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SUMMARY

A circular dielectric waveguide consisting of an isotropic core covered with a thin anisotropic

sheet is considered. The sheet is represented as a jump immittance and MaxweU's equations are

applied. Solution of the boundary value problem yields the characteristic equation, or dispersion

relation, which is then solved numerically. The results are verified for the step-index fiber and circu-

lar, metallic waveguides. Finally, examples are included to investigate the effects of the anisotropic

sheet.

vii





1. INTRODUCTION

1.1 Background

The solution to the problem of wave propagation in an isotropic, circularly symmetric optical

waveguide is covered in many texts. In particular, each of references [1]-[3] provides an analysis of

the step-index optical fiber. The step-index fiber is treated as a boundary-value problem which is

solved by use of electromagnetic field theory and the separation of variables technique. The result

is the characteristic equation of the guide and its solutions yield the propagation constants of the

modes existing in the waveguide.

Recently, efforts have been made to find modal solutions for similar structures composed of

anisotropic materials for applications in polarization maintaining optical fibers. Related structures

composed of metallic waveguides coated with anisotropic layers have also been analyzed for radar

cross section reduction purposes. In particular, Kapany and Burke [4] describe a circularly cylin-

drical waveguide with an isotropic cladding and an anisotropic core whose optical axis coincides

with the axis of the cylinder. Tonning [5] reformulates the problem using a matrix formalism, and

then extends the work of Kapany and Burke by examining a waveguide with a uniaxial core as well

as cladding [6]. Another alternative approach is the variational analysis provided by Lindell and

Oksanen [71 for the case of transverse anisotropy. Using this method, they compare their results

to the exact eigenvalue equation for a metallic, circular guide coated with a layer characterized

by an isotropic surface impedance [8]. For an anisotropic surface impedance, solutions have been

obtained for propagation in the circular metallic guide [9] . Chou and Lee analyze the propagation

and attenuation characteristics of a multilayered coated waveguide and then .examine the radar

cross section of the waveguide at near axial incidence [10]. Scattering from a multi]ayered cylin-

drical structure was studied by Graglia and Uslenghi [11] with each layer being represented by an

anisotropic jump impedance. Thus there are a variety of methods available to analyze anisotropic

structures.
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1.1Outlineof Research

Using the jump immittance model, modal solutionswillbe obtained fora structureconsisting

of an isotropic,dielectriccore covered with a thin anisotropicsheet surrounded by freespace.

The a_isotropicsheetismodeled as a sheetof zerothicknesswith a jump admittance. The jump

immittance model isconvenientto implement and describesthe electromagneticbehaviorof a thin

layerof penetrablemateriM [12].Itis,therefore,possibleto impose the appropriateboundary

conditionsand complete a fieldanalysisusing Maxwell'sequations.The derivationfollowsthat of

the step-indexopticalfiberboundary value problem. The only differenceisin the applicationof

the boundary conditionsas dictatedby the jump immitance condition.The resultingdispersion

relation,or eigenv'Mueequation,given in Section2.3 describesthe mode structureof the guide.

Also derivedare the cutoffconditionsof the variousmodes (Section2.4).

Sincethejump admittance ofthe anisotropicsheetisgenerallycomplex invalue,the dispersion

relationand cutoffconditionsare functionsof complex variables.The solutionsof theseequations

are the propagation and attenuation constants for the various modes that exist in the guide. As

shown in Chapter 2, for limiting cases of the jump admittance, the dispersion relation and cut-

off conditions approach the solutions for the isotropic step-index fiber and circular,metallic guide.

To find the roots of complex-valued equations, the Newton-Raphson iterative procedure was em-

ployed [13]. The FORTRAN program constructed to apply the Newton-Raphson technique to the

dispersion relation is given in Appendix A.

Chapter 3 provides the results of the numerical solution of the dispersion relation. First, the

solutions are tested against known results for the step-index fiber and circular metallic guide. Next,

cutoff values for the propagation constant are computed for the case of a lossless sheet. Finally,

examples are included to illustrate how propagation and attenuation of the modes of the waveguide

are affected by variations in the parameters of the anisotropic sheet.
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1.3 Geometry of Waveguide

The cross section of the circularly symmetric waveguide is shown in Figure 1. A dielectric core

of radius p = a and index of refraction n = _ is coated by an anisotropic layer.

/o> ,z J _-: /_= C-Z

Figure 1. Waveguide cross section.

The layer is modeled with a jump admittance given by [11]:

(I) _o = Yo ( VO_ 0 ) ; Yo = _o/_o
0 rio2 _,_

The coordinates of the sheet and rod are shown in Figure 2.

