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A Finite Element-Boundary Integral Method
for Cavities in a Circular Cylinder

Leo C. Kempel and John L. Volakis
December 22, 1992

Abstract v

Conformal antenna arrays offer many cost and weight advantages
. over conventional antenna systems. However, due to a lack of rigorous
_ mathematical models for conformal antenna arrays, antenna design-
_ ers result to measurements and planar antenna concepts for designing
non-planar conformal antennas. Recently, we have found the finite
_ element-boundary integral method to be very successful in modeling
~ large planar arrays of arbitrary composition in a metallic plane. Here-
~ with, we shall extend this formulation to conformal arrays on large
“ metallic cylinders. In this report, we develop the mathematical for-
~mulation. In particular we discuss the shape functions, the resulting
finite elements and the boundary integral equations, and the solution
of the conformal finite element-boundary integral system. Some valid-
‘ation results are presented and we further show how this formulation
tan be applied with minimal computational and memory resources.
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1 Introduction

Conformal antenna arrays are attractive for aircraft, spacecraft, and land
vehicle applications since these systems possess low weight, flexibility, and
cost advantages over conventional antennas. The majority of previous de-
velopments in non-planar conformal antennas has been conducted experi-
mentally due to a lack of rigorous analysis techniques. Various approximate
analysis techniques are restricted in many respects, including accuracy and
element shape, and are based on planar antenna models.

Recently, we have found that the finite element-boundary integral (FEM-
BI) method can be successfully employed for the analysis of large planar

—arrays of arbitrary composition {1]. The resulting system is sparse due to the
local nature of the finite element method whereas the boundary integral is
convolutional, thus ensuring an O(N) memory demand for the entire system.

In this report we will extend the FEM-BI formulation for aperture an-
tennas conformal to a cylindrical metallic surface. Both the radiation and
scattering problems will be developed in the context of the FEM-BI method.
In contrast to the planar aperture array, the implementation of the cylindric-
ally conformal array requires shell-shaped elements rather than bricks, and
the required external Green’s function is that of the circular perfectly con-
ducting cylinder. In its exact form this Green’s function is an infinite series
which must be evaluated efficiently and must also be put in a convenient
convolutional form for storage minimization.

This report presents the FEM-BI formulation, the appropriate cylindrical
shell elements, and the system evaluation strategy which will maintain low
memory and computational load. The cylindrical elements will be chosen
divergenceless while maintaining excellent geometrical fidelity. These ele-
ments will be analogous to the bricks used by Jin and Volakis [1]. Efficient
asymptotic evaluations of the cylindrical Green’s function will be discussed.
In addition, the numerical implementation of the FEM-BI method will be
presented along with some numerical results for validation purposes. These
results will illustrate the accuracy of this formulation for the calculation of
cavity eigenvalues and Radar Cross Section (RCS) calculations. Antenna
pattern calculations will be presented in a future report.



2 FEM-BI Formulation

Consider the configuration illustrated in figure 1 where a cavity is recessed
in an infinite,circular metallic cylinder. The cavity walls are assumed to
coincide with either constant p-,¢- or z-planes and we allow the possibility of
radiating elements on the surface of or within the inhomogeneous substrate
which fills the cavity.

The FEM-BI formulation [1] allows the determination of the electric field
present in the cavity due to interior or exterior sources. This method utilizes
the finite element method to formulate the interior field and yield a sparse
system of equations. This system is coupled to a second set of equations
generated by enforcing a boundary integral equation on the cavity aperture.
Although in general the boundary integral system of equations if full, a ju-
dicious choice of boundary elements allows O(N) storage to be maintained.
The scattered or radiated field is readily calculated from the aperture fields.

The development of the FEM-BI system begins with the vector wave
equation valid in the interior of the cavity where we also allow the possibility
of interior electric (J™*!) and/or magnetic (M) sources. Specifically, we
have

V x E(p, ¢,2)

v
* t-(p, ¢, 2)

:I - kgfr(/’, évz)é(pa QS’ Z) =

. Tint A?int(p’ ¢,Z)
=ik Z, " (p, &, VX |———= 1
] (p,¢,2) +V x [ (0. 0.2) ] (1)

where E(p, ¢, z) is the total electric field, €.(p, ¢,2) and p.(p, ¢, 2) is the
relative permittivity and permeability of the substrate, &, is the free-space
wavenumber and Z, is the free-space intrinsic impedance. Unless otherwise
noted, the e*7“! time dependency is assumed and suppressed. To generate a
system of equations from (1) we apply the method of weighted residuals

V x E'(p,q&,z) T

~k2e.(p, ¢, 2)E(p, 8, 2) - Wi(p, &, Z)}pdp dpdz =
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where W;(p, ¢, z) are subdomain vector weight functions to be specified. The
substrate is discretized using cylindrical-shell volume elements such as the one
shown in figure 2. The vector weight function coeflicients represent the field
at the edges of these elements and the integration volume (V;) corresponds
to the elements which possess the i** edge. The forcing function due to the
interior impressed sources (J™,M™) is given by

int  __ A_}im(paéa:) A 7int - A7 .
o= {VX[—""—,t,(p,¢,z)} jkoZod (p,¢,~)} Wilp, 6, 2)pdp dg d2
3)

We recognize (2) as the weak form of the wave equation and upon ap-
plication of a standard vector identity and the divergence theorem [2] (2)
becomes

/ {v x E(p,¢,2)-V x Wilp, ¢, 2)
v, pe(py ¢, 2)

