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PROGRAM DESCRIPTION

The research being performed under NASA Grant NAG1-1361 involves a

more clear understanding and definition of the constraints involved in the pole-

zero placement or assignment process for multiple input, multiple output

systems. Complete state feedback to more than a single controller under

conditions of complete controllability and observability is redundant if pole

placement alone is the design objective. The additional feedback gains, above

and beyond those required for pole placement can be used for eigenvalue

assignment or zero placement of individual closed loop transfer functions.

Because both poles and zeros of individual closed loop transfer functions

strongly affect the dynamic response to a pilot command input, the pole-zero

placement problem is important.

When fewer controllers than degrees of freedom of motion are available,

complete design freedom is not possible, the transmission zeros constrain the

regions of possible pole-zero placement. The effect of transmission zero

constraints on the design possibilities, selection of transmission zeros and the

avoidance of producing non-minimum phase transfer functions is the subject of

the research being performed under this grant.

PROGRESS FOR 1 JULY - 1 SEPTEMBER 1992

EGR Activity_

In the last progress report, it was proven that the determination of

transmission zeros was a straightforward task using an expanded definition of

Cramer's Rule or using Gauss' algorithm for determinants. It was also shown

that the control law that decouples the system places poles at the transmission

zero locations. In fact, the feedback recreates the eigenstructure of the

decoupled subsystem associated with the transmission zeros, given by equ. 1

below:

xl(t) = [All - B1B2lA21] xl(t) + A12 x2(t) + BI Uc(t) (1)

Because the transmission zeros IIs - All+ B1B21A211 = 0 are invariant,

the only way to reduce the exitation to xl(t), if it is desired to suppress the xl(t)



response, is to try to decouple xl(t) from x2(t) and/or to interconnect the

controllers in such a way that the effective control effectiveness B1 is reduced,

but this may not be desirable.

Transmission zeros are manifest only when fewer independent

controllers than degrees of freedom of motion exist, and the primary purpose for

decoupling is to provide for complete design freedom of the outputs x2(t) of the

system, those motions of the airplane that we wish to control with exacting

precision.

By decoupling, the design freedom of the output is complete and

exacting, with many options open to the flight control system designer. The

responses x2(t) = y(t) can be decoupled from each other or made to have any

behavior desired. For instance, eigenvector assignment becomes a relatively

straight-forward matrix algebra problem, and is shown to be a simple dynamic

inversion approach to design. The objection to dynamic inversion (that the

closed loop system is not robust) can also be easily overcome, at least in the

system outputs y(t) = x2(t) and not just one, but an entire family of solutions is

possible.

Consider the part of the system that was decoupled in such a way that

the control effectiveness matrix B2 is nonsingular, i.e., IB21 = 0.

x2(t) = A22 x2(t) + B2 u(t) (2)

Let us assume that we wish to design a system that behaves exactly as

y(t) = Ly(t) + BL uc(t) (3)

where the matrix L can be anything, including a Jordan form L = A or a modified

Jordan form Lm, i.e.
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or even a nonlinear matrix. In the design process to follow, the choices are

entirely up to the designer. Because the following design technique has so

many options, the vehicle can be made to have flying qualities taken exactly

and precisely from the flying qualities specification MIL-F-8785(c) or MIL STD

1797, thereby "assuring" level 1 flying qualities. The only problem is that not all

dynamics yielding level 1 flying qualities have been defined. The design

objective or criteria is incomplete, but that is another story for near future

research activity. Assuming the matrix L can be specified and the desired

control matrix BL is definable (more easily than L), then the most direct solution

to this problem is to define a regulator in the error between the actual response

x2(t) and the desired response y(t); i.e.,

e(t)- (A22 + P) e(t) : 0 (5)

where e(t) = x2(t) - _,(t) (6)

e(t) = x2(t) - y(t)

so the regulator is

[x2(t) - y(t)] - (A22 + P) [x2(t) - y(t)] = 0 (7)

and the matrix P is anything the designer wishes to specify. P need not be

linear nor even the same dimension as A22. One of the configurations of P

shown below in fact exceeds the dimension of A22 because the integral of the

error is included in the design.

