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I, INTRODUCTION

Many future NASA missions require robotics to assist in the assembly, maintenance

and servicing of spacecraft. Such scenarios may include one or more multi-linked

manipulator arms which, because of their lightly damped characteristics, require vibration

suppression as well as end point tracking in a somewhat uncertain environment. Due to

the flexibility in the joints/links and the inherent vibration due to the mobility of the

robotics system, adaptability to the environment and varying inertia is a requirement.

Several methodologies have been suggested for robot control based upon known tasks

and environments. Classical proportional-integral-derivative (PID) control has been

employed in industry for many years. The approach assumes complete knowledge of all

pertinent system and environmental characteristics. It also requires tuning the PIE) gains

to meet some performance specifications. When the system or environmental parameters

change, the gains must be re-tuned accordingly. Thus, unknown disturbances or

changing environmental conditions may result in performance degradation.

To address the issue of uncertainty or time-varying conditions, several adaptive

control algorithms have been suggested. These include joint-space control [18] and

global linearization [4] methods in which some nonlinear or discrete matrix polynomial

equation set must be solved in order to construct the controller. While these methods

may guarantee stability under certain restrictions, the computation time may limit their

implementation for multi-linked robotics systems.

Fuzzy logic control offers an alternative approach in which the structure of the system

model is not required for control design [25,2]. Fuzzy control algorithms have been

applied to several process control and automotive systems [8,14,13] in which the time

constants were somewhat large. The use of fuzzy logic for robotics systems has yielded



some success [16,5] although issues such as time delays and initial conditions sometimes

limit the applicability of these algorithms.

This thesis develops a fuzzy logic control algorithm which can be applied to systems

with uncertainties. These uncertainties may include unknown initial conditions, and

undetermined system dynamics. Unknown initial conditions may exist in space

manipulator systems due to sensor inaccuracies.

The concepts of fuzzy logic control are presented in a progressive manor. First, an

extensive development concentrating on the theories of fuzzy logic control is presented.

Secondly, fuzzy logic control is applied to two simple systems; the first being a

horizontal pendulum while the second example is a vertical pendulum. Then the

algorithm is applied to a three degree-of-freedom robotic manipulator.

The horizontal pendulum provides an environment with which to develop a FLC that

produces performance characteristics similar to traditional proportional derivative

control. In the course of this development seven linguistic terms are presented and

defined over a quantized Universe of Discourse. The membership function used to define

the linguistic terms differs from classical methods. A novel means to quantize the change

in error is presented. Utilization of the fully populated rule base results in a general fuzzy

logic controller that accomplishes vibration suppression (Fuzzy-PD). By examination of

the phase portraits an off-line tuning approach is considered

The application of Fuzzy-PD to the vertical pendulum provides the ground-work for

the development of a fuzzy logic controller that not only accomplishes vibration

suppression but also compensates for steady-state errors. In the course of this

development, a capture method and an alternative rule base are provided to compensate

for system biases. The ultimate result is the hybridization of the Fuzzy-PD controller

with traditional integral control resulting in what is referred to as Fuzzy-PID.
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At this point the unrestrictedfuzzy logic controller (Fuzzy-PID) is applied to the

highly coupled, secondorder, nonlineardynamics associatedwith a threedegree-of-

freedom robotics manipulator. The results of such an application as compared to

traditional PID control illustrate the performance of Fuzzy-PID.

Concurrent to this investigation, a coordinated teleoperated mobile manipulator

system is being designed and fabricated. The system will contain two DR-106 six-degree

of freedom manipulators with flexible joints/links supported by a mobile platform.

Several algorithms such as the fuzzy logic controller developed in this thesis are being

considered whereby the human operator inputs the desired trajectory and the controller

tracks the desired trajectory while suppressing vibration and compensating for platform

motion. Such performance measures are typical for in-space robotics operations.



2. BRIEF OVERVIEW OF FUZZY LOGIC CONTROL

4

Fuzzy logic control, is quite confusing when initially introduced. However, like

many concepts in life, once a global understanding is obtained the confusion associated

with the specifics diminishes. Therefore, before more complicated deliberation on the

uses of FLC may be developed, it may be in the readers best interest to consider a brief

overview of the fuzzy logic control algorithm (FLC). The block diagram of the fuzzy

logic control algorithm is illustrated in Figure 2.1

QCEA(k)

Figure 2.1: Simplified block diagram of fuzzy logic controller

Fuzzy logic control is a rule based controller. As the term "rule base" indicates, the

fuzzy logic control algorithm is based on a number of rules which are accessed and

processed in a specific fashion so as to provide the desired control input to a system. In

order to construct such a controller, consideration must be given to the development of

the rules and how they interact to form the control input.

Individual rules are constructed using qualitative terms in conjunction with IF...

THEN statements. Some examples of common qualitative terms are big, small, large,

hot, normal, fast, slow, etc...

A linguistic rule used in the process of balancing a stick may read: IF the stick is

inclined moderately to the left AND is almost still THEN move the hand to the left

quickly. In order for this rule to be useful a process must be implemented by which the



linguistic terms "moderately", "almost still", and "quickly" are converted into some

numeric value. Fuzzy set theory does just that.

Notice how the qualitative linguistic terms are vague in their meaning. This is a

desired result because it closely resembles how humans think. The process provided by

fuzzy set theory which enables a linguistic term to take on range of values is called the

membership function. The membership function is defined over a domain referred to as

the Universe of Discourse and assumes a value which ranges from 0 to 1. This value is

referred to as the membership value. In general the membership value is a way to weigh

how much of a particular linguistic term is present.

How does one determine what is "quick"? For example, if the term "quick" is defined

to be 100 mi/hr, its associated membership value would be 1. Any variations, either

positive or negative from the speed i00 mi/hr, would result in a membership value of less

than 1. For example, 90 m/hr. may correspond to a membership value of .9. Therefore

one may conclude that only 90% of the linguistic term "quick" is present.

At this point various rules using linguistic terms in conjunction with IF...THEN

statements may be developed. However, because a large number of qualitative linguistic

terms exist in the human language it is desirable to choose an appropriate number of

linguistic terms and to define what region they are valid.

For control applications the linguistic terms tend to read as Large, Medium, Small,

and Zero. By considering both positive and negative values of the linguistic terms listed

one has seven distinct qualitative linguistic terms with which to construct rules. (Larger

Positive, Medium Positive, Small Positive, Zero, Small Negative, Medium Negative,

Large Negative). These linguistic terms must be defined over a region called the

Universe of Discourse. It is common practice to define the qualitative terms over a

quantized Universe of Discourse. By doing so the qualitative linguistic terms may be

used to describe more than one state in a system. Take for example the rule: IF error is



Large Positive AND the rate of error change is Large Positive THEN the control input

should be Large Negative. Even though the qualitative linguistic term defining errer and

error change is the same (Large Positive) the membership value associated with both of

the states may differ.

With the concepts used to develop a rule presented and the foregone conclusion that a

fuzzy logic controller requires more than one rule to accomplish any reasonable task, a

brief discussion of the techniques used to process the rule base follows. The rule base is

simply all of the rules created to perform a particular task. Given the states of one such

particular task, it is likely that some of the rules will be appropriate to the conditions

presented and others will not. The rules that are inappropriate are discarded by the use

of the Logic Product and the others are combined using the Logic Sum. The result of this

combination of rules is a weighted area. By finding the Center of Gravity of this area a

single numeric value results. This value is the final fuzzy inference and is a quanfized

value. Dequantizing this fuzzy inference results in the final control input.

With this brief overview complete, the reader may proceed further where a more

detailed description of fuzzy logic control and its applications to various dynamic

systems is presented.



3. DEVELOPMENT OF

THE FUZZY LOGIC CONTROL ALGORITHM

3.1 MEMBERSHIP FUNCTION

The basis for Fuzzy Logic Control (FLC) is the membership function, commonly

referred to as the membership shape. A membership function is defined over a domain

called the Universe of Discourse (U) and assumes a range from zero to one, referred to as

the membership value (u). The universe includes all events that can take place in the

context of a particular situation. Restated, the universe exists over the boundaries of a

given situation.

The membership value (u) describes the probability of an event occurring, given a

particular universe[15]. Probability is defined as the ratio of two numbers. The

numerator represents the events in the universe on which interest is focused, and the

denominator represents the universe of all possible events. Therefore, the numerator is a

subset of the denominator. With this in mind, the probability of an event will range from

zero to one indicating from non-membership to total-membership in the universe.

Symbolically u(AIB), reads as follows: "the membership value (u) is the probability of

event A given the universe of events B," where

and

A
=- Eq.(3.1)

u(AIB) B

0 <- u(AIB) _<1 Eq.(3.2)

FLC is based on a set of heuristic rules. These rules use qualitative words which

are defined mathematically in the form of membership functions. To illustrate this



relationshipbetweenqualitativewordsandmembershipfunctionsconsiderthefollowing

example. Supposeonewasto lookat thenormal raeightof males.Sayfor instancethat a

reasonablenormalheightis 5 ft. 9 ins. This is not to saythatpeoplewho areof height of

5 ft. 4 ins. or 6 ft. 2 ins. are not of normal height. Those are normal heights, but

somehow the feeling of "normal height" is not as strong. However, at heights of less than

5 ft. 0 ins. or more than 6 ft. 6 ins. one could categorically say this is "short" or this is

"tall". Therefore, as one moves from short to tall, the feeling of normal gradually rises

and than gradually falls. If values from zero to one are assigned to this feeling of "normal

height", the result could be the bell shaped curve shown in Figure 3.1.

v

e_

e_

r_

0.5"

0.0

5'0"

1 I !
! i !

5 '4 'j 5_9 n 6 _2 _t

Universe of Discourse (U)

Figure 3.1." Membership function for people of normal height

This bell shaped curve is called the membership function and is defined over the Universe

of Discourse (heights ran_ng between 5 ft. 4 ins. and 6 ft. 2 ins.) to take on values from

zero to one, where one is the strongest feeling of "normal". With this concept of

membership function defined, one now has the ability to quantitatively deal with inexact

or ambiguous issues such as the qualitative words short, normal, tall.



The idea of a membership function differs from a binary approach. The dotted box in

Figure 3. i illustrates binary theory where there are only two membershio values: zero and

one. According to this, any person in the range of 5 ft. 4 in. to 6 ft. 2 in. takes on the

membership value one and is of perfect normal height. Heights less than 5 ft. 4 ins. and

greater than 6 ft. 2 ins. correspond to a zero membership value and are thus completely

non-normal; clearly this is an unnatural situation.

It has been shown that the exact shape of the membership function is relatively

arbitrary and may be chosen based on user preference[9]. Figure 3.2 illustrates some

commonly chosen membership functions. Figure 3.3 illustrates how similar they are by

superimposing them.

Bell Shaped Trapezoidal

a b

Triangular Sinusoidal

c d

Figure 3.2: Commonly chosen membership functions

Figure 3.3." Similarities between some different membership functions

Due to the complexity of the bell shape (Figure 3.2a) and the piece-wise continuous

behavior of the trapezoidal shape and triangular shape (Figure 3.2b& 3.2c), the smooth

continuous and easily calculated sinusoidal shape has been selected as the membership

function for this study (Figure 3.2d).
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3.2 LINGUISTIC:RULES

To develop a fuzzy controller, it is necessary to interpret linguistic rules that are

based on experience so as to form a control surface that provides output values of the

controller, corresponding to situations of interest[ 11]. The basis for the linguistic rule is

the "IF...THEN" statement. One linguistic rule or "production rule" describes a portion

of a particular problem or task in words• The antecedent blocks ("if" phrases) describe

the states, and the consequent block ("then" phrase) describes how the controller should

respond to the states.

For example, asking a first shift operator on an assembly line to describe a single

portion of his/her task, a typical response may be:

IF the parts are running "far behind" and they "have been" for a period of time THEN

I increase the line speed "alot".

