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1. INTRODUCTION

Many future NASA missions require robotics to assist in the assembly, maintenance
and servicing of spacecraft. Such scenarios may include one or more mult-linked
manipulator arms which, because of their lightly damped characteristics, require vibration
suppression as well as end point tracking in a somewhat uncertain environment. Due to
the flexibility in the joints/links and the inherent vibration due to the mobility of the
robotics system, adaptability to the environment and varying inertia is a requirement.

Several methodologies have been suggested for robot control based upon known tasks
and environments. Classical proportional-integral-derivative (PID) control has been
employed in industry for many years. The approach assumes complete knowledge of all
pertinent system and environmental characteristics. It also requires tuning the PID gains
to meet some performance specifications. When the system or environmental parameters
change, the gains must be re-tuned accordingly. Thus, unknown disturbances or
changing environmental conditions may result in performance degradation.

To address the issue of uncertainty or time-varying conditions, several adaptive
control algorithms have been suggested. These include joint-space control [18] and
global linearization (4] methods in which some nonlinear or discrete matrix polynomial
equation set must be solved in order to construct the controller. While these methods
may guarantee stability under certain restrictions, the computation time may limit their
implementation for multi-linked robotics systems.

Fuzzy logic control offers an alternative approach in which the structure of the system
model is not required for control design [25,2]. Fuzzy control algorithms have been
applied to several process control and automotive systems [8,14,13] in which the time

constants were somewhat large. The use of fuzzy logic for robotics systems has yielded
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SOme Success [16,5] although 1ssues such as time delays and initial conditions sometimes

limit the applicability of these algorithms.

This thesis develops a fuzzy logic control algorithm which can be applied to systems
with uncertainties. These uncertainties may include unknown initial conditions, and

undetermined system dynamics. Unknown initial conditions may exist in space

manipulator systems due to sensor inaccuracies.

The concepts of fuzzy logic control are presented in a progressive manor. First, an

extensive development concentrating on the theories of fuzzy logic control is presented.

Secondly, fuzzy logic control is applied t0 tWO simple systems; the first being a

horizontal pendulum while the second example 18 a vertical pendulum. Then the

algorithm is applied to a three degree-of-frcedom robotic manipulator.

The horizontal pendulum provides an environment with which to develop a FLC that

produces performance characteristics similar to traditional proportional derivative

control. In the course of this development seven linguistic terms are presented and

defined over 2 quantized Universe of Discourse. The membership funcdon used to define

the linguistic terms differs from classical methods. A novel means to quantize the change

in error is presented. Utilization of the fully populated rule base results in a general fuzzy

logic controller that accomplishes vibration suppression (Fuzzy-PD). By examination of

the phase portraits an off-line tuning approach is considered

The application of Fuzzy-PD to the vertical pendulum provides the ground-work for

the development of a fuzzy logic controller that not only accomplishes vibration

suppression but also compensates for steady-state €rrors. In the course of this

development, a Capture method and an alternative rule base are provided t0 compensate

for system biases. The ultimate result is the hybridization of the Fuzzy-PD controller

with raditional integral control resulting in whatis referred to as Fuzzy-PID.



At this point the unrestricted fuzzy logic controller (Fuzzy-PID) is applied to the
highly coupled, second order, nonlinear dynamics associated with a three degree-of-
freedom robotics manipulator. The results of such an application as compared to
traditional PID control illustrate the performance of Fuzzy-PID.

Concurrent to this investigation, a coordinated teleoperated mobile manipulator
system is being designed and fabricated. The system will contain two DR-106 six-degree
of freedom manipulators with flexible joints/links supported by a mobile platform.
Several algorithms such as the fuzzy logic controller developed in this thesis are being
considered whereby the human operator inputs the desired trajectory and the controller
tracks the desired trajectory while suppressing vibration and compensating for platform

motion. Such performance measures are typical for in-space robotics operations.



> BRIEF OVERVIEW OF FUZZY LOGIC CONTROL

Fuzzy logic control, is quite confusing when initially introduced. However, like

many concepts in life, once a global understanding is obtained the confusion associated

with the specifics diminishes. Therefore, before more complicated deliberation on the
uses of FLC may be developed, it may be in the readers best interest to consider a brief

overview of the fuzzy logic control algorithm (FLC). The block diagram of the fuzzy

logic control algorithm is illustrated in Figure 2.1

, QCEA(K)
(t) e(t) e(k) € Quamize < Ql Dequamize c(t) Y([)
AN RULESES, T b o e Gp

| [-— & Fuzz. QE) —

Figure2.1: Simplified block diagram of fuzzy logic controller

Fuzzy logic control is a rule based controller. As the term "rule base" indicates, the

fuzzy logic control algorithm is based on 2a number of rules which are accessed and

processed in a specific fashion so as 10 provide the desired control input to a system. In

order to construct such a controller, consideration must be given to the development of

the rules and how they interact to form the control input.

Individual rules are constructed using qualitative terms in conjunction with IF ...

THEN statements. Some examples of common qualitative terms are big, small, large,

hot, normal, fast, slow, €iC. ..
A linguistic rule used in the process of balancing a stick may read: IF the stick is

inclined moderately to the left AND is almost still THEN move the hand to the left

quickly. In order for this rule to be useful a process must be implemented by which the



linguistic terms "moderately”, "almost still", and "quickly” are converted into some
numeric value. Fuzzy set theory does just that.

Notice how the qualitative linguistic terms are vague in their meaning. This is a
desired result because it closely resembles how humans think. The process provided by
fuzzy set theory which enables a linguistic term to take on range of values is called the
membership function. The membership function is defined over a domain referred to as
the Universe of Discourse and assumes a value which ranges from 0 to I. This value is
referred to as the membership value. In general the membership value is a way to weigh
how much of a particular linguistic term is present.

How does one determine what is "quick"? For example, if the term "quick” is defined
to be 100 mi/hr. its associated membership value would be 1. Any variations, either
positive or negative from the speed 100 mi/hr. would result in a membership value of less
than 1. For example, 90 m/hr. may correspond to a membership value of .9. Therefore
one may conclude that only 90% of the linguistic term "quick” is present.

At this point various rules using linguistic terms in conjunction with IF. . .THEN
statements may be developed. However, because a large number of qualitative linguistic
terms exist in the human language it is desirable to choose an appropriate number of
linguistic terms and to define what region they are valid.

For control applications the linguistic terms tend to read as Large, Medium, Small,
and Zero. By considering both positive and negative values of the linguistic terms listed
one has seven distinct qualitative linguistic terms with which to construct rules. (Larger
Positive, Medium Positive, Small Positive, Zero, Small Negative, Medium Negative,
Large Negative). These linguistic terms must be defined over a region called the
Universe of Discourse. It is common practice to define the qualitative terms over a
quantized Universe of Discourse. By doing so the qualitative linguistic terms may be

used to describe more than one state in a system. Take for example the rule: IF error is



Large Positive AND the rate of error change is Large Positive THEN the control input
should be Large Negative. Even though the qualitative linguistic term defining errcr and

error change is the same (Large Positive) the membership value associated with both of

the states may differ.

With the concepts used to develop a rule presented and the foregone conclusion that a

fuzzy logic controller requires more than one rule to accomplish any reasonable task, a

brief discussion of the techniques used to process the rule base follows. The rule base is

simply all of the rules created to perform a particular task. Given the states of one such

particular task, it is likely that some of the rules will be appropriate to the conditions

presented and others will not. The rules that are inappropriate are discarded by the use

of the Logic Product and the others are combined using the Logic Sum. The result of this

combination of rules is a weighted area. By finding the Center of Gravity of this area a

single numeric value results. This value is the final fuzzy inference and is a quantized

value. Dequantizing this fuzzy inference results in the final control input.

With this brief overview complete, the reader may proceed further where a more

detailed description of fuzzy logic control and its applications to various dynamic

systems is presented.



3. DEVELOPMENT OF
THE FUZZY LOGIC CONTROL ALGORITHM

3.1 MEMBERSHIP FUNCTION

The basis for Fuzzy Logic Control (FLC) is the membership function, commonly
referred to as the membership shape. A membership function is defined over a domain
called the Universe of Discourse (U) and assumes a range from zero to one, referred to as
the membership value (u). The universe includes all events that can take place in the
context of a particular situation. Restated, the universe exists over the boundaries of a

given situation.

The membership value (u) describes the probability of an event occurring, given a
particular universe[15]. Probability is defined as the ratio of two numbers. The
numerator represents the events in the universe on which interest is focused, and the
denominator represents the universe of all possible events. Therefore, the numerator is a
subset of the denominator. With this in mind, the probability of an event will range from
zero to one indicating from non-membership to total-membership in the universe.

Symbolically u(A|B), reads as follows: "the membership value (u) is the probability of

event A given the universe of events B," where

WA|B)=2 Eq.(3.1)
B
and
0<u(A[B)<1 Eq.(3.2)

FLC is based on a set of heuristic rules. These rules use qualitative words which

are defined mathematically in the form of membership functions. To illustrate this



relationship between qualitative words and membership functions consider the following
example. Supposeé one was to look at the normal height of males. Say for instance that a
reasonable normal height is 5 ft. 9 ins. This is not to say that people who are of height of

5 fr. 4 ins. Of 6 fr. 2 ins. are not of normal height. Those are normal heights, but
somehow the feeling of wnormal height" is noOt as strong. However, at heights of less than
5 ft. Q ins. or More than 6 ft. 6 ins. one could categorically say this is "short" or this 1s
nall". Therefore, as one moves from short to tall, the feeling of normal gradually rises

and than gradually falls. If values from zero to one are assigned to this feeling of "normal

height", the result could be the bell shaped curve shown in Figure 3.1

ol R

Membership Value (1)
(=]
T

5'0" 54" 59" 66"

Universe of Discourse {8))

Figure 3.1: Membership function for people of normal height

This bell shaped curve is called the membership function and is defined over the Universe

of Discourse (heights ranging between 5 fr. 4 ins. and 6 ft. 2 ins.) 1© take on values from

zero to one, where one 18 the strongest feeling of "normal”. With this concept of

membership function defined, one now has the ability 10 qua.ntitatively deal with inexact

or ambiguous issues such as the qualitative words short, normal, tall.



The idea of a membership function differs from a binary approach. The dotted box in
Figure 3.1 illustrates binary theory where there are only two membership values: zero and
one. According to this, any person in the range of 5 ft. 4 in. to 6 ft. 2 in. takes on the
membership value one and is of perfect normal height. Heights less than 5 ft. 4 ins. and

greater than 6 ft. 2 ins. correspond to a zero membership value and are thus completely

non-normal; clearly this is an unnatural situation.

It has been shown that the exact shape of the membership function is relatively
arbitrary and may be chosen based on user preference[9]. Figure 3.2 illustrates some

commonly chosen membership functions. Figure 3.3 illustrates how similar they are by

superimposing them.

Bell Shaped Trapezoidal Triangular Sinusoidal

JAVAVAVA'

Figure 3.2: Commonly chosen membership functions

Figure 3.3. Similarities between some different membership functions

Due to the complexity of the bell shape (Figure 3.2a) and the piece-wise continuous
behavior of the trapezoidal shape and triangular shape (Figure 3.2b& 3.2¢), the smooth

continuous and easily calculated sinusoidal shape has been selected as the membership

function for this study (Figure 3.2d).
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3.2 LINGUISTIC RULES

To develop a fuzzy controller, it is necessary to interpret linguistic rules that are
based on experience so as to form a control surface that provides output values of the
controller, corresponding to situations of interest[11]. The basis for the linguistic rule is
the "IF. . . THEN" statement. One linguistic rule or "production rule” describes a portion
of a particular problem or task in words. The antecedent blocks ("if" phrases) describe
the states, and the consequent block ("then" phrase) describes how the controller should

respond to the states.

