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1. INTRODUCTION 

This report summarizes research accomplished during the second 6-month period of the grant. 
During the period covered by this report the active personnel included the PI, one graduate 
student (Dmen Leigh), two Harvard undergraduates (Greg Galperin and Derrick Bass), and a 
recent mathematics graduate from Harvard (Nick Shectman). 

2. RESEARCH ACCOMPLISHED 

2.1 Antenna Configuration 

Our new SETI system is designed to reject terrestrial interference (the #1 problem in SETI) by 
exploiting the property that a genuine extraterrestrial transmitter must be both pointlike and 
exhibit sidereal rotation. Thus we are building a two-horn receiver, with stationary beam lobes 
oriented east-west, along with a third "terrestrial" low-gain antenna. Although we originally 
envisioned a pair of beams separated by several beam widths, we now favor some degree of 
overlap (suggested by Prof. Staelin at MIT), such that the handoff from one beamlobe to the 
other keeps the source in sight continuously. To implement this, we looked at two schemes 
(Figure l), namely i) a phased array consisting of 10 hexagonally-packed feedhorns and three 
low-noise preamps (with the central cluster of 4 horns passively combined, then buffered and 
phased with each of the passively combined outer sets of three horns; each horn could be either 
linear or dual-circular polarization), and ii) a simpler arrangement of two pyramidal (linear 
polarization) horns, aligned along their E-plane axes. The 10-horn arrangement exhibits a 
remarkable azimuthal symmetry of beam pattern (Figure 2), but requires a major (lengthy and 
expensive) construction effort; by contrast, the pyramidal parr is sensitive to only one linear 
polarization, but is easy to build and try out. 

With either scheme we were told that near-field aperture interactions would cause major 
distortions of the far-field pattern, though no one was able to quantify the effect. To satisfy our 
curiosity we made some laboratory "test-range" measurements with a pair of pyramidal x-band 
(3 cm) horns, driven (via a magic-T hybrid) both alternately and simultaneously with Gunn 
oscillator sources, while scanning the far-field pattern with a small dipole connected to a 
spectrum analyzer. We were unable to see any interaction effects at the measurement accuracy 
(approximately 1dB). 

While favoring the simplicity of the stacked pyramidal horns, we were concerned about two 
additional issues: i) does the far-field pattern have reasonable azimuthal symmetry, and ii) is 
there adequate beam overlap with separate horns (which is guaranteed with the interleaved 7- 
horn array)? To answer these questions we performed diffraction calculations, starting with a 
pyramidal horn design whose H-plane to E-plane dimensions are in the ratio of 1.35 (this ratio 
produces equal -3dB beam widths, owing to cosine taper in the €3-plane field amplitude, 
combined with uniform field amplitude along the E-plane). We assumed no feedhorn 
interaction, and simply calculated the far-field pattern, using the parameters of our 26-meter 
antenna (full-width illumination angle of 18.5 degrees). Figure 3 shows the far-field beam 
intensity, from a single displaced horn, for three choices of horn aperture. In each case the horn 
center has been offset along the E-plane, relative to the Cassegrain axis, by half the horn aperture 
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(i.e., stacked horns). A rule of thumb to achieve maximum efficiency in Cassegrain design is to 
taper the illumination to approximately -1OdB at the reflector edge. That corresponds to Figure 
2c, producing beam overlap at the -6dB point; it also results in feedhorns that do not fit in the 
radome! 

We finally settled on the design of Figure 2b, which we estimated to have a paraboloid efficiency 
(i.e., spillover efficiency times aperture efficiency) just 0.6dB less than the ideal; its taper at the 
edge of the dish is -5.5dB, compared with the conventional -1OdB, resulting in somewhat 
increased sidelobe amplitude. It will fit in the radome, if the outside corners are cut diagonally 
(Figure 4). The feedhorn length was chosen to produce wavefront curvature of about 0.2 by 0.3 
wavelengths (E-plane by H-plane), resulting in finished feedhorns that fit in the radome with 
about 1 inch to spare (Figure 5). They are constructed of 1/8" aluminum sheet (6061-T6), heliarc 
welded and joined to a WR-650 waveguide section with flange. 

We mounted the horns, and performed drift scans of astronomical points sources (Sgr A, Cyg A). 
Figure 6 shows such a scan. The beam shape and overlap are ideal. However, the observed 
signal strength is lower than expected. With the help of absorber material (kindly provided by 
John Kraus), we expect to track down the problem when warm weather returns. 

2.2 HEMT Low-Noise Amplifiers 

We completed the first of the wideband (1.3 GHz to 1.9 GHz) low-noise L-band HEMT (high 
electron mobility transistor) amplifiers, using a kit of parts from Berkshire Technologies 
(Oakland, CA). Figure 7 shows the completed amplifier (cover removed), and Figure 8 shows its 
performance. It achieves 7K noise temperature over the waterhole band (1.4-1.7 GHz) when 
cooled to liquid nitrogen temperature, and 30K when operated at room temperature. We expect 
to complete the three remaining amplifiers (3 beams total, plus one spare) within the current 6- 
month period of the grant. Given the amplifier's excellent room-temperature noise performance 
(a factor of 2 better than our currently operating GaAsFET amplifiers), we intend to postpone the 
engineering of a cryogenic dewar until we have had some experience with the full operating 
system, which will be carried out with uncooled amplifiers. For ultimate cryogenic operation we 
favor the compact and convenient dewars from Infrared Laboratories (Tucson, AZ). 

