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A Finite Element-Boundary Integral Method

for Cavities in a Circular Cylinder

Leo C. Kempel and John L. Volakis

December 22, 1992

Abstract .,j
F

Conformal antenna arrays offer many cost and weight advantages

over conventional antenna systems. However, due to a lack of rigorous

mathematical models for conformal antenna arrays, antenna design-

ers result to measurements and planar antenna concepts for designing

non-planar conformal antennas. Recently, we have found the finite

element-boundary integral method to be very successful in modeling

large planar arrays of arbitrary composition in a metallic plane. Here-

with, we shall extend this formulation to conformal arrays on large

metallic cylinders. In this report, we develop the mathematical for-

mulation. In particular we discuss the shape functions, the resulting

finite elements and the boundary integral equations, and the solution

of the conformal finite element-boundary integral system. Some valid-

-ation results are presented and we further show how this formulation

can be applied with minimal computational and memory resources.
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1 Introduction

Conformal antenna arrays are attractive for aircraft, spacecraft, and land

vehicle applications since these systems possess low weight, flexibility, and

cost advantages over conventional antennas. The majority of previous de-

velopments in non-planar conformal antennas has been conducted experi-

mentally due to a lack of rigorous analysis techniques. Various approximate

analysis techniques are restricted in many respects, including accuracy and

element shape, and are based on planar antenna models.

Recently, we have found that the finite element-boundary integral (FEM-

BI) method can be successfully employed for the analysis of large planar

_:rrays of arbitrary composition [1]. The resulting system is sparse due to the

local nature of the finite element method whereas the boundary integral is

convolutional, thus ensuring an O(N) memory demand for the entire system.

In this report we will extend the FEM-BI formulation for aperture an-

tennas conformal to a cylindrical metallic surface. Both the radiation and

scattering problems will be developed in the context of the FEM-BI method.

In contrast to the planar aperture array, the implementation of the cylindric-

ally conformal array requires shell-shaped elements rather than bricks, and

the required external Green's function is that of the circular perfectly con-

ducting cylinder. In its exact form this Green's function is an infinite series

which must be evaluated efficiently and must also be put in a convenient

convolutional form for storage minimization.

This report presents the FEM-BI formulation, the appropriate cylindrical

shell elements, and the system evaluation strategy which will maintain low

memory and computational load. The cylindrical elements will be chosen

divergenceless while maintaining excellent geometrical fidelity. These ele-

ments will be analogous to the bricks used by Jin and Volakis [1]. Efficient

asymptotic evaluations of the cylindrical Green's function will be discussed.

In addition, the numerical implementation of the FEM-BI method will be

presented along with some numerical results for validation purposes. These

results will illustrate the accuracy of this formulation for the calculation of

cavity eigenvalues and Radar Cross Section (RCS) calculations. Antenna

pattern calculations will be presented in a future report.



2 FEM-BI Formulation

Consider the configuration illustrated in figure 1 where a cavity is recessed

in an infinite,circular metallic cylinder. The cavity walls are assumed to

coincide with either constant p-,¢- or z-planes and we allow the possibility of

radiating elements on the surface of or within the inhomogeneous substrate

which fills the cavity.

The FEM-BI formulation [1] allows the determination of the electric field

present in the cavity due to interior or exterior sources. This method utilizes

the finite element, method to formulate the interior field and yield a sparse

system of equations. This system is coupled to a second set of equations

generated by enforcing a boundary integral equation on the cavity aperture.

Although in general the boundary integral system of equations if full, a ju-

dicious choice of boundary elements allows O(N) storage to be maintained.

The scattered or radiated field is readily calculated from the aperture fields.

The development of the FEM-BI system begins with the vector wave

equation valid in the interior of the cavity where we also allow the possibility

of interior electric (lint) and/or magnetic (_im) sources. Specifically, we

h ave

_TX v 1 _ ¢,_r(p,¢,z) J

-jkoZo.f"(p,¢,z) + V x .r(p,¢,z) ]
(1)

where /_(p,¢,z) is the total electric field, e,(p,¢,z) and _,(p,¢,z) is the

relative permittivity and permeability of the substrate, ko is the free-space

wavenumber and Zo is the free-space intrinsic impedance. Unless otherwise

noted, the e+j_'t time dependency is assumed and suppressed. To generate a

system of equations from (1) we apply the method of weighted residuals

-ko_(p, ¢, _)_(p,¢,z). tP,(p,¢,z)}pdpdCd_ =

4



I_'"'(p'*''-) • _'"' } _ dpd¢[j_,,v × [ _-_-_ - 3kozoJ(p,_,--) • (p,_,z)p dz
(2)

where 1.7¢'i(p,_b,z) are subdomain vector weight functions to be specified. The

substrate is discretized using cylindrical-shell volume elements such as the one

shown in figure 2. The vector weight function coefficients represent the field

at the edges of these elements and the integration volume (t z) corresponds

to the elements which possess the i th edge. The forcing function due to the

interior impressed sources (f'_t,_Ii'_t) is given by

{ [/l)_(p-'';_)].ll_(p,¢,z) J }g., = /_, v× / -jkoZofi"t(p,¢,z) . ITVi(p, dp,z)pdpdCdz

(3)

We recognize (2) as the weak form of the wave equation and upon ap-

plication of a standard vector identity and the divergence theorem [2] (2)

becomes

f. v × _,(p,_,z). v × _(p,_,z)

-k_o_(p, _, z)P.(p,_, z) . T_Z,(p,_, z)}pdpde)dz

-jkoZo _ a(p,q_,z) x fiI(p,d_,z). VV,(p,¢,z)dS = ffi.t (4)
i

with h(p, q_,z) indicating the outward directed unit normal for the surfaces

of the elements associated with the i th edge, Si is the total surface of those

elements, and H(p, _, z) is the total magnetic field. It can be shown that

the surface integral in (4) vanishes for all surfaces except where the surface

corresponds to the aperture. Thus, Si is the subdivision of the aperture

surface associated with the elements which possess the i th edge.

