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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

,Johnson Space Center (OSC} and local Industry to actively support research

In the computing and Information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research In advanced data processing technology needed for OSC's

main missions, Including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCLbeginnlng tn May 1986, to join|ly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-i6,

computing _d educational facilities are shared by ihe two institutions to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCLand Its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual Interest

to its sponsors and researchers. Within UHCL, the mission Is being

Irnplcmented through Interdisciplinary Involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with Industry In a companion program. This program

ts focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UItCL

has entered Into a special partnership with Texas A&M University to help

oversee RICIS research and education programs,_ While other research

organizations are Involved via the "gateway" concept.

A major role of RICIS then ls to find the best match of sponsors, researchers

and research objectives to advance knowledge In the compu ting and Informa-

tion sciences. RIC1S, work!ngJo!ntly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and Integrates

technical results Into the goals ofUHCL, NASA/JSC and industry.

m

w

m
mf

g

: =

i

W



mm
m--

A Common Distributed Language
Approach to Software Integration

m

w Final Report



_m

Preface m
mlW

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Charles J. AntoneUi, Richard A. Volz, and

Trevor N. Mudge. Dr. Terry Feagin served as RICIS research coordinator.

Funding has been provided by the Mission Support Directorate, Mission

Planning and Analysis Division, NASA/JSC through Cooperative Agreement NCC

9-16 between the NASA Johnson Space Center and the University of Houston-Clear

Lake. The NASA technical monitor for this activity was Dr. Timothy F. Cleghorn,
of NASA/JSC.

The views and conclusions contained in this report are those of the authors
and should not be interpreted as representative of the official policies, either express

or implied, of NASA or the United States Government.

m

m

f

J

W

m
m

J

I

zJ



m

w

A Common Distributed Language Approach

to Software Integration

Final Report*

Charles J. Antonelli Richard A. Volz

Trevor N. Mudge

Center for Research on Integrated Manufacturing

Robot Systems Division

College of Engineering

The University of Michigan

Ann Arbor, Michigan 48109

w

L=

w

Department of Computer Science

238 Zachry Engineering

Texas A&M University

College Station, Texas 77843-3112

August 9, 1989

Abstract

An important objective in software integration is the development of

techniques to allow programs written in different languages to function

together. We discuss several approaches to achieving this. objective and

present the Common Distributed Language Approachas the approach of
choice.
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I Introduction

One important objective in softw_ integration is the development of techniques

which allow programs to function together. By "function together", we mean the

mutually cooperative execution of a numberof programs to achieve a common

goal.

We will need to define precisely what we mean by "programs" because we

shall consider two different types of Software components as our basic building

blocks in this paper. When we say program we will mean a software com-

ponent that stands/done, and is loosely coupled wida other_rograms through

files, pipes, sockets, and Other ms of inpu_/bu/:put=_vices. When we say

subprogram we will mean a software component which may or may not stand

alone, but is tightly coupled with other sUbprogr_s tlm3hgh local _cl remote

procedure calls. Subprograms are thus constituents of programs; to simplify the

nomenclature, we shall always use the term program object to denote programs

and subprograms collectively. We have identified the following attributes as

distinguishing programs from subprograms: =

• Interact]on Times. Pro_s interact with each other more slowly than

subprograms do. This is because independent programs must rely on
traditional, relatively slow I/O communications interfaces. Even the fastest

communications primitives cannot compete with the speed and efficiency

of a local procedure call. Subprograms, because they can employ local

procedure calls, can interact much more quickly.

• Compatibility. Programs and subprograms resolve data formatting in-

compatibilities differently. Programs write data into files and onto other

output devices, while other programs read the data back and perform some

type Of conversion. This allows a much greater flexibility in data format-

ring. In contrast, subprograms must interact via procedure calls, so they

not only must arrange to convert the data into a format that is mutually

compatible, but the formatting of these data is usually limited to a small

num berofsubpro_amTdefined dat_S: _ , .... ,_ :_=

• Coupi|ng. in_,iduai program execution is usually much _more of a de-

coupled activity than subprogram execution. Programs which produce

output can be run independently of other programs which use their data

as input. Many runs of a producer can be performed, and several data

2
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files generated, before the consumer programs need be run. Failures in
consumers can be addressed by simply rewriting them and re-executing
them on the same produced data. Subprograms, on the other hand, are

much more tightly coupled, in that data shipped across a procedure call is

much more short-lived, and failures in one or the other component usually

force all of the subprograms to terminate and be re-executed.

• Concurrency. Programs can usually operate concurrently with other pro-

grams, spooling intermediate data in buffer areas. Subprograms, on the

other hand, usually run synchronously, with a caller waiting until a caUed
subprogram returns. Even remote procedure calls, in which the remote

procedure is located on a different processor, usually enforce this syn-

chrony.

• Data Sharing. If the programming language in which a set of subpro-

grams is written supports the concept of globally visible data objects, then

subprograms can share Such global data in a straightforward manner. In

addition, since the subprograms of a program are sequentially executed,
problems caused by indeterministic concurrent access to data do not occur.

On the other hand, programs usually cannot share data this easily; the un-

derlying operating system and/or hardware architecture must be provided

with mechanisms to allow one program to access data stored in another

program. Concurrent access to such shared objects by different programs

must then be controlled, for example via a monitor.

Thus there are advantages and disadvantages to both types of program ob-
jects; this means we cannot eliminate either category, and instead will analyze
both.

We wish to place as few restrictions on the composition of these program

objects as possible. In particular, this means we will not insist on the simplifi-
cation that these objects be designed or written together. On the contrary, we

feel the greatest benefit can be obtained if our methodology may be applied

to program objects that were never intended to function together, that were de-
signed to run in stand-alone mode on different machines with different operating

systems. The bulk of currently existing software consists of specialized program

objects tailored for a particular application. If we can develop a methodology

that makes them usable as "building blocks" we can realize benefits in rapid
prototyping, reusable software, and software integration without the need for
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the continual tailoring and re-tailoring of supposedly general-purpose software

packages to individualapplica_o-6s. _

The rest of this paper is organized as follows. Section 2 examines the

important issues and categorizes several possible approaches that may be taken

in order to achieve our objective of getting program objects to work together.