Substituting for x2(t) from equation (2) into equation (7) yields

A22x2(t) + B2u(t) - y(t)- (A22 + P)(x2(t) - y(t)) = 0 (8)



and solving for the control motion u(t) will produce the required control law:

u(t) = B2-1[y(t) + Px2(t)- (A22- P) y(t)] (9)

An entire family of solutions can be obtained from equ. (9). For instance,

by substituting for y(t) and choosing A22 + P = L, equ. (9) becomes

u(t) = B2 -1[Ly(t) + BLUe(t) + (L- A22) x2(t) - A22 y(t)- (L- A22) y(t)]

= B2 "I[(L- A22) x2(t) + BE ue(t)] (10)

The substitution of the feedback control law of equ. (10) into equ. (2)

yields

x2(t) = A22x2(t) + B2B2 -1[(L - A22) x2(t) + Btue(t)]

= L x2(t) + BLue(t) (11)

and the system behaves "exactly" as desired. If L was chosen non-interacting,

the system would be decoupled. In block diagram form, the system is shown

below. This architecture is often called "implicit model following."

%(0 _ +B2"IB A

B2"lA21 k

Vehicle

II Xl(t)
>

x2(t) = y(t)

Fig. 1 Feedback Solution

The decoupling feedback B2lA21 has been added to the diagram to

show the complete solution. If the plant contained as many independent

controllers as degrees of freedom of motion (such as elevator/direct lift

flap/throttle or elevator/thrust vectoring/throttle or even canard/thrust

vectoring/throttle), the feedback B2-1A21x1(t) would not be necessary, a complete

dynamic inversion is possible. In general, if the matrix L of the system shown in

fig. 1 has eigenvalues larger (i.e., farther in the Ihp) than A22 , the robustness is

improved from that of the open loop. The feedback is normally to augment the



aircraft natural dynamics in the "degenerative" rather than "regenerative" sense;

stability is enhanced.

The same criteria, i.e., y(t) = Ly(t) +BLUc(t) can also be obtained without

using feedback at all. All that' is necessary is to calculate the forces and

moments that must be applied to the aircraft to force it to behave as defined by

equ. (11). This is done simply by defining P = 0 in equ. (9) above. Setting P = 0

in equation (9) yields the very simple solution

u(t) = B2"l[y(t) - A22 y(t)] (12)

indicating that y(t) and y(t) are generated independently in a computer and the

plant controllers are driven properly by the computer outputs _,(t) and y(t). The

block diagram is shown in fig. 2 below. This architecture is often called "explicit

model following."

Computer

_(t)

+ . _J

y(t) _.B2.1A,_ _ Vckiclc

t B2.I B2"IA21

Fig. 2 Feeclforward Solution

As indicated in equ. (12) and shown in fig. 2, the configuration is entirely

an open loop architecture, yet yields "exactly" the same result as shown in

fig. 1, a feedback solution. The control law "gains," B2 -1 and B2-1A22 are a

function _ of the plant, and these gains constitute a complete dynamic

inversion of the decoupled part of the plant. Because this is so, the model in the

computer can be changed at will without changing the control law in any way.

If, for instance, the flying qualities requirements were different for each flying

task or flight regime, changing only the model dynamics will properly change

the dynamic response. In fact, a ground-based simulator operates in exactly the

way described above. The only difference is that the airplane is moving, not

standing still, so the velocity and dynamic pressure dependent derivatives A22

are finite and must be taken into account.



The closed loop or feedback solution of fig. 1 and the open loop or

"feedforward" solution of fig. 2 represent two extremes of the family of solutions

that can be obtained. Neither system is particularly robust in the sense that

flight condition variations of the stability and control derivatives B2 and A22 will

cause deviations in the desired response unless a lot of gain scheduling is

used. Even with gain scheduling, the lack of low frequency robustness of the

system shown in Fig. 2, would preclude its use in an actual airplane. However,

robustness can be easily provided and in fact, the system shown in fig. 2, with

feedback added, can result in a robust architecture, accounting for the variation

of the stability and control derivatives of B2 and A22. In fact, there is reason to

believe, as shown below, that minimal gain scheduling is possible for many

aircraft.

The family of solutions that will yield a robust system configuration is

given by the general solution of equ. (9). The block diagram of the system

represented by equ. (9) (including the decoupling feedback) is shown in fig. 3

below:

_(t)

= Ay-c-B A u c

Compumr y(t)

Fig. 3 General "Robust" Solution

The general solution of equ. (9), (i.e., fig. 3), shows that the matrix P acts

on the error between the desired output y(t) and the actual output x2(t). If B2 and

A22 are known "exactly", the error is zero and P has no function. In fact, P

defifies not only the regulation of the error between y(t) and x2(t) but also

defines the perturbation response of x2(t) to external disturbances (gust

alleviation). Most importantly, because P can be an integration process, low

frequency robustness can be provided, so the response of the computer output

and the aircraft output will not diverge. Because all the flying qualities

requirements can be resident in the computer model, the gust alleviation or



structural mode control function can be done using feedback without affecting

the maneuvering flying qualities requirements. In fact, equ. 9 is simply a

formalization of the present common practice of providing feed forward gains in

a flight control design.