For example, asking a first shift operator on an assembly line to describe a single

portion of his/her task, a typical response may be:

IF the parts are running "far behind” and they "have been” for a period of time THEN
I increase the line speed "alot".
This particular response is based on the operator's experience and is to be interpreted to
produce a production rule. However, a complication arises when the same question is
asked of the second shift line operator. The response may differ in the actual vocabulary
used, but the premise would remain the same. Therefore, it is necessary to define a
common or universal set of linguistic terms (common vocabulary) which may be used to
specifically define the production rule. Refining the operator's response using specific
linguistic terms results in a typical fuzzy linguistic rule:

IF (the error is “large negative”) AND (the change in error is "zero") THEN (the
control input should be "large positive”).
Notice the change in the antecedents blocks and the consequence block. The term "parts .

.. far behind" corresponds to error being large negative, while the term "have been for a
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period of time" corresponds to change in error being zero. Further, the term "increase . . .

alot" corresponds to a control input laree positive.

In general, in order to develop and interpret this rule, or any other fuzzy linguistic

rule, the following concepts need to be addressed.
1. How are error, change in error and control input defined?

2. How are the qualitative linguistic terms "large positive", "zero", and "large

negative" defined?

3.2.1 ERROR, CHANGE IN ERROR, AND CONTROL INPUT

Error is defined as the difference between the process output and the desired output:

e(k) =0(k)—8,(k) Eq.(3.3)

where
e(k) = error at time sample k

9(k)= position at ime sample k

0,(k)= desired position at time sample k
The change in error is the difference between the error from the current process output

and the error from the last process output.
ce(k)= e(k)—e(k—1) Eq.(3.4)
where
ce(k)= change in error at current sample
e(k) = error at current sample

e(k —1) = error at previous sample

All of the examples to follow are maneuvers of mechanical dynamic systems whose

dependent variable is an angle 6(t) given in either radians or degrees. The control input

is the input torque applied to the process.
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3.2.2 QUAL!TATIVE LINGUISTIC TERMS

As illustrated in the line operator example, it 1s important to develop a set of

qualitative linguistic terms [0 be used in the controller. In the same way the qualitative

linguistic term "normal” was defined over the universe of heights ranging from 5 ft. 4 ins.

w0 6 ft. 2 ins., the linguistic terms for the FLC will span a quantized universe of domain

defined from -6 10 +6. These limits from -6 to +6 are not hardfast, rather they are chosen

such that the individual membership functions begin and end on a whole number. AS

previously mentioned sinusoidal membership functions will be used to define the

linguistic terms. Figure 3.4 illustrates seven such qualitative linguistic terms defined over

a quantized Universe of Discourse ranging from _6 to +6 and their respective defining

functions: large positive(LP), medium positive(MP), small positive(SP), zero(ZE), small

negativc(SN), medium negative(MN), and large ncgative(LN).

The purpose for defining the qualitative terms large-positive through large-negatve

ona quantized Universe of Discourse is to allow their universal use in defining €rror,

change in €rror and the control input to the system. This may be accomplished by simply

quantizing the values of error, change in error and the control input to the system 1O the

values -6 to +oon the Universe of Discourse (se€ Figure 3.5).
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Large Positive It
= sin [m/de(x-4)]
LP

Medium Positive
y =sin [rt/4e(x-2)]

6 4
Small Positve
y = sin [m/4(x)]
6 -4
Zero
y = sin [rc/4+(x+2)]
6 4
Small Negative 17
y = sin [m/4+(x+4)]
SN
6 -4 -2 2 4 6
Medium Negative 11
y =sin [m/4+(x+6)]
MN
6 -4 -2 2 4 6
Large Negative 1]
y =sin [r/4(x+8)]
6 -4 2 2 4 6

Figure 3.4: Linguistic quantized qualitative terms and their respective functions



14

u
LN MN SN ZE SP MP LP
1
15
4 I | 1] 1 ’\
-6 -4 -2 0 2 4 6 8]

Figure 35: Qualitative linguistic terms defined on a quantized universe from -6 to +6

For example, suppose the measured error and calculated change in error in a
particular system after A/D is 22 degrees and 33 degrees/sec, respectively. If the

quantization function for error, equals one tenth of the measured €rro., then the quantized
error is 2.2. Thatis,

quantized error = (6%) x (error) Eq.(3.5)

Notice in Figure 3.5 that if a vertical line is drawn through the point 2.2, it intersects the
membership functions SP and MP. Therefore, the error is a combination of a weight of

the membership function Small Positive and a weight of the membership function

Medium Positive.

If the quantzation function for change in €rTor is defined as

quantized change in error = (—9%] x (change in error) Eq.(3.6)
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then the quantized change in error is 2.2. Notice again in Figure 3.5 that this corresponds
to some membership value of the linguistic term Small Positive and some membership
value of Medium Positive. Collectively, error and change in error have been shown to
posses the same quantized value and linguistic values SP and MP while retaining

different actual values, thereby demonstrating the transcendental usefulness of the

quantized Universe of Discourse.
It has been shown that the number of linguistic terms is arbitrary. As the number of

linguistic terms increases, the resolution of the controller increases as a direct result of the

induced ability to define each linguistic rule with more accuracy. In most FLC it is

common practice to use only three to five linguistic terms. However, due to the

complexity associated with the controller for robotics systems, seven linguistic terms are

employed.

3.3 RULE BASE

In order to develop a fuzzy logic controller, a series of rules must be assembled. Itis

the assembly of production rules in which a repertoire of learned problem-solving actions

(consequences) 18 associate with conditions (antecedents), to form condition-action pairs.

Once a situation is recognized, the conditions constitute cues or indices for corresponding

actions. This is how FLC attempts 10 model the heuristic problem solving approach of

humans[15]. In the assembly line operator example, one production rule governing the

case when the error is large negative and change in error is zero was developed.

However, in order to handle other cases such as the error being medium positive and the

change in error being large positive, one must develop other rules. Therefore, for each

particular situation of interest, there exists a corresponding production rule. Combination

of the production rules results in what is referred to as a "rule base”. In order to

assimilate the rule base, the concepts of logic product, logic sum, center of graviry, and



16

the quantization functions must be developed. An illustrative example of an inverted

pendulum 1s presented in order to mature these concepts.

3.3.1 LOGIC PRODUCT

3.6 illustrates seven rules which are commonly used for vibration suppression

Figure

of an inverted pendulum.
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ANTECEDENT BLOCKS
Quantized Emror (QE) Quantized Error Change (QCE) Logic Product
] (Minimum)
Rule | /\
THEN
4 6 MIN(8, .9)=.8

Rule 2

Rule 3 /\
7.

AND — . THEN
g % 6 MIN(6, 4)= 4

—— . THEN
5 4 T ¢ MIN(60)=0

Rule 4 /\ ':
Rule 5 /\ § /\ :
i AND ——F— ; — THEN
2 . 6 MIN(O, 0)=0
/\ /\ .

AM/\
N

AND — . . THEN
4 6 MIN(0, .9) =0

Rule 6
T T AND T T T
s R s MIN(O, 4)=0
Rule 7 A /\
: T T AND = T T TI—IEN
3 e 6 5 4 6 MIN(0, 9) =0
32

Figure 3.6: Seven rules used for an inverted pendulum

Logic product is the first of the concepts to be developed. The physical significance

of taking the logic product 1s 10 discard any and all rules that are not relevant to a given

pair of error and change in error values. In set theory, the logic product is the AND

function. It can simply be defined as taking the minimum of the corresponding numeric
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enties of two sets. Mathematically, "the intersection of two sets, AN B, corresponds to

the AND function and is define by
u(A AND B)= min(u, (x),u,(x)) Eq.(3.7)

Figure 3.6, demonstrates how the antecedent block or the quantized error and
quantized change in error are joined by the AND function, resulting in a logic product.
The dashed vertical lines in the quantized error (QE) and quantized change in error

(QCE) columns represent a given QE of 3.2 and QCE of .5. Examining the first row of

Figure 3.6, which corresponds to Rule 1, one notices the quantized error membership

value equals 0.8 (u=0.8) and the change in error membership value equals 0.9 (u=0.9).

The minimum of these two values is 0.8, therefore u(.8 AND 9)=.8. The same procedure

is performed for all of the rules as illustrated in Figure 3.6.

{min(.8,.9), min(.6,.4), min(.6.0), min(0,.9), min(0,0), min(0,..4), min(0,.9)}

results in the logic product (a set).
{.8,.4,0,0,0,0,0}

The logic product is used because it provides the condition in which both error and

change in error are satisfied. As shown in rule one (Fig.3.6) the membership value of

u=0.8 satisfies both conditions; therefore it is ransferred to the consequence block.

3.3.2 LOGIC SUM

The logic sum is an operator such that the contribution of each individual rule is

combined to produce the final fuzzy inference. Mathematically stated, it is the OR

function. The union of two sets, A U B, corresponds to the OR functon and is defined

by
u(A OR B) = max(u, (x),u,(x)) Eq.(3.8)

The OR function is applied to the consequence block because even if an individual rule's

influence or contribution is small, it should still be reflected in the resulting control input.
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Using the previous values of QE and QCE one can view how the contributions of

each rule are transferred to the consequence block.
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The logic sum is the OR function applied to the shaded area in the "Control Input”

column shown in Figure 3.7. This shaded area is referred to as the conclusion of the

fuzzy inference. Figure 3.8 illustrates the result of imposing all of the contributions on

the Universe of Discourse.

The conclusion of the fuzzy inference is an area and cannot be used directly to

produce a control command. Therefore, a conversion technique is needed to convert the

fuzzy inference into a control quantity. The most common means by which to

accomplish this goal is the use of the center of gravity method.

u
LN MN SN ZE SP MP LP
1
15
< —_—
0 2 4 6 U

Figure 3.8: Final inference produced by the FLC

3.3.3 CENTER OF GRAVITY

aviry method is the most commonly applied way of combining the

The center of gr

individual consequences of each rule to get a specific control quantity that may be sent to

the process under control. The shaded area in Figure 3.8 is the final inference produced

by fuzzy controller. This area, however, cannot be used directly to control the output of



the system. Therefore, the center of gravity of this area is taken.

for the center of gravity is

where
QI = Quantized Input
u, = membership value

U, = Universe of discourse

22

In general the equation

Eq.(3.9)

Referring to the final inference illustrated in Figure 3.8, and using Eq.(3.9)

QI = (8 x —4) + (-4 x=2)/(.8+.4)

or
QI=-33

Figure 3.9 illustrates the position of the center of gravity.

Center of
gravity '

Eq.(3.10)

Eq.(3.11)

i —
6 -4 -2 0
33

Figure 3.9: Center of gravity method
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The quantized value of the input QI=-3.3 can now be directly related t0 a control input
applied to the system by simply dequantizing it into an applied torque. For example, if

the dequantizing function is

Input = (—1%0-) x (quantized input) Eq.(3.12)

then the torque applied to the system

= (-12—0) x (=3.3) Eq.(3.13)

is [=83.33 in-ounces.

This is the defuzzification operation. The method of defuzzification that employs center

of gravity is known as the Mamdani method.

3.4 THE FUZZY CONTROL ALGORITHM

The overall general fuzzy control algorithm may now be summarized as follows(Fig.

2.1). First a pair of error and change in error values are measured and calculated
respectively(Egs. 3.3 & 3.4). These two states are then converted into quantized error
and quantized change in error(Egs. 3.5 & 3.6). These quantized values correspond to
particular qualitative linguistic terms(Figs. 3.4 & 3.5). The linguistic terms are then
applied to the antecedent block of the control rules. If both conditions in the antecedent

block are met then a resulting consequence is registered(Eq. 3.7 & Fig. 3.6). All of the

individual consequences are then combined by the use of the logic sum(Eq. 3.8 & Fig.
3.7). This resuits in a final fuzzy inference(Fig 3.8). This final inference may then be

converted into a quantized input by application of the center of gravity method(Fig. 3.9 &
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Eq. 3.9). The final step is to dequantize the quantized input to the control input to be

applied to the system(Eq. 3.12).
The algorithm for FLC just presented is not specific, and it may be applied to a

multitude of problems. The intent here, however, is to develop a FLC for robotics

systems. Towards this end, two particular examples, a horizontal pendulum and a

vertical pendulum, are supplied. These are given in the Chapters 4.