Unfortunately, (4) requires the determination of/t(a, _b,z) over the aper-

ture which increases the required number of unknowns. To eliminate/_(a, _, z)

from (4) we use the integral representation of the magnetic field due to surface

fields

It(a,8, z) = /Ji(a,_b,z)-t-/_(a,C_,z)+



j}okoa /s _( a, c_', z' ) x ff,( a, c_', z' ) . _,o( a, _, 2)d¢' dz'

+a fs h(a, _', z') × _(a, _', z'). v × _,o(_,_, _)d_' dz' (5)

with _ = _ - _', 2 = z - z' and S encompassing the entire surface of the

cylinder. The first two terms are the incident field and the scattered field

from the cylinder with the aperture removed. We shall denote these two

terms by the symbol/qc_l(a, _, z).

The integral equation (5) cannot be readily coupled with (4) because

it involves both the tangential electric and magnetic fields at the aperture.

However, we are free to choose a dyadic Green's function which satisfies the

radiation condition and the additional Neumann surface boundary condition

v × _m_(a,_, _) = 0. (6)

With this condition, the second integral in (5) vanishes and the integration

surface need only extend over the aperture surface. The dyadic Green's

function which satisfies (6) is usually termed the magnetic dyadic Green's

function of the second kind [3]. We may now write (5) as

/_(_,¢,z) = /_,_i(_,¢,_)

+jYokoa [ _(a, dj, z') x ffT(a, _)',z') . _m2(a,_,_.)d¢' dz'(7)
JSa

where S_ indicates integration over the entire aperture.

Upon inserting (7) into (4), we obtain

f j"T x/_(p,_, z) •_7x _(p, _, z)
],",I _,,(p,C,z)

-k_o¢_(p, dp, z)ffS(p, _,z) • l_Vi(p, f3, z)}pdpddpdz

S. x ×
/_(a, _', z')] d49' dz'dc_dz = fin, + f_=t (8)

in which a standard dyadic identity has been used and the forcing function

due to exterior sources is

t'Z"=jZokoa fs IPi(a,¢',z')._(a,¢',z')xHCyt(a,¢',z')d¢'dz' (9)
i



We recognize that (8) has unknowns corresponding to the electric field within

the cavity and on the aperture.

Following the principles of Galerkin's method, the electric field in (8) is

expanded in terms of the same vector subdomain weight functions as was

used for testing, i.e.,

N

E(p,¢,z) = _ Ejl, rb(p,¢,z ). (10)
j=l

In this expansion (interior + aperture edges) N is the total number of un-

knowns oi" edge fields. Since the vector wave equation (1) requires the electric

field to be divergenceless, the weighting functions used in (10) must also be

divergenceless to avoid the use of a penalty term [1] which is required if

this condition is not met (e.g.

aperture field takes the form

node-based elements [4]). By necessity the

where

N

/_(a,¢,z) = _Ej_a(j)_lZj(a,¢,z) (11)
j=l

6_(j) = 1 if j C aperture edge

= 0 else (12)

and the vector weighting function is the same as that used in (10) when

evaluated on the surface. Combining (8),(10) and (11) we obtain the FEM-

BI system

f f V x I'_'j(p,¢,z).Vx I_t,_(p, ¢, z)

£ t

-ko%(p,¢, ¢, :). I,r4(p,¢,:)}pdedCd:

"J-(lc°a)2_a(J)_'(i) is, is [|,I*_(a, +, z)-_(a, ¢,2)×

_.m2(a, ¢,5) ×/_(,, ¢', z')- I'l'5(p, ¢, z)] de' dz'dCdz = f.,_'_'+ f,::_' (13)

in which Si and ,.qj represent the surface elements bordered by the i fh and j,h

edges, respectively. Below we discuss the specific vector weighting functions

for the shell element shown in figure 2.



3 Vector Weight Functions

Traditional finite elements associate the unknown field coefficients (Ej) with

the node field. However, it has been found that such elements enforce non-

physical field continuity at element boundaries since both the tangential and

normal field components are continuous which leads to spurious modes that

must be suppressed with a penalty function [4]. However, edge-based ele-

ments have only tangential continuity and are therefore better suited for

electromagnetics applications where jump discontinuities in the normal com-

ponent is permitted. In addition, edge-based functions avoid an explicit spe-

cification of the fields at corners where tile field may be singular [5]. Various

volume element shapes have been used for finite element applications. Two

of the most popular are: bricks [5] and tetrahedra [6, 7]. Although the later

element is quite versatile, we shall develop a cylindrical shell edge-based ele-

ments since we require geometrical fidelity which is not available with bricks

or tetrahedra.

