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EXECUTIVE SUMMARY

The Forward Scattering Spectrometer Probe (FSSP) and the Optlcal Array
Probe (OAP) are particle sizing Instruments that can be used to measure

droplet diameters in icing clouds. The operation, calibration, and accuracy
of these instruments are examined.

Operation of the FSSP and the OAP in an icing environment may cause them

to become clogged with ice even with the onboard heaters in operation. Also,

their optical components may become contaminated with water droplets and cause

the instrument to make sizing errors. Purge air can help to alleviate thls
problem.

Measurement of certain optical and electronic parameters Is recommended
to improve the confidence in the data obtained wlth the instruments. Methods

for making these measurements are given In detail. These Include measurements

of the beam diameter, depth of field, optical collectlon angles, and the
electronic dead times. Most notable of these is an innovative method to

measure the optical collection angles using the diffraction pattern from a
pinhole.

Calibration of the FSSP is described by using three methods: glass

beads, a droplet generator, and a rotating pinhole devlce. Both the

theoretical and practical advantages and disadvantages of each method are

explored. Methods for improving the performance of the droplet generator are

presented. The rotating pinhole device Is a new calibration method developed

at NASA Lewis and has the potentlal for being a new standard for caIIbratlon
of the FSSP.

Accuracy of the FSSP is estimated by testing individual instrument

components, by using computer simulations, and by comparlng with other droplet

sizing instruments. The magnitude of sizing errors in the FSSP is found to be

the result of many factors including number density, velocity, size/velocity
correlation, and calibration errors.

The operation and calibration of the OAP are also examined. Most notable

is the development of a calibration retlcle for the OAP.
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I. INTRODUCTION

The NASA Lewis Research Center Is conducting research in aircraft icing,

supported in part by the FAA. One area of interest is the characterization of

icing clouds. Information from the study of icing clouds enables researchers

to more accurately model ice formation on aircraft, design de-icing systems,

and improve the safety of winter Flights.

Icing clouds may be studied in wind tunnels and from heavily instrumented

research aircraft. The dlameter of the water droplets in icing clouds is one

parameter that is of interest. Measurement of droplet size distributions in

icing clouds may be performed with the Forward Scattering Spectrometer Probe

(FSSP) and the Optical Array Probe (OAP), both are manufactured by Particle

Measuring Systems, Inc., of Boulder, Colorado. This report addresses the

operation, callbratlon, and accuracy of these two instruments.

2. OPERATION OF THE FORWARD SCATTERING SPECTROMETER PROBE

2.1 Theory of Operation

The Forward Scattering Spectrometer Probe is an optlca] particle sizing

instrument used for the measurement of water droplet diameters in natural and

artificial clouds. Details about the theory of operation of the FSSP are

described In the FSSP manual (ref. l) and several other papers (refs. 2

and 3). This section discusses only the features about the FSSP that relate

to the analysls In future sectlons.

The FSSP measures the diameter of a droplet by measurlng the intensity of

light scattered by that droplet as it crosses a focused laser beam. Different

regions of the laser beam have different intensities. This could cause sizing

errors since the intensity of light a droplet scatters is proportional to the

Ilght incident upon it. One method of minimizing this error is to only make

measurements in the region of the beam where the light intensity is nearly

constant. This region is called the probe volume.

A well defined probe volume in the instrument is critical to an accurate

measurement. All droplets crossing the laser beam within the probe volume

must be measured and al} droplets crossing the laser beam outs}de of the probe

volume must be rejected. The physical shape of the probe volume Is

cylindrical and can be described in terms of its radlal and axial components.

The radial dimension of the probe volume is deflned by the transit time

of the droplets through the volume. It is assumed that all the droplets to be

measured are moving at the same velocity. Some droplets will traverse a chord

of the beam that is close to the (radial) edge of the beam. These droplets

will be in the beam for a shorter period of tlme and will have a short transit

time. The transit tlme of each droplet that goes through the probe volume is

measured and comblned with the average transit time of all the previous

droplets that went through the probe volume. If the droplet has a transit

time that Is shorter than the average, then it is outside of the probe volume

and it is rejected.

The actual measurement of the transit time must be made to minimize the

effects of droplet size. For example, if the start of the transit time is

determined by the leading edge of the droplet and the end of the translt time



by the tralllng edge, then large droplets would have longer translt times than
small ones. The probe volume reject criterion would not only be a function of
the droplet's radlal trajectory (as it should be) but also a function of
droplet's diameter. Thls would blas the measurementtoward larger droplets.
To avoid thls problem, the transit time is measuredfrom the time the center
of the droplet enters the laser beamto the time that the center leaves the
beam. Thls is done by analyzing the scattered llght as the droplet passes
through the laser beam. Whenthe scattering is at 50 percent of its maximum
value, then It Is assumedthe center of the droplet Is either entering or
leaving the laser beam. A delay circuit is needed to determine this
50-percent level. The slgnal Is divided Into two parts: a delayed part and

an undelayed part. First the peak voltage of the undelayed signal Is

determined. Fifty percent of thls peak voltage is stored for comparison with

the delayed signal. When the delayed slgnal arrives at a comparator, its

voltage level is compared wlth the stored 50-percent voltage level. As soon

as the delayed signal exceeds the 50-percent level, the transit tlme clock is

turned on. When the delayed signal drops back down below the 50-percent
level, because the droplet left the probe vo}ume, the clock Is turned off. In

this way the transit time Is not a function of the droplet's diameter.

The axla] component of the probe volume (or the depth of field) extends
to either side of the waist of the laser beam. The depth of field is
determined by assessing the divergence of the light coming into a
photodetector. The optical system is arranged so that when a droplet (or any
object that scatters light) is at the waist of the laser beam, the scattered

llght will be focused to a point on the photodetector. If the object

scattering llght Is away from the waist, then the light impinging on the

detector wi11 diverge and blur into a dlsk rather than a point. If the disk

of light Is too large then the water droplet Is too far from the waist and is

outside of the probe volume.

To assess the divergence of light at the photodetector, a beam splltter

directs a portion of the scattered light to another photodetector with a

circular mask or dump spot in front of It. If the blur spot diverges enough

so that It is larger than the mask, then some of the light will spill over the

edge of the mask and into the photodetector. The slgnal From this detector is

amplified and compared with the signal coming from the unmasked

photodetector. If the voltage coming from the masked detector (also called

the annulus detector) is greater than the voltage coming from the unmasked

detector (also called the signal detector) then the droplet is outside of the

probe volume.

The signal detector Is the component responsible for making the slze

determination. As the droplet crosses the laser beam, the light scattered by

the droplet is focused onto the signal detector. The signal detector produces

a voltage pulse proportional to the intensity of light Incident on it. The

peak voltage is proportional to the intensity when the droplet is totally

wlthin the laser beam. The dlameter of the droplet can be determined from the

peak voltage by using a calibration curve that relates voltage to droplet
diameter.



2.2 Operatlng Procedures In an Icing Envlronment

The operatlng manual for the FSSP covers most of the standard procedures

for allgning and operating the FSSP. However, operatlng in an icing

envlronment presents some added problems that need to be addressed.

The rrK)stnotable problem is the buildup of ice on the instrument.

Although the photograph in figure 2.1 is an extreme case, ice buildup on the

_SSP is nevertheless the condition that causes the most delays when performing

icing wind tunnel tests. For ice removal, the tunnel must first be brought
down to idle, the Ice removed from the Instrument, and then the tunnel must be

brought back up to velocity and temperature.

The reason the ice needs to be removed from the probe is that It tends to

choke off the flow through the sample volume of the FSSP. Thls can occur at

three critical positions on the FSSP.

The first position Is at the front of the flow straightening tube. This

occurs during conditions of high liquid water content and when the temperature

is so co}d that the FSSP heater cannot keep the ice melted on the leading edge

of the flow straightening tube. The ice does not bulld up uniformly in this

region as one would expect, but rather starts on the transmitter slde of the

tube and grows untll the flow is choked off. There are two FSSPs at NASA

Lewls and both behave In thls same peculiar way. Thls Is probably caused by

the design of the heater in the flow straightening tube.

