrunk according to x.

BOOLEAM Graphics_Active ()

Returns TRUE if SU|core has been successfully initialized, FALSE otherwise.

void Exit.Graphics (5

Should be called before exiting the program.

void Spin_Graphics ()

Enables the user to rotate the picture around the vertical or the horizontal

screen axis by moving the souse horizontally or vertically respectively.

This procedure ends in the current orientation when the user presses the

middle mouse button.

SE_ e|eg_Sepent (5

Returns a new sepent.

void Eill_Segment (seg5

SEG eneg;

Kills sepent 'seg'.

void Update.Segment (seg)

SEG eneg;

Redraws segment 'seW'. This is needed when there are changes in certain lines

or characters in the se_ent that are not yet reflected on the screen.

void Update_All_Segments ()

Redrags all segments at once.

void Be_Update ()

After this procedure is called, the screen is not updated when primitives are

inserted in or deleted from a se_ent. This is useful when deleting many

primitives at once to avoid repeated reconstruction of the segment.

U_deting is turned back on by calling)Update.Se_ent) on any se_ent.

LIME Slew_Line (color, style5

int color;

int style;

Returns a nee line with given color and style (SOLID, DOTTED, DASHED5.

void Rill_Line (I)

LIME *1;

_ills line '1'.

void Set.Line.Poe (1, pl, p25

LI|E el;

Vector pl;

Vector p2;

Changes line 'l's position.

void Get.Line.Poe (i, pl, p2)

LI|E el;

Vector pl;

Vector p2;

97

9_

i

....--.--4.--.------

Re_urns line_l's pOSition.

void Insert_Line (seg, 1)

SEG *sog;

LI|E *i ;

lnser_s line '1 _ into sepent _se 8' and displays it _odiately, if there

gas no previous '|o_Update'.

BOOLF_| Delete_Line (seg, 1)

SE6 *soU;

LI|E "1;

Deletes line '1' from se_ent 'seg' and reflects the change inodiately, if

there was no previous '|o_Update'.

CHAK *|ee_Cher ()

Returns a nee character.

void Kill.Char (¢)

CF_R c;

Kills character 'c'.

void Change_Char ()

CHJtR *c;

Vector pos;

int color;

char oh;

Chan_es position, color and letter of character 'c',

void Insert.Char ()

SEa eseg;

¢F,AR *c ;

Inserts character 'c' into te_aent 1soS' and displays it JJmediately, if there

UU nO previous '|o_UpdateY;

BOOLF_| Delete.Char (seg, c)

SEG sseg; -_

CHAR *c;

Deletes character 'c' from so,went 'seg' and reflects the change i_ediately,

if there was no previous '|o_Update'.

i

i

M

|

|

i

m

m

m

M

99

m

Module Ipath (local path planning with potential fields):

/

==

m

Procedure description

void Init_Loc_I_Path ()

Rust be called before the first call of 'Local.Path.Plan'

void |ormalize_A.Vector (pl, p2, dir)

Vector pl;

Vector p2;

Vector *dir;

Nakes vector 'dir j length I and orthogonal to the line defined by 'p1' and

Pp2'. Jdir 7 uill remain in the plane defined by the line through 'p1' and

'p2 _ and the line along the old 'dir'.

B00LFA| Valid_Strut (pl, p2)

Vector pl;

Vector p2;

Returns TRUE if 'pl' and 'p2' is a valid position for an intermediate step.

B00LFA| Local_Path_Plan (q, pl, p2, d, path, pitt, see, rot_normal)

VAR eq;

Vector pl;

Vector p2;

Vector d;

LIST *path;

LIST epict;

SEG *seg;

BOOLEAI rot.normal ;

Plans a path using a potentiL1 field method. The initial joint vector 'q'

is assumed and the path hill lead the (real or imaginary) payload strut to

endpoint positions 'pl' and 'p2'. The goal uill be approached in direction

'd'. The path sill be returned in list 'path' ehich uill contain a joint

vector (VAR) _or each step. List 'pitt' sill contain the lines to display

the path and segment 'segp uiI1 he used. If 'rot.normal' is TRUE, then the

angle less than 180 dee uill be used to rotate the gripper from its start

to its goal orientation, uhich is norually better, If it is FALSE, the other
sense of rotation will be used. ehich involves an angle of ro_ation of more

than 180 deg.