IN

t
/, I

I

A

Figure 2. Orientation of coordinate axes.
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A coordinate transformation [14] is performed represented by:

(2a) _ = R_o RT,

where

(cos_ -since)(2b) R - \ sin a cos _ "

This transforms the arbitrary orientation of the sheet admittance into the p, ¢, z coordinates of the

rod. The result is:

(3)

with

(4a)

(4b)

(4c)

 =y0 (71 73)
73 72 ¢,_

7_ = 7oIcos2 a + 702 sin 2o

72 = Wo;sin 2 o + _2 cos 2o

= sinacosa(vol - _1o2)





2. FIELD SOLUTION

2.1 Field Components

Maxwell's curl equations for fields of angular frequency w are, in the absence of sources:

(Sa) V x H = jweE

(5b) V x E = -jw_H.

We consider modes with longitudinal wave number f_ and attempt solutions of the form:

(6) F = F(p)e -:_+J'_'_+:'t

where F represents either the E or H field vector [6]. Note that

OF

(7) 0z- j_

Also, the periodicity of 27r radians in the variable ¢ requires that

0F
__ -- -- o , °

(s) 0¢ j,n; m o,+1,+2,

The curls of (5) are expressed in the given cylindrical coordinates to produce a set of six scalar

equations. With the use of (7) and (S), the transverse components E¢,Ep, H¢ , and Hp may be

expressed as functions of the longitudinal components E_ and Hz , as follows:
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The transverse wave number kt is given by

(lo,0 k_= k2- _2

{wv_ = kon , p<a(lOb) k = _ _.v/'_'ff-_=ko, p > a

For the region inside the core we must estabhsh fields E, and H, wl_ich are finite at p = 0.

Choosing

(1_) k,_= ko_,__ - Z_,

we have for p < a

(12) F_ cx .lm ( kt p)e ;m¢"- :e" .

Outside the core, an evanescent field is required,or

(13) t <0.

W'e have for p > a

(14) Fz 0¢ K_(Ttp)e J'_¢_-Jt3z,

where K,_ is the modified Bessel function of the second type. This guarantees exponential decay

as p _ o¢. Also, both kt2 and 3,t2 must be greater than zero for guidance. The bounds on _ are then

(15) kon > _ > leo





The resulting modal components of all fields are:

in the core, p < a:

(16a)

(18b)

(16,:)

(16a)

(16e)

(16.1")

and outside the core, p > a:

(ara)

(17b)

(a7c)

Ord)

(lr_)

(17f)

2.2 Application of Boundary Conditions

We have already satisfied the boundary conditions at p = 0 and as p ---, m as described by (12)

and (14). Across the interface at p = a, the tangential electric field is continuous:
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The tangential magnetic field is discontinuous and satisfies the jump condition [10]:

(19) _ × (H.=.÷ - H.=°+_) = _(E_..).==

or

(2oa)

(2oh)

-H.(,_+) + __.(,__)= Yo[,nE_(,_)+ ,73E.(,_)1

H_(_+)- _(__) = ro[,73E_(a)+ ,72E.(a)].

Equations (18) and (20) will be applied to the field equations of (16) and (17). The result is a

homogeneous system of four equations in the four unknowns A, B, C,and D,

(')B
(21) M C = 0.

D

For a nontrivial solution it is necessary that detM = 0. The resulting equation is known as the

dispersion relation.

2.3 Formulation of Dispersion Relation

As shown in (21), the coefficients A, B, C,and D,are chosen as the column vector and (18) and

(20) are the rows. The right hand sides of (20) are evaluated at p = a_. The matrix M becomes:





:,.(k,a) o

(22) i "-

_-_,J,,,(/cta)

kt

+ ro(,7_ + ,_ k2---d

_K&(_,_)

-'-_g_(_,_)

_K_(_,_)

Taking the determinant of (22):

_JL (k_a)
_¢(, .,. _

• '¢,P I.7_(k,,_)+ }o,73_:_: (_,,_)kt 'rn

w,. KI , a _

-_--ez-K' (7,a)
.l'r t m _ _ .,

-K_(_,_)

(23)

-K.(_,_)

kt
_, K.,('y,Q)

--0.





This last expression leads to the following result:
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jko_ .s'(k,a) . r'(-7_ ) ,(,/,o + _,/_o)
+ ki'Yf klfm(kla) yrlltrnt'rta)

j_._v_____z,yo2 J'(k,a) g'(-_,a) (,7_,7_- ,l)
+ k,-r, k,a,,,(k,a)i'r,SC.(-_,<,)

+ _tkt*°Th ]:,J,_(kta) jTtK,_('ria) k, k,J,_(kia)

+ ;,,,#_,_a-(k,<,)[(mno] _k, k,a,,,(k,<,)\ ._.2<,) ,_1- 2 . ,73+ ,7_7

(24) <,,no,. r'(-y,,_) (,-,eo]_ :_no

k,_ (_,a.,(_,_))

-4-
._, j._,sc.,(.r,a)/

To develop a general case, normalized variables [4] are introduced according to the following

equations:

(25a) b0 = 731ko

(25b) kt0 = kt/ko

(25c) "y_o= _,/_o

(25d) ao = ako.

