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Abstract
State recreational water-quality standards are based on 

concentrations of indicator organisms, such as Escherchia coli 
(E. coli). Because the analytical methods for enumerating  
E. coli take at least 18–24 hours to complete, some agencies 
have turned to predictive modeling to obtain near-real-time 
estimates of recreational water quality. The USGS has been 
working with local agencies to develop empirical predic-
tive models for five Lake Erie beaches in Ohio. One beach, 
Huntington, is used as example in this report to describe in a 
step-by-step fashion how data for models were collected and 
how models were developed and evaluated. These steps are 
not the only procedures that can be used to develop predictive 
models for beaches; rather, they are the methods used by the 
authors for the reported datasets.

The steps to develop predictive models are data collec-
tion; exploratory data analysis; model development, selection, 
and diagnosis; determination of model output values; and 
model validation and refinement. For Huntington, the predic-
tive model was based on data collected during the recreational 
seasons of 2000–2004. The explanatory variables were wave 
height, weighted rainfall in the past 48 hours, and log

10
 turbid-

ity; the model explained 38 percent of the variability in E. coli 
concentrations. Two outputs from the model were calculated: 
(1) the predicted E. coli concentration and (2) the probability 
that the E. coli single-sample maximum bathing-water stan-
dard of 235 colony-forming units per 100 milliliters  
(CFU/100 mL) will be exceeded. A threshold probability of 
29 percent was established for the Huntington 2000–2004 
model. The threshold probability is the probability associated 
with too great a risk to allow swimming and is established 
by examining historical data. The model was validated in 
2005 and yielded more correct responses and better predicted 
exceedance of the bathing-water standard than did the cur-
rent method for assessing recreational water quality (using the 
previous day’s E. coli concentration). 

The procedures described in this report can be used to 
develop and test predictive models at other beaches. Predic-
tive modeling is a dynamic process meant to augment exist-
ing beach-monitoring programs, not to replace them. Models 
should be continuously validated and refined to improve 

predictions and better protect public health. If validation tests 
are successful, a beach manager may decide to develop an 
Internet-based system that provides model predictions to the 
beach-going public. This type of system, called “nowcasting,” 
was implemented at Huntington on May 30, 2006. 

Introduction
As the result of the Beaches Environmental Assess-

ment and Coastal Health (BEACH) Act of 2000, states have 
adopted U.S. Environmental Protection Agency criteria into 
state recreational water-quality standards (U.S. Environmental 
Protection Agency, 1986, 1998, 1999). These include concen-
trations of bacterial indicators—Escherichia coli (E. coli) or 
enterococci for freshwaters and enterococci for marine waters. 
The analytical methods for these organisms, however, take 
at least 18–24 hours to complete. Recreational water-quality 
conditions may change during this time, leading to erroneous 
assessments of public-health risk. As a result, some agencies 
have turned to predictive modeling to obtain near-real-time 
estimates of recreational water quality. In situations where 
nonpoint or unidentified sources dominate, empirical model-
ing is most appropriate. Empirical models, developed through 
statistical techniques such as multiple linear regression 
(MLR), use easily measured environmental and water-quality 
variables to estimate bacterial-indicator concentrations or the 
probability of exceeding target concentrations. 

Researchers have worked to study the use of environmen-
tal and water-quality variables and to develop empirical mod-
els for assessments of recreational water quality for coastal 
waters. Ackerman and Weisberg (2003) confirmed the use of a 
rainfall advisory system in southern California and found that 
rainfall amounts greater than 6 mm consistently led to beach 
water-quality degradation. At recreational estuaries in Austra-
lia, rainfall alone accounted for 15–66 percent of the vari-
ability in bacterial-indicator densities (Hose and others, 2005). 
In a study in Indiana, several variables measured with onsite 
sensors were used to develop equations that accounted for 
60–90 percent of the variability in E. coli concentrations at the 
outlets of two ditches draining into Lake Michigan (Olyphant 
and others, 2003). Explanatory variables used in the Indiana 
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study were rainfall, stream discharge, soil temperature, depth 
to the water table, and nitrate and ammonia concentrations. In 
this same area, a model was developed to predict recreational 
water quality at five proximate beaches affected by fecal 
contamination from the same ditch (Whitman, 2005). Simi-
larly, sensors to measure hydrometeorological variables were 
deployed at two beaches in northern Illinois and designated 
as “SwimCast” methodology by investigators. The SwimCast 
models were more successful than the previous day’s bacteria 
concentrations at predicting whether the beach was safe for 
swimming (Olyphant and Pfister, 2005). Beach-specific mod-
els were developed for Ohio Lake Erie beaches using MLR 
techniques and 1 or 2 years of data (Francy and Darner, 2002; 
Francy and others, 2003). The explanatory variables included 
wave height, number of birds on the beach, lake-current direc-
tion, rainfall, turbidity, and wind direction and speed. 

The U.S. Geological Survey (USGS), in cooperation 
with the Cuyahoga County Board of Health, the Northeast 

Ohio Regional Sewer District, the Ohio Water Development 
Authority, and the Ohio Lake Erie Office, has been working 
to develop predictive models for five Lake Erie beaches in 
Ohio: Lakeview (Lorain, Ohio), Huntington Reservation (Bay 
Village, Ohio), Edgewater Park and Villa Angela (Cleveland, 
Ohio), and Lakeshore Park (Ashtabula, Ohio) (fig. 1). At Hun-
tington Reservation (“Huntington”), investigations are further 
along than at other beaches. In this report, we describe how 
data for the models were collected and how the models were 
developed and evaluated, using Huntington as an example. 
Procedures are discussed in a step-by-step fashion so that they 
can be used by beach managers, scientists, and others in other 
coastal areas to develop predictive models for local beaches. 
The steps in this report are by no means the only procedures 
that can be used to develop predictive models for beaches; 
rather, they are the methods used by the authors for the 
reported datasets and were included to make the procedures as 
simple and easy to follow as possible.
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Figure 1.  Locations of five Lake Erie beaches used to test development of predictive models.

�    Developing Models To Predict Exceedances of Recreational Water-Quality Standards at Coastal Beaches



Procedures for Developing Predictive 
Models

Procedures for developing predictive models involve data 
collection, exploratory data analysis, model development, 
model diagnostics and selection, and model output and valida-
tion. (Use the “go to “ links to jump to illustrative examples.)

Data Collection 

The most important step in any monitoring program is 
to collect a high-quality data set. At least two seasons of data 
should be collected for predictive-model development, and 
data from a third season should be used for model validation. 
Weather conditions, recreational use, and lake levels can differ 
from year to year, so collecting only one season of data may 
lead to development of predictive models that are calibrated on 
a small subset of possible environmental conditions. Ideally, 
data for predictive-model development should be collected  
7 days a week; however, economic considerations often 
preclude such an intensive data-collection effort. At the very 
least, four consecutive days of data are needed each week. In 
order to present water-quality information to the public before 
they head to the beach, samples are preferably collected in the 
morning. 

Collect samples for E. coli and turbidity in the area used 
for swimming; at some beaches more than one sample may 
be needed to represent water-quality conditions at the beach. 
Collect samples in knee- to waist-deep water, consistently 
from the same depth each day. Be sure to leave about 1 to 2 in. 
of headspace in each bottle to allow adequate mixing. Place 
samples on ice immediately after collection and analyze them 
within 6 hours. Detailed information about establishing beach 
sites, designing a monitoring program, and collecting samples 
is available in U.S. Environmental Protection Agency (2002a, 
chap. 4 and Appendix J). 

 
Go to example 1

Samples should be analyzed for E. coli and enterococci 
by use of a USEPA-recommended method (U.S. Environmen-
tal Protection Agency, 2002a, p. 4–17 to 4–19). Membrane 
filtration (MF) and most probable number (MPN) are the 
two types of methods that are currently used for enumerating 
bacterial indicators in ambient waters (U.S. Environmental 
Protection Agency, 2002a, p. 4-17). 

If more than one sample is collected at each beach (mul-
tiple-point samples), the sample can be analyzed separately or 
composited. If multiple-point samples are analyzed separately, 
calculate the daily average indicator concentration. (Average 
concentrations are used instead of median concentrations so as 
not to downweight the influence of extreme values.) To form a 

composite, shake each point sample to ensure homogeneity  
of the sample. Immediately after shaking, combine 100-mL 
aliquots from each point sample into a sterile bottle to form the 
composite sample. In a recent study of Lake Erie beaches,  
E. coli concentrations from averaged multiple-point samples 
and from composite samples were not significantly different and 
yielded similar measures of recreational water quality (Erin E. 
Bertke, U.S. Geological Survey, written commun., 2006). 

Ideally, turbidity should be measured onsite by use of a 
field turbidimeter or in situ by use of a water-quality meter. If 
the sample is transported to a laboratory for turbidity analysis, 
be sure to keep the sample on ice at all times. Because turbid-
ity instruments of different designs may not yield equiva-
lent results, use the same instrument throughout the project 
(Anderson, 2005).

 
Go to example 2

 Because models are only as good as the data used to 
develop them, strict quality-assurance and quality-control 
(QA/QC) practices are essential. Distribute field and labora-
tory protocols to all personnel to ensure that procedures are 
followed correctly and consistently. Do onsite QA/QC checks 
of procedures performed by field and laboratory personnel 
throughout the recreational season. Procedures for QA/QC 
laboratory practices are described in Francy and others (2005).

