n
l

ll
et

I 1 I L B I

Il
1

PATH PLANNING FOR
ASSEMBLY OF
STRUT-BASED STRUCTURES

NABW-/333

by

Rolf Miinger

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering
Troy, New York 12180-3590

May 1991

CIRSSE REPORT #91

)i

| AT

!

I‘ I l‘w”uu I‘ o
i b 0

I

CONTENTS

LISTOF FIGURES e e e e e e e
ACKNOWLEDGEMENT oo e
ABSTRACT o i o o o e e e e e e e e e e e e
1. INTRODUCTION e I
1.1 Nomenclature v v v v v v o oo e e e

9. LITERATURE REVIEW oo
3. GEOMETRIC MODELING o v o o e e e
4. USING A ROBOT TOFOLLOWAPATH.
4.1 Modeling the robot’s geometry oo
4.2 Potential field method in the robot’s joint space
4.2.1 AttractionField e e e

4.2.2 Obstacle Avoidance« o oo

4.2.3 Derivation of the manipulator Jacobian

424 JointRange« oo oo

4.2.5 Imposing restrictions in cartesian space - -

4.2.6 A method for solving general linear systems

5. COMBINING GLOBAL AND LOCAL PATH PLANNING METHODS . .

5.1 Potential field methods and their problems
5.2 Different ways of performing a given task
5.3 Splitting into subtasks usxrfégra;;h search e
5.3.1 Application of the A* algorithm
5.3.2 Selecting subgoals for the truss structure problem
5.3.3 Extraction of tetrahedrao

6. SOFTWARE DOCUMENTATION oo
6.1 Concepts v v v it o e
6.1.1 Global variables e
6.1.2 Datatypes. . . . -« o v i oo e

i

6.1.3 Module hierarchy
6.14 Make.
6.2 Documentationof modules
6.2.1 The “global”’ module
6.22 The“spec”module
6.23 The“lst"module
6.24 The “stack” module e e
6.2.5 The “vector” module
6.26 The “alg”" module L L L.
6.2.7 The “graph” module e
6.28 The “parser" module
6.2.9 The “model” module e e e e e e e e e e
6.2.10 The “graphics” module
6.2.11 The “env’ module
6.2.12 The “robot” module
6.2.13 The “lpath" module
6.2.14 The “gpath”" module
6.2.15 The “main” module.
6.3 Interfaceto CIRSSE0l v v i
6.3.1 CIRSSE interface procedures.
632 Inputfile.

7. RESULTS o, C e

8. DISCUSSION AND CONCLUSIONS
8.1 Computational Complexity e e
8.2 Generalization of geometric model . . o .
8.3 Experiences with the potential field algorithm

8.4 Configurations and singularities
LITERATURE CITED e e,
APPENDICES e,

A. Simulationinput file L L

B. Liétings of header files e

i

R ED W om0 mn

L[]

|

Il

WEl wom m

Vi

L U
i

i [

"
I

o

[N (N B

|

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 7.1

Figure 7.2

LIST OF FIGURES

An example structureo oo 2
Basic geometricmodel oo 8
Shortest distance between two swept sphere cylinders 9
Shortest distance between two line segments 10
Distance computationo .o 11
OVEIVIEW . o v e e e e e e e e e e e e e 17
Sense of TOtatION .« .+« v o e e e e e e e 19
Basic collision avoidance procedure for a revolute joint 21
Basic collision avoidance procedure for a prismatic joint 23
Numbering convention for the joints and links of the robot . . 24
6gr(Q) - 25
Domain mapping for joint range function 26
(72 S T I AR 27
Two ways of inserting astrut 36
Choosing the correct sense of rotation. 37
Splitting a task into two subtasks 38
Intermediate steps placed around a tetrahedron 40
Module hierarchyo oo 48
List structure o v o v o i e e e e 50
Data structures in the graph module 54
Conventions for sprercirfying a strut in a structure 63
A robot arm of the CIRSSE testbed 69
Asimplemotiontask oo oo 70

v

Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6

Figure 8.1

Completing a tetrahedron 72
An example of a large angle of rotation 73
Initial state of obstacle avoidance demonstration 74
Obstacle avoidance demonstration 75

79

Step size selection

v

Wi

W MED mNL W e

L

V
|

|

- IR

I

[. T
TN

o o
[PR B

!

ACKNOWLEDGEMENT

I would like to express my thanks to Professor Arthur C. Sanderson, my thesis
advisor, for his guidance, encouragement and patience.
Special thanks go to Dr. Steve Murphy and Michael Eppinger for their help

in robotics issues and to Jonathan Weaver for reviewing the manuscript.

vi

ABSTRACT

L pnm—

A path planning method with collision avoidance for a general single chain nonre-
dundant or redundant robot is proposed. Joint range boundary overruns are also
avoided. The result is a sequence of joint vectors which are passed to a trajectory
plannér'. '

A potential field algorithm in joint space computes incremental joint vectors
A;q:_Anqa + Aqc + Aqr. Adding Aq to the robot’s current joint vector leads to
the next step in the path.

Aq, is obtained by computing the minimum norm solution of the underde-
termined linear system JAqa = Xa where X, is a translational and rotational force
vector that attracts the robot to its goal position and orientation. J is the manipu-
lator Jacobian.

Aqc is a collision avoidance term encompassing collisions between the robot
(links and payload) and obstacles in the environment as well as collisions among
links and payload of the robot themselves. It is obtained in joint space directly.

Aq; is a function of the current joint vector and avoids joint range overruns.

A higher level discrete search over candidate safe positions is used to provide
alternatives in case the potential field algorithm encounters a local minimum and
thus fails to reach the goal. The best first search algorithm A* is used for graph
search. Symmetry properties of the payload and equivalent rotations are exploited

to further enlarge the number of alternatives passed to the potential field algorithm.

I
i

vii

Wl

L

i

Wi W WU weR om0 ms s

L]|

;
:
|

]

CHAPTER 1
INTRODUCTION

In earlier applications of robotic systems and in most present systems, the task of
planning a feasible path is done by a human. The most basic way of entering the
path is typing a sequence of points in cartesian or even in joint space and having the
system perform a linear interpolation between the points. If the robot is operating
in a constant environment, this approach is often sufficient. Some variation in the
environment can be taken into account by prestoring a set of paths and selecting
the appropriate one depending on the current state of the environment.

In some applications, as for example spray painting a car part, a complex
continuous motion must be accomplished. This kind of motion would be very tedious
to enter by typing long lists of cartesian or joint coordinates. In this case, a method
known as “teach-in” is used, where a competent person is guiding the robot’s end
effector, while the system is storing the motion. Later on, this motion can be
reproduced repeatedly and accurately.

The drawback of all these methods is their inability to work in a largely un-
known environment. If an unexpected obstacle is entering the workspace, the robot
will probably collide with it.

In many applications it is desirable to have more intelligent robotic systems ca-
pable of working more autonomously. The work herein has been done under CIRSSE
(Center for Intelligent Robotic Systems for Space Exploration). The goal of CIRSSE
is the development of planning, sensing, and control methods that will eventually
allow mostly autonomous assembly of parts of a space station in outer space. Au-
tonomy is particularly important in outer space, since risk and costs of assembly
by humans are extremely high. Another application is autonomous exploration of

other planets, where teleoperation is impossible due to large communication delays.

2

|

Wi

-
=
-
%
|
|
a
%
- o : i
shown in Figure 1.1. The basic cell in this structure is the tetrahedron. Tetrahedra
have two useful properties: They are mechanically stable and their six edges all have %
the same length, so only one type of strut is needed. Using them as a unit cell, one
can build arbitrarily large, stable structures. % :
The first step in doing this a.utoma.tiéally is determining an :assembly sequence 7
such that subassemblies are stable whenever this is possible [6]. Once the sequence W
has been determined, a path planner is needed to find a collision free path to move —
%

the struts from their storage location to their goal position in the structure. This
project is proposing a solution to the path planning problem. It is a free motion
~ planner, so it does not cover the grasping and mating operations and the associated

fine motion planning which requires an online visual feedback and force feedback.

Another important part of the system isa highﬂlréiiel supervisor which decides about

I T

new strategies if a part of the plan turns out to be unfeasible or if other unexpected

events require a change of strategy.

uil

f

l-u o

The path planner is first requesting information about the current state of the
environment. It needs to know the positions of all struts currently in the environ-
ment and the current joint vector of the robot. After this initialization it accepts
motion commands telling it to move the end effector to a certain position and ori-
entation in cartesian space. It must also be informed of grasping and ungrasping
operations, since the changes in the environment have an influence on the path plan-
ning process. The path planner provides a sequence of joint vectors which is passed
to the trajectory planner. In this stage the §elocity and acceleration infofmation is
added and the result is passed to the low level robot controller.

This text is organized as follows: Chapter 2 gives an overview of the different
path planning strategies and algorithms that have been developed in the past. In
chapter 3, the geometric model for object representation used in this work is in-
troduced and a distance computation algorithm is presented. Chapter 4 covers the
description of the robot used to execute the tasks and presents the local path plan-
ning algorithm based on potential fields. The global path planning based on graph
search is covered in chapter 5. The documentation of the path planner’s implemen-
tation is presented in chapter 6, and chapter 7 shows the results that have been
obtained. A discussion of the results and conclusions can be found in chapter 8. An
input file of a simulated task in included in appendix A and listings of the program’s

header files can be found in appendix B.

1.1 Nomenclature

Throughout this text, scalars are printed in normal typeface (z or X'), vectors

in lowercase bold face (x) and matrices in uppercase bold face letters (X).

CHAPTER 2
LITERATURE REVIEW

Currently known path planning algorithms fall into two categories: global and local.
The global methods typxca,lly consider the environment as a whole when plan-
ning a path. They generally have the advantage of finding a path if one exists, but

they are computationally expensive if the environment is complex. There are three

subgroups of global path planning algorithms:

e Cell decomposition methods
e Search algorithms on a visibility graph
¢ Optimization using calculus of variation

Cell decomposition methods can be further divided into exact and approximate
" methods whereas exact methods decc-)mmposefriee sI;ace into cells complex enough to
exactly represent the free space. Approximate metheds however split free space
into very simple units, for instance cubes, that cannot represent free space exactly.

WThere w1ll be a number of cubes that contam both free and occupled space These
cells are further subdivided into smaller cells until the desired accuracy is obtained.

After the cell model is established, graph search techniques are used to generate the
shortest path that includes only cells representing free space [20], [21].

Instead of splitting the space into cells, one can also find a sufficiently large set
of feasible 1ntermed1ate goals, usually located near corners of obstacles, and establish
a graph based on v151b111ty between pau's of these goals Both of t.hese methods rely
on an efficient graph search algorlthm A suxtable algorithm is A*, a best ﬁrst search

algorithm that considers a lower bound estimate of the remaining distance in order

to expand the most promising nodes first [4], [18].

MW e W0 W s Wi om0 omEm om |

a

WOy T N e

Bl

I

A different approach that doesn’t involve graph search is the optimization of a
cost function that typically includes path length and clearance from obstacles. This
approach uses methods from calculus of variation [19]. |

The oldest local path planning method is the “hypothesize and test” method.
The robot proceeds a step in the desired direction and checks the feasibility of the
path that leads to the new position. If the path is not feasible, another direction is
chosen according to some heuristic. This approach has not been very successful.

A more recent method is based on potential fields [7], [8], [9], [17]. The gradient
of a potential field is guiding the robot towards the goal and keeps it at a safe
distance from obstacles. This potential field has very large values near obstacles
in order to produce a repulsive force between the robot and the obstacles. The
potential assumes its Jowest value at the goal position in order to attract the robot
to the goal. The drawback of all potential field methods is the fact that they do
not guarantee finding a collision free path even if one exists. If the potential field
function is not carefully chosen, it is likely to contain local minima, in which the
path planning algorithm can get stuck. An attempt to solve this problem is made
in [10] by adding vortex fields. However, even if a path can be found, it is not
guaranteed to be optimal.

Variations of the potential field methods include information about the dy-
namics of the robot and its payload. These methods have the advantage that they
generally produce paths which can be executed at a comparatively high speed [15],
[16].

If the robot is not assumed to be a point or a sphere, then its shape must be
included in the path planning process. A particular path might be feasible depending
on the orientation of the robot as a function of its position. In order to account for
the robot’s orientation, the path planning problem can be solved in configuration

space [22], [23], [24], [25]. The rotational degrees of freedom of the robot are added

as additional dimensions to the cartesian space. If we consider a three dimensional

space and a robot with another three degrees of freedom for rotation, the associated =
configuration space is six dimensional. In configuration space, the robot is shrunk =
to a point and the obstacles are enlarged according to the robot’s orientation. This -
reduces the problem to planning a path for a point, however in a higher dimensional =
-
space.
%
%
a
[
=

Ui Eh o Wi

g [

LRI E T Rl

UK

i

"o

s

CHAPTER 3
GEOMETRIC MODELING

Every path planning algorithm needs a geometric description of the objects it works
with. If a very simple model is used to represent the objects, it is in most cases
necessary to choose the model’s volume considerably larger than the real object’s
volume, since the object’s volume must be completely enclosed in the volume of its
model. This restricts the path planning process and might lead to a failure even
though a path exists. On the other hand, distance computations on simple models
are typically performed very efficiently. More involyed models allow for a better
approximation to the real shape of the objects, but they are computationally more
expensive.

In this work, cylinders with spherical caps have been chosen as the basic unit
for geometric modeling. An example is shown in Figure 3.1. It can also be viewed
as the volume that is swept by a sphere with radius r moving between the two
points p1 and pz on a straight line. This volume can be described as a set S in the

following way:

5§ = p2—Pp1

S(p1,p2.7) = {plp=p1+ts+q witht€[0...1], [a/<r} (3.1)

This model is particularly well suited for the objects of interest in strut-based
structure assembly, namely struts and robot links, but any kind of object can be
approximated by using a union of several basic cylinders.

This chapter presents thg dlstance computation for this particular model in

detail, but every other model as for instance a polyhedral model can be used, as

long as the two points of closest distance between two objects can be computed.

7

Figure 3.1: Basic geometric model

A generalization of the swept sphere model discussed here is a swept sphere model
in Wthh the sphere radius is a linear function of the sphere’s position between the
endﬁointsz The radiusis 7 = (1—t)r;+tr; where r; is the radius of the sphere at point
p; and r, the radius at point pz. This model allows for more accurate representation
of conic objects and also provides a very efficient distance computation method [26].

In the following the distance computation algorithm for the cylindrical model
is presented (Figure 3.2). In order to find the distance d between two objects, we
find the distance d, between the two line segments in the center of the cylinders and

subtract the radii of the cylinders r, and r,.

d=d,—r,—71, (3.2)

The line segment in the center of a cylinder S(p1,p2,7) can be described as

S(pla P2, 0)

The remainder of this chapterr discusses the computation of d,, the distance

between the line segments of two cylinders.

Wi Ey el Wi . Wil W s

TR O BN ST AR Rl

Kb

T

Iu‘”wu .
it

Figure 3.2: Shortest distance between two swept sphere cylinders

The distance between two line segments S,(p1, P2,0) and S,(q1,qz, 0) can be
obtained by first finding the distance between the two unbounded lines defined by
the endpoints of the line segments. The two unbounded lines can be described as

follows (see also Figure 3.3):

Sp = P2—P1
8q = qz—a1
P = P1+&Sp (3.3)
g = qi1+15q (3.4)
The parameters ¢, and t, are real numbers. If the lines are not parallel, then

the two points of minimal distance

pmm = 'Pl + tpminsp (35)

Qmin q1 + tqminsq (36)

10

* Figure 3.3: Shortest distance between two line segments

can be obtained by solving the following linear system for t,mi», and tgmin:

pl + tpminsp + I(Sp X sq) = ql + tqmipsq (37)

If these poirﬁs are also on the line segments (pnin € [0...1] and tymin €
[0...1]), then the distance |pPmin — Qmin| is the distance between the line segments

and the desired distance d between the cylinders is:

d = |Pmin — Qmin| =T — 74 (3.8)
If t, or ¢, or both are not element of [0...1] as it is the case in Figure 3.3,

then we define an auxiliary distance d, as follows:

|P1 = Pmin| for t, <0
dy =1 |pz — Pmin| for?, > 1 (3.9)

0 otherwise

L[

ui [(NP | NI N U T

11

TP?

qr'nin
Figure 3.4: Distance computation

An equivalent distance d, for the other line is also defined. The values d, and
d, represent the distances between the points Pmin and qmin and their line segments
S,(pP1,P2,0) and S,(q1, qz,0) respectively. Let us also define the two points zp and

zq of minimal distance on the two line segments:

min |Zp — 24} subject to zp € Sy(P1,P2,0) and zq € S,(q1,q2,0) (3.10)

For the remainder of the discussion we can assume without loss of generality
that d, > d,, t, < 0 and t, < 0. Consider Figure 3.4 which shows a projection of the
two line segments on a plane perpendicular to the line defined by Pmin and Qqmin.
Let us also assume that angle a < 90°.

Under these assumptions we can state that zp = p1.