void |ee_Start.Dir (dir)

Vector dir;

Nust be called before 'Local.Path_Plan' if the path must leave the start

position in a particular direction. This direction is AGAI|ST the vector

'dir', so 'dir' is normally the approach vector of the robot's gripper in

start position.

lO0

Module list:

Data types

typedef struct list_elament

(
struct list_element *next;

char *data;

} LIST.D.;

Elements of type LIST_EL form the chain of list elements. 'next' points to the

next element in the list, 'data' points to the user data represented by this

1Let element.

typede_ strict list

struct list_element *first, *last;

int length;

char **index;

} LIST;

LIST is the main list data structure. 'first' and 'last' point to the first

and the last element in the LIST,EL chain. 'length' stores the number of

elements currently in the list. 'index' has a pointer to an array of user

date pointers that aline Fast randol list access. If an index doesn't exist,

'index' is IULL.

Procedure description

LIST *|eu.List ()

Creates a new list (allocates and initializes a LIST data structure) and

reruns a pointer to it.

BOOLF_| Insert (let, data)

LIST *fat;

char *data;

BOOLEA| Insert_As_First (let, data)

LIST *lst;

char *data;

'Insert' and 'Insert_As.First' are the tun procedures to build a list. 'Inser_'

adds the element 'data' at the end, 'Insert_An_First' at the beginnin 8 of the

lint. Existing indeces Lre destroyed by both procedures.

BOOLEA| Delete (lst data) -

LIST *Ist; _ . - ..
char *data;

Deletes element 'data' from the list 'let'. Return_ T_Ug if 'data' eu found

in the iist, FALSE otherwise. An existin 8 index is destroyed.

BOOLEAI Is_In.List (let, data)

LIST *let;

char *data;

Eeturns TRUE if 'data' is Found in 'let', FALSg ugh, raise.

char *Get_First (let, current)

us

[]

[]

INl I
m

mm

m

ms

m

i

m
m
u

m
I
i

N

m

m

tnW

m

m

LIST *Ist;

LIST_EL **current;

char cOst_Next (current)

LIST.EL **current;

'Get_First' and 'Get_|ext' allow sequential access to the list. A procedure

using these functions typically looks as follows:

void Sequential_Access_Example (Ist)

LIST elst;

{
LIST_EL elp;

DATA_ITEM *data;

data = (DATA_ITEM e)Oet_First (1st, _lp);

ghile (lp)
(

Process_Data.Item (data);

data = (DATA.ITEM *)Get_|ext (tlp);

}
}

In this example the list holds elements of type DATA.ITEM. Since both

'Get_First' and 'Get_|ext' return pointers to type char, a type cast is

necessary in most cases. The pointer variable 'Ip' points to the current

list element. It is initialized to the first list element by 'Get_First'

end ulxiated to the next element by 'Get.Jext _. When the end of the list

is reached, 'Ip' is asslgned IW_, so loop control can be done USing 'Ip'.

If a program contains nested loops, it is i_portant to declare a separate

element pointer variable for every loop that goes through a list.

Bore that 'lp' does JOT point to the data element of type DATA_ITEM, but to

the list element of type LIST.EL that represents this data element!

char eGet_|th (let, n)

LIST *let;

int n;

This function is used for random access. If an index exists, the n-th element

is returned very quickly, otherwise the function steps through the llst

sequentially and thus takes a little longer if 'n' is large.

n=O returns the first element. If 'n' is too large, NJLL is returned.

char eGet_This (current)

LIST_EL **currant;

returns the data element represented by the list element that 'current' points

to. 'current' is left unchanged.

char eGet_Last (let)

LIST *Ist;

Returns the last data element of list 'let'.

void Build.Index (ist)

LIST *let;

Creates an array of pointers to the data elements in the list. Once this index

exists, random accesses using function 'aet_Jth' become much faster. Any

function that changes the list sill destroy the index autoBatically!

BOOLFA| Append (lnt, lst2)

LIST *lst;

LIST *ist2;

Appends the elements of 'let2' to '1st'. The list elements are duplicated in

I01

102

this process, so changing 'lst2' after 'Append' has no effect on 'Ist'.

