
AERO-ASTRONAUTICS REPORT NO. 247

.:!i:;: ,/:::!:::? ,/

i?

OPTIMAL TRAJECTORIES

FOR AN AEROSPACE PLANE, PART 1:

FORMULATION, RESULTS, AND ANALYSIS

by

A. MIELE, W. Y. LEE, AND G. D. WU

(NASA-C_-I_?_6g) OPTZNAL TRAJECT_If_S FOR

AN AEROSPACE PLANE. PART 1: _OR ,ULATION,

RESULT:S t AN# ANALYSIS (t<ice Univ.) 61
CSCL O1C

G3/os

N91-16013

RICE UNIVERSITY

1990



AERO-ASTRONAUTICS REPORT NO. 247

OPTIMAL TRAJECTORIES

FOR AN AEROSPACE PLANE, PART i:

FORMULATION, RESULTS, AND ANALYSIS

by

A. MIELE, W. Y. LEE, AND G. D. WU

RICE UNIVERSITY

1990



i

Optimal Trajectories

for an Aerospace Plane, Part i:

Formulation, Results, and Analysis I'2

by

A. Miele 3, W. Y. Lee 4, and G. D. Wu 5

AAR-247

_ortions of this material were presented by the senior author

at the 1990 American Control Conference, San Diego, California,

May 23-25, 1990.

_his research was supported by NASA Langley Research Center

Grant No. NAG-I-1029 and by Texas Advanced Technology Program

Grant No. TATP-003604020.

3Foyt Family Professor of Aerospace Sciences and Mathematical

Sciences, Aero-Astronautics Group, Rice University, Houston, Texas.

_ost-Doctoral Fellow, Aero-Astronautics Group, Rice University,

Houston, Texas.

5Graduate Student, Aero-Astronautics Group, Rice University,

Houston, Texas.



ii AAR-247

Abstract. This paper is concerned with the optimization of

the trajectories of an aerospace plane_ This is a hypervelocity

vehicle capable of achieving orbital speed, while taking off

horizontally. The vehicle is propelled by four types of engines:

turbojet engines for flight at subsonic speeds/low supersonic

speeds; ramjet engines for flight at moderate supersonic

speeds/low hypersonic speeds; scramjet engines for flight at

hypersonic speeds; and rocket engines for flight at near-orbital

speeds.

A single-stage-to-orbit (SSTO) configuration is considered,

and the transition from low supersonic speeds to orbital speeds

is studied under the following assumptions: the turbojet portion

of the trajectory has been completed; the aerospace plane is

controlled via the angle of attack e(t) and the power setting

8(t); the aerodynamic model is the generic hypersonic aerodynamics

model example (GHAME). Concerning the engine model, three options

are considered: (EMI) this is a ramjet/scramjet combination in

which the scramjet specific impulse tends to a nearly-constant

value at large Mach numbers; (EM2) this is a ramjet/scramjet

combination in which the scramjet specific impulse decreases

monotonically lat large Mach numbers; (EM3) this is a

ramjet/scramjet/rocket combination in which, owing to stagnation

temperature limitations, the scramjet operates only at M _ 15; at

higher Mach numbers, the scramjet is shut off and the aerospace

plane is driven only by the rocket engines.
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Under the above assumptions, four optimization problems are

solved using the sequential gradient-restoration algorithm for

optimal control problems: (PI) minimization of the weight of fuel

consumed; (P2) minimization of the peak dynamic pressure; (P3)

minimization of the peak heating rate; and (P4) minimization of

the peak tangential acceleration. _The above optimization studies

are carried out for different combinations of constraints,

specifically: initial path inclination either free or given

(70 = 0); dynamic pressure either free or bounded(q _ 1500 ibf/ft2);

tangential acceleration either free or bounded (a T ! 3ge)-

The preliminary conclusions are as follows:

(a) For an aerospace plane governed by GHAME + EMI, the

SSTO mission requires a weight of fuel consumed equal to 34.3% of

the initial weight.

(b) For an aerospace plane governed by GHAME + EM2, the

SSTO mission requires a weight of fuel consumed equal to 44.3% of

the initial weight.

(c) For an aerospace plane governed by GHAME + EM3, the

SSTO mission requires a weight of fuel consumed equal to 60.7% of

the initial weight.

(d) If one assumes that engine model EM2 is the one closer

to reality, then the SSTO mission appears to be feasible.

Obviously, its ability to deliver payloads can be improved via

progress in the areas of aerodynamic properties and specific

impulse properties.
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(e) If one assumes that engine model EM3 is the one closer

to reality, then the SSTO mission appears to be marginal, unless

substantial progress is achieved in the areas of aerodynamic

properties and specific impulse properties. Under this scenario,

alternative consideration should be given to studying the

feasibility of a two-stage-to-orbit (TSTO) mission.