If the computer is programmed such that the kinematics of the plant are

resident in the computer but the aerodynamics in the computer are chosen for

flying qualities purposes, the computer can represent a global "model following"

system. If such a system were used for a wide flight range vehicle such as

HSCT, the HSCT vehicle would always be at the same flight condition as the

computer generated "model," but the HSCT vehicle would respond dynamically

as the "level 1" flying qualities model. There is reason to believe that the

configuration defined by fig. 3 would work well for a wide flight range vehicle.

Because the function P acts on the error between the computer

generated model response and the actual vehicle response, P can represent a

robust compensator as defined by such methods as an H,_ system designed.to

minimize the error as the stability and control derivatives A22 and B2 vary with

flight condition.

In general, any compensation network can be expanded in partial

fraction expansion form to represent proportional, integral and derivative

components (or designed as a PID system). To show how such a network could

be designed for an architecture of this type, consider a PID system, resulting in

an error control law.

ue(t) =-Kle(t) - K2fe(t)dt - K3 e(t) (13)



shown in fig. 4 below:

Compumr

y(t) _ B2.I ÷K3 I

y(t) _.B2.1A22÷KI

Vehicle
u(t)

K2 _e_

Fig. 4 More Specific "Robust" Solution

K1

x2(t)

_x2(t) = y(O

This block diagram is drawn to highlight the effects of the PtD feedback

and the effect of this feedback on the response of the system as stability and

control derivatives B2 and A22 vary in flight. As shown in the figure, the accuracy

of the design depends upon the accuracy of B2 and A22, the matrices involved in

the dynamic inversion. If the feedback gains are made sufficiently large, the

system can be made insensitive to variations in the stability and control

derivatives, i.e.,

if K3 >>B2 "1 -_ insensitive to variations in control effectiveness

and in control surface nonlinearities

if K1 >>-B2 "1 A22 --, insensitive to variations in B2 -1 A22, i.e., the

stability derivatives

Making the fair assumption that the feedback is to maintain or improve

the stability of the vehicle, the integral of the error will guarantee x2(t) = y(t) in

the long term, regulating always about the trajectory of the airplane on the

model computer (for instance, a hypersonic NASP with ideal level 1 flying

qualities) without the need to directly measure some air data (such as velocity)

on the vehicle itself. Because the integral guarantees long term zero error, the

pilot command input-response output is independent of flight condition and can

be made constant or vary with flight condition exactly as specified (Fs vs. nz) in

the F.Q. specifications. Because in the long term the aircraft steady state



response will be totally predictable, a display of the pilot command input will tell

the pilot what the steady state flight variable changes will be regardless of the

sluggishness of the vehicle response, resulting in a "predictor" display. By

limiting commands at the model, functions such as angle of attack and sideslip

can be limited, again useful for a_NASP system. The problem solving potential

of this type of system architecture seems significant.

Even more advantages for this architecture can be realized. For

instance, because the gains B2 "1 A22 represent a "division" process of

dimensional stability and control derivatives, many of which are

dimensionalized in exactly the same way, many of the terms of B2 q A22 are

simply (constant) ratios of non-dimensional stability derivatives, such as

CmoJCmae, which can be accurately obtained in a wind tunnel. These constants

occur along the diagonal of the matrix B2 q A22, so the robustness oriented gains

would be designed to minimize the effects of off-diagonal terms, (if their effect is

significant). Because the aircraft can be made to respond to disturbances

entirely independently of the computer model (which doesn't respond at all

unless turbulence is measured and injected into the computer), the feedback

can be tailored for gust alleviation or structural mode control or even to

minimize wring root bending moments (to disturbances) without affecting flying

qualities (resident in the computer). The minimization of maneuver loads can

be dealt with in the model computer and reflected in the vehicle itself. For

instance, if the "model" had a direct lift flap, distribution of "model" wing loads

would be reflected in the vehicle itself.

To the designer, perhaps the biggest advantage is the fact that most of

the ground based simulator setup can be transferred to the actual vehicle,

accounting only for the fact that the actual airplane is moving rather than

standing still. Accurate evaluation of the differences in pilot opinion between

the ground based simulator and the actual vehicle can be made. In a simulator,

the velocity is displayed to the pilot; in the actual airplane, not only can the

velocity from the computer model be displayed, but the airplane will be moving

that fast.

