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ABSTRACT

This publication presents a novel multireceiver configuration for the purpose of
carrier arraying and/or signal arraying. Such a problem arises for example, in the
NASA Deep Space Network where the same data-modulated signal from a spacecraft
is received by a number of geographically separated antennas and the data detection
must be efficiently performed on the basis of the various received signals. The proposed
configuration is arrived at by formulating the carrier and/or signal arraying problem
as an optimal estimation problem. Two specific solutions are proposed.

The first solution is to simultaneously and optimally estimate the various phase
processes received at different receivers with coupled phase-locked loops (PLLs) wherein
the individual PLLs acquire and track their respective receivers’ phase processes, but
are aided by each other in an optimal manner. The coupled PLL estimator is followed
by simple addition of the quadrature-phase components of the mixers from various
receivers for the purpose of data detection. Such signal combining, of course, requires
the transmission of high information rate (the rate related to the data transmission rate)
baseband signals from all the receivers to one of the selected receivers, as expected. For
relatively strong correlation among various phase processes, the detection performance
as measured in terms of radio loss is near optimal; in this case the phase error processes
themselves are also highly correlated.

However, when the phase processes are relatively weakly correlated, coupling
among loops is of only marginal significance (in the limit the improvement due to
coupling is zero for zero cross-correlation). In this case, most of the gain is expected to
result from the post-loop combining. However, simple combining of baseband signals
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is far from optimal in this case as the residual phase errors from different loops are
highly uncorrelated. For this case, and for the case of relatively high values of symbol
energy-to-noise spectral density ratio (E, /No), we propose a novel configuration for
combining the data-modulated, loop-output signals.

The scheme can be extended to the case of low (Es/No) case by performing the
combining/detection process over a multisymbol period. Such a configuration results
in the minimization of the effective radio loss at the combiner output, and thus a

maximization of energy per bit to noise-power spectral density ratio is achieved.
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1. INTRODUCTION

Recently, there has been some interest in a carrier arraying system to combine
the received carrier signals at geographically separated antennas with different carrier
phases to improve the overall carrier tracking performance [1-3]. The expected improve-
ment occurs both in terms of the rms phase jitter and radio loss or the carrier-to-noise
power spectral density ratio (CNR) margin.

The scheme of [1-3] treats one of the receivers as “master” receiver that tracks its
received phase noise process by a comparatively large bandwidth loop. It is aided by
other loops in combining the signals received from other receivers at an intermediate
frequency (IF). In turn, the “master” receiver broadcasts its voltage-controlled oscilla-
tor (VCO) output signal to other receivers so as to aid their tracking processes. Thus,
the coupling among various receivers in this configuration occurs at both RF and IF
stages. If the phase processes among various receivers are strongly correlated, so that
the loop noise bandwidth of all receivers other than the “master” can be reduced enough
to achieve negligible tracking errors, then the IF combining occurs almost coherently
and the system (first receiver) is expected to perform optimally.

The above scheme, however, seems to have been arrived at intuitively and it is
not clear if the performance is optimal. In fact, for the case of equal antenna size
and receiver noise temperatures, one would expect some symmetry in the receivers’
coupling that is absent in this scheme. Moreover, as will be shown in this publication,
if the phase processes are not very strongly correlated, then signal combining in this
manner can result in a very significant loss of optimality, in terms of both CNR margin
and data detection performance. In an alternative scheme presented in [4], individual
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carrier signals are tracked by independent PLLs and the (linear) signal combining takes
place at the baseband (subcarrier) level or at the symbol stream level just prior to the

data detection.

In this publication, we formulate the problem of parameter estimation for an an-
tenna array as an optimal estimation problem in a way similar to the case of a single
antenna [5-9]. The proposed configurations arrived at in this manner consist of two
distinct stages as shown in Figures 1a and 1b, wherein the first stage provides mutual
coupling among the loops for joint estimation of various phase processes, while the
second stage performs signal alignment and combining. While the two configurations
are identical in terms of the first stage, they differ markedly with respect to the second
stage. Whereas the second stage of the configuration I of Figure la involves linear
combining of various signals, the configuration of F igure 1b achieves both an explicit
phase alignment and the signal combining. The optimization technique also yields the

actual coefficients of coupling for these configurations.

In practice, one could of course use the proposed structure, but the actual co-
efficients may then be related to more intuitive parameters such as the loop noise
bandwidths of various loops. Another advantage of the proposed scheme is that under
relatively strong correlation among various phase processes, the mutual coupling among
receivers is at baseband only as against at IF and RF levels in the previous scheme. In
the proposed scheme, the coupling among receivers is via baseband error signals, and
in the absence of coupling (simply by disabling the interconnections among various
receivers), the system reduces to a decoupled configuration, i.e., individual receivers
track their respective phase processes. This may be a desirable feature and is not
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common to the scheme of [1-3]. Moreover, a consequence of this approach is that the
system explicitly takes into account any correlation among various receiver parameters
as noise temperatures. The scheme of [1-3] does not suggest any mechanism for this. A
decision-directed version of the proposed scheme can be used for signals with relatively
high Es/No. It consists of the simple addition of the quadrature-phase components
of the mixers from various receivers for the purpose of data detection. Such signal
combining, as expected, requires the transmission of high information rate (related to
data rate) baseband signals from all the receivers to one of the selected receivers.

It is also to be noted that for the case of weak correlations among the phase
processes, the scheme of [1-3] would not be satisfactory in that the phases of the IF
signals at the input to the combiner are uncorrelated. Adding such signals would
result in a drastic performance loss compared to the case of strong coupling. For
this case, the proposed configuration II effectively averages out the phase errors at
various receivers, thus performing an explicit phase alignment in addition to the implicit
alignment achieved via mutual coupling and resulting in the same performance as for
the strong coupling case. The scheme is applicable to the cases of both the residual
carrier and the decision-directed (suppressed carrier) loops. Thus, the scheme provides
a novel method for optimum signal combining under considerable phase jitters among
estimated phase processes.

In this technique, the high information rate (related to data rate) signals are
transmitted at some IF frequency for the purpose of optimum nonlinear combining
at one of the selected receivers. Alternatively, these signals may be transmitted at

baseband and modulated at the central receiver by an IF frequency for the purpose of
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phase aligment. Figures la and 1b may be of help in the conceptual understanding
of the two proposed schemes. In the next section, we derive these structures by the
application of optimal estimation theory; we also present their more detailed schematic.

Detailed performance evaluations of the proposed schemes are presented in the
following sections of this publication. These results show that for the case of very high
correlation among various phase processes and equal CNR among the N receivers, there
is an improvement of 10log,, N dB in terms of effective CNR due to arraying, as is
intuitively expected. However, the more important and perhaps surprising aspect of
the presented results is that with the proposed arraying scheme, the same improvement
can be obtained for the complete range of correlation coefficients.

The decision-directed versions of the proposed coupled-receiver configurations in-
corporate a transition detection scheme in the loop so as to provide a near-optimum
estimation/detection performance even under the conditions of relatively high phase

errors that may be encountered during acquisition.



2. SIGNAL MODEL AND RECEIVER STRUCTURE
We consider the problem of estimating the phase processes 6;(k),7 = 1,2,...N

from the sampled version of the received carrier signals yi(k), ie.,
y'(k) = AV2 Sin(wctx + 6'(k)) +7'(k); i=1,2,...,N (1)

where t; is the kth sampling time, w, is the known carrier frequency and T'(k), the
observation noise, is the sampled version of a narrow-band, zero-mean, white-Gaussian
noise process T'(t). In (1), without loss of any generality, we have assumed that the
carrier amplitude is equal for all the receivers, while the additive noise variance may
differ for various receivers. This is in view of the fact that the performance of the
estimation algorithm depends only on the signal-to-noise ratio and not individually on
the signal and noise powers. However, with minor variations, the following estimation
algorithm includes the case where A is replaced by A% i = 1,2,... N in signal model
(1). The phase processes 9i(k) at various receivers are assumed, in general, to be
partially correlated processes (in the limit these may be completely uncorrelated or in

the other extreme may be identical) and are modeled as
9'(k)=£'z'(k); £ =[10...0, 1=12,...,N (2)

In (2) above, z*(k) denotes the state vector of dimension 7, associated with the ith
phase process. For the case of a single receiver configuration, the state vector zi(k) is
modeled as (8]:

zi(k + 1) = 8,2 (k) + w'(k) (3)
where @, is an n, X n, matrix and w'(k) is a zero-mean, white-Gaussian noise process

independent of 7* (k).



For the multireceiver configuration considered here, we model the state dynamics

as follows:
i (k+1) ] [ z1(k) " w!(k) 7
z2(k+1) z2(k) w?(k)
~@orn| |+] @)
2N (k + 1) ] | =N (k) | L w (k) ]

where ® denotes the Kronecker matrix product (the definition is included in Appendix
A), F is an (N x N) matrix, and the dynamic noise processes, w'(k), are in general
mutually correlated. Thus, the processes z'(k) may be coupled both via the matrix F
-and via the cross covariances of w*(k), i =1,2,....N. In a simpler model, F' may
be taken to be an identity matrix, and an appropriate structure may be imposed on
the covariance @ of w(k). The latter denotes the Nn, dimensional noise vector in (4).
Denoting by z(k) the composite state vector for the multireceiver configuration, one

may write (4) in the following compact form:
z(k+1) = @ z(k) + w(k) (5)

with & 2 ¢, @ F. We assume that w(k) is a zero-mean, white-Gaussian process
independent of B(k) 2 {7 (k)}T ... {zN(k)}T)T, where T denotes the matrix transpose.
Thus,

E[5(k)] = 0, Efw(k)] =0
(6)
Ep(kp?(k)] = R, Efwkyw (k) =Q; EFkwT() =0 ;jk=12,...