Proof: Consider the orthogonal coordinate system (u,v) in Figure 3.4. Let us first
state that the v coordinate of qp is always negative, since d, > d,. We can also
~ state that if zp # p; then the v coordinate of zq must be pdsitive and equal to the
v coordinate of zp (not considering the case that z, = pz). If the v coordinate of
q2 is negative, then a zq rwitlrl a positive v coordinate does not exist. Otherwise zq
must be an element of ' = S(y,q2,0)-y. y is the element of S(q1,q2,0) with a
zero v coordinate. But siﬁcé S’ is an open set, there is a point zq’ € S’ in every
neighborhood of zq such that |z — z4'| < |2p — 24|, 50 Zp # p1 does not exist. O
This reduces the problem to finding the minimum distance between point p;
and line segment S(qi,q2,0). The point qmi, on the unbounded line defined in

equation 3.4 closest to p; is defined by:

Omin = Q1 + tqminsq
Sq'(pl_QI) (311)
Sq 'Sq)

tqm.in

From this we can find zq as follows:

qQ for tq"%*'" <0
Zq =\ q2 for/irqm,-n >1 (3.12)
Qmin otherwisé
Then d, = |zp — 24| and we can find the distance between the cylinders
using equation 3.2. This concludes the discussion of the distance computat;ion for
nonparallel line segments.
If the line segments are parallel, then we compute the four distances
d, : distance between p; andS,(qi, qz,0)
d; : distance between pz andS,(q1, qz2,0)
d3 : distance between q; andS,(pi1, p2,0)
d, : distance between q2 andS,(p1, p2,0)

B WL W W W omm o ome mN W mEE D Wl ww sE wm

13

using the algorithm described above. It turns out that at least two of the four
distances will be equal to the minimum distance d,, so it is sufficient to compute any

three of the four distances and find the minimum, for instance d, = min (d1,d>, d3).

CHAPTER 4
USING A ROBOT TO FOLLOW A PATH

In real applications, objects are moved from their start to their goal positions by a
robot, so the robot’s geometry must be taken into consideration. The robot imposes
constraints on the path in that the path must entirely lie in the robot’s workspace.
It also adds to the list of parts that may be involved in a collision. There may be
collisions between obstacles and parts of the robot, and there may even be collisions
among different parts of the robot itself. The limited range of the robot’s joints

further complicate things.
In this work, a single robot that holds a cylindrical object at its center is

considered. The method presented could be used for all single chain robots with at

least six degrees of freedom. All joints can be either revolute or prismatic.

4.1 Modeling the robot’s geometry

In the process of path planning, we must consider collisions between different
struts, collisions between a strut and a part of the robot and collisions among parts
of the robot. In order to simplify distance computations, it makes sense to use the
same model for robot links and other parts. The cylindrical model as shown in
Figure 3.1 can also provide sufficient modeling accuracy for the robot links when
performing free motion planning. Distance computation is done as described in

chapter 3.

4.2 Potential field method in the robot’s joint space

Potential field methods as outlined in chapter 2 work in cartesian space. All
gradients of the potential fields are vectors in normal three dimensional space. They

define the direction of motion of the robot’s end effector, so the new location is

14

] i1 W i Wl mii Wil W oW omr w

wi

|
1

15

first given in cartesian space. This means that an inverse kinematics routine is
required to find the new joint vector. Since this must be done at every step of the
path, the algorithm becomes vex.'y computationally expensive, since in general the
inverse kinematics problem can only be solved iteratively. In this work, however,
an alternate strategy is taken whereby the robot’s new location is first obtained in
joint space, rather than in ca.rtesian space. To find the location in cartesian space,
a simple forward kinematics routine is required.

Thus the goal of the algorithm is to find a joint vector increment Aq that 1s
added to the current joint vector q to obtain the next step of the path. Aqis the

sum of several components each performing a different task:

Aq, is the joint vector increment that moves the payload closer to its goal
position and orientation (attractive forces), while Aqy is the sum of all joint vector
increments that keep the robot from colliding or running out of joint range (repulsive

forces).

Aqr = Aqrc + AQry (4.2)

where Agqrc is doing the collision avoidance and Aq;r keeps the robot from
running out of joint range.

Note that all fields are defined as gradient fields and not as potential fields.
This often leads to a more natural definition and also saves the derivation of the

field’s gradient.

4.2.1 Attraction Field

The attractive field is the only field that must be defined in cartesian space.

First the definition of the cartesian vector x5 is given, then the transformation into

16

joint space is shown.

Xa I1s a 6 by 1 vector. The first three elements (xa¢) represent the translational

part (force) while the last three elements (xar) represent the rotational part (torque):

Xat
Xa=| (4.3)

Xar

If pc is the cartesian position of the center of the strut in the robot’s gripper

(current position) and g the cartesian position of the center of the strut in its goal

position, then

gc — Pc
Xat = Cgpm—mm—— 4.4
at t Igc _ pcl ()

C,: is the field constant of the translational attraction field. The rotational

part Xar is more difficult to obtain. Let p1 and p2 be tl}e endpoints of the object
in the robot’s gfipper and let g3 and g2 be the endpoints of the same object in its
~ goal position. Furthermore let a, be the approach vector of the end effector in its
currentorlentatxon éna let égﬂr be the z;pi)foéch vector ofr thé end effectorrwhen it
reaches its goal orientation. The approach vector represents the direction the end
effector must move to properly approach an object before grasping it. Both ap and

ag are unit vectors. We also need two unit vectors that point along the axes of the

struts:
= P2 P1
PP = 1pz = p1]
_ B2—81
Pe g2 — g1l

The approach vectors are perpendicular to the axes of the struts:

ap 1 pp (4.5)

a L pg we)

i EEN w0 W0 m0 oW mion md

-

AT

Rl

iy

17

Figure 4.1: Overview

All these vectors are illustrated in Figure 4.1. The current orientation and
the goal orientation can be represented by rotation matrices that give the respective

orientations with respect to the world coordinate system:
Tp = [pp (ap X pp) ap] (47)

Tg = [pg (ag x pg) ag] (48)
Since rotation matrices are orthonormal, their inverse is equal to their trans-

pose. Thus the rotation matrix that rotates the current gripper into the gripper in

its goal orientation is defined as

T = TgT; (4.9)

18

This is the rotation we are interested in, but we need the axis of rotation and
not the rotation matrix. In order.to find the axis of rotation, an eigenvalue problem
must be solved. Every rotation matrix has an eigenvalue of 1 and a corresponding
eigenvector a. The axis of the rotation performed by the rotation matrix and eigen-
vector a have the same orientation. Vector a can be found by solving the following

linear system:

(T-Da=0 (4.10)

This system can be solved by first setting the first component of a to 1. If
solving for the other two components fails, then we set the second component to 1
and try to solve for the other two components. If this also fails, we set the third
component to 1 and solve for the first two.

The vector a represents the axis of rotation, but it doesn’t give any information
about the sense of rotation, since —a is a valid eigenvector if a is an eigenvector.
We can of course rotate both ways to reach the goal orientation but in most cases it
1s preferable to rotate in the sense that involves a smaller angle of rotation. For the
method used fo find the correct sense of rotation or the correct sign of a consider
Figure 4.2.

It is assumed that p can be rotated into g by using a as the axis of rotation.

The angle of rotation is less than or equal to 180° if the following condition holds:

g-(axp)=20 (4.11)

If the condition doesn’t hold, we just change the sign of a to get the correct

sense of rotation. Then the rotational part from equation 4.3 is:

Xar = a,a (4-12)

L |

i s mem N

u

LI
1

[!
e

19

Figure 4.2: Sense of rotation

C, is again a field constant. All this yields xa, a direction vector in cartesian
space. In order to avoid inverse kinematics, a direction vector in joint space 1s
needed. The direction vectors in either space can be considered velocity vectors,
so the manipulator Jacobian J can be used to transform the direction vector from
cartesian to joint space. The derivation of J is discussed in subsection 4.2.3, so let
us assume for now that it is available to us. In order to obtain Aqa from equation

4.1 we need to solve the following linear system:

JAqa = Xja (4.13)

The Jacobian J is a 6 by » matrix, where n is the number of degrees of freedom
of the manipulator. If n > 6 then the linear system is underdetermined, so there is
an infinite number of solutions for AqQa. In this case the term Aq}‘QAqa will be
minimized, where Q is a weight matrix that will normally have nonzero terms on
the diagonal only. This weight matrix is important for robots with both revolute
and prismatic joints, since vector qs has mixed units in this case. A method for
solving this minimization problem is presented in subsection 4.2.6.

This method is a variation of iterative inverse kinematics algorithms that have

been developed for redundant robots or for nonredundant robots with kinematic

properties for which no closed form inverse kinematics solution exists. [1], [2], [3],

[11], [12], [13], [14].

4.2.2 Obstacle Avoidance

The goal of this part of the algorithm is to keep the moving objects (the links
and the payload of the robot) from colliding with items in the environment and
also to avoid collisions among the moving parts. These goals are achieved by two

separate algorithms that both contribute a joint vector to Agrc from equation 4.2.

Agrc = Adenv + AGself (4.14)

Before beginning the discussion of the two methods, it is worth mentioning that
the moving parts are the manipulator links and the object held by the manipulator.
The payload is treated exactly like a manipulator link.

The idea behind both methods for collision avoidance is to go through all pairs
of items that may collide and for each pair go through all joints that may change
the distance between the items of the pair. The joints that have an influence on
the distance of two objects are located between the objects in the kinematic chain.
Adding an increment to these joint values may increase or decrease the distance or it
may have no effect on the distance af: ail. Figure 4.3 shows two items modeled using

the cylindrical model presented in chapter 3. The joint in Figure 4.3 is a revolute

~ joint; prismatic joints are discussed later.
The pomts zpandz; 7é;ewth;twro: closest pdssiblé points on the line segments of
the models, they are found using the algorithm described in chapter 3. The distance

d is the minimum distance between the models (see equation 3.2). The vectors ao
andrad represent the axis of rotation of the joint under consideration. ao is the
origin of the frame rotated by that joiﬁt and aq is a unit vector representing the

direction of the axis of rotation. Now we define a unit vector r pointing from zp

Il

|l W W

MW

o

Figure 4.3: Basic collision avoidance procedure for a revolute joint

towards zq:

r=_2a” % (4.15)
|2q — 2p|

We assume that model S, is moving and model S, is fixed, then vector r is the
best possible direction in which model s, and point zq in particular can be moved
in order to avoid a collision between the two models. We also define a vector s as

follows:

5 =ag x (2q —) (4.16)

Vector s represents the direction in which point zq will move when the joint
is rotated in positive sense of rotation. Vector s is really this joint’s column of the
Jacobian matrix for point zq. Note that the absolute value of s is equal to the
distance between zq and the axis of rotation. Now we can define the joint increment

6q. that will be added to the component of this joint in the joint vector increment:

B : r-s
8, =Cr—g (4.17)

It turns out that a degree of repulsion proportional to d=? leads to good results.
The repulsive force growsrvery fast when the models get close together. When the
distance gets larger, the force goes down fast enough, so that there is almost no
influence on the path when the distances to obstacles are reasonably large. The
force is also proportional to |s| increasing the contribution of joints that have their
axis of rotation far off the point of interest. These joints can cause a large increase in
distance between the objects with comparatively small angles of rotation. The force
is finally proportional to the dot product of r and s which is a degree of matching
between the optimal direction to increase the critical distance and the direction that
zq will actﬂuarlly go if the current joint is movéd.fl\ifért'e 'tha.é this dot product can be
negative, which means that the joint must be rotated in negative sense of rotation
in order to increase the critical dristance. 7

Figure 4.4 shows the same situation with a prismatic joint.

The variables zp, 2q, T, a0, a4 and d are defined as in the case of a revolute

joint. The vector aq is the direction of motion of this joint, so g, is defined as

foﬂows:

G (4.18)

Based on this elementary procedure we can define the joint vector increments

bq, =

Qenv and Qselr from equation 4.14. For this purpose we define a function fg(:,-,")

as follows:

fq(A,B,1) = [v:1... va]T where n is the number of joints (4.19)

I,

am . e

.
i

23

a0

ad

Figure 4.4: Basic collision avoidance procedure for a prismatic joint

g, for j =1t and joint i revolute
v; =4 &g, for j =1 and joint 1 prismatic (4.20)
0 forj#1
The points zp and zq and the distance d are found by applying the distance
computation algorithm described in chapter 3 to the models A and B.
Furthermore, let O;,i € [1...0] be the model of the ith obstacle in the envi-
ronment and Lj,j € [1...1] the model of the jth link of the robot. Thus there are

o obstacles and ! links to be considered. Then Genv and qgelr are defined as follows:

]

. L
Qenv = szq OivLjvk) (421)

i=1j=1k=1

and

I -1 i

Qsett = 9.0 2 fa(LisLis k) (4.22)

=2 j=1k=j+1

(T

_link 3
joint 3)

..
Y.

///7//

Figure 4.5: Numbering convention for the joints and links of the robot

The numbering convention of the joints and links is shown in Figure 4.5. Note

that the robot’s base must be modeled as an obstacle and not as a link.

This concludes the derivation of Aqrc.
4.2.3 Derivation of the manipulator Jacobian
Before proceeding to the joint range problem, let us discuss the derivation -
of the manipulator Jacobian J. The origins of the link frames (a,); and the joint =
axes (aq); have been introduced in the previous subsection, as they are used for =
collision avoidance. Once they have been computed, the manipulator Jacobian can %
-
be obtained very easily and with relatively little computational effort:
%
I=li &2 o dn (4.23)
with n being the number of degrees of freedom of the manipulator. Then -
%
: (aq)i x (P — (a0):)
i= (4.24)
(aq): N
if joint 7 is a revolute joint or
-
i:ié

25

u=-1 A

gqmin u=

Figure 4.6: 6g.(q)

(2a) (4.25)
0

ji=

if joint : is a prismatic joint; vector p is the current end effector position. The
computation of a row corresponding to a revolute joint involves a cross product and

a vector subtraction, while the rows corresponding to prismatic joints are already

fully computed.

4.2.4 Joint Range

Besides avoiding collisions, a path planner must also guarantee that every
joint vector on the path is in the robot’s joint range. This goal can be achieved by
monitoring the joint angles and creating a corrective joint value §qr if an angle is
close to an end of its range. These values for all joints form the joint vector Aqer
from equation 4.2. The value 6qr is a function of the respective joint value ¢ and

should behave similarly to the function shown in Figure 4.6.

Figure 4.7: Domain mapping for joint range function

In our current implementation, the function éqg is defined as follows:
The domain of ¢, [Gmin - - - gmaz), is first mapped onto the interval [-1...1] by
applying the function
u(q) = %:7%7 with § = fmeetton and Ry = gmaz — Gmin (4.26)
A graph of this mapping is shown in Figure 4.7.

On the domain u, a function r(u) as shown in Figure 4.8 is defined:

r(u) = +c (427)

u+b

This function is used to define égr(u) as follows:

—Cgr(l—u) foru>0
6g-(u) = (4.28)
Crr(u+1) foru<?0

The parameters a, b and ¢ in equation 4.27 determine the shape of function
r(u), but their geometrical influence on the function is not intuitively clear. For this
reason we introduce the parameters z; and y, also shown in Figure 4.8. From the

three equations

Yo = r(0) (4.29)

i

DL iR

((N N it [[INT T

| L

27

l T
1
Figure 4.8: r(u)
1 = r(z1) (4.30)
0 = r(1) (4.31)

we can find the expressions for a, b and ¢ in terms of z, and yo:

T1Y0
¢ = —0 4.32
1 -3+ Z1% (4:32)
b = = (4.33)
a = —c(b+1) (4.34)

The values for z; and yo must be found by trial and error. It was determined

that z; = 0.2 and yo = 10 lead t_o__satisfactory results.

4.2.5 Imposing restrictions in cartesian space

Recall the attraction field described in subsection 4.2.1. Translation and ro-

tation to the goal position is achieved by finding a direction vector and an axis of

28

rotation that describe the necessary motion (equation 4.3). Then we solve for the
joint vector using the manipulator Jacobian (equation 4.13). The two algorithms
that provide direction vector and axis of rotation are independent and the length of
the direction vector as well as angle of rotation are constant for each step. A con-
sequence of this approach is the fact that rotation and translation are generally not
completed at the same time. In a given situation it might happen that the payload
has reached the correct orientation, but it has not reached the goal yet. In this case
we would detect that the correct orientation has been reached and thus set Xar In
equation 4.3 to zero. After solving equation 4.13 we obtain a joint vector increment
that will not rotate the end effector when it is added to the current joint vector of
the manipulator, so a rotation free motion is obtained during the remaining part of
the path.

A problem arises when the joint vector increments for collision avoidance and
joint range protection are added to Aqa to obtain the final joint vector increment
Aq (equation 4.1). Since the joint vector increments for obstacle avoidance and
joint range protection are computed in joint space, they will in general result in
both a translation and a rotation in cartesian space. This is undesirable, since it
will affect the orientation or position, that has been determined to be equal to the
goal.