_kge’(p’ é’z)E-l'(f% ¢,Z) : 11'/:(/), ¢,Z)}pdpd¢d2
_jk"Zo é ﬁ(p’ ¢) Z) x ﬁ(pa ¢’ 2) : I/_V:(P,qf), 2)d5' = f{int (4)

with 7(p, ¢, z) indicating the outward directed unit normal for the surfaces
of the elements associated with the " edge, S; is the total surface of those
elements, and H(p, ¢, z) is the total magnetic field. It can be shown that
the surface integral in (4) vanishes for all surfaces except where the surface
corresponds to the aperture. Thus, S; is the subdivision of the aperture
surface associated with the elements which possess the i** edge.
Unfortunately, (4) requires the determination of ﬁ(a, é, z) over the aper-
ture which increases the required number of unknowns. To eliminate ﬁ(a, é,z)
from (4) we use the integral representation of the magnetic field due to surface

fields
H(a,6,2) = Hi(a,¢,2)+ H (a,6,2)+
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j}’;koafsﬁ(a,qﬁl,z') x E(a,¢l,z’) -?‘o(a,q_ﬁ, E)qu' dz’
+a/5ﬁ(a,¢’,z’) x H(a,¢',2) -V x Gola, d,2)d¢ dz" (5)

with ¢ = ¢ — @', Z = z — 2z’ and S encompassing the entire surface of the
cylinder. The first two terms are the incident field and the scattered field
from the cylinder with the aperture removed. We shall denote these two
terms by the symbol HC”’( , 9, 2).

The integral equation (5) cannot be readily coupled with (4) because
it involves both the tangential electric and magnetic fields at the aperture.
However, we are free to choose a dyadic Green’s function which satisfies the
radiation condition and the additional Neumann surface boundary condition

V x Gma(a, $,%) = 0. (6)

With this condition, the second integral in (5) vanishes and the integration
surface need only extend over the aperture surface. The dyadic Green’s
function which satisfies (6) is usually termed the magnetic dyadic Green’s
function of the second kind [3]. We may now write (5) as

ﬁ(a,d),z) = ﬁcyl(a,¢,z)
+iYokoa /S pa,d,2) x Ba,4,2) - Cmala, é,7)de’ dz'(7)

where S5, indicates integration over the entire aperture.
Upon inserting (7) into (4), we obtain

/ {V X E(p7¢’z) -V x ‘X/’i(p?(ﬁ,Z)
v, pr(p, 8, 2)

—k2e.(p, ¢, 2)E(p, ¢, 2) - Wilp, , z)}pdp dédz
+koa)? [ [ [Wila,6,2) - pla, ¢,2) x Cmala, &, 2) x ila, 6, )
E(a,¢,7")| d¢ dz'dgdz = fi* + f** (8)

in which a standard dyadic 1dent1ty has been used and the forcing function
due to exterior sources is

fiert = jZokoa-/S "Vi(a,qS',z') . ﬁ(a,(ﬁ"z’) % Hcyl(a’¢’,z,)d¢' dz' (9)
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We recognize that (8) has unknowns corresponding to the electric field within
the cavity and on the aperture.

Following the principles of Galerkin’s method, the electric field in (8) is
expanded in terms of the same vector subdomain weight functions as was
used for testing, i.e.,

pa¢7 ZEW ps " . (10)

In this expansion (interior + aperture edges) N is the total number of un-
knowns or edge fields. Since the vector wave equation (1) requires the electric
field to be divergenceless, the weighting functions used in (10) must also be
divergenceless to avoid the use of a penalty term [1] which is required if
this condition is not met (e.g. node-based elements [4]). By necessity the
aperture field takes the form

N
E(G,QS,L’) = ZEJ(Sa(])T/VJ(aaQﬁ’z) (11)
J=1
where
6.(7) = 1 if j € aperture edge
= 0 else (12)

and the vector weighting function is the same as that used in (10) when
evaluated on the surface. Combining (8),(10) and (11) we obtain the FEM-
BI system
/ {v x W,(p,6,2) -V x Wi(p, ¢,2)
Vi llr(P, ¢a z)

_k2 (P,¢, )‘V(p7¢ ) IV(p,qS,f,)}pdpdgﬁdz

+koa6.(8:(0) [ [ [Wila,6,2)- e 6, 2)%
Ga(a,8,2) x pla,¢,2") - Wi(p, 6, 2 )] d¢' dz'dg dz = fi* + f£7(13)

in which S; and S, represent the surface clements bordered by the i** and j**
edges, respectively. Below we discuss the specific vector weighting functions
for the shell element shown in figure 2.
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3 Vector Weight Functions

Traditional finite elements associate the unknown field coefficients (£;) with
the node field. However, it has been found that such elements enforce non-
physical field continuity at element boundaries since both the tangential and
normal field components are continuous which leads to spurious modes that
must be suppressed with a penalty function [4]. However, edge-based ele-
ments have only tangential continuity and are therefore better suited for
electromagnetics applications where jump discontinuities in the normal com-
ponent is permitted. In addition, edge-based functions avoid an explicit spe-
cification of the fields at corners where the field may be singular [5]. Various
volume element shapes have been used for finite element applications. Two
of the most popular are: bricks [5] and tetrahedra [6, 7]. Although the later
element is quite versatile, we shall develop a cylindrical shell edge-based ele-
ments since we require geometrical fidelity which is not available with bricks
or tetrahedra.

Bricks are the natural element for discretization of a volume which is
defined by portions of the Cartesian planes. Likewise, cylindrical shell ele-
ments are superbly suited for cavities where the six faces are defined by
portions of the constant p-, ¢-, and z-planes. Thus, the cylindrical shall ele-
ments will be analogous to brick elements used by Jin and Volakis [5]. By
inspection, the shell element in figure 2 is comprised of twelve edges which
will constitute the vector weight functions. These weight functions should
satisfy the following properties:

1. subdomain (finite element)

2. | Wilp,¢,2) I=1if (p,4,2) € j** edge

3. | Wi(p,8,2) |=0if (p,6,2) € any edge || ;™ edge
4. V-Wi(p,¢,2) =01

‘Wj (p, ¢, z) will only satisfy this requirement within the volume of the element. These
weighting functions introduce artificial charges on the faces of the element and are not
divergenceless at element interfaces. This is required since these elements do not guarantee
normal field continuity across the element faces.