The guidance condition becomes:

(26) n> b0 > 1.
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Equation (24) becomes:

J'(k,o_o) r'(_,o_o)
k,oJ_(k,o_o)_,oK_(_,oao)('' + _')

+ t'_,oX,,,('_,o<_o)) ,, <,oi _ +

_,oJ_(k,oao)_,-;Z:_o) _''_ - _i)

J'(k,o_) g'(_,o<,o) ( J'(k,o<<o) s,:'(_,o,,o)]- j,7,_,,kioa_(k,oao)"r,oK,_('_,oao)c"k,oa,_(k,o,_o)+ -_,oK,,,('_/oao)/

(27)

+y,, .s;(l<,o,_o)[( _bo )_ _mbo

K" (_,o<,o)( _bo ]' ,-,,bo
+ J-,oS,%(-_,o,_o)[tSdo,_-----_),7,+ 2_--_-:-,7_,_,oao+ ,7_}= 0.

To write more compactly, let

(28a) u =ktoao

(28b) q =Ttoao

(2so) .7_ = a;(_)

(28d) _,_ _ K" (q)
qKm(q)

Note that the dispersion relation is quadratic in .7,. It is of the form

(29) CoJ_ + C_.7_ + C2 = 0 .
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Collecting terms,

The step-index solution is contained in the real portion of (30) , while the amsotropic sheet adds

additional complex terms. In this form, the dispersion relation is solved numerically; its roots are

computed as explained in Appendix A. The solutions are [4]:

-c, + .,/c_ - 4CoC_
(31a) EHrn_ modes: ,7,. = 2Co

-c, - v/c_ - 4CoC_
(31b) HEm. modes: ,7,. = 2Co

Two cases are examined to test the jump admittance condition. The relative sheet admittances

are complex:

(32)
9', b,

% =9'+Jb' 9' =0
=b,=O

Substituting the condition for no sheet, rh = 0,

real,with:

lossless sheets,

no sheet present,

perfectly conducting sheet.

(30) obviously reduces to the equation for the

step-index guide [1],

(33) ,,u,,7_ + ,7,.x:,,,(,, + u,) - (mbo)2 _ + = o

Next, the metallic boundary of a perfect conductor is a particular case of an isotropic surface

admittance (V3 = 0) in the limit as rh = r_ _ oc. If (30) is multiplied by the factor _ the

defining equation for the circular, metallic guide results:

(34) J_(u)Jm(u) = 0

At the limiting cases of no sheet and a perfectly conducting sheet, the derived dispersion relation

matches the dispersion relations for the step-index fiber and the circular metallic guide.



u



2.4 Derivation of Cutoff Conditions
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2.4.1 Limits at Cutoff

To find the cutoff conditions of the various modes, (30) is examined in the limit as

(35a) q --. 0

(35b) b--* 1

(3sc) _ -_ ao_x/ZT,_,- I

Under these conditions, g,_ takes the following form [4]:

1

(36a) rn = O; /% --* q21n _

1 1 inq
(36b) rn= 1; K1--*-_÷_ 2

m 1

(36c) m > 1; K:,n --. q2 2(rn- 1)'

A detailed derivation of the cutoff conditions is presented in Appendix B.

2.4.2 Case I. : m > 1 At first glance, the dispersion relation would appear to be a

function of _ given the order of (36c). Upon combining the higher order terms and using the

relation q2 2 2= ao(b o - 1), it is seen that _ is the highest factor. Equation (30) is multiplied by the

factor s_ with the following result:
rrl

(37)

J_J_l e, g, ao+

[ o0) ]&. J.7_,. -- - 2j,7_u.- ..(1 + ._,7_- ,7_)- ..
m-1

1 rn ao 2m j ma0 2 2_r/a = 0
a0 rn- ] U 2 t_o

A numerical solution is computed from an equation of this form. The cutoff conditions axe defined

for modes in (31) with m > 1.
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2.4.3 Case II. : m = 1 The m = 1 cutoff conditions are found using _:i as defined

by (36b). After performing a similar simplifying combination as in Section 2.4.2, the dispersion

relation is multiplied by J,,_(u)_-_. The result is

(3e) + = 0 ,

which implies the cutoff conditions:

(39a) EHln modes: Jl(u):O ao_O

1
(39b) HElnmodes: -

uJ_(u) j_l_,ao

2.4.4 Case III.: m : 0 For modes of the order m = 0

easily. The resulting cutoff conditions from Appendix B are:

,thedispersionrelationfactors

(40a) TM0n modes : Jo(u) = 0

-
(40b) TEo_ modes : UJo(u) "= jThaoe,._,.

Since the cutoff conditions (37),(39), and (40) are a special case of the dispersion relation,

it is not surprising that they also produce the expected cutoff equations when examined for the

limiting cases of no sheet and a perfectly conducting sheet. Note that the EH and HE modes of the

step-index fiber become respectively the corresponding order TM and TE modes of the metallic

guide [10]. For m _< 1, the TM and EH mode cutoff remains unchanged regardless of the lossless

sheet parameters. The equation determining the cutoff frequencies becomes more complicated for

higher order modes.

