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ABSTRACT

This publication presentsa novel multireceiver configuration for the purpose of

carrier arraying and/or signal arraying. Such a problem arises for example, in the

NASA Deep SpaceNetwork where the samedata-modulated signal from a spacecraft

is receivedby a number of geographically separatedantennasand the data detection

must be ef/iciently performed on the basisof the various receivedsignals. The proposed

configuration is arrived at by formulating the carrier and/or signal arraying problem

as an optimal estimation problem. Two specific solutions are proposed.

The first solution is to simultaneously and optimally estimate the various phase

processesreceivedat different receivers with coupled phase-locked loops (PLLs) wherein

the individual PLLs acquire and track their respective receivers' phase processes, but

are aided by each other in an optimal manner. The coupled PLL estimator is followed

by simple addition of the quadrature-phase components of the mixers from various

receivers for the purpose of data detection. Such signal combining, of course, requires

the transmission of high information rate (the rate related to the data transmission rate)

baseband signals from all the receivers to one of the selected receivers, as expected. For

relatively strong correlation among various phase processes, the detection performance

as measured in terms of radio loss is near optimal; in this case the phase error processes

themselves are also highly correlated.

However, when the phase processes are relatively weakly correlated, coupling

among loops is of only marginal significance (in the limit the improvement due to

coupling is zero for zero cross-correlation). In this case, most of the gain is expected to

result from the post-loop combining. However, simple combining of b_seband signals

,°.
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is far from optimal in this case as the residual phase errors from different loops are

highly uncorrelated. For this case, and for the case of relatively high values of symbol

energy-to-noise spectral density ratio (Es/No), we propose a novel configuration for

combining the data-modulated, loop-output signals.

The scheme can be extended to the case of low (Es/No) case by performing the

combining/detection process over a multisymbol period. Such a configuration results

in the minimization of the effective radio loss at the combiner output, and thus a

maximization of energy per bit to noise-power spectral density ratio is achieved.
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1. INTRODUCTION

Recently, there has been some interest in a carrier arraying system to combine

the receivedcarrier signalsat geographically separatedantennaswith different carrier

phasesto improve the overall carrier tracking performance[1-3]. The expectedimprove-

ment occursboth in terms of the rms phasejitter and radio lossor the carrier-to-noise

power spectral density ratio (CNR) margin.

The schemeof [1-3] treats one of the receiversas "master" receiver that tracks its

receivedphasenoiseprocessby a comparatively large bandwidth loop. It is aided by

other loops in combining the signals receivedfrom other receiversat an intermediate

frequency (IF). In turn, the "master" receiverbroadcasts its voltage-controlled oscilla-

tor (VCO) output signal to other receiversso asto aid their tracking processes.Thus,

the coupling among various receiversin this configuration occurs at both RF and IF

stages. If the phaseprocessesamongvarious receiversare strongly correlated, so that

the loop noisebandwidth of all receiversother than the "master" canbe reducedenough

to achievenegligible tracking errors, then the IF combining occurs almost coherently

and the system (first receiver) is expected to perform optimally.

The above scheme,however, seemsto have been arrived at intuitively and it is

not clear if the performance is optimal. In fact, for the case of equal antenna size

and receiver noise temperatures, one would expect some symmetry in the receivers'

coupling that is absent in this scheme. Moreover, as will be shown in this publication,

if the phase processes are not very strongly correlated, then signal combining in this

manner can result in a very significant loss of optimality, in terms of both CNR margin

and data detection performance. In an alternative scheme presented in [4], individual
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carrier signals are tracked by independent PLLs and the (linear) signal combining takes

place at the baseband (subcarrier) level or at the symbol stream level just prior to the

data detection.

In this publication, we formulate the problem of parameter estimation for an an-

tenna array as an optimal estimation problem in a way similar to the case of a single

antenna [5-9]. The proposed configurations arrived at in this manner consist of two

distinct stages as shown in Figures la and lb, wherein the first stage provides mutual

coupling among the loops for joint estimation of various phase processes, while the

second stage performs signal alignment and combining. While the two configurations

are identical in terms of the first stage, they differ markedly with respect to the second

stage. Whereas the second stage of the configuration I of Figure la involves linear

combining of various signals, the configuration of Figure lb achieves both an explicit

phase alignment and the signal combining. The optimization technique also yields the

actual coefficients of coupling for these configurations.

In practice, one could of course use the proposed structure, but the actual co-

efficients may then be related to more intuitive parameters such as the loop noise

bandwidths of various loops. Another advantage of the proposed scheme is that under

relatively strong correlation among various phase processes, the mutual coupling among

receivers is at baseband only as against at IF and RF levels in the previous scheme. In

the proposed scheme, the coupling among receivers is via baseband error signals, and

in the absence of coupling (simply by disabling the interconnections among various

receivers), the system reduces to a decoupled configuration, i.e., individual receivers

track their respective phase processes. This may be a desirable feature and is not
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common to the scheme of [1-3]. Moreover, a consequence of this approach is that the

system explicitly takes into account any correlation among various receiver parameters

as noise temperatures. The scheme of [1-3] does not suggest any mechanism for this. A

decision-directed version of the proposed scheme can be used for signals with relatively

high Es/No. It consists of the simple addition of the quadrature-phase components

of the mixers from various receivers for the purpose of data detection. Such signal

combining, as expected, requires the transmission of high information rate (related to

data rate) baseband signals from all the receivers to one of the selected receivers.

It is also to be noted that for the case of weak correlations among the phase

processes, the scheme of [1-3] would not be satisfactory in that the phases of the IF

signals at the input to the combiner are uncorrelated. Adding such signals would

result in a drastic performance loss compared to the case of strong coupling. For

this case, the proposed configuration II effectively averages out the phase errors at

various receivers, thus performing an explicit phase alignment in addition to the implicit

alignment achieved via mutual coupling and resulting in the same performance as for

the strong coupling case. The scheme is applicable to the cases of both the residual

carrier and the decision-directed (suppressed carrier) loops. Thus, the scheme provides

a novel method for optimum signal combining under considerable phase jitters among

estimated phase processes.

In this technique, the high information rate (related to data rate) signals are

transmitted at some IF frequency for the purpose of optimum nonlinear combining

at one of the selected receivers. Alternatively, these signals may be transmitted at

baseband and modulated at the central receiver by an IF frequency for the purpose of
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phase aligment. Figures la and lb may be of help in the conceptual understanding

of the two proposed schemes. In the next section, we derive these structures by the

application of optimal estimation theory; we also present their more detailed schematic.

Detailed performance evaluations of the proposed schemes are presented in the

following sections of this publication. These results show that for the case of very high

correlation among various phase processes and equal CNR among the N receivers, there

is an improvement of 10 log10 N dB in terms of effective CNR due to arraying, as is

intuitively expected. However, the more important and perhaps surprising aspect of

the presented results is that with the proposed arraying scheme, the same improvement

can be obtained for the complete range of correlation coefficients.

The decision-directed versions of the proposed coupled-receiver configurations in-

corporate a transition detection scheme in the loop so as to provide a near-optimum

estimation/detection performance even under the conditions of relatively high phase

errors that may be encountered during acquisition.
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2. SIGNAL MODEL AND RECEIVER STRUCTURE

We consider the problem of estimating the phase processes 0i(k),i = 1,2,... N

from the sampled version of the received carrier signals yi(k), i.e.,

yi(k)=Av_Sin(wctk+0i(k))+Vi(k); i=1,2,...,N (1)

where tk is the kth sampling time, wc is the known carrier frequency and _i(k), the

observation noise, is the sampled version of a narrow-band, zero-mean, white-Gaussian

noise process _(t). In (1), without loss of any generality, we have assumed that the

carrier amplitude is equal for all the receivers, while the additive noise variance may

differ for various receivers. This is in view of the fact that the performance of the

estimation algorithm depends only on the signal-to-noise ratio and not individually on

the signal and noise powers. However, with minor variations, the following estimation

algorithm includes the case where A is replaced by Ai; i = 1,2,... N in signal model

(1). The phase processes Oi(k) at various receivers are assumed, in general, to be

partially correlated processes (in the limit these may be completely uncorrelated or in

the other extreme may be identical) and are modeled as

Oi(k)=g'xi(k); g'=[1 0...0]; i-1,2,...,N (2)

In (2) above, x_(k) denotes the state vector of dimension n_ associated with the ith

phase process. For the case of a single receiver configuration, the state vector xi(k) is

modeled as [8]:

x;(k + 1) = ¢ xi(k) + wi(k) (3)

where _8 is an n8 × n_ matrix and wi(k) is a zero-mean, white-Gaussian noise process

independent of _i(k).