Bricks are the natural element for discretization of a volume which is

defined by portions of the Cartesian planes. Likewise, cylindrical shell ele-

ments are superbly suited for cavities where the six faces are defined by

portions of the constant p-, 8-, and z-planes. Thus, the cylindrical shall ele-

ments will be analogous to brick elements used by Jin and Volakis [5]. By

inspection, the shell element in figure 2 is comprised of twelve edges which

will constitute the vector weight functions. These weight functions should

satisfy the following properties:

1. subdomain (finite element)

2. IIl,Y,5(p,4_,z)II= a if (p, ck,z)

3. II "'u_(p, _,z)II = 0 if (p,d,z)

4. V. l_t'Zj(p, ¢, z) = O'

E jth edge

E any edge II jth edge

l }_Tj(p,¢, z) will only satisfy this requirement within the volume of the element. These
weighting functions introduce artificial charges on the faces of the element and are not
divergenceless at element interfaces. This is required since these elements do not guarantee
normal field continuity across the element faces.



These conditions are met by the following set of weight vectors

= I IsT(p,_,z) = ff_(p, 4, z_',4t, z_, +)

• ,,(p,_,_) = _2(p,4,_;p_,.,_,,+), _(p,6,_)= _',(p, 6, .-;po,., ..,, -)

_,(p, _, --) _',(p, _, _;p_,.,= --_,-), _'_(p,_,_) = _'_(p,4,_;po,.,_,+)

_'_,_(p,_, _) = ff_(p, _, :; pb,_,., +),

_V4s(p,dp,z) = |,_'z(p,qb,z; pb,bt, ., - ), _(p, _,--) = _'5(p, ¢, _;po,_,., +)
(14)

where IVt_ denote the edge which is defined by local nodes (1,k) which is shown

in figure 2. Each vector weight is represented by one of three fundamental

vectors (one for each orthogonal direction)

_,_(p,_,:;,_,_,,.;,_)_ _po(_-3)(_-_)t_
ah p

(15)

with t = p_-p,, a = _r-_bt, and h = zt-z_. The element parameters

(p_,,p_,q3t, ck,.,z_,z,) are shown in figure 2. We observe that all four of the

requirements listed above are met by (14) with the understanding that these

weight vectors are non-zero only within the element. Interestingly, in order

to satisfy the divergenceless requirement by forcing each component of the

term in the _-directedelement field to be divergenceless, we need the

weight (15). Of course, for very large radius cylinders and small elements,

the curvature of these cylindrical shell elements decreases resulting in weight

vectors which are functionally similar to the bricks used by Jin and Volakis

[5]. We shall now specify the appropriate dyadic Green's function which will

allow us, in conjunction with the vector weight functions given above, to fully

specify the FEM-BI system (13).



4 Dyadic Green's Function

The boundary integral present in (13) requires numerical computation and

an efficient evaluation of the dyadic Green's function, G,,2(a, ¢, 5), is crucial.

This dyadic Green's function may be derived in its eigenfunction form from

a set of cylindrical vector wave functions using the procedure espoused by

Tai [8]. The resulting expression contains an infinite sum of angular eigen-

values and an infinite integration over the axial eigenvalues. It is well known

that the angular eigenvalue expansion for cylinders exhibits extremely poor

convergence characteristics for large radius cylinders [9]. We must therefore

resort to approximate evaJuations of the Green's function which do not pos-

sess the prohibitive computational demand of the exact modal expressions.

As described above, one may readily derive a dyadic Green's function

which satisfies both the radiation condition (by virtue of the chosen wave

functions) and the Neumann boundary condition on the surface of the cylin-

der (6). The resulting modal expression is

= "l + + ;..;..G_ ( a, _b,5)

(16)

where unprimed unit vectors are functions of the observation point (a, ¢, z)

while primed unit vectors are functions of the source point (a, ¢', z') and

CZZ(a'[k'5) = (27r)2n=_ _ ¢¢ \ko] "7 H',,O)(',/)

1 _ r_ (nkz _ H.(2'(7)ej(n__k._,dk.G_'Z(a, ¢,5)
(2_r)_ ,,___z"ooJ-oo \ k2oaT] H'.O)(7 )

(17)

with k o = V/_o_ - k_, 7 = kpa, a is the radius of the cylinder, n denotes the

angular mode number, and k_ is the axial eigenvalue. As stated previously,

these expressions exact a high computational demand especially when the

source and observation point coalesce. We therefore want to recast (17)

10



in someother approximateform which improveasthe radius of the cylinder
increasesand the distancebetweenthe sourceandobservationpoints becomes
large.

Severalresearchgroups have developedin the past such evaluations of
(17)and the most successfulare attributed to Pathak [10],Boersmaand Lee
[11], and Bird [12, 13]. All threeapproximationsutilize Watson's transform-
ation to convert the slowly converging angular eigenvalue representation (17)

into a rapidly converging series over the radial eigenvalue. The Hankel func-

tion and its derivative are approximated using either the Debye expansions

or tile uniform asymptotic expansion [14] and finally the axial eigenva!ue

integral is evaluated via the steepest decent method. These three formulas

differ only in the level of approximation offered. The three formula are listed

in tabular form by Bird [12] where he compared the accuracy of each. In

developing these formula, the following quantities are necessary in describing

the on-surface ray contributions:

1. Geodesic path length (s = _/(a_)+ 52)

tr.j c ory(0=,o.-'

3. Approximation order (q = kos)

and in these _ = ¢ or _ = 2_" - ¢ depending on which path as illustrated in

figure 3 (the short or long) is used.