This particular response is based on the operator's experience and is to be interpreted to

produce a production rule. However, a complication arises when the same question is

asked of the second shift line operator. The response may differ in the actual vocabulary

used, but the premise would remain the same. Therefore, it is necessary to define a

common or universal set of linguistic terms (common vocabulary) which may be used to

specifically define the production rule. Refining the operator's response using specific

linguistic terms results in a typical fuzzy linguistic rule:

IF (the error is "large negative") AND (the change in error is "zero") THEN (the

control input should be "large positive").

Notice the change in the antecedents blocks and the consequence block. The term "parts.

•. far behind" corresponds to error being large negative, while the term "have been for a
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periodof time" correspondsto changein error beingzero. Further, the term "increase...

alot" corresponds to a control input larTe positive.

In general, in order to develop and interpret this rule, or any other fuzzy linguistic

rule, the following concepts need to be addressed.

1. How are error, change in error and control input defined?

2. How are the qualitative linguistic terms "large positive", "zero", and "large

negative" defined?

3.2.1 ERROR, CHANGE IN ERROR. AND CONTROL INPUT

Error is defined as the difference between the process output and the desired output:

e(k) = 0(k)- 0 d(k) Eq.(3.3)

where

e(k) = error at time sample k

0(k) = position at time sample k

0 d (k) = desired position at time sample k

The change in error is the difference between the error from the current process output

and the error from the last process output.

ce(k) = e(k) - e(k - I) Zq.(3.4)

where

ce(k) = change in error at current sample

e(k) = error at current sample

e(k - 1) = error at previous sample

All of the examples to follow are maneuvers of mechanical dynamic systems whose

dependent variable is an angle 0(t) given in either radians or degrees. The control input

is the input torque applied to the process.



12

3.2.2 QUALITATIVE LINGUISTIC TERMS

As iIIustrated in the line operator example, it is important to develop a set of

qualitative linguistic terms to be used in the controller. In the same way the qualitative

linguistic term "normal" was defined over the universe of heights ranging from 5 ft. 4 ins.

to 6 ft. 2 ins., the linguistic terms for the FLC will span a quantized universe or domain

defined from -6 to +6. These limits from -6 to +6 are not hardfast, rather they are chosen

such that the individual membership functions begin and end on a whole number. As

previously mentioned sinusoidal membership functions will be used to define the

linguistic terms. Figure 3.4 illustrates seven such qualitative linguistic terms defined over

a quantized Universe of Discourse ranging from -6 to +6 and their respective defining

functions: large positive(LP), medium positive(MP), small positive(SP), zero(ZE), small

negative(SN), medium negative(MN), and large negative(LN).

The purpose for defining the qualitative terms large-positive through large-negative

on a quantized Universe of Discourse is to allow their universal use in defining error,

change in error and the control input to the system. This may be accomplished by simply

quantizing the values of error, change in error and the control input to the system to the

values -6 to +6 on the Universe of Discourse (see Figure 3.5).
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Large Positive
;" = sin [Tz/4,(x-4)]

Medium Positive
y = sin [r_/4,(x-2)]

2 4 6

Small Positve 1
y = sin [rc/4,(x)]

-6 -4 .9 2 4 6

Zero

y = sin [r_/4,(x+2)]

Small Negative
y = sin [rc/4o(x+4)]

a i i

-6 -4 4 6

| ! I t

-6 2 4 6

Medium Negative f-_ I
y = sin [_/4-(x+6)] /-\

I ! i

-6 -4 -2 2 4 6

Large Negative 1
y = sin [Tz/4o(x+8)]

Figure 3.4."

I ! l I

-6 -4 -2 2 4 6

Linguistic quantized qualitative terms and their respective functions



J

U

LN MN ,.,,:e,,r ZE SP MP LP
1

r

-6 -4 -2 0 2 4 6 U

Figure 3_5." Qualitative linguistic terms defined on a quantized universe from -6 to +6
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For example, suppose the measured error and calculated change in error in a

particular system after A/D is 22 degrees and 33 degrees/sec, respectively. If the

quantization function for error, equals one tenth of the measured erro., then the quantized

error is 2.2. That is,

quantized error = (_0)x (error) Eq.(3.5)

Notice in Figure 3.5 that if a vertical line is drawn through the point 2.2, it intersects the

membership functions SP and MP. Therefore, the error is a combination of a weight of

the membership function Small Positive and a weight of the membership function

Medium Positive.

If the quantization function for change in error is defined as

Eq.(3.6)
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thenthequantizedchangein erroris 2.2. Notice againin Figure3.5thatthiscorresponds

to somemembershipvalueof the linguistic term Small Positiveandsomemembership

valueof Medium Positive. Collectively, error and changein errorhave beenshownto

possesthe samequantizedvalue and linguistic values SP and MP while retaining

different actual values, thereby demonstrating the transcendentalusefulnessof the

quantizedUniverseof Discourse.

It hasbeenshownthat thenumberof linguistic termsis arbitrary. As the number of

linguistic terms increases, the resolution of the controller increases as a direct result of the

induced ability to define each linguistic rule with more accuracy. In most FLC it is

common practice to use only three to five linguistic terms. However, due to the

complexity associated with the controller for robotics systems, seven linguistic terms are

employed.

3.3 RULE BASE

In order to develop a fuzzy logic controller, a series of rules must be assembled. It is

the assembly of production rules in which a repertoire of learned problem-solving actions

(consequences) is associate with conditions (antecedents), to form condition-action pairs.

Once a situation is recognized, the conditions constitute cues or indices for corresponding

actions. This is how FLC attempts to model the heuristic problem solving approach of

humans[15]. In the assembly line operator example, one production rule governing the

case when the error is large negative and change in error is zero was developed.

However, in order to handle other cases such as the error being medium positive and the

change in error being large positive, one must develop other rules. Therefore, for each

particular situation of interest, there exists a corresponding production rule. Combination

of the production rules results in what is referred to as a "rule base". In order to

assimilate the rule base, the concepts of logic product, logic sum, center of gravity, and
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thequantization functions must be developed. An illustrative example of an inverted

pendulum is presented in order to mature these concepts.

3.3.1 LOGIC PRODUCT_

Figure 3.6 illustrates seven rules which are commonly used for vibration suppression

of an inverted pendulum.
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AND THEN
MIN(.8, .9) = .8

AND THEN
MIN(.6, .4) = .4

AND THEN
-_ MIN(.6, 0) = 0

AND , , THEN
.6 MIN(0, .9) = 0

AND . THEN
"6 MIN(0, 0) : 0

Figure 3.6." Seven rules used for an inverted pendulum

Logic product is the first of the concepts to be developed. The physical significance

of taking the logic product is to discard any and all rules that are not relevant to a given

pair of error and change in error values. In set theory., the logic product is the AND

function. It can simply be defined as taking the minimum of the corresponding numeric
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entries of two sets. Mathematically, "the intersection of two sets, A _ B, corresponds to

the AND function and is define by

u(A AND B) = min(u,(x),ub(x)) Eq.(3.7)

Figure 3.6, demonstrates how the antecedent block or the quantized error and

quantized change in error are joined by the AND function, resulting in a logic product.

The dashed vertical lines in the quantized error (QE) and quantized change in error

(QCE) columns represent a given QE of 3.2 and QCE of .5. Examining the f_rst row of

Figure 3.6, which corresponds to Rule 1, one notices the quantized error membership

value equals 0.8 (u--0.8) and the change in error membership value equals 0.9 (u--0.9).

The minimum of these two values is 0.8, therefore u(.8 AND .9)=.8. The same procedure

is performed for all of the rules as illustrated in Figure 3.6.

{min(. 8,. 9), rain(. 6,. 4), rain (. 6, 0), min (0,. 9), rain(0, 0), rnin (0,. 4), min(0,. 9)}

results in the logic product (a set).

{.8,.4,0,0,0,0,0}

The logic product is used because it provides the condition in which both error and

change in error are satisfied. As shown in rule one (Fig.3.6) the membership value of

u----0.8 satisfies both conditions; therefore it is transferred to the consequence block.

3.3.2 LOGIC SUM

The logic sum is an operator such that the contribution of each individual rule is

combined to produce the final fuzzy inference. Mathematically stated, it is the OR

function. The union of two sets, A u B, corresponds to the OR function and is defined

by

u(a OR B)= max(u,(x), ub(x)) Eq.(3.8)

The OR function is applied to the consequence block because even if an individual rule's

influence or contribution is small, it should still be reflected in the resulting control input.
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Using the previousvaluesof QE and QCE one canview how the contributions of

eachrule are transferredto theconsequenceblock.
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The logic sum is the OR function applied to the shaded area in the "Control Input"

column shown in Figure 3.7. This shaded area is referred to as the conclusion of the

fuzzy inference. Figure 3.8 illustrates the result of imposing all of the contributions on

the Universe of Discourse.

The conclusion of the fuzzy inference is an area and cannot be used directly to

produce a control command. Therefore, a conversion technique is needed to convert the

fuzzy inference into a control quantity. The most common means by which to

accomplish this goal is the use of the center of gravity method.

U

LN MN SN ZE SP MP LP
1

-6 -4 -2 0 2 4 6

Figure 3.8." Final inference produced by the FLC

U

3.3.3 CENTER OF GRAVITY

The center of gravity method is the most commonly applied way of combining the

individual consequences of each rule to get a specific control quantity that may be sent to

the process under control. The shaded area in Figure 3.8 is the final inference produced

by fuzzy controller. This area, however, cannot be used directly to control the output of
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thesystem. Therefore,thecenterof gravity of this areais taken. In generaltheequation

for thecenterof gravity is

QI- y (uoxuo uo
1

where

QI = Quantized Input

u_ = membership value

U_ = Universe of discourse

Referring to the final inference illustrated in Figure 3.8, and using Eq.(3.9)

Eq.(3.9)

or

QI = (.8 x -4)+(.4 x -2)/(.8+. 4)

QI = -3.3

Eq.(3.10)

Eq.(3.11)

Figure 3.9 illustrates the position of the center of gravity.

.<

Center of

gravity
i
0
i

-6 -41 -2 0
-3.3

U

Figure 3.9." Center of gravity method

Ir

2 U
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The quantized value of the input Q[=-3.3 can now be directly related to a control input

applied ro the system by simply dequantizing it into an applied torque. For example, if

the dequantizing function is

Input = (1-1-1-_0-)x (quantized input) Eq.(3.12)

then the torque applied to the system

I = (_-_) x (-3.3) Eq.(3.13)

is 1=83.33 in-ounces.

This is the defuzzificafion operation. The method of defuzzification that employs center

of gravity is known as the Mamdani method.

3.4 THE FUZZY CONTROL ALGORITHM

The overall general fuzzy control algorithm may now be summarized as follows(Fig.

2.1). First a pair of error and change in error values are measured and calculated

respectively(Eqs. 3.3 & 3.4). These two states are then converted into quantized error

and quantized change in error(Eqs. 3.5 & 3.6). These quanfized values correspond to

particular qualitative linguistic terms(Figs. 3.4 & 3.5). The linguistic terms are then

applied to the antecedent block of the control rules. If both conditions in the antecedent

block are met then a resulting consequence is registered(Eq. 3.7 & Fig. 3.6), All of the

individual consequences are then combined by the use of the logic sum(Eq. 3.8 & Fig.

3.7). This results in a final fuzzy inference(Fig 3.8). This final inference may then be

converted into a quantized input by application of the center of gravity method(Fig. 3.9 &



24

Eq. 3.9). The final stepis to dequantizethe quantizedinput to thecontrol input to be

appliedto thesystem(Eq.3.12).