For the multireceiver configuration considered here, we model the state dynamics

as follows:

xl(k + 1)

x2(k+ 1)

xN(k+ 1)

=(¢,®F)

" xl(k) ]

x2(k)

.xN(k)

+

_N(k)

(4)

where ® denotes the Kronecker matrix product (the definition is included in Appendix

A), F is an (N x N) matrix, and the dynamic noise processes, wi(k), are in general

mutually correlated. Thus, the processes xi(k) may be coupled both via the matrix F

-and via the cross covariances of wi(k), i = 1,2, ... ,N. In a simpler model, F may

be taken to be an identity matrix, and an appropriate structure may be imposed on

the covaxiance Q of w(k). The latter denotes the gns dimensional noise vector in (4).

Denoting by x(k) the composite state vector for the multireceiver configuration, one

may write (4) in the following compact form:

• (k + 1) = ¢ x(k) + w(k) (5)

with _ _ Cs ® F. We assume that w(k) is a zero-mean, white-Gaussian process

independent of _(k) _ [{_l(k) }T... {_N (k) } TIT, where T denotes the matrix transpose.

Thus,

E[_(k)]= o, E[w(k)]= 0

Z[w(k)wr(k)] = Q; E[_(k)wT(j)] = 0 ;j,k=l,2,...

(6)

The measurement equation (1) may also be written in the following vector-matrix form:

v(k) = h(x(k),k) + _(k) (7)



where

h(4k), k) _ [hl(_, k)... hN(x, k)]_
(S)

hi(x,k) = Av_ Sin(w_tk + Oi(k))

= AV_Sin(_0tk +er_(_)) ;/= 1,2,...,N

As shown in Appendix A, the extended Kalman filter equations for the signal

model (5-8) are given by (A1), (A15-A17), (A5), and (A14).Under the assumption of

a small estimation error, 2(k + 1/h) = x(k + 1) - 2(k + 1/k), the filter equations may

be simplified as follows: Representing the bandpass additive noise gi(]¢) in terms of its

baseband quadrature components gi(k) and g;(k) as

-_i(k) --i _,xi + _iq(lg)CoS(_ctk etxi(l¢))= vi(k)Sin(a&tk + (k)) +

the prediction error r/i(k + 1) given by (A17) may be approximated by

1 gi(k+l); i=1,2, ,N (9)
r_i(k + 1)= AeT_(k + 1/k) + -_ ...

We note that r/(k + 1) _ [_l(k -J- 1)..._]N(k + 1)] T Of (9) is alSO the one-step-ahead

prediction error for the following model:

1
y(k + 1)= AHz(k + 1)+ _ vi(k + 1)

Vx
(10)

where

n_

" t T 0 ...... 0

0 t T ...... 0

0 ......... gT

; er = [1 0...0]



and Vi(k+l) is the vector consisting of -j its jth elements. It is also clear that underv i as

the assumption of small estimation error, the filter equations of Appendix A reduce to

the following standard linear Kalman filter equations:

_(k + 1/k + 1)=_}(k/k) + K(k + 1)r/(k + 1) (lla)

rli(k + 1)= v/2yi(k + 1) Cos (_)'(k + 1)) (11b)

Oi(k + 1) = wctk+_ + gT _i (k + 1/k) (11c)

K(k + 1) = AP(k + 1/k)H S-a(k + 1) (11d)

P(k + 1/k + 1) = P(k + 1/k)- A 2 P(k + 1/k)HTS-'(k + 1)H P(k + l/k) (ile)

P(k + l/k) = CP(k/k)¢ T + Q (11f)

S(k + 1) = H P(k + 1/k)H T + R (119)

where R is the covariance of the measurement noise vector Fi(k + 1)/x/2 appearing in

(10) and is equal to R/2. Note that in the derivation of the filter equations in Appendix

A, the measurement noise covariance matrix R is assumed to be diagonal. However, in

view of equations (9-10), the recursions (11) are applicable to the case of nondiagonal

R as well.



3. OPTIMUM ESTIMATION VIA COUPLED, PHASE-LOCKED LOOPS

The various antennas may be geographically separated in most situations, includ-

ing space exploration. Therefore, for the purposes of proposed implementation, we

represent the solution (11) as a set of interacting phase-locked loops with w_rious PLLs

associated with their respective receivers and the interaction among them occurring

over low data rate communication links. Such an arrangement is illustrated in Fig-

ure 2a for the case of two receivers. The receiver configuration of the figure may be

simplified by replacing the components of the Kalman gain matrix by its steady-state

value, which may be precomputed. In addition, the feedback gain vectors K 12 and K 21

(superscripts refer to the specific block in the partition of the Kalman gain matrix)

may equivalently be replaced by scalars to bring the organization of the figure into a

more conventional form.

Considering first the case when F12 = F21 = 0, and denoting by [_I(z) the Z

transform of the input 01(k) to the phase modulator in Figure 2a (in actual implemen-

tation, the phase modulator is replaced by NCO, whose input is the difference signal

(01(_)- _l(k- 1))(KvAt) -1 with At being the lead time and Kv equal to the NCO

sensitivity), then 01(z)is given by

Ol(z) = eTFll_s[z 2T- F_,_2s]-lKl_rl_(z) + gTFl,_2_[z I - Fl,_2s]-'K'2rl2(z) (12)

It may also be expressed in the following more convenient form:

61(Z) _--- Gll(z)r]l(z) -_- G12F]2(z)

Gll(z) = e TFll_s[z I- Fllr_s]-lK 11, G12(z) = eTFl,r_s[z I-- Fll (I)s]--l__ 12

9

(13)



For the case of n_ = 9. and with

1 T

0 1

the filter transfer function GlX(z) may be obtained as

__ ]_2 _'11

Gll(z) = F,I(KI 1 + K_IT) z -_ ll--1
(z- (14)

Similarly, G12(z) is obtained by replacing K 11 by K _2 in (14).

This formulation ignores the internal state of the filter related to the initial condi-

tion _(0/0). However, by selecting the initial states of the two filters G_(z), G12(z),

such that their sum is equal to &l(0/0), and with the proper implementation of the

filter, this problem is eliminated. Figure 2b shows an equivalent implementation of the

receiver coupling for the case of F12 = F21 = 0. The filter transfer functions G21(z)

and G22(z) have a form similar to (14) for the case of n = 2. Figure 3 shows a digital

filter implementation wherein the filter states are related to &(0/0) as discussed above.

For the case of F12, F21 _ 0, it is required that the filter states of the second

receiver also be fed back to receiver 1. In this case, the implementation of a two-receiver

configuration is depicted in Figure 4 wherein $1 and 5'2 are multivariable digital filters.