The measurement equation (1) may also be written in the following vector-matrix form:

y(k) = h(z(k), k) + v(k) (7)
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where
y(k) 2 ' (R)...yV ()T, k) SRV (R)T
h(z(k), k) £ [R} (2, k) ... BN (2, k)"
(8)
hi(z, k) = AV2 Sin(wet + 6°(k))

— AV2 Sin(wcti + £T2' (k) ;i=12,...,N

As shown in Appendix A, the extended Kalman filter equations for the signal
model (5-8) are given by (Al), (A15-A17), (A5), and (A14).Under the assumption of
a small estimation error, #(k + 1/k) = (k + 1) — &(k + 1/k), the filter equations may
be simplified as follows: Representing the bandpass additive noise 7*(k) in terms of its

baseband quadrature components v;(k) and B;(k) as
7' (k) = 7i(k) Sin (wetk + 'z (k) + Eé(k) Cos (wetr + £z (k)
the prediction error n*(k + 1) given by (A17) may be approximated by

ni(k+1) = ATz (k+1/k) + —\}_i vi(k+1); i=12,...,N (9)

We note that n(k + 1) £ [k +1)...0N(k + 1)]T of (9) is also the one-step-ahead

prediction error for the following model:

y(k+1)=AHm(k+1)+——l\/-§6,-(k+1) (10)
where
T 0 ... ... 017
A0 O |
H= . T=[10...0]
Lo ... ... ... €]




and v;(k+1) is the vector consisting of i)'{ as its jth elements. It is also clear that under
the assumption of small estimation error, the filter equations of Appendix A reduce to

the following standard linear Kalman filter equations:

Bk +1/k+1) = @ &(k/k) + K(k + Dn(k + 1) (11a)
n'(k +1) = V2y'(k + 1) Cos (6'(k + 1)) (118)
Ok + 1) = wetrry + €T 3 (k +1/k) (11c)
K(k+1)=AP(k+1/k)H S (k+1) (11d)

P(k+1/k+1) = P(k+1/k) — A P(k+ 1/k)HTS™(k + 1)H P(k + 1/k) (1le)
P(k+1/k) = ®P(k/k)3T + Q (111)
S(k+1)=HPk+1/k)HT + R (11g)

where R is the covariance of the measurement noise vector Ti(k + 1)/V/2 appearing in
(10) and is equal to R/2. Note that in the derivation of the filter equations in Appendix
A, the measurement noise covariance matrix R is assumed to be diagonal. However, in

view of equations (9-10), the recursions (11) are applicable to the case of nondiagonal

R as well.



3. OPTIMUM ESTIMATION VIA COUPLED, PHASE-LOCKED LOOPS

The various antennas may be geographically separated in most situations, includ-
ing space exploration. Therefore, for the purposes of proposed implementation, we
represent the solution (11) as a set of interacting phase-locked loops with various PLLs
associated with their respective receivers and the interaction among them occurring
over low data rate communication links. Such an arrangement is illustrated in Fig-
ure 2a for the case of two receivers. The receiver configuration of the figure may be
simplified by replacing the components of the Kalman gain matrix by its steady-state
value, which may be precomputed. In addition, the feedback gain vectors K'? and K
(superscripts refer to the specific block in the partition of the Kalman gain matrix)
may equivalently be replaced by scalars to bring the organization of the figure into a
more conventional form.

Considering first the case when Fy2 = F,; = 0, and denoting by él(z) the Z
transform of the input él(k) to the phase modulator in Figure 2a (in actual implemen-
tation, the phase modulator is replaced by NCO, whose input is the difference signal
(él(k) — él(k —1))(K,At)™! with At being the lead time and K, equal to the NCO

sensitivity), then ©1(z) is given by
0'(2) = (TF®,[e T — F11®,) "KM} (2) + €7 &,z I — Fud] K Pn*(2) (12)
It may also be expressed in the following more convenient form:
Ol(2) = G(2)n' (2) + G'*n’(2)

G () = (TFy@,[e T — Fu®) K", GU(2) = €TFudufe ] - Fu®, 'K (13)
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For the case of n, = 2 and with

1 T
o, =
0 1

the filter transfer function G'!(z) may be obtained as

Fll(Kln-f-K%lT)Z—Flle}l (14)
(Z ad F11)2

Gll(z) —

Similarly, G'?(z) is obtained by replacing K! by K2 in (14).

This formulation ignores the internal state of the filter related to the initial condi-
tion #'(0/0). However, by selecting the initial states of the two filters G'(z), G'%(2),
such that their sum is equal to £'(0/0), and with the proper implementation of the
filter, this problem is eliminated. Figure 2b shows an equivalent implementation of the
receiver coupling for the case of Fy, = Fy; = 0. The filter transfer functions G21(z)
and G*?(z) have a form similar to (14) for the case of n = 2. Figure 3 shows a digital
filter implementation wherein the filter states are related to £(0/0) as discussed above.

For the case of Fi3, Fy; # 0, it is required that the filter states of the second
receiver also be fed back to receiver 1. In this case, the implementation of a two-receiver
configuration is depicted in Figure 4 wherein S; and S, are multivariable digital filters.
A detailed schematic diagram for filter S is shown in Figure 5. The implementation

of filter S, is very similar.
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4. AN EVALUATION OF THE PROPOSED CONFIGURATION

Under the assumption that the estimation errors are relatively small, as is the case
under high CNR, the phase detector may be approximated by linear characteristics and
the performance of the system is given by P(k +1/k) of equation (11). As k — oo, the
matrix P(k + 1/k) approaches a steady-state value denoted by P, which is the solution

of the following algebraic matrix Riccati equation:
?:@[ﬁ—A2FHTs—1H?]¢T+Q (15)

As shown in [10], the solution P is given in terms of the eigenvectors of the following

2n dimensional matrix Hj:

T & THTR™'H
Hy= (16)
Qe T 8+Q@ THTR'H

Moreover, the eigenvalues of H are such that the reciprocal of an eigenvalue is also an

eigenvalue. Assuming that the eigenvalues are distinct, then Hy may be factorized as
Hi=wWDW™! (17)

where D is a diagonal matrix consisting of the eigenvalues of H ¢ along its main diagonal,
with the first half (n) entries having their magnitude greater than one, and W being a
nonsingular, eigenvector matrix. With the matrix W partitioned into n x n blocks as
below,

Wi Wi

W = (18)
W2l W22

then the steady-state solution P is given by

P =WuWs! (19)

11



The steady-state filter error covariance matrix is then obtained by substituting P for

P(k + 1/k) on the right hand side of (11e), as

Pr=P-APHTS'HP (20)

Substitution of P for P(k + 1/k) also yields the Kalman gain matrix K from (11d, g).
Knowledge of K then permits the implementation of the (time-invariant) digital filters
in Figures 1-5.

In Appendix B, we consider coupled, dual-receiver, configuration-employing type
I and type II loops in more detail. For type II loops, which are of more interest
here, equations (B15)-(B22) present an analytical solution in a convenient form for
the matrix W of (18) as a function of the various parameters, ry, o, T, q;;, etc.,
related to the joint phase processes model (B11). The filter error covariance matrix
P for a two-receiver configuration, with each receiver employing a second-order loop,
is then evaluated on the basis of equations (B15)-(B22), (19), and (20) for various
values of these parameters. One of the most important quantities of interest is the
ratio of the phase error variance of a receiver operating under coupled configuration
to that obtained without any coupling while keeping the statistics of various processes
the same. To keep the presentation simple (where only a relatively small number of
parameters vary), we assume that the process noise in each receiver has equal variance
g11 = g2z in (Al). This is an appropriate assumption for the present application.
Denoting by Pry the steady-state filter error covariance matrix for the kth receiver
operating independently, this performance measure for the kth receiver is simply equal
to 10 logyo{Pr1(1,1)/Pr(1,1)} and 10 logyo{Pr2(1,1)/Pr(3,3))} respectively for k =

12



2 &
2 2

1,2, and is evaluated for various values of the parameters T, p = q12/q11 and ollo
(q11/T?*ry) with i equal to the observation noise variance for receiver k. The notations
o2 and o2 have been used in [7,8] and have been introduced here for the purpose of
referring to the results obtained in (7,8] for the case of a single receiver. As shown in

[8] for the case of a single receiver, the parameter o2 /o2 is decisive in determining the

optimal loop-noise bandwidth of the phase-locked loop.

A more effective performance measure is the required increase in the received
signal-to-noise power ratio for a single receiver, in order to achieve the same phase
error as obtained by the dual receiver. The performance of a single receiver has been
analyzed in some detail in [8] and some of those results are reproduced here in Figures
6-8. Figure 10 plots the normalized, two-sided bandwidth 2B, of the optimum phase-
locked loop as a function of 0?/a?, where B, = BT, with By, denoting the actual
loop-noise bandwidth in Hz. From these figures, it is observed that for a fixed o2,
reduction in o2 results in increased bandwidth, and thus some of the advantage of
reduced o2 is offset by increased By, as far as the pliase error variance is concerned.
Thus, whereas in the absence of the process noise (02 = 0) and a fixed loop bandwidth,
the phase error variance is inversely related to the input SNR, this is not so for the
case of 62 # 0. As shown in [8] for the case of 62 # 0, the optimum loop performance
may be approximated by

1.32(0%/02)*, T =01s

Ppi(1,1)/02T =
1.4(0%/02)?% T =0.01s

In general, for any value of T, the performance for an appropriate range of (02/0?)

13



may be approximated by
Pp(1,1)/0y T 2 a0} /03)°

for some constants a,b. With p;, p; representing the values of Pri(1,1) for 02 equal

to o2 , o2 respectively with o2 constant, then

(08,/0%,) = (1 /p2) ™7
or
10 10910(‘731/‘732) = 10 logo(p1/p2) x (1 - b)—l

Thus, the improvement in terms of the signal-to-noise ratio is (1 — b)7! times the
improvement in phase error variance. For b equal to .25, this additional factor is about
1.33. For a constant signal amplitude, A = 1, corresponding to the received signal
power Py =1, A%/02 = 2P T /Ny, and thus the improvement in o2 is also equal to the
improvement in terms of the carrier power to noise power spectral density ratio (CNR).

The curves labeled “precombining” in Figures 9 and 10 depict th-e performance
improvement as defined above for the case of T = 0.1s,7; = r, = 1.0, and for p
= .995 and .999 respectively. Note that as the system is assumed to be linear, the
phase variances can be normalized by the additive noise variances; the performance
improvement depends only upon the ratio 7; /7y, and not on the individual values of
r1,72. Figure 11 plots the corresponding result for the case of T = 0.5s. As may
be inferred from these figures, an improvement of about 1.7 dB in terms of phase

error variance ai is obtained for the case of p = 0.999. Similar results are obtained

for different sampling rates. Note that this information is adequate for ascertaining
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the actual phase error variance for the coupled loops, with the performance for the
single loop available in [7,8] and reproduced here for reference. Figure 12 plots the
performance improvement as a function of 62 /o2 for a fixed value of p = -.999 and T =
0.5s. As may be observed from Figure 12, when 02/o% = 0.1, the improvement due to
arraying in terms of ai is 1.7 dB, while the effective improvement in terms of CNR i1s
9.1 dB. Performance when T = 0.1s or .01s is not significantly different. All the results
presented in this section refer to the “precombining” results in Figures 6-32 and pertain
to the proposed scheme 1 (ignoring the effect of a linear signal combiner) in contrast
to the “post-combining” results also depicted in these figures. The latter performance
curves, which pertain to the proposed scheme 2 (involving an explicit phase alignment)
are discussed in a subsequent section.