To overcome this problem we add the two joint vector increments to obtain
Aq; as done in equation 4.2, and split the result into two orthogonal components

Aqro and Aqrx such that Aqgrp is in the null space of the Jacobian J:

Aqgr = Agro + Aqrx (4.35)
Agro-Aqx = 0 (4.36)
JAGo = 0 (4.37)

Wil

i

Wi |

"

wiy

29

If we use Agyo instead of Ag, in equation 4.1, then the collision avoidance will
not have any effect on the end effector position in cartesian space. Nevertheless, if
the robot is redundant, the robot’s joint vector will still change and increase the
distance to obstacles and joint range boundaries.

As discussed earlier, we would like to stop either translational or rotational
motion, once either has reached its goal. If we reduced Aqr to the null space of
the full Jacobian, then collision avoidance would have no effect on any cartesian
motion, neither translation nor rotation. But if we assume that the rotation was
completed first, then there is no reason to inhibit effects of collision avoidance on the
translational motion. However, any effect on the rotational motion must be avoided,
since the correct orientation has been reached. This partial effect on cartesian
motion can be obtained by reducing the joint vector to the null space of a part of
the Jacobian matrix. As we have seen in equations 4.24 and 4.25, the rows of the
Jacobian have a translational and a rotational part. In this sense we can split the
complete Jacobian matrix into a translational and a rotational part:

Ji
J= (4.38)
Jl'

Both J; and J; are 3 by n matrices, where n is the number of degrees of
freedom of the manipulator. If we need to inhibit translational motion, we reduce
Aqr to the null space of J¢ and if we need to inhibit rotation, we reduce it to J:’s
null space.

There remains the question of how to reduce a joint vector to the null space

of a Jacobian, complete or partial. The derivation follows:

JAq = J(Agro+ Agrx) (4.39)

JAq: = JAqro+JAGx (4.40)

30

JAq = 0 B (4.41)

= JAq = JAq (4.42)

Here we can find the minimum norm solution for Aq,.'x as described in sub-

section 4.2.6 below. Then

Agro = Aqr — Aqrx (4.43)

provides the null space component of Aq.

4.2.6 A method for solving general linear systems

Some of the methods discussed in the previous sections involve solving linear

systems of the form -~ - -

AX =B . (4.44)

so it is worthwhile to show a method of finding the solution X. A is an n by

m matrix, which leads to three different cases:

n =m A is a square matrix; there is one solution if A is nonsingular.

n > m The linear system is overdetermined; in general there is no solution, but we

can find the least square error solution.

n < m The linear system is underdetermined; let’s assume that in this case the un-

known is a vector (x). There is an infinite number of solutions. We are
interested in the solution that minimizes xTQx where Q is a weight matrix.

If Q = I, then the minimum norm solution is found.

Let us first describe the case of A being a square matrix, since the other two

cases are based on that case.

LU

WO WE BN WE WO M w0

-
"

[

oot

r

31

A Gaussian elimination algorithm is used, so the original system must first be
transformed into an equivalent system A’X = B’ in which A’ is an upper triangular
matrix, and which has the same solution X. The new systein can then easily be
solved by using back substitution. This transformation is done in n — 1 steps known
as Householder transformations. [5] A Householder transformation is a matrix H

that transforms a vector a into another vector b of equal norm:

Ha=D) with |a] = |b| (4.45)

H can be found from a and b with reasonable computational effort:

a—b

—_— .46
a—b] (4.46)

H=I—2xxT with x=

It is now possible to obtain the upper triangular matrix A’ by applying » — 1
Householder transformations to parts of matrix A each one transforming a column
of A into a column of an upper triangular matrix. We start with the leftmost column
aj of A and find its norm (n,),. Now we can find a Householder transformation H,
that transforms aj into a vector with (n,): as the first element and all the other
elements equal to zero, since the two vectors will clearly have the same norm. We

obtain a new system of equations:

H,AX = H;B (4.47)

The new system matrix Hy A has a particular structure:

(nghi a2 -+ din

0
H;A = (4.48)
: A,

This is clearly the first step towards an upper triangular matrix. We repeat
this procedure for the submatrix Az and an equivalent submatrix of H;B, namely
H;B with the first row omitted. After the second step, the second column will
contain all zeroes except the first two elements. It can be seen that this procedure
leads to an upper triangular matrix after n — 1 steps.

The advantage of using Householder transformations as opposed to the simple
Gaussian elimination procedure is that Householder transformation exhibit better
numerical properties. The numerical behavior can be further improved by exchang-
ing the first column of the current submatrix with the column having the largest
norm. Then the elements on the diagonal of the resulting upper triangular matrix
will be sorted; the element in the top left corner will be the largest, the element in
the bottom right corner the smallest element in the diagonal. All elements on the
diagonal will be greater than zero, since they are the norms of the columns before
traﬁsfo?mafion. This fact i)rovides a very convenient way of checking whether the
matrix is singular or not. If the determinant of a matrix is zero, then the matrix
itself is singular. VThe determinant of an upper triangular matrix is equal to the
product of thér diagornalﬁ eléments. Since the elements on the diagonal are sorted by
absolute value, we just have to check the last element on the diagonal. If it is equal
to zero, the matrix is singular; if it is greater than zero, the matrix is nonsingular.
Note that the exchanges performed on the columns of the system matrix must also
be performed on the rows of X after back substitution.

This covers the case of A being a square matrix. The other two cases can
be reduced to the first case, as shown in the following. Let us begin with the case

n > m, in which the system is overdetermined. In this case the least square error

solution to the system can be found by solving the following system:

ATAX = ATB (4.49)

N

Wil W W W WL W s

|
Bl

L[]

|

o

33

Finally, let us consider the case n < m and let’s assume that the unknown is
the vector X. We are interested in the solution that minimizes xTQx aubject to the

constraint equation Ax =b. Thisis a minimization problem that can be solved by

introducing a Lagrangian vector A:

min %xTQx +2T(b — Ax) (4.50)

The partial derivatives with respect to x and A must equal zero:

Qx-AT)Y = 0 (4.51)

Ax-b = 0 (4.52)

Premultiplying 4.51 with Q™! leads to

QAT =x (4.53)

Both A and x are unknown in this equation, so we have n + m unknowns.
We can however obtain an equation with only A as an unknown which reduces the
number of unknowns to less than half, since A is an n by 1 vector and n < m. So

let us premultiply 4.53 with A:

AQ AT = Ax (4.54)

From equation 4.52 this leads to

AQ!ATA=D (4.53)

The inverse of Q can be obtained very easily if Q is a diagonal matrix: The
diagonal elements of Q™! are the reciprocals of the diagonal elements of Q. A can

be solved for as described above. The solution x can be found from equation 4.51:

X = Q_IAT)\

34

(4.56)

(/RN milhe - m o w0 W EDY O EN W0 W W W W

CHAPTER 5
COMBINING GLOBAL AND LOCAL PATH PLANNING METHODS

5.1 Potential field methods and their problems

Potential fields can be used effectively to produce safe, smooth paths around
obstacles, but they have a serious drawback: If a path exists, but the potential field
contains local minima, then there is no guarantee that the path will be found. In
relatively simple two dimensional cases, it is often possible to choose the potential
field such that it can be proven to contain no minima other than the global minimum
in the goal. This task becomes very difficult when considering a strut modeled by
a line segment moving in an environment of other line segments, and it becomes
hopelessly complex when a reasonably accurate model of the manipulator is added.

Thus it is not possible to rely on a potential field method alone. This chapter
describes how a potential field approach can be embedded into a backtracking algo-
rithm that calls the potential field method under various conditions, until a pathis

found.

5.2 Different ways of performing a given task

As an example of a task, consider the insertion of a strut into an existing
structure. For the case that a strut is symmetrical, there would be two ways to
complete this task. Figure 5.1 shows the two possibrilities. The strut is drawn
asymmetrically for clarity.

In this example, the choice A is probably more likely to be successful than
choice B, since the angle of rotation is smaller. This is of course not more than a
heuristic statement and given certain joint angle configurations, it could very well

turn out that B is successful and A runs out of joint range. But it is still preferable

35

36

Figure 5.1: Two ways of inserting a strut

to try A first, since the probability for success is still higher and the resulting
path also looks more natural. At this point we need an algorithm that finds the
preferable orientation. Instead of comparing the angles of rotation involved in the

two possibilities, which is somewhat difficult to find, we compare two much simpler

expressions:

D = |g1 - p1| + |82 — p2| (5.1)

D is the sum of the distances between each end of the strut in its start and
its goal position. We compare D, and Dp, the distances for either orientation
possibility;r t};e smaller D value cbrresponds to the favorable orientation.

Once we have decided on an orientation, there are two possible ways to perform
the task. In subsection 4.2.1 of chapter 4 the rotation of the gripper from its current
orientation to its goal orientation was discussed. We obtained the axis of rotation
by finding the eigenvector of the rotation matrix, that corresponds to eigenvalue 1.

It was also mentioned that this eigenvector describes the axis of rotation that allows

Wi W W men s

;i

l

37

Figure 5.2: Choosing the correct sense of rotation

the gripper to reach its goal orientation, but it provides no information about the
sense of rotation. In fact, we can reach the goal orientation no matter what sense of
rotation we choose, but the angles of rotation will in general be different, since the
sum of the two angles is always 360°. Here we will of course first try the rotation
involving the smaller angle of rotation, but even this is not always the better choice.
Consider Figure 5.2.

The indicated sense of rotation is clearly the only possible choice in this par-
ticular case, even though the angle of rotation is greater than 180°.

This yields four possible ways of performing the same task of moving a strut

from a given start to a given goal position.

5.3 Splitting into subtasks using graph search

If none of the four cases leads to a successful completion of the potential field
method, then it is necessary to split the task into subtasks. An example is shown

in Figure 5.3.

38

Figure 5.3: Splitting a task into two subtasks

The figure shows only one of many ways the intermediate step could be chosen.
The idea is to provide a set of possible intermediate steps and use it to build an
undirected graph. The nodes of this graph are the intermediate steps plus the start
and the goal position of the strut. The selection of suitable intermediate steps is
g:ggigl ,for the success of the algorithm; it is described in _su,brs,ecti”on 5.3.2. After
the nodes are created, edges are inserted such that every node is connected to every

other node. In the example of Figure 5.3, we would obtain a graph with three nodes

and three edges connecting them.

5.3.1 Application of the A* algorithm

Now we use the A* algorithm to find the shortest path leading from the start
to the goal node. [4] We introduce the notion of distance by assigning a weight to
every edge. This weight is the sum of the distance between the centers of the two
node struts p and g attached to the edge and a measure for the degree of rotation

involved:

) I @ ®' §

==
==

[

luwwn L

l. o

[

39

|p] +P2 _ B1tE2 ‘
_ 2 2 +

w(p,g) = Cu(l = (Pp-Pg)?) with s=|p1—pz| (5.2)

S

Consider Figure 4.1 for the meaning of the vectors; pp and pg are unit vectors,
s is the strut’s length and Cy is a positive constant that determines the weight
assigned to rotation differences. If this vaiue is large, more weight is assigned to
rotation. A rotation of 90° and a t:ﬁhslation Va]ongrthe distance of sC,, have the same
weight. Note that identical orientation and exactly opposite orientation are both
leading to zero orientation weight,'so;t}ut;s are again assumed to be symmetrical.

The A* algorithm requires an estimate h of the cost of going from the node
it currently works on (p) to the goal node. This estimate must be lower than the
actual cost of reaching the goal in order to guarantee that A* will find the optimal

path. In this application h can be defined using the weight function defined above:

h(p) = w(p, goal) (5.3)

The first path found by the A* algorithm is very obvious: It consists of the one
edge connecting start and goal node directly. This result is passed to the potential
field stage, so before trying any intermediate steps, the algorithm will always give
the potential field method a chance to find a path by itself. If it fails (after trying
all four possibilities described in section 5.2), this edge is eliminated from the graph
and A* is applied to the rest of the graph. The result will now include at least two
edges; they are both passed to the potential field stage. As soon as one of the edges
leads to a failure, this edge is removed from the graph and a new path is generated
by A*. This procedure is repeated until the potential field method is successful on
all edges of a path or until no path connecting the start and the goal node is left.

In the latter case, all resources are exhausted and the program reports a failure to

the supervisor level.

40

Figure 5.4: Intermediate steps placed around a tetrahedron

5.3.2 Selecting subgoals for the truss structure problem

The generation of subgoals is a very important step in every global path plan-
ner. There should not be too many intermediate steps, since the number of paths
grows exponentially with the number of nodes in the graph. The intermediate steps
should also be placed in positions where they can help to guide the potential field
algorithm around difficult areas. So examples of good intermediate steps are corners
of obstacles.

The approach taken for the specific case of truss structures is simple: Since
the tetrahedron is the unit of all larger structures, all tetrahedra are extracted from
the list of struts in the environment. When five of the six struts of a tetrahedron
are present, then the structure is recognized and treated as a tetrahedron. The
extraction algorithm is presented in subsection 5.3.3 below. Then an intermediate
step is placed along every edge of every tetrahedron, as shown in Figure 5.4 for one

tetrahedron.

This approach could be improved in the two following ways:

I

E |

41

o Generate an approximate model of the robot’s workspace and omit intermedi-
ate steps outside the workspace. If an inverse kinematics procedure is available,

apply it on every intermediate step and reject it, if the inverse kinematics has

no solution.

e Find the convex hull of the existing structure and accept only intermediate

steps outside the convex hull.

While this approach is described here for specific structural models, analogous meth-

ods may be used for many common polyhedral models of objects.

5.3.3 Extraction of tetrahedra

The input to the program is a list of struts given by their positions in cartesian
space. There is no a priori information about existence and location of tetrahedra,
and they must be extracted from the list of struts.

A tetrahedron as a three dimensional object consists of four different geometric

primitives:

four vertices (0-dimensional)

six edges (1-dimensional)

e four faces (2-dimensional)
e the tetrahedron itself (3-dimensional)

The edges represent the struts in the tetrahedron. The vertices are found by travers-
ing the edge list and checking the two ends of each edge. If there is already a vertex
in the vertex list at the position of a given end, then we create a pointer from the
edge to that vertex, otherwise we create a new vertex at that position and a pointer

from the edge to the new vertex. Every new vertex is put into the vertex list.

The extraction of the faces is more complicated. Again we traverse the list of
edges and do the following for each edge e: It turns out that in a structure based on
tetrahedra as shown in Figure 1.1 every vertex can have at most 12 edges attached
to it. So for every end of e we traverse the edge list and store every edge that
points to the same vertex this end of e points to. This procedure produces two lists
with a maximum of twelve edges in it — the neighbors of the two ends of e. Then
we traverse one of the lists of neighbors and for every neighbdr— n, we traverse the
other list of neighbors and call the elements in this list ns. If a pair (ny ny) has
a common node, then we detected a face bounded by the edges e, n, and n,. Now
we just have to make sure that this face was not detected before. This can be done
by computing the center of gravity of the new face and comparing it to the centers
of gravity of the other faces. If there is no face at the same position, we add it to
the face list. Note that in the structures we are considering, there are never two
different faces with the same center of gravity. If p1, pz and p3 are the vectors

representing the three vertices of a face, then the center of gravity can be obtained

as follows:

e = &-J—’%Z——’L—p—a (5.4)

Having the list of faces, the extraction of the tetrahedra is not difficult. We
traverse the list of faces and for every face f;, we traverse the list of faces again
and call the current face f,. Now we compute the distance d between the centers of
gravity of f; and fo. If the faces are part of a common tetrahedron, then d=s/31fs
is the length of the struts. As mentioned before, we treat two faces of a tetrahedron
as a full tetrahedron, since at most one strut is missing once we detected two faces.
We again have to make sure that this tetrahedron was not detected earlier. This

can again be done by comparing the centers of gravity. If the four vertices in a

tetrahedron are represented'by the vectors p1, P2, Ps and pg, then the center of

| i | | | B Gl i Eii Ww ui [T N W]]

r

43

gravity is:

+pz+Pps+ |
pe = 2 P24P3 P4 (5.5)

This yields a list of tetrahedra found in the structure. All comparisons of
vectors involved in the process' must allow for a considerable error, since the position
inputs are noisy real world data. In order to create the intermediate steps, we
compute the vector pointing from the tetrahedron’s center of gravity to the center
of the edge under consideration. This vector must be multiplied with a constant
that will specify the distance between the edges and the corresponding intermediate
steps. The ends of the step can be obtained by adding this scaled vector to the ends

of the edge in the tetrahedron. -

CHAPTER 6
SOFTWARE DOCUMENTATION

The path planning algorithm described in the previous chapters has been imple-
mented in C language under the UNIX operating system. It has been developed on
the SUN 3/60 and SPARC workstations in CIRSSE. The graphical user interface is
based <;giéieréci>re, SUN Micfosilstems’ graphics libfz;.ry, which restricts this imple-

»':Iﬁentatiém to SUN platforms. However, all other parts of the program are portable

to other platforms.

6.1 Concepts

The code is divided into 15 modules each consisting of a code file (filename.c)
and a header file (filename.h). The code files contain the public and private pro-
cedures, the private constants and type definitions and the private global variables.
The header files contain public constants, type definitions and procedure declara-
tions. After the declarations, every header file also contains a documentation of
the module with an overview and a detailed description of all public procedures.

Thus the header files should provide enough information to enable a user to use the

module effectively.