The algorithm for FLC just presentedis not specific, and it may beapplied to a

multitude of problems. The intent here,however, is to develop a FLC for robotics

systems. Towards this end, two particular examples,a horizontal pendulum and a

verticalpendulum,aresupplied.Thesearegivenin theChapters4.
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4. ILLUSTRATIVE EXAMPLES

Before applying the fuzzy logic control algorithm developed in Chapter 3 to a

robotics example (the coupled nonlinear dynamics of a revolute three degree-of-freedom

robot in this study), some physical insight into the behavior of the fuzzy logic controller

is desirable. This may be obtained by first applying the fuzzy control algorithm to a

simple second-order, linear system and comparing the response to a step input to that of a

traditional PD controller. Once this is accomplished, the development of a FLC to handle

the slightly more complicated dynamics of a tradition vertical pendulum will be

considered.

4.1 THE HORIZONTAL PENDULUM

Consider a massless rod of length (L) in the horizontal plane with a concentrated

mass (m) at the endpoint, and an input torque (z) supplied by a motor. This system is

referred to as a horizontalpendulum. The equation of motion for the system is.

mL z = 0 Eq.(4.1)

where 0(t) is the dependent variable defining the angular position of the pendulum.

When looking at the dynamics of this simple system notice that a traditional proportional

derivative (PD) controller is adequate for vibration suppression. This is accomplished by

defining the torque as:

1:= -g(0 - 0 d)- h(0 - (),) Zq.(4.2)



whereg andh aregainschosento meetdesiredperformancespecifications.For this

studythesc_lectionof thegainsis basedon theTheoryof Natural Control[17].

Substituting Eq.(4.2) into Eq.(4.1) gives the overall closed loop system dynamics.

Eq.(4.3)
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Consider a specific fuzzy logic controller that provides the same performance

characteristics as the traditional PD controller when applied to the horizontal pendulum.

For clarification purposes, this fuzzy logic controller is referred to as "Fuzzy-PD" or

"FPD". It is nodced in Chapter 3 that in order to develop a FLC, the following need to be

defined:

(1)

(2)

(3)

The number of qualitative linguistic terms used.

The Universe of Discourse.

Sign convention on error and change in error.

(4) The quantization functions.

(5) The number of rules in the rule base.

4.1.1 NUMBER OF LINGUISTIC TERMS. UNIVERSE OF

DISCOURSE. AND SIGN CONVENTION

Equations 3.3-3.6, and 3.12 were presented in such a way that they are consistent with

the Fuzzy-PD controller now under consideration. Therefore, the seven qualitative terms,

and the quantized Universe of Discourse used in the previous Chapter will now be

applied(Fig.3.4 & Fig. 3.5). It is interesting to note that the error, change in error and

input to the system do not have to be quantized to the same seven qualitative linguistic

values. For example, it may be decided that only three linguistic terms are needed for an

accurate description of error (ex: Positive, Zero, Negative) but five linguistic terms may
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beneededfor changein error (MN,SN,ZE,SP,MP).This is acceptablewhendeveloping

a FLC for a particularapplication. For simplicity, this controllerdoesquanfizeerror,

changein error andinput to thesamesevenlinguistic valuesrangingfrom largepositive

to largenegative.

The signconventionfor theerrorandthe changein erroraredefinedfor this physical

systemis shownin Figure4.1.

E =-30° E = -50° E = 30° E = 50°
CE = 20° CE = -20° CE = -20° CE = 20°

• ,'.2:,C, ,..
, J

Figure 4.1: Sign convention for error and change in error

4.1.2 QUANTIZATION FUNCTIONS,

In Chapter 3 the idea of developing rules based on error, change in error and control

input was presented. This approach is now applied to the FPD controller. It was noted

in Chapter 3 that quantization functions were required for all three parameters (E,CE,I).

(see Eqs. 3.5, 3.6, & 3.12). Therefore, before the Fuzzy-PD rule base can be developed it

is important to specifically define how the antecedent and consequence blocks are

quantized.

4.1.2.1 QUANTIZED ERROR

In general it is desired to quantize the error and change in error such that the

maximum and minimum quantized values correspond to the maximum and minimum

actual values. For example, consider the quantization function for the error antecedent.
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QE= maximumexpectederror) x E
Eq.(4.4)

Keeping in mind that the ultimate intent for this thesis study is to developa FLC to

control a 3-DOF revolutemanipulator,onenotices that the DR-106(Fig.5.1)possesses

physical limitations pertainingto theworking space.The maximumworking spacefor

anyof the threelinks is restrictedto plusor minus 60degrees.Therefore, the maximum

expected error is set to 60 degrees.

QE = (6--_) x E Eq.(4.5)

Figure 4.2 shows the error quantization function in Eq.(4.5). Notice that quantized error

is clipped to either +6 or -6 if the error exceeds the expected limits.

8.0

6.0

0 4.0

_d 2.0

0.0

•_ -

g -2.0
O' -4.0

-6.0
o

-8.0 " T ,
-120.0 -60.0 0.0 60.0

Error (degrees)

r

120.0

Figure 4.2." Quantized error as a function of error in degrees
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4.1.2.2 QUANTIZED CHANGE IN ERROR

The quantization function for change in error is slightly more involved. The change

in error is the first derivative of error or the slope of the error curve at a particular time.

If the error changes rapidly with respect to time, the CE(slope) approaches infinity. As

previously discussed, in order to use CE in the antecedent block it must be quantized.

How does one quantize change in error values ranging from negative to positive infinity?

A novel solution to this problem is provided by taking the inverse tangent of the slope

of the error with respect to the sampling period. This mapping operation provides a

bounded domain for the change in error between negative 90 and positive 90 degrees.

With this domain defined on a closed set, it is quite easy to parameterize the change in

the error as a change in error angle(CEA).

CEA = tan-' (e(k) - e(k - 1) "_
Xt Jk

Eq.(4.6)

where the -90 < CEA _<+90. Using the bounds of CEA and the same premise developed

for quantizing error results in quantized change in error angle(QCEA) being defined as:

Eq.(4.7)

The graphical representation of this quantization procedure is illustrated in Figure 4.3.
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Figure 4.3. Quantized Change in Error Angle as a function of
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4.1.2.3 DEQUANTIZED INPUT

With the antecedent quantization functions accounted for, the last quantization

function to be selected is associated with the input to the system. This process is actually

a dequantization process. Given the control input in quantized terms, it is dequantized to

a torque value which is then applied to the system(Eq.4.8). For the example under

consideration, the torque varies from +150 to -150 inch-ounces. This number was

initially selected and adjusted according to the behavior of the step response. In general:

and specifically:

I = (_--_)x QI Eq.(4.9)

where
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QI = quandzedinput

I= control input to the system (in-ounces)

This quanrization procedure is illustrated in Figure 4.4.

e-

9

O
[-.,

200.0

150.0

100.0

50.0

0.0

-50.0

-100.0

- 150.0

-200.0
-6.0 4.0 -2.0 0.0 2.0 4.0 6.0

Quantizied Control Input

Figure 4.4." Torque as a function of quantized control input

4.1.3 NUMBER OF RULES

As a preliminary investigation leading up to the final Fuzzy-PD controller, seven

rules were applied to the horizontal pendulum. This resulted in a poor performance

associated with the controller's lack of ability to handle various wide ranges in initial

conditions. To compensate for this poor performance, an increase in the rule base to 36

rules followed. This control surface also failed due to a lack of robusmess.

Given the fact that there are only seven different values of QE and QCEA, one

concludes that there are a total of 49 different possible combinations, corresponding to 49

distinct rules. Therefore, considering the poor performance of the 36 rules, it was

decided to use a control surface fully populated with all 49 different rules. This final

approach produced acceptable behavior and did not hinder the computational time
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associated with the fuzzy logic controller. This is due to the fact that, given any pair of

error and change in error values, only four of the 49 rules are applied at that eiven

instance.

The step responses of the horizontal pendulum controlled by both a tradition PD

controller and the Fuzzy-PD controller are illustrated in Figure 4.5. Both systems possess

a similar rise times but the Fuzzy-PD controller has considerably less overshoot. This is

due to the fact that the controller is based on humanistic rules or the rule base as opposed

to a mathematical function governed by the damping envelope.

Since the system is second order, the PD gains could be specifically chosen to

produce an identical step response to that demonstrated by the Fuzzy-PD controller.

However, in order to provide an objective test environment, the maximum torque that

either controller could apply to the system was set to 15 in-ounces. With this in mind

Fuzzy-PD out performed the traditional PD controller.

1.2

t_
v

e.',
._.q
°_
t/l

O
o.
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0.8

0,6-

0.4

0.2

0.0

....°.

......... PD
FPD

T , i E , , ] , , , ] , , _ j , _ , I ' ' '
0.0 2.0 4.0 6.0 8.0 10.0 12.0

Time (sec)

Figure 4_5: Step response of a traditional PD controller vs. Fuzzy-PD
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With a working Fuzzy-PD controller now fully matured, consideration is given to how

the individual rules can be formulated and how the Fuzzy-PD controller can be tuned.

4.1.4 POPULATION OF THE RULE BASE

The rule base was populated by simply allowing the quantized change in error angle

to be set to zero and looking at how the system behaves as a function of only quantized

error. For example, if the quantized error is "large positive" and the quantized change in

error angle is "zero", then the quantized input to the system should be "large negative".

This rule may be viewed graphically in Figure 4.6 where it is labeled as rule 4. The

complement of rule 4 may be written as: If quantized error is "large negative" and the

quantized change in error angle is "zero", then the quantized input to the system should

be "large positive"(Fig. 4.6, rule 46). The intermediate rules may be found by

interpolating between these two points. Extruding this slope, both in the positive and

negative directions of the CEA axis results in an unacceptable controller surface.

Therefore, the same technique may be applied to obtain the rules along the CEA axis.

With both the error and change in error axes defined, one may then interpolate across all

49 different rules.

Looking at the quantized control input to the system as a function of quantized error

and quantized change-in-error-angle, one may plot the surface as in Figure 4.6.

QI = _(QE, QCEA) Eq.(4.10)
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49
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Figure 4.6:49 rules used in the Fuzzy-Proportional-Derivative controller

Interpolating between the discrete values produces, a smooth fuzzy logic control surface.

4.1.5 TUNING

The second topic to be elaborated on before development of the more complicated

Fuzzy-PID controller is a tuning scheme. There are numerous ways to tune a fuzzy

controller. First, and most obvious, the rule base itself may be altered., Secondly, the
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shape of the membership function may be altered(sinusoidal, bell, trapezoid, etc...).

Also, the overlap of the membership functions may be altered. And lastly, the quantizing

schemes or functions may be also changed. Assuming that the rule base, the membership

function, and the overlap of the membership function have been chosen appropriately, the

only method of tuning seems to be to change the quantizing functions.

However, when trying to tune the quantizing functions, a problem arises. This

problem is associated with the fact that the control input is a function of three quantized

terms: the error, change in error angle, and the input. With no guidance governing the

relationship between these three quantized values, it may be just as effective to randomly

choose quantizing functions.

If two of the three quantization functions were constrained to certain limits, then there

would remain only one independent variable to alter. Since, the error is bounded

(between +60 and -60 degrees) and the change in error angle is bounded (the inverse

tangent of the slope of the error curve lies between +90 and -90 degrees), the quantized

control input-to-torque relationship remains the only quantization function that may be

altered. Therefore, it stands to reason that the quantized input to the system is the only

choice with which to tune the fuzzy controller.