It is clear that the sensitive part of the type of system described herein is

xl(t), the dynamics decoupled from x2(t). This will be particularly true if the



transmission zeros are relatively low frequency. Because the "outputs" and

measurement set or sensors can be entirely different, it may be possible, using

observer synthesis ideas of Bacon (Langley) to improve the robustness of the

u(t) = -B2 -1 A21 xl(t) feedback portion of the system. These possibilities will be

considered by EGR during the next reporting period.

Flying Qualities Imolications

It is not to suggest that decoupling will solve all flying qualities problems.

The consequences of decoupling can be considerable. Consider the relatively

simple modal decoupling design approach used in the Shuttle, which used

pitch rate feedback and proportional plus integral compensation in the error

loop. This pitch rate pole-zero canceling scheme essentially eliminated a

phugoid mode residue in pitch rate, but increased the phugoid contribution to

the _(t) response. The closed loop (Z(t) transfer function contains a pole at the

origin, and a step stick command will yield a smooth, well-behaved pitch rate

response, but the angle of attack will be divergent. Since T=e-OL the attitude

and flight path will not be harmony, i.e., the vehicle flight path will wander if the

pilot holds a steady attitude. A pilot wants flight path proportional to attitude, so

this kind of system may produce a PI0 problem for the pilot, particularly during

flare and landing.

As the astronaut pilot pulls (or if he has learned correctly, pulsed) the

stick to flare to a new pitch angle, the lift (-Zc_O_) increases because _(t) is

divergently increasing, and the vehicle will have a tendency to "float" clown the

runway. The increase in _(t) increases induced drag, decreasing the velocity

and decreasing Zc_. So eventually either the vehicle will settle to the runway

(decreasing Zc_ greater affect than increasing 0_) or the vehicle will stall. The

pilot may have to pulse forward on the stick to get down. Pilots do not like to

pus.h on the stick to settle on the runway, they usually depend on the phugoid

response to settle the airplane down, (but nonexistent in a rate command,

attitude hold system). Also, since _--_-_"- lF['e2 , the pilot must cope with the
Aq s + 1/To2

delay or time constant (2-2.5 sec in the Shuttle) of the flight path bending

response after initiating a pitch rate response; the astronaut pilot must develop

a considerable precognitive predictive capability. When coupled with the



elevon location on the Shuttle, which suggests that the pilot sits aft of the center

of rotation (percussion), thereby producing an initial "wrong direction cue" or

time delay, then the Shuttle PlO evident in an early Shuttle flight is no surprise;

accuracy or "tight" flight path control is out of the question. The extensive (and

expensive) astronaut-pilot training is justified. It would apPear that a little static

stability (i.e., o_(t) feedback) would help the Shuttle settle to the runway and

provide for a better capability to maneuver near the ground without a PlO

tendency.

The result is that decoupling can significantly alter the eigenvector

configuration of the vehicle, and change response residues in such a way that

the vehicle no longer behaves in an "airplane-like" fashion. If the kind of

change in vehicle behavior can be produced in a relatively simple decoupling

situation as evidenced on the Shuttle, then multivariable decoupling may be

expected to complicate the flying qualities scenario even more. Decoupling

may be a blessing or a curse, and much research must yet be done to define

the blessings and the curses.

Generally speaking, it is an objective of "reconfiguration" technology to

switch to an alternate set of control effectors upon the failure of a control

surface, without changing the dynamic response of the vehicle. If the original

decoupling was obtained using primary control effectors (i.e., elevator -->

pitching moment, direct left flap --> lift or flight path, and/or throttle --->velocity) the

likelihood that the transmission zeros will be rhp is small. If a switch is made to

a secondary set of controllers during reconfiguration to maintain the same non-

interaction, the likelihood of rhp transmission zeros is considerably increased. It

might be prudent to abandon the decoupling criteria during reconfiguration and

revert to a flying qualities criteria that would result in a "conventionally flying

airplane."

Examples of the changes in transmission zeros as a function of controller

sets to achieve the same decoupled behavior will be shown in the next

reporting period.



CUBRC Contract 1730
NASA Contract NAG-l-1361

University at Buffalo Progress Report: 7/1/92-9/1/92

The theoretical developments and underpinning of the transmission zero work are described

in the section titled "EGR activity." The U.B. activity includes and/or is based on this theory,

but for brevity the reporting of these developments is not repeated here.

The major activity of the reporting period was the creation, debugging, and transfer (to

EGR) of detailed computer simulations to be used for testing and demonstrating the theoretical

developments. The computer simulations represent the experimental Total In Flight Simulator

(TIFS) aircraft, operated by the CALSPAN Flight Research Department.