6.1.1 Global variables

It was decided that no global variables should be visible from outside a mod-
ule. All data transfer between the modules is carried out through procedure calls.
This makes module communication slightly slower, but changes in the module are

generally easier to accomplish without affecting the module interface.

44

il W oW oW s me oo 1

| ([T (VIR |

LTI

45

6.1.2 Data types

A module typically contains one or more data types on which the procedures
of the module operate. A typical data type as found in the module’s header file may

be defined as follows:

typedef struct complex

{
float real;
float imag;
} COMPLEX;

This could be the data type of a module implementing operations on complex
numbers. As a convention, all instances of data types printed in all uppercase
(COMPLEX) are allocated in the heap memory. These data types all have a procedure

to make a new instance and a procedure to kill an instance associated to them:

COMPLEX *New_Complex ()

void Kill_Complex (c)
COMPLEX *c;

As a convention, other modules using the complex number module only use
the pointer returned by the creator procedure and never directly access data inside

the data structure. So instructions as

c->imag = 2.0;
x = c->real;

are not allowed outside the complex number module. A procedure that adds

the two complex numbers 4 + 5i and 2 — 8i would look as follows:

46

#include '"complex.h"

void Addition_Example ()

{ D
COMPLEX *a, *b, *c;

a = New_Complex (); /* make three new instances */
b = New_Complex ();
c = New_Complex (); e L
Set_Complex (a, 4.0, 5.0); /* set a to 4+5i */
Set_Complex (b, 2.0, -8.0); /* set b to 2-8i */
Add_Complex (a, b, c); /* add a and b, put result to c */
printf ("Result: %f + Uf*i\n",

Real (c), Imag (c)); /* print result */
Kill_Complex (a); /* remove instances from heap */

Kill_Complex (b);
Kill_Complex (c);

It can be seen that the fields of the variables a, b and ¢ are never accessed in
the code, even though the C compiler would allow this, since the definition of data
type COMPLEX resides in the header file which is included in the user module. If other
modules actually accessed the fields directly, then a change in data type COMPLEX
would necessitate changes in all modules that make use of complex numbers. With

this convention, changes in the data type COMPLEX don’t affect other modules.

6.1.3 Module hierarchy

There are two ways in which module A can make use of module B. A can use
B’s procedures and declare variables of a type defined in B. For this type of link,
A would include the header file of B into its source file. This i1s the more common
way of using another module. If A contains a public procedure that returns a value
of a type defined in B, then A must include the header file of B into its own header
file, in order to have B’s type definitions available in A’s header file. This leads to a

problem, if a third module makes use of both modules A and B, and thus includes

Sk Wy W m 8 WG W s oW mm W

[[/} i ® m Ll

47

both header files into its code file. Since header file B is included into header file A,
it will be included twice and all types and procedures will be redeclared. In order

to avoid this, the code in every header file is inclosed in the following structure:

#ifndef MODULE_LABEL
#define MODULE_LABEL

definitions, declarations ...

#endif

It ensures that every header file is compiled only once. Figure 6.1 shows the
complete module hierarchy. Solid lines stand for normal links and dotted lines
represent an inclusion of a header file into another header file. Arrows point from

the including to the included module.

6.1.4 Make

The whole program can be compiled and linked using the UNIX utility make. It
checks the last update time of every file and decides which files need to be recompiled.
make needs information about the dependencies among the files of the program. This
information is stored in the makefile. Code files and header files are included in this
dependency tree, so a change in a header file will lead to an automatic recompilation
of all files that include this header file. The dependency tree reflects the hierarchy

shown in Figure 6.1.

6.2 Documentation of modules

This section includes a description of each module of the program. The same
descriptions appear in the overview sections of the module’s header files.
The modules are ordered by increasing level in the hierarchy. This way the

reader becomes familiar with the prerequisites as they are needed to understand the

main

(E

gpath

................

parser

stack

graph

Ist

spec vector

global

Figure 6.1: Module hierarchy

I

i W omy om

wil

]

|

I

I I L[S

r t

ur'w (N

49

modules in higher levels.

6.2.1 The “global” module

This module is included by every other module of the program. It includes
the two standard header files stdio.] hﬂa:nd math.h, defines the constant II and the
boolean data type and prov1des standard procedures for displaying error conditions

on the screen. It also contains a custormzed version of the atan? function.

6.2.2 The “spec” module

This module provides information about the machine the program is running
on. This includes availability of a graphics screen and whether or not the screen has

color capability.

6.2.3 The “Ist” module

The list module provides a way of putting any kind of data into a sequential list.
A list consists of a main list data structure (LIST) and a number of list elements
(LIST_EL) representing the data elements. These list elements are dynamically
allocated, so no information about the list’s length is needed. This is the main
advantage of using this module over using a simple array.

The LIST_EL datatype contains a pointer next pointing to the next LIST_EL
and a pointer data that points to the listed data element, thus a simple forward
chained list is implemented. However, this chaining mééhanisrn is totally hidden in
the module, so the fact that the user’s data types must be stored in a list has no
impact on their internal structure. The list structure is shown in figure 6.2.

Lists are built by adding elements to the end or the beginning of the list. The
most common way of reading a list is by sequential access using the procedures

Get_First and Get_Next.

..

.......................................
esasssunseve

..............................

LIST LIST EL [LISTEL [>LISTEL > LISTEL

Ty e samusassasoressasnrassasseeanssntadesaderonerase s Poecrrsessorsnrensrsnsssssanssoytsaansutnraevsarvonssrrnotrossanioce

Figure 6.2: List structure

The module also provides random access, but since this procedure must go
throﬁg}; the Ncrzha,in of list elements, ther access is slow for long lists. To irnprover
random access performance, the module allows the creation of an index array. This
index contains the pointers to the data elements in a contiguous block of rnerno'ry
so that quick random access becomes possible. However it must be noted that every
change in the list caused by adding or deleting an element automatically destroys

the index, so indexed list access is only possible if the list is not changed after the

index is created.

6.2.4 The “stack” module

The stack module provides a way of organizing any data in stacks (LIFO -
buffers). Each data entry is represented by an instance of STACK_EL. This data
structure holds a pointer to the user’s data and the chaining information. Access to
the stack is accomplished by the procedures Push and Pop. The procedure Read_Top

allows reading the latest entry on the stack without removing it.

1

L]

Wil

M

i ®m. ® Wi .

I'l LA

3[i

1

51

6.2.5 The “vector” module

The vector module provides three data types:
e A column vector with 3 elements

o A 3x3 matrix
e A 4x4 homogeneous matrix with 4th row omitted (assumed [0 0 0 1])

The elements of the vector are floats, the columns of the 3x3 matrix are vectors
and the homogeneous matrix is comprised of a matrix and a vector as the 4th column.
All three data types are typically used for normal variable declarations; no instances
of these types are allocated in memory.

The module also provides a set of useful operations on vectors and matrices.
For instance the distance computation between two line segments as described In

section 3 is realized in this module.

6.2.6 The “alg” module

This module provides a set of operations on m by n matrices (linear algebra).
The basic data structure is a variable (VAR) which may be a matrix, a vector or a
scalar. A variable automatically adapts its size to a matrix that is assigned to it, so
the user does not need to know the dimensions of the result of an operation ahead
of time.

There are some element oriented functions that require the specification of row
and column values (typically parameters r and c). As a convention, the first row
or column is number 0, so the element in the top left corner has row and column
indices (0, 0). Names of functions returning a value of type VAR begin with a capital
V (example: Vadd). All functions returning a BOOLEAN return TRUE, if they are

completed successfully and FALSE if a problem is encountered.

The algorithm for solving general linear systems as described in subsection

4.2.6 is implemented in this module as function Vsolve.

The following example program will assign values to A, B and C, will evaluate

the expression A + B * C, assign the result to X and print it on the screen.

A=

#include "alg.h"

main ()
{
VAR *A, *B, *C, *X;
Init_Var ();
A = New_Var ();
B = New_Var ();
C = New_Var ();
D = New_Var ();

Put (Vuser (2, 1,

i
3
Put (Vuser (2, 2, 2.
1
0

Put (Vuser (2, 1,
-1
Put (Vadd (A, Vmult
Print_Var (X);
Kill_Var (A);
Kill_Var (B);
Kill_Var (C);
Kill_Var (X);
Exit_Var ();

.0,

.0), A);

0, 0.0,

.0, 3.0), B);
.0,

.0), C);

(B, C)), X);

62v7 The_“graph” module

2 0
1 3

/*
/*

/*
/*
/*
/*
/*
/*
/*

/*

/*

0
C =
-1

initialize module
make the variables

makes A a 2x1 variable [1]

(3]

makes B a 2x2 matrix [2 0]
(1 3]

makes C a 2x1 variable [0]
[-1]

eval A+B*C, put result in X

print X on the screen
free space

exit module

*/
*/

*/
*/
*/
*/
*/
*/
*/
*x/
*/

The graph module provides a means to organize any kind of data in a directed

or undirected graph. The data structure consists of a main structure (GRAPH) and

L

Wi N ®il Wi

'
& i

t

53

the two structural elements G_NODE for the nodes (or vertices) and G_EDGE for the
edges of the graph.

The GRAPH data structure contains a list of the graph’s nodes. Every node
in turn has a list of adjacent edges. If the graph is direéted, then the node’s list
contains only adjacent edges that are pointing away from that node. Every edge
has two pointers to the two nodes it is connected to. These two pointers are called
nodel and node2. If the graph is directed, the edges are always pointing from
nodel to mode2. Both the edges and the nodes have a pointer to a data structure
in the user’s module. In an example of a graph representing cities and connecting
roads the nodes would contain a pointer to CITY and the edges a pointer to ROAD.
Only the user’s data structures are used for communication between the modules
so the internal structures G_NODE and G_EDGE are invisible for the user. These data
structures are shown on Figure 6.3.

An edge in a graph always has an associated weight that represents the cost
of traversing the edge. In directed graphs, the edges cannot be traversed in the
wrong direction, it is however possible to define two edges between the same two
nodes having opposite directions and different weight values. This weight value is
not passed to the edge at the time the graph is being established, but the user must
provide a weight function that returns the weight of any edge to the graph module.
This way the graph module can query the weights whenever they are needed and no
unnecessary weights are computed. If the computation of the weights s complicated,
then this feature can save a considerable amount of computing time. Once the weight
is computed, it is stored in the edge structure, so the computation is done only once
per edge. This implies that an edge’s weight cannot change during the lifetime of
the graph.

The module offers procedures for building, changing and deleting graphs and

the graph search algorithm A*.

Data structure :

DATA

G_NODE

LIST

54

Gréph :

LIST \

DATA (;)
A

G_EDGE

DATA

»> G_NODE

D?TA C)

G_EDGE

DATA

> G_NODE

LIST

GRAPH

Figure 6.3: Data structures in the graph module

B

mi] (I EIOI WO W WD BED MO WO ERO0 BN mEM) WE00 O ERR0 WD

bl

55

6.2.8 The “parser” module

The parser module provides a convenient way of reading information from an

input text file. The text in the file must conform to the following syntax:

S = {expression}

expression = keyword [par_list]

par_list = ’(’{parameter ’,’} parameter ')’

keyword = string

parameter = string

string = {char} char

char = A, 02] fat.’z | 0.9 |
),4.)')_)';')'1&)':1

In this syntax description, S is the start symbol, lowercase words are nonter-
minal symbols and characters in single quotes are terminal symbols. An expression
in braces {} can be repeated any number of times (including zero times) and an
expression in square brackets [] is optional. If there are a number of expressions
separated by bars | then either expression is legal at this point.

Examples for legal commands are:

ADD (5, 6, 7, -11.5)
Exit_Program

save&quit (foo.c)

The parser module will first read a user specified source file, parse it according
to above syntax, store the data in a list of expressions and return this list to the
user. The order in the list corresponds to the order in which the expressions are
encountered in the source file. If there are syntax errors, they will be printed on
the screen. The module offers a variety of interface procedures that enables the
user to read the data in a convenient manner. Expressions can be read from the
list sequentially as it is normally done with lists. Lists can also be scanned for the

next occurrence of an expression with a particular keyword. An expression is a

data type (EXP) that also has some procedures associated to it. The user can read

an expression’s keyword string, the number of parameters in the expression and a
| partic;i#r ;Sarrrarrrle{err strmgg]ven l;y irts number in the f)érarheter list. Finally there
are utility procedures that convert a parameter string to a real or an integer number.

This is necessary since all parameters are handled as arbitrary strings.

6.2.9 The “model” module

This module provides a geometric primitive which is useful for modeling of
solids. The primitive is described by two points p1 and pz and a radius r.

It is the object obtained by rﬁoving a sphere of radius 7 on a straight line from
point p; to point pz (a cylinder with spherical caps).

Procedures are provided to read and change the model’s parameters and to

compute the minimum distance between two swept sphere models.

6.2.10 The “graphics” module

This module provides an interface to a subset of SUNcore that allows line
and character drawing in three dimensional space. Colors are used if the monitor
allows and if black and white mode is not explicitly selected. After initialization,
a three dimensional coordinate system is displayed. There afé ﬁrécédures to create
segments — an entity that holds a number of primitives - and others to create lines
and characters at arbitrary locations in three dimensional space.

Other procedures allow the user to insert primitives into a segment and delete
them from segments.

Yet another procedure allows the user to rotate the current picture around
the vertical and the horizontal screen axis by moving the mouse horizontally or

vertically respectively. This mode stops in the current orientation when the middle

mouse button is pressed.

B N W m (T (O (T [l

ML

L

i

mi o w

1

g

The reason for using segments is the segment concept of SUNcore. The SUN-
core segments do not provide any way of deleting single primitives stored in them,
s0 the whole segment must be deleted and reconstructed in order to delete one prim-
itive. This module automatically deletes and reconstructs the SUNcore segments as
needed, but this process is visible on the screen, especially on slow machines. The
segment concept allows the user to split the picture into parts, in order to avoid

reconstruction of the whole picture when a single primitive is deleted.

6.2.11 The “env” module

“env” stands for environment, so this module holds the data about all items
that belong neither to the robot nor to its payload. At initialization, the module
reads the locations of the struts from the input file (see subsection 6.3.2 for strut
position descriptions) and from the CIRSSE interface. Then it automatically tries
to extract tetrahedra and places intermediate steps around the tetrahedra it found.
This process is described in subsection 5.3.3.

Procedures are provided to get models of the struts and intermediate steps
currently in the environment and to add and remove struts. Whenever a strut is
added or removed, all intermediate steps are deleted, tetrahedra are extracted and

the intermediate steps reestablished based on the new set of tetrahedra.

6.2.12 The “robot” module

This module contains a model of a single chain robot with an arbitrary number
of links. The description of the robot’s kinematics, model geometry, joint ranges
and so forth are stored in the file robot .def, so that the files robot.c and robot.h
can be applied for any single chain robot without changes. The robot’s kinemat-
ics are described using Modified Denavit Hartenberg parameters [27]. The module

maintains a set of transformation matrices that represent the transformation from

58

each link to world coordinates. They are derived from the modified Denavit Harten-
berg parameters and the current joint vector and are updated each time the robot
changes its joint vector. The module also maintains a swept sphere model of each
reasonably large link and a picture comprised of a set of lines for each link. The
model and the picture are not automatically updated when the joint vector changes,
since this process is time consuming and not always necessary.

The module provides three procedures to alter the robot’s state. The robot’s
joint vector can be set and a part can be added to or removed from the gripper.

The various readout procedures supply information about the current position
of the link models, the type of a particular link (revolute or prismatic), origin and

axis of the joints, current value and range of each joint and whether the robot is

carrying a payload or not.

6.2.13 The “lpath” module

The path planning algorithm using potential fields as described in section 4.2
is implemented in this module. The user must specify the initial joint vector and
the desired Tgi);i”pdsition in cartesian space and the module will return a list of joint

vectors that describe a path leading there. If this is not possible, it returns a failure.

6.2.14 The “gpath” module

The global path planning algorithm as described in chapter 5 is implemented
in this module. It establishes a list of joint vectors describing a path that leads from
the current joint vector to a goal position defined in cartesian space. It may call the

local path planner several times on the whole task or on part of it.

BRI EEE N

I

Wil

Wiy

i Il Bl |

uil

L

I

59

6.2.15 The “main” module

The main module is responsible for initializing all other modules that require
initialization. Then it checks to see if there is a command sequence in the input file.
If it finds a START instruction, it takes the commands from the input file, otherwise
it calls a CIRSSE interface procedure to read commands. This procedure is the main
means of communication between this program and the higher level coordination
program. Through it, commands are received and paths are returned.

The set of available commands is described below for both input file and

CIRSSE interface.

6.3 Interface to CIRSSE

6.3.1 CIRSSE interface procedures

The communication of this program with other modules of the CIRSSE soft-
ware is handled by dedicated interface procedures. They are marked with the string
so they can be located easily using a text editor or the UNIX command grep.
They all have extensive comments and an example implementation to show their
purpose, but most of them are not actually written, since they depend on how the
communication between the programs is implemented.

In the following, a list of the avaliable interface procedures is given:
e “main”: initialize communication
This procedure is called before any other interface procedure and can be used

to establish the communication channels to other programs.

e “main”: command interface
The program receives commands and their parameters through this procedure.