TRUE is returned if 'Append' was successful, FALSE otherwise.

An existing index of 'Ixt' is destroyed automatically!

ins List_Length (lst)

LIST *lst;

Returns the number of elements in the list 'ist'.

void Empty_List (lst)

LIST elms;

Removes all list elements from list 'lst' leaving just the LIST data structure.

Any existing index is destroyed automatically.

lose that the data elements themselves are 10T affected in this process!

void List.Apply.F (lst, Function)

LIST *lst;

void (*Function) O;

Applies the user defined function 'Function' to all elements of the list 'Ist'.

This function must be declared as folloes:

void User_Function (data)

char *data;

'data' is the current data element in the list.

void Kill.List (ist)

LIST elms;

Removes all list elements and the LIST data structure itself, so 'lst' is

invalid after 'Kill_List'. Any existing index is of co_rse deleted too.

|ore that the data elements themselves are B0T affected in this process!

|

|

|

I

i

B

mm
[]

I03

Module model (geometric modeling):

lmmmm

m

_==

m

m

y =

m

Data types

typedef struct model
{

Vector pl, p2;

float r;

} MODEL;

MODEl. represents a suept sphere geometrical model. Its volume is the volume

that a sphere of radius 'r' ageeps vhen moving from point 'pl' to point 'p2'

on a straight line.

Procedure description

MODEL *hg_Model ()

Returns a neu instance of a model.

void Set_Model_Parameters (m, pl, p2, r)

MODEL em;

Vector pl ;

Vector p2;

float r ;

Changes all parameters of model 'm'.

void $et_Model_Pos (m, pl, p2)

MODEL *m;

Vector pl ;

Vector p2 ;

Chan_es the endpoints of model 'm _ leaving its radi-s unaffected.

void Set_Model.Radius (m, r)

MODEL ,m;

float r;

Changes model 'm_e radius leaving its endpoints unaffected.

float Model.Distance (nl, s2, pl, p2)

MODEL *m% ;

MODEL *m2 ;

Vector *pl;

Vector *p2;

Computes the shortest dieta£ce between models 'ml' and _m2 _. It returns the

distance and the two closest points on the line cements inside the suept

sphere cylinder (parameters 'pl', Jp2').

void Get_Model_Poe (m, pl, p2)

NODEL em;

Vector *pl;

Vector *p2;

Returns the model endpointe in 'pi' and 'p2 p.

void Get.Model.Radius (m, r)

MODEL *m;

104

float or;

Returns the model radius in 'r'.

void Swap_Model_Endpoints (m)

MODEL *m;

Exchanges the model's endpoints.

void Kill_Model (m)

HDDEL *n;

Kills model 'm' (frees i_s memory space).

i

I

m
m

B

m

m

m

|

/

W

B

=-

R

_ 105

Module parser:.

L,,,

L

Data types

typedef struct expression

(
char *keysord;

LIST *par.list;

} EXP;

EY.P represents expressions in an input Silo. An:expression consists o5 a

koyserd and optionally a number o_ parameter8 in parentheses, separated

by co_tas. Kxaueples:

keyvord

keygord (parameter)

keygord (parameterl, parameter2, parameter3, parameter4)

3keyuord' points to the keyvord string converted to uppercase. 'par.list _

contains a list of strings that represent the parameters. They ars also

converted to uppercase.

Procedure description

LIST *|eu_Sourcs (fname)

char reams _] ;

This procedure opens the text file 'fname' and parses it according to the

module's grammar. If the 5ile doesn't exist or there are syntax errors, then

a JULL pointer is returned, othereise a list of expressions as 5ound in the

5lie is returned.

It iS possible to set '_name' to mULL. In this case, an empty expression list

rill be returned githout error message.