For simulation purposes, the TIFS is assumed to be flying as a rigid body in a vertical

(longitudinal) plane, so that there are three degrees-of-freedom (horizontal translation x, vertical

translation z, and pitch angle 8). Aerodynamic coefficients are consistent with Calspan reports.

The details of the simulation follow.

Coordinate Systems

In developing the aircraft equations of motion, two different coordinate systems are used,

shown in Figure 1. One is an inertial coordinate system, which is fixed to the earth and is

considered to be a non-rotating system. This is a valid assumption since the rotation of the

earth is negligible in most aircraft dynamic problems. The other system is fixed to the aircraft

center of gravity and rotates along with the aircraft. This system is referred to as the body axis

coordinate system.



Figure 1 Coordinate Axis System

Equations of Motion

Newton's second law is used to derive the rigid body equations of motion, i.e.,

conservation of both linear and angular momentum (Nelson [2]):

the

d

E; = a E (m_/ (1)

dt dt
(2)

The airplane is considered as a continuum of mass particles (6m) and each elemental mass

has a velocity (v-') relative to an inertial frame. Newton's second law is:

&7
6P = 6m-- (3)

dt
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Figure 2 Body Axis System

From Figure 2, the velocity of the differential mass can be expressed as:

dF

,7 = _ + d--/ (4)

Since the mass of the aircraft is assumed constant and the total mass of the aircraft is found

by summing the mass elements, Newton's second law may be written as:

dff d 2

The right hand side of Equation (5) equals zero since _" is taken from the center of mass.

Equation (5) now reduces to:

P = rn-- (6)
dt

The moment equation is developed in terms of the relative velocity of a mass element to

the center of mass:

dT:

_7= v_+ -_ = v_ +_5 × _" (7)

where _ is the angular velocity of the aircraft. Substituting this expression into the moment

Equation (2), the total moment of momentum is:



._ = _ (_6._ × _ + Z [e× (_ × _16,_ (8)

Again, the left hand side of Equation (8) equals zero and the moment of momentum equation

reduces to:

= _ [¢ x (_ x _lgm (9)

A difficulty occurs if the reference is rotating, since the moment will vary with time. To

eliminate this difficulty, a transformation of the reference flame is made to the body axis system

(onto the aircraft). A vector A is transformed from a fixed system to a rotating coordinate

system by:

d-T / = d-----[rot. + _ × (10)

The force and moment equations, transformed into the body axis system, now become:

dv_

ff -- m--_-_- + m(_ x v_) (11)

d/t (_ H) (12)- dr+ ×

Vector Components and Scalar Equations

To obtain the time history results of Equations (11) and (12), it is necessary to express the

vector equations into component form. The component forms of the forces, moments, gravity,

linear and angular velocities are shown in Figure 3.1 The corresponding equations are:

= L_" + My + N_:

ff = g=: + gu] + gz_: (13)

= P_'+ Qj + Rk

= u: + vj + wi

Positive sense is in the directton of the arrows



Equation (11) can now be expanded into scalar form:

F,.+rngz=rn({J-VR+WQ)

Fy+mgy=m(V+UR-WP) (14)

X

I
r

z

Aerod_amic and Thrust Forces

Z

Aerodvn_'_ic and Thrust Moments

Acceleration of Grav4.tv

X

. P

r

Z

Linear and Rotational (An_ular)

Velocities

Figure 3 Vector Components (from Roskam [1])

After expanding Equation (9), the scalar components of the moment of momentum are:



(15)

Theseequationscanbe expressedin terms of massmomentsof inertia aboutthe x, y, and
z axes:

H,, = I=:=P - I=n,Q - I..=R

= -I=,,P + I,,,,Q- I =n

H_ = -I==P- Iy_Q + I==R

(16)

Since, for most airplanes, the X-Z plane is a plane of symmetry, the moments of inertia for

I=_ = I_= = zero. With this assumption, and applying Equations (16) to the moment expression

in Equation (12), the scalar moment equations can be written as:

L = I=::P - I=_R- I=_PQ + (I_z - I_y)RQ

i = I_(_ + (I_,. - I_::)PR + I=z(P 2 - R 2)

N = I_R - I.._P + (Iy_ - I=.)PQ + I==QR

(17)

where L, M and N are the moments about the X, Y and Z axes, respectively.

Earth Fixed System and the Kinematic Equations

The force and moment equations are derived in the body-fixed axis system. But, the position

of the aircraft must be described by the earth-fixed coordinate system. This is accomplished by

three consecutive rotations (whose order is important). From Figure 4, the following rotations

are made:

1. Rotate the X1Y1Z 1 body coordinate flame about the Zz axis over the yaw angle (9) to the

X2Y'2Z2 body coordinate frame.

