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ABSTRACT

Experlments of interest to combustion fundamentals and spacecraft fire
safety Investlgated flame spread of alcohol fuels over shallow, 15-cm diameter
pools In a 5.2 sec free-fall, mlcrogravlty facility. Results showed that,
independent of 02 concentratlon, alcohol fuel and diluent types, microgravity
flame spread rates were nearly identlcal to those corresponding normal-gravity
flames for condltlons where the normal-gravlty flames spread unlformly. Thls
slmllarity indicates buoyancy-related convection in elther phase does not
affect flame spread, at least for the physical scale of the experiments.
However, mlcrogravity extinction coincided with the onset conditions for
pulsating spread in normal gravity, Implicatlng gas phase, buoyant flow as a
requirement for pulsating spread. When the atmospheric nitrogen was replaced
wlth argon, the conditions for the onset of normal-gravity pulsating flame
spread and mlcrogravlty flame extinction were changed, In agreement with the
expected lowerlng of the flash point through the thermal propertles of the
diluent. Helium-diluted flames, however, showed unexpected results with a
shift to apparently higher flash-polnt temperatures and high normal-gravity
puIsatlon amplitudes.

I. INTRODUCTION

Flame spread over liquid fuel pools is commonly characterlzed by the

relatlonshlp of the Inltial pool temperature to the fuel's flash polnt

temperature. Over a range of pool temperatures well below the closed-cup

flash temperature, Tcc, pulsating flame spread across the pool surface Is

observed. At p(x)] temperatures above this range, flame spread is steady

("unlform"l); at temperatures below those Induclng pulsatlng spread, the flame

spread Is agaln steady ("pseudounlform").

Widely conflicting explanations of the detailed phenomenology and

controlling spread mechanism are found In the literature. For example, when

flame spread Is unlform and the pool temperature is below Tcc, control has

been attributed to (I) gas phase conduction and radiatlon, 1 (2) gas phase



conduction only,2, 3 (3) gas phase convection and liquld conduction, 4 and most

recently (4) liquid convection ahead of the flames. 5 The latter, observed by

holographic Interferometry and convection barriers in 1 cm deep, propanoI-

filled narrow trays, Is explained as conslstlng of roughly equal proportions

of buoyant and thermocapl]lary forces.

Several explanations have also been offered for the pulsating reglme,l,5, 6

but the most widely accepted is that control varies perlodlcally from premlxed

gas, layered combustion to dlffuslve burning across the pulsating front, due to

coupled gas/llquid motion.2, 3 Buoyancy is believed to contribute slgniflcantly

to the experlmentally-observed, complicated motion In both the liquid and gas

phases.

All of the cited experiments were done at normal gravity in a standard

alr atmosphere, wlth varlatlons of fuel type and inltia] temperature only.

The abillty to predict sub-Tcc flame spread behavior in nonalr environments,

and especially In microgravity, Is hindered by the various Interpretatlons of

experlmental results and by current models which cannot predlct the uniform or

pulsating flame spread rate, Vf, under any sub-Tcc condition. Most models

assume Vf, decouple gas phase processes by assuming Interfaclal boundary

conditions, and then calculate the veloclty and temperature fields In the

llquld phase;7, 8 unfortunately the calculated subsurface fields disagree wlth

the complicated measuredmotions, and dlscrepancles are usually attributed to

buoyancy effects. Onemodel9 does couple both phases, but it assumesunlty

Lewis number, fast kinetlcs, and constant 02 concentration outside the flame

sheet, and Is therefore inaccurate near the leading edge of the flame.

Nonetheless It predicts that the flame posltion is strongly affected by gas

phase buoyancy.

The present experlments on flame spread In mlcrogravity and In nonalr

environments seek to provlde Information for both a better understandlng of
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the mechanisms of uniform and pulsating flame spread and for applications to

Improved fire safety in spacecraft environments. Prior to this study, it was

not clear under what conditions, if any, ignition and sub-Tcc flame spread

could occur in microgravlty, and whether pulsating spread would occur In the

absence of buoyancy-drlven flows.