Quality-control samples are collected to measure sam-
pling and analytical variability or contamination potential. 
At least 10 percent of E. coli samples should be QC samples 
including split replicates, field blanks, and positive-control 
reference cultures. Split replicates consist of two bottles col-
lected by the same person at the sampling point, each bottle 
being analyzed twice. Field blanks measure contamination 
potential during sample collection and handling. To collect a 
field blank, pour 200–500 mL of sterile buffer into the bottle 
under actual field conditions. Positive-control reference cul-
tures are pure cultures of E. coli obtained from a commercial 
supplier or prepared in house. Carefully monitor results from 
QC samples, and retest and (or) take corrective measures when 
needed. For turbidity, measure duplicate aliquots from the 
same bottle, and repeat measurements that do not agree within 
established control limits. Send turbidity reference standards 
periodically to field or laboratory personnel analyzing the 
samples so that instruments and techniques can be checked for 
accuracy. 

Go to example 3
 
Obtain information from recently conducted sanitary 

surveys, talk to local water-resource managers, and (or) visit 
the beach several times to compile a list of possible variables 
that may be affecting bacterial-indicator concentrations at the 
beach. These are the variables that are used to develop predic-
tive models. 
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Obtain wave-height data of some kind, because wave 
height is an important variable at most Great Lakes 
beaches (Francy and others, 2003: Olyphant and Pfis-
ter, 2005). Wave heights can be estimated visually and 
placed into categories, measured by use of a graduated 
stick, or measured by use of in situ equipment; more 
precise measurements may lead to better predictive 
models. 

Count or carefully estimate the number of birds on the 
beach from a remote location so as not to disturb them. 

Obtain weather (rainfall and wind direction) and lake-
level data from the nearest reliable source; in most 
cases, weather data are available from a nearby airport. 
If local weather data are not available, consider install-
ing a rain gage or weather station near the beach or 
within the watershed. 

Obtain any other reliable data that may be available, 
such as streamflow from nearby tributaries (U.S. Geo-
logical Survey, 2006) and effluent discharge informa-
tion from wastewater-treatment plants or combined-
sewer overflows.

Go to example 4

Exploratory Data Analysis

For each beach, daily data are compiled into spreadsheets 
and reviewed at least weekly throughout the recreational sea-
son so that any errors can be quickly addressed. Equations and 
spreadsheet entries are checked by a second person. Because 
of the wide range of expected values, bacterial concentra-
tions are generally log

10
 transformed before exploratory data 

analysis. 
A good way to start is to examine summary statistics by 

year and for multiple years of data combined, including the 
median, minimum, and maximum bacterial-indicator concen-
trations and the number of the days the standard was exceeded. 
This will provide general water-quality information and may 
help to explain between-year differences in important explana-
tory variables. 

Go to example 5

After examining the yearly summary statistics, construct 
graphs of the bacterial-indicator concentrations and pos-
sible explanatory variables. Scatterplots are used to examine 
the relation between a continuous variable, such as rainfall, 
and bacterial-indicator concentrations and to ensure that the 
relation is linear. Plot each explanatory variable on the x-axis 
and average concentrations of E. coli or enterococci on the 
y-axis. Plots may indicate relations that are nonlinear. In those 
cases, options are to find a linearizing transformation, con-

•

•

•

•

sider expressing the variable in categories, or omit the variable 
for inclusion in the linear model. Consider using boxplots 
to understand the distribution of indicator concentrations as 
a function of variables that are not continuous but rather are 
grouped by categories, such as wave height and wind direc-
tion. Analyze plots by year and for all years combined.  

Go to example 6

After graphs have been constructed and analyzed, 
statistics are calculated to quantify the strength of the associa-
tions between bacterial-indicator concentrations and possible 
explanatory variables and to understand the relations among 
explanatory variables. A significance level of α < 0.05 is a 
default value generally used in traditional statistics, but there 
is no reason why other values should not be used (Helsel and 
Hirsch, 2002, chap. 4, p. 106–107). The significance level is 
the risk deemed acceptable by the decision maker of rejecting 
the null hypothesis when it is in fact true. 

Pearson’s r may be used to determine the linear associa-
tion between bacterial-indicator concentrations and continu-
ous variables (Helsel and Hirsch, 2002, chap. 8, p. 209); the 
null hypothesis, in this case, is that the correlation coefficient 
is zero. The Pearson’s r correlation coefficient helps identify 
which variables are possible important predictors of bacterial-
indicator concentrations. Pearson’s r correlation coefficients 
may also be used to determine the relations among explana-
tory variables; explanatory variables that are strongly related 
are “collinear” and may reduce the strength of a model. 

Analysis of variance (ANOVA) may be used to determine 
the relations between categorical variables and bacterial-indi-
cator concentrations; indicator data are placed into groups on 
the basis of variable categories. If bacterial-indicator data are 
not normally distributed, they are combined and ranked from 
lowest to highest and an ANOVA is computed on the ranks; 
this is a nonparametric ANOVA (Helsel and Hirsch, 2002, 
chap. 7, p. 157–163). If the ANOVA indicates differences 
between groups, the Tukey-Kramer multiple comparison test 
can be used to determine which groups differ from each other 
(Helsel and Hirsch, 2002, chap. 7, p. 195–200). In ANOVA, 
the null hypothesis is that an explanatory variable is not related 
to the bacterial-indicator concentration. Results from ANOVA 
show which variables are important and serve as guidelines in 
grouping categorical data for model development. 

Go to example 7

Graphs, correlations, and results from ANOVA and 
Tukey’s test are then examined together to determine the fol-
lowing:

Which explanatory variables had strong associations 
with bacterial-indicator concentrations? These include 
continuous or categorical variables with significant 
correlations to indicator concentrations or significant 

•
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differences in bacterial-indicator concentrations among 
groups, respectively. These are the variables that 
should be given a higher priority for inclusion in the 
model.

Was the relation consistent from year to year? These 
include variables with significant statistics from year 
to year and similar graphical relations. A consistent 
relation indicates that the model likely will do bet-
ter in predicting bacterial-indicator concentrations in 
subsequent years than models employing explanatory 
variables that do not show consistent relations. 

Was the relation influenced by one or two extreme 
values? If so, were these extreme values valid measure-
ments? After examining graphs for outliers, determine 
whether an outlier resulted from sampling and (or) ana-
lytical errors. If an outlier value was erroneous, omit 
it from the model. If the outlier appears to be a valid 
measurement, it should remain in the dataset; data 
collected in subsequent years may verify the validity of 
the outlier. 

Is the relation between the explanatory variable and 
E. coli linear? A linear relation can be identified by 
examining graphs of continuous data. If the data do 
not appear to lie along the straight line and some other 
pattern is evident, consider doing a data transformation 
of the explanatory variable that results in a linear rela-
tion, or omit the variable altogether (Helsel and Hirsch, 
2002, chap. 9, p. 228–229). 

Were two explanatory variables strongly correlated 
to each other (collinear)? These include continuous 
variables with significant relations to each other, such 
as two rainfall variables. It can also be two different 
variables that are correlated, such as lake level and day 
of the year. Consider using only one of the strongly 
correlated variables in the model.

Model Development

Explanatory variables that show significant relations to 
bacterial indicator concentrations are used to produce a list 
of possible MLR models. A means of doing this is the Mal-
lows’ Cp test (Mallows, 1973), by which the MLR models are 
ordered so that R2 is maximized and Mallows’ Cp statistic is 
minimized. The R2 of each model (coefficient of determina-
tion) is the fraction of the variation in E. coli concentrations 
that can be explained by the given combination of explanatory 
variables. The Cp statistic is a measure of the error in a model 
with a subset of explanatory variables relative to the error in 
a model that incorporates all potential explanatory variables. 
The steps in model development using the Mallows’ Cp test 
are as follows:

•

•

•

•

Include all variables with significant relations to indicator 
concentrations as potential variables in the model.

Produce an ordered list of models based on R2 and Mal-
lows’ Cp values. An example of commands used in a sta-
tistical package to determine the best 50 models is shown 
in Appendix 1, Example 1.1.

Models are then selected for further examination on the 
basis of the Mallows’ Cp ranking and a subjective component 
by considering the following: 

Does the model include explanatory variables that are 
strongly related to each other (collinear)? Collinear-
ity may destabilize the MLR equation. If so, consider 
eliminating these types of variable combinations from 
the model, especially if no additional information is 
gained from including related variables. 

Does the model include variables that are difficult or 
not practical to measure? If so, include those variables 
only if they significantly improve the model. 

Does the model include an explanatory variable that 
was shown to be important in exploratory data analy-
sis? Among similar Mallows’ Cp statistics, select the 
model that includes the variable or variables you feel 
are important at a particular beach. 