Key Words. Flight mechanics, hypervelocity flight,

atmospheric flight, optimal trajectories, aerospace plane,

sequential gradient-restoration algorithm.
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i. Introduction

The aerospace plane is a hypervelocity aircraft which must

take off horizontally, achieve orbital speed, and then land

horizontally. At this time, its configuration is not precisely

known, but it can be assumed that the powerplant includes the

combination of four types of engines: turbojet engines for flight

at subsonic speeds/low supersonic speeds; ramjet engines for

flight at moderate supersonic speeds/low hypersonic speeds;

scramjet engines for flight at hypersonic speeds; and rocket

engines for flight at near-orbital speeds.

In this paper, we refer to a single-stage-to-orbit (SSTO)

configuration and we study the transition from low supersonic

speeds to orbital speeds under the following assumptions: (i) the

turbojet portion of the trajectory has been completed; (ii) the

aerospace plane is controlled via the angle of attack e(t) and

the power setting 8(t); (iii) the switch times from one powerplant

to another are parameters being optimized.

Concerning the aerodynamics mQdel,two configurations have

been considered thus far in the aerospace plane literature: the

generic hypersonic aerodynamics model example (GHAME) and the

Langley accelerator model example (I2LME). The first of these

configurations (GHAME) is considered here.

Concerning the engine model, three options are considered:

(EMI) this is a ramjet/scramjet combination in which the

scramjet specific impulse tends to a nearly-constant value at
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large Mach numbers; (EM2) this is a ramjet/scramjet combination

in which the scramjet specific impulse decreases monotonically at

large Mach numbers; (EM3) this is a ramjet/scramjet/rocket combination

in which, owing to stagnation temperature limitations, the scramjet

operates only at M _ M,; at higher Mach numbers, the scramjet is

shut off and the aerospace plane is driven only by the rocket engines.

Here, M, is a threshold Mach number.

With the above understanding, we study four basic

optimization problems: (PI) minimization of the weight of fuel

consumed; (P2) minimization of the peak dynamic pressure; (P3)

minimization of the peak heating rate; and (P4) minimization of

the peak tangential acceleration. These optimization problems are

solved by means of the sequential gradient-restoration algorithm (SGRA)

for different combinations of constraints imposed on the initial

path inclination y 0, the dynamic pressure q, and the tangential

acceleration aT . Specifically,y 0 can either be free or given

(Y0 = 0); q can either be free or bounded (q ! 1500 ibf/ft2);and aT

can either be free or bounded (a T ! 3ge)"

Previous studies of interest for the aerospace plane can be

found in Refs. 1-19. References 1-3 contain basic concepts.

References 4-8 deal with flight mechanics, hypervelocity flight,

and propulsion systems. References 9-12 treat design problems,

while Refs. 13-18 consider trajectory optimization and guidance.

Concerning aerodynamics, two widely used configurations are the

generic hypersonic aerodynamics model example (GHAME, Ref.19)
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and the Langley accelerator model example (LAME). While GHAMEhas

been used in Ref. 15, LAME has been considered in Ref. 16.

Concerning the engine models, we note that EMI has been

considered in Ref. 15, while EM2 has been considered in Refs.

16-18. A model akin to EM3 has been considered in Ref. 10, albeit

with a lower threshold Mach number than that considered in this

paper.

Section 2 contains the notations, and Section 3 presents the

system description. Sections 4-5 deal with the performance

indexes and present a classification of the problems being

studied. In Section 6, we present the results obtained on optimal

trajectories for engine models EMI, EM2, EM3. Finally, the

conclusions are given in Section 7.
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2. Notations

Throughout this paper, the following notations are employed:

a = acceleration, ft/sec2;

C D = drag coefficient;

C L = lift coefficient;

D = drag, ibf;

E = lift-to-drag ratio;

g = local acceleration of gravity, ft/sec2;

ge = sea-level acceleration of gravity, ft/sec2;

h = altitude, ft;

Isp = specific impulse, sec;

L = lift, Ibf;

m = mass, Ibf sec2/ft;

M = Mach number;

q = dynamic pressure, ibf/ft2;

Q = heating rate, BTU/ft2sec;

r = radial distance from the center of the Earth, ft;

r e = radius of the Earth, ft;

S = reference surface area, ft2;

S e = combustor cross-sectional area, ft2;

t = dimensionless time;

T = thrust, ibf;

V = velocity, ft/sec;

W = mg e = sea-level weight, ibf;

x = distance along the Earth surface, ft;

= angle of attack, rad;
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6

= power setting;

= path inclination, rad;

= inclination of the thrust with respect

to the aircraft reference line, rad;

= running time, sec;

= Earth's gravitational constant, ft3/sec2;

= air density, ibf sec2/ft4;

_= final time, sec.

Subscripts (EMI + EM2)

0 = beginning of ramjet phase/initial point;

1 = beginning of scramjet phase;

2 = end of scramjet phase/final point.

Subscripts (EM3)

0 = beginning of ramjet phase/initial point;

1 = beginning of scramjet phase;

2 = beginning of rocket phase;

3 = end of rocket phase/final point.