E_ *Get_First_Exp (source, lp, keygord)

LIST esource;

LIST_EL *sip;

char ekeyeord;

EXP *Get__ext_Exp (ip, keygord)

LIST_EL **Ip ;

char ekeyuord;

'Get_First_Exp' and 'Get_|ext.Exp' are very s_ailar to _Get_First' and

Get|ext' in the list module. In fact, if 'ksygord' is Fu-_J_, they are

equivalent. If 'keysord' Is a string, then 'Get.First°Exp' rill return

the first expression sith this ksyword and 'Oet.Iext.Exp' uill return the

next occurrence of an expression with this keysord from the current point

in the list. The matching is case insensitive. The rsadout procedures are

compatible to the list module in the sense that a part of the expression

list can be read with the procedures in the list module and then a particular

ksygord can be searched from that point using 'Cet_|ext.F._p'. I_ no matching

ksyeord is found, lULL is returned and 'lp _ is set to r_LL.

char eGet.Keyeord (exp)

EXP *exp;

Returas the uppercase key_ord string o5 expression _exp _.

int |b.Par (exp)

EXP *oxp;

106

Returns the number of parameters of expression 'exp'.

char *Get.Par (exp, nb)

EXP *exp;

int nb;

Returns uppercase parameter string number 'nb' in expression 'exp'. The first

parameter has 'nb'= O. If 'nb' is too large, NULL is returned.

BOOLEA| Get_Float (par, v)

char *par;

float ev;

Converts string 'par' into float 'v'. Returns T_UE if successful,
FALSE otherwise.

BOOLE£| Gut_Int (par, v)

char spar;

lnt *v;

Converts string 'par D into int 'v', Returns T/rUE if successful,
FALSE othervise.

void Kill_Source (source)

LIST esource;

Kills the source list 'source'. Kills all expressions in it and the

list itself.

m

EJ

J

m

II

D

m

El

l

I

Im

I

J

J

mm

B

107

= Module robot:

7

l

Procedure description

void Init°Robot (source)

LIST *source;

The robot is initialized and oriented according to the ROBOT command in the

input file. If no ROBOT command exists, the robot coordinate system is equal

to the world coordinate system. (This is the case at CIRSSE)

BOOLEA| Joints.In_Range (qq)

VAR *qq;

Returns TRUE if all joint values in 'qq' are within ramge. FALSE otherwise.

BQOLEA| Set_Poe_Joints (new_q)

VAR *new_q;

----..--. 4

Sets the robot to the pose defined by Joint vector 'new_q' and updates the

transformation matrices.

void Update.Model ()

Updates the swept sphere models o_ the links to the current joint vector.

void Update_Picture ()

Updates the sire frame picture of the robot to the current joint vector.

B00LFA| Is_Revolute,Joint (nb)

int rib;

Returns TRUE is link 'nb' in a revolute joint, FALSE otherwise. The first

link is link 1.

NODEL *Link_Model (rib)

int nb;

Returns the model of link 'rib' or IULL if there is no swept sphere model of

this link. If the model was not up to date, it is automatically updated.

The first link is link 1.

B00LFA| Consider_For.Self.Collision (nbl, nb2)

int nbl; • -

int rib2;

Returns TRUE if link _nbl' and link 'nb2' could collide and thus have to be

considered in the collision avoidance procedure.

The first link is link 1.

BOOLEA| Consider_For.Arm.Collision (rib)

int nb;

Returns TRUE if link 'nb' could collide with an obstacle in the environment

and thus has to be considered in the Collision avoidance procedure,

The first link is link 1.

Vector 0rigin (nb)

Int nb;

Returns the origin of the coordinate frame of link 'nb'. Origin (0) returns

108

the origin of the robot's coordinate system.

void Axis (rib, origin, dir)

Int nb;

Vector .origin;
Vector *dir;

Returns the axis of rotation (revolute) or the direction of motion (prismatic)

of joint 'nb'. The origin is also returned.

float Joint_Value (nb)

.int nb;

Returns the current joint value of joint 'nb'. The first joint is number I.

void Joint_Range (nb, loser, upper)
int nb;

float slower;

float *upper;

Returns the loeest and the highest possible value of joint 'nb'. Th_e first

joint is number 1.

float]oint_Weight (nb)

int nb;

Returns the weight of joint 'nb' used for solving the Jacobian equation.

High values lead to high velocities of that joint.

The first joint is number I.

void Grasp.Part (pl, p2, red)

Vector pl;

Vector p2;

float red;
IIIIIIIiiiiiiiiiii qiiii

Puts a swept sphere cylinder as des¢r_bed by 'pl' and 'p2' and 'rad' in the

robot's gripper. The positions of the endpointe rill change in this process,

but the length of the cylinder w_ll be retained.

void Ungrasp_Part (pl, p2)

Vector *pl;

Vector ,p2;

_pties the robot's gripper and returns the last endpoint positions of the

payioad.