A detailed schematic diagram for filter S1 is shown in Figure 5. The implementation

of filter 5'2 is very similar.
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4. AN EVALUATION OF THE PROPOSED CONFIGURATION

Under the assumption that the estimation errors are relatively small, as is the case

under high CNR, the phase detector may be approximated by linear characteristics and

the performance of the system is given by P(k + 1/k) of equation (11). As k _ oo, the

matrix P(k + 1/k) approaches a steady-state value denoted by P, which is the solution

of the following algebraic matrix Riccati equation:

"-P -- (_ [P - A 2P g T S -1 H "_ ] (_ T ._[_ @ (15)

As shown in [10], the solution P is given in terms of the eigenvectors of the following

2n dimensional matrix HI:

H I = (16)

Moreover, the eigenvalues of H I are such that the reciprocal of an eigenwdue is also an

eigenvalue. Assuming that the eigenvalues are distinct, then Hf may be factorized as

Hf = W D W -1 (17)

where D is a diagonal matrix consisting of the eigenvalues of H I along its main diagonal,

with the first half (n) entries having their magnitude greater than one, and W being a

nonsingulax, eigenvector matrix. With the matrix W partitioned into n x n blocks as

below,

W __ (18)

m

then the steady-state solution P is given by

-p = W21W_ 1 (19)

11
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The steady-state filter error covariance matrix is then obtained by substituting P for

P(k + 1/k) on the right hand side of (lle), as

-PF = -P- A2-p HT S-1H -P (2o)

Substitution of T for P(k + 1/k) also yields the Kalman gain matrix K from (lld, g).

Knowledge of K then permits the implementation of the (time-invariant) digital filters

in Figures 1-5.

In Appendix B, we consider coupled, dual-receiver, configuration-employing type

I and type II loops in more detail. For type II loops, which are of more interest

here, equations (B15)-(B22) present an analytical solution in a convenient form for

the matrix W of (18) as a function of the various parameters, rl, r2, T, qll, etc.,

related to the joint phase processes model (Bll). The filter error covariance matrix

P for a two-receiver configuration, with each receiver employing a second-order loop,

is then evaluated on the basis of equations (B15)-(B22), (19), and (20) for various

values of these parameters. One of the most important quantities of interest is the

ratio of the phase error variance of a receiver operating under coupled configuration

to that obtained without any coupling while keeping the statistics of various processes

the same. To keep the presentation simple (where only a relatively small number of

parameters vary), we assume that the process noise in each receiver has equal variance

qll = q22 in (A1). This is an appropriate assumption for the present application.

Denoting by PFk the steady-state filter error covariance matrix for the kth receiver

operating independently, this performance measure for the kth receiver is simply equal

to 10 lOglo{PFI(1,1)/PF(1,1)} and 10 loglo{'PF2(1,1)/TF(3,3)} respectively for k =

12



1,2, and is evaluated for various values of the parameters T, p = q12/qll mid cra2/a v2=Ix

(qll/T_rk) with rk equal to the observation noise variance for receiver k. The notations

2 and 2 have been used in [7,8] and have been introduced here for the purpose ofO"a O"v

referring to the results obtained in [7,8] for the case of a single receiver. As shown in

2/a_ is decisive in determining the[8] for the case of a single receiver, the parameter a a

optimal loop-noise bandwidth of the phase-locked loop.

A more effective performance measure is the required increase in the received

signal-to-noise power ratio for a single receiver, in order to achieve the same phase

error as obtained by the dual receiver. The performance of a single receiver has been

analyzed in some detail in [8] and some of those results are reproduced here in Figures

6-8. Figure 10 plots the normalized, two-sided bandwidth 2Bp of the optimum phase-

locked loop as a function of 2an�a,,, where Bp = BLT, with BL denoting the actual

2loop-noise bandwidth in Hz. From these figures, it is observed that for a fixed an,

results in increased bandwidth, and thus some of the advantage ofreduction in a_

2 is offset by increased B L as far as the phase error variance is concerned.reduced a,

Thus, whereas in the absence of the process noise (a_ = 0) and a fixed loop bandwidth,

the phase error variance is inversely related to the input SNR, this is not so for the

2 2case of cra # 0. As shown in [8] for the case of cra # 0, the optimum loop performance

may be approximated by

9 2 2 .22 ,

2 2).251.4(cr_/a v

T= 0.1s

T = 0.01 s

In general, for any value of T, the performance for an appropriate range of (a2_/cr2v)

13



may be approximated by

pF,(1,1)/a2T__ 2 2 ba(aa/Crv)

2 equalfor some constants a, b. With pl, Pz representing the values of PFI(1, 1) for a,_

2 constant, thento aRvl, av22 respectively with ¢a

= (pl

or

10 loglO(O'2t 0.2/ v2)= 10 loglo(pl/p2 ) × (1- b) -1

Thus, the improvement in terms of the signal-to-noise ratio is (1 - b) -1 times the

improvement in phase error variance. For b equal to .25, this additional factor is about

1.33. For a constant signal amplitude, A = 1, corresponding to the received signal

2 is also equal to thepower P0 = 1, A2/0. 2 = 2PoT�No, and thus the improvement in 0.v

improvement in terms of the carrier power to noise power spectral density ratio (CNR).

The curves labeled "precombining" in Figures 9 and 10 depict the performance

improvement as defined above for the case of T = 0.1s, rl = r2 = 1.0, and for p

= .995 and .999 respectively. Note that as the system is assumed to be linear, the

phase variances can be normalized by the additive noise variances; the performance

improvement depends only upon the ratio rl/r2, and not on the individual values of

rl,r2. Figure 11 plots the corresponding result for the case of T = 0.5s. As may

be inferred from these figures, an improvement of about 1.7 dB in terms of phase

error variance 0._ is obtained for the case of p = 0.999. Similar results are obtained

for different sampling rates. Note that this information is adequate for ascertaining

14



the actual phase error variance for the coupled loops, with the performance for the

single loop available in [7,8] and reproduced here for reference. Figure 12 plots the

(r_/cr. for a fixed value of p = -.999 and T =performance improvement as a function of 2 2

cra/a _ = 0.1, the improvement due to0.Ss. As may be observed from Figure 12, when 2 2

arraying in terms of (r_ is 1.7 dB, while the effective improvement in terms of CNR is

2.1 dB. Performance when T = 0.1s or .01s is not significantly different. All the results

presented in this section refer to the "precombining" results in Figures 6-32 and pertain

to the proposed scheme 1 (ignoring the effect of a linear signal combiner) in contrast

to the "post-combining" results also depicted in these figures. The latter performance

curves, which pertain to the proposed scheme 2 (involving an explicit phase alignment)

are discussed in a subsequent section.

With the performance improvement (due to arraying) curves in Figures 9-12, along

with the actual performance curves for a single receiver presented in Figures 6-8, one

may determine the actual phase error variance for the arrayed system. For exam-

pie, with 2 2(cr_/(r.) equal to 1.0 and T = 0.1s, the phase error variance is equal to

1.28(No/2Po) without arraying, while with a dual receiver it is equal to .79(No/2Po).
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5. PERFORMANCE COMPUTATION VIA RECURSIVE SOLUTION

The closed-form solution (16-19) of the algebraic Riccati equation, while of general

nature, is cumbersome to compute for higher system dimensions. For a system dimen-

sion higher than 4 (matrix H I dimension greater than 8), it is no longer feasible to

come up with simple scalar equations as described in Appendix B for the case of a dual-

receiver configuration, and thus one has to compute the eigenvalues and eigenvectors of

H I by some numerical algorithms. As such computations are numerically sensitive, we

instead evaluate the performance by a recursive solution approach. In this approach,

one simply solves the recursions (lle, f) for k = 0, 1,2, ... M with M selected such that

the Euclidean norm [[AP [I of the matrix P(k + M / k + M - 1) - P( k + M - 1 / k + M - 2),

normalized by the norm of P(k + M- 1/k + M- 2), is smaller than some specified value

e. In these recursions, e is selected equal to 10 -5. The initial value P(O/- 1) is taken

to be a diagonal matrix with its diagonal elements equal to 103. The recursions (11e,

f) are performed for the first 50 iterations without the test, after which the recursion is

terminated subject to the condition [[APII/JJPIJ <_ e. Figures 13-15 plot the results in

2 2
terms of performance improvement as a function of a_/a v and for three distinct values

of T. Comparison of Figures 12 and 13 shows that both methods yield the same result,

thus cross-verifying the computations.

Figures 16-19 plot the performance of a three-receiver configuration for the case

2 2
of equal CNR for each receiver. Several values of the sampling period and a_/a,, have

been considered. A few representative cases corresponding to T = 0.1, .5, .01 and

(a_/a 2) equal to .1 and 10 are presented here (these correspond to a loop bandwidth in

the range of 0.2 Hz to a few Hz). For all of these eases, the performance improvement
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over a single receiver is about 2.6 dB in terms of phase error variance and approximately

3.4 dB in terms of CNR.