With the performance improvement (due to arraying) curves in Figures 9-12, along
with the actual performance curves for a single receiver presented in Figures 6-8, one
may determine the actual phase error variance for the arrayed system. For exam-

ple, with (02/0?%) equal to 1.0 and T = 0.1s, the phase error variance is equal to

1.28(No/2P;) without arraying, while with a dual receiver it is equal to .7T9(No/2F).
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5. PERFORMANCE COMPUTATION VIA RECURSIVE SOLUTION

The closed-form solution (16-19) of the algebraic Riccati equation, while of general
nature, is cumbersome to compute for higher system dimensions. For a system dimen-
sion higher than 4 (matrix Hy dimension greater than 8), it is no longer feasible to
come up with simple scalar equations as described in Appendix B for the case of a dual-
receiver configuration, and thus one has to compute the eigenvalues and eigenvectors of
H¢ by some numerical algorithms. As such computations are numerically sensitive, we
instead evaluate the performance by a recursive solution approach. In this approach,
one simply solves the recursions (1le, f) for k = 0,1, 2,...M with M selected such that
the Euclidean norm ||AP]| of the matrix P(k +M/k+M-1)—-P(k+M~— 1/k+M—2),
normalized by the norm of P(k+M —1/k+M —2), is smaller than some specified value
¢. In these recursions, e is selected equal to 10~5. The initial value P(0/ — 1) is taken
to be a diagonal matrix with its diagonal elements equal to 103. The recursions (1le,
f) are performed for the first 50 iterations without the test, after which the recursion is
terminated subject to the condition |AP||/|P|| < e. Figures 13-15 plot the results in
terms of performance improvement as a function of o2 /o2 and for three distinct values
of T. Comparison of Figures 12 and 13 shows that both methods yield the same result,

thus cross-verifying the computations.

Figures 16-19 plot the performance of a three-receiver configuration for the case
of equal CNR for each receiver. Several values of the sampling period and 02 /o2 have
been considered. A few representative cases corresponding to T = 0.1, .5, .01 and
(6%/02) equal to .1 and 10 are presented here (these correspond to a loop bandwidth in
the range of 0.2 Hz to a few Hz). For all of these cases, the performance improvement
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over a single receiver is about 2.6 dB in terms of phase error variance and approximately

3.4 dB in terms of CNR.

It is also of interest to consider the case of unequal CNRs at various receivers. As
a representative case, we consider the situation in which some of the receivers have 6
dB lower CNR compared to the others. Such js the case within a good approximation,
for example, with the NASA Deep Space Network with 70/70/34 or 70/34/34-meter
antenna receiver stations. The performance for this case, with T' = .01 s and 02/o? =
1.0, is presented in Figures 20-24. As is apparent from Figure 20, which depicts the first
case, there is an improvement (for p = 0.999) of about 2.6 dB for receiver 1 in terms of
effective CNR. When compared to the improvement obtained by a two-receiver system
with equal CNRs, this represents an additional improvement of 0.5 dB attributed to
the third, smaller antenna station. We also note here that as for the case of a two-
receiver configuration, the performance improvement is not sensitive to o2/a% or T.
For comparison, we plot the performance improvement for the above case, but with
02/o=01and T =0.1in Figure 25. Comparisons of the results in Figures 20 and
25 show insignificant differences in the two cases, For the case of unequal CNRs, the
parameter 02 /0?2 is measured with reference to the receiver having the highest CNR.

The performance improvement in the receivers with lower CNRs is even more spec-
tacular when compared to the receiver with the highest CNR. As shown in Figure 22, for
the above case (70/34/34-meter antenna stations), the improvement for the 34-meter
antenna receiver is about 5 dB in terms of effective CNR. For the case of 1:1:4 ratio
among noise variances (70/70/34-meter configuration), the performance improvement
for the smaller station is 5.8 dB, as shown in F igure 23. Figure 24 presents the result
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for the 1:4:16 ratio, in which case the improvement for the smallest station is 7.1 dB.
Note that all these improvements are at p = .999 and may be a little higher or lower

depending upon the actual value of p.

Figures 26-32 plot the performance for the case of various four-receiver configu-
rations. For the convenience of presentation, we fix the values of parameters T and
02/o? at .01s and 1.0 respectively. Similar performance curves are obtained for differ-
ent values of these parameters. As depicted in Figure 26, for the case of equal receiver
noise va.rianqes for all the receivers, and for p = .999, one obtains an improvement of
about 3.1 dB in terms of phase error variance and 4.1 dB in terms of effective CNR.
Figures 27 and 28 plot the performance improvement for receiver 1 for two different
cases of unequal CNRs among various re.ceivers. The effective improvement for the case
of a 1:1:1:4 ratio among various receiver noise variances is 3.6 dB, while for the case
of a 1:1:4:4 ratio, the improvement is about 2.9 dB. As is also true for the case of a
three-receiver configuration, the CNR improvement is spectacular for smaller antenna
receivers. As is apparent from Figure 29, in a 1:1:4:4 ratio situation, the receiver with
the smaller antenna achieves an improvement of about 6.1 dB. The corresponding im-
provement for the case of a 1:4:4:4 configuration is about 5.4 dB. Figures 31 and 32
plot the results on the performance improvements for the receiver with the smallest
CNR for two more configurations with 1:1:1:4 and 1:4:4:16 ratios respectively. These

improvements are about 6.5 dB and 7.5 dB respectively.

It may be noted that while for the case when the same information (data) is
carried by all of the links, the performance of only the largest antenna receiver (or

actually the aggregate performance of all the receivers) would be of importance, there
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are other interesting situations where the performance of all individual receivers is
significant. This is the case, for example, with the frequency reuse (and/or polarization
reuse) telecommunication satellites with spot beams, wherein different information is
transmitted to different receivers but over the same carrier frequency. In this case, a
smaller earth terminal can dramatically improve its performance (in terms of carrier
recovery) by proper coordination with a larger terminal. The coordination can be done
via inexpensive, low-capacity, terrestrial links. These links need to carry only very low

rate information representing the loop correction signals.
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6. A NOVEL SIGNAL-COMBINING CONFIGURATION FOR
COUPLED RECEIVERS

For the case of most interest in this publication, wherein the carrier signals re-
ceived at various receivers are data modulated by the same information, the system
performance can be further improved by post-loop combining of the signals. For the
case of a data-modulated signal, a decision-directed approach is used and the data de-
tector becomes an integral part of the loop. Figure 33 depicts the schematic of such a
loop for the case of a single receiver for reference. Note that the superscripts on various
signals have been removed in that figure, and the phase detector outputs (baseband)
are given by

. F 1 _
n(k) = A Sin(6(k) + = D(k)) + Wi v, (k)

~ 1
£(k) = A Cos(8(k) + = D(k)) + WG vq(k)

where § = 6(k) — 6(k) represents the phase estimation error and {D(k)} represents the

(21)

sampled version of the data signal, i.e.,

Dk)=b; ; G-VM<k<jM-1 (22)

In equation (22), b; represents the jth data bit and M is the number of samples within
one data-bit period. For the purposes of carrier phase estimation, the data detection
could be based upon a differential approach, even for the case of coherent modulation.
This approach has the advantage of better acquisition and tracking than is feasible
with coherent detection. This is in view of the fact that if there is a considerable
frequency drift in the loop (as in acquisition mode), then the coherent detector in the
loop will provide a very high probability of error. Due to this fact, the loop may not
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lock. However, the differential approach would provide estimates of data transitions
with a low probability of error, provided that the phase drift (resulting due to a nonzero
differential frequency component in the loop error) is smaller compared to the minimum
phase separation among various symbols. For the case of BPSK modulation, the signals
corresponding to “1” and “0” differ in their phase by 7 rad. For a more detailed and
elaborate implementation of this concept, one may refer to [11], where the acquisition
and tracking of a very high dynamic signal are considered.

For the case of binary modulation, one may apply the following decision rule for

the data transition detection: With

1 iM—-1 1 IM-1
@ =3 2 k)5 == Y k)

k=(j-1)M k=(j-1)M (23)

s(G) = {m.(j) —alG = )+ (Eai) ~ ali — 1))2}

1
z

the decision rule is

bj=bj—y  if s(j) < Vr
(24)

£bj—1  if sG)> Vr
In (24), Vr represents some appropriate threshold. Note that in the absence of noise,
5(j) = 0 or 24 depending upon whether b; is equal to b;_; or not, irrespective of phase
error 8, such that the average phase error in the two consecutive bit periods is equal.
Thus, Vp may be set to A in the presence of noise. Alternatively, one could compare

|€4(7) — €a(s — 1)| against some threshold to detect a transition.

Note that if the data are coherently modulated, then a separate post-loop detection

may be applied to obtain i)j coherently as shown in Figure 33. The output of this
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detector would be meaningful only if the loop has acquired and the phase error g is
small.

It is clear that in the above detection scheme, there would be some signal loss
due to nonzero é(k) In a multiple-receiver configuration, such a possible loss can be
minimized by averaging the phase errors before a decision is made. As the phase errors
éi(k) in various receivers corresponding to i = 1,2,..., N are only partially correlated,
the average error would have a smaller variance than the individual errors 5'(k) Figure
34 shows a detailed schematic diagram for the scheme that achieves the desired objective
for the case of two receivers. This has been referred to earlier as scheme 2 (Figure 1b).
In the first instance, we assume that the two receivers have equal CNR. Figure 34
depicts the schematic diagram of an implementation that effectively averages out the
phase estimation error (k) and the noise associated with the two receivers for the
purpose of optimal estimation. In the figure, wq represents some appropriate frequency
introduced for implementing the frequency (and phase) division. Representing the
receiver input noise 7°(k) (after being averaged over one symbol period) in terms of its

baseband components %!(k) and 5;(16) as

5t = oi(k) Sin [wctx + 8'(k) + 7 D(k)]

(25)
+ 5i(k) Cos [weti + 67 (k) +m D(k)]
then the output of the rf mixer 1 in Figure 34 is given by
1 . =
ng(k) = [A + — ”,l(k)] Sin [watk + 6' (k) + = D(k)]
V2 (26)

+ -\—-}—2_ f;;(k) Cos [wdtk + él(k) + 7 D(k)]

For the case of medium-to-high E,/Nj ratio, the output of the limiter/frequency divider
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1 denoted np(k) is approximated as

np(k) = A Sin {%(wdtk + él(k) +m D(k) + é}t(k))}

. 27
k) = et | ARV 0
0, (k) = tan -
A+ Mk)/V2
Similarly, the output of the lower frequency divider in Figure 34 is given by
1 ~ ~
Eh(k) = ACos { §(wdtk + 0(k) + = D(k) + 05 (k) } (28)