BOOLEA| Robot.Carrying ()

Returns TRUE if the robot is currently carrying a payload, FALSE otherwise.

void Se_P?e_To_Payload (m) : , . _

MODEL *m=; _: ::: : _ .

Sets the endpoint positions of model 'm' to the positions they would have,

if the model _as the payload of the robot.

void Set_Pos.To.Oripper (m)

MODEL em;

Sets the endpoint positions of model 'm' to the positions they would have,

if the model was the robot's grlpper.

U

i

a

m

i

i

i

mm
ms

=as •

[

M

J

s

I

- : 109

Module spec (functions providing CIRSSE/RAL specific information):

#define EARTH

Sdefine NAKS

#define NERCURY

#define JUPITER

#define SOL

#define VENUS

8define |EPTU|E

#define HO01

OxllOOTOul

0x13004882

0x1700c726

Oxl7OOcdd7

0x21000411

0x5100c045

OxSiOO6ee6

0x51001639

Procedure deecrlpt£on

BOOLFA| Graphics_OK ()

Returns TRUE if She machine on which the program is running has a graphics

screen and suncore is available.

BOOLF_I Color.OK 0

Returns TRUE i_ the machine on uhich the program is running has a color screen.

Module stack:

i10

m

B

Data types

typedef struct stack_el

{
struct stack_el *prey;
char *data;

) ST&CK_EL;

STACK_EL represents an entry of a stack. _prev' is a pointer to the previous

entry and 'data' points to the user data represented by this stack eleBent.

Procedure description
.... o

void leg_Stack (sp)

STACK_EL **sp;.

Rust be called before using a stack to initialize stack pointer 'sp'. 'sp' is

declared as folloes:

STACK_EL *sp;
!nitlalization:

|ew.Stack (ksp);

void Push (sp, data)

STACK_EL .esp;

char *data;

Places 'data _ on stack 'sp'.

char *Pop (sp)

STACK.EL *esp;

Returns the last data entry and removes it fro_ the stack.

char *Read.Top (sp)

$TACX_EL **sp;

Returns the last data entry without changing the stack.

i

ss

Q

I

I

i

m

I

MM

R

i

g

m

i

IIi

Module vector:.

Date types

t ypedef struct

(
float x, y, z,

} Vector;

Represents a 3xl vector with elements _x:, 'y', and 'z'.

t_edef struct

{
Vector vl, v2, v3;

} Matrix;

Represents a 3x3 matrix eith column vectors 'vl', 'v2', and 'v3'

typedef struct

{
Natrix m;

Vector v;

} H.Natrix ;

Represents a 4x4 homogeneous transformation matrix. 'm _ is the 3x3 matrix

for rotation in the upper left corner. 'v' is the translation vector in

the upper right corner. The last row is not stored, it is usumed to be

[ooo i].

Procedure description

Vector Vec (x, y, z)

float x;

float y;

float z;

Creates a vector with elements x, y, z and returns it.

Matrix Mat (vl, v2, v3)

Vector vl;

Vector v2;

Vector v3;

Creates a matrix with column vectors vl, v2, v3 and returns it.

H_Matrix H_Mat (m, v)

Matrix m;

Vector v;

Creates and returns a homogeneous matrix with matrix m and 4th column vector v.

Vector Add (a, b)

Vector a;

Vector b;

Returns the su_ of vectors a and b. (element.ise)

Vector Sub (a, b)

Vector a;

Vector b;

112

mD

Returns the difference a-b. (elementwise)

Vector Mul (a, s)

Vector a;

_loat s;

Multiplies the elements of a with s and returns the result,

Vector Div (a, s)

Vector a;

float s;

Divides the elements of a by s and returns the result,

Vector leg (a)

Vector a;

Returns the elementeise negation of vector a.

Vector Null_Vector ()

Returns the null vector [0 0 0].

float Dot.Prod (a, b)

Vector a;

Vector b;

Returns the scalar or dot product of vectors a and b.

Vector Cross.Prod (a, b)

Vector a;

Vector b;

Returns the cross product of vectors a and b.