To help melt the ice on the front of the flow straightening tube during

particularly cold tests, the voltage on the heaters is sometimes raised

several volts above the recommended level. Thls keeps the front of the tube

clean but causes another icing problem. Because only the front half of the

flow straightening tube Is heated, there Is water runoff from the front
section to the back, When the water reaches the back section that is

unheated, it freezes. Again the ice builds up until the flow is choked off.

This can also be seen in f_gure 2.1.

The third place where ice causes problems Is at the laser exi= Inside of

the flow straightening tube. There is a small protruslon at this location

that keeps water droplets from entering the optical system. This protrusion

can build up enough ice to distort the flow through the probe volume or even

obscure the laser beam. What makes thls problem hard to detect is that it is

difficult to see _nside the flow straightening tube during a tunnel test.

Where the other icing problems are obvious, this one is not.

One problem that occurs regularly durlng runs in the NASA Lewis Icing

Research Tunnel (IRT) is the accumulation of water on the optical components

of the FSSP. Almost always the components that get wet are on the receiver

side of the optical train including the 90° prism, the focusing lens package,

and even as far back as the beam splitter. The water on the 90° prism is

probably a result of water splashing off of the optical ports. Contamination

of the other components is likely caused by condensation. This problem

necessitates regular callbration checks during icing tunnel runs to insure the

optical system has not become too badly contaminated. Once contamination

occurs, the only solution is to remove the instrument and dry off the
components.
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One way to reduce the optical contamlnatlon problem Is to run purge alr

through the FSSP between icing runs. Thls wll] help evaporate any droplets
that accumulated during the previous iclng run. Using purge alr while data Is

being taken Is not recommended because the velocity of the purge air exiting

the optical ports can alter the trajectory of the droplets in the probe volume.

When setting up the FSSP to run purge air, the user must be certain an
adequate volume of alr can exit both probe arms through the optical ports. In
the FSSPs at NASA Lewis, the probe arm with the laser In it has a much larger
exit area for the purge alr than the receiver side. To compensate, the points
of greatest constriction in the receiver arm were located and enlarged. This
turned out to be at the box containing the photodetector module (a hole was
drilled in the box) and the _K)unt containing the beam splitter (a slot was
machined in the mount). Thls allowed purge air to be injected into the rear
of the FSSP and exit equally through both probe arms.

2.3 Measurement of Optlcal and E1ectronlc Parameters

Certain optical and electronic parameters of the FSSP need to be

determined to improve confidence in the measurements made by the instrument.

These parameters may not be Included in the operation manual, or it may be

suspected that certain parameters have changed over a period of time, or the

user may want to verify the values given In the manual. Included below are
several procedures for measuring these parameters and the results of these

measurements for one FSSP used at NASA Lewis.

Before making any measurements, a few tools are necessary. These include
an oscilloscope or at least a voltmeter, and a micropositioning stage. Also,
if detailed lab tests are to be conducted on the FSSP the flow straightening
tube should be removed to make access to the laser beam easier.

The flow straightenlng tube can be removed by unscrewing the four screws
on elther end of the tube. The heater wires in the flow straightening tube

wll] need to be unplugged from inside the probe arm. Since the friction

between the probe arms and the flow stralghtening tube wlll not allow the tube
to slide off, one of the probe arms wlll also need to be removed. The receiver

arm is easily removed. First remove the box containing the photodetector
module (four screws). Thls will expose the four screws holding the probe arm

in place. Remove these screws and pull the arm forward. This will release
the tension on the flow straightening tube and allow it to be removed. Next,

replace the probe arm and photodetector box, and realign the instrument by

following the manufacturer's recommended procedure.

Nith the flow stralghtenlng tube removed, access to the laser beam wllI

be much easier, making measurement of the optical parameters less tedious. Two

such parameters are the laser beam dlameter and the depth of fleld. Since they

define the probe volume, these parameters must be precisely determined to

permit accurate number density measurements with the FSSP.

The diameter of the laser beam Is given in the manual. Checking it can be

very subjective since the laser beam does not have a sharp cutoff and the beam

does not have a Gausslan intensity profile. The easiest method is to take one

strand of a nylon fiber (less than 25 pm in diameter) and attach it to a paper

cllp by using rubber cement. Attach the paper clip to a micropositioning table



and move the fiber into the beam. Check the voltage of the slgnal and annulus
detectors at the stage after the range ampllflers (pln #10 on IC HA2405). If
the voltage coming from the annulus detector is greater than the voltage from
the signal detector, then the fiber is not in the center of the depth of field.
Reposltion the flber axially In the laser beamuntll the slgnal voltage is
greater than the annulus voltage. Next, movethe fiber radlally through the
beamnoting the two positions where the voltage is approximately half of the
maximumvoltage. The distance between these two points is the beamdiameter.

The easiest way to measurethe depth of field is to move a piece of

translucent tape axially along the laser beam. The vo]tages for the signal and

annulus detectors can be monitored at the same place the voltages for the beam

diameter were monitored. The place where the slgna] voltage becomes greater

than the annulus voltage is the beginning of the depth of field. As the tape

is moved farther down the beam in the axial direction, the annulus voltage will

increase to a value greater than the signal voltage. This is the end of the
depth of fleld. A plot showing the signal and annulus voltages as a function

of position is given in figure 2.2. The depth of field Is the distance between

the cross over points.

The depth of field is one value that can change from the manufacturer's

specifications. A test was performed in which the FSSP was Intentlonally

mlsaligned then realigned, then the depth of field was measured. This

procedure was repeated eight times to see the effect of subtle dlfferences in

alignment on the depth of fleld. For eight measurements of the depth of

field, a spread in the measurement of ±12 percent (the standard deviatlon was

±8 percent) was observed. This exercise demonstrates that the depth of fleld

is not an instrument constant and should be measured prior to any tests where

number density or liquid water content are to be measured.

Another optical parameter that needs to be known Is the optical

col]ection angles. These angles can change the ca]ibration curve for the

FSSP. Typical values of the co]]ection angles are 4° for the inner angle and

14° for the outer angle. These values determine how much scattered light

impinges on the detectors In the FSSP. Figure 2.3 shows the effect (on the

theoretical callbratlon curve) of changing the inner angle and the outer

angle. The accuracy of the calibration curve Is dependent on the measured

accuracy of these angles. Measuring the collection angles by using a ru]er or

a micrometer is very difficult because of the space restrictions in the probe

arms. An alternative method is suggested below.

A pinhole of a known diameter can be used to measure the collection

angles. The pinhole, when placed in the center of the depth of field wi]l

create a diffraction pattern at the detector plane of the FSSP. The

diffraction pattern looks like a region of light and dark rings. The angular

position of these rings is a function of the pinho]e diameter and the

wavelength of the laser beam. Both are Known. Thus the diffraction rings act

as a scale to measure the collection angles of the instrument.

To make the measurement, a 25-pm pinhole is a good size to use. It will
create a diffraction pattern with enough rings to make an accurate measurement

and not so many that they are spaced too close together to count. Place the
pinhole in the center of the laser beam and the center of the depth of field.

6
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Remove the photodetector module and the beam splitter from the photodetector

box. In a darkened room, place a small mlrror in the photodetector box and

project the diffraction pattern onto a piece of paper taped to the wall. This
will act as a screen. Figure 2.4 shows what this pattern will look like. As

shown in the figure, the dump spot that is located on the FSSP's 90° prism as

well as the dlffraction rings should be vlsible. If the rings in the

dlffraction pattern look fuzzy, then reposition the pinhole (in the radial
dlrection) within the beam. If the dump spot is not centered in the

diffraction pattern (as in fig. 2.4) then the beam is not aligned on the dump

spot. The laser mount has positioning screws to change the alignment if
needed. Caution must be used when doing this because centering the beam on

the dump spot can cause other optical components to become misallgned.

After the pinhole has been positioned, and the diffraction pattern is of

sufficient quality to discern the rings, mark the center of the pattern and
trace out the shadow of the dump spot. Next, mark the bright and dark rings

on the paper and trace out the outer edge of the diffraction pattern. Remove

the piece of paper from the wall. Note whether there are any rings obscured

by the shadow of the dump spot. Thls can be determined from the spacing of
the other rings. Next, locate the edge of the dump spot shadow and determine

how many rings out from the center it is. This is the inner collection angle.
Now, locate the outer edge of the diffraction pattern. This is the outer

collection angle. Figure 2.5 is a plot showing the relationship between the
dlffractlon rings and thelr angular location. On thls particular instrument

the inner and outer collection angles are at about 3.5 ° and If.5 °.