For the approximation (27) to be valid, the signal-to-noise ratio 24%/E[3}]? =
2Es/Ny (Es denotes data-symbol energy) must be much higher compared to 1. In
general, for the case of MPSK signaling with M distinct phases, this ratio is given by
(2Ey/No)log, M. Thus, for M = 4 (corresponding to QPSK signal) and E,/N, = 0
dB, the signal-to-noise ratio 24?/E[5}]? is equal to 6 dB and may be adequate. Higher
values of M, of course, lead to even higher SNR. For those cases where 2Es /Ny is not
sufficient, the scheme may be suitably modified by extending the observation period to
more than one symbol. The signal combiner combines the {np, ép} signals from the

two receivers according to the following trigonometric identities:

ni(k) = np(k)EH(k) + nb(k)Ep(k)

= ASin{watr + 0(k) + 7 D(k) + 8,(k)}
(29)

§1(k) = Ep(k)EL — np(k)np (k)

= ACos{wgtr + 8(k) + 7 D(k) + 6,(k)}
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with

(k) = = (61 (k) + 6%(k)) b (k) = = (8L(k) + 62(k))

DO =

1
2

When wy is an IF frequency, one may equivalently generate nr(k) and £;(k) by
mixers and bandpass filters. Finally, the complex-mixer in Figure 34 down-converts

the signals 77, £; to baseband, resulting in its outputs given by

(k) = ASin{8(k) + 7 D(k) + 8.(k)}

£(k) = ACos{B(k) + m D(k) + 6,(k)}

For a high CNR case, én(k) may be approximated by

Bn(k) = tan ™" (54(k)/V24) 5 By(k) = 5 (T (k) + 5,(k))

| —

Since {y(k)} and {37(k)} are independent noise sequences, the variance of 04(k) is
only one-half of the variance of either of these noise components. Thus, in addition to
averaging out the phase errors 8(k), 62(k), the scheme also effectively averages out the
measurement noise (as an optimal detector should). Data transitions are then detected
by substituting 5(k), £(k) of (30) into equations (23, 24).

The above scheme can be generalized to the case when the two receivers have
unequal CNRs at their inputs. As shown in the following, the optimum weighting of
the two phase error terms 81 (k) and 2(k) would be a and (1 — a) respectively for some
0 < @ < 1, where in general o would be different than 0.5. This is achieved by using
the frequency division by ™! and (1 — «)~! in the upper and lower limiter/frequency
divider respectively. If necessary, a may be approximated by a rational number for the
purpose of implementation. Note that this scheme affords the same weighting to the
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measurement noise v} and v? . If ais close to r2 /(ry+72), then this is also optimum from
the viewpoint of minimizing the noise. In a more general case, the optimal weighting
may be derived so as to minimize the probability of error, or equivalently, the ratio
E[Cosw(k)]/E[f)g]. For the case of equal CNRs, the optimum solution is @ = 0.5.
This “post-loop” combining can be generalized to a multiple-receiver configuration in
a straightforward manner.

With the phase errors él and 52 having zero means and covariance matrix P, the

weighted average phase error § = afl; + (1- a)ég has the following variance:
E[0)? = a®Py; 4+ (1 — @) Py + 2a(1 — )Py (31)

In (31), Py1, etc., denote the elements of the matrix, P. Setting the derivative of E[§2]

with respect to a equal to zero, the optimum weight « is given by

a:( Py, — Py, )
Py, + Py — 2P,

For the more general case of N receivers, let

6=0,0" 4+ +anN (32)

Then, the minimization problem consists of minimization of

E[é]2 =alPa, ; a, 2 [a; ay...an]” (33)

subject to the constraint

1.7 (34)

Using the Lagrangian method of minimization, we obtain the following optimum solu-
tion for «,:
oy = (WTP 1) 1P 1y (35)
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Recall that the constraint (33) is necessary so as to ensure that the data-phase modu-
lation in the combined signal remains equal to 7.D(k).

In the more general case, where it is required to maximize the signal-to-noise ratio
E[Cosf]? /E[#2], the optimization problem is more complex. However, the following
approximate procedure is proposed for the solution. We first minimize the weighted

sum E[é]2 + yE[5?] with respect to a, for any specified v: i.e., minimize
afPa,++val Ra, (36)
subject to the constraint (33). The solution as a function of v is then given by
ay = {uT(P+y R} (P+yR)™ (37)
With the expansion of Cosf in terms of its Taylor series,

5 1
E[C0529]=1_m2+§m4_+...

where m; denotes the jth moment of 9, E[é]’ for j =1,2,.... In the general case, it is
difficult to evaluate these moments precisely. For the purposes of this approximation,
we may assume 6 to be Gaussian (following from a linearized approximation of the
phase detector), and thus the optimization index may be approximated by (retaining

only the first three terms)
{1- TP a, + (alP ay)? }/(aZR ay) (38)

and can be minimized with respect to 4 by an appropriate numerical technique.
Figures 6-32 also plot the “post-combining” improvement in the phase error

variance at the input to the coherent detector (see Figure 34). This is defined as
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101logyo { Pri(1, 1)/E[8)? }, where Ppy is the phase error variance for the kth receiver
operating by itself, and 6 is the averaged phase error given by (32). This represents the
overall improvement in the phase error variance for the pr;)posed decision-directed mul-
tireceiver configuration 2, and for brevity is termed the “post-combining” improvement
(in Figures 6-32). In these figures, we also plot the “post-combining” CNR improve-
ment, defined as the required increase in the CNR for the single receiver, so as to reduce
its phase error variance by the improvement factor {Ppx(1, 1)/E[§]2} defined above.
For the case of equal CNRs, the effective noise variance at the input to the coherent
detector is 1/N times the noise variance for the case of a single receiver. Based on this

information, for a given CNR, the total improvement in the (E4/Np) ratio is given by
(Ey/No); = 10log;o N + 10log, o { E[Cos8*]?/ E[Cosf]? } (39)

For illustration, with E[¥]? = .5(rad)?, T = .01s, 02/02 = 1.0, and a four-receiver
configuration, Figure 26 shows an improvement in the phase error variance of 4.5-5.7
dB, depending upon p (corresponding to an effective CNR improvement of 6-7 dB).

With the approximation (based on Gaussian assumption on 6) that
E[Cosf)* 21 -062+0* ; o2 = E[f?
i 2 4 (40)
E[Cosf] =1 — %— + %

we have

E[6%] = 13; E[Cosf*)?> = .75 ; E[Cosf)* = .883
(Ey/No); £6.8dB for p small,

and

E[9~2] =.177 ; E[Cos@]2 = 854 ; (Ep/Ng); =£6.6dB for p large.
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We note that an alternative simpler scheme 1, with the signals £(k) (see Figures
33 and 34) simply averaged out, may result in a considerable signal loss compared
to the proposed post-loop combining method of this publication. To illustrate the
point, let us consider the case when p is relatively small, say 0.5, so that g* from
various receivers (even under coupled mode) are nearly uncorrelated. For example,
with T = .01s, 62/02 = 1.0, and with a received signal-to-noise ratio yielding the phase
error variance of 0.5 (rad)?, without coupling in a four-receiver configuration, there
is an improvement of only 0.24 dB (see Figure 26) and the individual receiver phase
error variance (under coupled mode) is thus E[f*]* = .466 (rad)?. The correlation
coefficient between various phase errors g* is computed to be only .11, and thus even
after “precombining,” various 6% are almost independent. For simplicity, we assume
that 8¢ and hence Cosf* for k = 1,...4 are in fact independent random variables.
With the approximation (40), we have

E[Cosf*]? = 751

1o .y 212 o
E[; ;cosek]2 > 66

Thus, there is a loss of 10log, .19 = —1.8 dB relative to the ideal case. Essentially, the
spread on phase error variance partly offsets the improvement due to noise reduction.
Ignoring the nonlinearities in the phase-locked loops, the improvement in terms of

(Ey/No) compared to one receiver system is given by
(Ey/No)1 = 6 + 101log;o(.66/.751) = 5.4 dB

By the proposed method of post-dectection combining, however, E[éz] &~ 1165 (rad)?
with E[Cosf)? = .897, thus resulting in an (Ey/Ny) improvement of 6.8 dB. Thus,
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in this case, the additional gain resulting from the proposed post-detection nonlin-
ear combining is 1.4 dB over the simpler linear combining method 1. As in arriving
at this simple result, we have ignored nonlinearities (worse at higher variances) and
made a Gaussian assumption on 6 in arriving at (40), the actual difference may be
even higher than 1.4 dB. For higher values of p , the improvement in the phase error
variance is attributed to both the “precombining” and “post-combining” processes, as
is apparent from Figures 6-32. Taking into account the phase detector nonlinearities
under relatively low SNR conditions, it is clear that the combined gain due to both
predetection and post-detection would be actually much higher than 6.8 dB, especially
at high values of p. This is so because the loop operating with E[§%] = 0.5 (rad)?
(predicted on the basis of linear theory and without arraying) is expected to involve
much higher degradation due to nonlinearities compared to a loop with E[éz] = .177
(rad)? (obtained with arraying), in view of the simulation results of [7,8] for the case
of a single loop with phase detector nonlinearity. In fact, when the problems of cycle
slipping associated with nonlinear behavior are also considered, it may not even be
feasible to operate the loop at such high values of E [52] Thus, an additional gain of
1.5-3 dB is expected over systems which involve only baseband signal combining (no
carrier arraying) for a four-receiver configuration with a net gain in terms of (Ey/Ny)

in the range of 3-4 dB. Similar results would hold for other receiver configurations.
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7. CONCLUSIONS

We have presented two novel estimation/detection schemes for multireceiver com-
munication systems for the coordinated estimation of the phase and frequency of data-
modulated carrier signals. These should reduce the radio loss to a negligible value and
thus effectively minimize the probability of data detection.

Considering first the case of no data modulation (residual carrier) and formulating
the problem in a state-space description, we have derived an estimator structure on
the basis of optimal estimation theory. This configuration consists of coupled phase-
locked loops with individual PLLs tracking the carrier signals associated with various
receivers and aided by other loops on a mutual basis. Detailed results of analysis and
computation have been presented to illustrate the improvement obtained due to such
a coupling over that achieved for the case of independently operating PLLs.