As an off-line approach to tuning, the effect of varying the dequantization function

for QI can be examined through a combination of the resulting step response in

conjunction with its respective phase portrait. Figure 4.7 shows the system at eleven

steps in time. From this, the quantized error and quantized CEA can be tabulated as in

Table 4.1. A plot of the quantized error versus the quantized change in error angle may

then be obtained; this is the phase portrait. Figure 4.8 illustrates the phase portrait for the

step response illustrated in Figure 4.5 and 4.7.
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Time

0

1

2

3

4

5

6

7

8

9

10

11

Table 4.1" Control parameters for a unit step response

E CEA QE QCEA QI

-57 0 -5.7 0 5.6

-54 24 -5.4 1.6 3.9

-47 50 -4.7 3.3 1.7

3.9 .0
-38 58 -3.8

-28 60 -2.8 4.1 - 1.2

- 18 59 - 1.8 4.0 -2.0

3.6 -2.1
-10 54 -1.0

3.2 -2.1
-4 47 -.4

2.5 -1.1
0 36 .3

2 28 .3 1.3 -.0

.3 .1
3 17 .5 _________

1 0 .5 -.4 0
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Figure 4.8: Phase portrait for the Fuzzy-PD step response

By varying the maximum torque ('rm,_) in the dequantization function (see Eq. 4.8)

between the values 2.5, 15, and 80 in-oz, one obtains three different time responses and

three different phase portraits associated with these time responses. Figure 4.9(b) shows

a phase portrait of an underdamped system when a maximum torque of 2.5 in-oz is

applied. The corresponding time response of this system is given in Figure 4.9(a).

Figure 4.9(d) is a plot of a phase portrait when a maximum torque of 15 in. ounces is

applied to the horizontal pendulum. The associated time response is illustrated in Figure

4.9(c). It may be noted that the phase portrait illustrated in Figure 4.9(d) corresponds to a

quick rise time with a minimal amount of peak overshoot. Therefore, this phase portrait

is the desired curve.
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Figure 4.9(f) is a phaseportrait for a maximum torquevalue of 80 in. ouncesand

Figure 4.9(e) is its correspondingtime response. This particular system is over

responsive. Thesethree phaseportraits and their correspondingtime responsesare

critical to accomplishingtuningof the complicateddynamicsassociatedwith the three-

link revolutemanipulator.
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4.1.6 VARYING INERTIA LOAD

Due to the vm-ying, task requirements associated with on orbit assemble issues it is of

interest to investigate how the Fuzzy-PD controller compares to traditional PD control

when the end-point mass varies. Figure 4.10 illustrates the step response of the

horizontal pendulum when controlled by both Fuzzy-PD and traditional PD. Figure

4.10(a) illustrates the response when both controllers are tuned properly. Figures 4.10(b)-

4.10(d) demonstrates that both controllers are approximately producing the same control

response for a give situation. This is expected because the fuzzy rules discretely

approximate the PD control surface.
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4.1.7 TIME DELAYS

Another issue of particular interest is that of time delays. By tuning Fuzzy-PD

and PD to the same performance characteristics and then introducing time delays a

comparison of the robustness of each controller may be made. Figures' 4.11 and 4.12

illustrate the performance degradation associated with increasing the delay time. Figure

4.11(a) is the step response without any time delays. Figure 4.1 l(b) demonstrates that

both controllers behave approximately the same with a time delay of one sample period

(the sample period used here was .05 sec.). At a time delay of two sampling periods the

Fuzzy-PD controller becomes marginally stable while the PD controller performs with

slight indifference(Fig. 4.11 (c)). Figure 4.12 illustrates that it is not until a five sampling

period time delay that the PD controller becomes marginally stable. Figure 4.12(c)

illustrates that as the time delay increase past 4 the system remains marginally stable with

an increase in amplitude and a slower frequency.

The results of introducing time delays indicate that Fuzzy-PD control does not

perform as well as traditional PD control. This is also an expected result due to the fact

that the traditional PD controller is continuous while the Fuzzy-PD controller possesses a

discrete number of rules.
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Figure 4.11." Step response as the time delay increases.
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Figure 4.12" Step response as the time delay increases.
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4.2 THE VERTICAL PENDULUM

As a second example, consider applying the Fuzzy-PD con_olter)ust developed to a

second-order nonlinear system with a constant system bias. In particular, consider a

traditional vertical pendulum. This pendulum possesses two equilibrium points.

However, it does not operate about either one, thereby maintaining a constant system bias

due to gravity. The dynamics associated with the pendulum are:

0 +--g sine = _ Eq.(4.11)
L

As in the first illustration, to implement traditional proportional integral derivative

control, consider applying the Theory of Natural Control[ 17], where,

L

1:= -g(O - Oa)- h(t}- 0,)- iI(O - O,)ds Eq.(4.12)
0

Linearizing Eq.(4.I1) , substituting equation (4.12) into the linearized version of

Eq.(4.11) and solving for the desired gains g, h, and i results in a PID controller which

may then be applied to the nonlinear dynamics of Eq.(4.11).

NOTE: The term Fuzzy-PID represents the fuzzy controller that when applied to a

system behaves like a tuned traditional PID controller.

4.2.1 APPLICATION OF FUZZY-PD ON THE VERTICAL

PENDULUM

The first attempt at controlling this system using fuzzy logic is to apply the fuzzy

controller developed for the horizontal pendulum to the dynamics of the vertical

pendulum. The results of such an approach is illustrated in Figure 4.13 (the curve labeled
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"course"). The desired position in this case is one and the position obtained is

approximately 0.425; therefore, there is a steady-state error.

1.2

v

O

=2

1.0

0.8

0.6

0.4

0.2

0.0
0.0

......................................................

.........MEDIUM
COARSE

2.0 4.0 6.0 8.0 I0.0

Time (sec)

12.0

Figure 4.13." Application of the Fuzzy-PD controller to a traditional vertical pendulum

4.2.2 CAPTURE METHOD

In order to compensate for this steady-state error, a capture method was implemented.

This capture method consists of redefining the quantized error function every time the

error of the system falls within certain limits.

For example, if the error was originally quantized to a maximum value of plus or

minus 60 degrees (coarse), when the error lies between +30" the function could be

redefined to have bounds of +30"; this would be the medium quantization function. The

same could be done for a fine quantization function by changing the bounds to +15".

Figure 4.13 illustrates how this method succeeds in reducing the steady state error but

never accomplishes the ultimate goal of no steady state error.
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4.2.3 AN ALTERNATIVE RULE BASE FOR FPID

Due to the inability of the F,,:.Tv-PD__.controller to deal with the steady-state error, a

second method using an altered rule base was developed. Figure 4.14 illustrates the new

rule base.
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Figure 4.14." A candidate rule base for a Fuzzy-PID controller
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The motivation for defining this new rule base came from observing the phase portraits of

the time responses illustrated in Figure 4.13. It was noticed in these phase portraits that

the portion of the original 49 rule base that compensated for overshoot was producing a

steady-state error in the time response.

Therefore, the rules that compensated for overshoot were eliminated; thus the rule

base illustrated in Figure 4.14 was assembled. The time response of the vertical

pendulum to the new rules is illustrated in Figure 4.15.

"O

=2

1.2

i!1
0.4

0.0 2.0 4.0 6.0 8.0 I0.0 12.0

Time (sec)

Figure 4.15." Step response of Fuzzy-PID controller with an alternative rule base

It is noticed that this system has a quick rise time; however once the system reaches its

desired position, the control input produces no torque. This results in a rapid drop in the

vertical pendulum back towards it equilibrium position. This cycle repeats itself

ultimately resulting in a marginally stable system. Therefore, the method of altering the

rule base to compensate for system biases fails and another method is needed.
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4.2.4 HYBRID FUZZY-PD AND TRADITIONAL INTEGRAL

CONTROL

In order to compensate for steady-state errors, a fuzzy integral control parameter may

be augmented to the existing Fuzzy-PD controller. Due to the complexity associated with

defining the necessary 343 rules, a hybrid controller was designed. This hybrid controller

uses fuzzy proportional-derivative control (FPD) and classical integral control to produce

a fuzzy-proportional-integral-derivative controller (FPID).

t

t = tFPo + i (0 -0d)ds Eq.(4.13)

The Fuzzy-PD controller handles the vibration suppression as demonstrated earlier and

the integral term compensates for any system bias.

The time responses of the vertical pendulum the Fuzzy-PID controller and traditional

PID control are shown in Figure 4.16.
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Figure 4.16." Step response of traditional PID and Fuzzy-PID
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This hybrid Fuzzy-PID controller not only suppresses vibration but also compensates for

steady-state error. The time response of the Fuzzy-PID controller compared to that of a

tuned traditional PID controller is hardly distinguishable. With the hybrid Fuzzy-PID

controller now developed, the approach can be applied to robotics systems. The

dynamics of the 3-link manipulator are investigated in the next chapter.
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5. APPLICATION OF FUZZY-PID TO A 3-DOF

MANIPULATOR

With the hybrid fuzzy controller developed, its applicability to a robotics system can

be investigated. A telerobotic flexible manipulator system is currently being developed at

the Mars Mission Research Center in order to investigate several control algorithms for

real-time implementation. A model of one of the robotic manipulator arms is selected for

preliminary studies of the fuzzy control algorithm.

Figure 5. l(a) is a drawing illustrating the (DR-106) three-degree-of-freedom revolute

manipulator being constructed at North Carolina State University. Figure 5.1(b)

illustrates the coordinate axis definition.
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Figure 5.1" (a) DR-I06 manipulator under construction at MMRC / NCSU

(b) Coordinate axes
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5.1 DYNAMICS

The nonlinear dynamics for the three-degree-of-freedom revolute manipulator can be

developed using the Lagrangian approach[22}. This results in

i268c 29c24cc230 01E01l0 43+24C 3 8+12C 3 02 =

0 8 + 12C3 8 (}3

I (16Cz_Sz _ + 24CzSz3)0,(02 + 0j) + (24S2C2j + 58S..,C2)0262 ]-(8C23S23 + 12S=C= + 12C2Sz3+ 29C2Sz)(3_+ 24S30zE)3+ 12Sj6_- 20gC2 - 6gCz3J+-(8C23Sz3+ 12CzSz_)O_- 12S36g- 6gC=3

Eq.(5.1)

Eq.(5.1) may be written more compactly as

M0=R+T Eq.(5.2)

where

M = mass matrix

= acceleration vector

R = vector containing nonlinear terms

W = torque vector

Premultipling Eq.(5.2) by M-1

(_= M -t R+ M -1T Eq.(5.3)

Equation (5.3) may now be written in state space form and numerically integrated to find

0(t).
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To apply proportional-integral-derivative control to the system, the appropriate

relationship between the torque vector and the lzosition vector must be found. Once again

the methods developed in Natural Control Theory [17] will be utilized. First, make a

linear approximation by simply dropping the nonlinear terms in Eq. (5.2). This results in

M i_ = T Eq.(5.4)

Secondly, assume

L

T = -GO- HO- I:0dt Eq(5.5)
0

where G, H, and I are control gain matrices. Letting

G = gM

H= hM

Substitution of Equations (5.6)

Eqs.(5.6)

I=iM

into Eq.(5.5) results in the following torque vector:

"_2 = - g[m=zx(5) + m23x(8) ] + h[m_2x(6) + mz_x(9) ] + i[ m22x (4) + m23x (7)]

"h g[m23x(5) + m33x(8)] + h[m=3x(6) + m33x(9)] + i[m23x(4) + m33x(7)]J

where x(i) is the ith state defined as:

t

x(1)= f0 r -01ads
0

x(2) = 0 t - 0re

x(3)=

Eq.(5.7)

Eq.(5.8)
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t

x(4) = f02 - 02dds
0

x(5) = 02 - 02_

x(6)= 6_

t

x(7)= f03-03_ds
0

x(8) = 03 - 03_

x(9) =t_ 3

Eq.(5.9)

Eq.(5.10)

Figure 5.2 illustrates how the dynamics of the system behaves. With no torque applied

the links vibrate freely. Figure 5.3 provides a graphical representation of how links 2 and

3 behave when the links are released from a horizontal position and allowed to move

freely. Gravity is acti: g in this system and the two links oscillate about their respective

equilibrium points.

I ......... Link 2

I0.0

Figure 5.2." Free vibration of links 2 and 3
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Figure 5.3." Graphical representation of the free vibration of links 2 and 3

5.2 TRADITIONAL PID VS. FUZZY-PID

The fuzzy-PID hybrid controller applied to the vertical pendulum will now be applied

to this manipulator. Each link of the manipulator is independently controlled by a

separate fuzzy logic control algorithm. Each of the three links are subjected to a unit step

forcing function; links 1 and 2 have positive unit steps and link 3 has a negative unit step.