Superscript

• = derivative with respect to dimensionless time.

Acronyms

GHAME = general hypersonic aerodynamics model example;

LAME

SGRA

SSTO

TSTO

= Langley accelerator model example;

= sequential gradient-restoration algorithm;

= single-stage-to-orbit;

= two-stage-to-orbit.
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3. System Description

We consider a single-stage-to-orbit (SSTO) aerospace plane,

powered by the combination of turbojet/ramjet/scramjet/rocket

engines. We employ the following hypotheses: (i) the turbojet

portion of the trajectory has been completed; (ii) flight takes

place in a vertical plane over a spherical Earth; (iii) the Earth's

rotation is neglected; (iv) the gravitational field is central

and obeys the inverse square law; (v) the aerospace plane is

controlled via the angle of attack _(t) and the power setting B(t).

3.1. Time Normalization. We denote with e the actual time

and with t the normalized time. The normalization is done in such

a way that the normalized time duration of each segment of the

trajectory is one. Hence, the transformation relations are as follows:

0 = Tit, 0 _< t < i (ramjet), (la)

8 = T I + T2(t-l),
1 < t < 2 (scramjet), (ib)

8 = T 1 + T 2 + T 3(t-2), 2 _< t < 3 (rocket), (ic)

with the implication that

8 = T I, 0 <_ t _< 1 (ramjet), (2a)

6 = T 2, 1 < t < 2 (scramjet), (2b)

8 = T 3, 2 <_ t <_ 3 (rocket), (2c)

and that



7 AAR-247

80 = 0, (3a)

81 = TI, (3b)

82 = T1 + T2, (3c)

83 = T 1 + T 2 + T 3. (3d)

Note that e 2 is the final time for engine models EM1, EM2 and

that 8 3 is the final time for engine model EM3.

3.2. Differential System. With the above assumptions and

upon normalizing the time duration of each segment of the trajectory

to unity, the motion of the aerospace plane is described by the

following differential system:

= T[ (re/r)Vcosy] , (4a)

= T[Vsiny], (4b)

V = T[ (Tge/W) cos(_ + 6) - Dge/W - gsiny],

y = T[(Tge/WV) sin(_ + 6) + Lge/WV + (V/r - g/V)cosy],

W = T [-T/I ] .
sp

(4c)

(4d)

(4e)

Here, the dot denotes derivative with respect to the normalized

time and the flight duration T takes the following values: T = T 1

for the ramjet segment, T = T 2 for the scramjet segment, and

for the rocket segment of the trajectory.T = T 3

In the above system, the following functional relations hold:

r = r + h, (5a)
e
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g = _/r 2 = _/(r e + h) 2, (5b)

2

where Z = gere denotes the Earth's gravitational constant.

The weight W = mg e appearing in Eqs. (4) is the so-called sea-level

weight, which is based on the sea-level acceleration of gravity

ge" Such weight differs from the local weight mg, which is based

on the local acceleration of gravity g.

3.3. Aerodynamic Data. The drag and the lift are given by

D = (I/2)CDPSV 2,

L = (I/2)CLPSV 2,

(6a)

(6b)

with p = p(h). Generally speaking, the aerodynamic coefficients

CD, C L depend on the angle of attack _, the Mach number M, and

the Reynolds number Re. If the dependence on the Reynolds number

is disregarded, the aerodynamic coefficients take the form

C D = CD(e,M ) ,

C L = CL(_,M) ,

with the implication that the lift-to-drag ratio E = L/D = CL/C D

is a function of the form

(7a)

(7b)

E = E(_,M). (7c)

The functions (7) are plotted in Fig. 1 with reference to

the generic hypersonic aerodynamics modelexample (GHAME).

For computational purposes, it is convenient to approximate

the aerodynamic coefficients with polynomial relations of the type
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2
Cm = A0(M) + AI(M)_ + A2(M) e ,

2
CL = B0(M) + BI(M)_ + B2(M)_ ,

(8a)

(8b)

with the implication that

E = [B0(M) + BI(M)_ + B2(M)_2]/[A0(M) + AI(M)_ + A2(M)_2] - (8c)

The coefficients Ai(M) , Bi(M ) are computed by means of a least

square fit of the available GHAMEdata at various Mach numbers

and angles of attack.

3.4. Engine Data. For the ramjet engines, the following

simplified representation is assumed for the thrust and the specific

impulse:

T = BT. (M) p/p., (9a)

I = I (M), (9b)
sp sp.

with the implication that the fuel rate (weight of fuel consumed

per unit time) is given by

= /Isp *T/Isp B[T.(M) (S)]p/p.. (9c)

Here, p. is a reference density (density at the reference altitude

h.= 100 kft), T.(M) is a reference thrust (thrust for B = 1 and

h = h.), and I (M) is a reference specific impulse (specific
sp.

impulse for B = 1 and h = h.). While the thrust is assumed to

depend on the power setting, the altitude, and the Mach number,
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the specific impulse is assumed to depend only on the Mach number;

the dependence of the specific impulse on the power setting and

the altitude is disregarded in line with the feasibility character

of the present study. For the same reason, the dependence of the

thrust and the specific impulse on the angle of attack, relevant

to a precision study, is disregarded within the bounds of the

present feasibility study.