Ratrlx Dyad_Prod (a, b)

Vector a;

Vector b;

Returns the outer or dyadic product of vectors a and b.

Float Length (a)

Vector a;

Returns the length (absolute value) of vector a.

Vector Scale (a, len)

Vector a;

float fen;

Changes the length of vector a to 'len' and returns the result.

Prints an error message iT 'a' is a null vector.

Vector Scale_If_Longer (a, len, limit)

Vector a;

float len;

float limit;

15 the length of vector a is longer than 'limit' then its length is changed

to 'len', otherwise it is returned unchanged.

Vector Normal (a, b)

Vector a;

Vector b;

m

;
!
m

i

g

m

I

m

m

I

m
i

w
I

===

U

m

m

m

J

W

- 113

| ; Returns vector 'a _ projected on a plane normal to vector Jb'.

Vector Center (a, b)

Vector a;

Vector b;

Returns a vector whose endpoint is in the center between the endpoints of the

vectors a and b.

BOOLEA| Parallel (a, b)

Vector a;

Vector b;

Returns TRUE if vectors a and b are parallel, FALSE otherlwise.

float Distance.Point_Line (point, line_pl, line_p2, line.result)

Vector point;

Vector line_pl;

Vector line_p2;

Vector *line_p_result;

Returns the shortest distance between 'point' and the line bounded by the

points _line_pl' and 'line.p2'. 'line.result' will contain the point on the

line which is closest to 'point'.

Vector NxV_Prod (m, v)

Natrix m;

Vector v;

Returns the product of matrix m and vector v.

Vector HRxV_Prod (hm, v)

H_Natrix hra;

Vector v;

Returns the product of the homogeneous matrix hm and vector v. The 4th element

o_ 'v' and the result are omitted and assumed to be I.

Natrix 8xM.Prod (ml, m2)

Matrix ml;

matrix m2;

Returns the product of matrices ml and m2.

H_Matrix HNxHN.Prod (hml, ha2)

H_Natrix hml ;

H.Natrix hm2 ;

Returns the product of the homogeneous matrices hml and hm2.

float Det (m)

Natrix m;

Returns the determinant of matrix m.

Natrix Transpose (m)

Natrix m;

. w

Returns the transpose of matrix m.

Natrix Inv (m, ok)

Natrix m;

BOOLEAN *ok;

Returns the inverse of matrix m. If inversion vas possible, 'ok' is set to

TRIIE, othervise to FALSE.

114

Matrix I_Matrix ()

Returns the identity matrix [I 0 0

0i0

oot]

BOOLEA| Plane_Line.Intersection (plane.p,plane_dl,plane_d2, line_p,line_d,

t.planel, t_plans2, t.line, distance)

Vector plane_p;

Vector plane.d1;

Vector plane_d2;

Vector line_p;
Vector line.d; _ -

float *t_planel;

float *t_plane2;
float *t_line;

float *distance;

Intersects the plane defined by location vector 'plane.p' and direction

vectors 'plane_dl' and 'plane_d2' with the line defined by location vector

'line_p' and direction vector 'line_d'. If this intersection is possible,

TRUE is returned and the parameters of the intersection point for both

the plane and the line are returned. The tee equations for the intersection

point are:

ip " plane_p + t_planel * plane_dl + t.plane2 * plane_d2

ip = line.p + t_line * line_d

If intersection is not possible (line is para21el to the plane) then FALSE

is returned and the distance between the plane and the line is returned in
_distance'.

float Distance_Line_Line (al, a2, bl, b2, a_result, b_rssult)

Vector al;

Vector a2;

Vector bl;

Vector b2;

Vector *a_result;

Vector *b_resuit;

Returns the distance between the llne bounded by al and a2 and the l_ne

bounded by bl and b2. The points of closest distance on the lines are

returned in 'a_result' and 'b_result'

Vector Random_Vector (len)

float len;
umIIEulgnu u

Returns a random vector of maximum lenE_h 'ion'.

void Print_Vector (a)

Vector a;

Prints vector a to the screen.

void Print__a_rix (m)

Na_rix m;

Prints matrix m to the screen.

void Print_H_Matrix (hm)

H_Matrix hm;
.........................

Prints the homogeneous matrix hm to the screen.

m

|

i

i

w
mR

N

I

u

m

I

mm

l