These conditions are met by the following set of weight vectors

W‘/m(p, ‘b’ Z) = I'f/p(pv ¢7 25 ¢r7 21, +)’ I-f':lii(pa ¢1 z) = ‘Tfp(Ps ¢3 2y ¢la %ty ")
u/f)ﬁ(p! ¢1 2) = I'Vp(pa ¢s 250 ¢r7 Zby —)v IVB?(P’ ¢’ Z) = I'Vp(loa ¢7 =3y ¢l’ Zhy +)

VVM(P»@ )— ” (pa ¢12 Py s"t)+)a -"3(pa ¢a )— W (P, ¢a 23 Pay s % ’—)
WSS(P7¢3 )" H’ (P,¢a2 Pbs "y By — )s 67(pa¢a") W¢(Pa ¢72;Pa,'szb,+)

Vis(pe6,2) = Walp, 6,25 por b s +)y Waa(py6,2) = Walpy 6,25 pas bry o =)
W

"V48(p3 (?S,Z) = U :(P, ¢s“s/)ba¢ls '7') 7(p) ¢7 ) - ﬁ‘/z(pw qﬂaz;paaéh ,+)
(14)

where Wy, denote the edge which is defined by local nodes (1,k) which is shown
in figure 2. Each vector weight is represented by one of three fundamental
vectors (one for each orthogonal direction)

Vvi)(pv ¢33;Ps ¢1zs S) - ah P P

n/ (p7¢a vpaéa <) ) = ﬁ(p—p)(:—z)d)

- . ot s . _—

"Vz(p’ ¢’Z;p, QS,Z,S) = E(p-— P)(¢— ¢)Z (15)

with t = pp, — po, @ = ¢, — ¢, and h = 2z, — z,. The element parameters
(Pas Pb, b1y 1y 26, z¢) are shown in figure 2. We observe that all four of the
requirements listed above are met by (14) with the understanding that these
weight vectors are non-zero only within the element. Interestingly, in order
to satisfy the divergenceless requirement by forcing each component of the
element field to be divergenceless, we need the % term in the p-directed
weight (15). Of course, for very large radius cylinders and small elements,
the curvature of these cylindrical shell elements decreases resulting in weight
vectors which are functionally similar to the bricks used by Jin and Volakis
[5]. We shall now specify the appropriate dyadic Green’s function which will
allow us, in conjunction with the vector weight functions given above, to fully

specify the FEM-BI system (13).



4 Dyadic Green’s Function

The boundary integral present in (13) requires numerical computation and
an efficient evaluation of the dyadic Green’s function, Gp2(a, é, %), is crucial.
This dyadic Green’s function may be derived in its eigenfunction form from
a set of cylindrical vector wave functions using the procedure espoused by
Tai [8]. The resulting expression contains an infinite sum of angular eigen-
values and an infinite integration over the axial eigenvalues. It is well known
that the angular eigenvalue expansion for cylinders exhibits extremely poor
convergence characteristics for large radius cylinders [9]. We must therefore
resort to approximate evaluations of the Green’s function which do not pos-
sess the prohibitive computational demand of the exact modal expressions.

As described above, one may readily derive a dyadic Green’s function
which satisfies both the radiation condition (by virtue of the chosen wave
functions) and the Neumann boundary condition on the surface of the cylin-
der (6). The resulting modal expression is

-

Crala,d,2) = $3'G*(a,4,2) + [#2 + 2] G**(a,4,2) + 23G7*(a, $,2)
(16)

where unprimed unit vectors are functions of the observation point (a, ¢, z)
while primed unit vectors are functions of the source point (a, é, z‘) and

z2 '— > J IH(()Jn 2Z
ez = ‘WZ_:/ () ’(77) ok,

D)
62 24 J(né k:z)
G*(a, ¢, 2) r)ﬂ)z n_z_oo/ (kza'y) )( dk,
< oo ] H(2)(7) nk, \* HP(y) ks
el — j(nd—k:2)
G*a.9.2) = i { Oy koak 1.3 () ¢ dk:

with k, = \/k2 — k2, v = k,a, a is the radius of the cylinder, n denotes the
angular mode numbe1 and kz is the axial eigenvalue. As stated previously,
these expressions exact a high computational demand especially when the
source and observation point coalesce. We therefore want to recast (17)

10
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in some other approximate form which improve as the radius of the cylinder
increases and the distance between the source and observation points becomes
large.

Several research groups have developed in the past such evaluations of
(17) and the most successful are attributed to Pathak [10], Boersma and Lee
[11], and Bird [12, 13]. All three approximations utilize Watson’s transform-
ation to convert the slowly converging angular eigenvalue representation (17)
into a rapidly converging series over the radial eigenvalue. The Hankel func-
tion and its derivative are approximated using either the Debye expansions
or the uniform asymptotic expansion [14] and finally the axial eigenvalue
integral is evaluated via the steepest decent method. These three formulas
differ only in the level of approximation offered. The three formula are listed
in tabular form by Bird [12] where he compared the accuracy of each. In
developing these formula, the following quantities are necessary in describing
the on-surface ray contributions:

1. Geodesic path length (s = \/(aé) + 27>

2. Geodesic trajectory (0 = tan™! [-(Li))})

E
3. Approximation order (q = Z},Ls)

and in these ® = ¢ or & = 27 — ¢ depending on which path as illustrated in
figure 3 (the short or long) is used.