For the scramjet engines, the representation (9) is retained.

However, the reference thrust T.(M) and the reference specific

impulse I (M) are now described by different functions.sp.

For the rocket engines, the following simplified relations

are assumed:

T = ST,, (10a)

I = I
sp sp.'

with the implication that the fuel rate is given by

(10b)

T/Isp = B(T./Isp.).

Here, T. is a reference thrust (thrust for _ = i) and I is
sp.

a reference specific impulse (specific impulse for B = i). Both

T. and I are assumed to be constant. This means that the weak
sp,

dependence of these quantities on the altitude is disregarded.

In this paper, three engine models are considered:

(EMI) This is a ramjet/scramjet combination in which the

scramjet specific impulse tends to a nearly-constant value at

(10c)
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large Mach numbers;see Ref. 15. For this combination, the functions

(9) are shown in Fig. 2 (ramjet) and Fig. 3 (scramjet) under the

assumption that the combustor cross-sectional area is S = 400 ft 2.
e

(EM2) This is a ramjet/scramjet combination in which the

scramjet specific impulse decreases monotonically at large Mach

numbers; see Refs. 16-18. For this combination, the functions (9)

are shown in Fig. 2 (ramjet) and Fig. 4 (scramjet) under the

assumption that the combustor cross-section area is S = 400 ft 2.
e

(EM3) This is a ramjet/scramjet/rocket combination in which,

owing to stagnation temperature limitations, the scramjet operates

only at M < 15; at higher Mach numbers, the scramjet is shut off

and the aerospace plane is driven only by the rocket engines. For

this combination, the functions (9) are shown in Fig. 2 (ramjet)

and Fig. 5 (scramjet, M < 15) under the assumption that the

combustor cross-sectional area is S = 400 ft2; the functions (i0)
e

are shown in Fig. 6 (rocket, M > 15) under the assumption that

the reference thrust (hence, the maximum thrust) is T, = 189200 ibf.

3.5. Control Inequality Constraints. To obtain realistic

solutions, the presence of upper and lower bounds on the angle

of attack and the power setting is necessary. Therefore, the

two-sided inequality constraints

a£ --< _ --< _u' (lla)

_£ -< _ -< _u (llb)

must be satisfied everywhere along the interval of integration.
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The inequality constraints (ii) can be converted into equality

constraints by means of trigonometric transformations of the

type

: (1/2) (_,, + _u ) + (1/2)(_U- ei )sinu'

8 = (i/2)(B_ + 8u) + (1/2)(_u- Bz)sinw"

(12a)

(12b)

Therefore, the angle of attack _(t) is replaced with the auxiliary

control u(t), while the power setting B(t) is replaced with the

auxiliary control w(t). After a solution is found for the auxiliary

controls, then the original controls are computed with (12).

For the GHAME configuration, the bounds (lla) are given by

_£ = -2.0 deg, _u 12.0 deg. (13a)

These bounds are dictated solely by the availability of data. For the

engine models EMI, EM2, EM3, the bounds (llb) are given by

B Z = 0, _u 1 (13b)

3.6. Derived Quantities. After a solution of Eqs. (4)

is available, certain derived quantities can be computed. The more

relevant ones are listed below:

(i) the dynamic pressure

q = (i/2)pV2; (14a)

(ii) the heating rate

Q C/]p/p.) (v/v,) 3"07= ; (14b)
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here, p, is a reference density (density at h,= I00 kft) and V,

is a reference velocity (V, = i0 kft/sec) ; under the assumption that

the nose radius is r = 1.0 ft, the constant C has the value
n

C= 101.92 BTU/ft2sec;

(iii) the tangential acceleration

a T : (Tge/W) cos (_ + S) - Dge/W - gsiny;
(14c)

(iv) the normal acceleration

a N -- (Tge/W) sin(_ + 6) + Lge/W + (V2/r - g)cosy; (14d)

(v) the total acceleration

a = /]a2 + a2). (14e)

3.7. Supplementary Bounds. In addition to the control

inequality constraints (ii), supplementary bounds can be imposed

on the quantities (14). For instance, a bound of the form [see (14a)]

q _: qu = 1500 ibf/ft 2 (15a)

is a state constraint, while a bound of the form [see (14c)]

a T _ aTu = 3g e
(15b)

is a state/control constraint.