Figure 5.4 shows the response of the first link using a FPID hybrid and a traditional PID

controller. The step response shown in this figure is the robot's maneuver in the

horizontal plane of rotation.
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Figure 5.4" Step response of link one

Figure 5.5 illustrates the response of the second link of the manipulator. This graph

illustrates a slower rise time for the fuzzy-PID controller as compared to the tradition

PID. However, the fuzzy-PID controller has considerably less overshoot then PID.
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Figure 5.5." Step response of link two
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Figure 5.6 shows the response of the robot's link 3. This graph is the most dramatic

of the three links in terms of the difference between PID and FPID. The fuzzy logic

controller not only produces a quicker rise time but also exhibits hardly any overshoot as

compared to the traditional PID controller.
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Figure 5.6." Negative step response of link three

The phase portraits associated with these step maneuvers are Figures 5.7, 5.8 and 5.9,

respectively. Collectively these figures illustrate that the fuzzy-PID control provides a

better or equivalent time response than classical PID control.

i
O'

-6.0 _ 0 -lO O0 2-0 40 60

£rr.r

Figure 5.7." Phase portrait of link one
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Figure 5.9: Phase portrait of link three
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6. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

This thesis presented a fuzzy-PD controller made up of 49 rules with a sinusoidal

membership function. This general fuzzy-PD controller was then augmented with

traditional integral control to produce a fuzzy-PID controller. The fuzzy-PID controller

was then used to control nonlinear robotics models. Fuzzy-PID showed promise when

compared to traditional PID due to PID's requirement of a model and the complexity

associated with developing the gains. Because robotics models, including space robotics

systems, contain uncertainties, exact model-based controllers are difficult to implement;

hence the fuzzy approach may be more appealing.

Precise response characteristics using fuzzy controllers may be difficult, however.

In [5] Cela and Hamam present some stability issues associated with fuzzy control

systems. Although exact tuning of such systems may be difficult, this study has shown

that this process is less difficult than PID gain tuning. Phase portraits provide a feasible

off-line tuning approach.

The use of a fully populated quantized error and quantized change in error angle

rule base provides a more effective controller while not hindering the processing time of

the controller. Further, utilization of the inverse target function provides a novel means

with which to bound the quantized change in error angle term.

Several issues may be considered as future activities, in order to extend the

technique to space robotics systems and in particular, the ground testbed being

constructed at North Carolina State University. First, fuzzy logic control may be

constructed in such a fashion so as to tune a traditional PID controller. This approach

would result in an adaptive controller that could compensate for varying inertia loads, and

time delays; ultimately resulting in an ideal candidate for space applications.
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Secondly, other calibration techniques including on-line methods are being

considered.Thesemethodsincluderequantizingothervariablesbesiaesthecontrol input.

Such extensionswill be investigated and comparedto other control methods being

developedandimplementedfor spaceroboticssystems.
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8. APPENDICES

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

8.1 PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL ON 3-

DQF MANIPULATOR
c234567

PROGRAM P[D ON ROBOT
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCCCCCCC

c PURPOSE: To apply PIE) control to the nonlinear dynamics of
a three link microbot.

AUTHOR: Robert J. Stanley II

DATE: 8/5/92

VARIABLES:

T#: Torque applied to respective links
Td#: The desired angle of each link
NEQ: Number of equations
NSTEP: Number of times runga-kutta subroutine is called
DT: Time interval delta T in rad/sec

TIME: Independent variable
X(I): Dependent variable
F(I): State equations

CCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

25

INTEGER COUNT,NEQ,NSTEP
REAL* 8 X( 10),DT,TIME,T 1,T2,T3 ,Td 1,Td2,Td3
COMMON/MYCOMM/Tdl,Td2,Td3

OPEN (8,FILE=' pidr.dat',STA TUS='unknown')
OPEN (9,FILE='pidrT.dat',STATUS ='unknown')

OPEN (8,FILE='PIDR 1G.dat',STATUS ='unknown')
OPEN (9,FILE='PIDR2G.dat',STATUS='unknown')

15 FORMAT(1X,F6.2,1X,F8.4,1X,F 10.4,1X,FS.4,1X,F 10.4,1X,F8.4,1X
+,F10.4)

FORMAT(I X,F6.2, IX,F 10.4,1X,FI 0.4,1X,FI 0.4)

NEQ=9
DT=.01D0
NSTEP=I000
TIME=0.0D0

X(1)=0.0
X(2)=-I.0
X(3)=0.0
X(4)--0.0
X(5)=-l.0
X(6)=0.0
X(7)=O.O
x(8)=1.0
X(9)--O.O
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100

Td1=1.0
Td2=1.0
Td3=-1.0

CALL TORQUE(X,T1 ,T2,T3)
WRITE(8,15)TIME,X(2)+Td 1,T 1 ,X (5)+Td2,T2,X (8)+Td3,T3
WRITE(9,25)T1ME,X(2) +Td 1,X(5) +Td2,X(8)+Td3
DO 100 COUNT=I,NSTEP

CALL RUNGA(X,DT, NEQ,TIME)
CALL TORQUE(X,T1,T2,T3)
WR/TE (8,15)TIME,X (2) +Td I ,T1 ,X(5) +Td2,T2,X(8)+Td3,T3
WRITE(9,25)TIME,X (2)+Td 1,X(5)+Td.2,X(8)+Td3

CONTINUE

CLOSE(8)
END

SUBROUTINE TORQUE(X,T1,T2,T3)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c PURPOSE: Given the position calculate the torque using PID c
c control, c
C C

c AUTHOR: Robert J. Stanley II c
C C

c DATE: 8/5/92 c
C C

c VARIABLES: c
c X: State vector c
c Tdl: Theta Desired One c
c Td2: Theta Desired Two c
c Td3: Theta Desired Three c

c TI: Torque applied to link one c
c T2: Torque applied to link Two c
c T3: Torque applied to link Three c
c M##: The respective elements of the Mass Matrix c
c H#: The derivative gain c
c G#: The portional gain c
c I#: The integral gain c
c ALPHA: The exponential decay rate c
c BETA: The operating frequency c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

REAL*8 X( 10),Td 1,Td2,Td3
REAL*8 T1,T2,T3,M 11,M22,M33,M23,C23,S23,C2,C3,S2
REAL*8 S 3,C23S23,C2S23,$2C23,$2C2,C2S2
REAL* 8 H 1,H2,H3,G 1,G2,G3,I 1,I2,I3 ,ALPHA,B ETA
COMMON/MYCOMM/Td 1,Td2,Td3

ALPHA =2.46051702
BETA=3.14
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G1=3*ALPHA**2+BETA**2
HI=3*ALPHA
I1=0.0
G2=3*ALPHA**2+BETA**2
H2=3*ALPHA
I2=ALPHA*(ALPHA**2+BETA**2)
G3=3*ALPHA**2+BETA**2
H3=3*ALPHA
I3=ALPHA*(ALPHA**2+BETA**2)

C23=COS(X(5)+Td2+X(8)+Td3)
S23=SIN(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
S2=SIN(X(5)+Td2)
S3=SIN(X(8)+Td3)
C23S23=C23"$23
C2S23=C2"$23
$2C23=$2"C23
$2C2=$2"C2
C2S2=C2"$2

M11-26.+8.*C23"'2+29.*C2"'2+24.*C2"C23
M22=43.+24.*C3
M23=8.+12.*C3
M33=8.

T1---I*(GI*M11*X(2)+HI*M 11*X(3)+II*M 1l'X(1)) T2=-
1*(G2*(M22*X(5)+M23*X(8))+H2*(M22*X(6)+M23*X(9))

++I2*(M22*X(4)+M23*X(7))) T3=-
l*(G3*(M23*X(5)+M33*X(8))+H3*(M23*X(6)+M33*X(9))

++I3*(M23*X(4)+M33*X(7)))
RETURN
END

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE RIGHT(R 1,R2,R3,X,M 11,M22,M33,M23,DET)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PURPOSE: To calculate the respective mass matrix entries and
the respective nonlinear contributions R#.

AUTHOR: Robert J. Stanley II

DATE: 8/5/92

VARIABLES:

R#: The nonlinear terms of link # respectively

F: State space
G: Gravity
DET: The determinate of the mass matrix divided by M11

CCCCCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCCCCCC

C

C

C

C

C

C

C

C

C

C

C

C
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REAL*8 X( 10),F( 10),TIME,Td 1,Td2,Td3
REAL*8 T1 ,T2,T3,R 1 ,R2,R3,M 11 ,M22,M33,M23,G,C23,S23,C2,C3,S2
REAL*8 S3,C23S23,C2S23,S2C23,S2C2,C2S2,DET
COMMON/MYCOMM/Tdl,Td2,Td3

G=9.8

C23=COS(X(5)+Td2+X(8)+Td3)
S23=SIN(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
S2=SIN(X(5)+Td2)
S3=SIN(X(8)+Td3)
C23S23=C23"$23
C2S23=C2"$23
$2C23=$2"C23
$2C2=$2"C2
C2S2=C2"$2

M 11=26.+8. *C23 *'2+29.*C2" *2+24. *C2"C23
M22=43.+24.*C3
M23=8.+12.*C3
M33=8.
DET=M22*M33-M23*M23

CALL TORQUE(X,T1,T2,T3)
R1=(16.*C23S23+24.*C2S23)*X(3)*(X(6)+X(9))

++(24.*S2C23+58.*S2C2)*X(3)*X(6)+T 1

R2=-(8.*C23S23+12.*$2C23+12.*C2S23+29.*C2S2)*X(3)*'2
++24. $3 X(6) X(9)+12. $3 X(9) 2-20. G C2-6. G C23+T2

R3=-(8.*C23S23+ 12.*C2S23)*X(3)*'2-12.*S3*X(6)**2-6.*G*C23+T3
RETURN
END

C

C

C

C

C

C

C

C

SUBROUTINE STATE(F,X,TIME)
CCCCCCCCCCCCCCCCCCUCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PURPOSE: To compute the present state of the dynamic system.
c

AUTHOR: Robert J. Stanley II

DATE: 8/5/92

VARIABLES:

All variables already defined.
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C

C

C

C

C

C

REAL* 8 X( 10),F( 10),TIME,Td 1,Td2,Td3
REAL*8 R 1 ,R2,R3,M11,M22,M33,M23,DET
COMMON/}¢IYCOMM/Td 1,Td2,Td3
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TIME--TIME* 1.0

CALL RIGHT(R1,R2,R3,X,M11,M22,M33,M23,DET)
F(1)=X(2)
F(2)=X(3)
F(3)=R l/M11
F(4)=X(5)
F(5)=X(6)
F(6)=(R2*M33/DET)-(R3* M23/DET)
F(7)=X(8)
F(8)=X(9)
F(9)=-(R2*M23/D ET)+(R3*M22/DET)

RETURN
END

SUBROUTINE RUNGA(X,DT,NEQ,TIME)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c PURPOSE: Use a Runge Kutta routine to compute the next state
c vector c
C C

c AUTHOR: Robert J. Stanley II c
C C

c DATE: 8/5/92 c
C C

c VARIABLES: c

c G#: Variable gains c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

REAL*8 X(10), Y( 10),F(10) ,DT,TIME,G 1( 10),G2( 10),G3 ( 10),G4(10)

INTEGER I,NEQ

DO 1 I=I,NEQ
1 Y(I)=X(I)

CALL STATE(F,Y,TIME)
DO 2 I=I,NEQ

G I(I)=DT*F(I)

TIME=TIME+DT/2.0D0

DO 3 I=I,NEQ
Y(I)=X(I)+G 1(I)/2.0D0

4

CALL STATE(F,Y,TIME)
DO 4 I=I,NEQ

G2(I)=DT*F(I)
Y(I)=X(I)+G2(I)/2.0D0

CALL STATE('F,Y,TIME)
DO 5 I=I,NEQ

G3(I)=DT*F(I)