The following commands can be sent:

— MOVE: initiate a path planning process

60

— GRASP: grasp a strut from the environment

UNGRASP: release a strut to a specified position

UNGRASP_FREE: release a strut where the robot put it

ADD_STRUT: add a strut to the environment

— REMOVE_STRUT: remove a strut from the environment
— JOINTS: specify new joint vector
— VIEW: change orientation of screen display

QUIT: quit program

e “main”: path output

The joint vectors describing the path are sent through this procedure. It is

called once after every successful MOVE command.

“main”: report failure
If a MOVE command cannot be executed because no path can be found, this

procedure is called to report the failure to the coordinator.

“robot™: initial joint vector
This procedure is called once at initialization time to read the joint vector
of the robot. Then the program assumes that the robot follows its path. If

this is not the case, then the joint vector can be adjusted in the course of the

program by sending a JOINTS command.

“env”: initial strut positions

'rl‘ilﬁiﬁsﬁbrx;océdur;e is rcarlrled once at initiraliéarti;)x;”tirinér to read the pbsitiéns of rall
struts in cartesian space. The program will keep track of position changes in
the course of the program if they are caused by the robot. It can be notified

of other changes in the course of the program by using the ADD_STRUT and

REMOVE_STRUT commands.

[(]

LIl

i e Ll Wi WD N WM WEO0 W WEED WDE BRI

S |

61

e “env”: strut length

The length of the struts in use is passed to the program through this procedure.

“env”: strut symmetry
This procedure reads information about symmetry of the struts. A strut is
considered symmetric in this context if it can be added to the structure upside

down. The path planner will take advantage of these geometric properties.

“robot”: robot position

The coordinate frame used to specify the initial strut positions is assumed to
be the world coordinate system. If the robot’s zero frame does not coincide
with the world frame, then the position and orientation of the robot’s frame
with respect to the world frame can be specified here. If the 9 degrees of
freedom robot of CIRSSE is used, this procedure is obsolete. However, if the
6 degree of freedom PUMA robot is used, then the position of the PUMA’s

base frame with respect to the lab’s world frame must be specified here.

“robot”: robot definition
This is the point where the file robot .def is included into the robot module.

All information about a particular robot is stored in this file.

“robot”: calibration
This procedure reads a set of Modified Denavit Hartenberg parameters ob-

tained by some calibration procedure.

“graphics™: display coordinate transformation

This procedure specifies the way the world frame is displayed on the screen. All
three axes of the world frame can be displayed in six directions: up, down, left,
right, pointing out of the screen, or pointing into the screen. This specifies the

initial display which can be changed by user interaction when a VIEW command

62

is sent.

6.3.2 Input file

The 1nput file is an auxxhary input source for the program that can be used for
testing. When the program is embedded in éif{SSE it will not need an mput file, it
w111 receive all mput from the CIRSSE 1nterface procedures However the two input
sources are not excluswe, mforma.tlon ;;a.n be passed to the program by using both
CIRSSE interface procedures and an input file simultaneously. Usually the program
w111 first check the file and then the CIRSSE interface for input. Some concepts
7 are only available through the input file commands since they are not useful in an
embedded system. For instance graphics display can only be activated through a
command in the input file. 7

There are two ways of describing the position of a strut in space. A strut can
be located anywhere in space, for instance in its storage location. In this case a con-
venient description is the position of the strut’s endpoints in cartesian space. This
allows the description of every possible position in space. If we want to describe
the position ofra strut that is part of the structure being assembled, the endpoint
coordinate description is not the most convenient one, since the endpoint coordi-
nates depend on the overall position and orientation of the structure and on the
strut’s position in the structure. It requires some calculation to find the endpoint
coordinates. It is easier to specify the position and orientation of the structure once
at initialization time and then describe a strut by giving the tetrahedron it is part of
and the strut number in this tetrahedron, according to some numbering convention
for the six struts of a tetrahedron. Consider Figure 6.4.

The coordinate system (xo. Yo, 20) is the world coordinate system. Vector
) describes the E)rlgm of the structure expressed in world coordinates. The vectors

r; and rp specify the orientation of the structure with respect to world coordinates.

L

IR

L

iy

63

> y0

x0

Figure 6.4: Conventions for specifying a strut in a structure

64

The coordinate system (x, y, z) is used to specify a tetrahedron in the structure.
The lengths of this system’s unit vectors ex, ey and e, are equal to the length of
the tetrahedra’s edges. Then every triple of integer numbers describes the O point
of one particular tetrahedron. For instance (0,2,2) describes the O point of the
rightmost tetrahedron in the figure (O = p + Oex + 2ey + 2e;). This tetrahedron
also shows the numbering convention used to specify a particular strut in a given
tetrahedron. Thus it is possible to describe a strut fully by giving the four integer
numbers (X, Y, Z, N) once strut length and structure position and orientation have
been specified. 7

In the following, the commands that can be used in input files are listed.
The unit of length is meters, angles are given in degrees. The parameters x1,
yi, z1, x2, y2; z2 will always denote a strut p(;;ition defined by its endpoints
whereas parameters X, Y, Z, N denote arst;urrtjrpiosition defined by its position in
the structure. The first list contains the commands that supply “static” information
to the system. They are read at initialization time; their order in the input file is

unimportant, as long as they do not appear between START and QUIT.

e STRUT (xi, yi, zi, x2, y2, z2)

A strut defined by its endpoints is added to the environment. If necessary,

the strut’s length is adjusted to the current strut length such that the center

stays fixed.

e STRUT (X, Y, Z, N

A strut defined by its position in the structure is added to the environment.

e TETRA (X, Y, 2)

All six struts of the specified tetrahedron are added to the environment at

once.

e STRUTLENGTH (1)

1l Wil S O N0 0 e R W mir u

!

§ R W

65

Specifies the length of the struts.

e STRUCTURE_LOC (px, py, pz, rix, rily, rlz, r2x, r2y, r2z)
Defines the location of the structure with respect to world coordinates. The

parameters are vectors p, ry and rz from Figure 6.4.

e GRAPHICS

Causes the path planning process to be shown on the screen.

e ZOOM (2)

Parameter z causes the display to shrink or expand.

e B&W
Causes the graphics to be displayed in black and white even if the program is

run on a machine with color screen. This is useful for making screendumps.

e ROBOT (px, py, pz, rix, rly, riz, r2x, r2y, r2z)
With this command the zero frame of the robot can be oriented arbitrarily
with respect to the world coordinate system. Vector p denotes the origin
of the robot’s zero frame with respect to world coordinates, r; denotes the

orientation of the robot’s zo axis and rz denotes the orientation of its yo axis.

The second list shows commands that can be used in a command sequence.
This sequence begins at the START command and ends at the QUIT command or at
the end of the input file. The commands in between are executed according to their

order in the file.

e START

Denotes the beginning of the command sequence.

e MOVE (xi, yi, 21, x2, y2, 22, dx; dy, dz)

MOVE (X, Y, Z, N, dx, dy, dz)

66

The program plans a path that leads the payload strut (imaginary or real) to
the mdxcated posmon without collision. The vector d specifies the direction
of approach The path will be planned such that the last few steps of the
path will move the strut in this dlrectxon Thxs direction vector d is stored
and will determine the dlrectlon of start for the next MOVE command. The
end effector will start moving in direction —d and then turn towards the goal

location. The very first MOVE command immediately starts moving towards

the goal location.

e GRASP (xi, yi, z1, x2, y2, z2)
GRASP (X, Y, Z, N)

The strut closest to the position specified is removed from the environment and
grasped by the robot. The path planner will treat this strut as another link.

Recomputation of the set of intermediate steps takes place in the environment

module.

e JOINTS (thetai, theta2, ... ,thetaN)
The robot jumps to the new pose specified by the joint vector. The number
of parameters of thls cornmand s equal to the number of degrees of freedom
of the robot. Future MOVE cornmands start off w1th thls Jomt vector. Units
are degrees for revolute joints and meters for prismatic joints. Note that

" the CIRSSE interface procedure described above requires radians for revolute

joints!

o UNGRASP (xi, y1, z1, x2, y2, z2)
UNGRASP (X, Y, Z, N) -
The payload is released and added to the environment at the specified position.

The user may want to move the strut to a position just short of the goal

and leave the last few inches to a fine motion planner with visual feedback.

il

Wi I

mii

i

n| | Wi m

I

|
|

L

67

However the parameters of this command should be the precise goal position,

so that the path planner has a correct model of the world. All three versions

of UNGRASP also recompute the intermediate steps.

UNGRASP

Unlike the other two UNGRASP commands, this command releases the strut
aﬁd places it in the environment exactly at the position the robot brought it
to. This position might be slightly different from the position given in the

previous MOVE command due to tolerances in the path planning algorithm.

ADD_STRUT (x1, yi, zi, x2, y2, z2)

ADD_STRUT (X, Y, Z, N)

A strut is added to the environment at the indicated position. If the robot
is the only tool used to manipulate the environment, then ADD_STRUT and
REMOVE_STRUT below should be obsolete. However they enable the coordinator
to inform this program of changes in the environment that occurred due to

other reasons.

REMOVE_STRUT (x1, yi, z1, x2, y2, z2)
REMOVE_STRUT (X, Y, Z, N)

The strut closest to the indicated position is removed from the environment.

VIEW

Execution of the command sequence is stopped and the user can use the mouse
to change the orientation of the display. Execution resumes when the user
presses the middle mouse button. This command has no effect if there is no

GRAPHICS command in the file.

QuUIT

Denotes the end of the command sequence.

CHAPTER 7
RESULTS

The performance of the proposed algorithm has been tested in various simulations,
the results are presented in this chapter.

A model of one of the robot arms at CIRSSE was used for all simulations.
This robot is shown on Figure 7.1. It is a PUMA arm with six degrees of freedom,
mounted on a platform with three degrees of freedom. Eight of the nine joints are
revolute, the first joint is prismatic. The axes of all joints are shown in the figure.
The model uses the correct kinematic parameters of the actual robot, however, the
outlines are not to scale.

Figure 7.2 shows the trivial path planning task of moving a strut from an
initial to a goal position. The same scene is shown from different points of view in
order to help visualization of the three dimensional model. The path is displayed
by showing the position of the strut in the robot’s gripper at every iteration. In this
simulation, the direction of start is along the z axis and the direction of approach is
against the direction of the z axis. It can be seen that the program automatically
generates an intermediate goal above the true goal position in order to approach the
goal position in the specified direction. The seemingly unnecessary rotation during
the first few iterations is due to the fact that the program starts rotation towards
the goal orientation only after the distance of the end effector to its goal position
has decreased under a critical value, Before this phase, the end effector orientation
is dictated by collision avoidance and joint range requirements. In this case, the
purpose of the rotation is to move the joints in the wrist towards the middle of their
range.

Figure 7.3 shows the insertion of the last strut into a tetrahedron. This task

involves avoiding a collision with the partially completed tetrahedron. Note that

68

Wi = m Wil W]

(] §

i

I

..........................

Platform
(3 DOF)

Figure 7.1: A robot arm of the CIRSSE testbed

69

RCoAN

position

Figure 7.2: A simple motion task

70

(IO 1 (Tl I

il

mil

, IE _
'l i ”u.\ i I Vi

71

the strut is touching the tetrahedron in its goal position. This is possible because
all repulsive forces are reduced as the goal position and orientation are approached.

The repulsive forces are reduced to zero when
e the strut’s orientation is correct.
e the end effector’s distance to its goal position is small enough.

e the end effector has reached a position such that a motion along the specified

approach direction will lead to the goal position.

The same task is performed on Figure 7.4, but the approach direction is chosen
slightly different (compare the end effector orientation in Figure 7.3). This leads to
a failure when the natural rotation as in Figure 7.3 is attempted; the joint range is
violated. As a consequence, the algorithm performs the task with opposite sense of
rotation, which leads to a large angle of rotation. This case is discussed in section

5.2 and illustrated on Figure 5.2.

Figure 7.5 shows the initial situation of a more difficult problem. The robot
must move the strut to the marked goal position appoaching it in x direction.

The result is shown on Figure 7.6.

-1
(O]
|

W W s om0 MmO eEn W0 m

Figure 7.3: Completing a tetrahedron

wil

Figure 7.4:

An example of a large angle of rotation

74

e

M A
I vx A goal
goal :
Verirerreneaanee X

Figure 7.5: Initial state of obstacle avoidance demonstration

| I B W Ei Wi W MW W B0 W BN mR0 O ER0 Wm0

XA
7 -
0‘/, ’

Iﬂ:lll

i

i

Figure 7.6: Obstacle avoidance demonstration

75

CHAPTER 8
DISCUSSION AND CONCLUSIONS

8.1 Computational Complexity ST

In this section, the complexity of the path p]a.nrnring”a.lgo,rithm is discussed. Due
to their different structure, the local aﬁd the global stage are discussed separately.

The local path planner performs an iteration in three steps: It first finds the
attractive joint vector, which involves finding a solution of the Jacobian equation
as the limiting algorithm. The Jacobian 7irsia 6 by n :tﬁa;trix, where n is the number
of degrees of freedom of the manipulator. The algorjthm involves a transformation
of this redundant system to a nonredundant system with a 6 by 6 system matrix,
as shown in subsection 4.2.6. Thus the actual elimination algorithm takes a con-
stant computing time per iteration, but the transformation of the nonlinear system
involves some matrix multiplications; their complexity is O(n).

The second step in performing an iteration is the computation of the self
collision avoidance vector Qelf- If equation 4.22 is considered and the computing
time for fq is assumed to be constant, then the cqmplexity of gself 1s O(n3).

The third step, the computatioﬁ of the joixit vector Qenv avoiding collisions
between links of the robot arm and obstacles in the environment has a complexity
of O(n*m), where m is the number of obstacles in the environment. This can be
seen from equation 4.21. These three steps turned out to be the limiting parts of
the algorithm for all cases that have been examined.

Another step is the computation of the joint range vector Aqrr, which is linear
in n. However, the computing time for this step is negligible for all n.

The number of degrees of freedom of the manipulator n is not a critical pa-

rameter since it will never be very large. A much more critical parameter for the

76

i mE HE

NN | R W U W E OEDD mM I WED SR W

7

local path planner is the number of obstacles m, even though computing time grows
only linearly with m. A possible solution to this problem is the implementation of a
quick distance check between the manipulator and a given obstacle. If this distance
was large enough, then this obstacle would be ignored in the collision avoidance
procedure. Another method to reduce computing time is the exclusion of pairs of
objects from the collision avoidance procedure that cannot possibly collide. This 1s
typically the case for neighboring links and for collisions between very small links
and obstacles. The small links can normally be included in the model represent-
ing a neighboring link. This method has proven to be very effective and has been
implemented in the current software.

The global path planning stage is based on the A* algorithm, which is a very
efficient graph search algorithm, but it still doesn’t solve the search problem in
polynomial time. So care must be taken to keep the number of subgoals as low
as possible. However, in all but very large cases the local path planning stage is
computationally much more expensive than the graph search.

If the local path planner fails to find a path between two given subgoals,
then the corresponding edge will be deleted from the graph and the path planning
algorithm will be restarted. If we assume that the number of subgoals is roughly
proportional to the number of obstacles, then the number of edges in the graph
grows quadratically with the number of obstacles, since every node in the graph
is connected to every other node. This leads to a complexity of the backtracking
algorithm of O(m?) in the number of obstacles.

Another stage in the global planning context is the selection of subgoals. In
the example of truss assembly, this is done by first extracting the tetrahedra and
then defining the subgoals close to their edges. The complexity of the extraction
algorithm is O(m?) with m being the number of struts. Trhre computing time of this

part proved to be negligible compared to other parts.

78

8.2 Generalization of geometric model

The current implementation of the path planner uses the swept sphere cylin-
drical model to represent ebjects. However, every gedmetric model can be used,
since the path planning algorithm only requires the computation of a distance vec-
tor between any two models. It is also required that the volume of the actual object

is completely enclosed in the volume of the model representing it.

8.3 Experiences with the potential field algorithm -

Potential field methods have the advantage that various soft constraints can
be incorporated by adding up all components of the potential field. However, every
component of the field has a constant factor associated to it and these constants
‘must be carefully balanced in order to obtain good results. This is particularly
important for the attractive field and the obstacle avmda.nce field. If the obstacle
avoidance field is too strong compa.red to the attraction field, then a narrow but
feasible path between two obstacles may not be found. If the obstacle avoidance
field is chosen too weak, then collision avoidance cannot be guaranteed if the step
size is large. |

The step size is defined by the norm of Aq, the incremental joint vector. If
this step size is chosen small, then the local path planning process will be slow,
since the computation time for one iteration is constant in a given environment.
But if the step size is chosen too large, then problems occur when approaching an
obstacle. One step might take the robot from a position with sufficient clearance
to a position very close to the obstacle or even to a collision. A position very close
to an obstacle leads to a strong repulsive force that drives the robot back out of
the field’s immediate proximity, which leads to oscillations in the path, as shown in

Figure 8.1.