The use of amplifier kits (rather than completed amplifiers) results in a cost savings of $20k. 

2.3 Downconverter 

The downconverter subassemblies are nearly complete. The channelizing downconverter uses an 
array of 20 local oscillators (Lo's), spanning the 40-80 MHz range in steps of 2 MHz, and 
phase-locked to the 10 MHz GPS-disclipined master station oscillator. The individual LOs feed 
a mixer-filter-digitizer board array, each of which accepts three IF inputs (east horn, west horn, 
and terrestrial antenna), and produces corresponding complex digitized baseband signals to feed 
the FFI' array. 
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2.3.1 Local Oscillator Array 

As described in the previous progress report, we explored several oscillator approaches (DDS, 
crystals, filtered comb, phase-locked loop), and wound up with a discrete varactor-tuned JFET 
oscillator phase-locked loop synthesizer, controlled by the elegant MC145170. We put ten 
oscillators on each of two boards, downloaded by a 87C751 microcontroller, and locked to a 
common 10 MHz station clock. Performance is excellent, with extremely low phase noise and 
spurs, as documented in the previous report. 

We have now completed and tested the LO array (Figure 9), which works flawlessly. To give 
this synthesizer a front panel worth looking at, we built an array of 20 LED bar graph displays 
(also in Figure 9; schematic in Figure lo), showing the VCO loop voltage of the individual 
oscillators. 

2.3.2 Mixer- Filter-Digitizer 

The LO array drives the mixer-filter-digitizer subsystem, which is now completely designed and 
ready for board fabrication. The design has been modified somewhat since the previous report, 
because our FFT simulations demonstrate that our novel "dc autozero" cucuit, though elegant 
from a circuit design standpoint, is unnecessary! 

The final design (Figure 11) performs well, and in addition economizes in several ways: We 
changed our design to use inexpensive component amplifiers (Mini-Circuits Labs MAV-11) for 
the LO buffer, instead of the industry standard Avantek GPD amplifiers. We also decided to use 
discrete 7-pole anti-alias filters (less than $5 each), rather than the cheapest commercial units 
("E Inc., about $15). Another interesting feature of this design is the use of current-feedback 
baseband amplifiers (Analog Devices AD846), which are extremely stable and low-noise (2 
nV/dHz, and which have a compensation pin that can be used for dc clamping. We used that 
feature to clamp the ADC driver, thus permitting dc coupling to a CMOS converter (TMC 1175) 
without fear of SCR latchup. Note the use of a floating precision 2SV reference (the AD680), 
setting the conversion range to 0.6V-2.8V, which keeps the Schottky-clamped input between the 
supply rails; dc offset trim, referenced to this voltage range, is now performed at the driver's 
input, rather than at the ADC. The digitized output is three-stated onto a common 8-bit bus as 
complex pairs. 

Figure 12 shows the completed printed circuit design, an economical 2-sided ground-plane board 
accepting the three IF inputs and single LO drive. We expect to fabricate and test 20 of these 
boards during the current 6-month grant period. 

2.4 FFT Array 

As described in the previous report, we have devised a 3-chip design for a 4 megapoint complex 
FFT, using the Austek A41102. The long transform is implemented as a succession of shorter 
row and column FFTs, with complex ("twiddle") multiplies interposed between the shorter 
transforms during the "corner turns." The Austek chip, originally designed for radioastronomy 
applications, is ideal for such continuous-flow real-time transforms; in addition, it requires no 
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special memory, and has great flexibility in terms of bit scaling, word width, transform length, 
normal vs bit-reversed sequences, and the use of an internal multiplier and data switches. 

2.4.1 Simulations 

We devoted considerable time to simulating our FFT architecture, using a simulator ("FDPSIM") 
supplied by Austek. In particular, i) we needed to verify that the 3-chip architecture is 
numerically correct, ii) we wished to determine the effect of word size quantization and roundoff 
on the spectral dynamic range, iii) we wished to determine the effects of finite twiddle factor 
word size ("depth") and quantization ("width"), since the use of full-size twiddle factor ROMs 
(e.g., 20 bits by 1M points) would raise costs considerably, and iv) we wished to verify by actual 
numerical simulation that a weak sinusoidal signal embedded in wideband noise, in the presence 
of additional strong sinusoidal signals, could be reliably and accuratzly detected by the FF" 
system we intend to build. We now describe the results of these simulations in detail, because 
there appears to be considerable confusion (and not a little folklore and mythology) in the signal 
processing community on precisely this issue. We hope the reader will be as surprised and 
enlightened by these results as we ourselves were. 