The simplest way to account for the bounds (15) is by means

of penalization techniques. The functional being minimized

(see Section 4) is augmented by a penalization functional with

integrand
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CI( q - qu )n + C2(a T - aTu)n , (15c)

where C1, C2 are constants and n is a suitable integer. The

value of the first constant is C1 = 0 if (15a) is satisfied and

C 1 > 0 if (15a) is violated; the value of the second constant

is C 2 = 0 if (15b) is satisfied and C 2 > 0 if (15b) is violated;

the desirable value of the integer is n = 3, since this ensures

the continuity of the first and second derivatives of the integrand

of the penalization functional at points located on the constraint

boundaries.

3.8. Boundary Conditions. For engine models EMI, EM2, EM3,

the dimensionless time t = 0 marks the end of the turbojet phase,

the beginning of the ramjet phase, as well as the initial time.

At t = 0, we assume that

x 0 = 0 ft, (16a)

h 0 = 42004 ft = 12.8 km, (16b)

V 0 = 1936 ft/sec, (16c)

Y0 = free or Y0 = 0.0 deg,
(16d)

W 0 = 290000 ibf, (16e)

with the implication that

M 0 = 2,

q0 = 1000 lbf/ft 2.

(16f)

(16g)
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For engine models EMI, EM2, EM3, the dimensionless time

t = 1 marks the end of the ramjet phase and the beginning of the

scramjet phase. At t = I, the continuity of all the state variables

is required.

For engine models EMI and EM2, the dimensionless time t = 2

marks the end of the scramjet phase as well as final time. At

t = 2, we assume that

x 2 = free, (17a)

h 2 = 262467 ft = 80.0 km,

V 2 = 25792 ft/sec,

T2 = 0.0 deg,

(17b)

(17c)

(17d)

W 2 = free, (17e)

with the implication that

M 2 = 27.8,

q2 = 11.9 ibf/ft 2,

and that orbital speed is achieved.

For engine model EM3, the dimensionless time t = 2 marks the

end of the scramjet phase and the beginning of the rocket phase.

At t = 2, we assume that

(17f)

(17g)

M 2 = 15. (18)

In addition, we require the continuity of all the state variables.
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For engine model EM3, the dimensionless time t = 3 marks

the end of the rocket phase as well as the final time. At t = 3,

we assume that

x 3 = free,

h 3 = 262467 ft = 80.0 km,

V 3 = 25792 ft/sec,

Y3 = 0.0 deg,

W 3 = free,

with the implication that

(19a)

(19b)

(19c)

(19d)

(19e)

M 3 = 27.8,

q3 = 11.9 lbf/ft 2,

and that orbital speed has been achieved.

3.9. Summary. The relations governing the motion of the

aerospace plane include: the differential system (4); the control

inequality constraints (Ii), converted into control equality

constraints by means of the trigonometric transformations (12) ;the

possible presence of the supplementary bounds (15), accounted via

penalization techniques; the boundary conditions (16)-(17) for

engine models EMI, EM2; and the boundary conditions (16), (18),

(19) for engine model EM3.

In this formulation, the independent variable is the time t,

which varies in the range 0 < t < 2 for engine models EMI, EM2

and in the range 0 < t < 3 for engine model EM3. The dependent

(19f)

(19g)
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variables include five state variables [x(t), h(t), V(t), y(t), W(t)],

two control variables [u(t), w(t)], plus two parameters [TI, T2]

for engine models EMI, EM2 and three parameters [T I, T2, T3] for

engine model EM3. After a solution is found for the auxiliary

control variables, the original control variables [_(t), B(t)]

are recovered via the trigonometric transformations (12].

3.10. Experimental Data. The following data are used in the

numerical experiments on optimal trajectories.

Spaceplane. For the aerospace plane, the initial weight

(weight at the end of the turbojet phase) is W 0 = 290000 ibf;

the reference surface area (wing area) is S = 6000 ft2; the

aerodynamic data for the GHAME configuration are given in Fig. i;

the angle of attack is subject to the inequality -2.0 < e < 12.0 deg.

Engines. The data for engine models EMI, EM2, EM3 are given

in Figs. 2-6. For all models, the combustor cross-sectional area

of both the ramjet and the scramjet is S = 400 ft 2. For engine
e

model EM3, the maximum rocket thrust is T, = 189200 ibf and the

rocket specific impulse is I = 444 sec. The inclination of the
sp

thrust with respect to the aircraft reference line is _ = 0.0 deg;

the power setting is subject to the inequality 0 < B < i.

Physical Constants. The radius of the Earth is assumed to be

r = 0.2093E+08 ft = 6378 km. The Earth's gravitational constant
e

is _ = 0.1409E+17 ft3/sec 2. The sea-level acceleration of gravity

is ge = 32.20 ft/sec 2.

Atmospheric Model. The atmospheric model used is the US

Standard Atmosphere, 1976 (Ref. 20). In this model, the values

of the density are tabulated at discrete altitudes. For intermediate
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altitudes, the density is computed by assuming an exponential

fit for the function p(h). This is equivalent to assuming that

the atmosphere behaves isothermally between any two contiguous

altitudes tabulated in Ref. 20.
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4. Performance Indexes

Subject to the previous constraints, different optimization

problems can be formulated, depending on the performance index

being considered. The resulting optimal control problems are

either of the Bolza type or of the Chebyshev type.