Various receiver configurations, including 2-4 receivers, have been considered for
the cases of both equal and unequal CNRs at the receivers. We have considered a wide
range of values for the ratio of process noise to additive noise variance (a dominant
parameter in controlling the loop bandwidth) and a wide range of correlation coefficient
p among the phase processes at the input to various receivers. The improvement has
been measured both in terms of the reduction in the phase error variance (phase jitter)
and also in terms of the extension of the CNR margin (reduction in the required CNR).

It is apparent from the results presented in this publication, that for a relatively
high value of p, loop arraying provides an effective CNR improvement of about 2-
4.5 dB, depending upon the number of receivers in the configuration, for the receiver
with the highest CNR at its input. This improvement is applicable over a very wide
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range of loop noise bandwidths (process noise variances). For receivers with smaller
input CNR (smaller antenna aperture), the improvement is more dramatic. For the
case considered in this publication, wherein each receiver can have one of two possible
CNRs (corresponding, for instance, to either a 34-meter or a 70-meter antenna), the

maximum CNR improvement can be as high as 7 dB.

For the case of relatively high p, the above scheme can be extended to the data-
modulated case (suppressed carrier or data-aided residual carrier loop), by replacing
the individual PLL by a decision-directed version. The data detection is achieved on the
basis of a signal obtained by combining the appropriate baseband signals (quadrature
components of the mixer) from all the loops. For relatively high values of p, it turns out
from the analysis (as is also intuitively expected) that the residual phase errors from
various loops are also highly correlated and thus simple combining of the baseband
signals does not result in a significant loss of optimality. In the decision-directed version
of the loop, we have removed the data modulation within the loop on the basis of
differential detection or transition detection [9], as this provides a better acquisition

performance than the usual matched filter detection.

Apart from being an optimum configuration, a major advantage of the proposed
scheme with respect to an earlier scheme in the literature is that here the coupling
among loops is only via low frequency baseband signals (loop error signals) as against
coupling at the IF and RF levels required in the previous scheme. This feature is
especially attractive when the various receivers are geographically separated by large
distances as in the case with the Deep Space Network. However, it may be emphasized

that the scheme is of a general nature and also has various other applications as well.
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For example, in the case of frequency or polarization-reuse satellite configurations, the
scheme can be applied for coordinated and thus improved phase estimation even though

different carriers (channels) carry different data.

For the case of relatively low values of p, both the above scheme and the scheme
of [1-3] are of little use. As seen from the results presented in this publication, loop
coupling by itself, in this case, provides very small improvement even though the esti-
mation configuration is optimum. Thus, for p = 0.5 and a four-receiver configuration,
one obtains less than a 1-dB improvement through coupling. In this case, it is essential
to recognize at the outset that the overall objective is to minimize the probability of
error or minimize the phase jitter in the combined baseband signal. An equivalent way
to achieve this is to estimate individual phases with errors 6, as before to obtain the
baseband signals DCosby (D denotes data) and from these signals obtain a composite
signal DCosf where 8 is an optimal average of various error signals 0. The sccond
scheme in this publication does indeed achieve such combining. From the analysis, it
turns out that for low values of p, f;s are essentially uncorrelated and it is essential
to average out 6, in this manner. For the purposes of data detection, the proposed

scheme also automatically averages out the additive noise.

The proposed configuration II requires inputting the data signal at an intermediate
frequency to a selected master receiver from all the remaining receivers. The mutual
(two-way) coupling is the same as for configuration I, i.e., it involves only low frequency
loop error signals. The performance of the proposed configuration II has also been
evaluated under appropriate simplifying assumptions and has been presented in this
publication. From these results, it is apparent that this scheme can provide a CNR

33



improvement of about 8 dB for a four-receiver, equal CNR configuration over the
complete range of p. An interesting observation is that for the second scheme, the
performance is better for lower values of p than for the higher range of p. This is
directly opposite to the result for configuration I and may at first sight seem to be
counter-intuitive. However, the result is easily explained on the basis of a fundamental
averaging principle.

Thus, the variance of the average of N random variables x;, k = 1,..., N (as-
sumed to be identically distributed for simplicity) depends directly on the correlation
coefficients among the variables x; and achieves a minimum for zero cross-correlations.
Replacing xx by 6 then justifies the results presented in this publication on an intu-
itive basis also. It should further be noted that there is no known scheme for this case
of low p in the published literature.

One could, of course, use the more sophisticated configuration II even for relatively
high values of p. At the cost of some complexity, this results in marginal improvement

over the first, simpler scheme.
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8. SUGGESTIONS FOR FUTURE RESEARCH

As is generally the case with such estimators, the parameters of the proposed
optimal estimators, e.g., noise bandwidths of various PLLs, are based on the knowledge
of certain statistics of the received signal model as the ratio 02 /02 and the correlation
coefficient p. In practice, the unknown statistical parameters may be replaced by some
appropriate bounds or estimates of these. This may result in some possible loss of

optimality, which is dependent on the accuracy of these estimates. The estimates of

2

Cas

o2 and p may be obtained either on an offline or on a real-time basis, the latter
procedure resulting in an adaptive optimal system. Development of such adaptive

procedures is an important part of the suggested future research in this area.

The performance results presented in this publication were derived on the basis
of linear estimating theory and are applicable for a relatively high CNR case. Under
relatively high CNR and tracking mode, the phase estimation errors are relatively small
and the phase detectors in various PLLs may be approximated by linear characteristics,
resulting in a linear model for the complete coupled system. However, for relatively
low CNRs, a linear approximation may not be valid and the results presented here may
represent only an approximation of the actual performance. For relatively low CNR,
and/or in the acquisition mode, it is necessary to obtain results on the basis of nonlinear
theory or by computer simulations. This forms another part of the proposed future
research. Also, as indicated in Section 6, the proposed nonlinear phase alignment
and combining technique is applicable when 2E,/No is much higher compared to 1.
Investigation of a scheme that overcomes this limitation by extending the combination

to a multisymbol period is also part of such a proposal.
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APPENDIX A: Extended Kalman Filter Equations for the Signal
Model (5-8)

In the following, the extended Kalman filter equations are obtained by expanding
the nonlinear vector measurement function h(z,k) into a Taylor series around the
predicted estimate of z(k) and retaining only the linear and quadratic terms. These
equations are then simplified by ignoring 2wt and the higher harmonic terms present
in the recursions as in (8, 12]. In fact, the development here is not much different than
in [8]. With #(k + 1/k) denoting the one-step ahead prediction of z(k + 1), then the
extended Kalman filter equations for the model (5-8) are given by the following filter

state equations:

2k +1/k+1) = 22(k/k) + M(k + 1)v(k +1) (A1)
v(k+1) =y(k+1) = h(&(k +1/k),k + 1) (A2)

and filter gain:
M(k+1)=P(k+ 1/k)RIoc7 (k +1) (A3)

In (A3), P(k + 1/) denotes E[{z(k + 1) — &(k + 1/k)}{z(k + 1) - 2(k + 1/k)}7)

and has the following recursion:

P(k+1/k) = P(k + 1/k) — P(k + 1/k)h{o7 (k+ Dha P(k+ 1/k)  (A4)

P(k+1/k) =@ P(k/k)®T + Q (A5)
o(k) = hy P(k/k — 1)hT + R(k) + .;.g_} . P(k/k—1). [g%’ . P(k/k — 1)]T (A6)
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where h, denotes the (N x n) gradient matrix and

O%h . 8%h
57 P(k/k—1)= 1 m(})(k/k - 1))1.]. (A7)

1,j=

1s an N vector.
To simplify the recursions (A1)-(A7), the gradients h, and hi_ are evaluated as

follows: The N x n gradient matrix h, is given by

r Cos®1(k) 0 0 1
0 CosO2%(k) - 0
he = AV2 ® T (A8)
L 0 0 0 CosON(k).

where @ denotes the Kronecker matrix product and #7 = [1 0...0] is a row vector of

8%h

dimension n,. Similarly £ : P(k/k — 1) is the following diagonal matrix:
9*h
—: Plk/k—-—1) =
5oz ¢ PO/ D)
M {Sin®'(k)P,'} 0 e 0 0 7
0 {Sin®?(k)P22} 0 - 0 (A9)

— AV2

! 0 0 0 - {Sin®ON(k)PNN} ]

where P;)" denotes the ith diagonal term of the matrix Py, and Py is the diagonal version
of the phase error covariance matrix, i.e., it is a submatrix of P(k/k — 1), consisting
of elements with 1, (ny + 1), (2ns + 1),...((N — 1)n, + 1) as their row and column

indices. Substitution of (A8) and (A9) in (A6) shows that
o(k) = B(k) + R(k) (A10)
where B(k) is a diagonal matrix with its ith diagonal element given by

B*(k) = 2P§ A*Cos” O (k) + (P4)2 A*Sin26' (k)
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Denoting by Pys the diagonal matrix with its ith diagonal element equal to (P;_;,'.)2

1 ~ 1
U(k) = A? [P¢ + -2-P¢5 + R(k)] + A? [qu — § ¢S] Cu

where Cs is a diagonal matrix with 7th element equal to CosQé)i(k).

Thus

1

o7V (k) = A7?[T + D(k)Cr] ™' [Ps + %P¢S+R(k)]‘ (A11)

D(k) = [Py + 5 Pos + R0 ™ [Po = 5Pas)s Ri(k) = (k)4 (412)

Assuming R(k) to be a diagonal matrix, then all the matrices above are diagonal and
each of the diagonal terms of the matrix [I+ D(k)Cp) - may be individually expanded

into a Fourier series. Thus
_ _ 1 ~ -
o (k) = A7 [Py + 5 Pos + R(K)] Ao+ ACar +--) (A13)

The ith elements of the diagonal matrices Ay and A; are given by

1

Ay = -
1—[D=(k))?

a2 _ 1
117 Dii(k) {1 1— [D7(k)] }

with C; a diagonal matrix and its ith diagonal element given by

«_ 1 [ [-Dpiw)?
¢ —m{l ] }

then as in [6, 10], ignoring the high frequency terms, the recursion for P(k +1/k + 1)

is given by

Pk +1/k+1)=P(k+1/k) — P(k+ 1/k)HT A?
) 1 (A14)
[4%Ps + §A2P¢5 +R(k+1)] CHP(k+1/k)
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with

0

Moreover, the filter error correction term is given by
ME+Dv(k+1)=K(k+ 1)p(k+1)

K(k+1)=AP(k+1/k)HTC[A*P; + %A’*’Pw +R(k+1)]7"

and the ith component of the vector n(k + 1) is given by

n'(k+1) = V2 y'(k + 1)Cos(0*(k + 1));

¢ =110...

i=1,2,...