Austek's simulator was never intended for such large transforms, and, as supplied, it took nearly 
a day to complete a single 4 megapoint transform on a Sun SPARC-2 (it took many days on a 
'486-type PC). We began by verifying the numerical correctness of the 3-chip architecture on 
scaled-down transforms, then proceeded to modify some of the simulator's modules to speed up 
performance; 4 million point simulations now take 2 hours. 

The first simulations verified that a suite of sinusoidal waves, chosen with frequencies relamely 
prime but with each sine "on-bin" (Le., an integer multiple of the lowest FFT frequency, UTa), 
and covering a range of amplitudes, was properly resolved by the FFT, when using "perfect" 
(double precision floating point) arithmetic and twiddle factors. 

We then explored the effects of finite word length in the FFT computation, in particular the 16- 
bit and 20-bit integer options that can be set by the initial command register load of the A41 102. 
The results can be summarized as follows: With all "scales" enabled (i.e., with a 1-bit right shift 
of data following each FF" butterfly, required to prevent word growth for coherent frequencies 
present in the initial time series) the effect of finite word length and arithmetic precision is to 
introduce a "numeric noise" into the spectrum, consisting of an average of 1 LSB fluctuations in 
the final spectral amplitudes (and apeak fluctuation of 1.4 LSB, i.e., 1 LSB in each of the real 
and imaginary components). Stated this way, the result is independent of word length. It may 
seem surprising that a 222-point integer computation of the Fourier Transform introduces so little 
roundoff error; but the effect of the successive scale-by-2's is to keep pushing the roundoff error 
off the right end of the word. 

The numeric noise is, of course, to be compared with any periodic signal present in the digitized 
input. A single tone, present as a full-scale on-bin sinusoid in the digitized time series, produces 
a full-scale output. Thus a 16-bit "all-scale" integer transform has a dynamic range of 215 in 
amplitude (90dB); as we will soon see, however, there are several effects that can introduce 
spurious responses in the spectrum from a single sinusoidal input. These "spurs" can be 
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important in SETI, because a single mterfering signal may produce a set of false responses in 
addition to the obvious large peak. Some of these effects are finite input quantization (Le., 
shorter than the computation word size), spectral "leakage" (signal "off-bin"), and truncated 
twiddle ROM (both in word size and argument step size). We discuss these in the following 
paragraphs. 

The effect of omitting some of the right-shift scales is interesting: Most obviously, one 
introduces a risk of numeric ovefflow -- a full-scale input sine causes ovefflow if any scales are 
omitted, a half-scale input causes ovefflow if more than one scale is omitted, etc. Le., the 
spectral amplitudes grow by a factor of 2 for each omitted scale. This seems obvious, and in fact 
one might easily conclude that roundoff error grows the same way. However, the situation is 
more complicated -- it turns out, as revealed by our simulations, that the peak numeric noise 
grows as expected (a factor of 2, or one bit, in amplitude for each missing scale), but the average 
numeric noise amplitude grows only as the square root of the number of omitted scales (1/2 bit 
per missing scale). Thus one can squeeze some extra average dynamic range out of an integer 
FFT by omitting some scales, at the risk of numeric overflow (if a large signal is present); but 
note that the dynamic range relative to the peak numeric noise is not improved. 

We studied the effects of ROM truncation next. To set the stage, note that a "full-sized" complex 
twiddle ROM (4M x 20 bits, say) would require 40 4-megabit ROMs, currently priced at about 
$30 each, thus approximately doubling the parts cost! Of course, one need not store both sine 
and cosine (factor of 2 savings), and one need store only a quarter-sine table (another factor of 
4); that puts the ROM cost at about $150. Even at that price the ROMs are a significant portion 
of the board cost, so it is worth asking how wide and deep the ROM needs to be. 

We ran a set of simulations, and learned the following: i) the spectral amplitude of an on-bin 
sinusoidal signal is very little affected by rather extreme ROM wordsize truncation; in particular, 
8-bit ROM amplitudes affect spectral amplitudes by less than 1%; ii) ROM "width" (number of 
table entries) can also be reduced substantially, with almost negligible effect upon signal 
amplitude, but with production of spurs that are absent when using a full-sized ROM; iii) if 
ROM width is to be reduced for a non-square comer turn, truncate the larger address first. 