Problem (PI). Minimum Fuel Weight. It is required to minimize

the weight of fuel consumed. Here, the performance index is given

by

or

I = W 0 - W 2 (EMI, EM2), (20a)

I = W 0 - W 3 (EM3) .

Problem (P2). Minimum Peak Dynamic Pressure. It is required

to minimize the peak value of the dynamic pressure. Here, the

performance index is given by

(20b)

I = max(q) , (21a)

t

where the dynamic pressure is given by [see (14a)]

q = (i/2)pV 2. (21b)

This problem can be reformulated as that of minimizing the integral

performance index

J = qndt (EMI, EM2) ,

0

(21c)

or
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J = (3qndt (EM3),
:0

with n = 8.

Problem (P3). Minimum Peak Heating Rate. It is required to

minimize the peak value of the heating rate at a particular point

of the aerospace plane, for instance, the stagnation point. Here,

the performance index is given by

(21d)

I = max(Q) , (22a)

t

where the heating rate is given by [see (14b)]

Q = C/]p/p.)(V/V.) 3"07 (22b)

This problem can be reformulated as that of minimizing the integral

performance index

2

J = I Qndt (EMI, EM2),
0

or

J = r|3Qndt (EM3),

:0

with n = 8.

Problem (P4). Minimum Peak Tangential Acceleration. It is

required to minimize the peak value of the tangential acceleration.

Here, the performance index is given by

(22c)

(22d)

I = max (a T ) , (23a)
t
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where the tangential acceleration is given by [see (14c)]

aT = (Tge/W) cos (e + 6) - Dge/W - gsiny.

This problem can be reformulated as that of minimizing the

integral performance index

flaT dt
J = (EMI, EM2) ,

or

linT dt
J = (EM3) ,

with n = 8.

(23b)

(23c)

(23d)
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5. Problem Classification

In the analyses which follow, the initial path inclination

Y0 is either free or given (Y0 = 0.0 deg) ; the dynamic pressure

q is either free or bounded (q _ qu) ; and the tangential acceleration

a T is either free or bounded (a T _ aTu). Depending on the

combination of constraints being considered, we have the following

types of problems:

(A) Y0 = free, q = free, a T = free, (24a)

(B) Y0 = free, q _ qu' aT _ aTu' (24b)

(C) Y0 = 0.0 deg, q = free, a T = free, (24c)

(D) Y0 = 0.0 deg, q _ qu' aT _ aTu' (24d)

with

qu = 1500 ibf/ft 2, aTu = 3g e. (25)

Note that a peak heating rate bound,

Q < Qu' (26a)

with

= BTU/ft 2
Qu 150 sec, (26b)

is not imposed because it can be satisfied or nearly satisfied

indirectly if the dynamic pressure bound is satisfied.

The ensuing terminology is self-explanatory for the minimum

fuel weight problem:
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Problem (PIA) is Problem (PI), s.t. conditions (A),

Problem (PIB) is Problem (PI), s.t. conditions (B),

Problem (PIC) is Problem (PI), s.t. conditions (C),

Problem (PID) is Problem (PI), s.t. conditions (D).

A similar terminology is employed for the problems of minimizing

the peak dynamic pressure, the peak heating rate, and the peak

tangential acceleration.

To sum up, for a given aerodynamic configuration and a given

engine model, there are 16 optimization problems to be solved.

since there are three engine models, this leads to a total of 48

optimization problems to be solved.
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6. Numerical Results

Numerical solutions for the optimization problems formulated

in Sections 4-5 were obtained by means of the sequential gradient-

restoration algorithm (SGRA, Refs. 21-22). We recall that SGRA

is a first-order algorithm which generates a sequence of feasible

solutions, each characterized by a lower value of the performance

index being considered.

While SGRA is available in both primal form (PSGRA) and dual

form (DSGRA), the primal form is better suited for hypervelocity

flight problems; hence, it is employed here. A cross section of

the solutions obtained is presented in Tables 1-3. For more

details on the solutions, see Ref. 23.

6.1. Unconstrained Solutions. First, constraints of Type (A)

were considered [see (24a)], meaning that T O is free, the dynamic

pressure q is unconstrained, and the tangential acceleration a T

is unconstrained. For constraints of Type (A) and for engine model

EMI, SGRA was employed to minimize each of the performance indexes

of Section 4. Summary results are shown in Table i, which lists

the values of the weight of fuel consumed, the peak dynamic

pressure, the peak heating rate, and the peak tangential acceleration

for Problems (PIA), (P2A), (P3A), (P4A). Table 1 also lists the

initial path inclination T O , the time duration of each segment

of the trajectory (T I, _2 ), and the final time 8f = 82 .