Boersma and Lee [11] employed approximate expressions from a Debye

approximation of the Hankel functions and a first-order evaluation of the

axial wavenumber integral to obtain

a=(., _,_) ~ &q_-j_o'f,(_o,=O+ q(1-q)(2- aco_=O))v(Z)
2rr (

r11 2 (_ 2 2_4c0s20)]}-qj3v' (t3) [--_cos 0 + q + 5tan 0

jko -jko_ {2rcqe sin0cos0 (1-3q(1-q))v(_)

_1 187 }+q/3v'(j3)[_tan'O 4÷q(64 _scc20)]

11



G_,(a,_,5 ) .., jko -jko_{ (sin20 q)(2 3sin:O))- 2---_-qe + q(1 - - v(9)

+q [sec20(u(t3) - 7(/3)) + /3 (v'(/_)(3tan20 _ll.._sin 2\0)

,1'(_)_2_c_0+_ '(_)q (3 _ t'_°+ 16-_i,,_0))1 }

(18)

Pathak's expressions are based on a uniform asymptotic expansions of the

Hankel functions and a first-order evaluation of the axial wavenumber integ-

ral. His results are

G_(a'¢'5) "" jk°qe-Jk°_{27r (c°s20 +q(1- q)(2-3cos_O))v(/3)}

G¢_(a,(_,5) ,-_ Jk°qe-Jk°_sinOcosO{_ (1-- 3q(l -- q)) v(/3)}

G¢¢(a,¢,5) ,._ Jt'°qe-Jk°_{_ (sin_O+q(1-q)(2- 3sin20))v(/3)

+q[_o (_(_)- v(_))]}
(19)

Finally, Bird [12] used higher order terms from the uniform asymptotic for-

mulas and a second-order evaluation of the integral to obtain

G_(a,¢,5) .,_ qe-Jko • (cos20+q(1-q)(2-3cos20))v(_3)

"t-q[ (_2sin20 - 5)t)(/_)..ji - (_ 17'3/n20"_36 ] 'Ol(/_)

=1(., _,_o + ,_(_)+_.4

Jk°qe-Jk°_sinOcosO{ (1 - 3q(1 -q))v(_)

+q[ (_sec20_ __2) v(j3) + (17 28 2_\36 .-_sec O) v,03 )

12



jkO2_rqe-i_°s{ (si,_20 + q(1 - q)(2 - 3sin20)) v(/3)

+q[(u(/3)_v(/3))sec20+ (8tan_O _31 2 \--_sin 0/v(_3)72 }

+ (17si,,20- 43lan20"] v,(/3)
\36 45 ]

2

[ cos20 ]
where _ = ks t_J ' In (18)-(20), _,(_) and v_(_) represent the soft and

hard surface Fock functions, respectively, while u'(/3) and v'(/3) denote the

first derivative of the zeroth order surface Fock functions. These functions are

characteristic of the creeping waves on a circular cylinder and are discussed

in detail by Logan [15].

We will consider only the two direct path contributions from the creeping

wave series which are shown in figure 3. Accordingly, the ray parameters

given above depend on which direct ray contribution is being computed.

Bird [12] has concluded that his expressions (20), which include terms up to

O(q -2) are the most accurate throughout the full range of _ and 5 except

when s is very small or the observation point is in the paraxial region of

the source. In this region, the formula given by Boersma and Lee (18) are

most accurate since the Debye approximation used for the Hankel function is

well suited for the paraxial region and O(q -a) terms have been retained. A

notable exception to this conclusion occurs when the cylinder is sufficiently

large while the aperture is small. In this situation, the aperture appears

to be a tio]e in a planar metallic screen and the formula given by Pathak

(19) turns out to be the most accurate. Inspection of (18)-(20) reveals all

three approximate expressions include the free-space dyadic Green's function

terms up to O(q -2) modulated by a surface Fock function whereas Bird's

as well as Boersma and Lee's formula contain 'extra' terms. These terms

are not present in the case of a metallic screen and thus provide reduced

accuracy when the aperture looks planar. However, for cavity configurations

where curvature is considered, Bird's conclusions should be valid. Therefore,

13



we shall use Boersma and Lee's formulas (18) if Icos01 _< 0.1 or s _< 1A.

Otherwise, Bird's formulas (20) will be used. The derivation of (18),(19) and

(20) is described in [11],[10] and [13], respectively.

5 Numerical Implementation

In the preceding sections of this report, we described the vector weight func-

tions and dyadic Green's function appropriate for the solution of (13). Below

we now explicitly develop the admittance matrix and excitation vector entries

necessary to solve (13) for the electric field. Once the unknown field is de-

termined, engineering quantities such as cavity eigenvalues, RCS and antenna

radiation patterns may be determined.

We may write the N equations implied by (13) in terms of N unknowns(Ej)

as a matrix equation

(21)

where [.4] is a very sparse N x N symmetric matrix, [_] is an Nap x Nap

square full matrix, the Nap x 1 column vector {E_ p} denotes field values on

the aperture edges, the Nv x 1 column vector {Ej n_} is field values on interior

edges, and the total number of unknowns (N) is the sum of the free aperture

edges (Nap) and the free interior edges (N_). A free edge is any edge which

is not tangential to and on a metallic wall since such an edge is known to

be associated with a null field due to the natural boundary condition on the

metallic wall. Hence, it is not included as a system unknown. The Nap x 1

column vector {f[_t} is the forcing function attributed to an incident external

field (9) or impressed sources on the aperture (3) while the Nv x 1 column

vector {f["} is due to the impressed sources within the substrate (3).