A related problem is the choice of the range of the repulsive force (equations

Wil B W WD W MR WD W R MO0 mED W 60

L

mi K ‘ :
INRE R

correct step size

)

oscillations collision

step size too large

Figure 8.1: Step size selection

80

4.17 and 4.18). If the range is very small, then there will be a sudden increase
in the repulsive force as the robot approaches an obstacle. Then oscillations may
occuf even if the step size is small. On the other hand, if the range is chosen too
large, then the repulsive field of a cluster of several obstacles accumulates to an
excessively strong field, which leads to a path with an unnecessarily large clearance
to the cluster. The repulsive field range must be particularly carefully chosen, if
any part of the path lies in tl;e inside of a truss structure. In these cases it may
be necessary to adapt the step size and the repulsive field range depending on the
proximity of obstacles. This has not been tested in the current implementation.
The last parameter discussed in this context is the rfunction that keeps the
joints within their boundaries (see Figure 4.6). If this function permits the joints
to run very close to their boundaries and the step size is large, then the joints may
run out of range. However, if the function keeps the joints far off their boundaries,

then the workspace of the robot is restricted unnecessarily.

8.4 Configurations and singularities

Another component to the potential field could be a field that prevents the
robot from moving close to singularities. The potential field would be a function
of p = det?(JIT). If p = 0 then the robot is in a singular position. The distance
from singularities is related to the dexterity of the manipulator [14] in the sense
that the robot is more dextrous if its pose is not close to any singular position.
Another advantage of avoiding singular positions is that the Jacobian equation is
guaranteed to have a solution. Apart from begin very difficult to implement in an
efficient manner, singularity avoidance has another drawback: it prevents the robot
from changing configuration.

A nonredundant robot normally has several joint} angles in which it reaches

a given end effector position and orientation. Every joint angle corresponds to a

Bl W W om0 WD W

L

AT

Bl

EiGE W m

81

configuration of the robot. A redundant robot has in general infinitely many joint
angles for a given end effector position and orientation, but these joint angles lie on a
number of self motion manifolds in joint space that correspond to the configurations
of the nonredundant robot. The robot can only change these configuration manifolds
by passing through a singularity. Now assume the robot is in a given initial position
that lies in one of the configuration manifolds. It may not be possible to reach a goal
position within this manifold due to joint range restrictions. Then the only way to
reach the goal is to change configuration manifold, so it is necessary to pass through
a singularity. Our algorithm does not force the robot to explore all configuration
manifolds as part of the search process, but it also does not actively prohibit the
robot from changing manifold by driving it away from singularities.

This concludes the discussion of the proposed path planning algorithm.

LITERATURE CITED

[1] Jorge Angeles (1985). On the Numerical Solution of the Inverse Kinematic
Problem. International Journal of Robotics Research, Vol. 4 No. 2, Summer

1985, pp. 21 - 37.

[2] J. Angeles, K. Anderson, X. Cyril, B. Chen (1988). The Kinematic Inversion
of Robot Manipulators in the Presence of Singularities. Transactions of the

ASME, Vol. 110, September 1988, pp- 246 - 254.

[3] Karen Anderson, jbfge Ar;géles (1989). Kinematic Inversion of Robotic
Manipulators in the Presence of Redundancies International! Journal of
Robotics Research, Vol. 8, No. 6, December 1989, pp. 80 - 97.

[4] Elaine Rich (1983). Artificial Intelligence. McGraw-Hill Series in Artificial
Intelligence, pp. 80 - 84.

[5] S. L. Campbell, C. D. Meyer Jr. (1979). Generalized Inverses of Linear
Transformations. p. 251, Pitman; London, San Francisco, Melbourne.

[6] R. K. Mathur, A. C. Sanderson (1990). A Hierarchical Planner for Space
Truss Assembly Proceedings SPIE Conference on Cooperative Intelligent
Robotics in Space, Vol. 1387, R. J. de Figueiredo and W. E. Stoney, Editors,
pp. 47-57.

[7] O. Khatib (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. International Journal of Robotics Research, Vol. 5, No. 1, pp. 90 - 98.

[8] Pradeep Khosla, Richard Volpe (1988). Superquadric Artificial Potentials for
Obstacle Avoidance and Approach IEEE 1988 International Conference On

Robotics & Automation, Vol. 3, pp. 1778 - 1784.

[9] Richard Volpe, Pradeep Khosla (1987). Artificial Potentials with Elliptical
Isopotential Contours for Obstacle Avoidance IEEE Proceedings of the 26th
Conference on Decision and Control, Vol. 1, December 1987. pp. 180 - 185.

[10] C. DeMedio, F. Nicolo, G. Oriolo. Robot Motion Planning Using Vorter
Fields. New Trends in System Theory, Genova, Italy, July 1990.

[11] M. S. Konstantinov, S. P. Patarinski, V. B. Zamanov, D. N. Nenchev. 4
Contribution to the Inverse Kinematic Problem for Industrial Robots. 12th
International Symposium on Industrial Robots 1982, pp. 459 - 465.

Wi MW W el s e .

' EMI

Bl

i

|

n E

LI | (]

(12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

83

Vladimir J. Lumelsky (1984). Iterative Coordinate Transformation Procedure
for One Class of Robots IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-14, No. 3, May/June 1984, pp. 500 - 505.

Andrew A. Goldenberg, B. Benhabib, Robert G. Fenton (1985). A Complete
Generalized Solution to the Inverse Kinematics of Robots. IEEE Journal of
Robotics and Automation, Vol. RA-1, No. 1, March 1985, pp. 14 -19.

Charles A. Klein, Bruce E. Blaho (1987). Dezterity Measures for the Design
and Control of Kinematically Redundant Manipulators. International Journal
of Robotics Research, Vol. 6, No. 2, Summer 1987, pp. 72 - 83.

Shaygan Kheradpir, James S. Thorp (1987). Robust Real Time Control of
Robot Manipulators in the Presence of Obstacles. IEEE 1987 International
Conference On Robotics & Automation, Vol. 2, pp. 1146 - 1151.

Elon Rimon, Daniel E. Koditschek (1988). Ezact Robot Navigation using Cost
Functions: The Case of Distinct Spherical Boundaries in E™. IEEE 1987
International Conference On Robotics & Automation, Vol. 1, pp. 1 - 6.

Bernard Faverjon, Pierre Fournassoud (1987). A Local Based Approach for
Path Planning of Manipulators With a High Number of Degrees of Freedom.
IEEE 1987 International Conference On Robotics & Automation, Vol. 2, pp.
1152 - 1159.

R. F. Richbourg, Neil C. Rowe, Michael J. Zyda, Robert B. McGhee. Solving
Global, Two-Dimensional Routing Problems using Snell’s Law and A* Search.
IEEE 1987 International Conference On Robotics & Automation, Vol. 3. pp.
1631 - 1636.

Yutaka Kanayama (1988). Least Cost Paths with Algebraic Cost Functions.
IEEE 1988 International Conference On Robotics & Automation, Vol. 1, pp.
75 - 80.

Sungteg Jun, Kang G. Shin (1988). A Probabulistic Approach to Collision-Free
Robot Path Planning. IEEE 1988 International Conference On Robotics &
Automation, Vol. 1, pp. 220 - 225.

Brad Paden, Alistair Mees, Mike Fisher (1989). Path Planning Using a
Jacobian-Based Freespace Generation Algorithm. IEEE 1989 International
Conference On Robotics & Automation, Vol. 3, pp. 1732 - 1737.

Toméas Lozano Perez, M. A. Wesley (1979). An Algorithm for Planning
Collision—Free Paths Among Polyhedral Obstacles. Communications of the
ACM, Vol. 22, 10, October 1979, pp. 560 - 570.

84

[23] Tomas Lozano Perez (1983). Spacial Planning: A Configuration Space
Approach. IEEE Transactions on Computers, Vol C-32, No. 2, February 1983,

pp. 108-120
[24] Francis Avnaim, Jean Daniel Boissonnat, Bernard Faverjon (1988). A

Practical Ezact Motion Planning Algorithm for Polygonal Objects Amidst
Polygonal Obstacles IEEE 19838 International Conference On Robotics &

Automation, Vol. 3, pp. 1656 - 1661.

[25] Walter Meyer, Powell Benedict (1988). Path Planning and the Geometry of
Joint Space Obstacles. IEEE 1988 International Conference On Robotics &
Automation, Vol. 1, pp. 215 - 219. ‘ o

[26] Josep Tornero, Greg Hamlin (1990). Spherical-Object Representation and Fast
Distance Computation for Robotic Applications. CIRSSE Report #64,
Rensselaer Polytechnic Institute, Troy, New York, September 1990.

[27] John J. Craig (1989). Introduction to Robotics: Mechanics and Control. 2nd
edition, Addison-Wesley 1989, Chapter 3.

Wi & EEN . oem e

N
\l

Wi |

APPENDIX A

Simulation input file

{ Command sequence

view
{ first strut }
move (1.79, -0.8, 1.0, 0.9, -0.8, 1.0, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 1.0, 0.9, <0.8, 1.0) .
move (0, 0, O, 1, 0.0, 0.0, -1.0)
ungrasp (0, 0, O, 1)
view
{ second strut }
move (1.79, -0.8, 0.9, 0.9, -0.8, 0.9, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 0.9, 0.9, -0.8, 0.9)
move (0, 0, 0, 2, 0.0, 0.0, ~1.0)
ungrasp (0, 0, 0, 2)
view
{ third strut 1}
move (1.79, -0.8, 0.8, 0.9, -0.8, 0.8, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 0.8, 0.9, -0.8, 0.8)
move (0, O, 0, 3, 0.0, 0.0, -1.0)
ungrasp (0, 0, O, 3)
view
{ tfourth strut }
move (1.79, -0.8, 0.7, 0.9, -0.8, 0.7, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 0.7, 0.9, -0.8, 0.7)
move (0, 0, O, 4, 1.0, 0.0, 0.0)
ungrasp (0, 0, O, 4)
view
{ fifth strut }
move (1.79, -0.8, 0.6, 0.9, -0.8, 0.6, 0.0, 0.0, -1.0)
grasp (1.78, -0.8, 0.6, 0.9, -0.8, 0.6)
move (0, 0, 0, 5, 0.0, 1.0, -1.0)
ungrasp (0, 0, O, 1]
view
{ sixth strut }
move (1.79, -0.8, 0.5, 0.9, -0.8, 0.5, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 0.5, 0.9, -0.8, 0.5)
move (0, 0, 0, 6, 1.0, 0.0, -1.0)
ungrasp (0, 0, O, 6)
view
quit

{ Environment info

et mm———————— }

graphics

structure_loc (0.8, -0.1, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0)
strut (1.79, -0.8, 1.0, 0.9, -0.8, 1.0)

strut (1.79, -0.8, 0.9, 0.9, -0.8, 0.9)

strut (1.79, -0.8, 0.8, 0.9, -0.8, 0.8)

strut (1.79, -0.8, 0.7, 0.9, -0.8, 0.7)

strut (1.79, -0.8, 0.6, 0.9, -0.8, 0.6)

strut (1.79, -0.8, 0.5, 0.9, -0.8, 0.5)

strutlength (0.89)
zoom (2.0)

APPENDIX B
Listings of header files

Module alg (linear algebra):

Data types

typedef struct var
{

float %e;

int r, c;

int size;
} VAR;

A variable (matrix, vector or scalar). ’r’ rows and ’c’ columns. 'size’ is rec,
80 the number of elements. e’ is a pointer to a linear array of ’size’ floats.
The order is left to right, ten top to bottom.

Procedurs description

void Init_Vars ()

This procedure initializes the "ALG" module and must be called before doing
anything else.

void Exit_Vars ()

Can be called in order to free all memory space used by the module. Fo function
should be called after ’Exit_Vars’. ’

VAR =New_Var ()

- - o 1 o

Assigns a pointer to an initialized matrix to a pointer variable. Every pointer
variable must be initialized this way before using it.
After initialization the variable is empty (a 0x0 matrix).

BOOLEAB Put (a, b)
VAR =a;
VAR sb;

Puts the value of ’a’ which can be a variable or an expression, into ’b’.
This function must be used for every assignment operation!

VAR *VO (r, c)
int r;
int c;

Returns an r*c matrix with all elements equal to zaro.

VAR »VDnes (r, ¢)
int r;
int ¢;

Returns an rec matrix with all elements equal to one.

86

I

|

VAR »VI (dim)
int dim;

Returns a dimedim unit matrix.

VAR sVuser (r, c, vi, v2, v3, ...)
int r;
int c;
‘rec’ floats;

Returns an rec matrix with user defined contents. The floats in the parameter
list are filled in the matrix from left to right and from top to bottom.
The user must supply rec floats in the parameter list.

Example:
Vuser (2, 3, 1.0, 2.0, 3.0,
.0, 4.0, 3.0); creates

Lo W |
o0
o N
w W
e

1
5
VAR #Vscmult (v, s)

VAR »v;
float s;

Returns ’v’ multiplied elementwise with ’s’.

Example:
[1 2 3] multiplied with 2.0 is [2 4 61.

float Vector_Norm (v)
VAR ov;

Returns the norm (length) of variable v. 'v’ must be a vector, i. e. ’v’ must
have either one row or one column.

VAR sVadd (a, b)
VAR =a;
VAR =*b;

Returns the elementwise addition of variables ’a’ and ’b’. ’a’ and ’b’ must
have the same dimensions.

VAR *Vsub (a, b)
VAR =a;
VAR #b;

Returns the elementwise subtraction of variables ’a’ and 'b’. ’a’ and ’b’ must
have the same dimensions.

VAR *Vmult (a, b)
VAR =a;
VAR sb;

Returns the product of variables ’'a’ and 'b’. The number of rows of ’a’ must
equal the number of columns of ’b’.

VAR sVtranspose (v)
VAR =v;

Returns the transpose of variable v.

VAR sVsolve {a, b, q, success)
VAR =a;
VAR #*b;
VAR »*q;
BOOLEAN esuccess;

Returns the solution of the linear system asxsb. 'a’ and 'b’ must have the
same number of rows. If ’a’ is square, 'Vsolve’ returns the solution, if
one exists (if ’'a’ is nonsingular). If ’a’ has more rows than columns‘

(system is overdeterminad), then ’'Vsolyve’ returns the least square
approximation. If ’a’ has lass rows than columns (system is underdetermined),
then the x minimizing x’Qx (’ denotes the transpose) is returned. Q is the
INVERSE of a diagonal matrix with the elements of vector ’q’ on the diagonal,
thus ’q’ and ’'x’ have the same dimension. If ’q' is NULL, then Q=I

(unity matrix) is assumed and thus the minimum norm solution is returned.

1 a solution was found, ’success’ is set to TRUE, otherwise to FALSE.

VAR »Vinv (a)
VAR =a;

Returns the inverse of variable ’a’. ’a’ must be squared.

int Eb_Cols (v)
VAR =v;

Returns the number of columns of variable ’v’.

int Eb_Rows (v)
VAR =v;

Returns the number of rows of variable ’v’'.

BOOLEAN Fill_Var (v, r, c, num, vi, v2, v3, ...}
VAR »v;
int r;
int c;
int nom;
'num’ floats;

This procedure is used to fill part of matrix ’v’ with user defined values.
It starts filling at the element at row 'r’ and column ’c’ and fills up
from left to right and from top to bottom. It writes 'num’ values into

the matrix. It is the user’s responsibility to supply ’num’ floats after
the ’num’ parameter. If the matrix would overflow over the bottom right
corner, an error occurs and no values are written at all.

float Read_El (v, r, ¢)
VAR ev;
int r;
int ¢;

Returns the element at row ’'r’ and column 'c’ in variable ’v’.

BOOLEAY Write_El (v, r, c, val)
VAR =v;
int r;
int c;
float val;

Writes ’'val’ to the element at row ’'r’ and column ’¢’ in variable ’v’.

VAR sVcut (src, r_src, c_src, r_size, c_size)
YAR s»src;
int r_src;
int c_src;
int r_size;
int c_size;

Returns a piace of variable ’src’. The top left corner of this piece is the
elsment at row ’'r_src’ and column ’c_src’ in variable ’src’. The piace
has ’'r_size’ rows and ’c_size’ columns. An error occurs, if the specified

piece is not part of matrix ’src’.

BOOLEAB Paste (src, dest, r_dest, c_dest)
VAR =src; o

([R

r
‘I

I
I

il L)

| l rror 1

I

VAR =dest;
int r_dest;
int c_dest;

Pastes variable ’src’ into variable ’dest’. 'src’s top left corner goes
to row ’'r_dest’ and column ’c_dest’ in variable 'dest’'. An error occurs
if there is not enough room in ’dest’ to complete the operation.

BOOLEAN Swap_Rows (v, r1, r2)
VAR sv;
int ri;
int r2;

Rows ’r1 and 'r2’ in variable ’v' are exchanged.

BOOLEAN Swap_Cols (v, cl, ¢2)
VAR »v;
int ci;
int ¢2;

Columns ’ci and ’c2’ in variable ’v’ are exchanged.

BOOLEAN Print_Var (v)
VAR ev;

Variable ’v’ is printed to the screen. Print_Var’ doesn’t care about the

screen size, so large matrices may be hard to read.

void Kill_var (v)
VAR »v;

The memory space of variable 'v’ is freed. Pointer ‘v’ is invalid after
’Kill_Var’'.