2. Rotate the X2Y2Z2 body coordinate frame about the Y2 axis over the pitch angle (®) to the

X3 Y3 Z3 body coordinate frame.

3. Rotate the XaY3Z3 body coordinate frame about the X3 axis over the roll angle (¢I,) to the

XYZ inertial coordinate frame.



Theseangles(yaw, pitch and roll) are known as the Euler angles.

The velocity components between the body-fixed coordinate system and the earth-fixed

coordinate system are related by a set of orthogonal transformations (a more complete derivation

may be found in [1] and [2]). These transformations are:

9 = CoS_

-So

S¢SoC_ - C¢ S_

S¢ SoS_ + C¢ C_

S¢ Co
}C_ So S, - S¢ C_, V

C¢Co W

(18)

where C_ - cos(O), S_ = sin(_I'), etc.

The kinematic equations relate the Euler angles (_I', t9 and q,) and the angular velocities (P,

Q and R). From Figure 4, a7 must equal the vector sum of the time rate of change of the Euler

angles about the kl, j2, and i3 axes:

= + + (19)

Using transformations similar to Equation (18) and from Equation (13), the angular velocity

may be written as:

j(_, cos 19sin ff + _)cos cI,)

k(q cos ® cos, - Osin,)

(20)

Equating components, the kinematic equations become (in matrix form):

{10Q = 0 cos¢

R 0 - sin ':I'
_s,no}{,}cos 19 sin • @

cos (3 cos ¢ '_

(21)

The time histories of the Euler angles are determined by inverting the 3x3 matrix in Equation

(21):

= P + Q sin'I' tan 19 + Rcos • tan (9

6 = Q cos ,I, - R sin I'

= (QsinO + Rcos q)sec19

(22)
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Figure 4 Rotation from Earth-Fixed to Body-Fixed Frame (from Roskam [1])

Aerodynamic Nomenclature

All forces and moments developed are based on the stability axes system defined by Figure

5. This system is utilized since experimental data from wind tunnel tests are presented in the

stability axes. The stability axes are obtained by rotating the body axes (XYZ) about the Y = Y,



axis. This is done over a rotationalangleo_ (known as the angle of attack) until the body-lixed

axis (X-axis) coincides with the free stream velocity vector (Vp_).

Lift

Horizontal Line

Drag

Figure 5 Stability Axis

The equation for the angle of attack is:

& = tan- 1 W
U (23)

The equation for the airspeed is:

lip = g/(U 2 + v 2 + W _) (24)

The flight path angle (7) is the difference between the pitch angle and the angle of attack

(7 = ® - a). Figure 6 depicts the relationship between the different coordinate axes in the

longitudinal plane.
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Figure 6 Relationship Between the Earth, Body and Stability Axis Frame

Forces and Moments

To simplify the analysis, all forces and moments are developed in the stability axis system.

The force (if') and moment (A_") components are:

F" "-" F_. I_ -D(, Fyf_ - LI%F" = F" i, + + +
A= A_3" =

117['= LA_, + MA_, + NAf%
(25)

where D = Drag, L = Lift and Fy = Sideforce. LA, MA and NA are aerodynamic moments.

The steady state forces and moments for a straight line flight are assumed to depend only on

angle of attack (a), sideslip angle (fl), thrust and the control surface deflections of the elevator

(BE), ailerons (rA), rudder (rR), and aerodynamic coefficients. These dimensionless coefficients

are comprised of derivatives evaluated at constant Mach and Reynolds number (e.g.):

where:

CD = CD o 4- CD a _- CD,.6E

CDo = total airplane drag coefficient for a = 6E = O.

CDo_ = total airplane drag change with angle of attack for 8 E = 0.

CD,s = total airplane drag change with elevator angle for a = 0.

(26)
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A similar analysis is madefor the remainingaerodynamiccoefficients.

The aerodynamicforces and momentsare expressedin terms of the dimensionlesscoef-

ficients, flight dynamic pressure,characteristiclength (for the momentsonly) and a reference

area:

D = CD(tS = (CDo W CD,.a + CD6B_E)_I S

L = CLqS - (CLo + CLoa + CL,,6E)_IS

(27)

LA = Ct4Sb

c pb c Rb' =
MA = CMqS6

= CMo "q'- CM,_ Ot -{- CM,.SE "F CMQ_ s qSc

NA = CNqSb

= CNt_ _- CN, a 6A q- CN, t_6R q- Np-_s q- CNa-i-_s qSb

(28)

The flight dynamic pressure is •

where p is the air density and U, is the aircraft's airspeed.