Boersma and Lee [11] employed approximate expressions from a Debye
approximation of the Hankel functions and a first-order evaluation of the
axial wavenumber integral to obtain

G (a,8,5) ~ —ike -ﬂw{ (cos0 + q(1 — g)(2 — 3c0s7)) v(B)

—qﬂvl(ﬁ) [%COSZO +q (—lgl + gtangg - %00320)} }

G%(a,$,2) ~ ‘JQ%qe_jk"s sin § cos 0{ (1=3¢(1 -4¢q))v(B)

' 2 1 187 5
+qBv () [gtanQO 1 +q (—a - Zsec20>] }
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G*(a,d,2) ~ —]—Q%qe_jk"s{ (sin20 +g(1 —q)(2— 3sin29)) v(5)

+a[sec0 (u(8) — v(@) + 8 (+'(8) (tan*0 — sin®0)
7

8L 00 (2 = Lo+ i)
u(ﬁ)1256c0+v(,8)q(4 12t n“6 + ol sin’f

Pathak’s expressions are based on a uniform asymptotic expansions of the
Hankel functions and a first-order evaluation of the axial wavenumber integ-
ral. His results are

G*(a,¢,2) ~ JQA qe J'\"s{ (cos?'g +q(1 —q)(2- 3c0329)) v(ﬂ)}
T
G%(a,¢,z) ~ ’Z)—que'jk"s sin 8 cos 0{ (1 —3¢(1—1¢q)) v(ﬁ)}
2
66 T = Jko  _ikes] (. 2 2
G*®(a,¢,2) ~ —5oae %o (szn 0+ q(1 —¢q)(2—3sin 0)) v(8)

+q [sec?0 (u(B) — v(8))] }
(19)

Finally, Bird [12] used higher order terms from the uniform asymptotic for-
mulas and a second-order evaluation of the integral to obtain

G**(a,¢,2) ~ ——qe'jk"’{ (c0329 +q(1 —¢)(2 - 300520)) v(f)
+q{ (%sznw - %) v(B3) + ((li—(l) - %sin@) v1(5)
(355120 + 35) (8 + Lo ‘”(ﬂ)]}

Ik

Q —j3kos _:
5, e 7 sm0c089{ (1 —3q(1 —q))v(B)

+q[ (gsec29 - %) v(B) + (% - Z—isec@) n(8)

G**(a, ¢,

tyy
S
2
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(Tlgsech - %) va(B) + %ﬂsecmvél)(ﬂ)]}

27

4

G%(a,$,2) ~ —Zﬁ'—qe'jk“{ (si1120 +q(l —¢)(2— 3Sin20)) v(5)

+q[(u(/3) — v(B)) sec?d + (§tan20 - El.51'77,29) v(B)

9 72
17 5, 43 2)
+ (368“1 0 — 45tan 8 ) vi(B)
1,1, J 24 (1)
+ (1—5tan 0— 515" 0) vo(B) + gﬁtan fvs '(8)] ¢ (20)

2
where 3 = ks [%%]3. In (18)-(20), u(B) and v)'(3) represent the soft and
hard surface Fock functions, respectively, while u'(8) and v'(3) denote the
first derivative of the zeroth order surface Fock functions. These functions are
characteristic of the creeping waves on a circular cylinder and are discussed
in detail by Logan [15].

We will consider only the two direct path contributions from the creeping
wave series which are shown in figure 3. Accordingly, the ray parameters
given above depend on which direct ray contribution is being computed.
Bird [12] has concluded that his expressions (20), which include terms up to
O(¢~?) are the most accurate throughout the full range of ¢ and z except
when s is very small or the observation point is in the paraxial region of
the source. In this region, the formula given by Boersma and Lee (18) are
most accurate since the Debye approximation used for the Hankel function is
well suited for the paraxial region and O(g~?) terms have been retained. A
notable exception to this conclusion occurs when the cylinder is sufficiently
large while the aperture is small. In this situation, the aperture appears
to be a hole in a planar metallic screen and the formula given by Pathak
(19) turns out to be the most accurate. Inspection of (18)-(20) reveals all
three approximate expressions include the free-space dyadic Green’s function
terms up to O(¢~?) modulated by a surface Fock function whereas Bird’s
as well as Boersma and Lee’s formula contain ’extra’ terms. These terms
are not present in the case of a metallic screen and thus provide reduced
accuracy when the aperture looks planar. However, for cavity configurations
where curvature is considered, Bird’s conclusions should be valid. Therefore,

13



we shall use Boersma and Lee's formulas (18) if |cos@] < 0.1 or s < 1A
Otherwise, Bird’s formulas (20) will be used. The derivation of (18),(19) and
(20) is described in [11],{10] and [13], respectively.

5 Numerical Implementation

In the preceding sections of this report, we described the vector weight func-
tions and dyadic Green’s function appropriate for the solution of (13). Below
we now explicitly develop the admittance matrix and excitation vector entries
necessary to solve (13) for the electric field. Once the unknown field is de-
termined, engineering quantities such as cavity eigenvalues, RCS and antenna
radiation patterns may be determined.