Given that the normalized propagation constant of (35) is real, the cutoff conditions are defined

for propagating modes which are lossless. Therefore, sheet parameters contained in the preceding

cutoff equations are taken as pure imaginary. Simple solutions for lossy sheets are difficult to obtain.

However, such solutions are easily computed due to the availability of subroutines which calculate

Bessel functions of complex arguments.





3. NUMERICAL RESULTS A.ND CONCLUSION

3.1 Lossless Sheet Parameters

Due to the complexity of the dispersion relation, a numerical solution is attempted. Appendix A

outlines the solution and provides the FORTRAN program constructed for the purpose of obtaining

the zeros of the dispersion relation. Lossless examples are examined first; the sheet admittance

values are chosen to be pure imaginary. Marcuse [2] examines a step-index guide with e, = 1,0201

and u, = 1.0 , plotting normalized propagation constant against normalized radius. The results

of Figure 3 agree with those shown in [2]. The ttE:l mode is actually cutoff at zero, but the curve

is nearly parallel to the a0 axis at a0 = 5 The HE21 mode is also plotted and it is not discernible

from the TE01 and TM01 curve.

0 o

!

Figure 3. Normalized propagation constant
vs. normalized radius for step-index fiber.

15
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In Figure 4, plots of the step-index guide are provided with those of the corresponding modes

of the circular, metallic guide. Here, the horizontal axis has been changed to the cutoff number

Y = a0 cv/_-_, - 1. Remember, the TM01 cutoff vMue remains unchanged. In genereal, as r_ varies

from -j0 to -#oo (no sheet to a perfectly conducting sheet), the cutoff numbers will vary between

the two curves shown. This variation is summarized in Table I., the cutoff values are computed for

some of the lower order modes. As the lossless sheet values are decreased from zero, the step-index

cutoff values increase towards the cutoff values of the circular, metallic guide.

kr_
O

O
O
O

0.0

/
1.0

/.-

//
/ :

/1
"1

I

2.0

./

/:
2 2

3.0

- CUTOFF

J

/

Z

.....'TEo,
o,

e"

4.0 5.0

V NUMBER

,,,,°,

f

,,,,'

6.0 F.O

Figure 4. Normalized propagation constant vs. cutoff
number, step-index fiber and

circular, metallic guide .........
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TABLE I.CUTOFF VALUES

FOR LOSSLESS SHEETS

u= V At Cutoff

a H'Ell I_E21

-jo. ,-j0., o '2.41
TEo_

.75 2.58

.86 2.71 3.14
1.02 2.84 3.26

1.24 2.95 3.41
1.74 3.05 3.76

3.05

-j.2 ,-j.1, 60

-j.2 ,-j.1, 45
-j.2 ,-j.1, 0
-j.3 ,-j.2, 0
-j2, -jl, 0

-joc ,-joe, 0 1.84 3.83

3.2 Lossy Sheet Parameters

Suppose the sheet admittances are real or complex. Because loss terms are now present, the

propagation constant will no longer be real. Instead,

(41) bo = bo_ + jbo,.

The field equations will contain the term

(42) eb°'Ze -'it''z ,

where bo, is the normalized attenuation constant. Therefore, solutions with bo, < 0 will describe

attenuated, propagating modes.

The remaining graphs are plots of both the real and imaginary parts of the normalized propa-

gation constant versus normalized radius. The normalized attenuation constants have been plotted

up to the cutoff values of the propagation constant. Figure 5 represents the propagation curves for

the TM01 mode for sheet admittances that are real. The solid curve is the step-index fiber plot.

Although the cutoff radius remained unchanged in the lossless examples, it has been increased for

sheet parameters with small losses. For larger losses, the TMol mode cutoff radius again becomes

that of the step-index fiber.
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_D •

0.0 5.0

_._____. -----_

o

I

! i --

10.0 15.0 20.0 25.0 30.0 35.0 40.0

t

0 o

5.0

Figure 5. Normalized propagation constant versus normalized
radius for TM01 mode with real sheet admittances.

0 0 0
.1 .1 0
.2 .2 0
1 1 0
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Thecorrespondingattenuationcurvesin Figure6 revealthat a largeattenuationnearcutoff

occursfor r_ = -j.2 and becomes negligible near cutoff for no, = -jl . The propagation constant

curve for the _o, = -jl case is not distinguishable from that of the step-index fiber.

_iO -s

0

0.0

i

\
\

'°°_°

i o°%

2

I

!

I

J

t

\

\
I-

%°

"it

°%

%,°

\
°%°°°

%'°,,, "_

[lilll/IlilllililiiIlll

5.0 lO.O 15.0 20.0 25.0 30.0 35.0 40.0 45.0

C] C

Figure 6. Normalized attenuation constant versus normalized
radius for TMo_ mode with real sheet admittances.

r/o2 Do2 o

.1 .1 0

.2 .2 0

1 1 0
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The sameTMol modewas exan_ned for complex sheet parameters. While the propagation

curves of Figure 7 are now nearly coincident, the attenuation near cutoff has been reduced signifi-

cantly (Figure 8).

t._

oo

35.O 40.O 45.0

Figure 7. Normalized propagation constant versus normalized
radius for TM0_ mode with complex sheet admittances.