Further explanation of ii) and iii): Our 4M-point transform is implemented as 128x128~256, with 
a "small" (16K) twiddle factor multiplication following the first corner turn, and a "large" (4M) 
twiddle factor multiplication following the second comer turn (there are, in addition, a pair of 
4M comer turns, without twiddle multiplication, at both ends of the overall FFT). The small 
twiddle factor ROM is cheap, and no truncation is needed there. The second ROM is the issue. 
It is a 16Kx256 comer turn (the initial 128x128 transform pair is exactly equivalent to a single 
16K transform), requiring 14 and 8 address bits, respectively (22 address bits for a full-size 
ROM: 4M coefficients). We found that one can use a 16-bit (amplitude) ROM with 8 bits by 8 
bits of address (256x256, or 64K complex coefficients, a factor of 64 less than a full-sized ROM) 
with no loss of signal amplitude, but with production of spurs whose peak amplitude is -54dBc 
(dB relative to the "carrier," i.e., the sinusoidal signal). That peak spur occurs at f0k16K bins, 
with additional spurs at multiples of 16K bins offset, dropping at 6dB per 16K bins of offset. 
The peak spur amplitude depends on ROM width truncation, dropping 6dB per additional 
address bit used (e.g., a 512x256 addressed ROM -- 512K complex coefficients -- has a peak 
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spur amplitude of -6OdBc, again at +16K bins offset from the carrier). These results are 
independent of the FFT computation word size, i.e., identical for 16-bit and 20-bit integer FFTs. 

There are several possibilities for calculating the precise coefficients in a truncated ROM; for 
example, should each entry be the average of the multiple "true" coefficients for which that entry 
substitutes? or perhaps it should be simply the exact coefficient corresponding to the (smaller) 
FFT for which the ROM is full-sized. We explored this question, trying what we called a "mean 
ROM" and an "expanded ROM," respectively; we also considered a "median ROM" and a 
"topographic center ROM.  The result of simulation showed that it hardly matters, but where 
there is a difference the expanded ROM is better. For example, "spurs" of a pure dc input signal 
are identically zero for the truncated ROM constructed as an expanded ROM, whereas for a 
mean ROM they are the same size as the carrier spurs (which we might call "ac spurs") described 
in the previous paragraph, e.g., -54dBdc for a 4M-point FFT using a ROM containing 64K 
complex coefficients. (These spur amplitudes are for ROMs of 16-bit precision, by the way, 
whether doing a 16-bit or 20-bit FFT computation. Using instead a truncated ROM of perfect 
precision has no effect on spur level, which is caused entirely by the ROM's truncated "width.") 
This perfect suppression of "dc spurs" when using an expanded ROM is less than meets the eye, 
by the way: when the input data is multiplied by a window function (to reduce spectral 
"leakage"), as must be done in the real system (see below), the dc spurs reappear, at the canonical 
level specified in the previous paragraph. 

Our next set of simulations involved the addition of uncorrelated Gaussian noise to a discrete 
array of pure sinusoids, in order to determine how much precision (word size) is needed to 
ensure that the spectrum of input noise dominates over "numeric noise." This is clearly word- 
size dependent, since the amplitude of numeric noise in an all-scale FFT equals the LSB 
(independent of word size), whereas the amplitude of the spectrum of random noise 
approximately equals the input amplitude reduced by a half bit per butterfly. This estimate 
suggests that 16 bits is marginal in an all-scale FFT, because even if the input noise level is set to 
the full-scale amplitude of 215 (a radical approach, allowing no signal headroom), it will emerge 
in the spectrum at an amplitude of 24 after the 22 buttefflies of a 4 megapoint FFT; that is +24dB 
relative to roundoff ("dBr"). The corresponding figure for a 20-bit word size is an output noise 
amplitude of 28 (+48dBr). Of course, one cannot set the input noise amplitude to full scale 
without severe clipping, owing to the high crest factor of white noise; thus these figures should 
be reduced by a factor of at least -10dB. 

The purpose of the noise simulations was to quantify these estimates of the dynamic range, in the 
output spectrum, of input noise (call it "antenna noise") over roundoff noise ("numeric noise"). 
We carried out many simulations, with the following result: If the input noise amplitude is set so 
that approximately 1 sample in 4 million saturates at full scale (call this "full-scale noise"), then 
the rms noise amplitude in the spectrum that results is approximately 65 (for 20-bit integer 
arithmetic, with unwindowed input), or 4 (for 16-bit arithmetic). Thus for full-scale noise, the 
antenna noise in the spectrum has an amplitude +36dBr for a 20-bit Computation, +12dBr for a 
16-bit computation. In practice one would probably set the input amplitude some 6dB or so 
below full-scale noise, implying that a 4M-point all-scale FFT must be done at 20-bit precision 
(or better). The only way to survive with a 16-bit transform is to omit some intermediate scales, 
a perfectly reasonable (though less conservative) approach. 
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At this point we decided to use a 20-bit word size, and performed all further simulations at that 
precision. We next experimented with the "dithering" effects of combining wideband noise with 
input data, the sum being quantized to 4 or 8 bits. For 8-bit data quantization, dithering increases 
the dynamic range to =9OdB (from the 48dB of an undithered 8-bit quantization); however the 
quantization is a nonlinearity that produces harmonics at the =-48dBc level (in addition to the 
-60dBc spurs caused by a 128K truncated ROM), For 4-bit input quantization the harmonic 
spurs are far worse, approximately -20dBc, even though dithering continues to provide a wide 
dynamic range; 4-bit quantization thus appears an unwise choice for SETI. 