(A15)

(A16)

(A17)

The Kronecker matrix product of any two matrices A and B is by definition the

following (mp X nr) matrix, given in a block partitioned form:

a1 B

ang
A® B =

_amlB

where A is an (m X n) matrix with a;; denoting its ijth element for ¢

j=1,2,...,n,and B is any (p X r) matrix.
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APPENDIX B: Steady State Performance Equations for a Dual-Receiver
Communications System

In the following, we present a closed-form expression for the performance of a
two-receiver configuration for the two cases of first-order and second-order loop filters.
In the first-order loop filter case, ® = H = I where I is a 2 X 2 identity matrix,

and

ry O q11 12
R= ; Q= (B1)
0 r qi12 922

The matrix Hy of (16) is given by
r1 0 1/7‘1 0 7]
0 1 0 1/ry

Hy= (B2)
g1 @12 (1+qui/r1) q12/72

Lq12  g22 q12/7m1 (14 g22/r2) 4

With a few manipulations, the characteristic polynomial of the matrix Hy is given by
IAI—Hpl=X -4+ )N +(6+2+ AN - (4+1)A+1 (B3)

where | | denotes the determinant of the matrix, and

A:‘Z11(I22—‘1%2 _ |Q| t:gg_{_fhz (B4)

rir2 rire ' 1 T2

From the symmetry of (B3), it is apparent that if A; is an eigenvalue of Hy, then so is

A7, In fact, |\ — Hy| may be factorized as
AT — Hj| = (A2 —ai A+ 1)(A? —c2A + 1) (B5)

for some ¢;, ¢o such that each quadratic form has its roots with their product equal
to 1. Comparison of (B3) and (B5) shows that ci, ¢z are solutions of the following

43



equation:

S —(d+t)hc+(4+2t+A)=0

c1a = %[(4 +4)+ (= 4] (B6)

To compute the eigenvectors of Hy, we obtain the matrix
C = Cofact[A] — Hy]

It 1s actually sufficient to evaluate the elements of the first row of C as functions of \.

With some manipulations, these are given by

C’”=(/\—1)3—t()\—1)2+(A—qﬂ)()\—l)qLA

r2

Ciz =220\ -1)

T2

(B7)

Ciz = qu(A - 1)* - @(,\_1)_ 14|

T2 Tro

Cia = q2(A — 1)°
With A, and A; denoting the roots with magnitude greater than 1 of the quadratic

forms in (B5), we have the following desired eigenvectors:

r Wi EKSth " Wi T [ Ch1 7
VV21 012 W22 012
= ; = (B38)
VV31 Clg W32 013
L Wiy LCrad yoy, | Wyo | LCrad 52y,
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The steady-state error covariance matrix is then given by

-1

o [wa W) W Wi
P - (B9)
VV41 W42 W21 W22

Thus, the order of computations is the solution of (B6), followed by the solution of
the roots of quadratic forms in (B5), and then the computations (B8) and (B9). The
steady-state filter error covariance matrix is obtained by the substitution of P in (20)
with A assumed to be 1, without any loss of generality. Alternatively, one may replace
(B9) by the elements of the third row of C given below:

Cs = {(A =17 = 2 -1 - L2y

Csz = {Chz(/\ -1+ ‘112}/T17‘2

(B10)
Cy ={(A=1)" - q—:j(A —1p - 20 -1}

T2

C3q = {(hz()\ ~1)* + q12(A — 1)}/7”1
Numerical Example:

Let

rm=ra=1 g1 =qa2=q2=05

Thus, from (B4), (B6)

The root (of magnitude > 1) of (A\> —¢c1A+1) is equal to 2.62 and that of (A* —cy +1) is
1.0. (This is the limiting case as Q) is a singular matrix.) From (B10), the corresponding
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eigenvectors (after possible scaling) are given by

1 1 1.62 1627, 1 -1 0 oFf

From (B9), the steady-state covariance matrix P is computed as

-1

0 1.62 1 1 .81 .81
ﬁ = =
0 1.62 -1 1 81 .81

The filter error covariance matrix Pr computed from (20) has all its entries equal to
:31. Without arraying, the corresponding value is computed from (15), (20) and is
equal to 0.5. Thus, arraying results in an improvement of about 2 dB in the phase

error variance.

In the second-order loop filter case, the various matrices are given by

¢, O 1 T
¢ = i P =
0 &, 0 1
1 0 0 0 rp O
H = ; R=
0 01 0 0 rp
Qs q12Q; T2/3 T/2
Q= ; Qs = (B11)
71205 922Q, T/2 1

Substitution of these matrices into (16) yields Hy, which after simple row operations is
modified into matrix Hy,,. The modifications consist of adding T x R; to Ry; T x R,
to Ry; —% x Re to X5 and —% x g to N7 with R; denoting the ith row of Hy. The
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corresponding matrix (Al — Hy,,) is given below.

M—Hfp =
r((A-1) 0 0 0 ~1/r 0 0 0 7
AT (A=1) 0 0 0 0 0 0
0 0 (A-1) 0 0 0 ~1/r, 0
0 0 AT (A=1) 0 0 0 0 (B12)
0 ~Lan 0 ~Lg2 (A -1 X 0 0
%qu —q11 %(112 —q12 ‘27:% ()‘ - 1) %% 0
0 ~La12 0 —L g0, 0 0 (A-1) X
L Laio —q12 %422 —q22 %:grsz 0 %% (A-1).

Xé_%x—n—T

With the application of the following matrix identity [13],

A C
= |A|-|D - CA™B| (B13)
B D

and after a few tedious manipulations, one obtains the required characteristic polyno-

mial in terms of 2 = X\ — 1:
Al — Hy| = a(z + 1)*(2® + 6z + 6)? + bz*(z + 1)(z® + 6z + 6) + z°

a= AT? A = 2 .b_?f‘h_l+‘12_2) (B14)
36r1r2’ q11922 — 412 =%

1 T2
Alternatively, one may express |\I — Hy| in terms of A as
P(A) =2+ (b—8)AT + (a+ 28)A + (8a — 9b — 56)A°
(B15)
+ (18a + 16b + 70)A* + (8a — 9b — 56)X\% + (a 4+ 28)A% + (b— 8)A + 1

From the symmetry of the coefficients of the polynomial P()), it is observed that if A;

is the root of P()) then sois 1/A; for any A;. Thus

PO =J[(A* +er+1) (B16)

=1
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where [] denotes product. Comparison of (B15) and (B16) shows that

S
>
-
o
!
o
|
oo

"
I
—

>
™M
] -

cic; =a+ 24
i=1 j=t41 (B].?)
2 3 4
$ES S Y cicjer =8a— 12632
i=1 j=i+l k=j+1
d4 g C1C2C3C4 = 16(a + b + 1)

and that ¢;, ¢z, ¢3 and ¢4 are negatives of the roots of the following equation:

Vi +diyd+day’ +dsy+ds =0 (B18)

The computation of the required eigenvalues (with magnitude > 1) of Hy proceeds as
follows: Evaluate coefficients d;’s from (A14) and (A17), and factorize the polynomial
(A18) into the product H?zl(y +¢;). For each value of i = 1,2,3,4, obtain the roots of
the quadratic equation, A +¢;A+1 = 0, among which only the one with its magnitude

> 1 is retained.
With the application of Schur’s identity [13, 14],

1

A B~ (A"' + AT'BHCA™')  —A"'BH
= (B19)
c D —HCA™? (D—-CA™'B)™!

and with some algebraic manipulations, the elements of the last column of the matrix
Adj(M — Hy) are obtained. In the computation of the Adj(M — Hy,) from Schur’s
identity, we simply cancel out |AI — Hy, | from the elements of (A — H,, ). Also, to
obtain Adj(M — Hy) from Adj(A — Hy,, ), we post-multiply the latter by the following
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matrix:

-1 0 0 07 ‘1 T/3 0 017

E, 0 T 1 0 0 0o 1 0 0
;o By = 7 By = T/3

0 E, 0 0 1 0 0 0 1 T

L0 0 -T 1] o o o0 1]

The elements of the last column of Adj(AI — H), (any other column could be selected

as well) with C; denoting the jth elements, have the following expressions in terms of

21
Q12T3 (112T4
= - B M =
C1 zB(z) 18ry7ry Cr = (2 +1)B(z) 1877y
T 2 T?
Cy = z(2z +3)U(z) 57— ; Cy = —(22* + 52 +3)U(z) —
37‘2 37'2
(B20)
T3 q12T?
- — 2.B 912 M = — 3 ﬁ_
C5 X (:13) 187‘2 ) Cﬁ x C(.’IJ) 67‘2
T T?
Cr = z*(2z + 3)U(m)§ ; Cs =23U(z) — (z + 1)2Y(:c)g?62——
"9
where B,C,U,Y are the polynomials in z as follows.
B(z) = (222 +5z +3)(z2 + 6 +6) ; C(z) = (2z + 3)(z” + 3z +2)
2 2
U(z) = z* + (z + 1)(z* + 6z + G)M— : Y(z) =2+ (z + 1)(z® + 62 + 6) AT
671 671922
(B21)
The eigenvectors W; of the matrix Hy corresponding to Xi, 1 = 1,...,4 are obtained
by evaluating (B17), (B18) at z = A; — 1, 1.e,,
W;=[Ci C: Cs...Cs]"| _,_, (B22)

The steady-state error covariance matrices P and Pr are then evaluated from (18)-(20)

as for the case of a first-order filter.