Go to example 8

Model Diagnostics and Selection

Model statistics are examined and diagnostic tests are 
done to identify the model(s) for each beach that provide the 
best linear, unbiased estimator of bacterial-indicator con-
centrations (Helsel and Hirsch, 2002, chap. 9, p. 228–237). 
These include determination of parameter estimates, Cook’s D 
values, partial residual plots, and residual plots. An example 
of commands used in a statistical package to determine these 
model parameters is shown in Appendix 1, Example 1.2; an 
example of the output is shown in Example 1.3. Performing 
well on model diagnostic tests and having a set of explana-
tory variables that seems reasonable and are relatively easy to 
collect are the criteria for choosing the “best” model for each 
beach. To determine the best model, consider the following:

Are the parameter estimates reasonable in magnitude 
and significant for each explanatory variable? Sign 
and magnitude of the parameter estimate should be in 
keeping with the expected effect of the explanatory 
variable on the predicted variable. The t-values and p-
values provide information on the significance of each 
parameter estimate and indicate whether or not the 
parameter is different from zero (Helsel and Hirsch, 
2002, chap. 9, p. 237–238). Variables with parameter 
estimates that are not significant should be considered 
for elimination. 

1.

2.

•

•

•

•
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Do any observations have high influence on the regres-
sion? Cook’s D is used as a measure of influence and 
leverage. The critical Cook’s D is calculated from the 
number of explanatory variables and observations. An 
MLR with several explanatory variables and more than 
30 observations would have a critical Cook’s D value 
in the range of 1.6 to 2.0 (Helsel and Hirsch, 2002, 
chap. 9, p. 248). A value higher than the critical range 
indicates that the observation has high influence on 
the regression. If this occurs, examine the value for 
possible errors or special conditions that may preclude 
its inclusion in the dataset. For example, if the observa-
tion forces a best-fit line away from a large portion of 
the data, consider omitting it from the dataset; this can 
be seen through a plot of measured versus predicted 
indicator concentrations. 

Do the partial residual plots indicate each variable is 
influencing the regression? In a partial residual plot, 
the bacterial-indicator concentration is regressed 
against all explanatory variables except for one, and 
the residuals are plotted against the omitted explana-
tory variable. These plots show how much influence 
the omitted variable has on the regression by eliminat-
ing the effects from other variables. If the partial plot 
for any variable does not show an expected pattern (lin-
ear for continuous variables, increasing or decreasing 
for categorical variables), consider a transformation for 
the explanatory variable or using an alternative model. 

Is the relation linear? Plot measured versus predicted 
indicator concentrations to ensure the relation is linear. 
Examine any outliers from the graph for data errors or 
commonalties. For example, if the outliers occurred on 
days when wave height was elevated, and wave height 
is not an explanatory variable in the model, consider 
using a model that includes wave height. 

Are the residuals evenly distributed around the zero-
residual line over the range of observations? Regres-
sion residuals are plotted against predicted bacte-
rial-indicator concentrations to determine whether 
residuals are similar in range and evenly distributed 
above and below the zero line over the entire range of 
observations. If they were not, consider transforming 
a variable, adding an additional variable, or selecting 
an alternative model. Examine the relation between 
regression residuals and date to look for autocor-
relation; tests and remedies for autocorrelation are 
described in Montgomery and Peck (1982). 

Go to example 9

•

•

•

•

Model Output and Validation

Two types of output may be produced by the MLR mod-
els. The first and obvious output is the predicted bacterial-indi-
cator concentration. Because prediction intervals have been 
shown to be fairly wide in earlier studies (Francy and Darner, 
1998; Francy and others, 2003), a second output variable may 
be used in the hope of getting a more accurate prediction—the 
probability of exceeding an appropriate target value. For the 
USGS studies in Ohio to date, the target has been exceed-
ance of the single-sample maximum bathing-water standard. 
The probability that the predicted value is greater than 235 
CFU/100 mL is computed as the probability of Student’s t 
being greater than x, with the degrees of freedom equaling the 
number of observations used in the regression minus the num-
ber of regression coefficients in the regression equation.

		  x = (log(235) –y / sep		   

where y is the regression estimate of the log
10

 E. coli and
sep is the standard error of prediction of y.

For each selected model, a probability associated with too 
great a risk to allow swimming is determined retrospectively—
this is called the threshold probability. Threshold probabili-
ties are determined by taking the dataset used to develop the 
model and finding the probability that is a reasonable balance 
between achieving a high number of correct responses and a 
low number of false negative responses. Computed probabili-
ties that are less than the threshold indicate that bacterial water 
quality is most likely acceptable for swimming. Computed 
probabilities equal to or greater than the threshold probability 
indicate that the water quality is most likely not acceptable and 
that a water-quality advisory may be needed. Model specifici-
ties and sensitivities for the threshold-probability technique are 
reported and compared to specificities and sensitivities associ-
ated with the current method used to assess recreational water 
quality. The sensitivity is the proportion of actual exceedances 
(concentrations > 235 CFU/100 mL) that are predicted cor-
rectly (by the model or the current method) as being above the 
standard. The specificity is the proportion of nonexceedances 
that are correctly predicted as being below the standard.  

Go to example 10

Models perform fairly well when predicting responses 
to data used to develop them. A better test of a model is to 
predict responses for an independent period. For model valida-
tion, data are collected during an independent year (a year 
whose data were not used for model development) to compare 
the model’s performance with the current method for assessing 
recreational water-quality. After validation tests, the additional 
year of data can be added to the model-development process, 
and a new model with another year of data is developed for 
use in subsequent years. 

Go to example 11
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The Future of Predictive Modeling
The procedures described in this report can be used to 

develop predictive models at local beaches; all that is needed 
is an existing monitoring program, a basic knowledge of statis-
tics, and computer software. Equipment costs for data collec-
tion are minimal, because most of the data required for predic-
tive models are available from other agencies or are easily 
measured by field technicians at the beach. As a model proves 
to be a useful tool at a particular beach, beach managers may 
decide to invest in more expensive equipment to measure 
environmental conditions in real time. Also, if validation tests 
are successful, beach managers may also decide to develop an 
Internet-based system that provides model predictions to the 
beachgoing public. An Internet-based system enables a beach 
manager to provide reliable estimates of recreational water 
quality on weekends. Currently, weekend estimates are not 
commonly available because of the time and cost of laboratory 
analysis. 

Predictive modeling is a dynamic process meant to 
augment existing beach-monitoring programs, not to replace 
them. Models should be continuously validated and refined to 
improve predictions and better protect public health. 

Go to example 12

Summary
State recreational water-quality standards are based on 

concentrations of indicator organisms, such as E. coli. Because 
the analytical methods for enumerating these organisms take 
at least 18–24 hours to complete, some agencies have turned 
to predictive modeling to obtain near-real-time estimates of 
recreational water quality. Empirical predictive models, devel-
oped through statistical techniques such as multiple linear 
regression, use easily measured environmental and water-qual-
ity variables to estimate bacterial-indicator concentrations or 
the probability of exceeding target concentrations. 

The USGS has been working with local agencies to 
develop empirical predictive models for five Lake Erie beaches 
in Ohio. At Huntington Reservation, Bay Village, Ohio, 
investigations are further along than at other beaches; six years 
of data have been collected and a model has been validated 
during an independent year. In this report, Huntington is used 
as example to describe how data for models were collected 
and how models were developed and evaluated. Procedures are 
discussed in a step-by-step fashion so that they can be used by 
beach managers, scientists, and others in other coastal areas to 
develop predictive models for local beaches. The steps in this 
report are by no means the only procedures that can be used 
to develop predictive models for beaches; rather, they are the 
methods used by the authors for the reported datasets.

The steps to develop predictive models include data col-
lection, exploratory data analysis; model development, selec-
tion, and diagnosis; determination of model output values; 
and model validation and refinement. At Huntington, data 
were collected or compiled during the recreational seasons 
of 2000–2005 to determine E. coli concentrations, turbid-
ity, bird counts, water temperature, categorical wave heights, 
lake levels, rainfall amounts, and wind directions. A predic-
tive model was developed for the 2000–2004 data; this model 
was validated in 2005, and a new model was developed from 
2000–2005 data. 

During exploratory data analysis at Huntington, correla-
tions between E. coli concentrations and explanatory variables 
showed that the strength and significance of correaltions can 
differ from year to year for some variables, whereas other 
variables were consistently and significantly related to E. coli. 
At Huntington, R

d-1
, turbidity, and log

10
 turbidity were positively 

and significantly related to E. coli for all years tested. Combin-
ing two days of rainfall data (Rw48) improved the correlations 
to E. coli over single-day rainfall variables. Categorical data 
were examined by use of boxplots and analysis of variance. E. 
coli concentrations increased with increasing wave height but 
were not significantly related to wind direction. 

A list of possible models, along with their Mallows’ 
Cp statistic and R2 values were developed for the Hunting-
ton 2000–2004 data. The best model contained the variables 
wave height, Rw48, and log

10
 turbidity and explained 38 

percent of the variability of E. coli concentrations (Hun-
tington 2000–2004 model). The Huntington 2000–2004 
model passed regression diagnostic and hypothesis tests. 
Two outputs from the model were calculated: (1) the 
predicted E. coli concentration and (2) the probability that 
the single-sample maximum bathing-water standard of 235 
CFU/100 mL E. coli will be exceeded. A threshold probabil-
ity of 29 percent was established for Huntington 2000–2004 
model. The model was validated in 2005 and yielded more 
correct responses and better predicted exceedance of the bath-
ing-water standard than the current method for assessing recre-
ational water quality (use of the previous day’s E. coli concen-
tration). In fact, the current method failed to accurately predict 
any of the eight exceedances, whereas the model accurately 
predicted four of them. A new model based on 2000–2005 
data was developed that explained 42 percent of the vari-
ability of E. coli concentrations and included the same three 
variables plus day of the year (Huntington 2000–2005 model). 
Predictions based on the Huntington 2000–2005 model and 
the threshold probability have been presented to the public 
through an Internet-based “nowcasting” system since May 30, 
2006; the model will continue to be validated and refined. 