Finally, we experimented with various window functions. A "window" is jargon for a 
multiplicative function applied to the input time series for the purpose of reducing sidelobes and 
leakage: If an FFT is applied to an unwindowed input time series, the finite data length 
corresponds to multiplication of a continuing time series by a rectangular function (of length 
equal to the transformed data frame), thus producing in the frequency domain (by the 
convolution theorem) the convolution of the proper sampled spectrum with a sinc (that's 
shorthand for sin(x)/x) function, the transform of a rectangle. For an "on-bin" signal (i.e., a 
sinusoid whose period is an integral submultiple of the transformed time series length) all off- 
signal bins lie at zeros of the sinc function, producing an accurate spectrum with no sidelobes or 
leakage; but that is a rare case, and in general one sees sidelobes and signal leakage corrupting 
the spectrum. The usual cure is to use a multiplicative window function, of unit amplitude at the 
center of the time series and generally tapering to zero at the ends of the time series (in optics the 
2-dimensional analog is known as "apodizing"). The simplest example is the triangle (also called 
"Bartlett"), but there are literally dozens of contenders for "best window function," named after 
the famous (and not-so-famous), such as Hanning, Blackman, Dolph-Chebyshev, etc.; for an 
excellent review see the article by Harris (Proc. IEEE, 66, 1, 51 [1978]). In general, one trades 
off improved sidelobe rejection for a broader central response in the frequency domain. 

The rectangular window (Le., no window at all) is a disaster, with peak sidelobe of -13dBc, and 
slow falloff of sidelobe with offset from the spectral peak (-6dB/octave). At the other extreme, 
the Blackman-Harris "minimum 4-sample" window has peak sidelobe level of -92dBc, bought at 
the expense of a factor of =2 decrease in spectral resolution (Le., the response to a pure sinusoid 
is a peak that spans perhaps 4 or 5 frequency channels before it has fallen off by 30dB). We 
wished to look at windows because ii) we need one, and want to choose rationally, and ii) we 
wanted to see if windowing had side effects on the parameters already simulated (e.g., peak spur 
level, average noise level, headroom, etc.). 

The results are approximately as expected: Windows have negligible effect on spur levels 
relative to signal amplitudes (because both are similarly affected by the window), etc., and they 
have the predicted effect on resolution. The average noise level, for "full-scale" input noise, is 
reduced by about 3dB or so, owing to the reduction of average signal level by the window; this 
makes the choice of 20-bit arithmetic mandatory, if an all-scale transform is used. Finally, signal 
amplitudes are reduced by a few dB, relative to numeric noise; this is unimportant, because the 
system is designed so that antenna noise dominates numeric noise (by some 20dB or more), 

The major effect of windowing is to reduce leakage and sidelobes. We tested three windows, 
namely Hanning (von Hann: a cosine-squared), Blackman-Harris, and triangular (Bartlett), in 
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comparison with a uniform (no-window) window. Of these, the Blackman-Harris has the lowest 
peak sidelobe level (-92dBc, falling 6dB per octave offset from the carrier), while the Hanning 
has only a modest peak sidelobe level (-32dBc) combined however with very rapid falloff away 
from the carrier (- 18dB/octave); the advantage of the Hanning, of course, is a narrower main lobe 
(1.6 times the width of the uniform window, versus 2.1 for the Blackman-Harris). The choice is 
not absolute, but depends very much on the nature of the signals and interference expected. For 
example, if interference is often modulated with audio bandwidths (a few kilohertz), the 
Blackman-Harris's precipitous drop to -7OdBc is of no benefit, and its broader central lobe thus 
makes it a poorer window. What is needed in this case is a window that confines spectral 
"splatter" to a handful of contiguous channels, which the Hanning's rapid falloff adequately 
achieves; thus for this application it is a superior window to the Blackman-Harris because of its 
superior resolution and sensitivity. 

On the other hand, if one is dealing often with interfering carriers, the Blackman-Harris is the 
better window, since it keeps the signal within just a few channels before it falls below the 
antenna noise continuum. Although the choice is not critical, we believe that experience with the 
system will dictate which window is better. Thus we are designing the hardware to permit run- 
time selection -- we will load a suite of windows into the (small) window ROM, selected via a 
downloaded segment address. Our simulations of windows showed, incidentally, that the 
window ROM can be truncated enormously with no observable effect: the "full" 4 million 
coefficients can be replaced by an 8Kx16 expanded ROM (512 times smaller). Thus a single 
27C1024 (64Kx16), costing less than ten dollars, can hold 8 window functions. 