2. EXPERIMENT DESCRIPTION

A series of normal and mlcrogravity experiments were performed in the

NASA Lewis Research Center Zero Gravity Facility, a 5.18 sec free-fall drop

tower, lO A 15 cm diameter, 1.6 mm deep, ceramlc-based tray was mounted

Inside a If3 liter pressure vessel whlch permitted the use of selected ambient

atmospheres. Ignition was via a hot wire centrally located on a cantilever

over the tray; ignition was delayed for 3 sec after the start of free fall to

ensure that ignition occurred after Inltlal Iiquld-motlon disturbances were

damped. To mlnlmlze predrop evaporation, the pool was filled automatically by

gravity just before the drop. Multiple safety systems were employed including

a spring-loaded pool cover, vacuum venting, and nitrogen pressurization. The

simple instrumentation, necessary to meet the rigors of free-fall testing, was

top and slde view cameras and a thermocouple to determlne the initial system

temperature. Following the test, the flame spread rate was determlned from

the vlslble flame diameter as a function of time through the use of a

dlgltized motlon analyzer.

Because temperature was not varied From ambient conditions, the selected

fuels were simple alcohols wlth flash points near ambient temperature. The

majority of tests were conducted with n-propanol and n-butanol, for which Tcc

Is approximately 25 and 38 °C, respectively, in a standard air atmosphere.

Some tests were also conducted with 55 percent ethanol and 45 percent distilled

water for comparison to the results of Ref. 4, and with super-Tcc methanol and

ethanol in normal alr. Identlcal normal-gravity tests were run for comparison
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to microgravlty tests. In several cases, the normal-gravity test was permitted

to continue for several seconds after flame spread in order to observe the

postspread, oscillating flame.

A challenging problem with mlcrogravity liquid-gas experiments Involves

the control of the interracial surface, whoseshape is determined by a

balance of gravltational and surface tension forces, |.e., the Bond number,

Bo : pgl2/o, where p Is the liquid density, g is the gravitational

acceleratlon, I is a characteristic vessel dimension, the pool radius in this

case, and a is the surface tension. For propanol, Bo, based on radlus, is

about 1800 in normal gravity and 0.0018 in m|crogravity. The liquid surface

can therefore transition from a flat conflguration, dominated by gravitational

forces, in normal gravity to one of constant curvature, dominated by surface

tension, in mlcrogravlty. II A flat configuration was successfully maintained

in mIcrogravlty, however, by f|lling the liquid fuel to the rim of the knlfe-

sharp edge of the tray, where the contact angle is undefined. An overflow

channel around the pool permitted safe, complete filllng. Nonetheless, it was

observed in preliminary tests, that the transition from normal to reduced

gravity induced undeslrable liquid motion due possibly to a flexure of the

apparatus. The short microgravlty test tlme therefore required the use of

small dlmensloned pools and the more viscous alcohols to reduce the damping

time. The shallow pools we subsequently employed had the additional benefits

of minlmlzlng the Ignition delay time at a pool depth just beyond the

unlgnitable, thin film regime12 and reducing, in normal gravity, liquid phase

buoyancywithout affectlng gas phase buoyancy. Thoughthe overall diameter Is

less than ideal, 6 wenote, as others have,1,5 that the spread character

appears relatively unaffected by pool length and width.
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3. RESULTS

3.1 Normal-Gravlty Oxygen-Nitrogen AtmosphereTests

The solid lines in Fig. I shows the flame diameter as a function of time

for normal-gravlty, propanol-O2-N2, baseline tests. At 30 percent 02 or higher

(curve a), the flame shape and spread were immediately well-deflned and steady,

with the leading edge of the flame stabilized immeasurablyclose (<0.5 mm)to

the pool surface. The flame was bright yellow, indicating a higher flame

temperature and soot production. Flamespread was so rapid that a plume did

not develop until the postspread, pool flre was established. For the tests

with 02 concentration of normal air (curve b), the flame becameblue, the

flame spread rate reduced, and the vertical flame plume developed and

oscillated axlsymmetrIcally during spread; however, the flame spread rate

remained uniform, unaffected by the plume's oscillations. For the tests with

the 02 concentration at 18 percent, the transition to pulsating spread began.