Predictive modeling is a dynamic process meant to 
augment existing beach-monitoring programs, not to replace 
them. Models should be continuously validated and refined 
to improve predictions and better protect public health. The 
procedures described in this report can be used to develop 
predictive models at other local beaches. 
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Examples From Beach Studies at Huntington Reservation, Bay Village, Ohio

Example 1

Data were collected at Huntington, Bay Village, Ohio, during the recreational seasons (May through September) of 
2000–2005. Data from 2000–2004 were used to develop a predictive model, and data from 2005 were used to validate the 
model. Samples were collected by the Cuyahoga County Board of Health (CCBH), Monday through Thursday mornings at two 
sampling points in the swimming area in thigh-deep water using a grab-sampling technique (Myers and Wilde, 2003). Samples 
were collected in 500-mL autoclaved polypropylene bottles, with 1 to 2 in. of headspace in each bottle for proper mixing. The 
bottles were placed on ice within 10 minutes of sample collection.

Back to page 3

Central sampling location, Huntington Reservation, Bay Village, Ohio. (Photo by Donna Francy, 
U.S. Geological Survey.)

Samples are collected in a 500-mL autoclaved polypropylene bottle using a grab-sampling technique. 
(Photo by Donna Francy, U.S. Geological Survey.)
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Example 2

At Huntington, water samples were transported to the Cuyahoga County Sanitary Engineers laboratory and analyzed for 
E. coli and turbidity within 3 hours of collection. In Ohio, E. coli concentrations are used to monitor recreational water qual-
ity. Each point sample was analyzed for concentrations of E. coli by use of the mTEC (U.S. Environmental Protection Agency, 
2000) or modified mTEC (U.S. Environmental Protection Agency, 2002b) membrane-filtration methods. A daily E. coli con-
centration was calculated by averaging results from two sampling points. An aliquot of water was removed from the bottle to 
measure turbidity in the laboratory by use of a turbidimeter. 

Filter being applied to suction device during membrane-filtration procedure. (Photo by Donna  
Myers, U.S. Geological Survey.)

Differing densities of bacteria colonies resulting from various plated sample volumes , modified  
mTEC method. Magenta colonies are counted as presumptive E. coli. (Photo by Donna Francy,  
U.S. Geological Survey.)

Back to page 3
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Example 3

For Huntington, field and laboratory protocols were distributed by the USGS to all personnel. The USGS did several onsite 
field and laboratory QA/QC checks each year, and corrective actions were taken as needed. Quality-control samples were rou-
tinely analyzed during 2004 and 2005, including field blanks and replicate samples for E. coli. The laboratory analyzed positive-
control reference cultures that were pure cultures of E. coli ATCC 10798 (American Type Culture Collection, Rockville, Md.) 
prepared by the USGS and distributed to field personnel by overnight mail. At the same time, personnel in the USGS laboratory 
plated the pure culture, and results were compared. For duplicate turbidity measurements, those measurements >10 NTRU that 
did not agree within 10 percent or <10 NTRU that did not agree within 1 NTRU were repeated. Turbidity reference standards 
were sent once in 2004 and twice in 2005 to the analyst; corrective actions were taken if results were greater than 25 percent dif-
ferent from standard values.

Back to page 3

Turbidimeter and water samples. Turbidities, in nephelometric turbidity ratio units (NTRU), are below the samples. For 
most samples at Huntington Reservation, turbidity was less than 100 NTRU. (Photos provided by Stephen Lawrence,  
U.S. Geological Survey.)
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Example 4

Environmental and water-quality data for predictive model development at Huntington were collected by field techni-
cians or compiled from other sources. Field technicians counted the number of birds on the beach upon arrival and estimated 
wave-height categories at the time of sample collection. Wave heights were placed into four categories based on minimum and 
maximum heights in each wave train: (1) 0 to 2 ft, (2) 1 to 3 ft, (3) 2 to 4 ft, and (4) > 3 to 5 ft. Wave heights in 2005 were also 
measured using a second, more accurate method: A survey rod was placed in the water at the sampling location for 1 minute, 
during which field crews noted the minimum and maximum heights. Lake-level data were obtained from the National Oce-
anic and Atmospheric Administration (NOAA) station in Cleveland (NOAA ID 9063053) (National Oceanic and Atmospheric 
Administration, 2005a). 

Rainfall and wind-direction data were compiled from the National Weather Service local climatology data station at Hop-
kins International Airport (National Oceanic and Atmospheric Administration, 2005b). “R

d-1
” was the amount of rain, in inches, 

that fell in the 24-hour period (9 a.m. to 9 a.m.) preceding the morning sampling. Similarly, “R
d-2

” and “R
d-3

” were amounts of 
rain that fell in 24-hour periods 2 days and 3 days, respectively, preceding the morning sampling. Weighted rainfall variables 
were calculated so that the most recent rainfall received the highest weight, as follows:

Rw72= (3* R
d-1

 +2* R
d-2

 + R
d-3

)

Rw48= (2* R
d-1

 + R
d-2

)

“Wind direction 24” was calculated by vector addition of hourly wind directions and wind speeds for the 24-hour period 
preceding sampling (table 1). A vector is a quantity that has both magnitude and direction. A discussion of trigonometric 
functions and vector math is beyond the scope of this report; a detailed description is provided in Finney and Thomas (1989). 
Wind directions were then placed into categories by examining patterns in graphs of E. coli concentrations and wind direction 
24; processes affecting E. coli were also considered to ensure the wind direction 24 categories could be explained and seemed 
reasonable. For example, if one suspected a source of fecal contamination was west of the beach, higher E. coli concentrations 
associated with easterly wind directions would seem reasonable.

(Continued on next page)
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Example 4—Continued

Table 1.  Example of computing “wind direction 24” by vector addition of hourly wind directions and wind speeds 
for the 24-hour period preceding sampling for Huntington.

[mi/h, miles per hour; --, not applicable]

 
Date and time

Wind 
direction 
(degrees)

Quadrant
Wind 
speed
(mi/h)

Cumulative Resultant 
vector  

magnitude
(mi/h)

Resultant 
vector 

direction
(degrees)

I II III IV X Y

05/01/2005	 9:53 280 0 0 0 1 15 -14.772 2.605 -- --

05/01/2005	 10:53 280 0 0 0 1 15 -29.544 5.209 -- --

05/01/2005 	11:53 240 0 0 1 0 11 -39.071 -0.291 -- --

05/01/2005 	12:53 280 0 0 0 1 11 -49.903 1.620 -- --

05/01/2005 	13:53 250 0 0 1 0 10 -59.300 -1.801 -- --

05/01/2005 	14:53 300 0 0 0 1 12 -69.693 4.199 -- --

05/01/2005 	15:53 280 0 0 0 1 10 -79.541 5.936 -- --

05/01/2005 	16:53 280 0 0 0 1 14 -93.328 8.367 -- --

05/01/2005	 17:53 190 0 0 1 0 10 -95.064 -1.481 -- --

05/01/2005 	18:53 220 0 0 1 0 14 -104.064 -12.206 -- --

05/01/2005 	19:53 200 0 0 1 0 9 -107.142 -20.663 -- --

05/01/2005 	20:53 250 0 0 1 0 5 -111.840 -22.373 -- --

05/01/2005 	21:53 250 0 0 1 0 3 -114.659 -23.399 -- --

05/01/2005 	22:53 310 0 0 0 1 10 -122.320 -16.971 -- --

05/01/2005 	23:53 270 0 0 1 0 5 -127.320 -16.971 -- --

05/02/2005 	 0:53 220 0 0 1 0 6 -131.176 -21.568 -- --

05/02/2005 	 1:53 230 0 0 1 0 7 -136.539 -26.067 -- --

05/02/2005 	 2:53 230 0 0 1 0 8 -142.667 -31.209 -- --

05/02/2005 	 3:53 220 0 0 1 0 6 -146.524 -35.806 -- --

05/02/2005 	 4:53 220 0 0 1 0 8 -151.666 -41.934 -- --

05/02/2005 	 5:53 230 0 0 1 0 6 -156.262 -45.791 -- --

05/02/2005 	 6:53 240 0 0 1 0 8 -163.191 -49.791 -- --

05/02/2005 	 7:53 250 0 0 1 0 13 -175.407 -54.237 -- --

05/02/2005 	 8:53 270 0 0 1 0 13 -188.407 -54.237 196 254

0 0

Sample computation of the 24-hour resultant vector for wind direction
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Example 5 

In Ohio, 235 colony forming units per 100 milliliter (CFU/100 mL) is used as a single-sample maximum bathing-water 
standard (Ohio Environmental Protection Agency, 2003) for beach notification and closure decisions, effective December 2005 
(U.S. Environmental Protection Agency, 2004). Although the geometric mean of 126 CFU/100 mL was used in Ohio before 
December 2005, the single-sample maximum was used as a benchmark to evaluate water quality and model performance at  
Huntington in this report. Median annual concentrations of E. coli at Huntington ranged from 34 to 110 CFU/100 mL for the 
6 years of this study (table 2). The percentage of days that the single-sample maximum bathing-water standard was exceeded 
ranged from 11.1 percent in 2003 to 23.5 percent in 2000.