One of these approaches, which we call the Common Distributed Language

Environment, is then selected for more detailed study in Section 3. Finally, we

propose a candidate for this common language (Distributed Ada) and develop

several methods for interconnecting programs using this lan_age in Section 3.

2 Software Integration Issues and Approaches

Let us denote a program object written in some unspecified foreign language FL

as a foreign program FP. Then, given a set of foreign program_s FPt,... , FP,,,

what must be d0ndin Order to connect them together?

This question is examined by first discussing several of the issues involved

in making such connections among program objects. We do so to demonstrate

the breadth and scope of the overall problem, and to separate _ in which

automated procedures can realistically be expected to assist in this software

integration process from those areas in which manual processing is required.

Some of these issues, not amenable to automation, are not examined fta'ther.

Second, several approaches to solving the remaining issues through the in-

terconnection of FPs are discussed. Here the goal is to determine methods of

solving the problems associated with the previously identified issues. Again, two

of the approaches are discarded because they require too much manual crafting.

Finally, we select the Common Distributed Language Approach for further

study in future sections.
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2.1 Issues

We have identified the following issues which must be dealt with in order to

integrate arbitrary subprograms.
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2.1.1 Syntactic Compatibility

An FP receivingdata from another must be cognizantof the data formats uscd

by thatFP. For example, a receivermust be able to interpretcorrectlythe value

Of an integervariabletransmittedby a sender.The nontrivialityof thisproblem

in the lightof varying word lengths,byte orderings,and more complicated data
structuresisobvious.

2.1.2 Semantic Compatibility

After solving the problem of syntacticcompatibility,a receivingFP must cor-

rectlyinterpret the semantics of the arriving data. Elaborating on the previous

example, considerthe case in which the sending FP isa program which outputs

stringswhose meaning depends on the currentstateof the senderas well as the

contentsof the stringsI.

For example, consider an editorFPI whose inputsand outputsare connected

to a driverFP2. Suppose the driverFP2 is presented with a stringfrom the

editorwhich consistsof the characters"inputerror".Ifthe editorisin a state

in which itis accepting and reactingto commands issued by the driver,the

meaning isclear:,the previous command sentby thedriverwas not understood.

However, ifthe editoris in a statewhcrc itisechoing portionsof the edited

text,then the meaning isentirelydifferent:the string"inputerror"ispartof the

textbeing editedwhich is being listedon the editor'soutput,and there is no

errorassociatedwith the wansmission of thisstring.

Thus, the compatibilityissue is not just a matter of assigningthe proper

mappings bctwccn data representations.After the receiversolves the problem

of correctlyinterpretingthestringsthcmsclvcs,itmust furtherassignthem mean-

ings utilizinginformationnot present in the strings.Thus, if wc consider the

values being cxchangcd by the programs to bc trees,then wc arc concerned at

thislevelof compatibilitywith providingmethods of understanding the forest.

2.1.3 Implementation Languages

Here we arc concerned with the types of languages used in writing each of

the FPs. There willobviously be severalsuch languages,and possiblyseveral
dialectsof each.

tinfact,thisparadigmdescribesmostuser- operatingsysteminterfacesinusetoday.



The basic issue here is one of compatibility. Different languages have very

different concepts of programs, data, data representations, control flow, and

synchronization. Even identical languages are often secretly influenced by the

type of machine and operating system supporting the compiler(s) and run-time

system(s). Subprograms must match parameter types, ordering, and representa-

tions at the call interfaces. Programs must match byte ordering, data structure

representations, and the correct matching of input with output operators.

2.1.4 Implementation Language Compilers

Along with each implementation language there willbe a compiler or set of

compilers required to translate this language into executable code. Each such

compiler will likely accept a slightly different dialect of FP, provide a unique_ set

of interfaces to the processor and/or operating system on which the FP runs 2,

produce different intermediate and internal data representations, and produce

code with different Size, speed, and efficiency characteristics.

2.1.5 Conflgurational Variances

Given compilers which produce identical code for the same foreign language,

differing implicit or explicit configurational requirements limit interoperability.

As a classical example, c0nsider the attempted migration of a FORTRAN pro-

gram from one hardware configuration of a particular computer system to another

in which different I/O devices are provided. Even though identical programs,

compilers, libraries, and operating systems are provided for both systems, the

program as written for the first configuration simply will not run on the second

without modifications.- ........

2.1.6 Architectural Variances

Here we take-the variabilities mentioned in the previous paragraph and extend

their scope to the architecture and thus the overall swucture of the system in-

tended to execute the FPs itself. The issue here involves removing ourselves

from the implicit architectures that existed at-d_e time the majority of the FPs

were written - centralizedprocessors - and consider the difficulties involved

2Assumihg th_-cbmpiled _e has the responsibility for managing resources. If it _oes

not, the run-time system supplied _b]_ i]_e-_-o-n]_iler s_d}does, an_-_e-pro'biein _s.
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when distributed systems and massively parallel processors of all flavors must

be considered as part of the target environment. For example, an Ada program

written to execute on a traditional virtual memory platform (such as a Sun pro-

cessor) will not be transportable to a non-virtual massively parallel architecture

such as the NCUBE hypercube without extensive modifications, because of the

great architectural differences that exist between these two systems.

2.1.7 Operating System Variances

Even when two machine architectures are identical, it is quite possible to develop

quite different operating systems which exacerbate the difficulties of connecting

together program objects not written for the same operating system. In particular,

the system call interface of each operating system is likely to be very different.