Based on the simulations just described, we have chosen the parameters for the 4M-point FFT. 
In particular, we will use 8-bit data quantization (in the mixer-filter-digitizer module), an 8Kx16 
expanded window ROM, 20-bit integer arithmetic with all scalers (or all-1) enabled, a full 
(16Kx16) small twiddle ROM, and a 512x256~16 expanded large twiddle ROM. Figure 13 
summarizes the behavior of the FFT with regard to signals, noise, roundoff, and spurs, and 
Figures 14 and 15 demonstrate the output data from a pair of simulation runs: The "signal" 
consists of wideband antenna noise to which has been added three large sine waves (amplitude 
0.1, at channels lM, 2M+0.25, and 3M+0.5) and, nearby, three weak sine waves (amplitude 
0.001, at channels 1M-8, 2M+20.25, 3M+20.5). In both cases the data has been quantized to 8 
bits, and transformed with 20-bit arithmetic in an all-scale FlT using a 512x256~16 expanded 
large twiddle ROM. The output table prints complex pairs, 4 to a line, beginning at the labelled 
channel number. In Figure 14 we have used a uniform window. the on-bin signal at 1M is 
cleanly resolved (one bin, all real), allowing clear detection of the nearby signal (at 1M-8); but 
the off-bin signals (at 2M+0.25 and 3M+0.5) are broadened by "spectral leakage" to more than 
the 68 contiguous channels shown, burying the nearby weak signals. In Figure 15 we have used 
the same data and transform parameters, but with a Blackman-Harris window (truncated to 
16Kx16). Now the on-bin signal at 1M has been broadened to a half dozen channels, somewhat 
degrading its detection, but the weak signal at 1M-8 is still cleanly resolved. More importantly, 
the off-bin signals at 2M+0.25 and 3M+0.5 are of comparable width, dropping below the antenna 
noise level at +3 bins -- the nearby weak signals (at 2M+20.25, 3M+20.5) now show clearly! 
Given that only a small fraction of real-world signals are on-bin, the wisdom of windowing 
should be apparent. 
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In these tables, the small peak near 4M is a harmonic spur of the strong signal at 2M, at a level a 
few times the average antenna noise level. The spectral regions offset by 16K from the large 
peaks have been listed because the worst ROM-truncation artifact occurs there; even with these 
relatively strong signals the spur does not rise above antenna noise (it is -60dBc, corresponding 
to an amplitude of about 15 in Figure 15). 

2.4.2 FFT Circuit Implementation 

We have delayed laying out a printed circuit board for the FFT processor until we see actual 
A41102 silicon, preferring to concentrate our efforts on the upstream and downstream modules 
(antenna, downconverter, hardware backend, etc.). We have, however, designed the processor at 
the block diagram level. It follows the description above, with "glue" logic implemented in 
complex PLDs (AMD Mach series). Each 4M-point FFT requires 9 4-megabyte parity DRAM 
SIMMs, a handful of buffers and latches, the twiddle and window ROMs, and the PLD glue. We 
have included a diagnostic bus for debugging and maintenance; it exposes the data stream as it 
propagates through the circuit. We have devised an interesting quasi-logarithmic compression 
scheme for converting quadrature amplitude pairs into modulus; we have not seen it elsewhere, 
but believe it is optimum for constant fractional error compression of integers. We will describe 
it in the next semi-annual progress report. 

On the chip supply issue (a continuing saga): We placed an order for 250 of these chips in 
December, 1991; subsequently Austek's rights to the chip (granted by the governmental CSIRO 
of Australia, which funded development of the chip) expired, with supply picked up by the large 
Australian AWA Corporation. Although they projected delivery for October, 1992, we still have 
not received any parts. 

2.5 Backend Array 

The FFT array is followed by an array of dedicated digital signal processing circuits, which sift 
through the spectra looking for i )  new peaks that exceed background by a significant amount, 
and ii) the progress of previously flagged frequencies of interest; see the original proposal for a 
de tailed description. 

We had assumed that this function is best performed by an integrated digital signal processor 
(DSP). However, after. looking at several choices for the DSP array, including the Motorola 
56002,96002, Intel 80960, DEC Alpha, and Star chip, we have decided to use a hybrid approach 
-- a hardware baseline accumulator and thresholding circuit, followed by a general-purpose 
computer array for decision-making. The hardware approach provides the same performance as 
a pair of DEC Alpha chips, currently the fastest available general-purpose processor, at a small 
fraction of the cost (we estimate our module will cost about $350 per board). Using hardware, of 
course, generally eliminates flexibility; we hope to recover it here by the use of downloaded 
search parameters (see below). 

Figure 16 is a block diagram of the hardware baseline module. It accepts 16-bit spectral moduli 
from the FFI' processor (computed as described in the previous progress report), keeping a 
running boxcar average of channel power via a SRAM-based circular buffer. It also accepts a 
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download of a single threshold constant, followed by a table of signal frequencies to watch (a 
"slot") or ignore (a "notch"), via the FIFO at lower right. The hardware compares the running 
average with the current datum (via the downloaded threshold), sending back the frequency, 
modulus, and baseline constant of all peaks that exceed the designated threshold. At the same 
time it also forwards the modulus information for the frequencies in the FIFO slot table, and 
ignores those in the notch table. Slots and notches are specified by beginning and end, so they 
can be arbitrarily wide in frequency (e.g., modulated interference). 

We have simulated the hardware module, including the quasi-logarithmic compression 
algorithm, and it works perfectly. We intend to reduce this module to hardware during the 
current 6-month grant period. 