Table 2.   Summary statistics of Escherichia coli (E. coli) concentrations at Huntington, 2000–2005. 

[CFU/100 mL is colony-forming units per 100 milliliters]

Year Number of 
samples

Daily E. coli concentrationa 
(CFU/100 mL)

Number (percent) of days 
bathing-water standard was 

exceededb
Median Minimum Maximum

2000 51 110 8 6,600 12 (23.5)

2001 50 44 3 1,200 10 (20.0)

2002 52 43 4 1,800 11 (21.2)

2003 54 58 2 730 6 (11.1)

2004 54 31 3 1,500 7 (13.0)

2005 58 34 1 2,400 8 (13.8)
a The daily concentrations of E. coli were determined by calculating the average of two or three point samples.

b Number of days the concentration of E. coli in water exceeded the single-sample maximum bathing-water standard of 
235 CFU/100 mL.

Back to page 4
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Example 6

Two example scatterplots of the Huntington 2000–2004 data are shown in figure 2. Turbidity shows a positive linear rela-
tion to E. coli (fig. 2, left-hand graph). No extreme values were shown to appreciably influence the relation between E. coli and 
turbidity. Examining this relation by year in scatterplots confirmed a consistent relation from year to year (data not shown). In 
contrast, the relations between E. coli and day of the year differed from year to year (fig. 2, right-hand graph): (a) triangles for 
2000 show a negative relation, (b) circles for 2001 and 2002 show a positive relation, and (c) squares for 2003 and 2004 show a 
nearly horizontal line indicating no relation. The differences between each year decreased the usefulness of this variable for pre-
dictive purposes. In addition, the relation for 2000 was strongly influenced by three extreme values that were greater than 2,000 
CFU/100 mL and were associated with high amounts of rainfall that spring. 

Categorical data at Huntington for 2000–2004 also were graphically examined. E. coli concentrations increased with increas-
ing wave height (fig. 3, left-hand graph). The median E. coli concentration for wave-height category 3–6 ft exceeded the single-
sample maximum bathing-water standard of 235 CFU/100 mL and was just below the standard for wave height category 2–4 ft. In 
contrast, differences in E. coli concentrations among 24-hour wind-direction categories were not evident (fig. 3, right-hand graph).

Figure 2.   Huntington, 2000–2004, relations between Escherichia coli concentrations and turbidity and day of the year. (r is the 
correlation coefficient, and p is the significance of the correlation for all years combined; least-square regression lines for each 
year are included. CFU/100 mL is colony-forming units per 100 milliliters; NTRU is nephelometric turbidity ratio units.)

Figure 3.  Huntington, 2000–2004, 
Escherichia coli concentrations 
in water, by wave height and 
24-hour wind direction. (Results 
of Tukey’s test are presented as 
letters; concentrations with at least 
one letter in common do not differ 
significantly. The Ohio single-sample 
maximum bathing-water standard 
of 235 CFU/100 mL is indicated 
by dotted lines and used as a 
benchmark.  CFU/100 mL is colony-
forming units per 100 milliliters.)

Back to page 4
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Example 7

Correlations between E. coli concentrations and potential explanatory variables for data collected during 2000–2004 
are shown in aggregate and by year for Huntington (table 3, left side of the solid line). R

d-1
, turbidity, and log

10
 turbidity were 

positively and significantly correlated to E. coli for all 5 years. The variable with the strongest correlation to E. coli for all years 
combined was log turbidity (r = 0.54). Day of the year, R

d-2
, water temperature, and lake level were significantly correlated to 

E. coli during some years, but not all. Day of the year and water temperature showed significant correlations that were positive 
during 1 or 2 years and negative during 1 year. Because both R

d-1
 and R

d-2
 were significantly correlated to E. coli for all years 

combined, Rw48 was included as an additional variable. Rw48 improved the correlations to E. coli over single-day rainfall vari-
ables for all single years except for 2001 and improved the correlations for 2000–2004 combined. R

d-3
 and number of birds were 

not positive and significantly correlated to E. coli during any of the years tested. Although number of birds was significantly 
correlated to E. coli during 2000, the correlation was negative; this does not seem reasonable, because one would expect higher 
E. coli concentrations with higher bird numbers.

Table 3.  Pearson’s r correlations between log10 Escherichia coli concentrations and explanatory variables for 
Huntington, 2000–2005.  

[Relations that were significant at p< 0.05 are in bold and italic]

Variables 2000 2001 2002 2003 2004 2000-2004 2005 2000-2005

Birds, number at  
 time of sampling

-0.35 0.12 -0.17 -0.16 -0.09 -0.10 0.20 0.03

Day of the year -0.38 0.35 0.35 0.02 0.14 0.09 0.36 0.15

R
d-1

a 0.47 0.27 0.24 0.36 0.50 0.34 0.44 0.36

R
d-2

a 0.28 -0.06 -0.02 0.20 0.27 0.20 0.32 0.22

R
d-3

a 0.03 -0.04 -0.12 0.10 -0.09 0.08 0.13 0.08

Rw48b 0.50 0.23 0.28 0.38 0.55 0.37 0.53 0.40

Turbidity 0.60 0.50 0.49 0.35 0.51 0.51 0.38 0.48

Log
10

 turbidity 0.63 0.58 0.38 0.49 0.54 0.54 0.40 0.51

Water temperature -0.36 0.51 0.23 -0.06 0.26 0.13 -0.23 0.002

Lake level -0.12 -0.15 -0.30 0.05 0.09 -0.11 -0.34 -0.16

Wave-height rod -- -- -- -- -- -- 0.48 --
a R

d-1
 was the rainfall amount, in inches, at Hopkins International Airport, Cleveland, Ohio, in the 24-hour period preceding 

sampling;  R
d-2

 and R
d-3

 were the rainfall amounts 2 and 3 days, respectively, before sampling. 

b Rw48 was the rainfall amount, in inches, at Hopkins International Airport, Cleveland, Ohio, in the 48-hour period before sam-
pling, with the most recent rainfall receiving the most weight.

(Continued on next page)
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Example 7—Continued

The relations among explanatory variables at Huntington for 2000–2004 data were also examined (table 4). Strong signifi-
cant correlations were found for Rw48 and the two single-day rainfall variables; this is not surprising because R

d-1
 and R

d-2
 are 

components of Rw48. Day of the year and water temperature also were strongly correlated. Combining these variables into a 
model may cause problems with collinearity. Weaker, but significant correlations were those between turbidity and rainfall vari-
ables or date. The correlation between day of the year and lake level was negative and significant, indicating that, as the summer 
progressed, lake levels decreased. The variables that were weakly correlated will probably not cause problems with collinearity 
in the model.  

Results of ANOVA and Tukey’s test for data collected 2000–2004 on two categorical variables—wave height and wind 
direction—are shown in figure 3. Statistically significant differences in E. coli concentrations were found between wave-height 
category 0 to 2 ft and all other categories; wave-height category 3 to 6 ft differed significantly from the two lowest categories, 
but not from the 2 to 4 ft category (fig. 3, example 6). No statistically significant differences were found in E. coli concentrations 
among 24-hour wind direction categories (fig. 3, example 6).

Table 4.  Pearson’s r correlations among explanatory variables for Huntington, 2000–2004. 

[Relations that were significant at p < 0.05 are in bold and italic]

Rd-1
a Rd-2

a Rw48b Turbidity Log turbidity
Water  

temperature
Day of the 

year

R
d-2

 0.18 -- -- -- -- -- --

Rw48 0.89 0.61 -- -- -- -- --

Turbidity 0.18 0.18 0.23 -- -- -- --

Log
10

 turbidity 0.14 0.15 0.18 0.83 -- -- --

Water temperature -0.06 -0.13 -0.11 -0.16 -0.28 -- --

Day of the year -0.07 -0.10 -0.10 -0.14 0.23 0.70 --

Lake level 0.07 0.04 0.08 0.01 0.08 -0.13 -0.20
a R

d-1
 was the rainfall amount, in inches, at Hopkins International Airport, Cleveland, Ohio, in the 24-hour period preceding sampling; R

d-2
 was 

the rainfall amount 2 days before sampling. 

b Rw48 was the rainfall amount, in inches, at Hopkins International Airport, Cleveland, Ohio, in the 48-hour period before sampling, with the 
most recent rainfall receiving the most weight.

Back to page 4
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Example 8

The following variables showed consistent significant relations with E. coli for 2000–2004 and were used to develop a list 
of models for Huntington: wave height, R

d-1
, Rw48, turbidity, and log turbidity. The resultant possible models, along with their 

Mallow’s Cp statistic and R2 values, are listed in table 5. For Huntington 2000–2004, models that included turbidity and log 
turbidity together, or Rw48 and R

d-1
 together, were not considered because of potential problems with collinearity. Use of single 

variables produced models with low R2 values ranging from 0.11 for R
d-1

 to 0.29 for log
10

 turbidity and high Mallows’ Cp statis-
tics. Model 1—wave height, Rw48, and log

10
 turbidity—had the lowest Mallows’ Cp statistic (3.240) and the highest R2 (0.38) 

among all the models. The next model on the list without related variables, model 4, had a slightly higher Mallows’ Cp statistic 
than model 1. Model 1, however, was chosen for further testing because it included two days of rainfall instead of one; from the 
exploratory data analysis, two days of weighted rainfall improved the relation to E. coli over one day of rainfall. The equation 
for model 1 (Huntington 2000–2004 model) is as follows:

Log
10

 (E. coli) = 0.144*wave height + 0.301*Rw48 + 0.563* log
10

 turbidity + 0.914

Table 5.  List of possible models and the Mallows’ Cp test for Huntington, 2000–2004.