4. ILLUSTRATIVE EXAMPLES

Before applying the fuzzy logic control algorithm developed in Chapter 3 to 2

robotics example (the coupled nonlinear dynamics of a revolute three degree-of-freedom

robot in this study), some physical insight into the pehavior of the fuzzy logic controller

is desirable. This may be obtained by first applying the fuzzy control algorithm to a

simple second-order, linear system and comparing the response to a step input to that ofa

traditional PD controller. Once this is accomplished, the development of a FLC to handle

the slightly more complicated dynamics of a cradition vertical pendulum will be

considered.

4.1 THE HORIZONTAL PENDULUM

th (L) in the horizontal plane with a concentrated

Consider a massless rod of leng

mass (m) at the endpoint, and an input torque (1) supplied by 2 motor. This system 1s

referred to as a horizontal pendulum. The equation of motion for the system is.

fo——=0 Eq.(4.1)

where 8(t) is the dependent variable defining the angular position of the pendulum.
When looking at the dynamics of this simple system notice that a rraditional proportional
derivative (PD) controller is adequate for vibration suppression. This is accomplished by

defining the torque as:

r=—ge—eg—h®—ég Eq.(4.2)
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where g and h are gains chosen to meet desired performance specifications. For this
study the selection of the gains is based on the Theory of Natural Control[17].

Substituting Eq.(4.2) into Eq.(4.1) gives the overall closed loop system dynamics.

6+ h(é—éd)+ g(6-9,)=0 Eq.(4.3)

Consider a specific fuzzy logic controller that provides the same performance

characteristics as the rraditional PD controller when applied to the horizontal pendulum.

For clarification purposes, this fuzzy logic controller is referred to as "Fuzzy-PD" or

“EPD". It is noticed in Chapter 3 that in order to develop a FLC, the following need to be
defined:

(1) The number of qualitative linguistic terms used.

(2) The Universe of Discourse.

(3) Sign convention on error and change in error.

(4) The quantization funcuons.

(5) The number of rules in the rule base.

4.1.1 NUMBER OF LINGUISTIC TERMS, UNIVERSE OF

DISCOURSE, AND SIGN CONVENTION

Equations 3.3-3.6, and 3.12 were presented in such a way that they are consistent with

the Fuzzy-PD controller now under consideration. Therefore, the seven qualitative terms,

and the quantized Universe of Discourse used in the previous Chapter will now be

applied(Fig.3.4 & Fig. 3.5). Itis interesting to note that the error, change in error and

input to the system do not have to be quantized to the same seven qualitative linguistic

values. For example, it may be decided that only three linguistic terms are needed for an

accurate description of error (ex: Positive, Zero, Negative) but five linguistic terms may
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be needed for change in error (MN,SN,ZE,SP,MP). This is acceptable when developing
a FLC for a particular application. For simplicity, this controller does quantize error,

change in error and input to the same seven linguistic values ranging from large positve

to large negative.

The sign convention for the error and the change in error ar¢ defined for this physical

system is shown in Figure 4.1.

E =-30°
CE =20°

Figure 4.1: Sign convention for error and change in error

4.1.2 QUANTIZATION FUNCTIONS

In Chapter 3 the idea of developing rules based on error, change in error and control

input was presented. This approach is now applied to the EPD controller. It was noted

in Chapter 3 that quantization functions were required for all three parameters (E,CE.D.

(see Egs. 3.5, 3.6, & 3.12). Therefore, before the Fuzzy-PD rule base can be developed it

is important to specifically define how the antecedent and consequence blocks are

quantized.

41.2.1 QUANTIZED ERROR
or and change in €rror such that the

In general it is desired to quantize the err

maximum and minimum quantized values correspond t0 the maximum and minimum

actual values. For example, consider the quantization function for the error antecedent.
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6
QE= ( - 1 x E Eq.(4.4)
max imum expected error )

Keeping in mind that the ultimate intent for this thesis study is to develop a FLC to
control a 3-DOF revolute manipulator, one notices that the DR-106(Fig.5.1) possesses
physical limitations pertaining to the working space. The maximum working space for

any of the three links is restricted to plus or minus 60 degrees. Therefore, the maximum

expected error is set to 60 degrees.

QE= (—6-) xE Eq.(4.5)

Figure 4.2 shows the error quantization function in Eq.(4.5). Notice that quantized error

is clipped to either +6 or -6 if the error exceeds the expected limits.

Quantizied Error

'8.0 . T l T T T [ 3 3 } T 1 1 T T 1 T 1 l T T T T >
-1200 -60.0 0.0 60.0 120.0

Error (degrees)

Figure4.2: Quantized error as a function of error in degrees
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4.1.2.2 QUANTIZED CHANGE IN ERROR

The quantization function for change in error is slightly more involved. The change
in error is the first derivative of error or the slope of the error curve at a particular time.
If the error changes rapidly with respect to time, the CE(slope) approaches infinity. As
previously discussed, in order to use CE in the antecedent block it must be quantized.
How does one quantize change in error values ranging from negative to positive infinity?

A novel solution to this problem is provided by taking the inverse tangent of the slope
of the error with respect to the sampling period. This mapping operation provides a
bounded domain for the change in error between negative 90 and positive 90 degrees.

With this domain defined on a closed ‘set, it is quite easy to parameterize the change in

the error as a change in error angle(CEA).

CEA = tan™ (3“‘)—";(1‘—‘2) Eq.(4.6)

where the -90 < CEA < +90. Using the bounds of CEA and the same premise developed

for quantizing error results in quantized change in error angle(QCEA) being defined as:

QCEA = ( 9%) x CEA Eq.(4.7)

The graphical representation of this quantization procedure is illustrated in Figure 4.3.
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Quantizied Change in Error Angle
o
(el
]

Y —I, 00 o 900
Change in Error Angle (degrees)

Figure4.3: Quantized Change in Error Angleas a function of
Change in Error Angle

41.2.3 DEQUANTIZED INPUT

Wwith the antecedent quamization functions accounted for, the last quantization

function to be selected 1S associated with the input to the system. This process is actually

a dequamization process. Given the control input in quantized terms, it is dequantized to

a torque value which is then applied to the system(Eq.4.8). For the example under

consideration, the torque varies from +150 to 150 inch-ounces. This number was

initially selected and adjusted according to the behavior of the step response. In general:

[= (.&6-) % Ql Eq.(4.8)
and specifically:
1= (1—569) x QI Eq.(4.9)

where
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QI = quantzed input
I= control input to the system (in-ounces)

This quantzation procedure 1s illustrated in Figure 4.4.

Torque (in-ounce)

T

i { l 14 Ll ; 1 T ]: 1S
-6.0 40 2.0 0.0 2.0 40 6.0
Quantizied Control Input

Figure4.4: Torque asa function of quantized control input

4.1.3 NUMBER OF RULES

As a preliminary investigation leading up 10 the final Fuzzy-PD controller, seven

rules were applied to the horizontal pendulum. This resulted in a poor performance

associated with the controller's lack of ability to handle various wide ranges in inidal

conditions. To compensate for this poor performance, an increase in the rule base to 36

rules followed. This control surface also failed due to a lack of robustness.

Given the fact that there are only seven different values of QE and QCEA, one

concludes that there are a total of 49 different possible combinations, corresponding to 49

distinct rules. Therefore, considering the poor performance of the 36 rules, it was

decided to use a control surface fully populated with all 49 different rules. This final

approach produced acceptable behavior and did not hinder the computational time
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associated with the fuzzy logic controller. This is due to the fact that, given any pair of

error and change in error values, only four of the 49 rules are applied at that given

instance.

The step responses of the horizontal pendulum controlled by both a tradition PD
controller and the Fuzzy-PD controller are illustrated in Figure 4.5. Both systems pOssess

a similar rise times but the Fuzzy-PD controller has considerably less overshoot. This is

due to the fact that the controller is based on humanistic rules or the rule base as opposed

to a mathematical function governed by the damping envelope.
Since the system is second order, the PD gains could be specifically chosen to

produce an identical step response to that demonstrated by the Fuzzy-PD controller.

However, in order to provide an objective test environment, the maximum torque that

either controller could apply t© the system was set 1o 15 in-ounces. With this in mind

Fuzzy-PD out performed the rraditional PD controller.

Position (rad)
o
[«
lIl‘IIll!llllIl

0.4
| PD
0.2 8
00 e g
0.0 2.0 4.0 6.0 8.0 100 12.0

Time (sec)

Figure 4.5: Step response of a traditional PD controller vs. Fuzzy-PD



33

With a working Fuzzy-PD controller now fully matured, consideration is given to how

the individual rules can be formulated and how the Fuzzy-PD controller can be tuned.

4.1.4 POPULATION OF THE RULE BASE

The rule base was populated by simply allowing the quantized change in error angle
to be set to zero and looking at how the system behaves as a function of only quantized
error. For example, if the quantized error is "large positive” and the quantized change in
error angle is "zero", then the quantized input to the system should be "large negative".
This rule may be viewed graphically in Figure 4.6 where it is labeled as rule 4. The
complement of rule 4 may be written as: If quantized error is "large negative” and the

quantized change in error angle is "zero", then the quantized input to the system should

be "large positive”(Fig. 4.6, rule 46). The intermediate rules may be found by
interpolating between these two points. Extruding this slope, both in the positive and
negative directions of the CEA axis results in an unacceptable controller surface.

Therefore, the same technique may be applied to obtain the rules along the CEA axis.

With both the error and change in error axes defined, one may then interpolate across all

49 different rules.

Looking at the quantized control input to the system as a function of quantized error

and quantized change-in-error-angle, one may plot the surface as in Figure 4.6.

QI = 3(QE,QCEA) Eq.(4.10)
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43

CHANGE
i ERROR |

inthe F uzzy-Proportional-Derivative controller

Figure 4.6: 49 rules used

Interpolating between the discrete values produces, 2 smooth fuzzy logic control surface.

4.1.5 TUNING
The second topic to be elaborated on before development of the more complicated
heme. There are numerous ways to tune a fuzzy

Fuzzy-PID controller is a tuning sC
controller. First, and most obvious, the rule base itself may be altered., Secondly, the
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shape of the membership function may be altered(sinusoidal, bell, trapezoid, etc. . .).

Also, the overlap of the membership functions may be altered. And lastly, the quantizing

schemes or functions may be also changed. Assuming that the rule base, the membership

function, and the overlap of the membership function have been chosen appropriately, the

only method of tuning seems (0 be to change the quantizing functions.
However, when trying to tune the quantizing functions, a problem arises. This

problem is associated with the fact that the control input is a function of three quantized

terms: the error, change in error angle, and the input. With no guidance governing the

relationship between these three quantized values, it may be just as effective to randomly

choose quantizing functions.

If two of the three quantization functions were constrained to certain limits, then there

would remain only one independent variable to alter. Since, the error is bounded

(between +60 and -60 degrees) and the change in error angle is bounded (the inverse

rangent of the slope of the error curve lies between +90 and -90 degrees), the quantized

control input-to-torque relationship remains the only quantization function that may be

altered. Therefore, it stands to reason that the quantized input to the system is the only

choice with which to tune the fuzzy controller.

As an off-line approach to tuning, the effect of varying the dequantization function

for QI can be examined through a combination of the resulting step response in

conjunction with its respective phase portrait. Figure 4.7 shows the system at eleven

steps in time. From this, the quantized error and quantized CEA can be tabulated as in

Table 4.1. A plot of the quantized error versus the quantized change in error angle may

then be obtained; this is the phase portrait. Figure 4.8 illustrates the phase portrait for the

step response illustrated in Figure 4.5 and 4.7.