As a example, consider the massive differences between the UNIX a and VMS 4

operating systems and the resulting difficulty of connecting together two pro-

_s, one from each OS. As a less obvious example, consider the construction

of a program out of subprograms drawn from the Berkeley UNIX and the System

V UNIX environments. Now the differences are largely hidden, so much so that

the job of constructing such a program seems deceptively simple at first glance,

but reveals some deep architectural differences hidden beneath the surface. For

example, Berkeley UNIX programs which utilize the £truncatQ () function

are not easily transported to System V UNIX implementations in which this

library function does not exist 5.

w

=

2.1.8 Discussion

Since the first two issues (those having to do with the syntactic and semantic

compatibility problems mentioned in the previous section) are inherently manual

in nature, we do not consider them further in this paper. This is because it is

inherently a creative process to analyze two FPs and determine their syntactic

and semantic compatibilities, and this process thus must be manually rather than

automatically performed.

3UNIX is a trademark of AT&T.

4VMS is a trademark of Digital Equipment Corp.

sit is not a simple matter to simulate this function under System V, because this operating
system does not supply a file truncation primitive.

7
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It is difficult to solve either of these problems automatically. Syntactic com-

patibility must be established by a pairwise examination of all program objects

that are to be connected together, withthe creation of-the appropriate conversion

subprograms. Several approaches are possible; in one such approach, the re-

ceiver of data is made responsible for their correct interpretation by performing

the appropriate conversion. This type of conversion is most easily performed if

a set of conventions is followed when such interfaces are designed, because then

an automated tool can be employed to generate the appropriate conversions; it is

much more difficult to generate these conversion subprograms for existing for-

eign program pairs, that is, pairs which were not originally designed to function

together,

Semandc compatibility, which also must be established for all connected

pairs of program objects, presents a different type of problem, since it is the

states of the two connected program objects that must be synchronized. Since,

in general, the state of each program object is independent of the state of the other

program object in a given pair, is is exceedingly, difficult to establish semantic

compatibility automatically for existing foreign program pairs. Continuing the

previous editor example, a program for achieving this semantic compatibility

would first have to determine the number of states the editor could assume. It

would then have to discover how the meaning of the output string "input error"

changes with respect to the editor state. Finally, it would need to interpret

occurrences of this string for the other program connected to the editor based

on the editor state, and it would have to do this for all possible strings output

by the editor. Different program pairs would naturally exhibit different internal

states and resulting interpretations. It is clear that such semantic compatibility

cannot, in general, be achieved automatically.

Accordingly,-_V_ Cbncei'n-Ourselves Chiefly _wlth the language, configura-

tional, architectural, and operating system variances in the_rem_nder of this

paper. That is, we are concerned with the differences in the programming lan-

guages u_ to _daTeq_l_ _n_2hedifferenc_s _wai'e _d S0ftW_ plafforms

on which the FPs are executed and how these differences affect the mutually

cooperative execution of such FPs.

2.2 Approaches

In this sectionwe Will investigate th_e-_6ss_bIe app_0a_es toone aspect o_

the overall objective of mutually cooperative execution, namely the problem of

D

I

m
W

J

W

lid

g

m

D

m

m

U

m

II

m

alW

u

n
II

i
i
m



s ±

W

J

Figure 1: Operating System File

connecting FPs together. We have chosen three methods of such intereonnection

for further analysis: the Piping Method, which involves connecting programs

together;, the Pairwise Language Interface Method, which may be used to con-

nect subprograms together, and the Common Distributed Language Environment,

which encapsulates all FPs in a specification written in a common language.

2.2.1 Piping Method

A pipe is unidirectional conduit connecting two programs 6. There are four

distinct cases to be considered, depending on the level at which the connection is

performed. In all cases we strictly consider a single pipe between two programs

FP1 and FP2.

Common File Piping As shown in Fig. 1 this case involves connecting FP1

and FP2 through a file F. This requires that the operating system supply the file

abstraction and the read and write connections to it. Performance is likely to

suffer in this case, as without some method of synchronization FP2 must wait

until FP1 has completely finished filling F before it may commence reading. In

addition, if FP1 outputs a large amount of data to FP2, it is easily possible to

overflow the limits of the file storage system.

This is the simplest type of pipe, since the operating system has the respon-

sibility for managing the connection. The programs must still be rewritten to

use them, however, and without synchronization there will obviously be some

6Although it is possible to connect two subprograms in this manner as well, it is usually

more efficient to use a language interface, as described in Section 2.2.2.
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Figure 2: Pipe

upper limit on the amount of data that may be written to the pipe, since it is, in
effect, a buffer.

User Generated File Similarly, this case involves a file with read and write

connections, but here the user must supply the mechanism. This must be done if

the operating system does not supply the necessary primitives (in this case, input-

output redirection) to obviate user rewriting of portions of each b"P. Furthermore,

this user-level rewriting must be performed for each pair or programs that are
to be connected.

Here we have somewhat more control over the connection. The lack of

synchronization exhibited by the previous case can be overcome by appropriately

programming the interfaces to the file. For example, the file interface can be

written to notify the operating system to suspend a producer if the amount of

data in the file becomes large. However, the burden of maintaining the file
abstraction now rests with the user.

Operating System Piping In this case we replace the file and associated

read/write mechanisms with a pipe as shown in Fig. 2. Here FP1 writes data to

one end of the pipe, and FP2 reads from the other end. The pipe is unidirec-

tional. The major difference between a pipe and the previous file mechanism is

that reads and writes are synchronized; the reader may begin reading immedi-

ately, and the pipe makes data avail_blg to the reader as soon as it is written to

the pipe. This case requires the operating system to support the pipe abstraction.

This pipe abstraction allows concurrent operation of reader an_er, which

is a significant advantage since it is no longer necessary for each stage of a

pipeline built with these pipes to completely process its data before the next

stage can begin processing.