 [R2 is the coefficient of determination. The Cp statistic (Mallows, 1973) is a measure of the error in a model with a subset of 
explanatory variables, relative to the error in a model that incorporates all potential explanatory variables. Log turbidity is 
log

10
 turbidity. R

d-1
 was the rainfall amount, in inches, at Hopkins International Airport, Cleveland, Ohio, in the 24-hour period 

preceding sampling. Rw48 was the rainfall amount, in inches, at Hopkins International Airport, Cleveland, Ohio, in the 48-
hour period before sampling, with the most recent rainfall receiving the most weight.]

Model
Number of  
variables

Cp
Adjusted 

R2 Variables in model

1 3 3.240 0.38 Wave height, Rw48, log turbidity

2 4 4.470 0.38 Wave height, Rw48, log turbidity, turbidity

3 4 4.802 0.38 Wave height, R
d-1

, Rw48, log turbidity

4 3 5.999 0.38 Wave height, R
d-1

, log turbidity

5 2 11.200 0.36 Rw48, log turbidity

6 3 12.033 0.36 R
d-1

, Rw48, log turbidity

7 2 12.290 0.36 R
d-1

, log turbidity

8 3 12.734 0.36 Wave height, Rw48, turbidity

9 3 16.006 0.35 Wave height, R
d-1

, turbidity

10 2 28.219 0.32 Rw48 , turbidity

11 2 29.080 0.32 Wave height, log turbidity

12 2 29.440 0.32 R
d-1

, turbidity

13 2 34.349 0.30 Wave height, Rw48 

14 2 36.179 0.30 Wave height, turbidity

15 1 39.136 0.29 Log turbidity

16 2 41.965 0.28 Wave height, R
d-1

17 1 53.177 0.25 Turbidity

18 1 67.874 0.22 Wave height

19 1 101.64 0.13 Rw48 

20 1 109.06 0.11 R
d-1

Back to page 5
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Example 9

Regression diagnostics were done on the Huntington 2000–2004 model. The parameter estimates were reasonable in value 
and significant (table 6), and no observation was found to have a Cook’s D above the critical value (data not shown). The partial 
residual plots showed patterns of a general increase in each of the explanatory variables with increases in E. coli (fig. 4). Plots 
of the residuals versus predicted values showed that there were generally constant variances throughout the data sets; although 
residuals were smaller for higher predictive values, this was not a concern because there were fewer observations at the high end 
than at the low end (fig. 5). A plot of measured and predicted E. coli concentrations (fig. 6) showed that the relation was linear, 
although there was considerable error in the predicted values.

Table 6.  Huntington 2000–2004 model, statistics and parameter estimates. 

[Log turbidity is log
10

 turbidity. Rw48 was the rainfall amount, in inches, at Hopkins International Airport, Cleveland, Ohio, in the 48-hour 
period before sampling, with the most recent rainfall receiving the most weight] 

Model 1 regression
Dependent variable: Log Escherichia coli

Source Degrees of freedom
Sum of 
squares

Mean square F value P value

Model 3 42.48 14.16 52.45a <0.0001

Error 244 65.87 0.27

Corrected total 247 108.35

Root mean square error 0.52 R-squared 0.39

Dependent 1.74 Adjusted R-squared 0.38b

Coefficient variance 29.77

Parameter estimates

Variable Degrees of freedom
Parameter 
estimate

Standard error t value P value

Intercept 1 0.914 0.079 11.560 <0.0001c

Wave height 1 0.144 0.046 3.160 0.0018c

Rw48 1 0.301 0.057 5.280 <0.0001c

Log turbidity 1 0.563 0 5.760 <0.0001c

a The F-test indicates that the regression model explains a significant proportion of the variance in the dependant variable.

b The adjusted R-squared indicates the fraction of the variation in E. coli concentration explained by the model, adjusted for number of 
variables in the model.

c P values of t-tests indicate that each of the parameter estimates are statistically different from zero.

(Continued on next page)
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Example 9—Continued

Figure 4. Partial residual plots of explanatory variables for the Huntington 2000-2004 model:
(A) weighted 48 hour rainfall, (B) wave height, and (C) log10 turbidity. (CFU/100 mL is 
colony-forming units per 100 milliliters.)
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Figure 4.  Partial residual plots of explanatory variables for the Huntington 2000–2004 model. A, Weighted 
48-hour rainfall. B, Wave height. C, Log10 turbidity. (CFU/100 mL is colony-forming units per 100 milliliters.)
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Example 9—Continued

Back to page 6

Figure 6.  Measured and predicted Escherichia coli concentrations for the Huntington 
2000–2004 model. (CFU/100 mL is colony-forming units per 100 milliliters.)

Figure 5.  Predicted Escherichia coli concentrations and residuals for the Huntington 
2000–2004 model. (CFU/100 mL is colony-forming units per 100 milliliters.)
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Example 10

The Huntington 2000–2004 model was used to predict output values for the data used to develop the model. Predicted E. 
coli concentrations were output by the statistical software. Determining exceedance probabilities require further calculations;  
the Fortran program to make these calculations is included in Appendix 1, Example 1.4.  

When analyzing predicted E. coli concentrations as output values, calculation of a target value is not needed because the 
target is, by default, the bathing-water standard. When analyzing exceedance as a probability, a threshold probability must be 
determined—the lowest (most conservative) probability that produces the most correct responses and (or) fewest false negative 
responses (Francy and others, 2003). This concept can be best explained by examining the plot for the Huntington 2000–2004 
best model with a 29-percent threshold (fig. 7) and then explaining the process used to determine the 29-percent threshold. The 
plot is divided into four quadrants by a vertical line through 235 CFU/100 mL on the x-axis and a horizontal line through the 
threshold probability of 29. The four quadrants are 

Correct nonexceedance. E. coli concentration met the standard (was less than 235 CFU/100 mL), and the predicted 
probability of exceedance was below the threshold.

False positive. E. coli concentration met the standard, but the predicted probability of exceedance was above the  
threshold.

Correct exceedance. E. coli concentration exceeded the standard, and the predicted probability of exceedance was  
above the threshold.

False negative. E. coli concentration exceeded the standard, but the predicted probability of exceedance was below  
the threshold. 

By raising or lowering the horizontal line, one can determine the best threshold probability. This determination is somewhat 
subjective. For example, a threshold of 50 would have produced the highest number of correct responses (215) but would also 
have produced a high number of false negatives (28). False negative responses are especially troubling because the recreational 
water quality is determined to be acceptable when in fact the standard was exceeded. Thresholds between 35 and 45 do little to 
reduce the number of false negatives. Selecting a threshold of 29, however, still maintains a high number of correct responses 
(210) but yet reduces the false negatives to a more acceptable level (18) and represents a compromise between false negative and 
false positive responses. In addition, setting the threshold to a lower value such as 29 enables the beach manager to err on the 
safe side. 

•

•

•

•

(Continued on next page)

Figure 7.  Establishment of the threshold probability for the Huntington 2000–2004 model. (CFU/100 mL is colony-forming units  
per 100 milliliters.)
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Example 10—Continued

Model responses were compared to use of the previous day’s E. coli concentration (table 7). For the Huntington 2000–2004 
model, the percentages of correct predictions, specificities, and sensitivities were higher using the model than using the previous 
day’s E. coli concentration. Model specificities were relatively high for probability and predicted E. coli outputs (90.2 and 97.5 
percent, respectively), but model sensitivities were lower (59.1 and 36.4 percent, respectively). When the standard was exceeded 
(sensitivity), use of threshold probabilities resulted in a better response than use of the predicted E. coli or previous day’s E. coli.

Table 7.  Huntington, numbers of correct responses and the sensitivities and specificities of model responses 
with indicated thresholds and predicted Escherichia coli (E. coli) concentrations compared to previous day’s E. coli 
concentrations (current method for assessing recreational water quality).

Beach model years Threshold probability
Number of 
samples

Response (percent)

Correct predic-
tions 

Specificitya Sensitivityb

2000–2004 29 248 84.7 90.2 59.1

Predicted E. coli 248 86.7 97.5 36.4

Previous day’s E. coli 171 76.6 86.5 30.0

2000–2005 27 306 85.9 90.9 61.5

Predicted E. coli 306 85.6 96.4 32.7

Previous day’s E. coli 213 76.5 87.0 25.0
a Specificity was the proportion of nonexceedance responses that were correctly predicted as safe for swimming.

b Sensitivity was the proportion of exceedance responses that were correctly predicted as unsafe for swimming.