36

-PD step response

Figure 4.7: Pictorial representation of the Fuzzy



Table 4.1: Control parameters for a unit step response
Time E CEA QE QCEA QI
| Step _
0 -57 0 -5.7 0 5.6
1 -54 24 -5.4 1.6 3.9
2 -47 50 -4.7 3.3 1.7
3 -38 58 -3.8 3.9 0
4 -28 60 -2.8 4.1 -1.2
5 -18 59 -1.8 4.0 -2.0
6 -10 54 -1.0 3.6 -2.1
7 -4 47 -4 3.2 -2.1
8 0 36 3 2.5 -1.1
9 2 28 3 1.3 -0
10 3 17 S 3 1
11 1 0 54________4_ 0
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Quantizied Error Change

-6_0 nlilll;ll\:]lllzixlx:]lli
-6.0 -4.0 2.0 0.0 2.0 4.0 6.0

Quantizied Error

Figure 4.8: Phase portrait for the Fuzzy-PD step response

By varying the maximum torque (t_,) in the dequantization function (see Eq. 4.8)

between the values 2.5, 15, and 80 in-0z, ON€ obtains three different time responses and

three different phase portraits associated with these time responses. Figure 4.9(b) shows

a phase portrait of an underdamped system when a maximum torque of 2.5 in-oz is

applied. The corresponding time response of this system is given in Figure 4.9().

Figure 4.9(d) 1s a plot of a phase portrait when a maximum torque of 15 in. ounces is

applied to the horizontal pendulum. The associated time response is illustrated in Figure

4.9(c). It may be noted that the phase portrait illustrated in Figure 4.9(d) corresponds to 2

quick rise time with a minimal amount of peak overshoot. Therefore, this phase portrait

is the desired curve.
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Figure 4.9(f) is a phase portrait for a maximum torque value of 80 in. ounces and
Figure 4.9(e) is its corresponding time response. This particular system is over
responsive. These three phase portraits and their corresponding time responses are

critical to accomplishing tuning of the complicated dynamics associated with the three-

link revolute manipulator.
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4.1.6 VARYING INERTIA LOAD

ng task requirements associated with on orbit assemble issues it is of

Due to the varyi

interest to investigate how the Fuzzy-PD controller compares to traditional PD control

when the end-point mass varies. Figure 4.10 illustrates the step response of the

horizontal pendulum when controlled by both Fuzzy-PD and traditional PD. Figure

4.10(a) illustrates the response when both controllers are tuned properly. Figures 4.10(b)-

4.10(d) demonstrates that both controllers are approximately producing the same control

response for a give situation. This is expected because the fuzzy rules discretely

approximate the PD control surface.
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4.1.7 TIME DELAYS

Another issue of particular interest is that of time delays. By tuning Fuzzy-PD
and PD to the same performance characteristics and then introducing time delays a
comparison of the robustness of each conwoller may be made. Figures' 4.11 and 4.12
illustrate the performance degradation associated with increasing the delay time. Figure
4.11(a) is the step response without any time delays. Figure 4.11(b) demonstrates that
both controllers behave approximately the same with a time delay of one sample period
(the sample period used here was .05 sec.). At a time delay of two sampling periods the
Fuzzy-PD controller becomes marginally stable while the PD controller performs with
slight indifference(Fig. 4.11(c)). Figure 4.12 illustrates that it is not until a five sampling
period time delay that the PD controller becomes marginally stable. Figure 4.12(c)
illustrates that as the time delay increase past 4 the system remains marginally stable with
an increase in amplitude and a slower frequency.

The results of introducing time delays indicate that Fuzzy-PD control does not
perform as well as traditional PD control. This is also an expected result due to the fact

that the traditional PD controller is continuous while the Fuzzy-PD controller possesses a

discrete number of rules.
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Figure 4.11: Step response as the time delay increases.
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Figure 4.12: Step response as the time delay increases.
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4.2 THE VERTICAL PENDULUM

As a second example, consider applying the Fuzzy-PD coniroller just developed to a

second-order nonlinear system with a constant system bias. In particular, consider a
traditional vertical pendulum. This pendulum possesses two equilibrium points.
However, it does not operate about either one, thereby maintaining a constant system bias

due to gravity. The dynamics associated with the pendulum are:

é+%sin6=r Eq.(4.11)

As in the first illustration, to implement traditional proportional integral derivative

control, consider applying the Theory of Natural Control(17], where,

r=—g(9—9d)—h(é—éd)—ij(e-ed)ds Eq.(4.12)
0

Linearizing Eq.(4.11) , substituting equation (4.12) into the linearized version of
Eq.(4.11) and solving for the desired gains g, h, and i results in a PID controller which
may then be applied to the nonlinear dynamics of Eq.(4.11).

NOTE: The term Fuzzy-PID represents the fuzzy controller that when applied to a

system behaves like a tuned traditional PID controller.

4.2.1 APPLICATION OF FUZZY-PD ON THE VERTICAL

PENDULUM

The first attempt at controlling this system using fuzzy logic is to apply the fuzzy
controller developed for the horizontal pendulum to the dynamics of the vertical

pendulum. The results of such an approach is illustrated in Figure 4.13 (the curve labeled
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"course”). The desired position in this case is one and the position obtained is

approximately 0.425; therefore, there is a steady-state error.

1.2

1.0

038 -

0.6 T

02 -

Position (rad)

0.0 :

0.0 2.0"'410'”({0'
Time (sec)

Figure 4.13: Application of the F uzzy-PD controller to a rraditional vertical pendulum

4.2.2 CAPTURE METHOD

[n order to compensate for this steady-state €rT0r, & capture method was implemented.

This capture method consists of redefining the quantized error function every time the

error of the system falls within certain limits.

For example, if the error was originally quantized t0 2 maximum value of plus or

minus 60 degrees (coarse), when the error lies between +30° the function could be
redefined to have pounds of £30%; this would be the medium quantization function. The

same could be done for a fine quantization function by changing the bounds tO +15°.

Figure 4.13 illustrates how this method succeeds in reducing the steady state error but

never accomplishes the ultimate goal of no steady state error.
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4.2.3 AN ALTERNATIVE RULE BASE FOR FPID

Due to the inability of the Fuzzy-PD controller to deal with the steady-state error, a

second method using an altered rule base was developed. Figure 4.14 illustrates the new

rule base.

9 2 35 L2 :u Y : 14 Y : 7 Y T T
| | | |
Vl : : : sP Mmp LP
CHANGE LEGEND
[N ERROR Y v Y

Figure4.14: A candidate rule base for a Fuzzy-PID controller
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The motivation for defining this new rule base came from observing the phase portraits of
the time responses illustrated in Figure 4.13. It was noticed in these phase portraits that

the portion of the original 49 rule base that compensated for overshoot was producing a

steady-state error in the time response.

Therefore, the rules that compensated for overshoot were eliminated; thus the rule

base illustrated in Figure 4.14 was assembled. The time response of the vertical

pendulum to the new rules is illustrated in Figure 4.15.

12
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g 0.6 -
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0-0 1 T L] 1 l T T T 1 T T v [ L T L ] T T T | T + v

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Time (sec)

Figure 4.15: Step response of Fuzzy-PID controller with an alternarive rule base

It is noticed that this system has a quick rise ume; however once the system reaches its
desired position, the control input produces no torque. This results in a rapid drop in the
vertical pendulum back towards it equilibrium position. This cycle repeats itself

ultimately resulting in a marginally stable system. Therefore, the method of altering the

rule base to compensate for system biases fails and another method is needed.
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4.2.4 HYBRID FUZZY-PD AND TRADITIONAL INTEGRAL
CONTROL

In order to compensate for steady-state errors, a fuzzy integral control parameter may
be augmented to the existing Fuzzy-PD controller. Due to the complexity associated with
defining the necessary 343 rules, a hybrid controller was designed. This hybrid controller
uses fuzzy proportional-derivative control (FPD) and classical integral control to produce

a fuzzy-proportional-integral-derivative controller (FPID).
T=1TFpp + ij (8 -64) ds Eq.(4.13)
) 0

The Fuzzy-PD controller handles the vibration suppression as demonstrated earlier and

the integral term compensates for any system bias.

The time responses of the vertical pendulum the Fuzzy-PID controller and traditional

PID control are shown in Figure 4.16.
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Figure 4.16: Step response of traditional PID and F uzzy-PID
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This hybrid Fuzzy-PID controller not only suppresses vibration but also compensates for
steady-state error. The time response of the Fuzzy-PID controller compared to that of a
tuned traditional PID controller is hardly distinguishable. With the hybrid Fuzzy-PID
controller now developed, the approach can be applied to robotics systems. The

dynamics of the 3-link manipulator are investigated in the next chapter.
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5. APPLICATION OF FUZZY-PID TO A 3-DOF
MANIPULATQOR

With the hybrid fuzzy controller developed, its applicability to a robotics system can
be investigated. A telerobotic flexible manipulator system is currently being developed at
the Mars Mission Research Center in order to investigate several control algorithms for
real-time implementation. A model of one of the robotic manipulator arms is selected for
preliminary studies of the fuzzy control algorithm.

Figure 5.1(a) is a drawing illustrating the (DR-106) three-degree-of-freedom revolute

manipulator being constructed at North Carolina State University. Figure 5.1(b)

illustrates the coordinate axis definition.



53

(b)

ulator under construction at MMRC | NCSU

(@)

Figure5.1: (a) DR-106 manip
(b} Coordinate axes



54

5.1 DYNAMICS

The nonlinear dynamics for the three-degree-of-freedom revolute manipulator can be

developed using the Lagrangian approach(22]. This results in

26+ 8C2, +29C; +24C,Cpy 0 0 6,
0 43+424C, 8+12C, |6, |=
0 8 +12C, 8 0,

(16CSy + 24C,5,)8,(6, + §,)+(248,Cpn + 585,C,)8.6,
~(8CysSy +1285:Cys +12C5555 + 29C,S, )62 +245,0,8, + 125,62 - 20gC, —68Cy |+
~(8C;3Sy +12C;5,)07 - 128,62 - 6gC,,

Tl
T, Eq.(5.1)
13
Eq.(5.1) may be written more compactly as
MB=R+T Eq.(5.2)

where

M = mass matrix
@ = acceleration vector

R = vector containing nonlinear t€rms

T = torque vector

Premultipling Eq.(5.2) by M-1

§=M'R+M" T Eq.(5.3)

Equation (5.3) may now be written in state space form and numerically integrated to find

o(t).
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To apply proportional-integral-derivative control to the system, the appropriate
relationship between the torque vector and the position vector must be found. Once again
the methods developed in Natural Control Theory [17] will be utilized. First, make a

linear approximation by simply dropping the nonlinear terms in Eq. (5.2). This results in

M@=T Eq.(5.4)

Secondly, assume

T=-G@-He-Iedt Eq(5.5)

where G, H, and I are control gain matrices. Letting

G=gM
H=hM Eqgs.(5.6)
[=iM

Substitution of Equations (5.6) into Eq.(5.5) results in the following torque vector:

T gm,,x(2) + hm,;x(3)
1, |= | g[mux(5)+ m,x(8)]+ h{myx(6) + m,,x(9)] +i[myx(4) + m,x(7)]| Ea-(3.7)
T, g[m23x(5) + m:\JX(S)] + h[m23x(6) + m33x(9)] + 1[m23 x(4)+ m:s‘”)]

where x(i) is the ith state defined as:
= [6,-6,,ds

x(2) i 8, -9 Eq.(5.8)
x(3)= e1
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x(5)=6,-6,, Eq.(5.9)

x(7)= [0, -8,,ds
0
x(8) = 05 — 65, Eq.(5.10)
x(9) = és

Figure 5.2 illustrates how the dynamics of the system behaves. With no torque applied
the links vibrate freely. Figure 5.3 provides a graphical representation of how links 2 and
3 behave when the links are released from a horizontal position and allowed to move

freely. Gravity is acti: g in this system and the two links oscillate about their respective

equilibrium points.
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~
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i e Link 2 Link 3
10-0 T T T l ] H T I 1 v + ] T I T T T 1
0.0 2.0 4.0 6.0 8.0 10.0
Time (sec)

Figure 5.2: Free vibration of links 2 and 3
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Gravity

a0 do 10 Jo 10 20 3.0

Figure5.3: Graphical representation of the free vibration of links 2 and 3

5.2 TRADITIONAL PID VS, FUZZY-PID
The fuzzy-PID hybrid controller applied to the vertical pendulum will now be applied

to this manipulator. Each link of the manipulator is independently controlled by a

separate fuzzy logic control algorithm. Each of the three links are subjected to a unit step

forcing function; links 1 and 2 have positive unit steps and link 3 has a negative unit step.