49






‘1 swaYPG UOIRe(~uoljemur)sy pasodord el ‘3t

TVYNDIS ANvE3Svd
ONIgv38 vivad

@ o
@

2 H3A1303d

H3NIGWOD .‘l_l
TVNOIS |

Hy3aNT [

I
1

<} NOILO3130 |
| ViV

(2/1) NOILYOOT IWHIN3D

d3xX0071-3ISVYHd

< HILHIANOD

NMGOQ

SIVYNDIS GNVE83SVa HOHY3
d0O0O1 VIA DNINANOD IVNLNW

— - w— —

1 43A1303Y

*VNOIS ONva3sve
ONIHY3E V1Va

MNIT NOILYOINNWINOD 31VvH
NOILYWHOLNI HOIH X31dWIS

a3axd01-3ISVHd

L e e e e e e = = e— e

c

|
_
I
| NOILVOOT
I

MNIT NOLLYOINNNNOD 31vH
NOILYIWHOANI MO X31dNa

H3ILH3ANOD
NMOa

8
NOILVOO1

ol

NGT FILMED

74
ERY

nd

G PAGE BLA

in

il

FreC



"G U_YDG UoIde(-uoyewtIsy pasodorg ‘qr ‘St

NOILO313d
viva

ONINIGWOD
TVYNOIS %
ANJWNDINV
3SVHd

-

(2/1) NOILVOOT TVHINID

(41 /aNva3sva)
IVNDIS ONIYY38 Viva

(NOISSINSNYHL 1)

Y

HOLVINAONW
di

(NOISSINSNYHL
anNva3sva)

NYNOIS I

ONI

{NOISSINSNVHL
aNva3svd)

HOLVYINAOW
dl

__ /7

{NOISSINSNVYHL 1)

=== """ == - — = = =
/ I[z2 ¥3A303y |
aanon HILH3IANOD |
-3SVHd NMOQ
_ A _ 2
| | NOILYOOT
_ _
- d - - - - - - _ _ _ _ -
[ ]
nZ
D
oS>
o YNIT NOILVOINNWINOD 31vH
P ol NOILYWHO4LNI MO1 X31dNa
g2
TVNDIS Z 5
Hv3g v1iva <
o>
£5
9

I H3AI3034
a3xo01
-3SVHd

H31HIANOD
NMOd

(31 /aNvEa3sva) |
IYNOIS DNIHYIE V1VA DNIAHHYD |

MNIT NOILLVOINNNWOD 31vd L
NOILLYINHOANI HOIH X31dWIS

I
|
|
| N
I

8
OILYOO1

52



‘(sTeuSig puegeseq 103004 Jo sjstsu0)) Fur[dnoy) g = N YHM UOHRMSYU0)) ISARIAINM "eg S1q

AvV13d

(b WL+ g% <
_
_
|

|
L

s — ——— —— —

aNvg3sve
| Lv ©N1dNo9
L EINEREY

(b+ w4 + ) X <

53



‘(s[eusig Iefeog pueqasegq jo sysisuoy) Surdnoy)) g = U pue J XIUIjRN
[euoSer( jo ose) oy 10} uolyejuawaidui] jus[eatnby Uy 'qg 81

—_—— . GW3A30™
(1 +x);u |
@) 559 (1 + xvm>
|
200N _
|

_
|
LODN _
|

L H3AI3034

54



“(31/1) (& 03 puodsario)) saesg 1YL (2) (D Jo uoeusaIdw 10y [eySIq ¢ S

L+l

L

by

95



"UOIyReM3YUO)) ISATION-OM ], B JOo uotjejuswadu] Jusreamby uy “p St

¢ H3AI303Y

(L +3) 4

(k+30) &

} H3AI13034

56



"5 ‘1091 [edSY( S[qRLIRANY o} Jo uotyejuswdwy ¢ Bty

Aim% |

_ >y Y _
_ F‘IITI (b + )5
(1) x| —4— .t S _
|
> Tl _

—_
=
2
x

-

«x

R S

57



"(70/70) "sa INIT IBPIO-PUOIIG B} JO YIPIMPURE ISION doo pazeurIoN -9 “Stq

Ao
c

/

Eo
c

0001 00t

SL=1wv
S1'0=1 0 p Y3174 H3QHO ANOD3S
si00=10

100

L d
-
o

dGZ HLQIMANVE A3ZITYWHON d3ais-Oml

o8



000t

‘(z0/70) ‘sa soueLIRA IOy 9seYJ pazieutioN °J, ‘St

/39

Si=1v
SiI'0=10
si00=10

}
)

10

o/(1'1) Hd ‘IONVIHYA HOHHI ISYHJ AIZITYIWHON

A
1z

59



"9SION 59001 JNOYIA PUR YA\ DURULIOHSJ I99[L] Jo uostreduror) g “S1q

Amo\wov
0l 1
T T _ T T T T
\..\u\\\\\“
) J
5 o -
. " e e o anl
O oo
O |nﬁ\‘0\0‘ -
0 O O o
D O s\\O\.
O o .
-
Sfj=1v
si'o=10 N
SI00=1 O
wponintdd —— i
lgg ——
1 1 1 | 1 1

o/(1'1) *44 anv gz HLaIMaNYE a3ais omL

A
4

zZH ‘(L

60



*(uorinjog uLIo}-9s0[)) 666’0 = ¢ ‘Surkeiry o} on(y juswasrordur] ¢ “Brg

AgiBg
AN /2 )
00} ot L &)
T T ~ T L 1 1 _ T T T T ~ T 1 T T
s66'0=d
0=1
1=%
L=t
B (ONINISINOD 3Hd) IONVIHVA ISVHI _
P —— - — —_—
(ONINIGWOD IHd) HND )
e ——— — - (ONINISWOD 1SOd) FONVIHVA ISYHd

S0

o'l

Sl

o

§°¢

oe

St

gP NI LINIW3AOHINI

61



"(uotynjog uLI0}-9501))) 666°0 = ¢ ‘Surderry o} an( juswsaoxduy ‘01 ST

Ag/Bo
AN /5 )
00! ol b 10
T T ﬁ T T T T _ T T T T _ T T T T NF
666°0=d
b10=1
=2
L = by Q9
(ONINISINOO3Hd) IONVIHVA ISVHd
g ) —10¢
T ———
—— . ] . (DNINISWOD IHd) YND
o —— — 7 T 7 (oNINIGWOD 1SOd) FONVIHVA 3SVHd i o
om—— —
-l —_
-8
(ONINIBWOD 1S0d) uND |
1 1 _ | 1 1 1 _ 1 1 1 1 _ 1 i 1 1 Nm

P NI LNIWIAOHJNI
62



*(uonynog urI0}-550[)) (0’1 = 29/70 ‘60 = [ ‘Sutkeiry o3 an(y jusuresordwy 171 St

d IN310144300 NOILYIIHHOD

866° 566 66 86 G6’ 60 80 S0
[ | I

\'Z vV Vv =\ -7 ———
(ONINIGIWOD 1SOd) IONVIHVA ISVYH

Vo S e ' o Vo

(ONINIGNOD 1SOd) HND

8P NI LN3W3AOHdWI

63



(uotin{og uLI0}-2501)) 666°0 = dco = J ‘Sutkerry oy on(q jusuasordury g1 814

A
(3/3°)
001 (o] L 10
_ T | : _ R _ _ T _ _
6660 =40
s0=1
- L=

a—

e
— —
p—— g
— am— o—

A 2SVHd

S0

o't

Se

o€

SE

€apP NI LNIW3IAOCHNI

64



>C 1<
(z9/59)
(0] 8 | q L 10
| T T _ T T T Y
666'0=4d
S0=1
L =2
L=t
(ONINIEWODIHd) FONVIHVA ASVHd
, -
/ -
—_—
- —— —
(ONINIEWODIHd) UND ]
e —— ) ||7.~|<E<> 3SVHd
e —— (ONINIBINOD 150d) 30
\

(ONINIGWOD 1S0d) HND

.Agoﬂﬁom OAISINO9Y) G0 = [ ‘uoTyemIYUo)) ISAIDNI-OMT, © UM Sutferry o} on(y jusurdaorduy ‘g1 ‘S

A

9l

0¢

e

8¢

— i | 1 1 — 1 1 1 !

¢t

8P NI LINIW3IAOHJNI

65



"(uonn[og sAISMOSY) 10 = [ ‘UolyemSyuoy) IA09Y-0m], ® YjIpL Sutderry oy on(] jusursaordury T Sig

(ONINIGWOD 1SOd) HND

[ 1 — i 1

ApiBo
(40/20)
oL | )
1 T 4 _ T Ll 1 ] _ T 1 ¥
(ONINISWOD3Hd) IINVIHVA ISVH
(ONINIBWOO3Hd) UND -
e —— (DNINIGWOD 1SOd) 3DNVIHVA 3SVHd —
6660=4d
10 =1

'l

9l

0¢

ve

8¢

[

8P NI LN3W3AOHJNI

66



"(worynog SASMONY) 10°0 = [ ‘UOWRMIYUO)) IAWINY-OMT, © THM Surferry o3 on(] jusurorordur] ‘g1 Sy

Ag,Bo
AN /3 )
ot } 10
T T T _ T T T T _ T T T T mO
6660=d
100=1
B 1=% o
1=t
| (ONINIGWOOIH) 3ONVIHVA ISVHd dg
- . ) ) ) i ) ] ) ) ) R
(ONINIGWOO3Hd) HND
u —oe
—— - — = T (ONINIGWOD 1SOd) BIONVIUVAISYHd |
| —s2
e —o€
(ONINIBNOD 1S0d) HND
1 1 1 _ 1 1 1 I — L 1 [l 1 mm

8P NI LNIW3AOHINI

67



(10 = 70/792 “IND Tenby) uoryemSyuoy) ToATOOIY-001Y ], ® YN Sutdeiry oy on(g jusuresordwr ‘91 *Stg

d IN3I10144300 NOILYI3HHOD

666

866 566’ 66’

86’

S6°

G0

B

T ] ] FTT T

I

% aY
(DNINIGWOD 1SOd) IDONVIHVA ISVHd

N\ N

111

N N
(ONINIBWOD 1SOd) HND

L 1] l | 1]

8P NI LNIW3AOHdWI

68



(0T = g0/ 70 “gND enbF) uonemIYUO)) IPALIN-SOTYT, © YHM Surferry o} on(y juwourosordury °21 "Srg

d 1N3I1D144302 NOILVYI13HHOD

866 566 66° 86 S6° 60 80 S0
I rrr1—1 71 1 _ rr1rv 1T 17 17 T

(ONINIGWOD LSOd) 3ONVIHVA ISVHd _

S 7\

(ONINIGWNOD 1S0d) HND

aP NI LNIWIAOHNI

69



666

‘(510°0 = L “gND renby) uoryemSyuo)) 19A109Y]-90I], © YA Sullerry oy an( juswosordwy ‘g1 St

d 1N312134309 NOLLY13HHOD
866 666 66" 86" G6° 60 80 S0

bl

L T 11— r—T1 1 | T T T 0

gP NI LNIWIAOHINI

70



666

866 S66°

d IN31D144309 NOILYI1IHHOD
66 86" S6°

‘(s¢'0 = I “UND Tenbq) uotjemayuo)) ISAIROIY-RIYT, ® I\ Sutferry o) angg jusursaordury ‘g1 Sy

P

T T !

P T T 177 1 [

(ONINISWOD 1SOd) 3D

Vg S

—— P

NVIHVA 3SVHd

Vg N

'

.