User Generated Piping This case is similar to that of Fig. 2 in that a pipe

is employed, except that it must be supplied by the user. This must be done if
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the operating system does not supply a satisfactory piping function, and requires

that the user re-write portions of each FP, again for each such pair of programs.

Correctly programming such a pipe abstraction at the user level is not a trivial

task, particularly since any operating system not providing a pipe abstraction is

not likely to provide the synchronization primitives necessary to implement one.

Furthermore, such an implementation is destined to be non-portable.

Network Piping In the final case shown in Fig. 3 we again connect two pro-

grams via a pipe, but here the pipe involves communications across a network of

some type. Implicit in the previous cases was the assumption that all programs

were executing on a single processor, possibly under the control of a single

operating system. Here the major differences are that two processors must be

synchronized to use the pipe, accessing a network impacts the performance of

the pipe, and the operating systems, languages, and processor architectures on

which each program executes may be different.

If implemented correctly, a network pipe is a powerful abstraction because it

is no longer necessary to remember whether the two ends of the pipe are located

on the same processor. This makes writing software for distributed systems

much easier. For example, the Berkeley UNIX socket abstraction can be used

to create a pipe whose ends can alternately be located on the same machine, on

two machines adjacent on the same local network, or on two machines separated

by several thousands of miles; the software using the pipe does not have to be

aware _of the geographical _spersi0n in any wayl The main problem is that

transmission delays vary widely with many factors having nothing to do with

the programs that use the pipe, and that while executing the same distributed

program repeatedly will usually produce the same results, the same cannot be

said for its performance.

In conclusion, we have examined five types of pipes as candidates for inter-

connecting programs. Since each pair of previously written programs must be

rewritten if they are to use these pipes, we shall not consider them further in

11
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this paper.

2.2.2 Pairwise Language Interface Method

Implicit in _e-Plping Method is the _assumption that the connected FPs are

programs which stand alone in whatever environment executes them. This forces

all subprograms which make up such an F_ to be written in the same language.

We now relax this assumption by considering the interconnection of different

subprograms within the same FP. Thus, we introduce the Pairwise Language

Interface Method, a method that can be employed t0 c0nnect_u_'ams, _

In Fig. 4 we show the connection of subprograms S and T which are each

written in different languages. In order to properly perform the call, the ac-

tual parameters specified by S must be translated to T's equivalent formal

parameters r. This function is accomplished by a call translation function which

must take place for each call. Any specific calling conventions expected by

the called subprogram must be honored by t eh-_ling subpro_. Tiiis call

translation must be discovered for each pair of languages whose subprograms

are to be so connected, and an appropriate scheme for C-_II translation for each

such pair must be crafted,

In addition, the underlying run-time systems of the two subprograms, which

might be different_ must be=acc0mmodated. Ftr_Ps_wh_ch have_ttl¢ 0rno

interaction with their run-time systems, or whose run-time systems are indepen-

dent of each other, this is not of great consequence. On the other hand, FPs

whose ruh-_fl_m___y_te_s ifitert_w]tla ea_t_-_*or _h e_hibit _don-al::

constraints, such as a typical Ada run-time system implementation which make

it difficult for a non-Ada subprogram from invoking an Ada subprogram, will

more difficult t_-ctn_ecti0gethei. Again,-palA of such _n-time _gms must::
be investigated and points of interference resolved.

rAnd vice-versa, for result parameters.
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Figure 5: Common Distributed Language Environment

Since both call translation and run-time System interference require manual

analysis and crafting, this approach is also not considered further.

2.2.3 Common Distributed Language Environment

Another way in which subprograms written in different foreign languages may be

interconnected is to encapsulate them inside "shells" written in common target

language TL. In Fig. 5 each subprogram FP may be written in a _fifferentforeign

language FL, but since each is encased in a shell written in TL the interfacing

of these subprograms is presumably simplified. Furthermore, since we now

can write each program in the target language, connections between programs

become simplified as well. Intuitively, the difficulty with this approach lies in

the connection of an FP to its TL shell, because it is at that level that the issue

raised in the Pairwise Language Interface method - call translation - must be

addressed. This will be investigated in the next section.

mw 3 Common Distributed Language Approach

In this section we investigate the Common Distributed Language Approach in

detail. Since we have had previous experience with one particular distributed

language - Distributed Ada - we first summarize its properties. After some

preliminaries we then lay out the components of the approach.

The Common Distributed Language Approach is supported by the recent

findings of the Defense Science Board [4]:

Techniques for designing software in little modules, for defining

13
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the module interfaces precisely, and for using common file formats

havc come into standard use during the dccadc. These methods, the

backbonc of so-called "modem programming practices," radically

improve thc structure and adaptability of large programs.

The report goes on to state Ada's role in promulgating this improved adaptability:

The Ada programming languages deSigncdto make such modu-

larizationnatural,and toprovide very powerful facilitiesfor linking

modules. Integratedprogramming environments, such as Unix [sic],

provide the same kind of facilityat another level,thatof the shell

scriptlinkingwhole programs together.

We observe thatthe Common DistributedLan_n_agcApproach can be used

to exploitAda's nattu'alfacilitiesfor linkingmodules togethereven when those

modules arc writtenindifferentlanguagcs,because of Ada's precisionindefining

module interfacesvia compiled Ada specifications,

3.! Dis_t huted Ada

We have already explored the concept of a distributed language by developing

Distributed Ada [11], which is based on the Ada [8] pro_m|ng lan_age.

Ada was chosen as a base langUageT3ecause it possesses the following attributes

(see, for example, Booch [3], Habcrmann and Pcrry [5], or Barnes [2]):

1. Readability. Since it_a recognized fact_that most programs are read much

more often than they arc written, it is important to ensure that a program

can be easily read and understood, particularly by those that did not origi-

naUy write it. Ada strives to accomplish this through, among othcr things,

a block-su'uctured organization, a clear means of object qualification, and

use of textual syntactic elements _instead of-special character sets.