2.6 Backend and Workstation 

The hardware threshold modules communicate with an array of general purpose processors. 
After looking at various options (an array of VME single-board computers, a single very fast 
computer, etc.) we have decided to use an array of inexpensive PC-clone motherboards. These 
are commodity items, costing roughly $500 for a bare motherboard with a 486SW25 processor 
The performance of commodity motherboards (10 to 15 MIPS) is comparable to or better than 
special purpose VME solutions, at around a third the cost. The use of PC-clone motherboards 
also allows us to use inexpensive, widely available software tools instead of a high cost, 
specialized software development platform. 

We intend to use twenty motherboards, networked with thin-wire Ethernet, in a diskless 
configuration. Each will boot and receive startup instructions over the network from the 
controlling workstation. Because this eliminates the need for local disk drives, hardware 
reliability is improved and software version control problems are eliminated. All network 
communication will be done with straght Ethernet protocols. We looked at using higher level, 
error tolerant methods such as TCP/IP and other Internet protocols. Since our application is 
relatively straightforward and the network hardware is in a very simple configuration (a single 
Ethernet cable), we found that these high level protocols gave us very little benefit while 
requiring a lot of overhead. 

Having an Ethernet full of computers running nearly identical code in lockstep might seem to be 
a recipe for disaster because of the high probability of packet collisions. This problem will be 
almost eliminated in our application since the workstation will rigidly control network 
communication. It will normally poll the diskless motherboards and only allow them to transmit 
onto the Ethernet at specified times. Unsolicited transmitting will only occur at boot up time and 
under error or other rare event conditions when latencies caused by Ethernet's "random 
delay/retry" policy can be tolerated. 

We are in the process of writing a custom boot ROM to be used in the ethernet cards which will 
be plugged into the PC motherboards. Commercially available boot ROMs perform a similar 
function, but only work with proprietary PC networking software. Our ROM's function is 
simple: it will make a file on the workstation look like a bootable floppy disk for each PC 
motherboard. The motherboard can then boot MS-DOS and run normal DOS programs. Our 
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specialized processing software can therefore be developed on a PC using common software 
tools and techniques. 

The software running on the motherboards will accept the baseline and hit data from three of the 
hardware baseline modules (3 feedhorns, a single 2 MHz sub-band), which will be implemented 
as ISA plug-in boards. It will then correlate these pieces of data with each other, with past data, 
and with knowledge about the antenna’s beam profile. It will reject hits that are wide enough to 
be natural or obviously of terrestrial origin. Hits in either of the sky horns that coincide with 
strong hits in the terrestrial horn will be rejected as obvious terrestrial interference. Hits that 
traverse the east sky horn and then the west sky horn, with proper amplitudes, will be flagged as 
possible candidate signals and this information will be forwarded to the workstation for further 
processing and archival storage. 

We are investigating a simple algorithm that analyzes data from the two sky horns to give us a 
measure of how closely a set of hits conforms to a possible extraterrestrial signal. It takes 
advantage of the overlapping beams to remove ambiguities caused by fluctuating signal strengths 
(from interstellar scintillation or polarization shifts). The algorithm takes the difference in signal 
strengths between the two sky horns and normalizes it by dividing by their sum. When plotted 
versus time, this normalized difference will follow a specific path, which is a function of the 
beam shapes and the earth’s sidereal rotation. If a set of candidate hits does not follow this path, 
it can be rejected since the transmitter is not moving sidereally with respect to the earth. 

We have made some progress in designing algorithms for the backend workstation. In particular 
we have written an expandable shell for a graphical user interface, and we are experimenting 
with algorithms for handling the spectral data. We have a rudimentary simulator that creates the 
kind of data that will eventually come from the spectrum analyzer, thereby allowing us to test 
these algorithms and their associated display windows. 

3. NEXT STEPS 

We have made major progress during this 6-month period, on the antenna, amplifiers, 
downconverter, digitizer, FFT architecture and simulations, hardware threshold module, and 
backend. The first three are complete or nearly so, and we expect to complete the digitizer 
hardware soon. The FFI‘ array and following subsystems constitute a major construction effort, 
particularly with our expanded goals (240 million channels and three antenna feeds, compared 
with the 100 million originally proposed), and we expect those tasks to occupy a full year’s 
effort. Overall we are pleased with progress to date. 

4. OTHER FUNDING 

During the period of this report we have received funding from The Planetary Society and from 
the BosacMKruger Charitable Foundation, in addition to our grant of partial support from 
NASA; we also received equipment donations from the John Fluke Company and the Hewlett 
Packard Corporation. 
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5. PUBLICATIONS AND TALKS 

The two papers listed in the previous progress report are in press and awaiting acceptance, 
respectively. 