We may write the N equations implied by (13) in terms of N unknowns(E;)
as a matrix equation

AJ pat [t %E% Ef-”'{

) T ) T [ fin (21)
[ ] gEj % [0] [0] | {E™ ;™
where [A] is a very sparse N x N symmetric matrix, [G] is an Ny, x Ng,
square full matrix, the N,, x 1 column vector {E;-”’} denotes field values on

the aperture edges, the N, x 1 column vector {Ej’"} is field values on interior
edges, and the total number of unknowns (N) is the sum of the free aperture
edges (N,,) and the free interior edges (N,). A free edge is any edge which
is not tangential to and on a metallic wall since such an edge is known to
be associated with a null field due to the natural boundary condition on the
metallic wall. Hence, it is not included as a system unknown. The N,, x 1
column vector { f*'} is the forcing function attributed to an incident external
field (9) or impressed sources on the aperture (3) while the N, x 1 column
vector {fi™} is due to the impressed sources within the substrate (3).

5.1 Matrix Assembly

The sparse nature of [A] is revealed upon inspection of (13). Since the edge
vectors are non-zero only within the elements which possess that particular
edge, the volume integral is identically zero unless both the source and testing

14



edges are within the same element. These matrix entries may be written as

A= — 10 e, 1 (22)
fr

where we have assumed constant material properties within each element
with ¢, and u, denoting the relative permittivity and permeability of the
element. The subscripts (i,j) indicate the row and column of the matrix
and are related to the global edge numbers. Since each edge may belong
to more than one element, the matrix entry A,;; is computed by adding the
contributions for each element which have both the 7** and j'* edges. The
auxiliary terms Ii:)"j and I,(,Q)ij are defined by

1(1)1] = ,/V V x ‘i:,s(ps ¢s:’:bqu‘5]*§_7s‘§_7) -V x "f”t(P, ¢sz;/‘3i5$i3§i"§i)pdpd¢dz
].Stz)w = //‘i’s(ps(baz;ﬁja(%j»gjagj)'I'i‘:rt(psqsaz;ﬁia(;siaEivgi)pdpdd)dz (23)

with (s,t) € {p, ¢, z} indicating the direction of the source and test edges, re-
spectively, while the weight vectors are given by (14). Since the fundamental
weight vectors (15) have orthogonal orientations and (23) is symmetric with
respect to the source and test vectors, ],(t” need be determined for six com-
binations of (s,t) and 1 need be determined for three such combinations.
These integrals may be evaluated analytically upon performing the vector
operations indicated in (23).

In addition to [A], we must also evaluate the entries of [G] which includes
all the boundary integral contribution to the FEM-BI system (13). The
entries of [G] involve the integral

C (Laa / / Wt (1 ' 6, 2; p37¢17‘°1? )
[p(a,¢, 2) X Gma(a,,3) x p(a,$',2)
Wila,d,2;pj, 3,25, 8;)de dz'dé dz (24)

which unfortunately cannot be evaluated analytically due to the presence
of the Green’s function. From an inspection of the approximate Green’s

function formulas (18)-(20) we observe that Gra(a, 6, Z) becomes singular
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as the source and observation point coalesce. When these points are close,

a reasonable approach for large radius cylinders is to replace Gn2(a, @, Z)
with the metallic screen Green's function whose singularity has been treated
previously in the context of this integral [4]. Accordingly, we use the following
boundary integral when the source and test edges are either in the same or
some adjacent element

G‘j = Q(koa)zfs./s m(av¢7z;ﬁh$is§i7§i) :

[[)(a, é,2) x Gola, ,%) x ﬁ(a,cﬁ',z')]

Wia, 8,25 js 85, 5, 3;)dd dz'dg dz (25)
where OO gmikoR

Tt = [T+ | o (26)
with R = |[r' — 7| indicating the distance between observation and source

points and T = % + §§ + 23. Upon use of a common vector identity and the
divergence theorem [4], we have

G.‘j =
(koa)®

/ / p(a $,2) X W,( ¢,Z§ﬁi,$i, 2,',5,-)]
' e—ikR

V- [pla, 2 x Wiala, 8,255,850, 55)] —p—de' dz'dg d

This form of the boundary integral may be readily evaluated even as R
vanishes by employing the regularization procedure used by Jin and Volakis
[4] . The asymptotic dyadic Green’s function used here consists of two direct
interactions as shown in figure 3. We may use the planar approximation
(26) for the short path contribution when the distance between the source
and test elements is small. The asymptotic formulas are always used for
the long path contributions, i.e. interactions between distant elements when
curvature effects are likely to be prominent.
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Explicit formulas for the computation of the admittance matrix entries
have been given above which may be readily implemented. The [A] matrix
may be considered the finite element portion of the system while [G] is the
boundary integral contribution. The matrix [A] is very sparse and its entries
may be computed from analytical evaluations of the integrals (23). Although
the [G] submatrix is generally full and its entries must be computed numeric-
ally using for example two-point Gaussian quadrature, considerable storage
and computation economy is possible by utilizing a CG-FFT type of solution
procedure. The convolutional kernel of the dyadic Green’s function makes
this possible (17). The computation of the forcing functions in (21) must
now be addressed.

5.2 Excitation

Two principal types of excitation are found in the FEM-BI system (21). One
is the excitation due to internal sources (possibly on the aperture) when the
radiation is being considered. The entries for the resulting column vector
{fint} is given by (3) and require the specification of the impressed currents
(J™t, M), The second type of excitation is due to external sources which
are non-zero for scattering problem computations. This excitation column
vector {f£*'} are given by (9) which requires the surface magnetic field (H¥)
when no aperture is present. This later excitation will now be examined
assuming plane wave incidence.