89

90

Module env (environment):

Procedure description

void Init_Env (source)
LIST »sourca;

Reads the locations of all struts that are present in the environment at
jnitialization tima and the length of the struts in uss. Both input file and
CIRSSE interface are read. Then tetrahedra are extracted and intermediate

steps are generated.

float Get_Strut_Length ()

Returns the strut length.

BOOLEAN Symmetric ()

Returns TRUE if the struts are symmetric in the sense that the endpoints can
be exchanged for assembly. If this is not the case, FALSE is returned.

BOOLEAF Get_Tetra_Pos (xt, yt, zt, nb, pl, p2)
int xt;
int yt;
int zt;
int nb;
Vector spi;
Vector *p2;

Transforms a strut position given in tetrahedron coordinates to cartesian
coordinatas of its endpoints pi and p2. (xt, yt, zt) denote a tetrahedron
in the structure and ’nb’ denotes the number of the strut in this tetrahedron

(1..6).

MODEL *Get_First_Strut_Model (1p)
LIST_EL »elp;

MODEL *Get_Next_Strut_Model (1p)
LIST_EL #+1p;

MODEL #Get_First_Inter_Step_Model (1p)
LIST_EL **lp;

MODEL #Get_Next_Inter_Step_Model (1p)
LIST_EL sslp;

These procedures are used to read the list of strut models and intermediate
step models and are equivalent to the standard list readout procedures

described in the list modulas.

BOOLEAY Add_Strut {p1, p2)
Vector pi;
Vector p2;

Adds a strut to the environment. Its endpoints are at 'pt? and ’p2’°.
Intermediate steps ars deleted, tetrahedra reextracted and intermediate steps

recomputed.

BOOLEAN Remove_Strut (pi, p2, rad)
Vector pl;
Vector p2;
float *rad;

Wil RLG Wi ow

i
b

r'

Removes the strut closest to an imaginary strut with endpoints at ’pl’ and
'p2’. The closest strut is the strut whose center is closest to the center

of the imaginary strut between ’pl’ and 'p2’. This strut’s radius is returned
jn ’rad’. FALSE is returned if there was no strut in the environment.
Intermediate steps are deleted, tetrahedra resxtracted and intermediate steps

recomputed.

MODEL *Get_Closest_Strut_Model (pi, p2, dmin)
Vector pil;
Vector p2;
float *dmin;

Returns the model of the strut from strutlist closest to the position
defined by ’d1’ and 'd2’. The distance is returned in ’dmin’. If there
iz no strut in the strutlist, ’dmin’ takes a negative value, othervise
’dmin’ is the distance between the centers of the struts.

91

Module global:

Constants

#define PI 3.141592654
Data types

#define BOOLEAXN int
#8detine TRUE 1
$define FALSE O

Procedure description

" -

void Warning (procname, nsg)
char *procname;
char *msg;

Prints the calling procedure’s name ('procname’) and a warning message ('msg’)
and returns.

void Error (procname, nsg)
char ¢procname;

char *msg;

Prints the calling procadure’s name (’procname’) and an error message CO'msg’)
and returns.

void Fatal (procname, msg)
char sprocname;
char *msg;

Prints the calling procedure’s name (’procname’) and an error message Omsg?’)
and exits the program with exit code 1.

void Fatal_Malloc (procname)
char sprocname;

Prints the calling procedure’s name (’procname’) and the standard error
message “memory allocation failed" and exits the program.

This procedure is provided for convenience since every memory allocation
must be checked for failure.

It also returns with exit code 1.

£loat Atan2 (x, y)
floar x, ¥:

Like the built in math function atan2, but Atan2 (0.0, 0.0) = 0.0

—
—
=
-

EEN EEW el

EL

[

Module gpath (global path planner applying graph search):

Procedure description

void Init_Path)

Must be called once before calling

'Find_Path’ for initialization.

LIST sFind_Path (path, pi, p2, dir)
LIST epath;
Vector pl;
Vector p2;
Vector dir;

Plans a path leading from the current joint vector found in the robot module
ined using the endpoints of the goal strut ’pl and ’p2’
al is to be approached ’dir’.
The elements are joint vectors

to & position def
and the direction from which the go
The path is returned in list ’path’.

(type VAR).

93

94

Module graph (graph theory):

Data types

typedef struct graph

{
LIST snodelist;
float (sWeight) ();
BOOLEAN directed;

} GRAPH;

The data structure for & graph. snodelist? is a list with all nodes of the
graph. The data type of the nodes is 'G_NODE’ (see graph.c). 'Weight' is

a pointer to 2 function that rsturns the weight of an edge. The graph is
directed if ’directed’ is TRUE, undirected othervisa.

Procedure description

GRAPH sNew_Graph (Weight, directed)
float (sVWeight) (); ’
BOOLEAN directed;

The user must provide the function ’'Weight’

Creates a new graph data structure.
It is declared as

ghich returns the weight of an edge to the graph modulse.
follows:
float Weight (nodei, node2, sdge)

char #nodel, node2, edge;
If the graph is directed, the module expects the weight of the edge going from

'nodel’ to 'node2’. If parameter ‘directed’ is TRUE, then a directed graph is

created.

void Connect (graph, nodei, noda2, edge)
GRAPH egraph;
char #nodel;
char =*node?;
char *edge;

‘nodei’ and 'node2’ ars connected by ‘edge’. Any graph structure can be build

by just using this one procedure. If one of the nodes has been used in a
othervise a

previous call of 'Connect’, then the new edge is added to it,
new node is created automatically. In a directed graph an edge pointing from

‘nodei’ to 'mode2’ is created.

void Connect_All (graph, nodelist, Gat_Edge)
GRAPH »graph;
LIST =#nodelist;
char *(sGet_Edge) ();

This procedure is useful for creating graphs in which every node is connected
to every other node. ’'nodelist’ contains the nodes of the graph and ’Get_Edge’
is a usar provided procedure that is declared as follous:

char sGet_Edge (nodel, node2)

char ®nodel, ®*node2;
This function must return the data associated to the edge betvween ’nodel’ and

‘node2’. This can be a WULL pointer which means that this edge doesn’t have
an sqivalent data structure in the user’s module. In fact, the ’Get_Edge’
parameter can be a NULL pointer, too. This is the case when the edges in the
graph module generally don’t have an equivalent dara structure in the user’s
module. In a diracted graph every pair of nodes will receive two edges

pointing in opposite directions.

-

& | mi

i I

i |

i

|
!

N

void Connect_All_Cond (graph, nodelist, Get_Edge, Condition)
GRAPH sgraph;
LIST =nodelist;
char #(sGet_Edge) ();
BOOLEAR (*Condition) O);

This procedure works like *Connect_.Cond’, the only difference is the
additional parameter ’Condition’ which must be declared as follows:
BOOLEAKN Condition (nodel, node2)
char *nodel, *node2;
Before creation of an edge ’'Connect_All _Cond' will call this function. If it
returns TRUE, the edge is created, othervise it isn’t. This feature is useful

to set up visibility graphs: ’Condition’ must return TRUE if ’nodel’ is visible

from ’'node2’ and FALSE othervise.

BOOLEAN Disconnect (graph, nodei, node2, edge)
GRAPH »graph;
char ®nodei;
char *node2;
char *edge;

This procedure is used to remove a single edge from the graph. ’edge’ between
‘nodel’ and ’'node2’ is removed. TRUE is returned if this edge existed, FALSE

othervise.

void Disconnect_All (graph)
GRAPH sgraph;

This procedure removes all edges from the graph. The nodes remain in the
graph!

LIST »A_Star (graph, Estimate, start, goal, edge_path)
GRAPH egraph;
float (*Estimate) ();
char =start;
char sgoal;
LIST s*sedge_path;

The A-Star algorithm tries to find the optimal path from 'start’ to ’goal’.
Optimal means minimal sum of edge weights along the path.
’Estimate’ is a pointer to a user provided function:

float Estimate (node)

char #*node;

It must return an estimate of the cost to go from ’'node’ to ’goal’. If
this estimate is alvays lower than the actual cost, A-Star will find the
optimal path.
If a path exists, A-Star will find it and return a list of the nodes it
passed. In parameter 'edge_path’ it returns a list of the edges it went
through. The two lists have the same length. The first edge is the edge
between the first and the second node, so0 the last entry in the edge list
is always a WULL. If no path exists, NULL is returned.

void Kill_Graph (graph)
GRAPH =graph;

Deletes the nodes, edges and the graph data structure making ’'graph’
invalid. The user's data for the nodes and edges are of course left intact.

95

Module graphics:

#define
#define
#define
#define
#define
$define

Constants
BLACK ©
WHITE 1
RED 2
YELLOV 3
BLUE 4
GREEX 5

96

] il

Wil

#define GRAY 6

Data types =

typedef struct line
{

Vector pil;

Vector p2;

int color;

int styls;
} LIIE;

i

LINE represents a line on the screen. ’pi’ and ’p2’ are the endpoints,
'color®' can take one of the values defined above and ’style’ is either
SOLID, DASHED, or DOTTED.

typedef struct character

{ =
char c; =
Vector pos; ﬁ
int color;

} CHAR;

CHAR represents a character ’c’ on the screen. ’pos’ indicates its position,
*color’ is one of the colors defined above.

typedef struct seg

{
LIST +linelist; - -
LIST scharlist;

int segnum; -
BOOLEAN active; - —
} SEG; -

SEG represents a segment that contains a number of lines and characters. The o
lines (LINE) are stored in ’linelist’ and the characters (CHAR) in ’charlist’. o
'segnum’ is the SUNcore segment number. ’active’ is TRUE if the segment is =
nonempty and must be included in updates and rotations.

Procedure description

void Init_Graphics (source)
LIST esourcs;

Initializes SUNcore in the current vindov and displays a coordinate system.

Parameter ’'source’ is a list of expressions from the parser. If expression ﬁf
'BRW’ is found, the graphics are displayed in black and white, even on a —
color scresen. This can be useful for screendumps. -

” V t [

‘ '

I£ a '200K (x)’ expression is found, then the display is enlarged or
shrunk according to X.

BDOLEAN Graphics_Active ()

Returns TRUE if SUNcore has been successfully initialized, FALSE otherwvise.

void Exit_Graphics O

Should be called before exiting the program.

void Spin_Graphics O}

Enables the user to rotate the ﬁictura around the vertical or the horizontal
screen axis by moving the mouse horizontally or vertically respactively.
This procedure ends in the current orjentation when the user presses the

middle mouse button.

SEG eNew_Segment ()

Returns a nev segment.

void Kill_Segment (seg)
SEG »seg;

Kills segment ’seg’.

void Update_Segment (seg)
SEG #seg:

Redraws segment ’seg’. This is needed when there are changes in certain lines
or characters in the segment that are not yet reflected on the screen.

void Update_All_Segments ()

Redraws all segments at once.

void No_Update ()

After this procedure is called, the screen is not updated when primitives are
inserted in or deleted from a segment. This is useful when deleting many
primitives at once to avoid repeated reconstruction of the segment.

Updating is turned back on by calling ‘Update. Segment’ on any segment.

LINE sNew_Line (color, style)
int color;
int style;

Returns a new line with given color and style (SOLID, DOTTED, DASHED) .

void Kill_Line (1)
LINE »1;

Kills line °'1°’.

void Set_Line_Pos (1, pi, p2)
LIEE sl;
Vector pi;
Vector p2;

Changes line ’1's position.

void Get_Line_Pos (1, pl, p2)
LINE =1;
Vector pi;
Vector p2;

97

Returns line’l’s position.

void Insert_Line (seg, 1)
SEG e*seg:
LINE »1;

Inserts line ’1’ into segment
vas no previous ’No_Update’.

'seg’ and displays it immediately, if there

BOOLEAN Delete_Line (seg, 1)
SEG #sag;
LINE l;

Deletes line 'l’ from segment ’seg’ and reflects the change immediately, if

there was no previous ’'No_Update’.

CHAR »Hew_Char ()

Returns a new character.

void Kill_Char (c)
CHAR ¢;

Kills character 'c’.

void Change_Char O

CHAR »c;
Vector pos;
int color;
char ch;

Changes position, color and letter of character ’c’.

void Insert_Char ()
SEC sseg;
CHAR *c;

Inserts character ’c’ into segment 'seg’ and displays
was no previous 'No_Update’.

BOOLEAN Delete_Char (seg, c)
SEG #seg; T
CHAR #*¢;

Deletes character ’c’ from segment ’seg’ and reflects the change immediately,

if there was no previous 'No_Update’.

it immediately, if there -

98

gl

Wil

Wi |

Wi

Module Ipath (local path planning with potential fields):

Procedure description

void Init_Local_Path ()

Must be called before the first call of 'Local_Path_Plan’.

void Jormalize_A_Vector (pi, p2, dir)
Vector Ppi;
Vector p2;
Vector *dir;

Makes vector 'dir’ length 1 and orthogonal to the line defined by ’p1’ and
'p2’. *dir’ will remain in the plane defined by the line through 'pi’ and
’p2’ and the line along the old ‘dir’.

BOOLEAN Valid_Strut (p1, p2)
Vector pil;
Vector p2;

Returns TRUE if ’pi’ and ’p2’ is a valid position for an intermediate step.

BOOLEAN Local_Path_Plan (q, pi, p2, 4, path, pict, sag, rot_normal)

VAR *q;
Vector pi;
Vector p2;
Vector d;
LIST spath;
LIST spict;
SEG »*seg;

BOOLEAN rot_normal;

Plans a path using a potential field method. The initial joint vector ’q’
is assumed and the path will lead the (real or imaginary) payload strut to
endpoint positions ’pi’ and ’p2’. The goal will be approached in direction
*d’. The path will be returned in list ’path’ which will contain a joint
vector (VAR) for sach step. List ’pict’ will contain the lines to display
the path and segment ’'seg’ will be used. If 'rot_normal’ is TRUE, then the
angle less than 180 deg will be used to rotate the gripper from its start

to its goal orientation, which is normally better. If it is FALSE, the other

sense of rotation will be used. which involves an angle of rotation of more
than 180 deg.

void New_Start_Dir (dir)
Vector dir;

Must be called before 'Local_Path_Plan’® if thc path must leave the start
position in a particular direction. This direction is AGAINST the vector
'dir’, so 'dir’ is normally the approach vector of the robot’s gripper in

start position.

99

100

Module list:

Data types

typedef struct list_element

{
struct list_element *next;
char sdata;
} LIST_EL;

Elements of type LIST_EL form the chain of list elements. ’next’ points to the
next element in the list, 'data’ points to the user data representad by this

list element.

typedef struct list

{
struct list_element *first, slast;
int length;
char ssindex;

} LIST:

LIST is the main list data structure. ’first’ and ’last’ point to the first
and the last element in the LIST_EL chain. ‘length’ stores the number of
elements currently in the list. ’index’ has a pointer to an array of user
data pointers that allow fast random list access. If an index doesn’t exist,

‘index’ is NULL.

Procedure description

LIST »New_List ()

Creates a new list (allocates and initializes a LIST data structure) and
returns a pointer to it. EER

BOOLEAY Insert (1lst, data)
LIST *1st;
char esdata;

POOLEAY Insert_As_First (lst, data)
LIST »lst;
char =data;

yInsert’ and ’Insert_As_First’ are the two procedures to build a list. ’Insert’
adds the e¢lement 'data’ at the end, 'Insert_as_First’ at the beginning of the

list. Existing indeces are destroyed by both procedures.
BOOLEAN Delete
LIST »lst

char »data;

st; data) T

Deletes element ’'data’ from the list 'lst’. Returns TRUE if ’data’ was found
in the list, FALSEro;hgr'iqc. An existing index is destroyed.

BOOLEAE Is_In_List (1st, data)
LIST »lst;
char sdata;

Returns TRUE ;;4;i§§§):1g,fgund in ‘i;t’, FALSE othervise.

char -Gct_Fir;trflst, current)

L Wil EOE W w0 W W om0 myoom wi [|

REN

g

R
[

" TR
i .

LIST slst;
LIST_EL #scurrent;

char *Get_Next (current)
LIST_EL #scurrent,

1Get_First’' and 'Get_Next’ allow sequential access to the list. A procedure
using these functions typically looks as follows:

void Sequential_Access_Example (1st)

LIST =*lst;
{
LIST_EL *lp;
DATA_ITER esdata;
data = (DATA_ITEM #)Get First (1st, &lp);
while (1p)
{
Process_Data_Item (data);
data = (DATA_ITEM #)Get_Next (21p);
}
}

In this example the list holds elements of type DATA_ITEM. Since both
'Get_First’ and 'Get_Next’ return pointers to type char, a type cast is
necessary in most cases. The pointer variable ’lp’ points to the current
1ist element. It is initialized to the first list element by ’Get_First’
and updated to the next element by ’Get_Next'. When the end of the list

is reached, ’1p’ is assigned WULL, so loop control can be dome using 'lp’.
If a program contains nested loops, it is important to declare a se¢parate
element pointer variable for every loop that goes through a list.