, Object-oriented programming. Rather than differentiate between compo-

nents of the language; _ :as: scalar V_abies, _subpro_s; constants,

and so on, Ada operates in terms of objects, which greatly standardizes the

specification and use of these components as objects without great regard

for the component's true identity? =
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. 3". Strong typing. This forces each object to have a clearly specified set of

values and forbids assignment or comparison of values not in the set to

the object. This allows an Ada compiler to detect a large class of errors

m operating on an object with unintended values -- at compilation time.

4. Data and program abstraction. By hiding many implementation details

from portions of an Ada program that do not need to know them, it be-

comes much easier to change these implementation details without unduly

affecting the rest of the program.

5. Separate compilation. As an instance of abstraction, separate compilation

splits the definition (the specification) of an Ada program unit from its

implementation (the body). Other Ada program units refer only to the

specification when dealing with the program unit; the body can be changed

freely without interfering with the rest of the program.

6. Libraries. Ada program units can be declared to be library units. As

such they can be referenced by many different programs using a single

source-level with statement. This facilitates bottom-up software design at

the language level as has been investigated by Rajlich [9][10].

.

Exception handling. Ada provides explicit means to handle unforeseen

or exceptional conditions in a program. The exception handling mecha-

nism can be layered to design programs that contain the effects of these

conditions without affecting the rest of the program.

Tasking. The Ada language supports the concept of concurrent program-

ming through the use of language-level context objects called tasks. Ada

tasks are program units which execute independently of other program

units unless they choose to interact with other tasks via a rendezvous,

which resembles a subprogram call.

Generic units. In order to avoid repetitive programming, the Ada language

allows the definition of generic units, which are essentially templates for

creating program units which are independent of the types of objects they

manipulate. Copies of this template are then created (instantiatea r) as

needed by the Ada program for specific object types from this generic

template. These object types are not limited to data objects; a user-defined
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subprogram, for example, can serve as such a generic formal parameter

when instantiating a generic unit.

Based on the Ada programming language, we have defined Distributed Ada

to expiore theconcept 0f a distributed language while taking full advantage of the

above attributes. Briefly, the distributed language concept differs from traditional

re&hods Of programming a distributed system in-ihafthe prb_-m__ei-_tes a

single program w_aich ismech_anicalIy d_6mpbs-_cd -_vl_cm6_ded distribution

directives - into a set of programs which can then be separately compiled and

installed on each machine in the distributed system. This decomposition is

called pretranslation, and is performed by our Distributed Ada Pretranslator.

This methodology has the following advantages:

• A single program is written; consequently, the additional complexity usu-

ally induced by requiring the writing of a separate program fragment for

each of the processors in the distributed system is avoided._

The powerful automatic error detection techniques available in modern

languages ._ extended across processor boundaries. This is particularly

useful for the development of large systems.

• There is no loss of abstraction Comparable to that which occurs at the

interfaces between separate program fragments. Since a single program is

written, it is straightforward to ensure consistency between its components.

• The pretranslator output consists of a set of Ada programs which may be

compiled by existing Ada compilers, thus no compiler modifications are

required. _ _ . : _

The advantages of a distributed language should now be clear. It may still

be argued that another common distributed language might be suitable instead of

Distributed Ada. We reject this argument on the basis of Ada's obvious strengths

in modularization via packages and its facilities for linking separate modules;

th-fse-cohcqusions are supported by the Defense Science Board's conclusions

quoted above.

For these reasons we have chosen Distributed Ada as our target language.
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3.2 Related Work

Several recent efforts in the development of tools and methodologies for the con-

version of programs written in one language into another and for the connection

of existing programs into a single cooperative program object are summarized

here.

Wallis [12] examines various methodologies for the automatic conversion to

Ada of software written in other languages. He observes that it is not sufficient

to translate a program by replacing constructs with equivalent constructs in a

new language, but that these new constructs must imply a change in how one

reasons about the program and the process of creating it. He then concludes

that "for both managerial and technical reasons, automatic language conversion

cannot provide an easy route to a complete conversion to Ada." However, he

advocates the use of conveners as a semi-automatic "bridging technology" when

it is desired to convert a body of existing code to Ada.

Kernighan [6] describes an archetypical solution to the problem of converting

programs from RATFOR - a "rational" FORTRAN dialect- to FORTRAN: the

use of a preprocessor that accepts RATFOR and produces equivalent FORTRAN,

which is then compiled with a standard FORTRAN compiler. The approach dif-

fers from the previous case because it is clearly never intended that a conversion

from RATFOR to FORTRAN be made; rather, this method allows the program-

mer to write RATFOR code and never consider the equivalent FORTRAN.

McMillan et al [7] provide a tool which assists in the serial to parallel con-

version of FORTRAN programs. They have constructed an interface recovery

system which utilizes various existing tools such as compiler listing generators

and cross-reference utilities to create a global data structure indicating read/write

variable accesses by the subroutines of a typical large FORTRAN program. This

table can then be used as an aid in transforming this large program into one that

would execute on a multiprocessor with optimal placement of these variables.

The relevance of this work is in its usage of existing tools to analyze existing

programs, and in its use of the "workbench approach", that is, the construction

of tools to aid in the solution of a potentially difficult problem when it appears

that a fully automated solution is not feasible.

Our approach differs from and complements these methods in the following

ways:

• We do not advocate the wholesale translation of programs from another

language to Ada. We do wish to utilize these programs, but without

17
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source-level translation and preferably without a great deal of source-level

inspection.

• One function performed by our pretranslator is similar to the RATFOR

preprocessor, and we would like to maintain this abstraction for Distributed

Ada.

3.3 Objective

In light of the discussion in the previous section, we can restate our objective -

the development of techniques which allow programs to function together - into

more precise terms. The objective now concerns the transformation of existing
software systems into Distributed Ada. This can involve two cases"

Transforming distributed program fragments written in some language and

executing on some processor and operating system configuration into a

Distributed Ada program.