Circular cylinder scattering is one of the few exact solutions available in
electromagnetics. Traditionally, the field scattered by a cylinder due to plane
wave incidence is expressed in modal form. Assuming that the incident field
is given by

B = gieike(k7)
H = Yk x &)kt

ejko[p sin 8; cos (¢p—¢)+=z cos b;]
(28)

where (0 );: i ) indicate the direction of incidence, « is the polarization angle
where ¢ = cosaf' + sina¢', and Y, is the free-space intrinsic admittance.
The total surface field

H"a,¢,2) = H'(a,8,2) + H:,(a, 9, 2) (29)

=Y, [ﬁ’ sinacosd; — ¢' cosa — Zsinasiné;
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is given by

Slna o0 ejﬂ(%"“i’“d’x)
H¥(a,¢,2) = j2Y,——eltecosts [ ;
( ) wk.a n_X_:oo Hnm(koa sin 6;)
1kocos 8,z o0
Cyl . eikocosh cos o
B Sy
( ) mhoasinb; | = )(koa sin§;)
n sin a cos ; e
Tl(“+¢’“¢|)
J 6‘] 2 30
k.asin6; .2 )(k asin 8; )} (30)

These expressions may be computed by summing only a few terms of the
series if k,asinf; is small. However, as this parameter becomes large (e.g.
for large a and 6; — 90°), asymptotic evaluations similar to those used for
the dyadic Green’s function must be applied to (30) to maintain computa-
tional economy. Utilizing Watson’s transformation and Fock theory [9] in
connection with (30) we find

2
. ) T . . *
H;yl ~ =Y, sin a sin §;e/kocos bz E g~ Ikoasinbi®p [g(o)(mq)p)]
p=1
cyl . mz jkocosbiz : —Jkoasing; ® (0) *
HY ~ j2Y, cosa————relkocoshiz 5= gmike "’[f (mq)p)]

k,asin6; =1

2
—Y:, sin a cos aie]kocose.'z E(_l)pe—_;koasinﬂ.‘(bp [9(0)(m¢p)
p=1

*

g (me, )] (31)

= ko.asin 0;
in which®, =2 - (¢—¢,), 1 =(¢—¢;)— L, m= [M%'-“—g*] and the ™*
indicates complex conjugation. The approprrlater Fock functions are [15]?
1 i€t
ey = 2o [
g7 = ———~di
«) \/_ rw(t)
-] e]ft
e = (32)

Vv Jr wl(t)

szgaf) uses the e~3! time dependency in the definition of these functions requiring
the complex conjugation in (31)
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where the Fock form of the Airy functions may be written in the more familiar
Miller notation w;(t) = /7 [B:i(t) + jAi(t)] and the integration contour is
given by Logan [15].

The asymptotic formulas are quite accurate compared to (30) except when
¢ ~ ¢;. In this region, Goriainov [16] derived the following more accurate
expressions from Fock theory

-7, _ N v *
H:yl ~ _),O sin asin 9;61L° cosG.z{e tkoasin 6, @, [g(O)(n?q)l)]

+ejkoa sin 6, cos (¢—;) [G(—m CcOos (¢' - ¢t))]* }

2

H;y' ~ j2Y,cosa ejk°c°se'z{e_jk°”i"6'¢’ [f(o)(mfbl)r

k,asin 0;

+€jkoa sind; cos (¢—¢;) [F(_m coS (¢ — (]5,))]‘ }
+Y, sin o cos 0;e7* °°50"{e'jk°05i“ hi [9(0)(m‘1>1)

s m )
JL asmB g (me )J
—gJkoasinbicos(é—4:) [G(—m cos (¢5 - ¢:))

k, asmo

GO (= cos (¢ — ¢,)]*} (33)

with [15]

Tud
3

GO = ¢V(&)e
F(”(.‘;’) — f(f)(g)ei%a‘ (34)

These surface field expressions may now be used to efficiently calculate
the entries of the column vector {ff**} via a numerical evaluation of (9). In
particular, the modal series (30) is used when k,asind; < 10 and either (31)
or (33) for k,asinf; > 10 as appropriate. We note that the unit vectors in
(9) and (28) are not the same since the former depend on the integration
variable (¢') while the latter depend on the incidence angle (¢;). Thus, the
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excitation integral (9) is
[t = jZo(ka)/ cos (¢ — ¢)Wila, ¢, =) -
[tH (0,0, 2') - $ H¥(a,¢',2)| d¢' d2’ (35)

6 Engineering Quantities

The FEM-BI system (21) has now been fully specified and either a direct or
an iterative solution of (21) for the system unknowns {E;} may be applied.
Once the expansion coeflicients have been determined, we may calculate use-
ful engineering quantities such as cavity eigenvalues, RCS and radiation pat-
terns.

6.1 Cavity Eigenvalues

One of the uses of the Finite Element Method in electromagnetics which has
become popular recently is the calculation of cavity resonances numerically.
Often analytical determination of the cavity modes is not possible if the cavity
has an odd shape or is filled with an inhomogeneous material. Chatterjee et
al.[7] have shown that edge-based tetrahedral finite elements are well-suited
for computing cavity eigenvalues. These elements are able to model a wide
range of cavity shapes and material filling.

Likewise, the cylindrical shell elements introduced in this report are ideal
for the calculation of modes present in any cylindrical cavity which does
not intersect the z-axis. For eigenvalue calculations, the cavity aperture is
covered with metal which closes the finite element mesh, implying [G] = [0].
Therefore, the eigenvalues may be computed by setting the interior portion
of the system (22) equal to zero and idéntifying the eigenvalues as A = k?

[u,’“’”] (B} = [ 1] (5;) (36)

We recognize (36) as a generalized eigenvalue problem where A denote the
eigenvalues of the cavity. These eigenvalues may be determined directly or
by exploiting the inherent matrix sparsity, Lanczos method may be used.
Such a solution of (36) yield the resonant fields {£;} (eigenvectors) and
corresponding wavenumbers (eigenvalues).
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6.2 Far-field Evaluation

Two of the most important applications of the formulation presented in this
report is the calculation of the cavity’s radar cross section (RCS) and the
radiation pattern due to sources placed within or on the aperture of the
cavity. In this section, we will describe far-field calculation due to equivalent
sources on the aperture. This will entail a similar analysis as was performed
for the excitation fields.