Certain electronic characteristics of the FSSP also need to be known.

For example, when using a number density correction algorlthm (ref. 4) to
correct for counting losses due to instrument dead time, the electronic delays

in the FSSP must be known. There are two delays in the instrument, the short

delay for droplets outside of the depth of field, and the long delay for

droplets inside the depth of fleld. To measure these delays, a slgnal must be

generated at both the signal detector and the annulus detector. This can be
done either with an electronic pulse generator (refs. 2 and 5) or with a

rotating pinhole (described in the callbratlon sectlon of this report). To

measure the short delay, be sure the pulse amplltude at the annulus detector

is larger than the amplitude at the signal detector (Do the inverse to measure

the long delay). A good place to monitor the delays is at the pulse height

analyzer in the FSSP. In the pulse height analyzer there are leads to monitor

the transit time gate signal and the reset s_gnal.

Look at both of these signals on an oscilloscope while injecting the

electronic pulse into the detectors. The time difference between the end of

the transit time gate and the peak of the reset signal is the delay period.

Figure 2.6 shows the pattern on the osc111oscope trace when determining the

short delay and the long delay. The two delay times for this instrument are

1.58 and 5.57 psec respectively.

Use of a pulse generator to inject signals into the FSSP in order to
measure the instrument's electronic characteristics is adequate for most

applications but there are two disadvantages. First, a certain amount of

electronic noise is present when using this method. Occasionally the noise
can affect the measurement. Secondly, the signal is always injected
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downstream of the photodetector.
not be seen.

Thus any problems with the photodetector will

The alternative to using electronic slgnals is to use llght pulses. One

way to produce the required light pulses is with an acousto-optlc modulator

(AOM or Bragg Cell). This device is placed in a laser beam and can be used to

modulate the beam. The modulation is controlled by a pulse generator. Thus,

by sending a laser beam through the AOM and onto the FSSP's photodetector,

llght pulses of varying frequency, amplltude, and width can be produced. The

advantages of thls method are (1) low noise (there is no electronic coupling

between the signal source and the FSSP), and (2) the slgnal is injected at the

very start of the electronic system in the FSSP -- the photodetector.

One use of the AOM is to measure the electronic response of the FSSP.

This is to determine how well the FSSP will measure short duration pulses.

This is analogous to sending high velocity droplets through the laser beam,

since they too will generate short duration pulses. Results of this test are

In the section entitled, "Accuracy of the FSSP".

The measurements above must be made with the FSSP disassembled In the

lab. There is one quite useful measurement that can be done in-situ. This

involves monitoring of the signal and annulus detector voltages during flight

or wind tunnel tests. Since this is not a feature on the FSSP, It must be

added by the user. The advantage of such a feature Is that it allows the

instrument's response to be monitored in real tlme wlth an oscilloscope. As

droplets go through the laser beam they scatter light onto the detectors. The

oscilloscope monitoring these detectors will show a pulse each tlme a droplet

goes through the beam. Monitorlng the detectors in thls way provides

continuous information about signal quality, droplet number density and

velocity, and cloud variablllty in real time.

Installatlon of the monitoring clrcuit In the FSSP should be done in such

a manner as to not affect the normal operatlon of the instrument. One possible
location is after the baseline restoration module in the FSSP. In NASA's FSSP,

two wires are connected to the two lines that contain the signal voltage and

the annulus voltage at thls module. The two lines are a}so connected to unity

galn follower circuits. The output of the follower circuits are connected into
the standard FSSP data cable. On the NASA Lewis FSSP there are also two wires

on the data cable that are not used; so no new external wires are needed to

carry the signals back to the oscilloscope. These wires lead back to the

control room, where the data acquisition system is located, and the Droper two

wires are connected to an oscilloscope. The signals at the scope can be noisy
because the length of wire is several meters. Nevertheless, this simple

clrcuit has proven to be quite useful.

3. CALIBRATION OF THE FSSP

There are several devices available for calibration of the FSSP. The

advantages and disadvantages of each will be examined. The calibration

devices reviewed will be (I) glass beads, (2) the droplet geneFator and (3) a

new calibration device: the rotating pinhole.
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3.1 Glass Beads

The most w|dely used method of callbration is to pass glass beads of a

Known slze through the FSSP. Since the llght scattered by a glass bead is of
a different Intensity than the 11ght scattered by a water droplet of the same

diameter, a transfer function Is needed relatlng glass bead diameter to an
equlvalent water droplet diameter. The FSSP manual gives a limited version of

the transfer function. In the manual, a plot shows the FSSP's response to

various dlameter glass beads. When the user checks the calibration, beads of

the same size as those shown in the manual should give the same response.

A more detailed plot showing the response of the FSSP (in terms of an

equlvalent water droplet diameter) as a function of glass bead diameter Is

shown In figure 3.1. The points on the curve were generated by caIculatlng
the scattered 11ght Intensity from a glass bead of a given diameter and then

calculating the diameter water droplet that gave the same Intensity. The

curve Is multlvalued because different diameter water droplets can scatter the

same light Intensity. The smoother curve represents the "best flt" of the

muItivalued one. Also included in thls plot are the experimental data from

the manual. Note that only horlzontal error bars are plotted. These

represent the spread in the true size of the glass beads. Spread in the

measured slze would be plotted with vertlcal bars, but this data Is not given
in the manual.

Advantages of using glass beads Include their ava|labI11ty, ease of use,

and optical slmllarlty to water droplets. Glass beads are commercially

available for callbration purposes. Sending the beads through the instrument's
laser beam is relatively easy by using a vacuum hose and several attachments
available from the manufacturer.

The optical similarity of glass beads to water droplets can be seen in

figure 3.2. The figure compares the scattered llght Intensity as a function

of glass bead diameter with the scattered llght intensity as a functlon of
water droplet diameter. The two curves are quite similar for diameters below

10 micrometers then diverge somewhat for larger droplets. Slnce the curve for

glass beads falls below that of water droplets, larger diameter glass beads
are needed to scatter the same amount of light as smaller diameter water

droplets. When using substitute particles (such as glass beads or latex

spheres) for calibration, the particle diameter cannot exceed the size range
of the instrument. This is because for larger particles, the finite size of

the laser beam begins to affect the instrument response. This effect is

difficult to calculate and is not considered in any calibration curves for the

FSSP. Using thls size criterion it can be seen from figure 3.1 that when

callbratlng an FSSP with an upper size limit of 47 Nm, the largest size glass
bead used for calibratlon shou]d be about 47 pm. This corresponds to a

measured slze of 36 _m. Thus, glass beads can be used for calibration over

about 3/4 of the range of the FSSP. This is quite acceptable for most
applications.

The disadvantages of the g]ass bead method are cost of the beads, the

spread in the sizes, the quality of the beads, and control over the trajectory
of the glass beads. Slnce a portion of the beads is lost each time a

callbration check is made, they constantly need replacing. This can amount to
a significant cost if detalled calibratlon studies are conducted. Also the
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glass beads are not monodlsperse, they have a spread In their true size (as

shown by the horlzontal bars fig. 3.l). Thls leads to uncertainty when

calibrating the FSSP. The user does not know whether the instrument or the

calibration sample Is responsible for the spread in the measured slze. Also

the quality of the glass beads can be questionable. The beads can be chipped,

broken, have air bubbles in them, or clump together. Also, when doing detailed

calibration studies where the response of the instrument as a function of

particle trajectory is of Interest, glass beads are Inappropriate because thelr

trajectory Is not easily controlled.

3.2 The Monodlsperse Droplet Generator

For a number of years a vibrating orifice droplet generator has been

commercially available and widely used for calibration. The device is intended

to produce a single stream of droplets of a known size. It Is good for some

applications but it too has shortcomings.