Back to page 6
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Example 11

The Huntington 2000–2004 model with the 29-percent threshold was validated in 2005, and model responses were com-
pared to using the previous day’s E. coli concentrations (fig. 8). The percentage of correct predictions using the previous day’s 
E. coli concentrations (75.6 percent) was lower than using either model output (82.0 and 88.0 percent). The specificities found 
using the model outputs and the previous day’s E. coli concentration were in the same range (88.1 to 95.2 percent); however, 
using the previous day’s E. coli concentration resulted in fewer total predictions (41) than the model (50) because samples were 
not collected on Sundays. The specificity was slightly higher using the predicted E. coli (95.2 percent) than the probability (88.1 
percent) as the model output variable. The difference between the model responses and the current method response is most 
pronounced for sensitivities. Using either output values from the model, 4 out of 8 exceedances during 2005 were correctly pre-
dicted (50 percent sensitivity). Using the previous day’s E. coli, none of the exceedances were predicted, resulting in a sensitivity 
of zero.

The data collected at Huntington during 2005 were added to the 2000–2004 dataset, and the model-development process 
was followed with the additional year of data. Correlation coefficients that describe the relations between explanatory variables 
and E. coli for 2005 and for 2000–2005 combined are listed in table 3 (right side of the solid line) for a comparison to earlier 
years. As in 2000–2004, the relations between E. coli and R

d-1
, R

d-2
, Rw48, turbidity, and log

10
 turbidity were significant for the 

2000–2005 dataset. With the additional year, day of the year and lake level were significantly related to E. coli for 2000–2005 
and were, therefore, added as possible explanatory variables during the 2000–2005 model-development process. Wave height 
measured with a survey rod was significantly related to E. coli during 2005 but was not used in the model because only 1 year of 
wave-height data were collected in this manner. 

A list of possible models was developed for Huntington based on 2000–2005 data along with the Mallows’ Cp statistic. 
The best model contained the variables wave height, Rw48, log

10
 turbidity, and day of the year with an adjusted R2 of 0.42, an 

improvement over the R2 for the Huntington 2000–2004 model. The equation for the Huntington 2000–2005 model is as follows:

Log
10

 (E. coli) = 0.134*wave height + 0.293*Rw48 + 0.592*log turbidity + 0.006*day of the year – 0.219

The new model passed regression diagnostics and hypothesis tests. The established threshold probability of 27 percent for 
the Huntington 2000–2005 model yielded similar responses as the 29 percent threshold for the Huntington 2000-2004 model 
(table 7). The sensitivity for the Huntington 2000–2005 model (61.5 percent) using the threshold probability was considerably 
higher than the sensitivity achieved using the previous day’s E. coli (25.0 percent) or the predicted E. coli concentration (32.7 
percent). The 2000–2005 Huntington model will be validated in 2006 and used as a predictive tool by beach managers.

Continued on next page
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Figure 8.  Huntington 2005, performance in assessing recreational water-quality of the Huntington 
2000–2004 model. A, Probability output, and B, predicted Escherichia coli (E. coli) output compared to 
C, current method. (CFU/100 mL is colony-forming units per 100 milliliters.)
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Screen shot of the Ohio Nowcasting Beach Advisories Web page for a day in summer 2006.

Example 12

An Internet-based “nowcasting” system was developed for Lake Erie beaches and is being used for Huntington at the date 
of writing (August 2006) (see http://www.ohionowcast.info); the system became operational on May 30, 2006. Recreational 
water-quality conditions are estimated by means of the Huntington 2000–2005 model and transmitted through the nowcasting 
system 7 days per week. Advisories are issued if the probability of exceeding the single-sample maximum bathing-water stan-
dard exceeds 27 percent.

Future steps to improve the predictive models at Huntington and other Lake Erie beaches include the incorporation of more 
accurately measured wave heights, continuous turbidity measurements, locally installed rain gages, rapid analytical methods for 
E. coli, hydrodynamic modeling, and weekend sampling.
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Appendix 1
SAS commands to determine the best 50 models and to obtain individual model parameters and Fortran program to determine the probability of 
exceeding the single-sample maximum bathing-water standard (235 colony-forming units per 100 milliliters).

The Fortran code was originally developed by Gary Tasker (U.S. Geological Survey, Reston, Virginia, retired) for a report 
by Francy and Darner (1998). The program below was modified for the Huntington 2000–2004 model. 

For the following commands, the SAS data set called “two” contains all data corresponding to the beach and time period 
referenced in the comment lines. (SAS Institute, Inc., 1990).

Example 1.1. SAS commands to determine the best 50 models based on R2 and Mallow’s Cp. The output from these commands 
will be similar to that shown in table 5.

proc printto file=’c:\best50_2000_2004.txt’;
options linesize=70 pagesize=52 pageno=1;
title ‘Huntington Best Models - 2000-2004’;
proc reg data=two;
model logecoli = Turbidity WaveHt precip Step w48 logturb
  / selection = cp best = 50 adjrsq;
output out=resplot p=pred r=resid;
run;
proc printto;run;
title ‘’;run;

Example 1.2. SAS commands to obtain results for individual model parameters for model diagnosis and selection and for use in 
the Fortran program to compute probabilities (example 1-4):

proc printto file=’c:\mlr.txt’;
options linesize=98 pagesize=52 pageno=1;
title ‘Huntington MLR - 2000-2004’;
proc reg data=two;
model logecoli = waveht w48 logturb
  / r partial covb;
plot ( logecoli)*( waveht w48 logturbl)
 residual.*predicted.
 residual.*( waveht w48 logturb);
output out=resplot p=pred r=resid;
run;
proc printto;run;
title ‘’;run;
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Example 1-3. Output from SAS for individual model parameters (mlr.txt).

                    		           The REG Procedure
                     Model: MODEL1

                 Dependent Variable: logecoli 

                    Analysis of Variance

 

                       Sum of      Mean

     Source          DF    Squares     Square  F Value  Pr > F

     Model           3    42.48015    14.16005   52.45  <.0001

     Error          244    65.87395    0.26998           

     Corrected Total     247   108.35410                  

            Root MSE       0.51959  R-Square   0.3920

            Dependent Mean    1.74555  Adj R-Sq   0.3846

            Coeff Var      29.76664            

                    Parameter Estimates

 

                  Parameter    Standard

        Variable   DF    Estimate     Error  t Value  Pr > |t|

        Intercept   1    0.91432    0.07906   11.56   <.0001

        WaveHt    1    0.14416    0.04556    3.16   0.0018

        w48      1    0.30089    0.05694    5.28   <.0001

        logturb    1    0.56274    0.09765    5.76   <.0001

                   Covariance of Estimates

 

    Variable     Intercept      WaveHt        w48      logturb

    Intercept   0.0062507263   -0.000810778   -0.000171345    -0.00420649

    WaveHt     -0.000810778    0.002076132   -0.000151048   -0.002687444

    w48      -0.000171345   -0.000151048   0.0032421405   -0.000624654

    logturb     -0.00420649   -0.002687444   -0.000624654   0.0095355972
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Example 1-4. Fortran program to determine the probability of exceeding the single-sample maximum bathing-water standard 
(235 colony-forming units per 100 milliliters) The output from SAS in example 1.3 has been color coded to match parameters in 
the Fortran code.

c ===========================================================
c program to compute e.coli concentrations at Huntington Beach  
c using data from recreational seasons 2000 through 2004
c Rainfall at Hopkins international Airport,
c Wave heights at the beach, turbidity at the beach

c np= number of parameters, including the intercept)
c t90 = t for number of degrees of freedom in the model and alpha = 0.05
c ndf = number of degrees of freedom in regression
c xtx = covariance matrix
c b  = vector of regression coefficients
c v  = vector of explanatory variable
c vt = transpose of b

   parameter (np=4)
   character*16 name
   real xtx,v,vt,b,temp,var,turb,w48,waveht,rain1,rain2,lturb
   dimension xtx(np,np),v(1,np), vt(np,1), b(np), 
   & temp(1,np),var(1,1)
   data name /’Huntington  ‘/
   data ndf /247/
   data rmse /0.51959/, t90 /1.645/
   data b/.91432,.14416,.30089,.56274/   
c
    data xtx /0.0062507263,-0.000810778,-0.000171345,-0.00420649,
   1 -0.000810778,0.002076132,-0.000151048,-0.002687444,
   1 -0.000171345,-0.000151048,0.0032421405,-0.000624654,
   1 -0.00420649,-0.002687444,-0.000624654,0.0095355972/
 

c
c Initialize variables
c
   print *, ‘ Program computes E. coli concentrations at’
   print *, ‘ Huntington Beach          ‘
   print *, ‘ Estimates are based on multiple linear regressions’
   print *, ‘ of 2001-2004 data’
   print *, ‘ Last compiled on March 3, 2005’
   print *, ‘ *****************************************************’
c
c Enter wave height data
c
c
   print *, ‘ ENTER wave height index’
   print *, ‘ Enter                  FT  ‘
   print *, ‘  1   if wave height is between   0 and 2’
   print *, ‘  2   if wave height is between   1 and 3’
   print *, ‘  3   if wave height is between   2 and 4’
   print *, ‘  4   if wave height is between   3 and 6’
   write (*,*)
   write (*,*)
   read (*,*) waveht

c
c Enter turbidity data
c
   print *, ‘ ENTER Turbidity at Huntington’
   print *, ‘ Turbidity in NTUs= ‘
   read (*,*) turb
   lturb = log10(turb)
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c
c Enter rainfall data
c
   print *, ‘ ENTER rainfall at Hopkins, in inches for the last’
   print *, ‘ two days. ‘
   print *, ‘ Rain two days ago =’
   read (*,*) rain2
   print *, ‘ Rain in past 24 hours =’
   read (*,*) rain1
   w48 = (2.0*rain1)+rain2