In interpreting the results of Table I, we stress the

following concept: even though these results have been obtained

disregarding the presence of constraints on TO, q, Q, a T , these
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results are acceptable from an engineering point of view only

if Y0' max(q), max(Q), max(a T) are in a suitable range. Specifically,

Y0 should be relatively small, otherwise an intolerable burden

is imposed on the turbojet segment+of the trajectory; max(q)

should be less than 1500 ib/ft2; max(Q) should be less than

150 BTU/ft2sec; and max(a T) should be less than 3ge.

Inspection of Table 1 shows that solution (PIA) is

not acceptable mainly because the values of _0 and max(a T)

are excessive; solution (P2A) is not acceptable because the values

of Y0 and max(a T) are excessive; solution (P3A) is not acceptable

because the values of Y0 and max(a T ) are excessive; and solution

(P4A) is not acceptable because the values of Y0' max(q), max(Q)

are excessive. In addition, for solution (P4A), the weight of

fuel consumed is too large with respect to that of solution (PIA).

6.2. Constrained Solutions. Next, Problem (PI) is considered

[see (20)], meaning that the weight of fuel consumed is being

minimized. For Problem (PI) and for engine model EMI, SGRA was

employed to obtain minimum fuel solutions for each of the constraint

combinations (24). Summary results are shown in Table 2, which

lists the values of the weight of fuel consumed, the peak dynamic

pressure, the peak heating rate, and the peak tangential acceleration

for Problems (PIA), (PIB), (PIC), (PID). Table 2 also lists the

initial path inclination Y0' the time duration of each segment

of the trajectory (T I, T2), and the final time 8f = 82 .

Inspection of Table 2 shows that solution (PIA) is not

acceptable mainly because the values of Y0 and max(a T )
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are excessive; solution (PIB) is not acceptable because the

value of Y0 is excessive; solution (PIC) is not acceptable

because the values of max(q), max(Q), max(a T) are excessive. The

only acceptable solution is solution (PID), albeit with a 1._7%

increase in fuel weight with respect to that of solution (PIA).

6.3. Effect of the Engine Model. Thus far, the only

acceptable solution is (PID), which is obtained by minimizing

the weight of fuel consumed [Problem (PI)] in conjunction with

constraints of Type (D). Therefore, we consider now Problem (PID)

for different engine models (EMI, EM2, EM3).

We recall that engine model EMI is a ramjet/scramjet combination

with scramjet specific impulse tending to a nearly-constant value

at large Mach numbers; engine model EM2 is a ramjet/scramjet

combination with scramjet specific impulse decreasing monotonically

at large Mach numbers; engine model EM3 is a ramjet/scramjet/rocket

combination in which the scramjet operates only at M _ 15; at

higher Mach numbers, the scramjet is shut off and the aerospace

plane is driven only by the rocket engines.

Summary results are shown in Table 3, which lists the values

of the weight of fuel consumed, the peak dynamic pressure, the

peak heating rate, and the peak tangential acceleration _or

Problem (PID) and engine models EMI, EM2, EM3. Table 3 also

lists the initial path inclination Y0' the time duration of each

segment of the trajectory [(T I, T 2) for engine models EMI, EM2

and (T I, T 2, T 3) for engine model EM3], and the final time [Sf = 82

for engine models EMI, EM2 and 8f = 83 for engine model EM3].
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Inspection of Table 3 shows that the constraints on max(q),

max(Q), max(a T) are now satisfied or nearly satisfied for

all engine models. Note that Y0 = 0.0 deg for all engine models.

In percentage of the initial weight, the weight of fuel consumed

is 34.3% for engine model EMI, 44.3% for engine model EM2, and

60.7% for engine model EM3.

Note that the above results exclude the turbojet segment

of the trajectory. If one assumes that the weight of fuel consumed

in the turbojet phase is 5% of the take-off weight, one concludes

that, in percentage of the take-off weight, the weight of fuel

consumed is 37.6% for engine model EMI, 47.1% for engine model EM2,

and 62.7% for engine model EM3.

6.4. Remark. For Problem (PID) solved in conjunction with

engine model EM3, one additional simplification was used. The

rocket portion of the trajectory, corresponding to M _ 15, was

optimized with the following provision: while the angle of attack

e(t) is treated as a control, the power setting 8(t) is treated

as a parameter, which means that _(t) = 0 for M _ 15.
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7. Conclusions

This paper is concerned with optimizing the trajectories of

an aerospace plane. A single-stage-to-orbit (SSTO) configuration

is considered, and the transition from low supersonic speeds to

orbital speeds is studied under the following assumptions: the

turbojet portion of the trajectory has been completed; the

aerospace plane is controlled via the angle of attack _(t) and

the power setting 8(t); the aerodynamic model is the generic

hypersonic aerodynamics model example (GHAME). Concerning the

engine model, three options are considered: (EMI) this is a

ramjet/scramjet combination in which the scramjet specific

impulse tends to a nearly-constant value at large Mach numbers;

(EM2) this is a ramjet/scramjet combination in which the scramjet

specific impulse decreases monotonically at large Mach numbers;

(EM3) this is a ramjet/scramjet/rocket combination in which,

owing to stagnation temperature limitations, the scramjet

operates only at M ! 15; at higher Mach numbers, the scramjet is

shut off and the aerospace plane is driven only by the rocket

engines.