The major advantage for using the droplet generator Is that It uses water

droplets. Thls means that no transfer function is needed and calibration

could "theoretically" be carried out over the entire range of the FSSP. Also,

the single stream of droplets makes it poss|ble to contro] the trajectory

of the stream through the laser beam.

There are several problems that may be encountered when using thls system

for ca|Ibratlon of the FSSP. First, the droplet generator Is intended for use

in the laboratory and therefore it is not appropriate for calibration during

wind tunnel or flight tests. It can be difficult to adjust the instrument to

get a stable stream. The spray head can clog or become degraded over a short

period of time, fluctuations in water pressure or air currents can send the

droplet stream in unpredictable directions, and the supply syringe always
seems to run out of water at the most Inopportune times. Also, the droplet

generator usually puts out droplets that are very close together, which can
cause coincidence errors in the FSSP.

Even with these problems the nondlsperse droplet generator is useful when

performing some laboratory tests on the FSSP. For example, It Is the only
device that can perform a calibration check of large dlameter droplets In the

extended range FSSP (5- to 95-_m range).

There are several modlflcations that may be helpful when uslng the

droplet generator. To solve the pressure fluctuation problem, a pressurlzed

water tank is used instead of the syringe. Since the tank is much larger than

the syringe, the supply will last all day even while constantly spraying. The

large tank also keeps down the number of tlmes the tank will need refilled.

Thus, dirt has less of a chance of entering the system and causlng clogs. The

flow rate can be measured by collecting a water sample for several minutes in

a small graduated cyllnder or weighing the sample on a microbalance. The

fluctuations in the droplet stream can be minimized by getting the spray head

as close as possible to the laser beam. This Is best accomplished by removing

the flow straightening tube on the FSSP. The uniformity of the droplet stream

is easily monitored by observing the voltage (on an oscllloscope) coming From

the signal detector. Figures 3.3(a) and (b) show oscilloscope traces

depicting nonuniform and uniform droplet streams. Note that In figure 3.3(a)

the particles traversing the beam are alternately large then small. In flgure

3.3(b) the droplets are all of one size and the FSSP will group 90 percent of
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these droplets into one size bin. Also note In figure 3.3(b) the uneven
signal (fluctuations between 3 and 4 V). This reveals the uneven I11umlnatlon
of the laser beam as the droplet passes through regions of varying intensity.

3.3 The Rotating Pinhole -- A New Calibration Device

A new callbration device developed at NASA Lewis is the rotating plnhole.
This has proven quite useful in both laboratory and fleld tests. As wlth the

previous callbration devices, It has advantages as well as 11mltatlons.

The rotating pinhole is, as its name Implies, a device which rotates a

calibration pinhole through the laser beam of the FSSP. It consists of a

motor attached to a belt and pulley system (see fig. 3.4(a)) wh|ch rotates a

pinhole (calIbratlon pinholes are commerclally available). The entire system

is mounted on a two-axis micropositioning table so the precise trajectory of

the pinhole through the beam can be controlled. The entlre assembly is easily
slld on and off of the probe arms of the FSSP without removing the flow
straightening tube (see fig. 3.4(b)).

The principle of operation of the rotating plnhole Is as follows.

Pinholes of a given diameter diffract 11ght. The Intensity of this light can

be calculated. A pinhole of a given diameter, when rotated through the laser

beam, will cause a predictable response In the FSSP. If the response Is other
than the predicted value, then the FSSP Is out of callbratlon.

As wlth glass beads, the diameter of a pinhole is related to the diameter

of a water droplet by using a transfer function calculated wlth Mie theory.
This function is shown in flgure 3.5. The curve is multlvaiued for the same

reason as the glass bead transfer function. The "best fit" curve is also

plotted In flgure 3.5. This figure shows the expected FSSP response as a

function of pinhole diameter. Several points from the figure 3.5 are listed

in flgure 3.6. Thls shows the FSSP response to several pinhole diameters that
are commercially available.

There are several advantages to using the rotating plnhole both in the

laboFatory and in the field. First, the diameter of the pinhole is known to a

high degree of accuracy. The pinhole is stable, durable, and a repeatable

standard. The pinholes are reusable. Also, the plnhole trajectory is

controlled easily for detailed laboratory wOrK such as measuring the FSSP's
depth of field, or the beam profile, or for troubleshooting instrument
malfunctions.

DuT-ing wind tunnel tests the rotating pinhole provides a qulck method of
checking out the instrument. The callbratlon can be verified In a matter of

seconds. Small shifts In calibration due to misaligned optics or wet lenses

are easily detected. The pinhole rotator can even help realign the FSSP as

illustrated in figures 3.7(a) to (c). The oscilloscope traces In figures

3.7(a) to (c) show the voltage level (which is proportional to scattered light
intensity) as a 15-_m pinhole cuts through the laser beam. Channel ] is

coming from the signal detector and channel 2 is coming from the annulus

detector. The misallgnment shows up as an asymmetric signal coming from the

annulus detector In figure 3.7(a). Overcompensation of the alignment setting
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is illustrated in figure 3.7(b). Proper alignment is shownIn figure 3.7(c).
Note the annulus detector remains at zero volts because It intercepts no
scattered light as the pinhole rotates through the center of the depth of
fleld.

There are two dlsadvantages to the pinhole rotator method. First, only
the pinholes are commerc1ally available at this tlme. However, if a user

wishes to build the device, a11 the parts are standard catalog items. The

other dlsadvantage is that the llght diffracted by the plnhole is much less
intense than that scattered by a water droplet of the same dlameter as was

shown in flgure 3.2. This means large size plnholes are needed to calibrate
the FSSP. As mentioned previously, laser beam diameter becomes an important

factor when using any large-slze particle or pinhole. The largest size
pinhole that should be used with the FSSP should not be bigger than the

largest size droplet the instrument is deslgned to measure. Thus, for
instruments whose range ends at 47 pm, a 47- to 50-_m plnhole is the largest

plnhole that should be used. From figure 3.6 this corresponds to about a

20-_m water droplet. Thls means that the rotating pinhole is appropriate for
callbratlon of less than half of the total range of the FSSP.

3.4 Comparison of the Various Calibration Techniques

CaIlbratlon checks were done at NASA Lewis with an extended range FSSP by

using glass beads, the pinhole rotator, and a water droplet generator. The

results show an interestlng trend.

Plotted in flgure 3.8 are the FSSP's theoretlcal response to glass beads,

a callbratlon done at NASA Lewis using glass beads, and the manufacturer's

experlmental data from the manual. There are two points to note:

(1) the spread in the true size of the glass beads (horlzontal error bars)

makes callbratlon uncertain, and (2) the instrument seems to underslze large

particles.

Plotted in figure 3.9 are the FSSP's theoretlcal response to pinholes and

the FSSP's measured response to several pinhole dlameters. Horizontal error

bars are not necessary because there is no variablllty in pinholes' diameter.

Note that as wlth the glass beads, the largest particles appear to get
undersized.

FSSP calibration data uslng the droplet generator represents only one

data point. Thls data is shown in figure 3.10. The measured dlstribution is

sharply peaked, thereby indicating the droplets were monodlsperse. A quantlty

of 4.47 ml of water was collected over 4 min and the frequency at which the

droplets were belng produced was 54107 droplets per second. This indicates a

size of 88 pm. Again the FSSP is undersizing large droplets. Reasons for the

underslzing of large droplets will be addressed in the followlng section.

4. ACCURACY OF THE FSSP

One of the nx)st dlfflcult aspects of particle sizing instrumentation is

to quantify the errors associated with the measurement. The reason is that a

cloud cannot be created in which the droplet size dlstrlbutlon is known to a
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hlgh enough degree of accuracy to be used as a standard. Thus, assessment of

the accuracy of an instrument llke the FSSP must be done by testing each

component of the Instrument Indlvldually to determine sources of error. This
method is far from reliable since it does not take into account the effects of

one component interacting with another. One alternative to this type of

testlng is to conduct computer simulations. In this case the interaction

between components can be modeled and overall accuracy can be determined. The
drawback to this is that the simulation is only as good as the mathematical

model of the instrument. Some aspects of the instrument are not practical to

model. Another alternative is to compare the Instrument with another one that

uses a different princlp|e of operation. The obvious limitation to this is

the need for a more accurate instrument to compare with the one in question.