During the period of this report we have given talks on the project at Boston’s Museum of 
Science, the ARE Convention at Boxboro, MA, and the ASC Conference at MIT. Our work 
has been filmed and shown on CNN, local TV channels 5, 7, and 56, British channel 4 (ITV), 
and IWR radio. 
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Figure 1. Dual-beam focal plane alternatives: (a) phased array of dual-polarization circular horns, 
using passive combiners and low-noise amplifiers (only one polarization shown); (b) pyramidal 
linear-polanzation horn pair, stacked along the E-plane. 
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Figure 2. Antenna gain as a function of zenith angle (for four choices of azimuth), for a 
hexagonal phased subarray of non-interacting point radiators, with lattice-plane spacing of 1.5 
wavelengths. For an array of finite sized conical feeds, as in Figure la, this plot must be 
multiplied by the single-horn diffraction pattern, which largely suppresses the off-axis grating 
lobes. Note that the use of dual circular polarization feeds, with separate combining networks, 
allows one to construct a dual-beam, dual-polarization focal plane array. Though the pattern 
shown is for a hexagonal array, the result for a heptagonal array is nearly identical. The close 
matching of main-lobe patterns is maintained for all azimuth angles; the particular choice here 
was meant to be "random." 



Figure 3. Far-field antenna pattern for a 26-meter Cassegrain illuminated by a single pyramidal 
horn that is displaced along its E-plane by half its aperture. The three cases plotted progress to 
larger apertures, specified in wavelengths, with edge tapers of -4.1&, -5.533, and -1OdB, 
respectively. Each graph is centered on the H-plane, and plotted versus angle in the E-plane, 
with the vertical dashed line indicating the antenna axis, and the horizontal dashed line indicating 
-3dB relative to maximum gain. The horns are assumed non-interacting; the plots were 
temnated at +0.4' because of memory lirmtations. 
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Figure 4. Pyramidal horn design, with truncated corners to allow placement in our radome. This 
horn is closest to Figure 3b. 

1 



fvD ~~~~E PHOTOGR 
Figure 5. Dual pyramidal horns, fabricated as in Figure 4, mounted in the 26-meter Cassegrain 
radome. Because of mechanical constraints, the phase centers of the horns are approximately 60 
cm too close to the subreflector; this can be corrected when warm weather returns. A portion of 
the subreflector support truss is visible at top. 
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Figure 6. Sidereal drift scan of Cyg A (de~lination=40.6~) with dual pyramidal horns, showing 
good lobe pattern and handoff, but lower than expected signal strength. The true beam 
separauon is 0.5 major divisions larger than shown, due to pen offset in the strip chart recorder. 
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Figure 7. 3-stage KEMT low-noise broadband amplifier, constructed from a kit of parts supplied 
by Berkshire Technologies. The photograph is considerably enlarged; actual amplifier 
dimensions are 1.75"x3.25". 



Figure 8. Noise and gain of the HEMT amplifier shown in Figure 7. 



Figure 9. Completed VKF local-oscillator array and bargraph display boards. The LO 
synthesizers receive their serial register load from an 8 7 0 5 1  microcontroller, which then enters 
the irreversible "power-down" mode in order to prevent digital noise. Two synthesizer boards 
provide the full 20 oscillator array for the 240-megachannel spectrometer. 







Figure 12. Mixer-filter-digitizer printed-circuit board. Analog signals enter from the left; the 
anti-alias lowpass filters are at center, followed by baseband amplifiers and A/D converters, 
finally emerging as 8-bit multiplexed I and Q amplitudes on the 20-pin headers at right. The 
board is implemented with 12/12 design rules as a 2-sided board with ground plane. 



Figure 13.4-million-point integer FFT behavior with regard to coherent signals, noise, roundoff, 
and spurs. 8-bit I and Q input amplitudes are assumed, left-justified in the EFT'S word, with one 
righthand bit shift per butterfly, and a 256x256~16 "expanded ROM" for the large twiddle factor. 
(a) 16-bit integer arithmetic; (b) 20-bit integer arithmetic. The diagrams show the location in the 
output spectral amplitudes that the indicated inputs emerge. For example, a full-scale input sine 
wave, whose period is commensurate with the transform window, produces a full-scale output 
peak in the corresponding frequency bin. "Canonical noise" is input ("antenna noise") Gaussian 
white noise of amplitude such that approximately one sample in 4 million would overflow full 
scale (and is forced to saturate at full scale); its modulus has a mode of approximately 20% of 
full scale. "Spurs" are spurious spectral responses to genuine sinusoidal components in the input 
time series, caused primarily by the twiddle ROM truncation; each doubling of ROM size 
reduces them by 6dB; our design uses ROMs twice as large as assumed here, hence produces 
worst-case spurs that are shifted one bit to the right of the positions shown. Omission of bit 
shifts between butterflies affects all signals and spurs linearly; however, the effect on roundoff 
noise is different -- although the peak roundoff noise grows linearly with omission of bit shifts, 
the rms roundoff noise grows only as the square root. The three arrows below the boxes point to 
the thresholds that produce the indicated "hit" rate, assuming random noise, and a Pmillion point 
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FFT every 2 seconds. -- - 
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