Figure 5.4 shows the response of the first link using a FPID hybrid and a traditional PID

controller. The step response shown in this figure is the robot's maneuver in the

horizontal plane of rotation.
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Figure 5.4: Step response of link one

Figure 5.5 illustrates the response of the second link of the manipulator. This graph
illustrates a slower rise time for the fuzzy-PID controller as compared to the tradition

PID. However, the fuzzy-PID controller has considerably less overshoot then PID.
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Figure 5.5: Step response of link two
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Figure 5.6 shows the response of the robot's link 3. This graph is the most dramatic
of the three links in terms of the difference petween PID and EPID. The fuzzy logic

controller not only produces a quicker rise time but also exhibits hardly any overshoot as

compared to the wraditional PID controller.
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Figure 3.0 Negative step response of link three

The phase portraits associated with these step maneuvers are Figures 5.7, 5.8 and 5.9,

respectively. Collectively these figures illustrate that the fuzzy-PID control provides a

better or equivalent time response than classical PID control.

Quantizicd Enar Change

QmmtdErra

Figure5.7: Phase portrait of link one
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Figure 5.9: Phase portrait of link three
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6. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

This thesis presented a fuzzy-PD controller made up of 49 rules with a sinusoidal
membership function. This general fuzzy-PD controller was then augmented with
traditional integral control to produce a fuzzy-PID controller. The fuzzy-PID controller
was then used to control nonlinear robotics models. Fuzzy-PID showed promise when
compared to raditional PID due t0 PID's requirement of a model and the complexity

associated with developing the gains. Because robotics models, including space robotics

systems, contain uncertainties, exact model-based controllers are difficult to implement;

hence the fuzzy approach may be more appealing.

Precise response characteristics using fuzzy controllers may be difficult, however.
In [5] Cela and Hamam present some stability issues associated with fuzzy control
systems. Although exact tuning of such systems may be difficult, this study has shown

that this process is less difficult than PID gain wning. Phase portraits provide a feasible

off-line tuning approach.
The use of a fully populated quantized error and quantized change in error angle

rule base provides a more effective controller while not hindering the processing time of

the controller. Further, utilization of the inverse target function provides a novel means

with which to bound the quantized change in error angle term.
Several issues may be considered as future activities, in order t0 extend the

technique to space robotics systems and in particular, the ground testbed being

constructed at North Carolina State University. First, fuzzy logic control may be

constructed in such a fashion so as to tune a traditional PID controller. This approach

would result in an adaptive controller that could compensaie for varying inertia loads, and

time delays; ultimately resulting in an ideal candidate for space applications.
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Secondly, other calibration techniques including on-line methods are being
considered. These methods include requantizing other variables besides the control input.
Such extensions will be investigated and compared to other control methods being

developed and implemented for space robotics systems.
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8. APPENDICES

8.1 PROPORTIONAL-!NTEGRAL-DERIVATIVE CONTROL ON 3-

DOF_MANIPULATOR

c234567
PROGRAM PID ON ROBOT
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
P

RPOSE: To apply PID control to the nonlinear dynamics of €

a three link microbot.
AUTHOR: RobertJ. Stanley I1
DATE: 8/5/92

c

c

c

c

c

c

c

c VARIABLES:

c T#: Torque applied to respective links
c Td#: The desired angle of each link
c

c

c

c

c

c

c

NEQ: Number of equations
NSTEP: Number of times runga-kutta subroutine is called

DT: Time interval delta T in rad/sec

TIME: Independent variable

X(1): Dependent variable

F(I): State equations
cccccccccccccccccccccccccccccccccccc

CaAa000a0000006000

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

INTEGER COUNT,NEQ,NSTEP
REAL*8 X(10) DT, TIME,T1 T2,T3,Tdl ,Td2,Td3
COMMON MYCOMM/ Td1 ,Td2,Td3
c OPEN (8,F[LE='pidr.dat',STATUS='unknown‘)
c OPEN (9,FEE='pidrT.dat',STATUS='unknown')
OPEN (8,FILE='PIDRlG.dat',STATUS='unknown')
OPEN (9,FILE='PIDR2G.dat',STATUS='unknown’)
15 FORMAT(1X,F6.2,1X,F8.4,1X,F10.4,1X,F8.4,1X,F10.4,1X,F8.4,1X

+,F10.4)
25 FORMAT(IX,FG.Z, 1X,F10.4, 1X,F10.4,1X,F10.4)

NEQ=9
DT=.01D0
NSTEP=1000
TIME=0.0D0
X(1)=0.0
X(2)=-1.0
X(3)=0.0
X(4)=0.0
X(5)=-1.0
X(6)=0.0
X(7)=0.0
X(8)=1.0
X(9)=0.0



Td1=1.0
Td2=1.0
Td3=-1.0

CALL TORQUE(X,TI T2,T3)
WRITE(8,1 5)TIME,X(2)+Tdl ,T1 ,X(5)+Td2,T2,X(8)+Td3,T3
WRITE(9,25)TIME,X(2)+Td1,X(5)+Td2,X(8)+Td3
DO 100 COUNT=1,NSTEP
CALL RUNGA(X,DT,NEQ,TIME)
CALL TORQUE(X,Tl,T2,T3)
WRITE(8,15)TIME,X(2)+Td1 ,T1 ,X(5)+Td2,T2,X(8)+Td3,T3
WRITE(9,25)TIME,X(2)+Td1,X(5)+Td2,X(8)+Td3
100 CONTINUE
CLOSE(®)
END

SUBROUTINE TORQUE(X.T1 T2,T3)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
PURPOSE: Given the position calculate the torque using PID ¢
c

control.
AUTHOR: Robert J. Stanley 11
DATE: 8/5/92

C

c

c C
c c
c v
c c
c c
c VARIABLES: c
c X: State vector c
C Tdl: Theta Desired One c
c Td2: Theta Desired Two C
C Td3: Theta Desired Three c
c T1: Torque applied to link one c
c T2: Torque applied to link Two c
c T3: Torque applied to link Three c
c M##: The respective elements of the Mass Matrix c
c H#: The derivauve gain c
c G#: The portonal gain c
C [#: The integral gain C
c ALPHA: The exponential decay rate c
c BETA: The operating frequency c
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL*8 X(10),Td1 .Td2,Td3

REAL*8 T1,T2,T3,M!1 1,M22,M33,M23,C23,S23,C2,C3,SZ
REAL*8 S3,C23S23,C2523,SZC23,SZC2,CZSZ

REAL*3 Hl,HZ,HS,G1,GZ,G3,Il,IZ,IS,ALPHA,BETA
COMMON /MYCOMM/ Tdl ,Td2,Td3

ALPHA=2.4605 1702
BETA=3.14



G1=3*ALPHA**2+BETA**2

H1=3*ALPHA
11=0.0

G2=3*ALPHA**2+BETA**2

H2=3*ALPHA

[2=ALPHA*(ALPHA**2+BETA**2)
G3=3*ALPHA**2+BETA**2

H3=3*ALPHA

13=ALPHA*(ALPHA**2+BETA**2)

C23=COS(X(5)+Td2+X(8)+Td3)
§23=SIN(X(5)+Td2+X(8)+Td3)

C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
S2=SIN(X(5)+Td2)
S3=SIN(X(8)+Td3)
C23823=C23*S523
C2823=C2*S523
$2C23=82*C23
$2C2=82*C2
C252=C2*S2

M1 1=26.+8.*C23**2+29.*C2**2+24.*C2*C23

M22=43.+24.*C3
M23=8.+12.*C3
M33=8.

T1=-1*(G1*M11*X(2)+H1*M11 *X(3)+]
1*(G2*(M22*X(5)+M23*X(8))+H2*(M2

M23*X(6)+M33*X(9))

F+I2*(M22* X (4)+M23*X(7)))

1*(G3*(M23*X(5)+M33*X(8))+H3*(

++I3*(M23*X(4)+M33*X(7)))
RETURN
END

T3=-

1*M11*X(1)) T2=-
2%X(6)+M23*X(9))

SUBROUTINE RIGHT(R1,R2,R3,X,M1 1,M22,M33,M23,DET)

ccececceeceececcecceeecceeceeecceececeeeece
PURPOSE: To calculate the respecti

R#: The nonlinear terms
F: State space
G: Gravity

c

c the respective nonlinear ¢
c

c AUTHOR: Robert J. Stanley
c

c DATE: 8/5/92

c

c VARIABLES:

c

c

C

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DET: The determinate of the mass

ontributions R#.

I1

of link # respectively

ccceeeeccccecceece

matrix divided by M11

CCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeee
ve mass matrix entries and ¢

OO0O0O00006006a0

(@]

geeeececcececcecceece

68



cccccececce

C
c
C
C
C
C
c
C
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL*3 X(10),F(10),’I‘IME,Td1,Td2,Td3

REAL*8 T1,T2,T3,R1 ,R2,R3 M1 1,M22,M33,M23,G,C23,S23,C2,C3,52
REAL*8 S3,C23523,C2$23,52C23,52C2,C282,DET

COMMON /MYCOMM/ Tdl ,Td2,Td3

G=9.8
C23=COS(X(5)+Td2+X(8)+Td3)
$23=S IN(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
$2=SIN(X(5)+Td2)
$3=SIN(X(8)+Td3)
C23523=C23*S23
C2523=C2*S523

$2C23=52*C23

§2C2=52*C2

C282=C2*52

Ml 1=26.+8.*C23**2+29.*C2**2+24.*C2*C23
M22=43.+24.*C3

M23=8.+12.*C3

M33=8.

DET=M22*M33-M23*M23

CALL TORQUE(X,T1 ,T2,T3)
R1=(16.*C23523+24.*C2323)*X(3)*(X(6)+X(9))
++(24.*S2C23+58.*82C2)*X(3)*X(6)+T1

R2=-(8.*C23S23+12.*SZC23+12.*CZS23+29.*C252)*X(3)**2
++24.*S3*X(6)*X(9)+12.*S3*X(9)**2-20.*G*C2-6.*G*C23+T2

R3=-(8.*C23SZ3+12.*C2523)*X(3)**2-12.*S3*X(6)**2—6.*G*C23+T3
RETURN
END

SUBROUTINE STATE(F,X,TIME)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

PURPOSE: To compute the present state of the dynamic system.
AUTHOR: Robert J. Stanley 11 g
DATE: 8/5/92 2
VARIABLES: ?:
c

All variables already defined.
ccececeecececceececcecceeeee

REAL*8 X(lO),F(lO),TIME,le,TdZ,Td3
REAL*8 Rl,RZ,R3,M11,M22,M33,M23,DET
COMMON /MYCOMM/ Td1,Td2,Td3

C
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TIME=TIME*1.0

CALL RIGHT(R1,R2,R3,X,M1 1,M22,M33,M23,DET)
F(1)=X(2)

F(2)=X(3)

F(3)=R1/M11

F(4)=X09)

F(5)=X(6)
F(6)=(R2*M33/DET)-(R3*M23/DET)
F(7)=X(8)

F(8)=X(9)
F(9)=-(R2*M23/DET)+(R3*M22/DET)

RETURN
END

SUBROUTINE RUNGA(X,DT,NE
ccccccccccccccccccccccccccccccccccccccccccccc
PURPOSE: Use a Runge Kutta routine to compute the next state

vector

C
C
C
Cc
C
C
Cc
C
C
C

AUTHOR: Robert J. Stanley Il
DATE: 8/5/92
VARIABLES:

G#: Variable gains
cccccccccccccccccccccccccccccccccccccccccccccc

Q,TIME)
CCCCCCCCCCCCECCCCeeeeeeeeeee

o0 a0o0a0a0a

CCCCCCCCCCCCCCCCCCCCCCCCCC

REAL*8 X(lO),Y(10),F(10),DT,TIME,G1(10),62(10),(33(10),04(10)
INTEGER LNEQ

DO 1 [=1,
1 Y(D=

NEQ
X()