At 02 concentrations below 18 percent (curve d), the flame spread became

slightly asymmetric and clearly pulsating in nature. In each case after

spreading, the normal-gravlty flames developed the classical, pool.burning

behavior with an oscillating vertical plume. The 02 concentration did not

dlscernably affect the 3 to 4 Hz oscillation frequency of the plume.

Since the fire point (and presumably flash point) temperature is affected

by 02 concentratlon, 13 the observed behavior is conslstent with expectation,

i.e., both temperature and 02 levels affect the character of flame spread,

though certain 02-related features - asymmetric propagation and enhanced

sooting - augmentthe characterlstic spread reglmes on Akita's well-known,

temperature-based spread map.l

The samebehavior was observed for N2-diluted, n-butanol (see Flg. 2) and

ethanol/water flames, but the transitlon between pulsating-uniform spread

regimes occurred at higher 02 concentration (25 percent 02, curve b). This
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observed behavior was as expected because n-butanol has a higher flash polnt

than n-propanol.

3.2 Normal-Gravity Oxygen-Diluent Tests

The solid lines of Figs. 3 and 4 display flame spread results for

n-butanol flames diluted by argon and helium, respectively. With argon, the

transition to the pulsating flame spread regime occurs at the lower oxygen

concentration of 21 percent of 02 (Flg. 3, curve b) comparedto 25 percent 02

for nitrogen (Fig. 2, curve b). The flame-spread rates and pulsation behavior

for the two corresponding transltlon conditlons appear slmilar In the plotted

curves for the two diluents. Since heat transfer aheadof the flame must have

increased, the increased flame temperature resultlng from argon's lower

speclflc heat had more effect than the dimlnlshed thermal conductivity compared

to nitrogen. These results are consistent with previous results showing

enhanced spread with argon dilution for premIxed gas14 and solid fuels. 15

It was Inltially anticipated that, owing to its equally low specific heat

but higher thermal conductivity comparedto argon, helium substitutlon would

yleld unlform, more rapid spread. Instead, at comparable conditions, the flame

becamemore severely pulsating, with an increased frequency and instantaneous

velocity. Comparethe results for 25 percent 02 In Fig. 4, curve b, with the

corresponding argon conditions In Fig. 3, curve a. Durlng the retreat phase

of each pulsating cycle, the flames lifted away from the pool surface nearly a

full centimeter; during the advance phase they generally returned to a standoff

distance less than 0.5 mm. Flame thickness was increased as well. In contrast

to other flames, gross asymmetrles and some blowing around the pool surface

developed at larger flame diameters. At times, portions of the flame advanced

while other portions retreated. The flames had difficulty anchorlng to the

tray rim, but, after anchoring, burned conventlonally. No discernable effect

of diluent type on the oscillatlon frequency of the postspread pool fire was
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observed, although some Intermlttent flashes very near the tray rlm could be

seen for the hellum-dlluted flames.

3.3 M1crogravity Tests

Photographic observatlons of the mlcrogravity flames showed that, In the

unlform spread regime, flame shapes were as sketched in Fig. 5. Although the

leading edges were virtually identlcal in appearance, the trailing shape of

the mlcrogravity flame was nearly parallel to the pool surface, indicating the

suppression of buoyancy. Without a bright plume, more details on the pool

surface were apparent on the top view camera, and revealed a reflection line

about 1 cm ahead of, and moving wlth, the flame front, suggestlng surface

deformation and liquid convection ahead of the flame. When the reflection line

reached and rebounded from the tray rim, it broke up and propagated Inward as

multiple rings.