C
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Y(I)=X(I)+G3(I)
TIME=TIME+DT/2.0D0
CALL STATE(F,Y,TIME)
DO 6 I=I,NEQ

G4(I)=DT*F(I)
DO 7 I=I,NEQ

X(I)--X(I)+(G 1(I)+2.0D0*(G2(I)+G3(I))+G4(I))/6.0D0

RETURN
END
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8.2 FUZZY LOGIC CONTROL ON 3-DOF MANIPULATOR
c234567

PROGRAM FUZZY ON ROBOT
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c PURPOSE: To apply a hybrid of Fuzzy Logic and traditional c
c integral feedback to a three link microbot. (Highly c
c Non-linear Coupled Second Order Differential Equations) c

CC

c AUTHOR: Robert J. Stanley II c
C C

c DATE: 8/4/92 c
C C

c VARIABLES: c

c COUNT: Holds the value of the present Runge-Kutta iteration c
c TORQUE: The input to the system c
c INERTIA: The inertia of the system c
c Wn: The natural frequency of the system c
c Td: The desired position (Theata Desired) c
c TRIGGER: Zero on the first pass and One afterwards c
c NEQ: Number of equations c
c NSTEP: Number of times runga-kutta subroutine is called c
c DT: Time interval delta T in rad/sec c

c TIME: Independent variable c
c X(I): Dependent variable c
c F(I): State equations c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

INTEGER COUNT,NEQ,NSTEP
REAL*8 X(10),DT,TIME,C2,C3,C23,M11,M22,M23,M33
REAL*8 T1,T2,T3,Td 1,Td2,Td3,I2,I3,ALPHA,BETA
INTEGER TRIG 1,TRIG2,TRIG3,L 1,L2,L3
COMMON/MYCOMM/T 1,T2,T3,Td I ,Td2,Td3

OPEN (8,FILE='fpidrl 1.dat',STATUS='unknown')
OPEN (12,FILE='fpidrl 1T.dat',STATUS='unknown')
OPEN (9,FILE='fpidr 111 .dat',STATUS ='unknown')
OPEN (I 0,FILE='fpidr 112.dat',STATUS='unknown')
OPEN (11,FILE='fpidr113.dat',STATUS='unknown')

15 FORMAT(1X,F6.2,1X,F8.4,1X,F10.4,1X,F8.4,1X,F10.4,1X,FS.4,1X

+,F10.4)
25 FORMAT(1X,F6.2,1X,F 10.4, IX,FI0.4,1X,F10.4)

ALPHA=.46051702
BETA=3.14

I2=ALPHA*(ALPHA**2+BETA**2)
I3=ALPHA*(ALPHA**2+BETA**2)
LI=I
L2=2
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L3=3
NEO=9
DT=.01DO
NSTEP=1000
TIME=0.0D0
X(1)--O.O

X(2)=-l.O
X(3)=0.0
X(4)=0.0
X(5)=-l.0
X(6)=O.O
X(7)=O.O

x(8)=l.O
X(9)=0.0
Tdl--1.0
Td2=l.0
Td3=- 1.0
TRIG1=0
TRIG2=0
TRIG3=0

CALL FUZZY_LOG IC(X,T 1 ,TRIG 1,L 1)
CALL FUZZY_LOGIC(X,T2,TRIG2 L2)
CALL FUZZY_LOGIC(X,T3,TRIG3,L3)
TRIGI=I
TRIG2=I
TRIG3=I

C23=COS(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
M11 =26.+8.*C23"'2+29.*C2"'2+24.*C2"C23
M22=43.+24.*C3
M23=8.+12.*C3
M33=8.

c Agument the torque produced by the Fuzzy controller with that of c the traditional
Integral feedback

TI=T1
T2=T2-I2*(M22*X(4)+M23*X(7))

T3=T3-I3*(M23*X(4)+M33*X(7))
c TI---0.0
c T2---0.0
c T3----0.0

WRITE(8,15)TIME,X(2)+Tdl,T1,X(5)+Td2,T2,X(8)+Td3,T3
WRITE(12,25)TIME,X(2)+Tdl,X(5)+Td2,X(8)+Td3
DO 100 COUNT=I,NSTEP

CALL RUNGA(X,DT, NEQ,TIME)
CALL FUZZY_LOGIC(X,T1,TRIG 1,L 1)
CALL FUZZY_LOG IC(X,T2,TR IG2,L2)

CALL FUZZY_LOGIC(X,T3,TRIG 3,L3)
C23=COS(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)
C3=COS(X(8)+Td3)
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M11=26.+8.*C23"'2+29.*C2" *2+24.*C2"C23
M22---43.+24.*C3
M23=8.+12.*C3
M33=8.

c AgumentthetorqueproducedbytheFuzzycontrollerwith thatof c thetraditional
Integralfeedback

TI=T1
T2=T2-I2*(M22*X(4)+M23*X(7))
T3=T3-I3*(M23*X(4)+M33*X(7))

c TI---0.0
c T2--0.0
c T3=0.0

WRITE(8,15)TIME,X(2)+TdI ,TI ,X(5)+Td2,T2,X(8)+Td3,T3
WRITE(12,25)TIME,X(2)+Td1,X(5)+Td2,X(8)+Td3

I00 CONTINUE

CLOSE(8)
CLOSE(9)
CLOSE(10)
CLOSE(1 I)
END

C C

C C

C C

c AUTHOR: Robert J. Stanley II c
C C

c DATE: 8/5/92 c
C C

C C

C C

C C

C C

C

SUBROUTINE RIGHT(R 1,R2,R3,X,M 11 ,M22,M33,M23,DET)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

PURPOSE: To calculate the respective mass matrix entries and
the respective nonlinear contributions R#.

VARIABLES:
R#: The nonlinear terms of link # respectively

F: State space
G: Gravity
DET: The determinate of the mass matrix divided by M 11

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL* 8 X( 10),Td 1,Td2,Td3
REAL* 8 T1,T2,T3,R 1,R2,R3,M 11 ,M22,M33,M23,G,C23,S23,C2,C3,S2
REAL*8 S3,C23S23,C2S23,S2C23,S2C2,C2S2,DET
COMMON/M YCOMM/T 1,T2,T3,Td 1 ,Td2,Td3

G=9.8

C23=COS (X(5)+Td2+X(8)+Td3)
S23=SIN(X(5)+Td2+X(8)+Td3)
C2=COS(X(5)+Td2)

C3=COS(X(8)+Td3)
S2=SIN(X(5)+Td2)
S3=SIN(X(8)+Td3)
C23S23=C23"$23
C2S23=C2"$23
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$2C23=$2"C23
$2C2=$2"C2
C2S2=C2"$2

M11=26.+8.*C23"'2+29.*C2"'2+24.*C2"C23
M22=43.+24.*C3
M23=8.+12.*C3
M33=8.
DET=M22*M33-M23*M23

Rl=(16.*C23S23+24.*C2S23)*X(3)*(X(6)+X(9))
++(24.*S2C23+58.*S2C2)*X(3)*X(6)+T1

R2=-(8.*C23S23+12.*$2C23+12.*C2S23+29.*C2S2)*X(3)*'2
++24.*S3*X(6)*X(9)+12.*S3*X(9)**2-20.*G*C2-6.*G*C23+T2

R3=-(8.*C23S23+12.*C2S23)*X(3)*'2-12.*S3*X(6)**2-6.*G*C23+T3
RETURN
END

SUBROUTINE STATE(F,X,TIME)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c PURPOSE:Definethedynamicsin a statespaceform for usein c
c RungeKutta Subroutine. c
C C

c AUTHOR: Robert J. Stanley II c
C C

c DATE: 8/4/92 c
CCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL* 8 X( 10),F( 10),TIME,Td 1,Td2,Td3,T 1 ,T2,T3
REAL*8 R 1,R2,R3,M 11,M22,M33,M23,DET
COMMON/M YCOMM/T1,T2,T3,Td 1,Td2,Td3

TIME=TIME* 1.0

CALL RIGHT(R 1,R2,R3,X,M 11,M22,M33,M23,DET)
F(1)=X(2)
F(2)=X(3)
F(3)=R1/M11
F(4)=X(5)
F(5)=X(6)
F(6)=(R2*M33/DET)-(R3*M23/DET)
F(7)=X(8)
F(8)=X(9)
F(9)=-(R2*M23/DET)+(R3*M22/DET)

RETURN
END
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SUBROUTINERUNGA(X,DT,NEQ,TIME)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCC

PURPOSE: Use a Runge Kutta algorithm to numerical solve the
state equations given is subroutine STATE.

AUTHOR: Robert J. Stanley II

C

C

C

C

C

CDATE: 8/4/92
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL* 8 X( 10),Y( 10),F( 10),DT,TIME,G 1( 10),G2 ( 10),G3( 10),G4(10)
INTEGER I,NEQ

DO 1 I=I,NEQ
1 Y(I)=X(I)

3

CALL STATE(F,Y,TIME)
DO 2 I=I,NEQ

G 1(I)=DT*F(I)

TIME=TIME+DT/2.0D0

DO 3 I=I,NEQ
Y(I)=X(I)+G 1 (I)/2.0D0

4

CALL STATE(F,Y,TIME)

DO 4 I=I,NEQ
G2(I)=DT*F(I)
Y(I)=X(I)+G2(I)/2.0D0

6

CALL STATE(F,Y,TIME)
DO 5 I=I,NEQ

G3(I)=DT*F(I)
Y(I)=X(I)+G3(I)

TIME=TIME+DT/2.0D0

CALL STATE(F,Y,TIME)
DO 6 I=I,NEQ

G4(I)=DT*F(I)

DO 7 I= 1,NEQ
X(I)=X(I)+(G 1(I)+2.0D0* (G2(I)+G3(I))+G4(I))/6.0D0

RETURN
END

END

SUBROUTINE FUZZY_LOGIC(X,TORQUE,TRIGGER,LINK)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c PURPOSE: Given a position calculate a torque required to c
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

drive the error to zero using Fuzzy Logic Control.

AUTHOR: Robert J. Stanley II

DATE: 8/4/92

C

C

C

C

C

C

VARIABLES: c
E: Error c

CE: Change in Error c
CEA: Change is Error Angle c
LASTE: The last error c

SET PT: Set point desired c
PI: 3.14 c

QE: Quantizied value of the error c
QEC: Quantizied value of the Error Change c
u: Membership function value c
UU: Universe of discourse value c

NUM: NUMerator of the input value c
DEN: DENomenator of the input value c
Ye: Temp variable for the Error membership function c
Yec: Temp variable for Change in Error membership func. c
INPUT: The quantizied input to the plant c
TORQUE: The actual input to the plant c
N: Number of rules c
I: Count variable c

GRID: Tells output which grid is being utilized c
FINE: Boolean for the quantizied table c
MEDIUM: Boolean for the quantizied table c

COARSE: Boolean for the quantizied table c
GRID: Indicates which quantizied table is being accessed c
ELP: Linguistic value Error Large Positive c
EMP: Linguistic value Error Medium Positive c
ESP: Linguistic value Error Small Positive c
EZE: Linguistic value Error Zero c
ESN: Linguistic value Error Small Negative c
EMN: Linguistic value Error Medium Negative c
ELN: Linguistic value Error Large Negative c
CELP: Linguistic value Change Error Large Positive c
CEMP: Linguistic value Change Error Medium Positive c
CESP: Linguistic value Change Error Small Positive c
CEZE: Linguistic value Change Error Zero c
CESN: Linguistic value Change Error Small Negative c
CEMN: Linguistic value Change Error Medium Negative c
CELN: Linguistic value Change Error Large Negative c

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL*8 E,CE,LASTE3,PI,QE,QEC,u(50),UU(50),NUM,DEN
REAL*8 Ye,Yec,INPUT,TORQUE,CEA,QECA,LASTE 1,LASTE2
REAL* 8 EMAX,TOR_MAX,X (10)
INTEGER N,I,TRIGGER,GRID,LINK
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16

LOGICAL FINE,MEDIUM,COARSE,ELP,EMP,ESP,EZE,ESN,EMN,ELN
LOGICAL CELP,CEMP,CESP,CEZE,CESN,CEMN,CELN

FORMAT(1X,F10.4,1X,F10.4,1X,F10.4,1X,F10.4,IX,F 10.4)

ELP=.FALSE.
EMP=.FALSE.
ESP=.FALSE.
EZE=.FALSE.
ESN=.FALSE.
EMN=.FALSE.
ELN=.FALSE.
CELP=.FALSE.
CEMP=.FALSE.
CESP=.FALSE.
CEZE=.FALSE.
CESN=.FALSE.
CEMN=.FALSE.
CELN=.FALSE.
FINE=.FALSE.
MEDIUM=.FALSE.
COARSE=.FALSE.