It is also of interest to consider the case of unequal CNRs at various receivers. As

a representative case, we consider the situation in which some of the receivers have 6

dB lower CNR compared to the others. Such is the case within a good approximation,

for example, with the NASA Deep Space Network with 70/70/34 or 70/34/34-meter

antenna receiver stations. The performance for this case, with T = .01 s and a,_/a,,22 =

1.0, is presented in Figures 20-24. As is apparent from Figure 20, which depicts the first

case, there is an improvement (for p = 0.999) of about 2.6 dB for receiver 1 in terms of

effective CNR. When compared to the improvement obtained by a two-receiver system

with equal CNRs, this represents an additional improvement of 0.5 dB attributed to

the third, smaller antenna station. We also note here that as for the case of a two-

receiver configuration, the performance improvement is not sensitive to 2 2o'e/a v or T.

For comparison, we plot the performance improvement for the above case, but with

2 2
aa/a,, = 0.1 and T = 0.1 in Figure 25. Comparisons of the results in Figures 20 and

25 show insignificant differences in the two cases. For the case of unequal CNRs, the

aa/a v is measured with reference to the receiver having the highest CNR.parameter 2 2

The performance improvement in the receivers with lower CNRs is even more spec-

tacular when compared to the receiver with the highest CNR. As shown in Figure 22, for

the above case (70/34/34-meter antenna stations), the improvement for the 34-meter

antenna receiver is about 5 dB in terms of effective CNR. For the case of 1:1:4 ratio

among noise variances (70/70/34-meter configuration), the performance improvement

for the smaller station is 5.8 dB, as shown in Figure 23. Figure 24 presents the result
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for the 1:4:16 ratio, in which casethe improvement for the smallest station is 7.1 dB.

Note that all these improvements are at p = .999 and may be a little higher or lower

depending upon the actual value of p.

Figures 26-32 plot the performance for the case of various four-receiver configu-

rations. For the convenience of presentation, we fix the values of parameters T and

2 2
aa/a_, at .01 s and 1.0 respectively. Similar performance curves are obtained for differ-

ent values of these parameters. As depicted in Figure 26, for the case of equal receiver

noise variances for all the receivers, and for p = .999, one obtains an improvement of

about 3.1 dB in terms of phase error variance and 4.1 dB in terms of effective CNR.

Figures 27 and 28 plot the performance improvement for receiver 1 for two different

cases of unequal CNRs among various receivers. The effective improvement for the case

of a 1:1:1:4 ratio among various receiver noise variances is 3.6 dB, while for the case

of a 1:1:4:4 ratio, the improvement is about 2.9 dB. As is also true for the case of a

three-receiver configuration, the CNR improvement is spectacular for smaller antenna

receivers. As is apparent from Figure 29, in a 1:1:4:4 ratio situation, the receiver with

the smaller antenna achieves an improvement of about 6.1 dB. The corresponding im-

provement for the case of a 1:4:4:4 configuration is about 5.4 dB. Figures 31 and 32

plot the results on the performance improvements for the receiver with the smallest

CNR for two more configurations with 1:1:1:4 and 1:4:4:16 ratios respectively. These

improvements are about 6.5 dB and 7.5 dB respectively.

It may be noted that while for the case when the same information (data) is

carried by all of the links, the performance of only the largest antenna receiver (or

actually the aggregate performance of all the receivers) would be of importance, there
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are other interesting situations where the performance of all individual receivers is

significant. This is the case, for example, with the frequency reuse (and/or polarization

reuse) telecommunication satellites with spot beams, wherein different information is

transmitted to different receivers but over the same carrier frequency. In this case, a

smaller earth terminal can dramatically improve its performance (in terms of carrier

recovery) by proper coordination with a larger terminal. The coordination can be done

via inexpensive, low-capacity, terrestrial links. These links need to carry only very low

rate information representing the loop correction signals.
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6. A NOVEL SIGNAL-COMBINING CONFIGURATION FOR
COUPLED RECEIVERS

For the caseof most interest in this publication, wherein the carrier signals re-

ceived at various receiversaxedata modulated by the same information, the system

performance can be further improved by post-loop combining of the signals. For the

caseof a data-modulated signal, a decision-directedapproach is usedand the data de-

tector becomesan integral part of the loop. Figure 33 depicts the schematic of sucha

loop for the caseof a single receiverfor reference.Note that the superscriptson various

signals have been removed in that figure, and the phasedetector outputs (baseband)

aregiven by
1

_(k) = A Sin(0(k) + 7r D(k)) + --_ vi(k)

1

_(k) = A Cos(O(k) + _r D(k)) + --_ gq(k)

(21)

where _ = 8(k) - _(k) represents the phase estimation error and {D(k) } represents the

sampled version of the data signal, i.e.,

D(k)=bj ; (j-1)M<k<jM-1 (22)

In equation (22), bi represents the jth data bit and M is the number of samples within

one data-bit period. For the purposes of carrier phase estimation, the data detection

could be based upon a differential approach, even for the case of coherent modulation.

This approach has the advantage of better acquisition and tracking than is feasible

with coherent detection. This is in view of the fact that if there is a considerable

frequency drift in the loop (as in acquisition mode), then the coherent detector in the

loop will provide a very high probability of error. Due to this fact, the loop may not
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lock. However, the differential approach would provide estimates of data transitions

with a low probability of error, provided that the phasedrift (resulting due to a nonzero

differential frequencycomponent in the loop error) is smallercomparedto the minimum

phaseseparation amongvarioussymbols. For the caseof BPSK modulation, the signals

correspondingto "1" and "0" differ in their phaseby rr tad. For a more detailed and

elaborate implementation of this concept, one may refer to [11], where the acquisition

and tracking of a very high dynamic signal are considered.

For the case of binary modulation, one may apply the following decision rule for

the data transition detection: With

jM-1
1

rid(j)= -_ E
k=(j-1)M

,(k);

s(j) = {(rla(j) - r/_(j - 1)) 2

the decision rule is

1 jM--1

k=(j--1)M

1

+(_(J)-_a(j- 1))2} _

(23)

bj = bj-1 if s(j) < VT

(24)

¢ b1-1 if s(j) > VT

In (24), VT represents some appropriate threshold. Note that in the absence of noise,

s(j) = 0 or 2A depending upon whether bj is equal to bj_ 1 or not, irrespective of phase

error 0, such that the average phase error in the two consecutive bit periods is equal.

Thus, VT may be set to A in the presence of noise. Alternatively, one could compare

J_a(J)- (a(j - 1)J against some threshold to detect a transition.

Note that if the data are coherently modulated, then a separate post-loop detection

may be applied to obtain bj coherently as shown in Figure 33. The output of this
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detector would be meaningful only if the loop has acquired and the phase error /} is

small.

It is clear that in the above detection scheme, there would be some signal loss

due to nonzero 0(k). In a multiple-receiver configuration, such a possible loss can be

minimized by averaging the phase errors before a decision is made. As the phase errors

Oi(k) in various receivers corresponding to i = 1,2,..., N are only partially correlated,

the average error would have a smaller variance than the individual errors 0i(k). Figure

34 shows a detailed schematic diagram for the scheme that achieves the desired objective

for the case of two receivers. This has been referred to earlier as scheme 2 (Figure lb).