The aircraft thrust vector is also divided into components:

(29)

F_, = T cos (a)

f$=O

F_, = -Tsin(a)

L_ = 0

M} : -Tdr

N_=O

(30)

where d T is the moment arm of thrustline.

For a trimmed airplane, the forces and moments acting on it are in equilibrium. This

is accomplished when the pitching moment equals zero and when the lift equals the airplane

11



weight. Using Equations (27) and (28):

0 = (CM. +CM,_a+CM,._E)

4---_ = CL..i,_ = CL, , -}- CL," a + eL6 B _E

(31)

Solving these equations for a and 6 E determines the trim value for the angle of attack and

the trim elevator setting:

CL,,I,_ CM6 s -- C£,,CMi, + CLoeCMo

attire = CL _ CM, B _ CLoB CM _

(32)

CL.,.,._ CM._ -- CLo CM,_ -_" CL,_ CMo

6E..., ` = CL,B CM¢. - CLoCM, s

(33)

Combining the rigid body equations and the aircraft kinematic equations yields a full set

of flight dynamics equations that describe any aircraft flight path or motion. To accomplish

this, all forces must first be transformed from the stability axis system to the body axis system.

From Figure 5:

F. b = -Dcos(a) + Lsin(a) + Tcos(a)

F :F;
F b : -Dsin(a) - Lcos(a) + Tsin(a)

(34)

The force equations (14) are then solved in terms of the linear velocity rates (U, V and

_/'). Also, the moment equations (17) are solved in terms of the angular velocity rates (/5, _)

and /{). To simplify the analysis, let:

=/xz(h'r - Ixx)

k2 = Izz(Izz - Iyy)

k3 = Ixz(Zzz - Iyy)

k4 = Ixx(Iyy - Ixx)

(35)

The full flight dynamic motions are now expressed as a 12th order set of nonlinear differential

equations (three of which are simple integrations of the linear velocities to yield linear positions).

These equations can now be integrated to yield flight trajectories, after a transformation is made

12



to the earth-fixed coordinate system by Equation (18), of any variable (e.g. plane ahitude,

airspeed, etc).

= -gsin(O) + F_ + VR - WQ
771,

(36)

9 = gsin (¢) cos (0) + F_ _ UR + WP
m

(37)

_" = g cos(¢I') cos (®) + Fb_ + UQ - VP
m

(38)

= IxzNA + IzzLA -- kxPQ - I_czQR + IxzlzzPQ - k2RQ

IxxIzz - I_z
(39)

4 = MA --(Ixx -- Izz)PQ - Ixz( P2 - R2)
Iyy

(40)

= IxxNA + IxzLA + I_¢zPQ - k3RQ - k4PQ - IxxIxzQR (41)

IzzIxx - I_c z

E) = Q cos <I, - R sin ffi, (42)

= (Q sin,I) + Rcos (I') sec @ (43)

_' = P + Q sin ¢I,tan (9 + R cos _I,tan (9 (44)

Table 1 Flight Dynamic Equations

The full flight dynamic equations in Table 1 may be linearized into second order differential

equations by utilizing small disturbance theory. This theory applies to small deviations (for

angle of attack, sideslip and control surface deflections, etc.) relative to some steady state flight

condition. For an automatic landing system, this assumption is valid since only small angle

deviations caused by turbulence or control variables are encountered. This theory is also useful

in analyzing the stability of an autopilot by using longitudinal transfer functions.

13



Small Perturbation Equations (stability axis)

Perturbed state equations are derived by replacing all motion variables by a steady state

value and a perturbation:

U = Uo+AU

P=Po+AP

=_o+A¢

v= vo + _xv

Q = Qo + _Q

0 = Oo + AO

This also applies to all forces and moments:

F, = F,-o+ AF. Fy = F_o+ ZXFy

M = Mo + AM L = Lo + AL

w=wo+Aw

R=Ro+AR

@ = 'I'o+ A@

(45)

F_ = F_o + AF=

N=No+AN
(46)

The change in forces and moments can be expressed in terms of the perturbation variables

by using a Taylor series expansion:

OF. OF. OF_ OF.