Note that ’1p’ does NOT point to the data alement of type DATA_ITEM, but to
the list element of type LIST_EL that represents this data element!

char *Get_Nth (1st, n)
LIST slst;
int n;

This function is used for random access. If an index exists, the n-th element

is returned very quickly, othervise the function steps through the list
sequentially and thus takes a little longer if ’n’ is large.
n=0 returns the first element. If 'n’ is too large, BULL is returned.

char sGet_This (current)
LIST_EL sscurrent;

returns the data element represented by the 1ist element that ’current’ points

to. ’current’ is left unchanged.

char *Get_Last (1lst)
LIST slst;

Returns the last data element of list ’lst’.

void Build_Index (1st)
LIST »lst;

Creates an array of pointers to the data elements in the list. Once this index

exists, random accesses using function *Get_Nth' become much faster. Any
function that changes the list will destroy the index automatically!

BOOLEAN Append (lst, 1st2)
LIST =lst;
LIST *lst2;

Appends the elements of ’lst2’ to 11st’. The list elements are duplicated in

101

102

this process, so changing 31st2’ after 'Append’ has no effect on ’lst’.
TRUE is returned if ’Append’ was successful, FALSE otherwise.
An existing index of ’lst’ is destroyed automatically!

int List_Length (1st)
LIST »lst;

—

Returns the number of elements in the list ’lst’.

void Empty_List (1st)
LIST »1st;
Removes all list elements from list
Any existing index is destroyed automatically.
Note that the data elements themselves are JOT affected in this pro

'1st’ leaving just the LIST data structure.
cess!
void List_Apply_F (1st, Function)

LIST #lst;
void (sFunction) (O);

Applies the user defined function 'Function’ to all elements of the list ’'1st’.

This function must be declared as follows:

void User_Function (data)
char *=data;

sdata’ is the current data element in the list.

void Kill _List (1st)
LIST slst;

Removes all list elements and the LIST data structure itself, so ’lat’ is
invalid after ’Kill_List’. Any existing index is of course deleted too.

Bote that the data elements themselves are BOT affected in this process!

i m oW =

Sl N W D mn m

1
I
YT

i

[EE R

1

Module model (geometric modeling):

Data types

——— -

typedef struct model
{
Vector pl, p2;
float r;
} MODEL;

MODEL represents a svept sphere geometrical model. Its vol
s 'r’ swaeps when moving from point ’pl’ to point ’p2’

that a sphere of radiu
on a straight line.

Procedure description

e 4 8

MODEL sNew_Model ()

Returns a new instance of a model.

void Set_Model_Parameters (m, pt, p2. r)

MODEL *m;
Vector pl;
Vector p2;
float r;

ume is the volume

Changes all parameters of model 'm’.

void Set_Model_Pos (m, pl, p2)
MODEL #m;
Vector pi;
Vector p2; .

Changes the endpoints of model ’'m’ leaving its radius unaffected.

void Set_Model_Radius (m, 1)}
MODEL *m;
float r;

-—

Changes model ’'m’s radius leaving its endpoints unaffected.

float Model_Distance (m1, m2, pi, p2)

MODEL oml;
MODEL *m2;
Vector *pl;
Vector *p2;

Computes the shortest distance between models ’mi’ and 'm2’. It returns the
distance and the two closest points on the
sphere cylinder (parameters ’'pl’, 'p2?).

void Get_Model_Pos (m, pi, p2)
MODEL om;
Vector #*pl;
Vector *p2;

Returns the model endpoints in ’pl’ and

void Get_Model_Radius (m, 1)
MODEL *m;

line segments inside the swept

103

104

-

float »r,; .
Returns the model radius in ’'r’.

void Swap_Model_Endpoints (m) =

u

MODEL *m;

Exchanges the model’s endpoints.

void Kill_Model (m)
MODEL *m;

Kills model ’m’ (frees its memory space).

I
i | BRI v w11

1R

will

I8
|M|\,

r

r

[

I

Module parser:

Data types

typedef struct expression

char skeyword;
LIST »par_list;
} EXP;

EXP represents expressions in an inpu
keyword and optionally a number of parameters in parentheses, se
by commas. Examples:

keyword

keyword (parameter)

keyword (parameteri, parameter2, parameter3, parameter4)
‘keyword’ points to the keyword string converted to upperc
contains a list of strings that represent the paramaters.

converted to upparcase.

t file. An expression consists of a
parated

ase. ’'par_list’
They are also

Procedure description

LIST *New_Source (fnama)
char fname[];

This procedurs opens the text file 'fname’ and parses it according to the

module’s grammar. If the file doesn
a FULL pointer is returned, otherwise a list of expressions
file is returned.

It is possible to set ’fname’ to WULL. In ¢t
will be returned without error message.

EXP #Get_First_Exp (source, 1p, keyword)
LIST ssource;
LIST_EL sslp;
char *keyword;

EXP »Get_Next_Exp (1p, keyvord)
LIST_EL ==lp;
char *keyword;

'Get_First_Exp’ and ’Get_Next_Exp’ are very similar to 'Get_First’ and
’Get_Next’ in the list module. In fact, if 'keyword’ is NULL, they are
equivalent. If ’keyword’ is a string, then 'Get _First_Exp’ will return
the first expression with this keyword and 'Get_Next_Exp’ will return the
next occurrence of an expression with this keyword from the current point
in the list. The matching is case insensitive. The readout procedures are
compatible to the list module in the sense that a part of the expression
list can be read with the procedures in the list module and th
keyword can be searched from that point using 1Get_Next_Exp’.
keyword is found, BULL is returned and 'lp’ is set to WULL.

char *Get_Keyword (exp)
EXP ®exp;

Returns the upparcase keyword string of expression Jexp’.

int Fb_Par (exp)
EXP sexp;

3t exist or there are syntax errors, then
as found in the

his case, an empty expression list

en a particular
If no matching

105

Returns the number of parameters of expression ’exp’.

char *Get_Par (exp, nb)
EXP #®exp;
int nb;

Returns uppercase parameter string number
s 'nb' = 0. If ’nb’ is too large,

parameter ha SULL is returned.

BOOLEAN Get_Float (par, V)
char epar;
float *v;

Converts string ’par’ inte float ’v’. Returns TRUE if successful,

FALSE otherwise.

BOOLEAN Get_Int (par, v)
char spar;
int v,

Converts string ’'par’ into int v’ . Returns TRUE if successful,

FALSE othervise.

void Kill_Source (source)
LIST ssource;

Kills the source list ’source’.
list itself.

'nb? in expression ’exp’.

Kills all expressions in it and the

106

The first

L WU W

Il

Module robot:

Procedure description

void Init_Robot (source)
LIST #source;

The robot is initialized and oriented according to the ROBOT command in the
input file. If no ROBOT command exists, the robot coordinate system is equal
to the world coordinate system. (This is the case at CIRSSE)

BOOLEAN Joints_In_Range (qq)
VAR *qq;

Returns TRUE if all joint values in ’qq’ are within range. FALSE otherwise.

BOOLEAY Set_Pos_Joints (new_q)

VAR *new_q;
Sets the robot to the pose defined by joint
transformation matrices.

vector 'new_q’ and updates the

void Update_Model ()

Updates the swept sphere models of the links to the current joint vector.

void Update_Picture ()

Updates the wire frame picture of the robot to the current joint vector.
BOOLEAN Is_Revolute_Joint (nb)
int nb;

Returns TRUE is link ’nb’ is a revolute joint, FALSE otherwise. The first
link is link 1.

MODEL sLink_Model (nb)
int nb;

Returns the model of link ’'mb’ or NULL if thers is no swept sphere model of
this link. If the model was not up to date, it is automatically updated.

The first link is link 1.

BOOLEAN Consider_For_Self_Collision (mnbi, nb2)
int nbl; - [
int nb2;

Returns TRUE if link ’nbl’ and link 'nb2’ could collide and thus have to be
considered in the collision avoidance procedure.
The first link is link 1.

BOOLEAN Consider_For_Arm_Collision (ndb)
int nb;

Returns TRUE if link ’nb’ could collide with an obstacle in the environment
and thus has to be considered in the collisjon avoidance procedure.
The first link is link 1I.

Vector Origin (nb)
int nb;

Returns the origin of the coordinate frame of link 'mb’. Origin (0) returns

107

108

the origin of the robot’s coordinate system.

void Axis (nb, origin, dir)
int nb;
Vector ®origin;
Vector =dir;

Returns the axis of rotation (revolute) or the direction of motion (prismatic)
of joint ’nb’. The origin is alsoc returned.

float Joint_Value (nb)
int nb;

Returns the current joint value of joint ’nb’. The first joint is number 1.

void Joint_Range (nb, lover, upper)
int nb;
float =lower;
float supper;

Returns the lowest and the highest possible value of joint ’nb’. The first
joint is number 1.

float Joint_Weight (nb)
int nb;

Returns the weightréf joihf"’nb’ used for solving the Jacobian equation.
High values lead to high velocities of that joint.
The first joint is number 1.

void Grasp_Part (p1, p2, rad}
Vector pi;
Vector p2;
float rad;

Puts a swept sphere cylinder as described by 'pl’ and ’p2’ and ’rad’ in the
robot’s gripper. The positions of the endpoints will change in this process,
but the length of the cylinder will be retained.

void Ungrasp_Part {(pl, p2)
Vector *pl;
Vector #*p2;

Empties the robot’s gripper and returns the last endpoint positions of the
payload. T

BOOLEAN Robot_Carrying ()

Returns TRUE if the robot is currently carrying a payload, FALSE ctharwi;§;

void Set_Pos_To_Payload (m)

MODEL *m;

Sets the endpoint positions of model ’m’ to the positions they would have,
if the model was the payload of the robot.

void Set_Pos_To_Gripper (m)
MODEL #m;

Sets the endpoint positions of model 'm’ to the positions they would have,
if the model was the robot’s gripper.

| o = |] L

MR W om0

i

-

|

Module spec (functions providing CIR

Constants
#define EARTH 0x110070el
#define MARS 0x13004882
#define MERCURY 0x1700c726
#define JUPITER 0x1700cdd7
#define SOL 0x21000411
#define VENUS 0x5100c045
#define NEPTUNE 0x51006ee6
#define MOOXN 0x51001639

Procedure description

BOOLEAN Graphics_OK O

Returns TRUE

BOOLEAN Color 0K O

Returns TRUE if the machine on which the program is

SSE/RAL specific information):

if the machine on which the program is running has a graphics

scrsen and suncore is available.

running has a color screen.

109

Module stack:

Data types

typedef struct stack_el
{
struct stack_el sprev;
char =data;
} STACK_EL;

-

STACK_EL represents an entry of a stack.
entry and ’data’ points to the user data represented b

Procedure description

void Few_Stack (sp)
STACK_EL s#3p; = _

Must

declared as follows:
STACK_EL e=sp;

Initialization:
Wew_Stack (&sp);

be called before using a stack to initialize stack pointer 'sp’

void Push (sp, data)
STACK_EL #esp;
char =data;

Places ’data’ on stack ’sp’.

char *Pop (sp)
STACK_EL =»esp;

Returns the last data entry and removes it from the stack.

char *Read_Top (sp)
STACK_EL =*#sp;

Returns the last data entry without changing the stack.

110

'prev’ is a pointer to the previous
y this stack element.

’sp’ is

m 1

i

Y e

Module vector:

Data types

typedef struct
{
float X, ¥, 2Z2;
} Vector;
Represents a 3x1 vector with elements ’x’, ’y’, and
typedef struct

{

Vector vi, v2, v3;
} Matrix;

Represents a 3x3 matrix w

typedef struct
{
Matrix m;
Vector v;
} H_Matrix;

Reprasents a 4x4 homogeneous transformation matrix.

for rotation in the upper left corner.
the upper right cornmer. The last row is not stored,

[0001].

Procedure description

Vector Vec (x, ¥, 2)
float x;
float y;
float z;

Creates a vector with elements Xx, ¥, 2 and returns

Matrix Mat (vi, v2, v3)
Vector vi;
Vector v2;
Vector v3;

Creates a matrix with column vectors vl,

H_Matrix E_Mat (m, v)
Matrix m;
Vector Vv;

Creates and returns a homogeneous matrix vith matr

Vector Add (a, b)
Vector a;
Vector b;

Raturns the sum of vectors a and b. (elementwise)

Vector Sub (a, b)
Vector a;
Vector b;

)z7_

jth column vectors ‘vi’, 'y2?, and 'v3’.

'm? is the 3x3 matrix

'y’ is the translation vector in

it is assumed to be

it.

v2, v3 and returns it.

ix m and 4th column vector v.

111

112

Returns the difference a-b. (elementwise)

Vector Mul (a, s)
Vector a;
float s;

Multiplies the elements of a with s and returns the result.

Vector Div (a, s)
Vector a;
float s;

- - - - -

Divides the elements of a by s and returns the result.

Vector Neg (a)
Vector a;

Returns the elementwise negation of vector a.

Vector Null_Vector ()

Returns the null vector [0 0 0].

float Dot_Prod (a, b}
Vector a;
Vector b;

Returns the scalar or dot product of vectors a and b.

Vector Cross_Prod (a, b)
Vector a;
Vector b;

Returns the cross product of vectors a and b.

Matrix Dyad_Prod (a, b)
Vector a;
Vector b;

Returns the outer or dyadic product of vectors a and b.

float Length (a)

Vector a; __
———eeme—————————— |
Returns the length (absolute value) of vector a.

Vector Scale (a, len) =
Vector a; -
float len;

Changes the length of vector a to ’len’ and returns the result. é;
Prints an error message if ‘*a’ is a null vector. -

Vector Scale_If_Longer (a, len, limit)

Vector a; .

float len; ;; :

float limit; -

If the length of vector a is longer than 'limit’ them its length is changed -
to ’len’, otherwise it is returned unchanged. =
L

Vector Normal (a, b)

Vactor a;

Vector b;

cvmm—— -
|

113

Returns vector ’a’ projected on a plane normal to vector ’b’.

Vector Center (a, b)
Vector a;
Vector b;

Returns a vector whose endpoint is in the center between the endpoints of the
vectors a and b.

BOOLEAN Parallel (a, b)
Vector a;
Vector b;

——————

Returns TRUE if vectors a and b are parallel, FALSE otherwise.

float Distance_Point_Line (point, line_pi, line_p2, line_result)
Vector point;
Vector line_pi;
Vector line_p2;
Vector *line_p._result;

Returns the shortest distance between ’point’ and the line bounded by the
points 'line_pi’ and 'line_p2’. ’1ine_result’ will contain the point on the
line which is closest to ’point’.

Vector MxV_Prod (m, v)
Matrix m;
Vector v;

Returns the product of matrix m and vector v.

Vactor HMxV_Prod (hm, v)
H_Matrix hm;
Vector v;

Returns the product of the homogeneous matrix hm and vector v. The 4th element
of v’ and the result are omitted and assumed to be 1.

Matrix MxM_Prod (mi, m2)
Matrix mi;
Hatrix m2;

Returns the product of matrices ml and m2.

H_Matrix HMxHM_Prod (hmi, hm2)
H_Matrix hmi;
H_Matrix hm2;

Returns the product of the homogeneous matrices hmi and hm2.

float Det (m)
Matrix m;

Returns the determinant of matrix m.

Matrix Transpose (m)
Matrix m;

Returns the transpose of matrix m.

Matrix Inv (m, ok)
Natrix m;
BOOLEAN =ok;

Returns the inverse of matrix m. If inversion was possible, ’ok’ is set to
TRUE, otherwise to FALSE.

114

Matrix I_Matrix ()

Returns the identity matrix [1 0 0
010
001

]

BOOLEA¥ Plane_Line_Intersection (plane_p,plane_di,plane_d2, line_p,line.d,
t_planei, t_plane2, t_line, distance)
Vector plane_p;
Vector plane_di;
Vector plane_d2;
Vector line_p; _ o
Vector line_d; - -
float *t_planel;
float *t_plane2;
float *t_line;
float sdistance;

Intersects the plane defined by location vector ’'plane_p’ and direction
vectors ’plane_di’' and ’plane_d2’ with the line defined by location vector
*line_p’ and direction vector 'line_d’. If this intersection is possible,
TRUE is returned and the parameters of the intersection point for both
the plane and the line are returned. The two equations for the intersection
point are:

ip = plane_p + t_planel * plane_di + t_plane2 * plane_d2

ip = line_.p + t_line * line. d
If intersection is not possible (line is parallel to the plane) then FALSE
is returned and the distance between the plane and the line is returned in
*distance’.

float Distance_Line_Line (ai, a2, b1, b2, a_result, b_result)
Vector al;
Vector a2;
Vector bi;
Vector b2;
Vector sa_rssult;
Vector »b_result;

Returns the distance between the line bounded by al and a2 and the line
bounded by bl and b2. The points of closest distance on the lines are
returned in ’a_result’ and ’b_rasult’.

Vector Random_Vector (len)
float len;

Returns a random vector of maximum length ’len’.

void Print_Vector (a)
Vector a;

Prints vector a to the screen.

void Print_Matrix (m)
Matrix m;

Prints matrix m to the screen.

void Print_H_Matrix (hm)
H_KMatrix hm;

Prints the homogeneous matrix hm to the scresn.

ey

P,