We begin with the integral representation of the scattered magnetic field
in terms of the aperture fields. We have,

#(r,0,8) = jY.kea /S Ga(r,0, 10,8, 2) -
[p(a, ¢, 2") x E(a,',2")] " d=' (37)

with (r,0,4) indicating the observation point in spherical coordinates. When
the observation point is very far from the cylinder, the dyadic Green’s func-
tion has the asymptotic form

—jkor

[G*64' + G0z + G**44| (38)

ﬁm?(ra 0) ¢v a, ¢,s Z,) ~ 2

where unprimed unit vectors are functions of the observation position while
primed unit vectors are functions of the integration point in (37). The com-
ponents of this asymptotic Green’s function are determined by a mode match-
ing procedure

Col

G o I ko050 i cose i - G5 +H6-4")
(27)? (koasin 6)? e Ht )(koa sin 8)
Gf?z —~ J _“')_’ejkocos(izl i : 1 ejn(%+(¢—¢,))
(27")2 a n=—o00 Hn(Z)(koa Sin 0)
] 2 . 1 = 1 (X !
G¢¢ ~ J : e]ko cosfz e]'l(5+(¢‘¢ ) 39
(27)%asiné n=z_oo ®(k,asinb) (39

As one might expect, these series converge rather slowly for large k,asiné.
They must therefore be recast in another form by employing Watson’s trans-
formation and Fock theory as described before. We have,

2 , 2
ot o Locosoejkocosez Z(_l)pe—jkoasin(?d)p [gm)(mq)

= Ve

p)_‘]koasin()g

p=1
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L , 2
ng -~ _koSlnoejkocosﬂz Ze—jkoasinmbp [g(o)(m(I)p)]'
47 =1
G¢¢ ~ m2 ejkocosﬂz’ i e—jkaasin9<l>p [f(O)(mq) )]' (40)
. 14
2a7 sin § =1

where the appropriate Fock functions are given by (32). As expected in the
region ¢ ~ ¢, the formulas attributed to Goriainov [16]

G5~ _Wejkocosﬂz' {e—jkoasinm, [g(o)(m‘bl) _ j;:ér;ﬁgm("@l)]‘ -
ehrin0e(6-6) GO cos (6 — ) = S G (—m cos (¢ = ¢)] }
Gt~ _Meﬂmose;{e-jkoasinem [g(q)(mq,l)]‘ +
47
pikoasinfcos (6-4') [G(O)(—m cos (¢ — qS'))]‘ }
G~ Qa:Sn aejkocosoz'{e-jkoasinml [f(O)(mq)l)]* +

ejkoasin9c05(¢—¢’) [F(O)(_m oS (¢ - (}5,))]* } (41)

are most useful. The far-zone scattered field can be computed numerically
by using either (39),(40), or (41) in (37). For the scattering problem, RCS is
most often the quantity of interest. Once the far-zone magnetic field (37) is
computed, the RCS is given

o(6,4) = lim 47rr||—(T€—‘-?)—| (42)

7 Numerical Results

The preceding section of this report presented several engineering quantities
of interest: cavity eigenvalues (resonant modes), RCS and antenna pattern
calculations. We will now present some preliminary results as a means of
validating the numerical implementation. In particular, we shall compare
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the numerically computed mode wavenumbers to the analytical solution for
air-filled cavities. We shall also present some preliminary comparisons of
RCS calculations with known results. Antenna pattern calculations will be
deferred to a later report.

7.1 Resonant Wavenumbers

An important cavity characteristic is its resonant frequencies. These may be
determined analytically from the eigenvalue series solution of the wave equa-
tion for simple geometries. For example, if an air-filled rectangular cavity is
considered, the resonant wavenumbers may be determined from the charac-
teristic equation. Such a cavity is shown in figure 4a. Likewise, the resonant
wavenumbers of a cylindrical sector cavity (see figure 4b) may be determined
from its characteristic equation. The dimensions of the cylindrical sector cav-
ity may be chosen so that this cavity is equivalent to a rectangular one which
then requires that the resonant wavenumbers be identical. This was done for
a equivalent rectangular cavity with dimensions: a = 0.25 cm, b = 0.5 cm,
¢ = 1.0 cm. The following table illustrates the capability of the presented
formulation to numerically compute the first five resonant wavenumbers

| mode [ exact | computed | error |

TEyn || 5.236 5.306 1.34
TMypo || 7.025 7.441 5.92
TEg, || 7.531 7.908 5.01
TEy || 7-531 7.928 9.27
TMp, || 8.179 8.562 4.68

The mode number corresponds to the equivalent rectangular cavity and the
same is true for the exact wavenumbers. The the computed wavenumbers
were determined by solving the generalized eigenvalue problem (36) and we
note that the percent error is comparable to the error reported using bricks
to discretize a rectangular cavity [7].

A cylindrical sector cavity is shown in figure 4b. We have compared the
exact resonant wavenumbers with computed results for a cavity where p, =
5cm, p, = 4.75 cm, o = ¢, — ¢ = 5°, 2z, = 0.5 cm, and z; = 0.0 cm in the
following table of the first five modes.
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[ mode || exact | computed | error |

TEn 9.695 9.856 1.66
TFEor || 14.051 14.283 1.65
TFEy 2 || 14.575 14.816 1.65
TMo || 14.575 15.539 6.61
TMy || 15.872 16.134 1.65

Again the percent error is within the expected bounds. The exact resonant
wavenumbers of a cylindrical shell (see figure 4c) may also be found if the
cavity is filled with a homogeneous material. For a shell where p, = 1.0
cm, py = 0.9 cm, z, = 1.0 cm and z, = 0.0 cm the comparison between the
calculated and exact wavenumbers are given in the table below.