Transforming a set of unrelated programs written in possibly different lan-

guages and running on possibly differefit processor and operating system

configurations into a Distributed Ada program.

The difference here is that in the first case the originai program was written

as a single, distributed program, and the problem is to transform the program

into a Distributed Ada Program, while in the second case the problem is to

transform pieces of previously written and therefore unrelated programs into a

single Distributed Ada program.

It is important that these transformations be performed with minimal modi-

fications to the original programs.

3.4 Strategy

Recall that a program written in an existing language is called a foreign program,

abbreviated FP. Let us now specify Distributed Ada as our target language TL,

and define a program written in Distributed Ada as a target program, abbreviated

TP. Furthermore, foreign and target subprograms will be abbreviated FS andTS,

respectively. The process of changing a foreign program or set of programs into

a target program is called a transformation.
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, Figure 6: A Foreign Subprogram

The general strategy will be to encapsulate each FS in a shell written in

TL; the resulting subprogram, now a TS, will then represent a program unit

equivalent in functionality to the original FS. Collections of these TSs are then

available for the construction of new TPs, facilitating the re-use of these TSs.

In general we will concern ourselves with the transformation of FPs con-

raining subprograms to equivalent TPs. Although FPs could contain task-like

constructs that might be transformed into Aria tasking constructs, we will not

consider this type of transformation in this paper.

Thus, within a given FP or TP there will reside a number of subprograms

which incorporate the functionality of the enclosing program. The specifications s

of these subprograms are denoted Ps; the bodies are denoted Pb. FPs lacking

specification parts elide Ps.

FPs and TPs execute in - probably different - environments provided by their

respective host operating and run-time systems. For the purposes of this paper,

such underlying system (US) services requested by subprograms executing in a

given FP or TP are modeled as calls on external subprograms.

3.5 Basic Transformation

In this section we discuss the mechanics of the basic transformation of a given

FS to TS by considering FS alone. The next section will then examine the more

difficult problems concerning FS interaction with its US environment.

Sin Ada, a specification of a program unit describes the interface (number and types or
arguments, etc.) to the programunit; a correspondingbody describes the implementation of the

program unit.
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PsO'

Figure 8: Transformed Foreign Subprogram

Figure 6 shows a typical FS split into two sections: the upper portion is

the specification section, and the lower portion is the body. Depending on the

nature of FL a specification may or may not exist forFS, in Fig.6,:Po has both

a specification and a body, which are denoted Pso and Pbo respectively. The

other case is shown in Fig. 7 where P1 has only a body, denoted Pbl.

Figure 8 shows the transformation required by our strategy. Here Ps0 has

been replaced by Ps' o and the body Pbo has been encapsulated by a shell of

TL software. Figure 9 shows the case where the foreign program has only a

body; a Pa t has been generated, and again a target software shell encapsulates

the body Pbt.

The interface between TS and FS is constructed as follows. There are two

cases to be considered, controlled by the presence or absence of a specification

in FS. If the specification is present, we generate a TS specification Ps_ and

an interface procedure Io as shown in Fig. 10. The body of Io consists of a

procedure which makes a direct call to Pbo (via Pso). The direct call is set up
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Figure 10: Interface Procedure Io

Psl'

+
I - I

Figure 11" Interface procedure/1
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by declaring Pso a pragma INTERFACE procedure in/o. In the second case,

when a specification is absent in FS, the same methodology is used, except that

in Fig. 11 interface procedure I_ is generated by examination of the body Phi.

We distinguish between these two Cases because we wish to make clear that

the absence of a specification in the latter case will make the transformation more

difficult to construct. For example, in the absence of a specification, constraint

information cannot be determined without a detailed examination of the body

for any dynamic checks on the bounds of a particular variable.

As an example of the preceding process, consider the following FS written

in the FL FORTRAN:

SUBROUTINE INVERT (A, N, RC)

DIMENSION A(I, I)

INTEGER RC

::: -:

Here INVERT inverts a square matrix A of dimension N. The success or

failure of the inversion operation is returned in Re. We wish to encapsulate

INVERT in a TL shell. The transformation is then:

type MATRIX is array

INTEGER range <>) of _;

pragma INTERFACE (FORTRAN, INVERT) ;

procedure TINVERT(A: in out ARRAY;

begin

if A'LENGTH(1) /= A'LENGTH(2)

raise NONSQUARE;

end if;

INVERT (A, N, RC) ;

end I_RT;

(INTEGER range <>,

Nj

then

RC: INTEGER) is

Here TINVERT is the name of the new TS which encapsulates FS. The body

of TINVERT (that is, Io) first performs a check to ensure that a square matrix

has been passed, and then calls the FS INVERT. The results of the inversion are

then returned to the caller of TINVERT.
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3.6 More Complex Transformations

The previous simple transformation suffices to make libraries of foreign subpro-

grams available for reuse in new Ada programs. We would now like to explore

some more complex problems which do not obey the simple library paradigm.

At the same time, we expand the scope of our consideration to that of target

programs, that is, programs composed of one or more TSs.

Therefore, in this section we analyze two kinds of more complex transfor-

mations. The first kind allows for a richer interface to a given FS than that

provided by the simple call-return interface above; this kind of transformation

allows calls made by a given TS within a TP to subprograms external to the TP.

This complements the basic transformation of the previous section by specifying

ways in which foreign code embedded in a given TP can call target code.

The second kind of transformation allows the interconnection of TPs gener-

ated from FPs that may or may not have been designed for such interconnection.

3.6.1 Calls from TP

In the previous section we have examined a basic transformation which allows

calls from subprograms external to a given TP to call foreign subprograms

encapsulated in TL shells contained in the TP. The inverse situation, calls from

encapsulated FSs in TP to subprograms external to TP, is more difficult. The

reason for this is that the embedded bodies Pbo - which arc foreign language

subprograms - are required to call subprograms specified in this or another TP.