c
c Set vector elements 
c
   v(1,1)=1.0
   v(1,2)=waveht
   v(1,3)=w48
   v(1,4)=lturb
c***
   write (*,222)waveht,w48,lturb
 222 format(‘ waveht,w48,lturb ‘,4f10.3)
c***
c
c
   write(*,100)
c
c Transpose vector v
c
    do 2 i=1,np
  2  vt(i,1)=v(1,i)
c
c Compute log of bacteria from linear regression model
c
   y= b(1)
   do 3 ip=2,np
    y=y+v(1,ip)*b(ip)
  3 continue
   ecol=10.0**y
c
c Compute standard error of a new prediction
c
   call mltply(temp,v,xtx,1,np,np,1,1,np)
   call mltply(var,temp,vt,1,np,1,1,1,np)
   vp=rmse**2+var(1,1)
   sep=sqrt(vp)
c
c Compute probability of exceeding 235
c
   t=(alog10(235.0)-y)/sep
   probt=1.0-stutp(t,ndf)
c
c Compute 90 percent prediction interval
c
   cl90=y-t90*sep
   cu90=y+t90*sep
   cl90=10.0**cl90
   cu90=10.0**cu90
c
c Write results
c
   write (*,200) ecol, cl90, cu90, probt
  1 continue
 200 format(14x,3f10.1,5x,f10.3)
 100 format(t2,’ Huntington’,’   E. coli ‘,’ | 90% pred. int.|’,
   & ‘|  Prob>235  |’,/,t27,’ | lower  upper |’,
   & ‘|        |’,/)
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c
   stop
   end
c
   SUBROUTINE MLTPLY(PROD,X,Y,K1,K2,K3,N1,N2,N3)
c   IMPLICIT REAL*8 (A-H,O-Z)
   INTEGER i, j, k, K1, K2, K3, N1, N2, N3
   REAL PROD(N1,K3), X(N2,K2), Y(N3,K3), sum
C --------------------------------------------------------------
C X IS K1*K2 MATRIX
C Y IS K2*K3 MATRIX
C PROD = X*Y IS A K1*K3 MATRIX
C --------------------------------------------------------------
   DO 30 i = 1, K1
    DO 20 k = 1, K3
     sum = 0.
     DO 10 j = 1, K2
      sum = sum + X(i,j)*Y(j,k)
  10   CONTINUE
     PROD(i,k) = sum
  20  CONTINUE
  30 CONTINUE
   RETURN
   END
c
C================================================== STUTP    =======       688**
   FUNCTION STUTP(X,N)                              689**
C                                          690**
C STUDENT T PROBABILITY                               691**
C STUTP = PROB( STUDENT T WITH N DEG FR .LT. X )                 692**
C                                          693**
C NOTE - PROB(ABS(T).GT.X) = 2.*STUTP(-X,N) (FOR X .GT. 0.)            694**
C                                          695**
C SUBPGM USED - GAUSCF                               696**
C                                          697**
C REF - G.W. HILL, ACM ALGOR 395, OCTOBER 1970.                   698**
C                                          699**
C  USGS - WK 12/79.                                700**
C                                          701**
C                                          702**
   DATA RHPI / 0.63661977 /                            703**
C                                          704**
   STUTP = .5                                  705**
   IF(N.LT.1) RETURN                               706**
C                                          707**
   NN = N                                     708**
   Z = 1.                                     709**
   T = X**2                                    710**
   Y = T/NN                                    711**
   B = 1.0 + Y                                  712**
C                                          713**
   IF(NN.GE.20 .AND. T.LT.NN .OR. NN.GT.200) GO TO 200              714**
C       ( OR IF NN NON-INTEGER)                        715**
C                                          716**
   IF(NN.LT.20 .AND. T.LT.4.) GO TO 100                      717**
C                                          718**
C -- TAIL SERIES FOR LARGE T                            719**
   A = SQRT(B)                                  720**
   Y = A*NN                                    721**
   J = 0                                     722**
  30 J = J + 2                                   723**
   IF(A.EQ.Z) GO TO 40                              724**
   Z = A                                     725**
   Y = Y*(J-1)/(B*J)                               726**
   A = A + Y/(NN+J)                                727**
   GO TO 30                                    728**
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  40 CONTINUE                                    729**
   NN = NN + 2                                  730**
   Z = 0.                                     731**
   Y = 0.                                     732**
   A = -A                                     733**
   GO TO 110                                   734**
C                                          735**
C -- NESTED SUMMATION OF COSINE SERIES                       736**
 100 Y = SQRT(Y)                                  737**
   A = Y                                     738**
   IF(NN.EQ. 1) A = 0.                              739**
 110 NN = NN - 2                                  740**
   IF(NN.LE.1) GO TO 120                             741**
   A = (NN-1)/(B*NN)*A + Y                            742**
   GO TO 110                                   743**
 120 IF(NN.EQ.0) A = A/SQRT(B)                           744**
   IF(NN.NE.0) A = (ATAN(Y)+A/B)*RHPI                       745**
   STUTP = 0.5*(Z-A)                               746**
   IF(X.GT.0.) STUTP = 1.-STUTP                          747**
   RETURN                                     748**
C                                          749**
C -- ASYMPTOTIC SERIES FOR LARGE OR NONINTEGER N                  750**
 200 IF(Y.GT.1E-6) Y = ALOG(B)                           751**
   A = NN - 0.5                                  752**
   B = 48.*A**2                                  753**
   Y = A*Y                                    754**
   Y = (((((-0.4*Y-3.3)*Y-24.)*Y-85.5)/                      755**
   $   (0.8*Y**2+100.+B)+Y+3.)/B+1.)*SQRT(Y)                  756**
   STUTP = GAUSCF(-Y)                               757**
   IF(X.GT.0.) STUTP = 1.-STUTP                          758**
   RETURN                                     759**
C                                          760**
   END                                      761**
C==================================================                 762**
c
C================================================== GAUSEX    ======      1213**
   FUNCTION GAUSEX(EXPROB)                            1214**
C                                          1215**
C GAUSSIAN PROBABILITY FUNCTIONS  W.KIRBY JUNE 71                1216**
C   GAUSEX=VALUE EXCEEDED WITH PROB EXPROB                    1217**
C   GAUSAB=VALUE (NOT EXCEEDED) WITH PROBCUMPROB                 1218**
C   GAUSCF=CUMULATIVE PROBABILITY FUNCTION                    1219**
C   GAUSDY=DENSITY FUNCTION                            1220**
C SUBPGMS USED -- NONE                               1221**
C                                          1222**
C GAUSCF MODIFIED 740906 WK -- REPLACED ERF FCN REF BY RATIONAL APPRX N      1223**
C  ALSO REMOVED DOUBLE PRECISION FROM GAUSEX AND GAUSAB.             1224**
C 76-05-04 WK -- TRAP UNDERFLOWS IN EXP IN GUASCF AND DY.             1225**
C                                          1226**
C                                          1227**
   DATA XLIM / 18.3 /                             1228**
   DATAC0,C1,C2/2.51551700, .8028530000, .0103280000/              1229**
   DATAD1,D2,D3/1.432788000, .1892690000, .0013080000/              1230**
C                                          1231**
   P=EXPROB                                   1232**
  2 IF(P.LT.1.0)GOTO10                              1233**
   GAUSEX=-10.                                  1234**
   RETURN                                    1235**
  10 IF(P.GT.0.)GOTO20                               1236**
   GAUSEX=+10.                                  1237**
   RETURN                                    1238**
  20 PR=P                                     1239**
   IF(P.GT..5)PR=1.00-PR                             1240**
   T= SQRT(-2.00*ALOG(PR))                            1241**
   GAUSEX=T-(C0+T*(C1+T*C2))/(1.D0+T*(D1+T*(D2+T*D3)))              1242**
   IF(P.GT..5)GAUSEX=-GAUSEX                           1243**
   RETURN                                    1244**
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C                                          1245**
   ENTRYGAUSAB(CUMPRB)                              1246**
   GAUSAB = 0.                                  1247**
   P=1.-CUMPRB                                  1248**
   GOTO2                                     1249**
C                                          1250**
   ENTRY GAUSCF(XX)                               1251**
   AX=ABS(XX)                                  1252**
   GAUSCF=1.                                   1253**
   IF(AX.GT.XLIM)GOTO101                             1254**
   T=1.0/(1.0+.2316419*AX)                            1255**
   D=0.3989423*EXP(-XX*XX*.5)                          1256**
   GAUSCF=1.-D*T*((((1.330274*T - 1.821256)*T + 1.781478)*T -          1257**
   1 0.3565638)*T + 0.3193815)                          1258**
 101 IF(XX.LT.0)GAUSCF=1.-GAUSCF                          1259**
   RETURN                                    1260**
C                                          1261**

   ENTRY GAUSDY (XX)                               1262**

   GAUSDY=0.                                   1263**

   IF(ABS(XX).GT.XLIM) RETURN                          1264**

   GAUSDY=.3989423*EXP(-.500*XX*XX)                       1265**

   RETURN                                    1266**

   END                                      1267**

C==================================================                 1268**
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