CALL STATE(F,Y,TIME)

DO 21=],
=DT*F(D)

2 G1()

NEQ

TIME=TIME+DT/2.0D0

DO 3 I=1,
3 Y()=

NEQ
X(D)+G1(1)/2.0D0

CALL STATE(,Y,TIME)

DO 4 I=1,
=DT*F(I)

G2

NEQ

4 Y(I)=X(I)+GZ(I)/2.0D0
CALL STATE(F,Y,TIME)

DO 5 I=1,

NEQ

G3(1)=DT*K(I)

c
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Y(D)=X(D)+G3(1)
TIME=TIME+DT/2.0D0
CALL STATE(F,Y, TIME)
DO 6 I=1,NEQ

G4(I)=DT*F(I)

DO 7 I=1,NEQ

XM=XD+(G1(1)+2.0D
RETURN
END

0*(G2(1)+G3(1))+G4(1))/6.0D0
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8.2 FUZZY LOGIC CONTROL ON 3-DOF MANIPULATOR
c234567
PROGRAM FUZZY ON ROBOT
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
PURPOSE: To apply a hybrid of Fuzzy Logic and traditional
integral feedback to a three link microbot. (Highly
Non-linear Coupled Second Order Differential Equations)

AUTHOR: Robert J. Stanley II
DATE: 8/4/92

VARIABLES:
COUNT: Holds the value of the present Runge-Kutta iteratio

TORQUE: The input to the system
[NERTIA: The inertia of the system
wn: The natural frequency of the system
Td: The desired position (Theata Desired)
TRIGGER: Zero on the first pass and One afterwards
NEQ: "Jumber of equations

NSTEP: Number of times runga-kutta subroutine is called

DT: Time interval delta T in rad/sec

TIME: Independent variable

X(I): Dependent variable

F(I): State equations
cccccccclc\lglgécccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

GER COUNT,NEQ,NSTEP
REAL*8 X(10),DT,TIME,C2,C3,C23,M1 1.M22,M23,M33
REAL*8 T1,T2,T3 le,Td2,Td3,12,13,ALPHA,BETA

S 000000000

C

OOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOO

COMMON /MYCOMM/ T1.T2,T3,Td1,Td2,Td3
OPEN (8,FILE=fpidrl 1.dat',STATUS='unknown')
OPEN (12, FILE="fpidr] 1T.dat',STATUS='unknown‘)
OPEN (9,FILE="fpidr1ll .dat',STATUS=‘unknown')
OPEN (10,FILE="fpidrl 12.dat ,STATUS= unknown’)
OPEN (11 FILE="fpidrl13 dat’, STATUS="unknow n)
15 FORMAT(1X,F6.2,1X,F8.4,1X,F10.4,1X,F8.4,1X,F10.4, 1X,F8.4,1X

+,F10.4)
25 FORMAT(lX,F6.2,1X,F 10.4, 1X F10.4,1X,F10.4)

ALPHA=.46051702
BETA=3.14

12=ALPHA*(ALPHA**2+BETA**2)
I3=ALPHA*(ALPHA**2+B ETA**2)
Li=1
L2=2



¢ Agument the torque pro

L3=3

NEO=9

DT=.01D0

NSTEP=1000

TIME=0.0D0

X(1)=0.0

X(2)=-1.0

X(3)=0.0

X(4)=0.0

X(5)=-1.0

X(6)=0.0

X(1=0.0

X(8)=1.0

X(9)=0.0

Td1=1.0

Td2=1.0

Td3=-1.0

TRIG1=0

TRIG2=0

TRIG3=0

CALL FUZZY_LOGIC(X.T1 ,TRIGL,L1)
CALL FUZZY_LOGIC(X,TZ,TRIG2 12)
CALL FUZZY_LOGIC(X,T3,TRIG3,L3)
TRIG1=1

TRIG2=1

TRIG3=1

C23=COS (X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)

C3=COS(X(8)+Td3)

Ml 1=26.+8.*C23**2+29.*C2**2+24.*C2*C23
M22=43.+24.*C3

M23=8.+12.*C3

M33=8.
duced by the Fuzzy controller with that of ¢ the traditional

Integral feedback
T1

a

=T1
T2=T2-12*(M22*X(4)+M23*X(7))
T3=T3-13*(M23*X(4)+M33*X(7))
T1=0.0
T2=0.0
T3=0.0
WRITE(, 15)TIME,X(2)+Td1 ,T1 ,X(5)+Td2,T2,X(8)+Td3 T3
WRITE(12,25)TIME,X(2)+Td1,X(5)+Td2,X(8)+Td3
DO 100 COUNT=1,NSTEP
CALL RUNGA(X,DT,NEQ,TIME)
CALL FUZZY_LOGIC(X,T1 ,TRIG1,L1)
CALL FUZZY_LOGIC(X,TZ,TRIGZ,LZ)
CALL FUZZY_LOGIC(X,T3,TRIG3,L3)
C23=COS(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
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Ml 1=26.+8.*C23**2+29.*C2**2+24.*C2*C23
M22=43.+24.*C3
M23=8.+12.*C3
M33=8.
¢ Agument the torque produced by the Fuzzy controller with that of ¢ the traditional

Integral feedback
T -

1=T1
T2=T2-12*(M22*X(4)+M23*X(7))
T3=T3-I3*(M23*X(4)+M33*X(7))
T1=0.0
T2=0.0

T3=0.0
WRITE(S,! 5)TIME,X(2)+Td1 ,T1 ,X(5)+Td2,T2,X(8)+Td3,T3
WRITE(lZ,ZS)TIME,X(2)+Td1 ,X(5)+Td2,X(8)+Td3

aO oo

100 CONTINUE
CLOSE(3)
CLOSE(®)
CLOSE(10)
CLOSE(11)
END

SUBROUTINE RIGHT(RI,R2,R3,X,M1 1,M22,M33,M23,DET)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
PURPOSE: To calculate the respective mass matrix entries and

the respective nonlinear contributions R#.

AUTHOR: Robert]. Stanley II
DATE: 8/5/92

VARIABLES:
R#: The nonlinear erms of link # respectively
F: State space
G: Gravity
DET: The determinate of the mass matrix divided by M11 c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

OOOOOOOOOOO

C
Cc
C
C
C
C
Cc
C
C
C
C
Cc
C

REAL*8 X(10),Tdl ,Td2,Td3

REAL*8 Tl,'I‘Z,T3,R1,R2,R3,M1 1 ,M22,M33,M23,G,C23,SZ3,C2,C3,SZ
REAL*8 S3,C23523,C2823,52C23,S2C2,C252,DET

COMMON /MYCOMM/ T1 T2,T3,Td1 ,Td2,Td3

G=9.8

C23=COS (X(5)+Td2+X(8)+Td3)
S23=SIN(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
S2=SIN(X(5)+Td2)
$3=SIN(X(8)+Td3)
C23523=C23*S23
C2523=C2*523
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c
C
C
C
C
C
C

S2C23=82*C23
S$2C2=82*C2
C282=C2*S52

M11=26.+8.%C23**2+29 *C2**2+24.*C2*C23
M22=43.+24.*C3
M23=8.+12.*C3

M33=8.
DET=M22*M33-M23*M23

Rl=(16.*C23523+24.*C2523)*X(3)*(X(6)+X(9))
++(24.%S2C23+58.%S2C2)*X(3)*X(6)+T1

R2=-(8.*C23323+12.*S2C23+l2.*C2523+29.*C2$2)*X(3)**2
++24.*S3*X(6)*X(9)+12.*S3*X(9)**2-20.*G*C2-6.*G*C23+T2

R3=-(8.%C23523+12.¥C2823)*X(3)**2- 12.¥S3*X(6)**2-6.*G*C23+T3
RETURN
END

SURROUTINE STATE(F, X, TIME)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PURPOSE: Define the dynamics in a state space form forusein ¢
Runge Kutta Subroutine. c

eI eI o]

AUTHOR: Robert J. Stanley II
DATE: 8/4/92 c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL*8 X(10),F(10),TIME,Td1,Td2,Td3,T1,TZ,T3
REAL*8 R1,R2,R3,M11,M22,M33,M23,DET
COMMON /MYCOMM/ T1,T2,T3,Td1,Td2,Td3

TIME=TIME*1.0

CALL RIGHT(R1,R2,R3,X,M11,M22,M33,M23,DET)
F(1)=X(2)

F(2)=X(3)

F(3)=R1/Ml1

F(4)=X(5)

F(5)=X(6)

F(6)=(R2*M33/DET)-(R3*M23/DET)

F(7)=X(3)

F(8)=X(9)

F(9)=-(R2*M23/DET)+(R3*M22/DET)

RETURN
END
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SUBROUTINE RUNGA(X,DT,NEQ,TIME)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cceecccccceeeee

PURPOSE: Use a Runge Kutta algorithm to numerical solve the ¢
state equations given is subroutne STATE

AUTHOR: Robert J. Stanley 11

o000

DATE: 8/4/92
cccccccccccccccccccccccccccccccccccccccccccc
REAL*8 X(10),Y(10),F(10),DT,TIME,G 1(10),G2(10),G3( 10),G4(10)
INTEGER LNEQ

CoO000anNn

CCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 1 I=1,NEQ
1 Y{)=X(D)

CALL STATE(F Y, TIME)
DO 2 I=1,NEQ
2 G1(I)=DT*F()

TIME=TIME+DT/2.0DO
DO 3 1=1,NEQ
3 Y(D=X(D+G1 (I1)/2.0D0

CALL STATE(F Y, TIME)
DO 4 [=1,NEQ
G2()=DT*E()
4 Y(I)=X(I)+GZ(I)/2.0DO

CALL STATE(F,Y,TIME)

DO 5 1=1,NEQ

G3(1)=DT*E(D)

5 Y (@D=XDH+G3(1)
TTME=TIME+DT/2.0DO
CALL STATE(F Y, TIME)

DO 6 1=1,NEQ
6 G4()=DT*F()

DO 7 1=1,NEQ
7 X(I)=X(I)+(Gl(I)+2.ODO*(GZ(I)+C13(I))+G4(1))/6.0D0

RETURN
END

END

SUBROUTINE FUZZY_LOGIC(X,TORQUE,TRIGGER,LINK)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c PURPOSE: Given a position calculate a torque requiredto €



drive the error to zero using Fuzzy Logic Control.
AUTHOR: Robert J. Stanley i1
DATE: 8/4/92

C C
C c
c c
c c
c c
C c
c VARIABLES: c
c E: Error C
c CE: Change in Error c
c CEA: Change is Error Angle c
c LASTE: The last error c
c SET_PT: Set point desired c
c PI: 3.14 c
c QE: Quantizied value of the error c
c QEC: Quantizied value of the Error Change c
c u: Membership function value c
c UU: Universe of discourse value c
c NUM: NUMerator of the input value c
c DEN: DENomenator of the input value v
c Ye: Temp variable for the Error membership function c
C Yec: Temp variable for Change in Error membership func. ¢
c [NPUT: The quantizied input to the plant c
c TORQUE: The actual input to the plant c
c N: Number of rules c
c I: Count variable c
c GRID: Tells output which grid is being utilized c
c FINE: Boolean for the quantizied table c
c MEDIUM: Boolean for the quantizied table c
c COARSE: Boolean for the quantizied table c
c GRID: Indicates which quantizied table is being accessed  C
c ELP: Linguistic value Error Large Positive c
c EMP: Linguistic value Error Medium Positive c
c ESP: Linguistic value Error Small Positive c
c EZE: Linguistic value Error Zero c
c ESN: Linguistic value Error Small Negative c
c EMN: Linguistic value Error Medium Negative c
c ELN: Linguistic value Error Large Negative c
c CELP: Linguistic value Change Error Large Positive c
c CEMP: Linguistic value Change Error Medium Positive c
c CESP: Linguistic value Change Error Small Positive c
c CEZE: Linguistic value Change Error Zero c
c CESN: Linguistic value Change Error Small Negative c
c CEMN: Linguistic value Change Error Medium Negative  C
c CELN: Linguistic value Change Error Large Negative C
c c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL*8 E,CE,LAS’I'E3,PI,QE,QEC,u(SO),UU(SO),NUM,DEN
REAL*3 Ye,Yec,INPUT,TORQUE,CEA,QECA,LASTE1,LASTE2
REAL*8 EMAX, TOR_MAX,X(10)

INTEGER N,I,TRIGGER,GRID,LINK
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LOGICAL FINE,MEDTUM,COARSE,ELP,EMP,ESP,EZE,ESN,EMN,ELN
LOGICAL CELP,CEMP,CESP,CEZE,CESN,CEMN,CELN

FORMAT(1X,F10.4, 1X,F10.4, 1X,F10.4,1X,F10.4, 1X,F10.4)

ELP=FALSE.
EMP=.FALSE.
ESP=FALSE.
EZE=FALSE.
ESN=.FALSE.
EMN=.FALSE.
ELN=.FALSE.