In the first instance, we assume that the two receivers have equal CNR. Figure 34

depicts the schematic diagram of an implementation that effectively averages out the

phase estimation error /}(k) and the noise associated with the two receivers for the

purpose of optimal estimation. In the figure, Wd represents some appropriate frequency

introduced for implementing the frequency (and phase) division. Representing the

receiver input noise Fi(k) (after being averaged over one symbol period) in terms of its

baseband components _(k) and _;(k) as

= Sin [ ct, +  l(k) + D(k)]
(25)

+ 5_(k) Cos [wct, + 02(k) + _r D(k)]

then the output of the rf mixer 1 in Figure 34 is given by

[ 1 _, ]rllB(k) = A + -_ vi(k ) Sin [wdtk + #1(_) ___7/" D(k)]
(26)

1

+ _ 5_(k) Cos [wdtk +O'(k) + rr D(k)]

For the case of medium-to-high Es/No ratio, the output of the limiter/frequency divider
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1 denoted rlD(k ) is approximated as

{1 _1 D(k)+ 01.(k)) }ri_(k) _ A Sin _(_t, + (k) + ,_

{ _,_(k)/v'_ } (27)_'_(k)= tan-'
A + _(k)/v_

Similarly, the output of the lower frequency divider in Figure 34 is given by

ACos{ l (wdt k + _(k) + 7r D(k) + t_(k)} (28)

For the approximation (27) to be valid, the signal-to-noise ratio 2A2/E[_] 2 =

2Es/No (Es denotes data-symbol energy) must be much higher compared to !. In

general, for the case of MPSK signaling with M distinct phases, this ratio is given by

(2Eb/No)log 2 M. Thus, for M = 4 (corresponding to QPSK signal) and Eb/No = 0

dB, the signal-to-noise ratio 2A2/E[_] 2 is equal to 6 dB and may be adequate. Higher

values of M, of course, lead to even higher SNR. For those cases where 2Es/No is not

sufficient, the scheme may be suitably modified by extending the observation period to

more than one symbol. The signal combiner combines the {riD, _D} signals from the

two receivers according to the following trigonometric identities:

rii(k) = rib(k)¢5(k) + ri_(k)¢b(k)

= ASin{wdtk + _(k)+ zr D(k)+/},-,(k)}

¢1(k)= ¢5(k)¢_ - rib(k)riS(k)

(29)

= ACos{wflk + _(k)+ r D(k)+ t}.(k)}
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with

0(k) _7_ l(01(k)-iv 02(k)) ; On(k) = _(01(k)
+

When Wd is an IF frequency, one may equivalently generate r//(k) and _/(k) by

mixers and bandpass filters. Finally, the complex-mixer in Figure 34 down-converts

the signals rH, (I to baseband, resulting in its outputs given by

r/(k) = ASin{0(k)+ zr D(k)+ 0n(k)}

(30)

_(k) = ACos{0(k) + 7r D(k) + 0n(k)}

For a high CNR case, 0,,(k) may be approximated by

On(k) = tan-l(bq(k)/x/_A) ; (;q(k) = l(51q(k) + b_(k))
2

Since {5_(k)} and {5_(k)} are independent noise sequences, the variance of 5q(k)is

only one-half of the variance of either of these noise components. Thus, in addition to

averaging out the phase errors 01(k), 02(k), the scheme also effectively averages out the

measurement noise (as an optimal detector should). Data transitions are then detected

by substituting r/(k), _(k) of (30) into equations (23, 24).

The above scheme can be generalized to the ease when the two receivers have

unequal CNRs at their inputs. As shown in the following, the optimum weighting of

the two phase error terms 01(k) and 02(k) would be a and (1-a) respectively for some

0 < a < 1, where in general a would be different than 0.5. This is achieved by using

the frequency division by a -1 and (1 - a) -1 in the upper and lower limiter/frequency

divider respectively. If necessary, a may be approximated by a rational number for the

purpose of implementation. Note that this scheme affords the same weighting to the
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1 and v_ If _ is close to r2/(r 1+r2) , then this is also optimum frommeasurement noise v_

the viewpoint of minimizing the noise. In a more general case, the optimal weighting

may be derived so as to minimize the probability of error, or equivalently, the ratio

E[Cos20(k)]/E[b_]. For the case of equal CNRs, the optimum solution is a = 0.5.

This "post-loop" combining can be generalized to a multiple-receiver configuration in

a straightforward manner.

With the phase errors 01 and 02 having zero means and covariance matrix P, the

weighted average phase error 0 = a01 + (1 - a)02 has the following variance:

E[0] 2 = a2pll -4- (1 - a)2P22 + 2a(1 - oL)Pl2 (31)

In (31), Pll, etc., denote the elements of the matrix, P. Setting the derivative of El02]

with respect to a equal to zero, the optimum weight a is given by

( P22-P12 )a = Pll q'- P22 ---- 2P12

For the more general case of N receivers, let

= oq01 +'-" + aN0 N (32)

Then, the minimization problem consists of minimization of

Z[_]2 T A= otvP Olv ; olv = [OL1 0_2 ...OtN] T (33)

subject to the constraint

T A
a vu=l ; u =[11...1] T (34)

Using the Lagrangian method of minimization, we obtain the following optimum solu-

tion for av:

av --(uTp-lu)-lp-lu (35)
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Recall that the constraint (33) is necessaryso asto ensurethat the data-phasemodu-

lation in the combined signal remains equal to _rD(k).

In the more generalcase,where it is required to maximize the signal-to-noiseratio

E[Cos01 /E[  I, the optimization problem is more complex. However, the following

approximate procedure is proposed for the solution. We first minimize the weighted

sum El0] 2 + 7E[_q 2] with respect to a. for any specified 7: i.e., minimize

T T R a. (36)a,_ P a_ + 7 a_

subject to the constraint (33). The solution as a function of 3` is then given by

av = {uT(p +3` n)-lu}-l(P +3` R) -1 (37)

With the expansion of Cos0 in terms of its Taylor series,

1

E[Cos_0] = 1 - m_ + 5m_ - +.-.

where mj denotes the jth moment of _}, E[O] j for j = 1, 2, .... In the general case, it is

difficult to evaluate these moments precisely. For the purposes of this approximation,

we may assume 0 to be Gaussian (following from a linearized approximation of the

phase detector), and thus the optimization index may be approximated by (retaining

only the first three terms)

- I(o%Rav){1 (3s)

and can be minimized with respect to q' by an appropriate numerical technique.

Figures 6-32 also plot the "post-combining" improvement in the phase error

variance at the input to the coherent detector (see Figure 34). This is defined as
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10log10{-PFk(1,1)/E[O]2}, wherePYk is the phase error variance for the kth receiver

operating by itself, and/} is the averaged phase error given by (32). This represents the

overall improvement in the phase error variance for the proposed decision-directed mul-

tireceiver configuration 2, and for brevity is termed the "post-combining" improvement

(in Figures 6-32). In these figures, we also plot the "post-combining" CNR improve-

ment, defined as the required increase in the CNR for the single receiver, so as to reduce

its phase error variance by the improvement factor {-fiFk(1,1)/E[O] 2 } defined above.

For the case of equal CNRs, the effective noise variance at the input to the coherent

detector is 1/N times the noise variance for the case of a single receiver. Based on this

information, for a given CNR, the total improvement in the (Eb/NO) ratio is given by

(Eb/No)I = 10log10 N + lOloglo{E[CosOkff/E[CosO] 2 } (39)

For illustration, with E[/}k] 2 .5(rad) 2, T .01s, 2 2= = aa/a _ = 1.0, and a four-receiver

configuration, Figure 26 shows an improvement in the phase error variance of 4.5-5.7

dB, depending upon p (corresponding to an effective CNR improvement of 6-7 dB).

With the approximation (based on Gaussian assumption on 0) that

E[Cos/}] 2 _ 1 - a 2 + a 4 ; a 2 = E[/_ 21

a2 a4 (40)
E[Cos0] --- 1 - -- + --

2 8

we have

and

E[t} 2] = •13; E[Cos0kl 2 = .75 • E[C O] 883, OS 2 _-_

(Eb/No)x-_6.SdB for p small,

E[02]=.177 ; E[CosS] 2"_ • (E/No) "_= .854 , b I = 6.6dB for p large•
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We note that an alternative simpler scheme 1, with the signals _(k) (see Figures

33 and 34) simply averaged out, may result in a considerable signal loss compared

to the proposed post-loop combining method of this publication. To illustrate the

point, let us consider the case when p is relatively small, say 0.5, so that gk from

various receivers (even under coupled mode) are nearly uncorrelated. For example,

with T .01s, 2 2= aa/a_, = 1.0, and with a received signal-to-noise ratio yielding the phase

error variance of 0.5 (rad) 2, without coupling in a four-receiver configuration, there

is an improvement of only 0.24 dB (see Figure 26) and the individual receiver phase

error variance (under coupled mode) is thus E[Ok] 2 = .466 (rad) 2. The correlation

coefficient between various phase errors gk is computed to be only .11, and thus even

after "precombining," various _k are almost independent. For simplicity, we assume

that Ok and hence Cos0 k for k = 1,...4 are in fact independent random variables.