7?01 _02

0 0 0

.1-j.2 .1-j.1 0

.2-j.3 .2-j.2 0

l-j2 l-jl 0

(all four curves are nearly coincident)
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Figure 8. Normalized attenuation constant versus normalized

radius for TMol mode with complex sheet admittances.
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Theeffectof real sheet admittances on the HEzl mode is now examined. Figure 9 shows the

expected rise in cutoff radius.

C::)_

-_..:

@

....'"

." " 8

# #

0.0 5.0 IO.O 15.0

___q---

f_

_,. m o

S

_ r-"--'-
25.0 30.020 .O

0 o

35.0 40.0 45.0

Figure 9. Normalized propagation constant versus normalized
radius for HEI_ mode with real sheet admittances.

_01 _02 0

0 0 0

.1 .1 0

.2 .2 0

1 1 0
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Note the slight change in scaJe of the attenuation curve of Figure 10. The lower values of _, show

less attenuation near cutoff than the TMol mode. However, for the n0, = -jl , the HEI_ mode has

the greater _ttenuation.

-10 -s

_D

d

\
\
\

'b,AI

0.0 5.0 1D.O 15.0

\
\

°°°'*'° k

• °.

_L, %°

,...........__.:..,,,,_,_"'-.. t'"!",-.
i .... r"....

2C.0 25.0 30,0 35.0 40,0 '15.0

CIo

Figure 10. Normalized attenuation constant versus normalized
radius for HEI_ mode with real sheet admittances.

_/Ol r/02 o

.1 .1 0

.2 .2 0
1 1 0
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Figure 11 shows again how the complex sheet parameters tend to move the propagation curves

towards the metallic guide Emit.

C::)

t.D

AD

C:3 /
0.0 5.0 lO.O 15.0 20.D 25.D 30.D 35.0 40.0 45.0

0 o

Figure 11. Normalized propagation constant versus normalized
radius for HEI_ mode with complex sheet admittances.

_ol r_o 2 o

0 0 0

.l-j.2 .1-j.1 0

.2-j.3 .2-j.2 0
l-j2 l-jl 0
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Figure12showsthat the complex admittances also reduce the attenuation of the HE I_ mode, but

not as large a reduction as that which resulted for the TM01 mode.

-]0-s

C_

t_

C_

C_

U")

_c)
C_

C3

C_

L.C)

CS)

O.C
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- ...

.-,\
' "-:._

"°°°° _

°°,° _°

I '_ °° '
_, "%,

5.0 I0.0 15.0 20.0

"".... "z'-'_"_'_'C_ _,._._,.,,,.,_

25.0 30.D 35.0 40.0 45.0

0 D

Figure 12. Normalized attenuation constant versus normalized
radius for HEI_ mode with complex sheet admittances.
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Finally, Figures 13 and 14 reveal the dependence of the propagation propagation and atten-

uation curves on the sheet orientation. For the HEll mode, increasing the parameter a has little

effect on the cutoff radius, while slightly increasing the attenuation near cutoff.
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Figure 13. Normalized propagation constant versus normalized
radius for HEll mode with complex sheet admittances

and variation in the parameter a.
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Figure 14. Normalized attenuation constant versus normalized
radius for HEll mode with complex sheet admittances

and variation in the parameter a.

r_Ol _02 a

.l-j.2 .1-j.1 0

.1-j.2 .1-j.1 30

.1-j.2 .1-j.1 45

.1-j.2 .1-j.1 so





28

The generaleffectof the anisotropicsheetadmittance isto raisethe cutofffrequenciesof the

propagatingmodes. The cutofffrequnciesvary from those of the step-indexfiberto those of the

circular,metallicguide as the sheetadmittance variesfrom zero to htfinity.Use of lossysheets

alsoaffectedthe cutoffof the lower order TM modes which were unchanged in the losslesscase.

Attenuated,propagatingmodes existwhen lossysheet admittances are present,although itwas

shown thatthe attenuationcould be controlledby adjustingthe sheetparameters and orientation.

The dielectricwaveguide analyzed is a relativelysimple structure.However, the method of

analysisused iseasilyextended to multilayeredstructures.Additionalboundary conditionswill

result,the jump immitance conditionisappliedat each sheetinterface.The method of solution

willremain the same; solutionsmust be found fora complex valueddispersionrelation.





APPENDICES

APPENDIX A. DISPERSION RELATION ROOT COMPUTATION

As stated previously, the dispersion relation, (30), is quadratic in J,.,,. It is of the form

(A1) CoJ_ + CiJ_ + C= = 0

with,

(A2,0

(A2b)

(A2¢)

Co = e,_,(I - j_aoE_)

+ j.. [/mb0a0_ 2 _,_boao ]-- ÷ }

c,=t:_ + j_:., (mbo,_o_' _mbo.o ] (,.--jk-7_ / '_'+ z-Tr-'_ + '_J- (_b°)2V
=0

By applying the quadratic formula, solutions for H-type and E-type modes are easily separated [3]:

(A3) V(_o,bo)= 2CoJ,_+ c_ ! vfc_ - 4CoC_: o.