All three of these methods were employed to assess the accuracy of the FSSP.

The following parameters were analyzed to determine the magnitude of the

measurement errors they cause: number density of the cloud, flow veloclty of

the cloud, callbratlon errors, laser beam illumlnatlon and size-velocity

correlatlon. Given these environmental condltlons and instrument

characteristics, the accuracy of the FSSP was assessed In terms of its ability

to measure the average diameter (Dlo), the median volume diameter (MVD),

number density, and liquid water content.

4.1 Number Denslty Errors

Errors in the FSSP that occur durlng condltions of hlgh number density

are difficult to quantify. It is true that counting losses caused by high

number density have been documented and correction algorlthms formulated
(ref. 4). However, counting losses is not the only error that occurs during

conditions of high number density. Sizing errors can also occur in the FSSP.

Quantifying these sizing errors will be the emphasis of this section.

In order for the FSSP to make an accurate slze determination, only one

droplet at a time should be in the probe volume. However, multiple droplets
are more likely to appear in the probe volume as number density increases. If

multiple droplets are in the probe volume then a coincidence event occurs and

a sizing error is likely. Additionally, droplets that are outside of the probe

volume (yet in the laser beam) can cause slzing errors for a droplet that is in

the probe volume. The magnitude of the error depends on the number of droplets
in the entire laser beam, their position relative to the probe volume, their

position relative to one another, and their size.

Coincidence events cause two kinds of slzing errors in the FSSP. The

flrst error is a sizlng blas. To understand the sizing bias, a sizing event

must first be defined. A sizing event begins when a droplet enters the probe

volume. It ends when the droplet leaves the probe volume. If another droplet

enters the probe volume before the previous one left, then the sizing event
continues until the second droplet leaves the probe volume. The sizing event

is not over until all coincident droplets have left the probe volume. At the

end of the sizing event the FSSP makes a size determination.

The size determination must be made when the droplet is totally

illuminated by the laser beam and scattering is at a maximum. As the droplet

leaves the laser beam the scattering decreases to zero. The signal detector

produces a voltage pulse that is proportional to the intenslty of the scattered
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light as the droplet passes through the probe volume. The peak Intenslty or
the peak voltage comlng from the signal photodetector contains the slze
Information about the droplet. Thus, only the peak voltage from the signal

photodetector is used for making the size determination.

This method of uslng the peak voltage to make a size determination can

cause a sizlng blas if coincidence events occur. Consider a sizing event in
which one droplet passes through the probe volume followed by another droplet

that Is much smaller. The FSSP wi11 count these two droplets as one (a

counting error) but more important, the measured size wlll always correspond

to the size of the larger droplet. This is because the peak voltage w111

always correspond to the larger droplet. This is true no matter whlch order

the droplets go through the probe volume. In this type of sizing event, the

largest droplet is always sized and the smaller ones are always ignored. If

the number density is high enough to cause coincidence events to occur

frequently, the FSSP wlll bias the dlstribution toward the larger droplets.

The second type of coincidence event causlng a sizing error occurs when

the light scattered by multiple droplets in the laser beam combine to cause
the slgna] to be more Intense than any one droplet alone. Thls causes the

FSSP to measure several smaller droplets as one larger one.

An experlment was conducted in the NASA Lewis Icing Research Tunnel (IRT)
whlch gives a qualitative example of the sizing error that can occur during
conditions of high number density. In the IRT there are eight spray bars each
contalnlng lO to 15 nozzles for a total number of 100 nozzles. In the
experiment a series of test conditlons were run in the tunnel that caused the
actlvlty (ref. I) of the FSSP to be in excess of 90 percent. This indicated
conditions of high number density. It was suspected that coincidence events
were causing sizing errors in the FSSP. To check this, the same conditions
were repeated, except every other spray bar was shut down and only 50 nozzles
were used to spray water. It was assumed this caused a reductlon _n the number
density without affecting the distribution shape, If this assumption is
correct then any differences between the measured distributions were caused by
coincidence errors. Comparison of three measured distributions ("full spray"
versus "half spray") are shown in figures 4.1(a) to (c). Thls data gives a
qualitative example of sizing errors that can occur durlng conditlons of high
number density, Note that in each case the measured distrlbution was skewed to
the right when number density was hlgher (full spray). Thls caused the average
diameter and the MVD to be larger when the number density was larger.

Quantifying sizlng errors caused by coincidence events is difficult using

mathematical models. Testing in the laboratory is also difficult because the

true number density is always uncertain. To quantify this error, a computer

program was written to simulate the operation of the FSSP. The simulation

models almost every aspect of the FSSP: beam diameter, depth of field, slgnaI

and annulus detector response as a function of droplet position and velocity,

and the Mie scattering response function. Two aspects about the instrument

were simplified For practical reasons. First, all the droplets are treated as

point sources of scattered light. Second, the simulated laser beam profile is
different than the true laser profile, which is very irregular and impossible

to model exactly. The proflle in the simulatlon has the gross features of the
FSSP's laser beam but is much smoother. It is assumed that these two

simplifications wlll have a mlnimal influence on the calculations.
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The magnitude of sizing errors caused by high number denslty wlil vary

from instrument to instrument depending primarily on the beam dlameter and the

depth of field of the instrument. For the simulation the beam diameter was

set at 220 _m and the depth of field was 2 mm. Also, the slmulatlon assumed

the instrument was In perfect calibration. Figure 4.2(a) shows the computed

error in the measured average diameter as a function of number density.

Figure 4.2(b) shows the computed error in the median volume dlameter as a

Function of number density. Note that the error is always positive, thereby

indlcatlng the FSSP would oversize the droplets. The various curves on the

plots show the computed error when different distribution shapes were assumed.

The squares represent a symmetric dlstrlbutlon centered In the range, the

circles represent a mildly skewed distribution, and the trlangIes represent a

very skewed dlstrlbutlon that Is peaked at the bottom of the range.

Also of interest In this simulation is the error in measured number

density and llquid water content as a function of true number density.

Figures 4.2(c) and (d) show these results. Figure 4.2(c) shows the computed

error in the measured number density. Note that error is always negatlve,

Indicating undercountlng from the simulated FSSP. This error is due to

counting losses and has been documented by other researchers (ref. 4).

The error In the measured liquid water content (LWC) Is caused by a

combination of the sizing error (due to coincidence events) as well as the

counting losses. The flrst effect tends to cause the instrument to measure

LWC higher than the true value, while the second causes the measured LWC to be

lower. These two effects show up In figure 4.2(d). For the droplet size

dlstrlbutlons corresponding to the symmetric and mildly skewed cases (squares

and circles), slzing errors dominate and the LWC error Is positive when the

number denslty is less than 100 per cubic centimeter. Then the error goes

negatlve for higher number densities because counting losses dominate. For

the case of the hlghly skewed dlstrlbutlon (trlangles in fig. 4.2) where the

slzing error Is large, the counting losses never dominate and the error stays

positive.

Although the error is a function of instrument parameters and the droplet

size distribution, this simulation should give some idea as to the sizing

accuracy of the FSSP In conditions of high number density.

4.2 VeIoclty Errors

Measurement errors caused by hlgh velocity droplets have been previously

documented (ref. 5). For NASA's extended range FSSP, measurement of the

expected error as a functlon of veloclty was conducted with the use of an

acousto-optlc modulator. Optical pulses of a very short duration were sent

into the signal detector of the FSSP to simulate rapidly moving particles. A

plot showing the FSSP's response as a function of optical pulse width is given

in flgure 4.3. Also plotted is the equatlon y = 1 - exp(-t/to), where t0

is the instrument response time of 0.53 _sec. The plot shows that there will

be virtually no sizlng errors unless the width of the optical pulse is less
than 1.5 _sec. Thls plot can be used to estimate velocity dependent sizing

errors in the FSSP. For example if the FSSP's beam diameter is 200 _m and the

droplets are traveling at ]00 m/sec relative to the instrument, then the

longest optical pulse (corresponding to a droplet golng through the center of

the laser beam) will last 2 _sec. Since some droplets will go through the
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edge of the beam, they will produce shorter duration pulses. On the average

the duration of the pulses will be 0.78 times the duration of the longest pulse

or 1.56 _m. (0.78 Is the average chord length through a unit diameter circle.)