5.1 Matrix Assembly

The sparse nature of [.4] is revealed upon inspection of (13). Since the edge

vectors are non-zero only within the elements which possess that particular

edge, the volume integral is identically zero unless both the source and testing

14



edges are within the same element. These matrix entries may be written as

1,,
Aij = ---I]t )ii _.: .(2)ij (99)-- Ko(.rlst _

tlr

where we have assumed constant material properties within each element

with eT and tLT denoting the relative permittivity and permeability of the

element. The subscripts (i,j) indicate the row and column of the matrix

and are related to the global edge numbers. Since each edge may belong

to more than one element, the matrix entry Aij is computed by adding the

contributions for each element which have both the i th and jth edges. The

auxiliary terms I!_ )ij and fl2)ij-st are defined by

fv,

i(2)ij Iv.ot

V x |_'_(p,¢,z;_j,¢j,_j,_j). V x I.l,_(p,¢,z;_i,¢i,i'i,_,)pdpdCdz

" • _ -." ¢,,_,,._,)pdpdCdz (23)ff_(p, ¢, _-;Pj, 5j, _j, _j)T._,,(p,¢,._,p,,

with (s,t) E {p, ¢, z} indicating the direction of the source and test edges, re-

spectively, while the weight vectors are given by (14). Since the fundamental

weight vectors (15) have orthogonal orientations and (23) is symmetric with

respect to the source and test vectors, I}) ) need be determined for six com-

binations of (s,t) and l}t_) need be determined for three such combinations.

These integrals may be evaluated analytically upon performing the vector

operations indicated in (23).

In addition to [A], we must also evaluate the entries of [G] which includes

all the boundary integral contribution to the FEM-BI system (13). The

entries of [G] involve the integral

Gij ( ]%a)2 /s, Js Wt( a, ¢, z; Pi, (}i, z_i,si ) "

•W_(a,¢',z';hj,4j,s_,_)d¢' d_'dCdz (24)

which unfortunately cannot be evaluated analytically due to the presence

of the Green's function. From an inspection of the approximate Green's

function formulas (18)-(20) we observe that ;_m2(a,(_,5) becomes singular

15



as the sourceand observationpoint coalesce.When thesepoints are close,
a reasonableapproachfor large radius cylinders is to replace Gm_(a, ¢, 5)

with the metallic screen Green's function whose singularity has been Ireated

previously in the context of this integral [4]. Accordingly, we use the following

boundary integral when the source and test edges are either in the same or

some adjacent element

Gi.i

•1,1:5(a, ¢', z'; _j, Cj, _.j, gj)d¢' dz'd¢ dz (25)

where

[_o(a, qS,2) = 7+ _ _ (26)

with R = IF- 7'[ indicating the distance between observation and source

points and 7 = :_k + _ + kk. Upon use of a common vector identity and the

divergence theorem [4], we have

27r _l/t(a,¢,z;_i,¢i, Si,_i).7.I_/_(a,¢',z';_j,¢j,_j,kj)d¢'dz'dCdz
i

v. ×
, , _ - c-jkR ,

(27)

This form of the boundary integral may be readily evaluated even as R

vanishes by employing the regularization procedure used by Jin and Volakis

[4] . The asymptotic dyadic Green's function used here consists of two direct

interactions as shown in figure 3. We may use the planar approximation

(26) for the short path contribution When the distance between the source

and test elements is small. The asymptotic formulas are always used for

the long path contributions, i.e. interactions between distant elements when

curvature effects are likely to be prominent.
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Explicit formulas for the computation of the admittance matrix entries
have beengiven abovewhich may be readily implemented. The [A] matrix
may be consideredthe finite elementportion of the system while [G] is the
boundary integral contribution. The matrix [A] is very sparseand its entries
may becomputedfrom analytical evaluationsof the integrals (23). Although
the [{_]submatrix is generallyfull and its entriesmust becomputednumeric-
ally using for example two-point Gaussianquadrature, considerablestorage
and computation economyis possibleby utilizing a CG-FFT type of solution
procedure. The convolutional kernel of the dyadic Green's function makes
this possible(17). The computation of the forcing functions in (21) must
now be addressed.

5.2 Excitation

Two principal types of excitation are found in the FEM-BI system (21). One

is the excitation due to internal sources (possibly on the aperture) when the

radiation is being considered. The entries for the resulting column vector

{ffnt} is given by (3) and require the specification of the impressed currents

(tint, _li,_t). The second type of excitation is due to external sources which

are non-zero for scattering problem computations. This excitation column

vector {ffxt} are given by (9) which requires the surface magnetic field (/_cul)

when no aperture is present. This later excitation will now be examined

assuming plane wave incidence.

Circular cylinder scattering is one of the few exact solutions available in

electromagnetics. Traditionally, the field scattered by a cylinder due to plane

wave incidence is expressed in modal form. Assuming that the incident field

is given by

" i¢-jkoE' = _ (k,._

g; = × e;)e

= _o [#i sin o cos Oi - $i cos a - k sin c_sin Oi] ejko[psinOi cos(¢-di)+z cosOi]

(28)

where (0i,¢i) indicate the direction of incidence, c_ is the polarization angle

where _i = cos a0 i + sin o¢ i, and }_ is the free-space intrinsic admittance.