The discrete data on Figs. 1 through 4 display the comparable

mIcrogravity, flame-spread data superposed on the normal-gravlty data. For

conditions where the corresponding normal-gravlty flame spread was uniform,

the mlcrogravlty spread was also unlform, at rates comparable to the normal-

gravlty flames. As shown on these same figures, pulsatlng flame behavior in

mlcrogravity, where buoyant flows in both the liquid and gas phases are

negligible, was never observed. Instead, independent of 02 concentratlon, fuel

or d|luent type, the Initial conditions which gave rise to pulsating flame

spread In normal gravity coincided with those causlng extingulshment In a

quiescent, mlcrogravlty environment. For example, when the 02 concentration

was reduced to 17.5 percent with propanol-O2-N 2 (Fig. I), below 25 percent for

butano1-O2-N 2 (Fig. 2), or 19 percent for butanol-O2-argon (Fig. 3), the

conditions where pulsating spread was first clearly observed In normal gravity,

flame initially identlcal to that observed in normal gravlty was observed.

However the flame did not propagate, llftlng slowly away from the surface
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until it extingulshed, indicating an extinctlon llmlt. In the transltion

range betweenpulsating-uniform spread (e.g., propanol - 18 percent 02,

82 percent N2; butanol - 25 percent 02, 75 percent N2; butanol - 21 percent 02 ,

79 percent At), the mlcrograv|ty flame sometimes spread steadlly, and sometlmes

extlngulshed, owlng probably to s11ght differences in initial condltions or

the usual Impreclslon of lean flammability-extinction conditions. The same

extinctlon behavior was noted for the hellum diluent, even though the normal-

gravity tests showedexaggerated pulsations.

In those cases where the flame spread to the edge of the tray, the

mlcrogravlty flame subsequently collapsed bottom-up, i.e., toward the luminous

region farthest from the pool, until the remaining flame was very thin and blue

at a distance of I0 to 15 mmfrom the pool surface (see Flg. 5(b) to (e)).

After this collapse, the flame lifted very slightly away from the pool, and its

lumlnosity steadily diminished, disappearlng at low 02 concentrations before

the end of the test.

A few tests were run with super-Tcc ethanol and methanol In alr. Slnce

flame spread for ethanol-alr and methanol-alr at room temperature is controlled

by the premixed, combustible layers, 2 and not by any buoyancy-related effects,

no difference was found betweennormal and mlcrogravity flame spread. Both

were very rapid (>I m/sec) and similar In shape and color.

4. DISCUSSION

Previous experlmental observations 2,3 suggested that the pulsating flame

spread arlses in part from a compllcated, subsurface llquid flow structure with

clrculatlon around several centers, caused a temperature valley just aheadof

the flame. The position of the pulsatlng flame front is such that it advances

only to that locatlon where the surface temperature corresponded to the flash

polnt. The front can not propagate steadily because the amountof combustible

vapor aheadof the flame was _nsufflclent. A mlnlmumcombustion layer
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thickness was postulated such that while a barely combustible mixture may occur

ahead of the flame, the amount of energy available for transfer to the liquid

surface was insufficient to sustain further vaporization. Only when this

thickness was exceeded, could flame spread be sustained.

The very shallow pools in our study should have prevented the complicated,

subsurface flowfield; for pool depths less than 0.4 cm, the flow is predicted

to be in the vlscous-domlnated regime. 8 A ratio of liquid surface velocity due

to thermocapIllarlty, Vo, to that due to buoyancy, VB, can be estimated by

V h (BTIBx) o'Ip
(_ (7 (7

scale analysls 16 as:

where o' Is the rate of change of surface tension with temperature, g Is the

gravlty level, h Is the depth of the heated layer, _ is the 11quid viscosity

and p' is the rate of change of liquid density with temperature. For shallow

pools, hpool = ho = hB; measurements 5 suggest (ST/ax)o _ 5(@T/Bx) B, ylelding

VJV B _ 20 for n-propanol at normal gravity. Having small buoyancy effects in

the liquid even in normal gravlty, pulsating spread was still observed.

Therefore we conclude - In disagreement with some earlier work2, 3 - that this

complicated, subsurface flow structure, attributed to buoyancy, Is not required

for pulsating spread.