N=49
PI=3.14
IF (LINK.EQ.1)THEN

E=X(2)
IF (TRIGGER.EQ.0) THEN

CEA=0.0
ELSE

CEA=ATAN2(E-LASTE 1,.01)
END IF
LASTE 1=E
EMAX=60.0

TOR_MAX=500.0
END IF

IF (LINK.EQ.2) THEN
E=X(5)
IF (TRIGGER.EQ.0) THEN

CEA=0.0
ELSE

CEA=ATA N2(E-LASTE2,.01 )
END IF
LASTE2=E
EMAX=60.0

TOR_MAX=500.0
END IF

IF (LINK,EQ.3) THEN
E=X(8)
IF (TRIGGER.EQ.0) THEN

CEA=0.0
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ELSE
CEA=ATAN2(E-LASTE3,.01)

END IF
LASTE3=E
EMAX=60.0
TOR_MAX= 150.0

END IF

c Change error and change in error from radians to degrees. E=( 180/3.14)*E
CEA=( 180/3.14)*CEA

c Determine which quantizied table is to be used and find the c corresponding
quantizied values of error and error change.
c IF ((E.LT.25.0).AND.(E.GT.-25.0)) THEN
c FINE=.TRUE.

c QE=E*(6/25.0)
c QECA=CEA*(6/90.)
c ELSE

c IF ((E.LT.33.0).AND.(E.GT.-33.0)) THEN
c MED1UM=.TRUE.

c QE=E*(6/33.)
c QECA=CEA*(6/90.)
c ELSE
c COARSE=.TRUE.

c QE=E*(6/60.)
c QECA=CEA*(6/90.)
c END IF
c END IF

COARSE=.TRUE.

QE=E*(6/EMAX)
QECA=CEA*(6/90.)

c Deterimine which grid is being used
IF (COARSE) THEN

GRID=I
END IF

IF (MEDIUM) THEN
GRID=2

END IF

IF (FINE) THEN
GRID=3

ENDIF

c With the Quantizied Error determine which c
linguistic values are applicable.

IF (QE.GE.6.0) THEN
QE=6.0
ELP=.TRUE.

END IF

IF ((QE.GE.4.0).AND.(QE.LT.6.0)) THEN ELP=.TRUE.
EMP=.TRUE.

END IF
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IF ((QE.GE.2.0).AND.(QE.LE.4.0))THEN EMP=.TRUE.
ESP=.TRUE.

END IF

IF ((QE.GE.0.0).AND.(QE.LE.2.0)) THEN ESP=.TRUE.
EZE=.TRUE.

END IF

IF ((QE.GE.-2.0).AND.(QE.LE.0.0)) THEN
EZE=.TRUE.
ESN=.TRUE.

END IF

IF ((QE.GE.-4.0).AND.(QE.LE.-2.0)) THEN
ESN=.TRUE.
EMN=.TRUE.

END IF

IF ((QE.GE.-6.0).AND.(QE.LE.-4.0)) THEN
EMN=.TRUE.
ELN=.TRUE.

END IF

IF (QE.LE.-6.0) THEN
QE=-6.0
ELN=.TRUE.

END IF

c With the Quantizied Error Change determine which
c linguistic values are applicable.

IF (QECA.GE.6.0) THEN
QECA=6.0
CELP=.TRUE.

END IF

IF ((QECA.GE.4.0).AND.(QECA.LT.6.0)) THEN
CELP=.TRUE.
CEMP=.TRUE.

END IF

IF ((QECA.GE.2.0).AND.(QECA.LE.4.0)) THEN
CEMP=.TRUE.
CESP=.TRUE.

END IF

IF ((QECA.GE.0.0).AND.(QECA.LE.2.0)) THEN
CESP=.TRUE.
CEZE=.TRUE.

END IF

IF ((QECA.GE.-2.0).AND.(QECA.LE.O.O)) THEN
CEZE=.TRUE.
CESN=.TRUE.

END IF

IF ((QECA.GE.-4.0).AND.(QECA.LE.-2.0)) THEN
CESN=.TRUE.
CEMN=.TRUE.

END IF

IF ((QECA.GE.-6.0).AND.(QECA.LE.-4.0)) THEN
CEMN=.TRUE.
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CELN=.TRUE.
ENDIF
IF (QECA.LE.-6.0)THEN

QECA=-6.0
CELN=.TRUE.

END IF

c Initialize themembershipfunctionvalue(u) andthe
c universeof discoursevalue(U) to zerobeforetherulesc areapplied.

DO 250I=I,N
u(I)---0.0
UU(I)--O.O

250 CONTINUE

c Rule one if Error is Large Positive and the Change in Error is c Large Negative
then contribution is Zero.

IF (ELP.AND.CELN) THEN
Ye=SIN(PI/4*(QE-4.0))
Yec=SIN(PI/4*(QECA+8.0))
u(1)=MIN(Ye,Yec)
UU(1)=O.O

END IF

c Rule two if Error is Large Positive and the Change in Error is c Medium

Negative then contribution is Small Negative.
IF (ELP.AND.CEMN) THEN

Ye=SIN(PI/4*(QE-4.0))
Yec=S IN(PI/4*(QECA+6.0))
u(2)=MIN(Ye,Yec)
UU(2)=-2.0

END IF

c Rule three if Error is Large Positive and the Change in Error is c Small Negative
then contribution is Medium Negative.

IF (ELP.AND.CESN) THEN
Ye=SIN(PI/4*(QE-4.0))
Yec=S IN(PI/4*(QECA+4.0))
u(3)=MIN(Ye,Yec)
UU(3)=-4.0

END IF

c Rule four if Error is Large Positive and the Change in Error is c Zero then
contribution is Large Negative.

IF (ELP.AND.CEZE) THEN

Ye=S IN(PI,/4* (QE-4.0))
Yec=SIN(PI/4*(QECA+2.0))
u(4)=MIN(Ye,Yec)
UU(4)=-6.0

END IF

c Rule five if Error is Large Positive and the Change in Error is c Small Positive
then contribution is Large Negative.

IF (ELP.AND.CESP) THEN
Ye=SIN(PI/4*(QE-4.0))
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Yec=SIN(PI/4*(QECA))
u(5)=MIN(Ye.Yec)
UU(5)=-6.0

END IF
c Rulesix if Error is LargePositiveandtheChangein Error is c MediumPositive
thencontribution is LargeNegative.

IF (ELP.AND.CEMP) THEN
Ye=SIN(PI/4*(QE-4.0))
Yec---S IN(PI/4* (QECA-2.0))
u(6)=MIN(Ye, Yec)
UU(6)=-6.0

END IF

c Rule seven if Error is Large Positive and the Change in Error is c Large Positive
then contribution is Large Negative.

IF (ELP.AND.CELP) THEN
Ye-SIN(PI/4*(QE-4.0))
Yec=SIN(PI/4*(QECA-4.0))
u(7)=MIN(Ye,Yec)
UU(7)=-6.0

END IF

c Rule eight if Error is Medium Positive and the Change in Error is c Large Negative
then contribution is Small P,".;itive.

IF (EMP.AND.CELN) THEN
Ye-'-S IN(PI/4*(QE-2.0))
Yee=SIN(PI/4*(QECA+8.0))
u(8)=MIN(Ye, Yec)
UU(8)=2.0

END IF

c Rule nine if Error is Medium Positive and the Change in Error is c Medium
Negative then contribution is Zero.

IF (EMP.AND.CEMN) THEN
Ye=SIN(PI/4*(QE-2.0))
Yec=S IN(PI/4*(QECA+6.0))
u(9)=MIN(Ye,Yec)
UU(9)=0.0

END IF

c Rule ten it" Error is Medium Positive and the Change in Error is c Small Negative
then contribution is Small Negative.

IF (EMP.AND.CESN) THEN
Ye=S IN(PI/4*(QE-2.0))
Yec=SIN(PI/4*(QECA+4.0))
u(10)=MIN(Ye,Yec)

UU(10)=-2.0
END IF

c Rule eleven if Error is Medium Positive and the Change in Error is c Zero then

contribution is Medium Negative.
IF (EMP.AND.CEZE) THEN

Ye=SIN(PI/4*(QE-2.0))
Yec=SIN(PI/4*(QECA+2.0))
u(11 )=MIN(Ye, Yec)
UU(11)--4.0
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END IF
c Rule twelve if Error is Medium Positive and the Change in Error is c Small Positive
then contribution is Large Negative.

IF (EMP.AND.CESP) THEN
Ye=SIN(PU4*(QE-2.0))
Yec=SIN(PU4*(QECA))
u( 12)=M IN(Ye, Yec)
UU(12)=-6.0

END IF

c Rule thirteen if Error is Medium Positive and the Change in Error is c Medium Positive
then contribution is Large Negative.

IF (EMP.AND.CEMP) THEN
Ye=SIN(PI/4*(QE-2.0))
Yec=SIN(PI/4*(QECA-2.0))
u( 13)=M IN(Ye, Yec)
UU(13)=-6.0

END IF

c Rule fourteen if Error is Medium Positive and the Change in Error is c Large Positive
then contribution is Large Negative.

IF (EMP.AND.CELP) THEN
Ye=S IN(PI/4*(QE-2.0))
Yec=S IN(PI/4*(QECA-4.0))
u(14)=MIN(Ye,Yec)
UU(14)=-6.0

END IF

c Rule fifteen if Error is Small Positive and the Change in Error is c Large Negative
then contribution is Medium Positive.

IF (ESP.AND.CELN) THEN

Ye=SIN(PI/4*(QE))
Yec=SIN(PI/4*(QECA+8.0))
u(15)=MIN(Ye,Yec)
UU( 15)---4.0

END IF

c Rule sixteen if Error is Small Positive and the Change in Error is c Medium Negative
then contribution is Small Positive.

IF (ESP.AND.CEMN) THEN
Ye=SIN(PI/4*(QE))

Yec=S IN(PI/4*(QECA+6.0))
u(16)=MIN(Ye, Yec)
UU(16)=2.0

END IF

c Rule seventeen if Error is Small Positive and the Change in Error is c Small Negative
then contribution is Zero.

IF (ESP.AND.CESN) THEN
Ye=SIN(PI/4*(QE))
Yec=S IN(PI/4*(QECA+4.0))
u(17)=MIN(Ye,Yec)
UU(17)=-2.0

END IF

c Rule eighteen if Error is Small Positive and the Change in Error is c Zero then
contribution is Small Negative.
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IF (ESP.AND.CEZE)THEN
Ye=SIN(PI/4*(QE))
Yec=SIN(PI/4*(QECA+2.0))
u(18)=MIN(Ye,Yec)
UU(18)=-2.0

END IF
c Rulenineteenif Error is Small PositiveandtheChangein Error is c SmallPositivethen
contributionis MediumNegative.