The total surface field

H_Yl(a,¢,z) = Hi(a,¢,z) -I- g_;(a,¢,z) (29)
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is given by

.9 .sinoz jkocosO, z _-_ [ e jn({+¢-6')H_Yt(a'f'z) = 3-')°-_'oae ,_=-_o n'_O)(koasinOi)

H_Ut(a,¢,z ) = _9),o e .iko_°s°'* _-_ [ cosa" rckoa sin Oi ,_=-o_ H_2)(koa sin Oi) k

n sin acosOi ] dn({+¢_¢,)

J koa sin Oi II',_(2)---(koas-'---in Oi)]
(30)

These expressions may be computed by summing only a few terms of the

series if koa sin 0i is small. However, as this parameter becomes large (e.g.

for large a and 0i _ 90°), asymptotic evaluations similar to those used for

the dyadic Green's function must be applied to (30) to maintain computa-

tional economy. Utilizing Watson's transformation and Fock theory [9] in

connection with (30) we find

[t_ yl

tt_ yl

2

_}2sin o_sin OieJko¢osO,* E e-.iko_,si.o,¢p [g(O)(m(I)p) ]*
p=l

2 •

E -J oo :n0,o.
j2Yo cos a koa sin 0i

p=l

-to sin c_ cos Oid k°c°_°_z _--_(-1)Pe -jk°a_in°'¢" g(°)(m@p)
p=l

rn oig(1 ) )]*J koasin (rn_p
(31)

1

in which (Ih 3. [_]g ,*,- _ -(¢-_), ¢, = (¢-¢_)-_ =- -- 7' m , and the

indicates complex conjugation. The appropriate Fock functions are [15] 2

j t e.ff t

g")(_) - v_ f_ w-_ d_

jt ej(t

f(O(¢) _ v _ fr w---_ dt (32)

_Logan uses the e -j'ot time dependency in the definition of these functions requiring

the complex conjugation in (31)
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wheretlle Fockform of the Airy functions may be written in the more familiar

Miller notation w,(t) = v_[Bi(t) + jAi(t)] and the integration contour is

given by Logan [15].

The asymptotic formulas are quite accurate compared to (30) except when

¢ _ ¢i. In this region, Goriainov [16] derived the following more accurate

expressions from Fock theory

-_ sin c_sin 0;eJk°c°s°'*{ e -jk°asinOiol [9(0)(?-/1¢1)] *

+_jkoos;.O,cos(,-,,) [a(-,_ cos (¢- ¢,))]" }

IN 2 cos Oi z ! *j2:_.;cos_l,,oasinO_;_o -_,,oO,_°o,,,,,[s(O)(m_,)]

+eJkOaSi,,o, co,(¢-_,)[F(-rn cos (¢ - @))]* }

+}'osin o cosOieJkoe°sO'z {e-jkoasinO'e_, [g(O)(rngPl)

m )]-J koa sin Oi9(0(m_1

__jko_s_.o,_o_(_-_,)[a(-_ cos(¢ - ¢_))

" G(')(-m cos(¢ - ¢;)]'}J koa sin Oi
(33)

with [15]

.£

F(O(_¢) = f(O(_)eJ£_ (34)

These surface field expressions may now be used to efficiently calculate

the entries of the column vector {ffft} via a numerical evaluation of (9). In

particular, the modal series (30) is used when koasinO; <_ 10 and either (31)

or (33) for koa sin Oi > 10 as appropriate. We note that the unit vectors in

(9) and (28) are not the same since the former depend on the integration

variable (¢') while the latter depend on the incidence angle (¢;). Thus, the
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excitation integral (9) is

f,_' = jZo(ka) /s cos(¢' - ¢,)Vi_(a,¢',z') .
i

[SH;Ut(a, ¢', z') - qS'HCUt(a, ¢', z')] de' dz' (35)

6 Engineering Quantities

The FEM-BI system (21) has now been fully specified and either a direct or

an iterative solution of (21) for the system unknowns {Ej} may be applied.

Once the expansion coefficients have been determined, we may calculate use-

ful engineering quantities such as cavity eigenvalues, RCS and radiation pat-

terns.

6.1 Cavity Eigenvalues

One of the uses of the Finite Element Method in eIectromagnetics which has

become popular recently is the calculation of cavity resonances numerically.

Often analytical determination of the cavity modes is not possible if the cavity

has an odd shape or is filled with an inhomogeneous material. Chatterjee et

a/.[7] have shown that edge-based tetrahedral finite elements are well-suited

for computing cavity eigenvalues. These elements are able to model a wide

range of cavity shapes and material filling.

Likewise, the cylindrical shell elements introduced in this report are ideal

for the calculation of modes present in any cylindrical cavity which does

not intersect the z-axis. For eigenvatue calculations, the cavity aperture is

covered with metal which closes the finite element mesh, implying [_7] = [0].

Therefore, the eigenvalues may be computed by setting the interior portion

of the system (22) equal to zero and identifying the eigenvalues as I = ko2

= a [e_I_] ,ij] {Ej} (36)
I_r J

We recognize (36) as a generalized eigenvalue problem where A denote the

eigenvalues of the cavity. These eigenvalues may be determined directly or

by exploiting the inherent matrix sparsity, Lanczos method may be used.

Such a solution of (36) yield the resonant fields {Ej} (eigenvectors) and

corresponding wavenumbers (eigenvalues).
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6.2 Far-field Evaluation

Two of the most important applications of the formulation presented in this

report is the calculation of the cavity's radar cross section (RCS) and the

radiation pattern due to sources placed within or on the aperture of the

cavity. In this section, we will describe far-field calculation due to equivalent

sources on tile aperture. This will entail a similar analysis as was performed

for the excitation fields.