From figure 4.3 it can be seen that 1.56 psec corresponds to a sizing error of

about 5 percent.

While a 5-percent estimation of the error is representative of the error

for larger droplets (>50 pm), it does not represent a complete picture of the

veloclty dependent sizing error. _hen smal] droplets traverse the probe

volume of the FSSP they pass through regions of varying intensity. If the

droplet is moving at a slow velocity then the FSSP can resolve these intensity

fluctuations. This is shown in figure 4.4 for a 5-pm pinhole moving at

approximately lO m/s. The peak Intensity occurs when the pinhole (or water

droplet) goes through a bright region of the laser beam. This Is proportional

to the measured size of the particle. As the velocity increases, the FSSP is

not able to respond to these rapid oscillations in the intensity. This is

depicted in figure 4.4 for medium and high velocity particles. Since the

pinhole cannot be rotated at aircraft velocities the responses shown for the

medium and high velocity cases are estimated.

Figures 4.3 and 4.4 can be used to estimate the sizing error of a 5 Nm

droplet moving at lO0 m/s. The width of the laser beam intensity fluctuations

shown in figure 4.4 are about 10 percent of the width of the entire beam. If a

200-_m laser beam and a velocity of lO0 m/s Is assumed then the duration of the

intensity fluctuations are 0.2 Nsec. Wlth the data in flgure 4.3, 0.2 _sec

corresponds to a decrease in intenslty of about 80 percent. This means the

small scale intensity fluctuatlons will be poorly resolved. This is depicted

as the hlgh velocity case in figure 4.4. Comparing the peak intensities for

both the low and high velocity cases yields a sizing error of about 20 percent.

4.3 Calibratlon Errors

The FSSP has a calibration curve defined internally by its electronic

circuitry. This "instrument calibration curve" is set by the manufacturer and

is determined both experimentally (with glass beads) and theoretically (with

the Mie scattering theory) (ref. I). The instrument calibration curve is
essentially a model of how water droplets in the FSSP scatter light. Any

differences between this model and the way water droplets actually scatter

light in the FSSP, wi11 cause errors in the measured diameter of the droplets.

These errors are called calibration errors. Two types of calibration errors
will be discussed in this section. First to be discussed are errors that

occur when measuring large droplets (>50 pm) in the extended range FSSP. The

second error to be examined Is caused by small droplets of dlfferent diameters

that scatter the same amount of light.

The ability of the FSSP to measure large droplets is governed by the

diameter of the laser beam in the probe volume. Nith a larger beam the FSSP

can more accurately measure a larger droplet. This is because the instrument

calibration curve for the FSSP is based on Mfe theory, which assumes the water

droplet is evenly illuminated. If the droplet is too large for the probe

volume, then parts of the drop]et will always be in dimmer regions of the

beam. The water droplet will scatter less light than Mie theory predicts and
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the Instrument will undersize the droplet. Increasing the diameter of the laser

beam is not practical because It Increases the probe volume and Increases the

l_kelihood of coincidence events. Developing a modified version of Mie theory

to take into account the uneven illumination of large droplets is not possible

at this tlme because of the complexity of such a theory. Thus, the only way to

estimate the error is experimentally.

The accuracy of the FSSP can be estimated for large droplets by comparing
the FSSP to other Instruments, by using rotating plnholes, and by using glass

beads. The data for a11 of these methods is shown in figure 4.5. The data

shows the absolute error (measured slze minus true slze) for NASA's FSSP. The

data was taken less than a year after the recommended annual factory

calibration. The data shows that this FSSP undersizes large partlcles by about

10 to 15 pm.

This callbratlon error may account for the discrepancy between the FSSP

data and that of another particle sizing instrument (the Phase Doppler Particle

Analyzer, Aerometrics, Inc.). Data in figure 4.6 was taken at Arnold

Engineering Development Center's Icing Wind Tunnel. The Phase Doppler and the
FSSP made simultaneous measurements at nearly the same location in the tunnel.

The probe volume of the Phase Doppler instrument was directly In front of the

flow straightening tube on the FSSP. In figure 4.6(a) there is a discrepancy
between the two distributions, most notably in the large sizes or the tail of

the distribution. In this region the Phase Doppler instrument typically

measured many more droplets than the FSSP. If the Phase Doppler Is assumed to
be accurate, then this indicates the FSSP has a serlous sizing problem when

measuring large droplets. It Is not known if this Is a problem that is unique

to thls particular FSSP or if It Is a fundamental problem characteristic of all

extended range FSSPs. If it is a fundamental problem, then this is important

to icing researchers because the tall of the size dlstrlbutlon contrlbutes most

to the MVD.

Further comparisons were made between the FSSP and the Phase Doppler
instrument in the 2- to 47-Nm range of the FSSP. This range is often used by

Iclng researchers. Comparisons using this range are shown in figure 4.6(b).

Agreement is better when using this range. The mode (or peak) of the

distributions agrees exactly in most cases. However, if the distribution has a
tail, then the agreement between the two instruments becomes worse as shown in

figure 4.6(c).

Another calibration concern is the multlvalued nature of the theoretlcal

calibration curve for small droplets. Droplets of different diameters can

scatter the same amount of light. In figure 4.7 the theoretical Mie scattering

calibration curve Is plotted along with the actual instrument calloration curve

for the I- to 16-pm range (as given in the FSSP manual). Note that the
instrument curve is a smoothed approximation to the theoretical one. The best

calibration curve (representlng the way water droplets actually scatter light in

the FSSP) is probably a combination of both curves; that is, not as irregular as
the theoretlcal curve and not as s_K)oth as the instrument curve. The shape of

the curve also depends on the slze of the droplet. The theoretlcal curve is

probably a better approxlmatlon for smaller droplets. This is because Mie
scattering theory assumes that the droplet is evenly illuminated. A small

droplet, by virtue of its slze, is more likely to be evenly 111umlnated than a

larger one.
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To quantify the error caused by the Irregular nature of the calibration
curve, a computer simulation was used. Input Into the simulation was the

actual caIlbratlon curve of the FSSP, the theoretical curve, and a

dlstrlbutlon of small droplets. The simulated response was computed and

compared wlth the Input distribution. The difference between the input and

computed distributions represents a "worst case" prediction of the error.
Figure 4.8 shows the comparison for thls one case. The distribution is

distorted. The 6- to 7-Nm bln is most notably distorted. Even wlth the

distortion, the average diameter and the MVD differ from the input

dlstrlbution's average diameters by less than 2 percent. It should be noted

that no other instrument effects were modeled so that any differences are due

entirely to the Irregular caIIbratlon curve.

If these errors In the distribution are unacceptably large then

redefinitlon of the slze blns is a method to correct thls. Reference 6 gives

details of how to change the bln boundaries to accommodate the multlvalued

nature of the Mle response curve. Thls method can also be used to correct for

undersizlng of the large droplets.

4.4 Laser Beam Illumination Errors

The trajectory of a droplet through the FSSP's probe volume can affect the
measured size of the droplet. This Is due to an uneven laser beam lllumlnation
In the probe volume. If two Identical droplets go through different regions of
the probe volume that have different Illuminations, then the FSSP wlll measure
them differently. The one that goes through the more intense region will be
sized as a larger droplet. Thls klnd of error causes a broadenlng of the slze
spectrum or spectral broadening: droplets that should be grouped Into one slze
bin are Instead grouped into adjacent bins.

Before quantifying the spectral broadening error, It is Informatlve to

see the cross section of the FSSP's beam at the center of the probe volume

(fig. 4.9). Data for this plot was generated by rotating a 5-_m pinhole

through the center of the FSSP's laser beam. The voltage at the signal

detector was read by a storage oscilloscope and transferred to a computer.
The tlme dependent voltage measured by the oscilloscope represented a one-

dlmensiona] intensity profile of the beam. The plnhole was then repositioned

to cut across another chord of the beam and process was repeated many times.

The one-dimensional slices were then assembled Into the two-dlmensional plot
of the intensity profile shown in the figure.