The HE modes are the solutions taken from the positive radical and the EH modes are taken

from the negative sign [4]. The method of solution is the Newton-Kaphson technique; it is capable

of determining complex roots [13] and thus accommodates both the lossless and lossy cases.The

dispersion relation shown in (A3) is a function of two variables. The following FORTRAN program

solves this dispersion relation for selected parameters of the dielectric core and sheet admittances

(c,,_,wm,_02, and a). Initial guesses for the Newton-Raphson technique are provided from a

knowledge of the cutoff conditions or from published data for the step-index fiber [2]. The calculated

root is then used as the next guess. As one of the variables is incremented, this is continued to

generate
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the dispersion and attenuation plots over the desired range. Cutoff values are obtained in a similar

fashion, the cutoff equations are substituted in the function subroutine section of the program.

************************************************************************
C *
C PROGRAM DISP *
C *
C THIS PROGRAM CACULATES THE ZEROS OF THE DISPERSION RELATION FOR A *
C CYLINDRICAL WAVEGUIDE CONSISTING OF A DIELECTRIC CORE SURROUNDED *
C BY AN ANISOTROPIC SHEET IN FREE SPACE. *
C *
C
C VARIABLE ASSIGNMENTS *
C BO - NORMALIZED PROPAGATION CONSTANT *
C KTO - NORMALIZED TRANVERSE WAVE NUMBER INSIDE CORE *
C GTO - NORMALIZED TRANSVESE WAVE NUMBER OUTSIDE CORE *
C AO - NORMALIZED RADIUS *
C U = KTO*AO, BESSEL ARGUMENT *
C Q = GTO*AO, MODIFIED BESSEL ARGUMENT *
C BGES - INITIAL GUESS FOR BO *
C AGES - INITIAL GUESS FOR AO *
C FOUT - VALUE OF DISPERSION RELATION *
C *
C *
C MSTART,MSTOP- RANGE OF BESSEL ORDER *
C HSTART,HSTOP- RANGE OF MODE TYPE (HE=O, EH=I) *
C *
C *
C EPSR - CORE RELATIVE PERMITTIVITY *
C MUR - CORE RELATIVE PERMEABILITY *
C *
C NOI,NOR,ANG- SHEET PARAMETERS *
C NI,N2,N3 - TRANSFORMED SHEET PARAMETERS *
C *

C
C
C

C COMMON BLOCK PARAM PASSES BACK MEDIA DATA AND TRANSVERSE WAVE NOS.
C BETWEEN SUBROUTINES.
C

COMMON /PARAM/ U,KTO,Q,GTO,NOI,NO2,ANG,EPSR,WOK,ITS2,NIN2
COMPLEX U,KTO,Q,GTO,NOI,N02
REAL ANG,EPSR,MUR,R
INTEGER ITS2,NIN2

C ..... . .............

INTEGER MSTART,MSTOP,M,HSTART,HSTOP,H,ITS,INC2,AMIN
PEAL AO,AGES,KEF,DEC
COMPLEX BO,BGES,FOUT,F
EXTERNAL NEWT,CBJNS

C
3 FORMAT (1X,I2)

C

C READ IN DATA AND INIT GUESS
C

C

7
C

9
C

II
C

13

OPEN(UNIT=79,STATUS='OLD')

READ(79,7)EPSR,MUR
FOP_AT(IX,R(F8.4,2X))

DIELECTRIC PARAMETERS

SHEET PARAMETF_S
READ(79,9)NOI,NO2,ANG
FORMAT(IX,5(F8.4,2X))

MIN BADIUS,MODE ORDER/TYPE
KEAD(T9,11)AMIN,MSTART,MSTOP,HSTART,HSTOP
FOP_T(IX,5(I4,2I))

INIT. VALUES AND ITERATIONS
I_AD(79,13)BGES,AGES,ITS

FORMAT(IX,3(FIO.5,2X),I3)





APPENDIX A. (Continued)

CLOSE (UNIT--T9)

OPEN OUTPUT FILE

OPEN (UNIT=80)
WRITE(80,*) (' EPSR
WRITE (80,7)EPSR,MUR

WRITE(B0,,) (' NO1
WRITE (80,9)NO1 ,NO2 ,ANG

MUR' )

NO2 ANG')

HSTOP')

ITEBATIONS')

WRITE(80,*)(' MIN RAD MSTART MSTOP HSTART

WRITE(80,II)AMIN,MSTART,MSTOP,HSTART,HSTOP
WRITE(80,*)(' BO GUESS AO GUESS
WRITE(80,13)BGES,AGES,ITS

C
C ........ .----..--------.------------------------. ......