We begin with the integral representation of the scattered magnetic field

in terms of the aperture fields. We have,

=

[fi(a, ¢', z') × E(a, ¢', z')] d¢' dz' (37)

with (r,0,¢) indicating the observation point in spherical coordinates. When

the observation point is very far from the cylinder, the dyadic Green's func-

tion has the asymptotic form

c-jkorI

[G°'_O¢' + G°_[L_ + G¢¢'[/)¢'] (38)

where unprimed unit vectors are functions of the observation position while

primed unit vectors are functions of the integration point in (37). The com-

ponents of this asymptotic Green's function are determined by a mode match-

ing procedure

GO ¢ _ j 2]¢ o cos 0 ejkocosO z n e3n(___t_{4__ ¢ ))

(koasin E,=-_ n, _tcoasinO)

J 2dk°¢°_°_' V"Z., , 1 . 'GO._ .._ e3n(7+(¢-¢ ))
(2rr) 2 a .=__ H:(2)(koasinO)

G¢e j 2 , oo 1.._ c jk°c°sOz c jn({+(¢-¢')) (39)
(2_) 2 as-inO ,_=_¢¢_-"H(_2)(koasinO)

As one might expect, these series converge rather slowly for large koa sin 0.

They must therefore be recast in another form by employing Watson's trans-

formation and Fock theory as described before. We have,

GO¢ kocosO , 2 [ rn ogO) )]""" arc dk°_°'°_ _-"(--1)Pe-Jk°_'_i"O¢" g(°}(rn@P)- jkoasin (rn@p
p=l
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2

Go z ]%sinO . cos0z I e_jkoasinOOp [ ]*
47r

p=l

G *¢ _-' ,/122 . , 2 [ ]"2aTr sinO eJk°¢°s°z __, e -jk°asinaep f(°)(m(I)p)
p=l

(40)

where the appropriate Fock functions are given by (32).

region ¢' _ 5, the formulas attributed to Goriainov [16]

GO4

G Oz

G¢¢

As expected in the

 ocos0{ [ m~ 4_r eJk°_°_°" e-Jk°_si'°*' g(°)('n¢l)-Jkoasin ) -

m j,}dko_0_o_(_-,') a(O)(_mcos(¢ - ¢')) - j koasinoGO)(-mcos(¢ - ¢'))

kosinO e./ko¢O.0,'{ e-jkoasinO'$1 [ O( )]*
~ g() m¢1 +

4_

eS_oo_n0cos(*-*')[a(0)(_mcos(__¢))]"}

,{ [ ].... 2a_rsinO ejk°¢°s°z e -jk°asinO¢l f(O)(m_pl ) +

ejkoasinOc°s(¢-¢') [F(0)(--TT/COS (¢- (_'))]" } (411

are most useful. The far-zone scattered field can be computed numerically

by using either (39),(401, or (411 in (37). For the scattering problem, RCS is

most often the quantity of interest. Once the far-zone magnetic field (37) is

computed, the RCS is given

I/_=(_'°' ¢)1 (42)
a(O,¢) = lim4_rr2]fI'(r,O,¢)

7 Numerical Results

The preceding section of this report presented several engineering quantities

of interest: cavity eigenvalues (resonant modes), RCS and antenna pattern

calculations. We will now present some preliminary results as a means of

validating the numerical implementation. In particular, we shall compare
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tile numerically computed mode wavenumbers to the analytical solution for

air-filled cavities. We shall also present some preliminary comparisons of

RCS calculations with known results. Antenna pattern calculations will be

deferred to a later report.

7.1 Resonant Wavenumbers

An important cavity characteristic is its resonant frequencies. These may be

determined analytically from the eigenvalue series solution of the wave equa-

tion for simple geometries. For example, if an air-filled rectangular cavity is

considered, the resonant wavenumbers may be determined from the charac-

teristic equation. Such a cavity is shown in figure 4a. Likewise, the resonant

wavenumbers of a cylindrical sector cavity (see figure 4b) may be determined

from its characteristic equation. The dimensions of the cylindrical sector cav-

ity may be chosen so that this cavity is equivalent to a rectangular one which

then requires that the resonant wavenumbers be identical. This was done for

a equivalent rectangular cavity with dimensions: a = 0.25 cm, b = 0.5 cm,

c = 1.0 cm. The following table illustrates the capability of the presented

formulation to numerically compute the first five resonant wavenumbers

mode computed

TM,,o 7.441

T Eo ,, 7.908

T E_o, 7.928

T M,,, 8.562

The mode number corresponds to the equivalent rectangular cavity and the

same is true for the exact wavenumbers. The the computed wavenumbers

were determined by solving the generalized eigenvalue problem (36) and we

note that the percent error is comparable to the error reported using bricks

to discretize a rectangular cavity [7].