Figure 4.9 clearly shows the uneven illumination wlthin the probe volume.

However, these fluctuatlons In the laser beam il]uminatlon change with

Increasing pinhole (or droplet) diameter. This is because larger dlameter

particles tend to average over the intensity fluctuations in the beam. Figures
4.10<a) to (d) show this for 5-, 25-, 50-, and lO0-_m pinholes. Note that the

intensity fluctuations for the 5-_m pinhole have an amplitude that is about

40 percent of the peak intensity, while the fluctuations for the lO0-_m pinhole

are only about 5 to IO percent of the peak intensity. This data indicates that

uneven laser beam iIlumlnatlon is not a serious problem with larger size

droplets.
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Quantifying the error caused by the uneven Illumlnatlon was done

expeFImentally. Again, a rotating plnhole was used to do this. The experiment
was done In two stages. First, a plnhole was rotated through the probe volume

along the same trajectory. The trajectory used was the one that produced the

maximum signal (this was usually very close to the radlaI center of the beam).

The second stage of the test used the same pinhole except it was rotated

through varied trajectories of the probe volume by means of a computer-

controlled positloner. Comparison of the two tests reveals the effect of
uneven lllumlnatlon.

Figure 4.|1 compares the results of the two tests. Note that there Is

increased broadening of the size spectrum when the pinhole goes through varied

trajectories. This is attributed to the uneven laser beam iIlumlnation in the

probe volume. The magnitude of the broadening for this size pinhole Is about

5 pm or 5 bins when operating the FSSP on the 1- to 16-pm range (bin widths are

l pm in thls range). When the instrument is operated on less sensitive ranges.
like the 2- to 47-_m range (which has 3-pm bin widths), the broadening is still

5 pm, but this corresponds to a broadening of only one or two size bins. Thus
the effect of uneven laser beam Illumination will be most evident when the

Instrument Is being operated In the most sensitive size range.

To quantify the effect of broadening on a realistic droplet size

distribution, a model of the broadening is needed. Such a model was

formulated based on the data given in figure 4.ll. The model is a spectral

broadening aIgorlthm that takes droplet counts from one size bin and
distributes them in adjacent bins. A graphical representation of the model Is

shown In flgure 4.12. Applylng this spectral broadening algorlthm to a more
reallstlc dlstrlbutlon will glve an estlmation of the error it causes in the

FSSP. Figure 4.13 shows the input distribution with the shaded bars and the
same dlstrlbutlon distorted by the spectral broadening algorithm with the

wider bars. Note that the dlstortlon is not as prominent as when the input

distribution was monodlsperse. Also note that the error _n the MVD and the

error in the average diameter is less than I percent for this distribution.

Assuming this model is an accurate representation of spectral broadening in
the FSSP, then one can expect errors of about I percent when operating the

FSSP on the l- to 16-pm range. In the size ranges with wider bins the error

wlll be negligible.

4.5 Size-Veloclty Correlation Errors

All of the droplets the FSSP measures in any glven sample must be

traveling at the same velocity. This is because the FSSP accepts or rejects

droplets depending on the droplet's transit time through the laser beam.

Recall that droplets with a short transit time are rejected because it is

assumed they went through the edge of the laser beam and could have been slzed

incorrectly. If a size-veloclty correlation exlsts (droplets of one size are

moving at a different velocity than those of another size) then a velocity

bias error is possible.

This error occurs when the FSSP biases the measured dlstribution toward

slower moving droplets because those droplets wlll be in the laser beam for a

longer period of tlme than faster ones. Thus the transit tlme circuit in the

FSSP rejects more of the faster moving droplets. If the faster moving droplets

correspond to a given size class of droplets, then that size class wlll be
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undercounted. For example, assumethat an FSSPis In perfect working order,
Is calibrated perfectly, and will makeno sizing errors. Also assumethe
cloud that the FSSPis to measure contains large droplets that are moving fast
and small droplets that are moving slow. Then this ideal FSSPwill measure a
distribution that will be skewedtoward the small end of the size spectrum and
the average diameter and MVDwill be measuredsmaller than the true value.

It should be noted that the velocity blas error discussed here is not the
sameas the sampling differences caused by temporal versus spatial sampling
(ref. 7). Those sampling differences also cause a measurementblas and are
also caused by a slze-velocity correlation (the bias is toward faster moving
droplets). These sampling differences have been previously analyzed and
documented, and an algorithm has been formulated to relate one type of sampling
to the other (ref. 8). The error discussed in thls sectlon is unique to the
FSSPand biases the distribution toward the slower moving droplets.

A slze-veIoclty correlation could occur in many circumstances: proximity

to spray nozzles, turbulence from the alrcraft, or any source of turbulence.

Even t_rbulence caused by the body of the FSSP can change the flow field.

Some calculations have been performed and prellminary Indlcatlons show the

effects may be significant (ref. g). It is beyond the scope of this report to

analyze or quantlfy the various causes of size-veloclty correlation. Instead,

a size-veloclty correlatlon will be assumed, and the velocity blas error it
causes in the FSSP will be calculated.

A size-velocity correlation and a droplet slze distribution was assumed

and Input to the FSSP simulation program previously discussed. The droplets at

the small end of the dlstributlon had slower velocitles than those at the large

end. To make certain no other effects caused a sampling bias, other errors

intrinsic to the FSSP were not modeled. Figure 4.14 shows the effect of the

size-velocity correlation. In flgure 4.14 the true distribution (bar graph)

is compared with the measured distributions when two dlfferent size-velocity

correlations were assumed. The filled squares represent the simulated FSSP

response when the small droplets were moving at 50 m/s and the large ones at

60 m/s (the velocity varied linearly with diameter). The filled circles

represent the simulated FSSP response when the small droplets were moving at

lO m/s and the large ones at 20 m/s (again the velocity varied linearly with

diameter). In the 50- to 60-m/s case the size-velocity correlation caused a

negligible error (less than 5 percent) in the measured average diameter and

the MVD. In the IO- to 20-m/s case the slze-velocity correlation caused a

20- to 30-percent error in the measured average diameter and the MVD.

4.6 Overall Accuracy of the FSSP

The overall accuracy of the FSSP is dependent on the particular instrument

and the measurement conditions. Thus, one single number cannot be given as

"the error". The aIternatlve is to list the types of errors and the factors

that cause them, then estimate each error based on wind tunnel tests,

laboratory experiments, and computer simulations. This data is given in

figure 4.15. (Keep in mind that these errors were estimated based on the plots
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and data given In thls section and will vary depending on the many factors
discussed In thls report.)

5. OPERATION OF THE OPTICAL ARRAY PROBE

5.1 Theory of Operation

The Optlcal Array Probe (OAP) is an optical particle s|zlng instrument

that measures the diameter of particles by using an Imaging technique. When a

droplet passes through the laser beam in the OAP, a lens system transfers the

image of the particle onto a 11near array of photodetectors. When the Image

or shadow of the partlcle passes over indlvidual elements in the photodetector

array, the intenslty decreases. If the intensity decreases more than
50 percent, then It is assumed the photodetector is within the shadow of the

particle. After the particle passes through the laser beam, the number of

photodetectors that experienced a 50-percent drop in intensity are counted.

This number Is proportlonal to the diameter of the particle.

As with the FSSP, the OAP must reject particles that are outside of Its

probe volume because they may be sized Incorrectly. The OAP determines the

probe volume by determining the degree to which the particle is in focus. To

determine the degree of focus of a particle, the OAP assesses the drop in

Intensity each of the photodetectors experienced while the particle passed

through the ]aser beam. If any of the photodetectors experienced a drop of

66 percent or more, then the droplet Is assumed to be In focus enough to make
an accurate size determination.

The OAP must also reject particles whose edges are off of the photo-
detector array. To do this the OAP makes a check of the two photodetectors

that are at either end of the array. If either end photodetector Is In the

shadow of the particle (i.e., experiences a 50-percent drop in Intensity) then

It Is assumed that the particle extends beyond the range of the photodetector
array. If this happens, the particle must be rejected because it would be
undersized.