N=49
P1=3.14
IF (LINK.EQ.1) THEN
E=X(2)
IF (TRIGGER.EQ.O) THEN
CEA=0.0
ELSE
CEA=ATAN2(E-LASTE 1,.01)
END IF
LASTE1=E

EMAX=60.0
TOR_MAX=500.0

END IF
IF (LINK.EQ.2) THEN

E=X(5)

IF (TRIGGER.EQ.O) THEN
CEA=0.0

ELSE
CEA=ATAN2(E-LASTE2,.01)

END IF

LASTE2=E

EMAX=60.0

TOR_MAX=500.0

END IF
IF (LINK.EQ.3) THEN

E=X(8)
IF (TRIGGER.EQ.0) THEN
CEA=0.0
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ELSE
CEA=ATAN2(E-LASTE3,.01)
END IF
LASTE3=E
EMAX=60.0
TOR_MAX=150.0
END IF

¢ Change error and change in error from radians to degrees. E=(180/3.14)*E

CEA=(180/3.14)*CEA
c Determine which quantizied table is to be used and find the ¢ corresponding

quantizied values of error and error change.
c IF ((E.LT.25.0).AND.(E.GT.-25.0)) THEN

FINE=TRUE.

QE=E*(6/25.0)

QECA=CEA*(6/90.)

ELSE
IF ((E.LT.33.0).AND.(E.GT.-33.0)) THEN
MEDIUM=.TRUE.
QE=E*(6/33.)
QECA=CEA*(6/90.)

ELSE
COARSE=.TRUE.
QE=E*(6/60.)
QECA=CEA*(6/90.)

END IF
END IF
COARSE=.TRUE.
QE=E*(6/EMAX)
QECA=CEA*(6/90.)

CO0O000000060000

¢ Deterimine which grid is being used

IF (COARSE) THEN
GRID=1

END IF

IF (MEDIUM) THEN
GRID=2

END IF

[F (FINE) THEN
GRID=3

ENDIF

¢ With the Quantizied Error determine which ¢
linguistic values are applicable.
IF (QE.GE.6.0) THEN
QE=6.0
ELP=.TRUE.

END IF

IF ((QE.GE.4.0).AND.(QE.LT.é.O)) THEN ELP=-TRUE.
EMP=TRUE.

END IF



IE ((QE.GE.2.0). AND.(QE.LE.4.0)) THEN EMP=TRUE.

P— TRUE.

END
IF ((QE.GE.0.0). AND.(QE.LE.2.0)) THEN ESP=TRUE.
EZE=.TRUE.

END
IF ((QE.GE.-2.0).AND.(QE.LE.0.0)) THEN

EZE=TRUE
ESN=TRUE

END IF
IF ((QE.GE.-4.0). AND.(QE.LE.-2.0) THEN

ESN=.TRUE.
EMN=TRUE.

END
IF ((QE.GE.-%g).AND.(QE.LE.A.O)) THEN

¢ With the Quantizied Error Change determine which

¢ linguistic values art¢ applicable.
IF (QECA.GE.6. 0) THEN

QECA=6.0
CELP=TRUE

END IF
IF ((QECA.GE.4.0).AND.(QECA.LT.6.0)) THEN

CELP=TRUE
CEMP— TRUE.

IF ((QECA GE.2. 0) AND.(QECA.LE.4. 0)) THEN
CEMP=.TRU

CESP— 'I'RUE

END
IF ((QECA GE.0.0). AND.(QECA.LE.2.0)) THEN
CESP=.TRUE.
CEZE- TRUE.

END IF
[F ((QECA.GE.-2 .0).AND. (QECA.LE.0.0)) THEN
CEZE=TRUE.
CESN .TRUE.

IF ((QECA GE.-4.0).AND.(QECA. LE.-2.0)) THEN
CESN=.TRUE.
CEMN=.TRUE.

END IF
[F ((QECA.GE. -6.0). AND.(QECA.LE.—4.0)) THEN
CEMN=.TRUE.
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CELN=.TRUE.

END IF

[F (QECA.LE.-6.0) THEN
QECA=-6.0
CELN=.TRUE.

END IF

unction value (u) and the
to zero before the rules c are applied.

¢ Initialize the membership f
¢ universe of discourse value (U)
DO 250 I=1,N

u(D=0.0
uu()=0.0
250 CONTINUE
¢ Rule one if Error is Large Positive and the Change in Error is ¢ Large Negative

then contribution 1 Zero.
IF (ELP.AND.CELN) THEN
Ye=SIN(PI/4*(QE-4.0))
Yec=SIN(Pl/4* (QECA+8.0))
u(1)=MIN(Ye,ch)
Uu(1)=0.0
END [F
¢ Rule two if Error is Large Positive and the Change in Errorisc
Negative then contribution is Small Negative.
[ ELP.AND.CEMN) THEN
Ye=SIN(PI/4*(QE-4.0))
Yec=SIN(PI/4*(QECA+6.0))
u(2)=MIN(Ye,Yec)
UuR)=-2.0
END IF
c Rule three if Ermor is Large Positive and the Change in Erroris¢
then contribution is Medium Negative.
IF (ELP.AND.CESN) THEN
Yc=SIN(PI/4*(QE-4.0))
Yec:SIN(PI/4*(QECA+4.0))
u(3)=MIN(Yc,Yec)
uuR)=-4.0
END IF
¢ Rule four if Error is Large Posiave and the Change 1n Errorisc Z
contribution is Large Negative.
[F (ELP.AND.CEZE) THEN
Ye=SIN(PI/4*(QE-4.0))
Yec=SIN(PI/4*(QECA+2.0))
u(4)=MIN(Ye,Yec)
UU#)=-6.0
END IF
c Rule five if Error is Large Positive and the Change 1n Errorisc

then contribution is Larg .
[F (ELP.AND.CESP THEN

Y e=SIN(PI/4*(QE-4.0)

Medium

Small Negative

ero then

Small Positive
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Yec=SIN(PI/4*(QECA))
u(5)=MIN(Ye.Yec)
Uu5)=-6.0
END IF
¢ Rule six if Error is Large Posiuve and the Change in Error isc Me

then contribution is Large Negative.
[E (ELP.AND.CEMP) THEN

Ye=SIN(PI/4*(QE-4.0))
Yec=SIN(PI/4*(QECA-2.0))
u(6)=MIN(Ye,Yec)
uu6)=-6.0

END IF
c Rule seven if Error is Large Positive and the Change in E
e Negative.

then contribution is Larg
IF (ELP.AND.CELP) THEN

Yc=SIN(PI/4*(QE-4.0))
Yec:SIN(PI/4*(QECA-4.0))
u(7)=MIN(Ye,Yec)
Uu(?)=-6.0

END IF
c Rule eight if Error is Medium Positive and the Ch

then contribution is Small Prsitive.
IF EMP.AND.CELN) THEN
Ye=SIN(PI/4*(QE-2.0))
Yec:SIN(PI/4*(QECA+8.0))
u(8)=MIN(Ye,Yec)
yug)=2.0

END IF
¢ Rule nine if Error 1s Medium Positive and t

bution is Zero.

Negative then contri
[F (EMP AND.CEMN) THEN

Ye=SIN(PI/4*(QE-2.0))
Yec=SIN(PI/4*(QECA+6.0))
u(9)=MIN(Ye,Yec)
Uu©)=0.0
END IF
¢ Rule ten if Error is Medium Positiv

then contribution is Small Negative.
MP.AND.CESN) THEN

Ye=SIN(PI/4*(QE-2.0))
Yec=SIN(PI/4*(QECA+4.0))
u(10)=MIN(Ye,YeC)
Uu((10)=-2.0
END IF
c Rule eleven if Error is Medium Positive and the Change in Error i

contribution 1s Medium Negative.
MP.AND.CEZE) THEN

Ve=SIN(PL/4*(QE-2.0))
ch=SIN(PI/4*(QECA+2.0))
u(l 1)=MIN(Ye,Yec)
Uu(11)=-4.0

dium Positive

rror is ¢ Large Positive

ange in Error is ¢ Large Negative

he Change in Error is ¢ Medium

e and the Change in Error is ¢ Small Negative

g ¢ Zero then
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END IF
or is Medium Positive and the Change in Error is ¢ Small Positive

c Rule twelve if Err
Large Negative.

then contribution is
IF (EMP.AND.CESP) THEN

Ye=SIN(PI/4*(QE-2.0))
Yec=S IN(PI/4*(QECA))
u(l2)=MIN(Ye,ch)
UuU(12)=-6.0

END IF
¢ Rule thirteen if Error is Medium Positive
then contribution is Large Negative.
MP.AND.CEMP) THEN
Ye=SIN(PI/4*(QE-2.0))
Yec=SIN(PI/4*(QECA-2.0))
u(13)=MIN(Ye,Yec)

Uu(13)=-6.0

END IF
c Rule fourteen if Error is Medium Positive @
then contribution is Large Negative.

IF ( MP.AND.CELP) THEN
Ye=SIN(PI/4*(QE-2.0))
Yec=SIN(PI/4*(QECA-4.0))
u(14)=MIN(Ye,Yec)
Uu14)=-6.0

END IF

c Rule fifteen if Error is Small Positive and

then contribution is Medium Positive.
ESP.AND.CELN) THEN

Ye=SIN(PI/4*(QE))
Yec:SIN(PI/4*(QECA+8.0))
u(15)=MIN(Ye,Yec)
Uu(15)=4.0

END IF
¢ Rule sixteen if Error is Small Positive and t
then contribution is Small Positive.