However, this results in foreign code calling target code subprograms. This

linkage is not uniformly supported by any Ada compiler because such linkage

is not mandated by the Ada standard; those compilers that do support it, such

as the compiler supplied by the Verdix Ada Development System (see below)

do so in a very implementation- and compilation-dependent manner, since no

standard exists for this type of call.

We have identified two ways in which the foreign-to-target linkage may be

accomplished: employ a direct foreign-to-target call utilizing an implementation

that must be crafted for each target compiler, or devise a method in which such

calls arc made - indirectly - via target-to-foreign calls.

Foreign-to-Target Calls As shown in Fig. 12, we have an embedded FS which

desires to call TS P.
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In Fig. 13 we show how this linkage may be accomplished. Within TP we

provide a new interface procedure do, written in FL, which must be designed to

accept calls by subprograms within FP originally destined for P. do completes

the linkage by invoking TS procedure P directly via its compiler-derived name

Q.
The result of these transformations is that FSs need not be changed. Rather,

J0 manages the differences between the FS names invoked by FS code and any

compiler-induced changes to those names that occurred when the invoked FSs

were encapsulated by TL shells. The drawback is in the nature of the linkage

between the calls on P in FP and do: these arc foreign-to-target calls, and the

implementation of oro, that is, the linking of an invoked FS and Jo, must be

crafted for each differing target compiler implementation. In some cases, the

compilation topology influences the names that are generated for TS names; this

presents an additional complication.

As an example, consider one compiler which supports this type of linkage,

namely, the compiler provided by the Verdix Ada Development System. The

Ada compiler supplied with this system permits Ada subprograms to be invoked

by foreign subprograms; however, the name by which the Ada subprogram must

be referenced by the foreign subprogram is derived by the Verdix Ada compiler

from the declared name and from the surrounding program structure. For in-

stance, a foreign subprogram wishing to invoke an Ada subprogram P embedded

in an outerprocedure MAIN must specifya name like..K.p.2B13 .main. Not

only can thisderivedname change from one compilation to the next ifthe pro-

gram structurein which the subprogram declarationisembedded isaltered,but

itisunlikelythatanother compiler vendor willapply the same derivationrules.

In Fig. 13, assume thatFP is a program written in the C programming

language which wishes to invoke Ada subprogram P as above; itwishes to do

thisbe,cause P isa TL shellencapsulatinga FL subprogram P (perhaps also

writtenin C) whose serviceswere employed by FP priorto itsencapsulation.

J0 then willbe a C functionnamed P, and itwillcall..__p.2B13. main:

JO ()
(

_A_p. 2B13 .main () ;

A problem may arise here, because many C compilers will not accept

..A_.p. 2ta13 .main as a valid function name because of the embedded peri-
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ods. In this case, it will be necessary to replace the periods with some legal

character, say the letter x, and then to alter_he object pro_ output to replace

the periods in the external symbol references. Clearly, this is not very satis-

factory, but this example does illustram the contortions that may be required in

order to craft a solution based on a particular compiler vendor's wansformation

rules and the rules describing FL 9.

Target'to-Foreign Calls One solution to the problem of crafting compiler-

specific foreign-to-tgrget procedure calls is to replace them with target-to-foreign

calIs giV_fi-_/saiis-_ctory m--di_OgO16gyrt0r doln_ _so. Th_ most obvious way _to
accomplish this is to devise a polling scheme. For example, assume procedure R

in FP desires to call procedure P in TP. In this case, P may periodically call R

until this latter procedure indicates it is ready to communicate with P. It should

be clear that this is a very unsatisfactory method for supporting target-to-foreign

calls because of its inherent polling cost.

Another approach which avoids this cost employs a foreign-to-target interrupt

followed by a target-to-foreign procedure call. This is a promising approach

be,cause the TS need not spend time performing a potentially wasteful polling

operation. However, _is method requ_'S _at a FS be able to cause a TP

interrupt entry to execute, which again requires some specific crafting which

depends on the compiler and=r/in:t_nTsy_tem being-u_tdJ _e adv_tage he_

over the previous case where FS name mappings had to be encoded into J0 is that

once a method is discovered to cause a given interrupt entry to execute, changes

in the structure of TS will most likely not require a hew method, whereas in the

previous case the compiler-generated name could change, requiring additional

steps to discover the new nam_ .....

The basic mechanism is illustrated below. Suppose foreign subprogram FS

wishes to call target subprogram TS. A target program TP may be constructed
as follows:

package TP;

package body TP is

task type T is

9M fact,it may be noted that if such editing of object module exmmal symbol reference,

is permiued, then it would be simpler in this case to declare J0 as being defined externally, to

omit the body of dO entirely, and to replace the resulting external symbol reference dO with

.A_p. 2BX3. main.
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entry E;

end T;

type TA_T is access T;

TA: TAT := new T;

task body T is

begin

loop

accept E;

TS;

end loop;

end T;

begin

RTS LINK(TA, i, 15) ;

end TP;

Here TA is an access (pointer) to an instance of the task T. We assume

and FP are served by an Ada run-dme system and arc encapsulated by a single

UNIX process, and that the RTS_I, IlCK call is provided by the compiler vendor

as a means for linking UNIX signal number 15 with the first entry of task T,

namely E _°. Once RTS_LINK is called, any receipt of signal number 15 by the

UNIX process encapsulating TP will result in the completion of the accept

statement and the subsequent execution of subprogram TS.

The foreign subprogram FS may now cause TS to be executed by:

FS()

I

kill (getpid (), 15) ;

Here FS sends signal number 15 to the UNIX process encapsulating it (the

identity of the encapsulating process is obtained via getpid ()); since this

process also encapsulates TP, the subprogram TS is invoked via the mechanism
described above.