C CALCULATE ZEROS OF DISPERSION RELATION

WRITE(6,*)('DO YOU WANT ITERATIONS PRINTED?')
WRITE(6,*)('REAL ROOTS: ¥(i) N(2) COMPLEX:Y(-I),N(-2)')

FOUT' )

RE_D(6,3)NIN2
WRITE(6,*)('INPUT RADIUS INCREMENT?')
WRITE(6,*)('DEC=IDEC*.I')
READ(6,3)IDEC
REF=SQRT(EPSR*MUR)

C
WRITE(80,*)(' MODE TYPE')
WRITE(80,*)('H='),H

DO i H=_START,HSTOP
DO 2 M=MSTART,MSTOP

BO=BGES
AO=AGES
R=FLOAT(AMIN)
DEC=FLOAT(IDEC)*.I
ITS2=ITS
WRITE(80,*)(' ROOT FILE')
WRITE(80,*)('M='),M
WRITE(80,*)(' AO BO U O
WRITE(80,39)

39 FORMAT (3(/))
C
C DO LOOP SEARCHES FOR ROOTS WITHIN THE BOUNDS OF BO FOR
C PROPAGATING MODES
C

DO 4 WHILE ((REAL(BO) .GE. I.)
& .AND. (REAL(BO) .LE. REF)
& .AND. (AO .GT. R))

CALL NEWT(BO,AO,M,_,FOUT)
WRITE(6,*)AO,BO,U
WRITE(80,14)AO,BO,U,FOUT

14 FORM_T(IX,2(FIO.5),2X,EIR.5,4(FS.4))
AO=AO-DEC

4 ENDDO
2 CONTINUE
1 CONTINUE

CLOSE(UNIT=80)
STOP
END99

C
C

C COMPLEX FUNCTION F CALCULATES THE VALUE OF THE DISPERSION RELATION

C
C

COMPLEX FUNCTION F(BO,AO,M,H)

C COMMON BLOCK PARAM PASSES BACK MEDIA DATA AND TRANSVERSE NAVE NDS.
C BETWEEN SUBROUTINES.
C

31





APPENDIX A. (Continued)

COMMON /PARAM/ U,KTO,Q,OTO,NO1,NO2,ANG,EPSR,MUR,ITS2,NIN2
COMPLEX U,KTO,Q,OTO,NOI,N02
REAL ANG,EPSR,MUR,R
INTEGER ITS2,NIN2

C
C FUNCTION F VARIABLES
C FJ - STORES VALUES OF BESS FUNC
C FK - STORES VALUES OF MOD BESS FUNC
C JM - DERIVATIVE OF BESS FUNC / (BESS
C KM - ABOVE RATIO FOR MOD BESS FUNC
C
C CO,Cl,C2 - COEFFICIENTS OF QUDRATIC FORM OF
C DISCR - QUADRATIC FORM DISCRIMINANT
C

C

C
C
C
C
C

ARG * BESS FUNC.)

DISPERSION RELATION

INTEGER H
REAL AO,RANG
COMPLEX NI,N2,N3
COMPLEX BO,JM,KM,MB,CO,CI,C2,DISCR,FK(5),FJ(5),CJ
PI=DCONST('PI')
BANG=ANG,PI/180.
NI=NOI*COS(RANG)**2+NO2*SIN(RANG)**2
N2=NOI*SIN(RANG)**2+NO2*COS(RANG)**2
N3=(NOI-NO2)*COS(RANG)*SIN(RANG)
KTO=CSQRT(EPSR*MUR*(I.,O.)-BO**2)
GTO=CSQRT(BO**2-(I.,O.))
U=KTO*AO
O=GTO*AO
CALL CBJNS(U,M+2,FJ)
CALL CBESNK(GA,M*2,FK)

IF (M .EQ. O) THEN
JM=(-I.,O.)*FJ(M+2)/FJ(M+I)/U
KM=-FK(M+2)/FK(M+I)/Q

ELSE
JM=(FJ(M)-FJ(M÷2))/FJ(M+I)/U
KM=-(FK(M)÷FK(M÷2))/FK(M+I)/Q

ENDIF
CJ=(O.,i.)
MB=FLOAT(M)*B
CO=EPSR'MUR*(I.-CJ*NI*AO*KM)
CI=-CJ*NI*MUR*AO*KM**2+KM*(MUR*(I.+NI*N2-N3**2)+EPSR)

& +CJ*MUR*((MB*AO/Q**2)**2*N1-2.*MB*AO*N3/Q**2+N2)/AO
C2=KM**2+CJ*KM*((MB*AO/U**2)**2*NI+2.*MB*AO*N3/U**2+N2)/AO

-(MB*(1/U**2+I/Q**2))**2
DISCR-CSQRT(CI**2-4.*CO*C2)
IF (H .EQ. I) THEN

DISCR=-DISCR
ENDIF
F=JM+(CI+DISCR)/(2.*CO)
RETURN
END

C SUBROUTINE NEWT PERFORMS NEWT-RAPHSON ITERATI%rE PROCEDURE TO
C CALC ROOTS OF DIPERSION RELATION
Cm,_m_mm_m_m_m_,__m*_m_*_mmmm*_m_m_*_m_*m_m_*_m_