[ mode ” exact ] computed l errorJ

TMoo || 6246 | 6.450 | 3.27
TMypo || 6.393 | 6557 | 2.57
TEn | 6428 | 6.608 | 2.80
TMg || 6814 | 6713 | 1.51
TEpqy || 6831 6733 | 1.46

7.2 Scattering

The FEM-BI formulation has been shown to provide an excellent tool for
computing the scattered field attributed to a cavity recessed in a ground
plane [4]. This report presents an analogous method when the cavity is re-
cessed in an infinite,metallic circular cylinder. We have shown that the finite
element method may be used to numerically calculate interior resonances
for closed cavities. We now wish to validate the proposed formulation for
scattering calculations from an open cavity due to plane wave incidence. Un-
fortunately, we currently do not have a suitable experimental or numerical
data to determine the accuracy of this method. However, for small cavities
embedded in a large radius cylinder, we expect our results to compare quite
favorably with a similar method which was formulated for planar structures
[4]. Below, we perform such comparisons for air-filled cavities.

Comparisons have been made between a cavity recessed in a cylinder such
as the one shown in figure 1 and an equivalent cavity in a metallic plane. First
we consider the cavity whose dimensions are w x I x d = 2X x 2A x 0.25\
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cavity. The azimuthal width is given by w = aA¢, where a is the cylinder
radius in wavelengths and A¢ is the azimuthal angle subtended by the cavity.
The axial length (I) and cavity depth (d) are normalized by the wavelength.
The incident wave is given by (28) and we will consider only TM polarization
where a = 0, and consequently E; = 0. Figure 5 illustrates the comparison
of the scattered fields for such a cavity in a cylinder with @ = 20X and
a similar cavity in a ground plane for normal incidence (6; = 90°, ¢, = 0°).
Additional bistatic patterns are shown in figures 6 and 7 for oblique incidence
with (0; = 45°, ¢; = 0°) and (8; = 20°, ¢; = 0°), respectively. In all of these
three figures, the azimuth observation angle is ¢ = 0° and the elevation angle
(8) is allowed to vary. Figure 8 is a backscatter calculation of the same cavity
for fixed ¢ = 0° and varying . Finally, we repeat these calculations for a
wxIxd=2Xx0.5) x0.25) cavity in figures 9-12. Clearly the two solutions
are in excellent agreement.

8 Future Work

In this report, we have presented the formulation and preliminary validation
of a FEM-BI method suitable for cavities recessed in a circular cylinder.
Some validation of this formulation was presented for the special case of
a large radius cylinder. However, we are actively seeking validation data
where the curvature of the structure has a prominent effect on the scattering.
Such validation data will either be found by measurement or comparison
with another numerical solution. Such a solution will most likely be for an
groove in a cylinder which will necessitate our consideration of a long narrow
cavity and normal incidence only. Comparisons with curved cavities will help
in determining which asymptotic Green’s function formula (18)-(20) is best
suited for these calculations. It will also aid in the identification of the source
causing the difficulties with the other principal polarization. Inaccuracies
using Pathak’s formula appears to be the cause of this difficulty.

After suitable scattering validation has been accomplished and a final
decision as to which Green’s function formula is most accurate, we shall
implement a host of features which are useful for antenna design. Metallic
patches and resistive cards will be placed on the aperture and different feeds
will be included. Since the mutual coupling between antenna array elements
is expected to be crucial for conformal arrays, input impedance and mutual

25



impedance calculations will be also considered.

Currently, we have implemented the formulation without exploiting the
convolutional kernel of the boundary integral. In fact, we are using a sparse
(direct) matrix solver requiring the full boundary integral matrix be stored in
its entirety. Such a direct solver allows moderately large geometries without
the need to resolve the system for each new incidence angle. However, for
large problems, the boundary integral must be evaluated using a Fast Fourier
Transform (FFT) in conjunction with an iterative solver such as the Bi-
Conjugate Gradient (BiCG) method. The analogous FEM-BI formulation
for planar structures [4] uses such a solver with impressive results both in
terms of accuracy and efficiency.
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Figure 1. Illustration of the cavity geometry situated
on a metallic cylinder.



Figure 2. Cylindrical shell element.
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Figure 3. Geodesic paths on a circular cylinder.
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Figure 4. Cavity geometries for eigenvalue computation.
a) Rectangular cavity.
b) Circular cylinder sector cavity.
c) Concentric circular cylinder cavity.
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compared with an equivalent cavity recessed in a ground plane.
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Figure 7. Bistatic scattering by a 2A x 2X x 0.25) cavity in a cylinder
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compared with an equivalent cavity recessed in a ground plane.
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Figure 9. Bistatic scattering by a 2A x 0.5) x 0.25X cavity in a cylinder
for TM polarization and 6; = 90°,¢; = ¢ = 0°

compared with an equivalent cavity recessed in a ground plane.
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Figure 10. Bistatic scattering by a 2A x 0.5) x 0.25X cavity in a cylinder

for TM polarization and §; = 45° ¢ = ¢ = 0°
compared with an equivalent cavity recessed in a ground plane.
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Figure 11. Bistatic scattering by a 2A x 0.5X x 0.25) cavity in a cylinder
for TM polarization and 6; = 20°,¢; = ¢ = 0°

compared with an equivalent cavity recessed in a ground plane.
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Figure 12. Backscatter scattering by a 2A x 0.5A x 0.25) cavity in a cylinder

for TM polarization and ¢ = 0° compared with
an equivalent cavity recessed in a ground plane.