A potential drawback to this method revolves around the necessity of send-

ing a signal to a UNIX process in order to initiate the foreign-to-target call, and

l°Alsys, another Ada compiler vendor, provides a method very similar to the one described

here for attaching Ada task entries to DOS interrupt vectors.
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the subsequent scheduling of task T. Both of these operations can be expensive,

although it may be argued that direct polling as described earlier is more expen-

sive, depending on the frequency with which it is necessary to poll and the rate

at which the foreign-to-target calls are made.

3.6.2 Interconnecting TPs

Concepts In this section we reconsider the problem of connecting TPs together

via a pipe, as discussed previously in Section 2.2.1. In that section we were

concerned with connecting FPs together, and concluded that the rewriting of FP

code necessary to do this made that meihod iess attractive. In this section, :we

will re-examine this problem for TPs, that is, after the methods of the previous

section have been applied to encapsulate each FP in a TL shell; in particular, we
wish to examine the effects of this encapsulation on the performance of intercon-

nected TPs. As before for FPs, we will be concerned with the interconnection

of TPs that may or may not have been designed for such interconnection. In

addition, we will restrict the class of programs to those employing the inpza-
process-ou@ut model (described below).

As shown in Fig. 14, we model each TP that we wish to connect via a pipe
as a program separated into three distinct phases: it

• Input. Accept parameter variables from the process input.

• Process. Perform the embedded FPs intended function.

• Output. Deliver result variables to the process output.

nTPs whose functionality cannot be separated into these phases are not considered.
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Figure 15: TP Pipeline

In the sequel we shall refer to parameter and result variables as objects.

Several of these TPs may be connected into a pipeline as shown in Fig. 15,

where the input of a TP comes from the previous TP and the output goes to the

following TP.

A problem occurs when connecting TPs containing FPs that were not de-

signed to interact, for then there is no guarantee that the objects produced by

one stage of the pipeline will be syntactically compatible with the input require-

ments of the next. Some kind of conversion must then be performed between

the two, and associated with this conversion is a conversion cost; it is of vital

importance to reduce this performance cost to a minimum. There is a gen-

erality/performance tradeoff which must be taken into account, similar to that

which occurs in inhomogeneous networks such as Bolt, Baranek, and Newman's

Cronus distributed operating system. The problem is the following.

Theoretically, only one syntax converter is needed between the output of

one stage of the pipeline and the input of the next, and it can be placed either

within the sending TP or the receiving TP. Consider the former case. An output

format must be chosen for the converter; the logical choice is the input format

required by the successor stage. But in fixing the output format in this fashion,

we are limiting the use of the output to precisely those successor stages that

understand the chosen output format. If we wish to connect a TP which expects

a different format we must change the converter in the sending TP, something

we do not wish to do because we shall have to generate a different version of

the sending TP for each new receiving TP, or build a new TP out of the FP

and the appropriate output converter when we wish to set up the pipeline. For

static, long-lived pipelines this may be adequate, but it will not do if we wish

to provide these TPs as a library for general use. A similar argument may be

given for input conveners.

The other alternative is to provide input and output converters for each TP,

and fix a standard format to which all output converters must convert and from

which all input converters must convert. This doubles the number of conversions

r _
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Figure 16: Pipeline Controller

that must be performed.

For maximal generality the latter method is preferred, as no new converters

must be written when new stages are added to a pipeline. For performance,

however, the number of conversions must be minimized, at the cost of some

rewriting of converters whenever the pipeline must be rearranged. The require-

ments of the application will usually force one or the other methodology. Since

we are more concerned with minimizing the rewriting of code and the generation

of reusable libraries, we choose to examine the latter strategy, and fix a standard

format called the network format. =

Conceptually then, input and output conversions are themselves composed

of two conversions. Consider the problem of passing input objects to a TP. This

entails converting the object from network to TP format; let this Conve_on be

done by an interface procedure T_. We must still convert the object from TP

format to FP format. This is done by procedure io in Fig. 10; this part of Io is

herewith renamed T_. There are, Of course, the Comparable subpro_sTr _r

and Tf required to pass an object from FP to the next stage in the pipeline. In

practice, we can collapse the four conversions into two in the obvious way:

It must be noted that Tff and Tff must be crafted for each FP.

Pipeline Controller Conceptually, the foregoing allows us to connect an arbi-

trary number of foreign code modules into a pipeline. In practice, the target-to-

foreign call problem occurs when a TP attempts to pass an object to the input

of the next TP. This problem can be solved by the methodsof Section 3.6.1, or

we can utilize a pipeline controller.

In [1] Antonelli et al devised a method of generating hierarchical executable

descriptions of manufacturing cells. Each level of the hierarchy contained a

30

W

g

m
J

i
I

J

I

E
I

g

J

g

Q

Ill

m

g



=

control procedure which called the other subprograms at that level of abstraction

in the proper sequence. In utilizing this methodology, we propose a pipeline

controller PC which replaces the control portion of the pipeline itself. In Fig. 16,

the PC - which is written in the target language - makes calls on the various

TPs as required to implement the semantics of the pipeline. This removes

both the need for hand-crafting foreign-to-target calling sequences and relying

on polled target-to-foreign calls. It is important to understand that all calls in

Fig. 16 are from the PC to the pipeline stages; the first call to a stage passes

the input objects, and the second call to a stage retrieves the output objects. If

the performance pehaldes inherent in such serialization are to be avoided, some

sort of multitasking must occur in the PC.

_ I

.4

r_a#

4 Conclusion

We have discussed some of the issues involved in transforming foreign code

packages into cooperative target programs. After an examination of several other

approaches, a methodology based on encapsulating shells of a common target

language was selected. We selected Distributed Adaas the target language of

choice, outlined several approaches in connecting encapsulated foreign programs

together, and presented solutions to several problems with these approaches.

Possible future work would include an investigation into the more difficult

problem of transforming arbitrary independent foreign code packages into a

single, distributed target package, and an investigation of the role of tools, such

as call-graph analyzers and skeleton generators, as aids in the transformation
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