5.2 Measurement of Optical Characteristics

Two OAP optical characteristics are its depth of field and its counting

probability. The depth oF Field refers to the axial position along the laser

path where particles are in Focus enough to be measured. The countlng
probability is the probability that a partlcle will in be the probe volume and

get counted. The countlng probabillty depends on partlcle dlameter.

The depth of field In the OAP needs to be characterized because particles

that cross the laser beam at different 1ocatlons along the depth of fleld are

measured with varying degrees of accuracy. Particles are within the depth of
fleId if they pass the 66-percent threshold test discussed above. In order to

characterize the instrument s response to particles at different locations

within the depth of Field, a rotating reticle was used (refs. 3, 10, II,

and 12). The reticle provides a means of sending pseudo-particles (chrome

disks deposited on a glass substrate) along precisely known trajectories
through the laser beam. Details about the reticle will be discussed in the
OAP calibration section.
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For the depth of field test, the retlcle was attached to a motor and the
motor was attached to a two-axls mlcroposltlonlng table. As the reticle

rotated, the entlre apparatus (retlcle and motor) moved slowly up and down so

the image of the chrome dlsk cut across the photodetector array at different

locations. Data was taken with thls procedure at one location within the depth

of fleld. After several minutes of taking data, the average dlameter measured

by the OAP was calculated, and the reticle was moved to another location in the

depth of field. This continued until the average measured diameter at each

location in the depth of field was known. A plot showing the average diameter

as a function of depth of field is shown in flgure 5.1. The data is for three
different reticle spot sizes: 50, 100, and 150 pm in diameter. Note that the
OAP measures the diameter most accurately when the reticle disk is in the
center of the depth of field. This is the region of best focus. As the
reticle disk moves farther from the region of best focus, it can be undersized
or oversized with an error of about 15 percent. This effect tends to cause a
broadening of the size distribution.

The other characteristic about the OAP that affects accuracy is the
counting probabillty (this is referred to in the OAP manual as the effective
array width). Not all particle slzes have an equal probablllty of being
counted by the OAP. For example, a small particle's image can go over the
photodetector array along many different trajectories and not trigger the end
reject photodetectors in the OAP. Because of this effect, smaller particles
have a large probability of being counted. On the other hand, a large
particle's image must cross the photodetector array very close to the center of
the array. Any deviation, from this path will cause the Image to go over the
end photodetectors and the partlcle wllI get rejected. This restricts the
possible trajectorles of larger particles and thus these particles have a
smaller probability of being counted.

To quantify thls countlng probability, the rotating retlcle and computer
controlled microposltloner were agaln used. This tlme all measurements were
made at the center of the depth of fleld. As before the rotatlng reticle was
slowly translated. The translation caused the reticle's image to cut across
the photodetector array at dlfferent positions. At times the image traveled
across the center of the array and was counted. At other times the image cut
across the edge of the array and was rejected. The quantlty of interest was
the number of counts registered by the OAP for each reticle size disk per unit
time. This is proportional to counting probability. Figure 5.2 shows the data
from this experiment. Note the probability goes to zero for reticle disks
larger than 620 pm. The effective width of the detector array is 620 pm, thus
particles larger than this will always trigger at least one of the end reject
detectors and therefore can never be counted. The decrease in counting
probability for increasing particle size was expected although a more linear
decrease was anticipated. The nonlinearitles turned out to be from systematic
errors in the computer controlled positioner.

The important feature of figure 5.2 is the counting probabillty for
particles less than 30 pm. These particles have a lower probability of being
counted. Thls is llkely caused by the spacing between the photodetectors in
the array. The very small reticle dlsks (or particles) can cut across the
photodetector array and not be counted if they go between the photodetectors in
the array. Thls decreases the probability of counting small particles. This
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effect must be included in the data analysis to get an unbiased measurement of

the partlcle size dlstrlbutlon.

6. CALIBRATION OF THE OAP

The rotating reticle has been developed for the Optical Array Probe as a
callbration device. The reticle allows calibration in each of the 62 size bins

in the OAP model 260X, and can be used for sample volume characterlzation if

used with a mlcroposltloner.

The reticle conslsts of a round glass dlsk 10 cm in dlameter and 3 mm

thick. Chrome dlsks of a known dlameter are permanently deposited on the

surface of the glass. The disks are arranged on the glass in concentric rings
or tracks. The track used to callbrate the OAP consists of 64 dlsKs varying

in dlameter from 10 to 640 pm.

To use the retlcle for callbratlon of the OAP, several additional devices

are needed. First, a small DC motor is needed to spin the reticle. Also an

angle encoder is attached to the shaft of the motor so that as the reticle is

splnning, the angular position of the reticle is known and thus the slze of the
disk in the sample volume of the OAP is also known. By using the angle encoder

with an electronic tlmlng circuit, a timlng signal can be sent to the OAP.

This signal is used to enable and dlsable the strobe llne in the OAP. The
eFFect is llke turning on the OAP whlle the disk Is golng through the sample

volume and turning off the OAP when the disk is not in the sample volume.
There are two advantages for doing thls. First, this allows selectlon of any

one disk out of the 64 posslble disks on the track. The second advantage Is

that thls reduces the problem caused by dirt and dust specks that can collect

on the retlcle. Since the OAP Is only active when a disk is going through the

sample volume, dust wlll not cause any Interference unless it is very close to
the disk. This seldom occurs because the disks and the area around them

comprlse such a small fractlon of the total area on the retlcle surface. The

dlsadvantage of using the timing circult is that it requires a slight

modlflcation of the OAP's strobe line.

Figure 6.1 shows the calibration curve for the OAP. The straight line

represents perfect callbration (1:1). The various symbols represent the
counts the OAP detected in the various size bins. The filled squares are for

bins with more than 50 percent of the counts, the clrcles are for bins with

5 to 50 percent of the counts, and the dots are for bins with 0 to 5 percent

of the counts. Although the data does show some spill over into adjacent

bins, the bin containing most of the counts is almost always on the line of

perfect calibration.

The rotating retlcle is very good for calibration of the OAP. It gives
detailed results (callbratlon in every size bin throughout the entlre range);

it can be used to map the response of the OAP as a function of depth of field;

it can be used to determlne the counting probabillty; and it is currently

commercially available (ref. 13).

43



650

6OO

550

sou

450

c_-- 400

_ 250

•_ 200

150

I00

50

F'] MORE IHAN 50% Of THE COUNIS

o sToso_OFT.ECOUNTS
-- • LESS THAN 51 OF THE COUNTS

-_I 1 I °I I I I I I I I I J

SO 100 150 200 250 300 350 q00 450 500 550 &O0 650

RECICIE DISK DIAMETER, IJM

FIGURE &.1. - CALIBRATION CURVE FOR THE OAP USING THE ROIAIING RETICLE.

44



7. ACCURACY OF THE OAP

The callbratlon curve previously shown In figure 6.1 certainly makes the

OAP seem to be very accurate throughout its entire range. It is true that the

OAP (when properly calibrated) can accurately measure reticle disks when they

are rotated through the center of the sample volume. However, there are other

factors to consider when accessing the accuracy of the OAP. These include the

counting probability, broadening of the size distribution due to out of focus

particles, coincidence errors, velocity errors, and statistical uncertainties

(the effect of a small number of particles in the tall of the dlstribution).

Except for the velocity errors (ref. 14) quantitative analysis of these errors

is not complete.

8. CONCLUSIONS

The accuracy of the Forward Scattering Spectrometer Probe has been

quantified and is shown to depend on many factors. The most important factor

is the number density of the cloud. In clouds with a true number density of

approximately lO00 per cm3 centimeter the sizing error caused by coincidence

events can be as high as 20 percent to 40 percent for the median volume

diameter. Other factors, such as underslzing of large droplets and probe

volume uncertainty, are also shown to be significant under certain conditions.

Broadening of the slze spectrum due to uneven laser beam Illumination In the

probe volume causes negligible errors In the measured average diameter and the
median volume diameter.

Callbration devices for both the Forward Scattering Spectrometer Probe

and the Optical Array Probe were developed and shown to be useful for both
detailed calibration studies as well as fleld calibration. Also operation of

the Forward Scattering Spectrometer Probe in an Icing environment Is discussed

and recommendatlons were made to help aIIevlate some problems which may occur.
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