N
(ONINIGWOD 1S0Od) HNOD

8P NI LNIW3AOHJIWI

71



‘(1 10A1909Y]) onjey H:1:1 & pue uoryemSuoy) ISAIIN-IY], © I Sutderry o} ong yusurosoxduwr] Qg "L

d 1N3ID14430D NOILV13HHOD

666’ 866" G66° 66’ 86" G6° 60 80 S0
1T 17 1T T | 1 Tr 1 17 T 1T i i | rrrr1 1T 7T 1 0
—t
£
o
<
m
Z
m
AV \'4 v N
(ONINIGNOD 1S0d) IDONVIHVA 3SVHd =
- ] e
€ Q
m
Jﬁ\ —- —<- O—
(ONINIGWOD 1S0d) HND
= v
[ | [ O T | IR I T | S

72



(1 10A1200Y) otyey $i¥:1 © pue UOTRMSYUO)) IATIN-93IY], © YA Sutke1ry o3 ang yuowraoxdur] 17 91y

d 1N312144309 NOILY134H0D
666" 866 G66° 66 86’ 66

60

T T T T 1 I [ 1T 117 1T 7 I

TT 1T

N vV o

ﬁ (ONINIGWOD 1S0d) IONVIHVA ISVHd

(ONINIGWOD 1SOd) HND

™,
N

S S VO I | I T A O SO B

S0

o't

Gt

0¢

G¢

0¢

8P NI LNIW3AOHJWI

73



‘(T 10a1909]) onyey $i3:1 © pue UOTeMIYUO)) IPAINDN-DIT, ® YA\ Furkenry o} an( jusuwraroxdury ‘gz S

d IN310144300 NOILY13HHOD

666 866’ 566’ 66° 86' S6° 60 80 S0
T 17 177 I | FerT T T 1 | | 7T 1T 171 I
yaud) 328 o't = "0/%0
O ¢ ¢
100=1
WJ &zo =€
( 2oom¢ ="l
b=t
i (ONINIBWOD 1SOd) IONVIHVA ISVHd //1
s —> < ——

(ONINIGNOD 1SOd) HND

1 I T |

oL

8P NI LNIW3AOHJNI

74



‘(¢ 19A1209Y) o1RY H:1:] @ PUR UOL}RMBYUO)) IFAIIRY-9IY], © YA Suikeiry o3 an(] juswasordwy ¢Z S

666

d INJIDI4430D NOILVYI3HHOD

866’ S66° 66 86’

60

80

S0

J | | R

T

TT T

T

[

|

(ONINISINOD 1S0d) 3ONVIHVA ISVHd

(ONINIGWOD 1SOd) HND

7

P11

|

ot

cl

gP NI LNJW3AOHdNI

75



*(¢ 10A1900Y]) onyey 9T:F:1 © pPUe UOIRISYUO)) IGAIIFY-02MY], © YHA Surferry o} an( jusurosordur] ‘3z "SI

d IN31014430D NOLLYIIHHOD
666 866 G66° 66 86" G6' 60 80 S0

(ONINIGWOO 150d) FONVIHVA ISVHd ——

o
T

(DNINIGWOD 1SOd) HND ——_

I T N | J O T | | I T T I O | | 9l

8P NI LNJWIAOHJNI

76



‘(1 10A100Y) otyey $:1:1 © PUR UOHRINGYUO)) ISAIISY-9RIY], © YA Suldelry o} on( juswasorduwy ‘¢ “Sig

666°

866

d 1N319144309 NOILY13HHOD
G66° 66" 86" g6’

60

S0

[

I

I

T

e S

[

1

8P NI LNJW3AOHdNI

[



"ose]) YND Tenby ‘uotyemIyuo)) 19A1909Y-mog © YA\ Sutderry oy on( juourarordwry ‘gz Sty

d IN312144300 NOILVI3HHOD
666" 866 G66° 66° 86' G6° 60 80 S0
1 T | T I ryr1r 17T | | ] FTT 1T 177 | ]

(ONINISWOD 1S0d) IONVIHVA ISVHd

N P a
J (NINIBWOD 1SOd) HND

I | 1 A 1 T S R | 0 1 O T | | i

8P NI LNJW3IAOHdNI
78




‘(1 10A1009Y) orjRy F:1:1:1 ® pue uoneMSYUO)) IPAIRIIY-MO © YA\ Suldelry o} ong juouraaordwy )7 S

d 1NJI014430D NOILYI3HHOD
G66° 66° 86

S6° 60

80 S0

I FTT T 1T 1

I | 1 N

< S e

(ONINIGNOD 1S0d) HND

[ | l 11

[ il I

8P NI LNIW3IAOHJWI

79



(1 1041200 ) oyey ¥:3:1:] © pUe UOHRMSYUO)) IOAINY-MOT © YA Surkerry oy on( jyuswoaordury gz “S1g

666

d IN31014430D NOILV13HHOD
866" 666 66° 86" g6 60

[T T

| | IR | [

Fy DA

(ONINISINOD LSOd) IONVIHVA ISVHd

Vg T N

(ONINIGWOD LSOd) HND

8P NI LNIW3IAOHNI

80



‘(g T0A109Y) onyRY P11 @ pue uoTyeMSYUO)) IPAIIY-MO] © YA Sutderry o} sn( yusurorordur] ‘g ‘ST

d 1NI1D144309 NOILY13HHOD
666 866" G66° 66° 86" G6" 60 8'0 G0
TT T 1 | ] i T T 1 17 1T 1 1 | rT1r 171 1 | ] 0

|
©
gpP NI LNIW3AOHJWI

(ONINIBNOD 1S0d) JONVIHVA 3SVHd

ﬁ o o

J (ONINIEWOD 1SOd) HND

81



(1 1oA1000Y]) oTyey F:3:p:] ®© pue UORMSYUO)) I9AIIN-MOT © ITAL Juife1ry oy sng juswosordury ‘gp 31y

d IN3ID14430D NOILYIIHHOD

8P NI LNIWIAOHJWI

666° 866" 66" 66" 86" 6" 60 80 S0
T T T T 7 | [ T T T T T 7 | | T T T T 1T 7 I 0
-z
iy
9

(DNINIEWOD 1SOd) IINVIHVA ISVH Y
[ g

o N T — ——
(ONINIBWNOD 1SO0d) HND
Ll 1 AR |

82



‘(3 10A1009Y] ) OTRY H:1:1:] © PUR UOHRMIYUO)) ISAIIIY-MOT ® YHIM Surferry o} on(y jueuwrasordur] ‘1¢ “S1g

d IN310144302 NOILVYI13HHOD

666° 866 G66° 66 86’ 66 60 80 G0
T 1 T T T 1 T REREEERER T TTT 71T T 1T 1 0
—v
Z
0
s
o
<
m
. s
Y > 2 P P m
(ONINISINOD 1SOd) 3ONVIHVA ISVHd z
/ =
Q
[#0]
<& <~ < O
(ONINIGIWOD 1SOd) HND
— —z
T A T | | N | T T T O | 9l

83



(¥ 10A1000Y) O13RY QTP © pue uolemSyuoy) 194109 -MOJ © YYIAy Surfesry o} angg juswaaordwy “ze *Srq

d IN312144302 NOILYIIHHOD

666 866 666’ 66" 86" g6’ 60 80 S0
TT T 1T 1T 1 1 _ TTT T T T T 1 _ ITT T T T 1T 1 0
o
—s
i
J
14 J
=2
L=h
— —o1
- —p P P e
(ONINIBWOD LSOd) IONVIHVA ISVHd 0 j
- — S
(ONINIGNOD 1S0d) HND j
I T | 1 O _ I Y I _ 0z

8P NI LN3W3AOHJWNI

84



*dooT £154000Y Ia11TR) POIIIT-UOISLA(T "¢¢ ‘S

( 40103133
U9} <— Naganon [
AV13a
- X
1qi )
(CHOINIS 2 M
—™1 NOILO313a [ ot
— VIVQ |ege
A "4 *
i
Qow3a TETRIE _
| viva doO0T =27 | OON Y1
(DQ)soo g
A e e

Onu

(DA

85



“UON)RIMSYUO)) 19A10Y Po[dNO) PUe PARIRII-UOSIA( ¢ "I

2 43AI3034 WOod4

¢ H3AI303H OL

{'q}

. zuaaing] o BTN
AON3NOD3HA A||®AJ
o3[ | R waLwn Sm—i
5P 2
HOLYINQOW3A 314 Lo/ 21 Lt
") s00
NOILO313a AV130
NOILISNVHL war [ o U— a1
-] \ ¥3QIAIQ %
AVEO | o # HIXIN HIANIBWOD
Na | X31dWOD [ ' WNOIS [~ | AONINOILS =22
. )y eNSU 1 wIXIW
{on3 (hu} a a,
yoL10313a ()3 Oz
IN3H3HOD

[ O ——

2 Y3AI3034 WOHA

(DA

86



TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No, 90-9 2. Government Accession No. | 3. Recipient’s Cotalog No.
4, Title ond Subtitle 5. Report Date
A Novel Multireceiver Communications System February 1, 1990

Configuration Based on Optimal Estimation Theory

6. Performing Organization Code

7. Author(s)
R. Kumar

8. Performing Organization Report No.

9. Performing Organization Nome ond Address lo.

JET PROPULSION LABORATORY
California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 91109

Work Unit No.

11. Contract or Gront No.

NAS7-918

12. Sponsoring Agency Nome and Address
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

13. Type of Report and Period Covered
JPL External Publication

14, Sponsoring Agency Code

15. Supplementary Notes

Prepared (jointly) for the California State University, lLong Beach, and the

National Aercnautics and Space Administration.

16. Abstract This publication presents a novel multireceiver configuration for the
purpose of carrier arraying and/or signal arraying.

Such a problem arises for

example, in the NASA Deep Space Network where the same data-modulated signal from
a spacecraft is received by a number of geographically separated antennas and the
data detection must be efficiently performed on the basis of the various received
signals. The proposed configuration is arrived at by formulating the carrier
and/or signal arraying problem as an optimal estimation problem. Two specific
solutions are proposed.

The first solution is to simultaneously and optimally estimate the various
phase processes received at different receivers with coupled phase-locked loops
(PLLs) wherein the individual PLLs acquire and track their respective receivers'
phase processes, but are aided by each other in an optimal manner...

However, when the phase processes are relatively weakly correlated, ... and
for the case of relatively high values of symbol energy-to-noise spectral density
ratio (E ), we propose a novel configuration for cambining the data-modulated,
loop—ou signals.

The scheme can be extended to the case of low (Es/No) case by performing the
cambining/detection process over a multisymbol period.” Such a configuration
results in the minimization of the effective radio loss at the cambiner output,
and thus a maximization of energy per bit to noise-power spectral density ratio
is achieved.

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Spacecraft Cammnications, Command,
and Tracking; Communication; Signal Unclassified -- Unlimited
Estimation; Data Detection

19. Security Classif. (of this report) | 20. Security Classif. (of this page) | 21. No. of Pages 22. Price

Unclassified Unclassified 86

JPL 0184 R 9/83