Slnce buoyancy in the liquid is negllgible for our pools in normal

gravlty, Induced gas phase convection must be a key contributor to the

development of pulsating spread (in agreement wlth Refs. 2 and 3). The gas

phase flow in normal gravity simultaneously opposes flame spread and provides

fresh oxidizer to the flame front. If this flow is absent, as in microgravity,

the feed rate of oxidizer to the flame front is greatly reduced and may cause

extingulshment at a hlgher 02 concentration in microgravity. Also, in the



normal-gravity pulsatlng flame, products mayaccumulate near the flame front

whenever the amountof combustlble fuel vapor is less than the mlnlmum

combustlble thickness and are swept away by the Induced buoyant flow,

permitting flame spread. In microgravlty, the ability to clear away products

via this mechanismis greatly dimlnished. The process may be further

diminished by products carried aheadof the flame by thermocapillary-driven

liquid motion and the gas-liquld, no-slip condition. The combinedeffects may

lead to extinctlon.

Although gas phase buoyancyappears necessary for pulsating spread, there

is a clear phenomenologlcal distinction betweenpulsating spread and the

familiar, hydrodynamlcally-induced oscillations of pool fires. Although the

plume oscillated during spread at low 02 concentration, the observed flame

spread rate wasuniform. Further evidence is provided by the fact that 02

concentration and diluent type greatly affected the characteristic spread

behavior, but had no discernable effect on the plume's osclllation frequency

of the pool fire after spreadlng In normal gravity.

The detailed mechanismsof the asymmetrically pulsating, hellum-diluted

flames are beyondour current understanding. Clearly, the flash point

temperature for hellum-diluted environments Is higher than that for the other

diluents. This is evident not only from the observed spread behavlor, but

also from methanol droplet behavior In helium-diluted envlronments. 17

Ignition of the droplet was predicted and observed to be far more difficult in

heIium-dlluted, as comparedto nitrogen-diluted environments, due to more

rapid thermal losses to the background. Similar to Ref. 17's observations,

the helium-diluted flames were thick, indicating a smaller diffusion residence

time comparedwith the chemical residence time. These effects yield a lower-

than-expected flame temperature, maklng sustained spread more difficult.
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The simllarity of normal and mlcrogravity spread In the uniform regime

indicates that (I) buoyancy-driven motion In elther phase had no influence on

uniform flame spread, (2) radiation effects on spread were probably small for

this scale experiment (the large change In flame height made no difference),

and therefore (3) liquid conduction, gas phase conduction and possibly

thermocapillary-lnduced liquid motion were the controlling parameters.

The relative magnitude of these mechanlsms can be examined individually.

Liquid conduction is smal] and cannot control spread, relative to gas conduc-

tion by a comparison of the magnitude of gas and liquid conduction preheat

lengths, as done for solid burning: Lgas/Lll q : (_gas/_liq)[VF/(Ug + VF)] >> 1

where _ . thermal dlffusity and Ug is the induced gas velocity. The

earlier conclusion that gas phase conduction controlled spread In the uniform

region was based on the observation of no llquld flow ahead of the unlformly

spreading flame, I-3 an observatlon in confllct wlth this work and Ref. 5. If

there were no llquld flow ahead of the flame, analogles to solid phase spread

should be valld (we stress, for sub-Tcc uniform spread only where the spread

velocities correspond to lean limlt, premixed spread rates and not those of

stratified, premixed systems), implylng (I) solid phase flame spread equations

should be predictive of spread rate away from the limiting oxygen Index;