A F,- - --_ A U + --_--_ A W + -_E A 6E + -_T A 6T

Aru = OF u OF u OF u OFu-_- _ v + -5-yap + --g-y_R + 3_-_R_ 6R

OF= A OF= A OF_ OF_ A" OF_
AF=_ -_ U+--_ W+--AQ+-- OE+

(47)

OM OM OM A OM OM

OL OL OL OL OL

_xL = -8-_Av + _ Ap + _ _xR + _-g-_SA_R+ -_-__ __

ON ON ON ON ON

AN - -_--_ AV + -_AP + -0--_AR + _-_RA6R + _AAA_A

The partial derivatives in Equation (47) are called the stability derivatives. For convenience,

these derivatives are divided by the aircraft mass. These new symbols are defined as dimensional

stability derivatives (e.g.):

14



Replacing the forces and moments with Equation (25) the longitudinal dimensional stability

derivatives, in the stability axis system, become:

--2CD. _loS --2C D,, qoS - 2C t._IoS

X,, - mUo X_. = Z,, -rn mUo

- CL_ 4oS_ - CLq 4oS_ - CL,. qoS

Z,_ = 2mUo Zq = 2mUo Z6. - rn

M,_ - 2CM. (IoSc M,,, - -CM,,J=IoSc Ma - CM'; q°S_'2 (49)
IyyUo Iyy 2IyyUo

C M, g qoS c C Mra (toS6
CMQ 7:1oS _2 M6B -- MT,, --

Mq-- 2IyyUo Iyy Iyy

x_, = --(CD_ -- Ct,o)4oS Z_, =
m m

--(CL,, + CDo)qOS

These dimensional stability derivatives, along with the force and moment perturbation

equations, can now be evaluated into the full flight dynamic equations (Table 1). To simplify

the analysis, for small angle deflections, let:

cos _ _ 1.0
(50)

sin G _ 0

Taking a Laplace Transformation of the resulting equations determines the longitudinal

transfer functions with the elevator setting (6E) as the input and the horizontal velocity component

(U), angle of attack (a) and pitch angle (®) as the output variables. These longitudinal transfer

functions, in matrix form, are:

{A11 A12 A13 _ Z6B
A_I A22 A23 6_(,) =

®s
A31 A_ A33 _ M6_

(51)
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where:

All - (s- Xu)

A12 = -Xa

A13=gcos®o

A21 = -Z_,

A22 = s(Uo - Za) - Za

A2a = -( Zq + Uo )s + g sin Go

A_I = -(Mu + MT,,)

A_: = -(sMa + M,,)

A3a = s 2 - sMq

(52)

Taking the inverse of Equation (51) yields the transfer functions for the longitudinal mode.

Using Cramer's Rule, the denominator of the transfer functions is a fourth order polynomial.

The roots of this polynomial form the characteristic equation and determine the stability of an

aircraft. The characteristic equation is represented by two oscillatory modes of motion (short

period and phugoid).

Short and Long Period Approximations

The longitudinal motion of an aircraft is determined by two modes. The first is the short

period mode. This is characterized by a highly damped, high natural frequency oscillation at

approximately constant speed (AU _ 0). The other mode is the long period or phugoid mode.

This is caused by a gradual change between potential and kinetic energy and is characterized

by a low damped, low natural frequency oscillation at approximately constant angle of attack

(Aa _ 0). Both modes are determined by the characteristic roots of Equation (51). The concept

of these modes is illustrated in Figure 7.
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Figure 7 Short Period and Phugoid Modes

The short period mode is obtained by approximately neglecting the velocity term in Equation

(51). This equation now reduces to:

8Uo- Z_ -sU0 &B_Ma_M_ s_._ aM,}{6_--_}={}e, M,_, (53)

Applying the inverse to this equation:

*&B+ (M6,,Uo- M,&,)
6E(s) s{s2Uo - s(MqUo + Z,, + UoMa) + (Z,,Mq - M,_Uo)}

e(_) s(UoM6_ + Z6BMa) + (Mo, Z6. - Z,,,M6.)

s{a2U0 - a(MqUo + Z_, + UoMa) + (Z,,Mq - M,_Uo)}

(54)

Comparing the denominator of this equation to the standard frequency form of (s 2 +

9
s2(w,_s,. + w,_s,.), the natural frequency and damping ratio of the short period mode are:

17



_ / Zc, Mq
W'_sP = V Uo M,,

(sP = -(MqUo + Za + MaUo)
2_,,_ 0"o

(55)

The phugoid approximation is derived by neglecting the angle of attack term in Equation

(51). The resulting equations for this mode become:

u(,) z6,,Uog
6E(s) (_Uo- sx,,Uo - z,,g)

-z_.Uo(s - x,,)
(s2Uo - sX,,Uo - Z,,g)

(56)

The natural frequency and damping ratio for the phugoid mode are:

-X_,
('p_

20drip

(57)

The combination of the short period and phugoid modes describes the complete longitudinal

aircraft motion (i.e.):

e(,) _ ko6(To,, + 1)(To,, + 1) (58)
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