IF (ESP.AND.CESP)THEN
Ye=SIN(PI/4*(QE))
Yec=SIN(PI/4*(QECA))
u(19)=MIN(Ye,Yec)
UU(19)=-4.0

END IF
c Ruletwenty if Error is SmallPositiveandtheChangein Error is c MediumPositive
thencontributionis LargeNegative.

IF (ESP.AND.CEMP)THEN
Ye=SIN(PI/4*(QE))
Yec=SIN(PI/4*(QECA-2.0))
u(20)=MIN(Ye,Yec)
UU(20)=-6.0

END IF
c Ruletwentyoneif Error is Small PositiveandtheChangein Error is c LargePositivethen
contributionis LargeNegative.

IF (ESP.AND.CELP)THEN
Ye=SIN(PI/4*(QE))
Yec=SIN(PI/4*(QECA-4.0))
u(21)=MIN(Ye,Yec)
UU(2I)=-6.0

END IF
c Ruletwentytwo if Error is Zero and the Change in Error is c Large
Negative then contribution is Large Positive.

IF (EZE.AND.CELN) THEN

Ye=SIN(PI/4*(QE+2.0))
Yec=SIN(PI/4*(QECA+8.0))
u(22)=MIN(Ye,Yec)
UU(22)=6.0

END IF

c Rule twenty three if Error is Zero and the Change in Error is c Medium
Negative then contribution is Medium Positive.

IF (EZE.AND.CEMN) THEN
Ye=S IN(PI/4*(QE+2.0))
Yec=S IN(PI/4*(QECA+6.0))
u(23)=MIN(Ye,Yec)
UU(23)--4.0

END IF

c Rule twenty four if Error is Zero and the Change in Error is c Small Negative
then contribution is Small Positive.

IF (EZE.AND.CESN) THEN
Ye=SIN(PI/4*(QE+2.0))
Yec=S IN(PI/4*(QECA+4.0))
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u(24)=MIN(Ye,Yec)
UU(24)=2.0

END IF
c Ruletwentyfive if Error is ZeroandtheChangein Error isc Zerothen
contributionis Zero.

IF (EZE.AND.CEZE)THEN
Ye=SIN(PI/4*(QE+2.0))
Yec=SIN(PI/4*(QECA+2.0))
u(25)=MIN(Ye,Yec)
UU(25)=0.0

END IF
c RuleTwenty six if Error is Zero and the Change in Error is c Small Positive
then contribution is Small Negative.

IF (EZE.AND.CESP) THEN
Ye=S IN(PI/4*(QE+2.0))
Yec=SIN(PI/4*(QECA))
u(26)=MIN(Ye,Yec)
UU(26)=-2.0

END IF

c Rule Twenty seven if Error is Zero and the Change in Error is c Medium
Positive then contribution is Medium Negative.

IF (EZE.AND. CEMP) THEN
Ye=S IN(PI/4*(QE+2.0))
Yec=S IN(PId4*(QECA-2.0))
u(27)=MIN(Ye,Yec)
UU(27)=-4.0

END IF

c Rule Twenty eight if Error is Zero and the Change in Error is c Large Positive
then contribution is Large Negative.

IF (EZE.AND.CELP) THEN
Ye=S IN(PI/4*(QE+2.0))
Yec=SIN(PI/4*(QECA-4.0))
u(28)=MIN(Ye,Yec)
UU(28)=-6.0

END IF

c Rule Twenty nine if Error is Small Negative and the Change in c Error is
Large Negative then contribution is Large Positive.

IF (ESN.AND.CELN) THEN
Ye=S IN(PI/4*(QE+4.0))
Yec=SIN(PI/4*(QECA+8.0))
u(29)=MIN(Ye,Yec)
UU(29)=6.0

END IF

c Rule Thirty if Error is Small Negative and the Change in
c Error is Medium Negative then contribution is Large Positive. IF

(ESN.AND.CEMN) THEN
Ye=S IN(PId4*(QE+4.0))
Yec=S IN(PI/4*(QECA+6.0))
u(30)=MIN(Ye,Yec)
UU(30)=6.0

END IF
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c Rule Thirty oneif Error is SmallNegativeandtheChangein c Error is Small
Negativethencontributionis MediumPositive.

IF (FSN.AND.CESN) THEN
Ye=SIN(PI/4*(QE+4.0))
Yec=S IN(PI/4*(QECA+4.0))
u(31 )=M IN(Ye, Yec)
UU(31)=4.0

END IF

c Rule Thirty two if Error is Small Negative and the Change in c Error is Zero
then contribution is Small Positive.

IF (ESN.AND.CEZE) THEN

Ye=SIN(PI/4*(QE+4.0))
Yec=S IN(PIJ4*(QECA+2.0))
u(32)=MIN(Ye,Yec)
UU(32)=2.0

END IF

c Rule Thirty three if Error is Small Negative and the Change in c Error is Small
Positive then contribution is Small Positive.

IF (ESN.AND.CESP) THEN
Ye=S IN(PI/4*(QE+4.0))
Yec=SIN(PI/4*(QECA))
u(33)=MIN(Ye,Yec)
UU(33)--2.0

END IF

c Rule Thirty four if Error is Small Negative and the Change in c Error is
Medium Positive then contribution is Small Negative.

IF (ESN.AND.CEMP) THEN
Ye=SIN(PI/4*(QE+4.0))
Yec=SIN(PI/4*(QECA-2.0))
u(34)=MIN(Ye,Yec)
UU(34)=-2.0

END IF

c Rule Thirty five if Error is Small Negative and the Change in c Error is Large
Positive then contribution is Medium Negative.

IF (ESN.AND.CELP) THEN
Ye=S IN(PI/4*(QE+4.0))
Yec=S IN(PI/4* (QECA-4.0))
u(35)=MIN(Ye, Yec)

UU(35)=-4.0
END IF

c Rule Thirty six if Error is Medium Negative and the Change in c Error is
Large Negative then contribution is Large Positive.

IF (EMN.AND.CELN) THEN
Ye=S IN(PI/4*(QE+6.0))
Yec=S IN(PI/4* (QECA+8.0))
u(36)=MfN(Ye, Yec)
UU(36)=6.0

END IF

c Rule Thirty seven if Error is Medium Negative and the Change in c Error is
Medium Negative then contribution is Large Positive.

IF (EMN.AND.CEMN) THEN
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Ye=SIN(PIN*(QE+6.0))
Yec=S IN(PIN*(QECA+6.0))
u(37)=MIN(Ye,Yec)
UU(37)=6.0

END IF

c Rule Thirty eight if Error is Medium Negative and the Change in c Error is Small
Negative then contribution is Large Positive.

IF (EMN.AND.CESN) THEN
Ye=SIN(PI/4*(QE+6.0))
Yec=S IN(P1/4*(QECA+4.0))
u(38)=MIN(Ye,Yec)
UU(38)=6.0

END IF

c Rule Thirty nine if Error is Medium Negative and the Change in c Error is Zero
then contribution is Medium Positive.

IF (EMN.AND.CEZE) THEN
Ye=S IN(P1/4*(QE+6.0))
Yec=S IN (PIN* (QECA +2.0))
u(39)=MIN(Ye,Yec)
UU(39)--4.0

END IF

c Rule fourty if Error is Medium Negative and the Change in c Error is Small
Positive then contribution is Small Positive,

IF (EMN.AND.CESP) THEN
Ye=SIN(PI/4*(QE+6.0))
Yec=S IN(P1/4*(QECA))
u(40)=MIN(Ye,Yec)
UU(40)=2.0

END IF

c Rule fourty one if Error is Medium Negative and the Change in c Error is
Medium Positive then contribution is Zero.

IF (EMN.AND.CEMP) THEN
Ye=SIN(PI/4*(QE+6.0))
Yec=S IN(PI/4*(QECA-2.0))
u(41)=MIN(Ye,Yec)
UU(41)=O.0

END IF

c Rule fourty two if Error is Medium Negative and the Change in c Error is

Large Positive then contribution is Small Negative.
IF (EMN.AND.CELP) THEN

Ye=S IN(P1/4* (QE+6.0))
Yec=S IN(PI/4*(QECA-4.0))
u(42)=MIN(Ye, Yec)
UU(42)=-2.0

END IF

c Rule fourty three if Error is Large Negative and the Change in c Error is Large
Negative then contribution is Large Positive.

IF (ELN.AND.CELN) THEN
Ye=SIN(PI/4*(QE+8.0))
Yec=SIN(P1/4*(QECA+8.0))
u(43)=MIN(Ye, Yec)
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UU(43)=6.0
END IF

c Rulefourty four if Error is LargeNegativeandtheChangein c Error is
MediumNegativethencontributionis LargePositive.

IF (ELN.AND.CEMN) THEN
Ye=SIN(PU4*(QE+8.0))
Yec=SIN(PI/4*(QECA+6.0))
u(44)=MIN(Ye,Yec)
UU(44)=6.0

END IF
c Rulefourty five if Error is LargeNegativeandtheChangein c Error is Small
Negativethencontributionis LargePositive.

IF (ELN.AND.CESN)THEN
Ye=SIN(PI/4*(QE+8.0))
Yec=SIN(PI/4*(QECA+4))
u(45)=MIN(Ye,Yec)
UU(45)=6.0

ENDIF
c Rulefourty six if Error is LargeNegativeandtheChangein c Error is Zero
thencontributionis LargePositive.

IF (ELN.AND.CEZE)THEN
vz=SIN(PU4*(QE+8.0))
Yec=SIN(PI/4*(QECA+2))
u(46)=MIN(Ye,Yec)
UU(46)=6.0

ENDIF
c Rulefourty sevenif Error is LargeNegativeandtheChangein c Error is Small
Positivethencontributionis MediumPositive.

IF (ELN.AND.CESP)THEN
Ye=SIN(PI/4* (QE+8.0))
Yec=SIN(PU4*(QECA))
u(47)=MIN(Ye,Yec)
UU(47)=4.0

END IF
c Rulefourty eightif Error is LargeNegativeandtheChangein c Error is
MediumPositivethencontributionis SmallPositive.

IF (ELN.AND.CEMP) THEN
Ye=SIN(PI/4*(QE+8.0))
Yec=SIN(PI/4*(QECA-2.0))
u(48)=MIN(Ye,Yec)
UU(48)=2.0

END IF
c Rulefourty nineif Error is LargeNegativeandtheChangein c Error is Large
Positivethencontributionis Zero.

IF (ELN.AND.CELP)THEN
Ye=SIN(PU4*(QE+8.0))
Yec=SIN(PI/4*(QECA-4.0))
u(49)=MIN(Ye,Yec)
UU(49)=O.0

END IF
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c Initialize theNUMeratorandDENomenatorto zerosothatonly c contributions
occurring,on thispasswill beconsidered.

NUM---0.0
DEN=0.0

c CalculatetheNUMeratorandtheDENomenatorof thecontrolinput c by meansof
thecenterof gravitymethod.

DO 300I=I,N
NUM=NUM+u(I)*UU(I)
DEN=DEN+u(I)

300 CONTINUE
c SettingtheDENomentatorto 1.0preventsdivision byzeroandc doesnot
effect thevalueof thecontrol input.

IF (DEN.LT.0001)THEN
DEN=I.0

END IF
INPUT---NUM/DEN
IF (LINK.EQ.1) THEN

WRITE (9,16)E,CEA,QE,QECA,
INPUT END IF

IF (LINK.EQ.2) THEN
WRITE( 10,16)E, CEA,QE,QEC
A,INPUT

END IF

IF (LINK.EQ.3) THEN
WRITE( 11,16)E,CEA,QE,QEC
A,INPUT

END IF

c Using the correct quantizied table convert the input into c a torque to be

sent to the plant.
IF (COARSE) THEN

TORQUE= INPUT* (TOR_MAX/6.0)
END IF

IF (MEDIUM) THEN
TORQUE=INPUT*(15./6.0)

END IF

IF (FINE) THEN
TORQUE=INPUT*(17./6.0)

END IF
RETURN
END