(2) for increases in pool depth, flame spread should dlmlnlsh; and (3) for

constant (Tcc - Tpool), flame spread rates should be comparable for different

alcohols with sufflclently slmilar llquid and gas phase propertles. Instead,

(1) solld phase spread equations 18 underpredict by an order of magnitude the

flame spread rates observed in this work and In Refs. I and 5; (2) uniform

flame spread rate apparently increases with pool depth; 19 and (3) the spread

rate for methanol is roughly 2 to 2.5 times that of n-propanoI at 5 °C

subcoollng, 1,5 despite the similarity of their relevant thermodynamic and

thermal transport properties. If some 11quid convectlon precedes the flame,
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then this spread rate difference should be accountable to differences in

liquid, convectlon-related properties such as a', p', or p. For these fuels,

o' and p' are similar (slightly less, so flame spread actually should be

reduced, for methanol), but Pprop is roughly 3 times Pmeth and accounts

for the difference in flame spread rates. Therefore we suggest, in agreement

wlth Ref. 5, that liquid convection apparently controls spread in the uniform

regime, while gas phase conduction is of secondary importance. Future

mlcrogravlty tests with deep pools could determ|ne if this liquid convection

is attributable in part to buoyancy.

The postspread, microgravity flame behavior is consistent with theory 20

which does not admit a solution for planar flames in a nearly convectlon-free,

purely diffusive environment due to a lack of divergence (unlike droplets).

Such theory does not account for second order effects, such as heat loss to a

small diameter pool tray, but these effects appear to be small in our studies.

An alternate explanation is that the flames extinguished due to heat loss and a

lack of 02 transport to the flame region, Independent of geometrical concerns.

5. CONCLUSIONS

The experiments reported In this paper investigated burning of alcohol

fuels over 15-cm dlameter pools in a free-fall facility under both mlcrogravity

and corresponding normal-gravlty conditions. Results are reported as flame

spread rates, determined from photographic observations of the flame diameter

as a functlon of time.

Microgravlty flame spread was always uniform. At conditions whlch caused

pulsating spread in normal gravity, the mlcrogravity flame extinguished. In

the uniform spread regime, flame spread rates were similar In both gravity

envlronments, indlcatlng the buoyancy-drlven motlon in either phase is not

important for the shallow pools which were Investigated. Because pulsating
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spread wasonly observed in normal gravity, gas phase convection must be a key

contributor to the development of pulsatlng spread.

Replacementof N2 dlluent with argon shlfts the pulsating flame spread

onset to lower 02 concentratlons (and presumably lower pool temperatures), as

expected from dlmlnlshed heat losses to the argon atmosphere. Helium dilution,

on the other had, shifts the pulsating spread to higher 02 concentrations and

intenslfles the amplltude of the pulsatlons.

For potentlal appllcatlon to spacecraft Fire safety, it appears that the

determination of the conditions yleldlng pulsating spread in normal gravity

can be used to predict mlcrogravlty pool flre extinction limlts, provided that

gravity level is the only parameter that is changed.
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FIGURE I. - FLAME SPREAD OVER PROPANOL-O2-N2, POOLS IN NORMAL AND MICROGRAVITY

AS A FUNCTION OF 02 CONCENTRATION.
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FIGURE 2, - FLAME SPREAD OVER BUTANOL-O2-N2 POOLS IN NORMAL AND MICROGRAVITY AS

A FUNCTION OF 02 COHCENTRATION.
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FIGURE 4. - FLAME SPREAD OVER BUTANOL-O2-He POOLS IN NORMAL AND MICROGRAVITY AS

A FUNCTION OF 02 CONCENTRATION.
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(b) PROPANOL-30%O2-70%N2, JUST AFTER SPREADING IN
MICROGRAVITY.

I- 7.5 CM •

MICRO GRAVITY

NORMAL GRAVITY

(a) PROPANOL-21%O2-79%N2, DURING SPREAD IN NORMAL
AND MICROGRAVITY.

(c) PROPANOL-3OgO2-70N2, 0,I SEC AFTER SPREADING IN
MICROORAVITY.

(d) PROPANOL-30%O2-7OgN2, 0.3 SEC AFTER SPREADING
IN MICROGRAVITY.

(e) PROPANOL-3OXO2-7OIN2, 0.5 SEC AFTER SPREADING
IN RICROGRAVITY.
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RED-BLUE

''I CM BLUE

FIGURE 5. - FLARE APPEARANCE.
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