With the approximation (40), we have

E[CosOk] _ _- .751

4

Co 0 ]
k=l

Thus, there is a loss of 10 log10.19 = -1.8 dB relative to the ideal case. Essentially, the

spread on phase error variance partly offsets the improvement due to noise reduction.

Ignoring the nonlinearities in the phase-locked loops, the improvement in terms of

(Eb/No) compared to one receiver system is given by

(Eb/No)i _ 6 + 10 log_o(.66/.751 ) = 5.4 dB

By the proposed method of post-dectection combining, however, E[02] _ .1165 (rad) 2

with E[Cost_] 2 _ .897, thus resulting in an (Eb/No) improvement of 6.8 dB. Thus,
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in this case, the additional gain resulting from the proposed post-detection nonlin-

ear combining is 1.4 dB over the simpler linear combining method 1. As in arriving

at this simple result, we have ignored nonlinearities (worse at higher variances) and

made a Gaussian assumption on _ in arriving at (40), the actual difference may be

even higher than 1.4 dB. For higher values of p , the improvement in the phase error

variance is attributed to both the "precombining" and "post-combining" processes, as

is apparent from Figures 6-32. Taking into account the phase detector nonlinearities

under relatively low SNR conditions, it is clear that the combined gain due to both

predetection and post-detection would be actually much higher than 6.8 dB, especially

at high values of p. This is so because the loop operating with E[_ 2] = 0.5 (rad) 2

(predicted on the basis of linear theory and without arraying) is expected to involve

much higher degradation due to nonlinearities compared to a loop with E[_ 2] = .177

(rad) 2 (obtained with arraying), in view of the simulation results of [7,8] for the case

of a single loop with phase detector nonlinearity. In fact, when the problems of cycle

slipping associated with nonlinear behavior are also considered, it may not even be

feasible to operate the loop at such high values of E[g2]. Thus, an additional gain of

1.5-3 dB is expected over systems which involve only baseband signal combining (no

carrier arraying) for a four-receiver configuration with a net gain in terms of (Eb/No)

in the range of 3-4 dB. Similar results would hold for other receiver configurations.
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7. CONCLUSIONS

We have presentedtwo novelestimation/detection schemesfor multireceiver com-

munication systemsfor the coordinated estimation of the phaseand frequency of data-

modulated carrier signals. Theseshould reducethe radio loss to a negligible value and

thus effectively minimize the probability of data detection.

Consideringfirst the caseof no data modulation (residual carrier) and formulating

the problem in a state-spacedescription, we have derived an estimator structure on

the basis of optimal estimation theory. This configuration consistsof coupled phase-

locked loops with individual PLLs tracking the carrier signalsassociatedwith various

receiversand aided by other loops on a mutual basis. Detailed results of analysis and

computation have been presented to illustrate the improvement obtained due to such

a coupling over that achievedfor the caseof independently operating PLLs.

Various receiver configurations, including 2-4 receivers,have been consideredfor

the casesof both equal and unequal CNRs at the receivers.We have considereda wide

range of valuesfor the ratio of processnoise to additive noise variance (a dominant

parameter in controlling the loop bandwidth) and a wide rangeof correlation coefficient

p among the phase processes at the input to various receivers. The improvement has

been measured both in terms of the reduction in the phase error variance (phase jitter)

and also in terms of the extension of the CNR margin (reduction in the required CNR).

It is apparent from the results presented in this publication, that for a relatively

high value of p, loop arraying provides an effective CNR improvement of about 2-

4.5 dB, depending upon the number of receivers in the configuration, for the receiver

with the highest CNR at its input. This improvement is applicable over a very wide
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range of loop noise bandwidths (processnoise variances). For receiverswith smaller

input CNR (smaller antenna aperture), the improvement is more dramatic. For the

caseconsideredin this publication, wherein eachreceivercan have one of two possible

CNRs (corresponding, for instance, to either a 34-meter or a 70-meter antenna), the

mmximumCNR improvement can be as high as 7 dB.

For the caseof relatively high p, the above scheme can be extended to the data-

modulated case (suppressed carrier or data-aided residual carrier loop), by replacing

the individual PLL by a decision-directed version. The data detection is achieved on the

basis of a signal obtained by combining the appropriate baseband signals (quadrature

components of the mixer) from all the loops. For relatively high values of p, it turns out

from the analysis (as is also intuitively expected) that the residual phase errors from

various loops are also highly correlated and thus simple combining of the baseband

signals does not result in a significant loss of optimality. In the decision-directed version

of the loop, we have removed the data modulation within the loop on the basis of

differential detection or transition detection [9], as this provides a better acquisition

performance than the usual matched filter detection.

Apart from being an optimum configuration, a major advantage of the proposed

scheme with respect to an earlier scheme in the literature is that here the coupling

among loops is only via low frequency baseband signals (loop error signals) as against

coupling at the IF and RF levels required in the previous scheme. This feature is

especially attractive when the various receivers are geographically separated by large

distances as in the case with the Deep Space Network. However, it may be emphasized

that the scheme is of a general nature and also has various other applications as well.
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For example, in the caseof frequencyor polarization-reusesatellite configurations, tile

schemecan beapplied for coordinated and thus improved phaseestimation eventhough

different carriers (channels) carry different data.

For the caseof relatively low valuesof p, both the above scheme and the scheme

of [1-3] are of little use. As seen from the results presented in this publication, loop

coupling by itself, in this case, provides very small improvement even though the esti-

mation configuration is optimum. Thus, for p = 0.5 and a four-receiver configuration,

one obtains less than a 1-dB improvement through coupling. In this case, it is essential

to recognize at the outset that the overall objective is to minimize tile probability of

error or minimize the phase jitter in the combined baseband signal. An equivalent way

to achieve this is to estimate individual phases with errors _}k as before to obtain the

baseband signals DCos0k (D denotes data) and from these signals obtain a composite

signal DCos0 where 0 is an optimal average of various error signals 0k. The second

scheme in this publication does indeed achieve such combining. From the analysis, it

turns out that for low values of p, 0ks are essentially uncorrelated and it is essential

to average out 0k in this manner. For the purposes of data detection, the proposed

scheme also automatically averages out the additive noise.

The proposed configuration II requires inputting the data signal at an intermediate

frequency to a selected master receiver from all the remaining receivers. The mutual

(two-way) coupling is the same as for configuration I, i.e., it involves only low frequency

loop error signals. The performance of the proposed configuration II has also been

evaluated under appropriate simplifying assumptions and has been presented in this

publication. From these results, it is apparent that this scheme can provide a CNR
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improvement of about 8 dB for a four-receiver, equal CNR configuration over the

complete range of p. An interesting observation is that for the second scheme, the

performance is better for lower values of p than for the higher range of p. This is

directly opposite to the result for configuration I and may at first sight seem to be

counter-intuitive. However, the result is easily explained on the basis of a fundamental

averaging principle.

Thus, the variance of the average of N random variables Xk, k = 1,...,N (as-

sumed to be identically distributed for simplicity) depends directly on the correlation

coefficients among the variables Xk and achieves a minimum for zero cross-correlations.

Replacing Xk by Ok then justifies the results presented in this publication on an intu-

itive basis also. It should further be noted that there is no known scheme for this case

of low p in the published literature.