A cylindrical sector cavity is shown in figure 4b. We have compared the

exact resonant wavenumbers with computed results for a cavity where Pb "=

5 cm, p_ = 4.75 cm, c_ = Cr - ¢1 = 5 °, zt = 0.5 cm, and zb = 0.0 cm in the

following table of the first five modes.
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mode exact

TElll

T E1ol

TE112

TM11o

TMll_

9.695

14.051

14.575

14.575

15.872

computed ]error

9.856 1.66

14.283 1.65

14.816 1.65

15.539 6.61

16.134 1.65

Again the percent error is within the expected bounds. The exact resonant

wavenumbers of a cylindrical shell (see figure 4c) may also be found if the

cavity is filled with a homogeneous material. For a shell where p_ = 1.0

cm, pb = 0.9 cm, zt = 1.0 cm and zb = 0.0 cm the comparison between the

calculated and exact wavenumbers are given in the table below.

mode _ computed

TMloo

TMno II 6.393

TE,,I II 6.428

TM,2o II6.814

TE121

6.450

6.557

6.608

6.713

6.733

7.2 Scattering

The FEM-BI formulation has been shown to provide an excellent tool for

computing the scattered field attributed to a cavity recessed in a ground

plane [4]. This report presents an analogous method when the cavity is re-

cessed in an infinite,metalllc circular cylinder. We have shown that the finite

element method may be used to numerically calculate interior resonances

for closed cavities. We now wish to validate the proposed formulation for

scattering calculations from an open cavity due to plane wave incidence. Un-

fortunately, we currently do not have a suitable experimental or numerical

data to determine the accuracy of this method. However, for small cavities

embedded in a large radius cylinder, we expect our results to compare quite

favorably with a similar method which was formulated for planar structures

[4]. Below, we perform such comparisons for air-filled cavities.

Comparisons have been made between a cavity recessed in a cylinder such

as the one shown in figure 1 and an equivalent cavity in a metallic plane. First

we consider the cavity whose dimensions are w x l x d = 2A x 2A x 0.25A
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cavity. The azimuthal width is given by w = aA¢, where a is tile cylinder

radius in wavelengths and A¢ is the azimuthal angle subtended by the cavity.

The axial length (l) and cavity depth (d) are normalized by the wavelength.

The incident wave is given by (28) and we will consider only TM polarization

where a = 0, and consequently E¢ = 0. Figure 5 illustrates the comparison

of the scattered fields for such a cavity in a cylinder with a = 20A and

a similar cavity in a ground plane for normal incidence (0i = 90 °, Oi = 0°).

Additional bistatic patterns are shown in figures 6 and 7 for oblique incidence

with (0i = 45 °, ¢i = 0 °) and (Oi = 20 °, ¢i = 0°), respectively. In all of these

three figures, the azimuth observation angle is ¢ = 0 ° and the elevation angle

(0) is allowed to vary. Figure 8 is a backscatter calculation of the same cavity

for fixed ¢ = 0 ° and varying 0. Finally, we repeat these calculations for a

w x I x d = 2A x 0.5A x 0.25A cavity in figures 9-12. Clearly the two solutions

are in excellent agreement.

8 Future Work

In this report, we have presented the formulation and preliminary validation

of a FEM-BI method suitable for cavities recessed in a circular cylinder.

Some validation of this formulation was presented for the special case of

a large radius cylinder. However, we are actively seeking validation data

where the curvature of the structure has a prominent effect on the scattering.

Such validation data will either be found by measurement or comparison

with another numerical solution. Such a solution will most likely be for an

groove in a cylinder which will necessitate our consideration of a long narrow

cavity and normal incidence only. Comparisons with curved cavities will help

in determining which asymptotic Green's function formula (18)-(20) is best

suited for these calculations. It will also aid in the identification of the source

causing the difficulties with the other principal polarization. Inaccuracies

using Pathak's formula appears to be the cause of this difficulty.

After suitable scattering validation has been accomplished and a final

decision as to which Green's fimction formula is most accurate, we shall

implement a host of features which are useful for antenna design. Metallic

patches and resistive cards will be placed on the aperture and different feeds

will be included. Since the mutual coupling between antenna array elements

is expected to be crucial for conformai arrays, input impedance and mutual

25



impedancecalculationswill be alsoconsidered.
Currently, we have implementedthe formulation without exploiting the

convolutional kernel of the boundary integral. In fact, weare using a sparse
(direct) matrix solverrequiring thefull boundary integral matrix bestored in
its entirety. Sucha direct solverallowsmoderately large geometrieswithout
the needto resolvetile systemfor eachnew incidenceangle. However, for
largeproblems,the boundaryintegral must beevaluatedusinga FastFourier
Transform (FFT) in conjunction with an iterative solver such as the Bi-
Conjugate Gradient (BiCG) method. The analogousFEM-BI formulation
for planar structures [4] usessuch a solver with impressiveresults both in
terms of accuracyand efficiency.
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Figure 10. Bistatic scattering by a 2)_x 0.5_ x 0.25A cavity in a cylinder
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Figure 9. Bistatic scattering by a 2A x 0.SA x 0.25A cavity in a cylinder

for TM polarization and 0i = 90 °, 4i = 4 = 0 °

compared with an equivalent cavity recessed in a ground plane.
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Figure 10. Bistatic scattering by a 2A × 0.SA x 0.25A cavity in a cylinder

for TM polarization and 0i = 45 °, 4_; = _b= 0°

compared with an equivalent cavity recessed in a ground plane.
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Figure 11. Bistatic scattering by a 2A x 0.SA x 0.25A cavity in a cylinder

for TM polarization and 0i = 20 °, q_i = q_= 0°

compared with an equivalent cavity recessed in a ground plane.
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Figure 12. Backscatter scattering by a 2A x 0.5A x 0.25A cavity in a cylinder

for TM polarization and q_= 0 ° compared with

an equivalent cavity recessed in a ground plane.