IF (ESP.AND.CEMN) THEN
Yc=SIN(PI/4*(QE))
Yec:SIN(Pl/4*(QECA+6.0))
u(16)=MIN(Ye,Yec)
yu16)=2.0

END IF

¢ Rule seventeen if Error is

then contribution is Zero.
(ESP.AND.CESN) THEN

Ye=SIN(PI/4*(QE))
Yec:SIN(PI/4*(QECA+4.0))
u(17)=MIN(Ye,Yec)
yu(n=-2.0

END [F
¢ Rule eighteen if Error is Small Positive an

contribution is Small Negative.

and the Change in Error is ¢ Medium Positive

nd the Change in Error is ¢ Large Positive

the Change in Error is ¢ Large Negative

he Change in Error is ¢ Medium Negative

Small Positive and the Change in Erroris ¢ Small Negative

d the Change in Error is ¢ Zero then
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IF (ESP.AND.CEZE) THEN
Yc=SIN(PI/4*(QE))
Yec=SIN(PI/4*(QECA+2.0))
u(18)=MIN(Yc,ch)
Uu(18)=-2.0

END IF
¢ Rule nineteen if Error is Small Positive

contribution is Medium Negative.
ESP.AND.CESP) THEN

Ye=SIN(PL/4*(QE))
Yec=SIN(PI/4*(QECA))
u(19)=MIN(Ye,ch)
yu(19)=-4.0
END IF
c Rule twenty if Error is Small P

then contribution is Large Negative.
ESP.AND.CEMP) N

Ye=SIN(PI/4*(QE))

Yec=SIN(PI/4*(QECA-2.0))

u(20)=MIN(Ye,Yec)

Uu20)=-6.0

END IF

c Rule twenty one if Error is Small Positive and the Change in Erro

contribution is Large Negative.
(ESP.AND.CELP) THEN

Ye=SIN(P1/4*(QE))

Yec=S IN(PI/4*(QECA-4.0))
u(21)=MIN(Ye,Yec)
Uu@R1)=-6.0

END IF
if Error is Zero and the Change in Erro

¢ Rule twenty two
Negative then contribution is Large Positive.
IF (EZE.AND.CELN) THEN

Ye=SIN(PI/4*(QE+2.0))
Yec=SIN(PU4*(QECA+8.0))
u(22)=MIN(Ye,Yec)
UuU(22)=6.0

END IF
¢ Rule twenty three if Error is Zero and the Chang

Negative then contribution is Medium Positive.
IF (EZE.AND.CEMN) THEN
Ye=SIN(PI/4*(QE+2.0))
Yec=SIN(PI/4*(QECA+6.0))
u(23)=MIN(Ye,Yec)
Uu23)=4.0

END IF
¢ Rule twenty four if Error is Zero and th

then contribution is Small Positive.
[

and the Change in Error is ¢ Small Positive then

ositive and the Change in Error is ¢ Medium Posiave

r is ¢ Large Positive then

risc Large

e in Erroris ¢ Medium

e Change in Error is ¢ Small Negative

EZE.AND.CESN) THEN
Ye=SIN(PI/4*(QE+2.0))
Yec=SIN(PI/4*(QECA+4.0))
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u(24)=MIN(Ye,Yec)
UuQe4)=2.0

END IF
¢ Rule twenty five if Error is Zero and the Change in Error iscZ

contribution 1s Zero.
IF (EZE.AND.CEZE) THEN
Ye=S IN(P1/4*(QE+2.0))
Yec=SIN(PI/4*(QECA+2.0))
u(25)=MIN(Ye,Yec)
yu5)=0.0
END IF
c Rule Twenty six if Error is Zero and the Change in E

then contribution is Small Negative.
IF (EZE.AND.CESP) THEN

Ve=SIN(PY/4*(QE+2.0))
Yec=SIN(PI/4*(QECA))
u(26)=MIN(Ye,Yec)
Uu@R6)=-2.0
END IF
¢ Rule Twenty seven if Error is Zero and the Change in Emror is Medium
Positive then contribution is Medium Negative.
IF (EZE.AND.CEMP) THEN
Ye=SIN(PI/4*(QE+2.0))
Yec=SIN(PI/4*(QECA—2.0))
u(27)=MIN(Ye,Yec)
uuER7)=-4.0
END IF
¢ Rule Twenty eight if Error is Zero and the Change in Error is ¢ Large Positive

then contribution 18 Large Negative.
EZE.AND.CELP) THEN

Ye=SIN(PL/4*(QE+2.0))
Yec:SIN(PI/4*(QECA-4.0))
u(28)=MIN(Ye,Yec)
Uu(28)=-6.0
END IF
mall Negative and the Change in ¢ Error is

¢ Rule Twenty nine if Error is S
Large Negative then contribution is Large Positive.
IF (ESN.AND.CELN) THEN

Ye=S IN(PI/4*(QE+4.0))
Yec=SIN(Pl/4*(QECA+8.0))
u(29)=MIN(Ye,Yec)
Uu29)=6.0

END IF
¢ Rule Thirty if Error is Small Negative and th
¢ Error is Medium Negative then contribution i
AND.CEMN) N
Ye=SIN(PI/4*(QE+4.0))
Yec=SIN(PI/4*(QECA+6.0))
u(30)=MIN(Ye,Yec)
UuB0)=6.0
END IF

ero then

rror is ¢ Small Positive

e Change in
s Large Positive. IF
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¢ Rule Thirty one if Error is Small Negative and the Change in ¢ Error is Small
mibution is Medium Positive.

Negative then con
IF SN.AND.CESN) THEN
Ye=SIN(PI/4*(QE+4.0))
Yec=SIN(PI/4*(QECA+4.0))
u(31)=MIN(Ye,Yec)
Uu@nH=4.0

END IF
¢ Rule Thirty two if Error is Small Negative an

then contribution 1s Small Positive.
SN.AND.CEZE) THEN

Ye=SIN(PI/4*(QE+4.0))
Yec=SIN(PL/4* (QECA+2.0))
u(32)=MIN(Ye,Yec)
Uu32)=2.0

END IF
¢ Rule Thirty three if Error is Small Negative and the Change in ¢ Error is S

Positive then contribution 18 Small Positive.
ESN.AND.CESP) THEN
Ye=SIN(PI/4*(QE+4.0))
Yec=SIN(PI/4*(QECA))
u(33)=MIN(Ye,Yec)

d the Change in ¢ Error is Zero

mall

Uu@33)=2.0
END IF
¢ Rule Thirty four if Error is Small Negative and the Change in ¢ Error is
iti -+ ution is Small Negative.

Medium Positive
IF (ESN.AND.CEMP) THEN
Yc=SIN(PI/4*(QE+4.0))
Yec=SIN(P1/4*(QECA—2.0))
u(34)=MIN (Ye,Yec)
Uu34)=-2.0

END IF
¢ Rule Thirty five if Error is Small Negative and the Change 1

Positive then contribution is Medium Negatve.
SN.AND.CELP) THEN

Yc=SIN(PI/4*(QE+4.0))
ch=SIN(PI/4*(QECA-4.0))
u(35)=MIN(Ye,Yec)
Uu@35)=-4.0
END IF
Medium Negalive and the

¢ Rule Thirty six if Error is
Large Positive.

Large Negauve then contribution 1S
IF (EMN.AND.CELN) THEN

Y e=SIN(PI/4*(QE+6.0))
Yec=SIN(PI/4*(QECA+8.0))
u(36)=MIN(Ye,Yec)
Uu36)=6.0
END IF
c Rule Thirty seven if Error is Medium Negative and the Change in ¢ Error is
Medium Negative then contribution is Large Positve.
IF (EMN.AND.CEMN) THEN

n ¢ Error is Large

Change in ¢ Error 1S
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Ye=S IN(PI/4*(QE+6.0))
Yec=S IN(PI/4*(QECA+6.0))
u(37)=MIN(Ye,Yec)
Uu@Bn)=6.0

END IF
c Rule Thirty eight if Error is Medium Negative and the Change in ¢ Erro

Negative then contribution is Large Positive.
( N.AND.CESN) THEN

Ye=SIN(PI/4*(QE+6.0))

Yec=SIN(PI/4*(QECA+4.0))

u(38)=MIN(Ye,Yec)

UU(38)=6.0

END IF

¢ Rule Thirty nine if Error is Medium Negative and the Change in
then contribution is Medium Positive.

IF EMN.AND.CEZE) THEN
Ye=SIN(PI/4*(QE+6.0))
ch=SIN(PI/4*(QECA+2.0))
u(39)=MIN(Yc,Yec)
Uu(39)=4.0

END IF
r is Medium Negative and the Chang

¢ Rule fourty if Err0
on is Small Positive.

Positive then contributi
MN.AND.CESP) THEN

Ye=SIN(PI/4*(QE+6.0))
Yec=S IN(P1/4* (QECA))
u(40)=MIN(Yc,Yec)
Uu@@0)=2.0

END IF
¢ Rule fourty one if Error is Medium Negative and
Medium Positive then contribution is Zero.

IF (EMN.AND.CEMP) THEN
Yc=SIN(PI/4*(QE+6.0))
Yec:SIN(PI/4*(QECA-2.0))
u(41)=MIN(Ye,Yec)

Uu@En=0.0
END IF
is Medium Negative and the Change in € Error is

¢ Rule fourty two if Error
sitive then contribution 18 Small Negative.

AND.CELP) THEN
Ye=SIN(PI/4*(QE+6.0))
ch=SIN(PI/4*(QECA-4.0))
u(42)=MIN(Ye,Yec)
Uu@2)=-2.0

END IF
Negative and the Change in € Errori

¢ Rule fourty three if Error is Large
ontribution is Large Positive.

Negative then €
[F (ELN.AND.CELN) THEN
Ye=SIN(PI/4*(QE+8.0))
ch=SIN(PI/4*(QECA+8.0))
u(43)=MIN(Ye,Yec)

r is Small

¢ Error is Zero

e in ¢ Error is Small

the Change in ¢ Error is

s Large



uu43)=6.0

END IF
s Large Negative and the Change in ¢ Error is

¢ Rule fourty four if Error i
Medium Negative
IF

then contribu
(ELN.AND.CEMN)

tion is Large Positve.
THEN

Ye=SIN(PI/4* (QE+8.0))
Yec=SIN(Pl/4* (QECA+6.0))

u(44)=MIN(Ye,
uu@4)=6.0
END IF
¢ Rule fourty five
Negative then con

ELN.AND.CESN)

if Error is Large Negative and the
wibution is Large Positive.

Yec)

Change in ¢ Error is Small

THEN

Ye=SIN(PI/4* (QE+8.0))
Yec=SIN(PI/4* (QECA+4))
u(45)=MIN(Ye,Yec)

Uu45)=6.0

END IF
Large Negative an

¢ Rule fourty six if Error 1s
then contribution is Larg

d the Change in € Error is Zero

e Positive.

ELN.AND.CEZE) THEN

v2=SIN(PV/4*
Yec=SIN(PL/4
u(46)=MIN(Y
Uu46)=6.0
END IF
¢ Rule fourty seven

Positive then contribution i

if Error is Large Ne

(QE+8.0)
*(QECA+2))

e, Yec)

gative and the Change in ¢ Error is Small

s Medium Positive.

ELN.AND.CESP) THEN
Ye=SIN(P1/4* (QE+8.0)
Yec=SIN(P1/4* (QECA))
u(47)=MIN(Ye,Yec)

uu@n=4.0
END IF

¢ Rule fourty eig
Medium Positive then con

ht if Error is Large,

Negative and the Change in ¢ Error is

tribution 1s Small Positive.

CEMP) THEN

AND.
Ye=SIN(PL/4* (QE+8.0)
Yec=SIN(PI/4*(QECA-2.0))

u(48)=MIN(
Uu48)=2.0

END IF
ris Large Negative and the Chang

c Rule fourty nine if Erro
Positive then €O

Ye,Yec)

e in ¢ Error is Large

ntribution is Zero.
ELN.AND.CELP) THEN

Ye=SIN(PL/4* (QE+8.0))

Yec=SIN(P

/4*(QECA-4.0))

u(49)=MIN(Ye,Yec)
Uu(49)=0.0

END IF
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¢ Initialize the NUMerator and DENomenator to zZ€ro so that only ¢ contributions
occurring on this pass will be considered.
NUM=0.0
DEN=0.0
c Calculate the NUMerator and the DENomenator of the control input ¢ by means of
the center of gravity method.
DO 3001=1,N
NUM=NUM-+u(I)*UU()
DEN=DEN+u(l)

300 CONTINUE
¢ Setting the DENomentator 0 1.0 prevents division by zero and ¢ does not

effect the value of the control input.

IF (DEN.LT.0001)THEN
DEN=1.0

END IF

INPUT=NUM/DEN

[F (LINK.EQ.1) THEN
WRITE(9,16)E,CEA,QE,QECA,

INPUT END IF

[F (LINK.EQ.2) THEN
WRITE(10,16)E,CEA,QE,QEC
A INPUT

END IF

IF (LINK.EQ.3) THEN
WRITE(! 1,16)E,CEA,QE,QEC
A,INPUT

END IF

¢ Using the correct quantizied table convert the input into ¢ a torque to be
sent to the plant.

IF (COARSE) THEN
TORQUE=INPUT* (TOR_MAX/6.0)

END IF

IF (MEDIUM) THEN
TORQUE=INPUT*(15./6.0)

END IF

[F (FINE) THEN
TORQUE=INPUT*(17./6.0)

END IF

RETURN

END