One could, of course, use the more sophisticated configuration II even for relatively

high values of p. At the cost of some complexity, this results in marginal improvement

over the first, simpler scheme.
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8. SUGGESTIONS FOR FUTURE RESEARCH

As is generally the case with such estimators, the parameters of the proposed

optimal estimators, e.g., noise bandwidths of various PLLs, are based on the knowledge

o'a/o" _ and the correlationof certain statistics of the received signal model as the ratio 2 2

coefficient p. In practice, the unknown statistical parameters may be replaced by some

appropriate bounds or estimates of these. This may result in some possible loss of

optimality, which is dependent on the accuracy of these estimates. The estimates of

2 2 and p may be obtained either on an offiine or on a real-time basis, the latterO"a , O"v

procedure resulting in an adaptive optimal system. Development of such adaptive

procedures is an important part of the suggested future research in this area.

The performance results presented in this publication were derived on the basis

of linear estimating theory and are applicable for a relatively high CNR case. Under

relatively high CNR and tracking mode, the phase estimation errors are relatively small

and the phase detectors in various PLLs may be approximated by linear characteristics,

resulting in a linear model for the complete coupled system. However, for relatively

low CNRs, a linear approximation may not be valid and the results presented here may

represent only an approximation of the actual performance. For relatively low CNR,

and/or in the acquisition mode, it is necessary to obtain results on the basis of nonlinear

theory or by computer simulations. This forms another part of the proposed future

research. Also, as indicated in Section 6, the proposed nonlinear phase alignment

and combining technique is applicable when 2E_/No is much higher compared to 1.

Investigation of a scheme that overcomes this limitation by extending the combination

to a multisymbol period is also part of such a proposal.
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APPENDIX A: Extended Kalman Filter Equations for the Signal

Model (5-8)

In the following, the extended Kalman filter equations are obtained by expanding

the nonlinear vector measurement function h(x,k) into a Taylor series around the

predicted estimate of x(k) and retaining only the linear and quadratic terms. These

equations are then simplified by ignoring 2wet and the higher harmonic terms present

in the recursions as in [8, 12]. In fact, the development here is not much different than

in [8]. With _(k + 1/k) denoting the one-step ahead prediction of x(k + 1), then the

extended Kalman filter equations for the model (5-8) are given by the following filter

state equations:

2(k + 1/k + 1)= g2_(k/k)+ M(k + 1)_,(k + 1) (A1)

_,(k + 1) = y(k + I) - h(S:(k + 1/k),k + 1) (A2)

and filter gain:

+ 1)= P(k + + 1) (A3)

In (A3), P(k + 1/) denotes E[{x(k + 1)- &(k + i/k)}{x(k + 1) -- &(k + I/k)} T]

and has the following recursion:

P(k + 1/k) = P(k + 1/k)- P(k + 1/k)hTa-l(k + 1)h, P(k+ 1/k) (A4)

P(k + 1/k) = _ P(k/k)_ T + Q (A5)

1 c92h P(k/k - 1). [ o2h
a(k) = h, P(k/k- 1)h T + R(k) + _z7 : L_--_-z2: P(k/k - 1)] r (A6)
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where hx denotes the (N x n) gradient matrix and

02 h fi 02 ho_ : P(k/k- _)= (P(k/k- 1)),j
i,j=l OXi(_XJ

is an N vector.

To simplify the recursions (A1)-(A7), the gradients h, and hi_z

follows: The N x n gradient matrix h, is given by

h. = Av_

Cos61(k) 0 .-. 0

o Cos62(k) ... 0

0 0

. . ° • • •

o Cos6N(k)

(A7)

are evMuated as

®gr (A8)

where ® denotes the Kronecker matrix product and gT = [1 0... 0] is a row vector of

dimension n_ Similarly °2h • P(k/k - 1) is the following diagonal matrix:•

0 ... 0 0

tSinO2(k)P_21 0 ... 0 (A9)

02h

ox 2 . p(k./_. - 1) =

{Sin(_' (k)P_ 1}

0

. . °

{Sin6N(k)P_ N }0 0 0 ...

where p_i denotes the ith diagonal term of the matrix PC, and PC is the diagonal version

of the phase error covarianee matrix, i.e., it is a submatrix of P(k/k - 1), consisting

of elements with 1, (n, + 1), (2n_ + 1),...((N- 1)n_ + 1) as their row and column

indices. Substitution of (18) and (A9) in (A6) shows that

o(k) = B(k) + 2(k) (AIO)

where B(k) is a diagonal matrix with its ith diagonal element given by

Bii(k) = 2P_iA2Cos26i(k) + (P_i)2A2Sin26i(k)
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Denoting by Pcs the diagonal matrix with its ith diagonal dement equal to (p_i)2

1 A2 1_,(k) = A2[P¢ + -_P_s + R(_)] + [Pc - P_s]CM

where CM is a diagonal matrix with ith element equal to Cos26i(k).

Thus

- 1p -1
a-l(]¢) = A-2[I + D(k)CM] l[p¢ -t- _ ¢s -F/_(]g)] (All)

1p -1 1p
D(k) = [Pc + _ es +/_(k)] [Pc - _ es]; /_(k) = R(k)/A 2 (A12)

Assuming ])(k) to be a diagonal matrix, then all the matrices above are diagonal and

each of the diagonal terms of the matrix [I+D(k)CM] -] may be individually expanded

into a Fourier series. Thus

1 P¢s '[- 1_(]¢)]-1 {,Ao -ff .A1CM q-"" "}
o'-1(]¢) = A-2[Pcq- _

(A13)

The ith elements of the diagonal matrices ,,40 and .A1 are given by

Aioi =
x/1 - [Dii(k)l _

A__ 2 { 1}Dii(k) 1 = .v/1_ [Dii(k)]2

with C1 a diagonal matrix and its ith diagonal element given by

c,,_1{Dii(k) 1- 1 + D"(k)J

then as in [6, 10], ignoring the high frequency terms, the recursion for P(k + 1/k + 1)

is given by

P(k + 1/k + 1)= P(k + I/k)-P(k + 1/k)HTA 2

[A2P¢_ + 1A2Pcs + R(k + 1)]
"g

-1
c H P(k + 1/t0

(A14)
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with

H

[£i ......

0 0

£1 0 ... 0 ; _'=[lO...o]

Moreover, the filter error correction term is given by

M(k + 1)v(k + 1)= K(k + 1)r/(k + 1) (A15)

K(k + 1)= AP(k + 1/k)HTC[A2P_ + 2A2P¢s +-R(k + 1)]-' (A16)

and the ith component of the vector r/(k + 1) is given by

_'(k + 1)= v_ y'(k + 1)Cos(6'(k+ 1)); i= 1,2,...,N (A17)

The Kronecker matrix product of any two matrices A and B is by definition the

following (rnp × nr) matrix, given in a block partitioned form:

allB .... alnB

A®B =

a21B .... a2nB

aml B .... amnB

where A is an (rn × n) matrix with aii denoting its ijth element for i = 1,...,rn;

j = 1,2,...,n, and B is any (p × r) matrix.
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APPENDIX B: Steady State Performance Equations for a Dual-Receiver

Communications System

In the following, we present a closed-form expression for the performance of a

two-receiver configuration for the two cases of first-order and second-order loop filters.

In the first-order loop filter case, (I) = H = I where I is a 2 x 2 identity matrix,

and

rl

R=

0

The matrix HI of (16) is given by

H I =

0

r2

; Q=
qll q12

q12 q22

1 0 l/r1 0

0 1 0 l/r2

qll q12 (1 + q11/n) q12/,5

q_ q55 ql:/n (1 + q_/,_)

(BI)

(B2)

With a few manipulations, the characteristic polynomial of the matrix Hf is given by

i,_i_ HI I = ,_4 -(4+ t),_ a +(6+ 2t + A)£ 2 -(4+ t)£ + 1 (B3)

where I I denotes the determinant of the matrix, and

/k = q11q22--q22__ --,IQI" t = _qll+ __q52 (B4)
"1r5 rl r5 "1 r2

From the symmetry of (B3), it is apparent that if £I is an eigenvalue of HI, then so is

_11. In fact, [hi- HI[ may be factorized as

IAI_ HI I = (A2-clA + 1)()_ 2- c2A + 1) (B5)

for some Cl, c5 such that each quadratic form has its roots with their product equal

to 1. Comparison of (B3) and (B5) shows that c_, c5 are solutions of the following
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equation:

d - (4 + _)c + (4 + 2, + zx) = 0

or

Cl,2 = 1[(4 + t) -F _/(t 2 - 4A]

To compute the eigenvectors of HI, we obtain the matrix

(B6)

C = Cofaet[AI - HI]

It is actually sufficient to evaluate the elements of the first row of C as functions of A.