Under the above assumptions, four optimization problems are

solved using the sequential gradient-restoration algorithm for

optimal control problems: (PI) minimization of the weight of fuel

consumed; (P2) minimization of the peak dynamic pressure; (P3)

minimization of the peak heating rate; and (P4) minimization of

the peak tangential acceleration.
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The above optimization studies are carried out for different

combinations of constraints, specifically: initial path

inclination either free or given (Y0 = 0); dynamic pressure

either free or bounded (q _ 1500 ibf/ft2); tangential

acceleration either free or bounded (aT _ 3ge). A peak heating

rate bound (Q < 150 BTU/ft2sec) is not imposed because it can be nearly

satisfied indirectly if the dynamic pressure bound is satisfied.

The effect of the performance index, the constraint type,

and the engine model on the solutions is studied. From an

engineering point of view, the most useful solutions are those

which minimize the fuel weight, while satisfying the

constraints Y0 = 0, q ! 1500 ibf/ft2,Q _ 150 BTU/ft2sec, aT _ 3ge.

The preliminary conclusions are as follows:

(a) For an aerospace plane governed by GHAME+ EMI, the

SSTO mission requires a weight of fuel consumed equal to 34.3% of

the weight at the beginning of the ramjet phase, equivalent to

37.6% of the take-off weight if one includes the turbojet phase.

(b) For an aerospace plane governed by GHAME+ EM2, the

SSTO mission requires a weight of fuel consumed equal to 44.3% of

the weight at the beginning of the ramjet phase, equivalent to

47.1% of the take-off weight if one includes the turbojet phase.

(c) For an aerospace plane governed by GHAME+ EM3, the

SSTOmission requires a weight of fuel consumed equal to 60.7% of

the weight at the beginning of the ramjet phase, equivalent to

62.7% of the take-off weight if one includes the turbojet phase.
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(d) If one assumes that engine model EM2 is the one closer

to reality, then the SSTO mission appears to be feasible.

Obviously, its ability to deliver payloads can be improved via

progress in the areas of aerodynamic properties and specific

impulse properties.

(e) If one assumes that engine model EM3 is the one closer

to reality, then the SSTO mission appears to be marginal, unless

substantial progress is achieved in the areas of aerodynamic

properties and specific impulse properties. Under this scenario,

alternative consideration should be given to studying the

feasibility of a two-stage-to-orbit mission (TSTO mission).
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Table I. Unconstrained solutions, engine model EMI,

various performance indexes, constraints of Type (A).

Quantity Problem Units

(PIA) (P2A) (P3A) (P4A)

(W0-W f)/W 0 0. 337 0. 347 0. 357 0. 550

max (q) 1540 999 1157 3751

max (Q) 165 161 98 495

max (a T )/ge 9.1 5.2 4.0 i. 1

m

ibf/ft 2

BTU/ft2sec

Y0 42.0 50.0 40.4 38.3 deg

T1 34 54 48 144 sec

T 2 409 475 731 704 sec

8f 443 529 779 848 sec

Wf = W 2 and 8f = 82 for engine model EMI.
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Table 2. Constrained solutions, engine model EMI,
minimum fuel weight, various constraint combinations.

Quantity Problem

(PIA) (PIB) (PIC) (PID)

Units

(W0-Wf)/W 0 0. 337 0. 340 0. 339 0. 343

max (q) 1540 ii12 1765 1500

max(Q) 165 148 200 153

max(aT)/ge 9.1 3.0 13.7 3.0

ibf/ft 2

BTU/ft2sec

_0 42.0 39.4 0.0 0.0 deg

T1 34 55 34 55 sec

T2 409 498 335 487 sec

8 443 553 369 542 secf

Wf = W2 and 8f = 82 for engine model EMI.
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Table 3. Effect of the engine model, Problem (PID),

minimum fuel weight, constraints of Type (D).

Quantity Engine model

EMI EM2 EM3

Units

(W0-Wf)/W 0 0. 343 0. 443 0. 607

max (q) 1500 1425 1500

max (Q) 153 157 ii0

max (a T )/ge 3.0 3.0 3.0

ibf/ft 2

BTU/ft2sec

_0 0.0 0.0 0.0 deg

T 1 55 44 57 sec

487 472 97 sec
T2

- - 277 sec
T3

8f 542 517 431 sec

Wf = W 2 and 8f

Wf = W 3 and 8f

= 82 for engine models EMI, EM2.

= 83 for engine model EM3.
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