C
SUBROUTINE NEWT(BO,AO,M,H,FOUT)

C COMMON BLOCK PARAM PASSES BACK MEDIA DATA AND TRANSVERSE WAVE NOS.
C BETWEEN SUBROUTINES.
C

COMMON /PABAM/ U,KTO,Q,GTO,NOI,NO2,ANG,EPSR,MUR,ITS2,NIN2
COMPLEX U,KTO,_,GTO,NOI,N02
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REAL ANG ,EPSR,NUR,R
INTEGER ITS2, NIN2

----.

_

C
C
C
C
C
C-

SUBROUTINE NEWT VARIABLES
FP - APPROXIMATES DERIVATIVE OF DISPERSION RELATION OVER

TEE INTERVAL INC IN BO

21

12

INTEGER M,H
PEAL AO
COMPLEX BO,FOUT,F,FP,INC
INC=(.IOE-06,0.)
IF (NIN2 .LT. O) TEEN
INC=INC*(1.,1.)
ENDIF
I=l
DD 12 WHILE ((BXAL(BO) .GE. I.)

.AND. (KEAL(BO) .LE. (SORT(EPSR*MUR)))
& .AND. (I .LT. ITS2))

FP=(F(BO+INC,AO,M,H)-F(BO,AO,M,H))/INC
BO=BO-(F(BO,AO,M,H)/FP)
FOUT=F(BO,AO,M,H)
IF (ABB(NIN2) .EQ. I) TEEN
WRITE(6,21)AO,BO,U,Q,FOUT
FORMAT(IX,9(FO.4,2X))
ENDIF
I=I+1

ENDDO
RETURN
END





APPENDIX B. DERIVATION OF CUTOFF CONDITIONS

B.I Limits at Cutoff

To find the cutoff conditions of the various modes, the dispersion relation

=0 .

is examined in the limit as

(B2a) q _ 0

(B2b) b---* 1

(B2c) u -- ao_ - 1

Under these conditions, K:,_ takes the following form [4]:

1

(B3a) m = 0; ICo---. q2tn _

1 11,q-
(B3b) m= 1; K 1 _--q-_ + 2 2

rn 1
(Bac) m > 1; IC,,,---.

q2 2(m- 1)

B.2CaseI.: m>l

Equation (B1) is multiplied out and the factors of q are collected. Note that

m 2 m 1
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The dispersion relation will be of the form X/q 2 + Y

dependence will be dropped. They will approach zero as the equation is multiplied by q2

approaches sexo. The surviving terms axe

2 ] •

y_(_)_l.,ao,_(bo _- 1)]

m 2jr13_.mb o - m(_,(l + - r/_) + e_)]J,-( )[-J'_l.."o,_--2-i__ - 771r12

(Bs) - (_)(bo - I)- - ÷ --1 "7--) Vt u_ Va

Since ao(bo_: - 1) = q_ ,(B5) actually contains terms of highest order ±q: ,

35

Therefore, constant terms with no q

and q

(B6)

2 _t .

J..(_-

q2ao m - 1

ao )_2jr_s,a _#,(l+_2r_2_r_)__,]m-1

u 2 a 0

Multilplying (B6) by q2/rn , the result is,

(BT)

J_ j rhe, #, ao

ao _o m- 1 u 2 a o
=0

which is equivalent to (37), the cutoff equation for the m > 1 modes.
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B.3 Case II. : m = l

For the m = 1 cutoff conditions, use _:1 from (B3b) and

(B1) is multiplied by _ , this allows removal of the terms containing (_:,,)_ ,terms up to the order

_'1 and constants with respect to q. The surviving terms are

q2

(S9) (l-_)[-jvzu, aoY,, + a][_ - -_2bo_] : 0.

With apphcations of De l'Hospital's Rule, this is equivalent to

(Blo) -),_zu, aoJ_ + a = o.

Equation (B10) is the same as (39), the cutoff equation for the _ = 1 modes.

B.4 Case III.• rn = 0

Letting ,n = 0, the remaining terms of (B1) are,

,702e,u,(1 - jvlaoEo)

(B I)

J #_ rl2+So{-y,71u, or. + + - + -] + -gU-
jtC0_2

+_ + - 0 .
a0

This equation actually factors into the following two solutions

(B12a)

(Ba2b)

As _5o

e,#, (l - j_haoK, o

TMcase ,70 = -l(Eo + j T?2)
_1- a0

becomes large at cutoff, these reduce to the quantities in (40) by inspection,

(B13a) TMo,_ modes : Jo(u) = 0

(B13b) TE0, modes : _ = jrhaoe, U,

From equation (B12b), it is apparent cutoff frequencies of the lossless TMoa

affected by sheet parameters.

modes are not
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