With some manipulations, these are given by

611=(A-I) 3-t(A-1) 2+ (A- q22 )(A - 1) + A
7"2

612 = (/12(/_ __ 1)
r2

613 = qll(/_ -- 1) 2 - IQI(A - 1) IQI
r2 r2

(B7)

C14 = q,2(A - 1)2

With A1 and A2 denoting the roots with magnitude greater than 1 of the quadratic

forms in (B5), we have the following desired eigenvectors:

"Wll

W2,

W31

.W41

"611 -W12

C12 W22

C13 W32

- 614. ,k=Al - W42
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612

613

- 614 . A----A2
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The steady-state error covariance matrix is then given by

P=

-1

(B9)

Thus, the order of computations is the solution of (B6), followed by the solution of

the roots of quadratic forms in (B5), and then the computations (BS) and (B9). The

steady-state filter error covariance matrix is obtained by the substitution of P in (20)

with A assumed to be 1, without any loss of generality. Alternatively, one may replace

(B9) by the elements of the third row of C given below:

C3, = {(A- 1)_ - q_--_(_, - 1)- q_-2-_}/,'_
F2 1"2

C32 = {ql2(_- l)-}-ql2}/rlr2

(too)

c33= {(A- 1)3- q2_(__1)5_q22(__ 1)}
r2 r2

C34 = {q12(A -1)2 -b q12(A-1)}/r1

Numerical Example:

Let

1'1 = r2 = 1; qll = q22 = q12 = 0.5

Thus, from (B4), (B6)

A=O, t=l, C_ =3, C2=2

The root (of magnitude > 1) of (A 2 - cl A + 1) is equal to 2.62 and that of (A 2 - c2 + 1) is

1.0. (This is the limiting case as Q is a singular matrix.) From (B10), the corresponding
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eigenvectors (after possible scaling) are given by

[1 1 1.62 1.62]T; [1 -1 0 0] T

From (B9), the steady-state covariance matrix P is computed as

q

P=
00 1.62"1.62

-1

-1 1

.81

.81

m

The filter error covariance matrix PF computed from (20) has all its entries equal to

.31. Without arraying, the corresponding value is computed from (15), (20) and is

equal to 0.5. Thus, arraying results in an improvement of about 2 dB in the phase

error variance.

In the second-order loop filter case, the various matrices are given by

1 T

0 1

H _,.

1 0 0 0

0 0 1 0
; R=

Q ___ ; Qs -

"T2/3 T/2

T/2 1

(Bll)

Substitution of these matrices into (16) yields HI, which after simple row operations is

modified into matrix HI,,. The modifications consist of adding T x N1 to _72; T x N3

Tto _4; _ x _6 to _5 and _T x _8 to _7 with _i denoting the ith row of H I . The
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corresponding matrix (AI - Him) is given below.

AI - Him =

(A-l) 0 0 0 -1/rl 0 0 0

AT (A- 1) 0 0 0 0 0 0

0 0 (A-l) 0 0 0 -1/rz 0

0 0 AT (A- l) 0 0 0 0

0 T T --
---g'qll 0 --_q12 (A - 1) A 0 0

T _. (A- 1) _T__ 0Tqll --qll Tq12 --q12 2 r, 2 r2

0 --Tql 2 0 T--_'q22 0 0 (A -- 1) A

T T T_.Z 0 T 2g..__ (A--l)q12 --q12 _q22 --q22 _ rl _ r2

_zx= _T(A - 1)-T

(B12)

With the application of the following matrix identity [13],

A C

= [A I • ID- CA-1B I
B D

(B13)

and after a few tedious manipulations, one obtains the required characteristic polyno-

mial in terms of x = A - 1:

IAI - Hfl = a(x + 1)2(x 2 + 6x + 6) 2 + bx4(x + 1)(x 2 + 6x + 6) + x s

AT4 T 2 ql____l+ q22)
a = 36rlr------_; A = q11q22 - q22 ; b = --_--( rl r2

Alternatively, one may express [AI - HI[ in terms of A as

P(A)=A s+(b-8)A 7+(a+28)A 6+(8a-9b-56)A 5

(B14)

(B15)
+(18a+16b+70)A 4+(8a-9b-56)A s+(a+28)A 2+(b-8)A+l

From the symmetry of the coefficients of the polynomial P(A), it is observed that if A1

is the root of P(A) then so is l/A1 for any A 1 . Thus

4

P(A) = E(A 2 + ciA + 1) (B16)
i=1
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where l-I denotes product. Comparison of (BI5) and (BI6) shows that

4

i=I

3 4

Z
i------1 j-- i-I-1

2 3 4

i=1 j=i+l k=j+l

cicj = a + 24

CiCjC k = 8a - 12b - 32

A

d4 = ClC2C3c4 = 16(a + b + 1)

(B17)

and that cl, c2, c3 and c4 are negatives of the roots of the following equation:

y4 + dl y3 + d2 y2 + d3 y + d4 = 0 (BlS)

The computation of the required eigenvalues (with magnitude > 1) of Hy proceeds as

follows: Evaluate coefficients di's from (A14) and (A17), and factorize the polynomial

4
(A18) into the product 1-Ii=l(Y + ci). For each value of i = 1,2, 3, 4, obtain the roots of

the quadratic equation, A2 + ciA + 1 = 0, among which only tile one with its magnitude

> 1 is retained.

With the application of Schur's identity [13, 14],

A

C

-1
B

D

(A -1 + A-aBHCA -1)

-HCA-1
(B19)

and with some algebraic manipulations, the elements of the last column of the matrix

Adj(.kI - Hy) are obtained. In the computation of the Adj(AI - Hym) from Schur's

identity, we simply cancel out IAI - Hf,,I from the elements of (AI - Hy"` )-1. Also, to

obtain Adj(_I-Hy) from Adj(AI-HI.,) , we post-multiply the latter by the following
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matrix:

E1 0

0 E2

; E1 =

1 0 0

-T 1 0

0 0 1

0 0 -T

.

0

0

1

E 2 =

1 T/3 0 0

0 1 0 0

o o 1 T3

_0 0 0 1

r/3

The elements of the last column of Adj(XI - HI) , (any other column could be selected

as well) with Cj denoting the jth elements, have the following expressions in terms of

ZX
x=A-I:

C 1 = --xB(3;) q12T3 y 12T4

6 3 = X(2X Jr- 3)U(x)_y 2

r 2

c_= -(2__+ 5x + 3)U(x)=--
or2

2,-,, _q12 T3C5 -- -x lit, x) _ ; C6 = -x3C(x) q 3
2

(B20)

'7- q22T 2
C7 = x2(2x + 3)U(x)3 • Cs = x3U(x) - (X -4- 1)2y(x)' 6r2

where B,C, U, Y are the polynomials in x as follows.

B(x) = (2x: + Sx + a)(x 2+6+6) ; C(x) = (2x + a)(xe + 3x + 2)

U(x)=x 4 +(x + l)(x 2+6x+6)q11T2 ; Y(x)=x 4 +(x + l)(x: +6x +6) AT:
6rl 6r_ q:2

(B21)

The eigenvectors Wi of the matrix H f corresponding to li, i = 1,..., 4 are obtained

by evaluating (B17), (B18) at x = Ai - 1, i.e.,

VIii = [el C2 C3... C8] T x--Ai-1 (B22)

The steady-state error covariance matrices P and PF are then evaluated from (18)-(20)

as for the case of a first-order filter.
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