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SUMMARY

A circular dielectric waveguide consisting of an isotropic core covered with a thin anisotropic
sheet is considered. The sheet is represented as a jump immittance and Maxwell’s equations are
applied. Solution of the boundary value problem yields the characteristic equation, or dispersion
relation, which is then solved numerically. The results are verified for the step-index fiber and circu-

lar, metallic waveguides. Finally, examples are included to investigate the effects of the anisotropic

sheet.
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1. INTRODUCTION

1.1 Background

The solution to the problem of wave propagation in an isotropic, circularly symmetric optical
waveguide is covered in many texts. In particular, each of references [1]-[3] provides an analysis of
the step-index optical fiber. The step-index fiber is treated as a boundary-value problem which is
solved by use of electromagnetic field theory and the separation of variables technique. The result
is the characteristic equation of the guide and its solutions yield the propagation constants of the
modes existing in the waveguide.

Recently, efforts have been made to find modal solutions for similar structures composed of
anisotropic materials for applications in polarization maintaining optical fibers. Related structures
composed of metallic waveguides coated with anisotropic layers have also been analyzed for radar
cross section reduction purposes. In particular, Kapany and Burke [4] describe a circularly cylin-
drical waveguide with an isotropic cladding and an anisotropic core whose optical axis coincides
with the axis of the cylinder. Tonning (5] reformulates the problem using a matrix formalism, and
then extends the work of Kapany and Burke by examining a waveguide with a uniaxial core as well
as cladding [6]. Another alternative approach is the variational analysis provided by Lindell and
Oksanen [7] for the case of transverse anisotropy. Using this method, they compare their results
to the exact eigenvalue equation for a metallic, circular guide coated with a layer characterized
by an isotropic surface impedance (8]. For an anisotropic surface impedance, solutions have been
obtained for propagation in the circular metallic guide [9] . Chou and Lee analyze the propagation
and attenuation characteristics of a multilayered coated waveguide and then -examine the radar
cross section of the waveguide at near axial incidence [10]. Scattering from a multilayered cylin-
drical structure was studied by Graglia and Uslenghi [11] with each layer being represented by an
anisotropic jump impedance. Thus there are a variety of methods available to analyze anisotropic

structures.






1.1 Qutline of Research

Using the jump immittance model, modal solutions will be obtained for a structure consisting
of an isotropic, dielectric core covered with a thin anisotropic sheet surrounded by free space.
The anisotropic sheet is modeled as a sheet of zero thickness with a jump admittance. The jump
immittance model is convenient to implement and describes the electromagnetic behavior of a thin
layer of penetrable material [12]. It is, therefore, possible to impose the appropriate boundary
conditions and complete a field analysis using Maxwell’s equations. The derivation follows that of
the step-index optical fiber boundary value problem. The only difference is in the application of
the boundary conditions as dictated by the jump immitance condition. The resulting dispersion
relation, or eigenvalue equation, given in Section 2.3 describes the mode structure of the guide.
Also derived are the cutoff conditions of the various modes (Section 2.4).

Since the jurnp admittance of the anisotropic sheet is generally complex in value, the dispersion
relation and cutoff conditions are functions of complex variables. The solutions of these equations
are the propagation and attenuation constants for the various modes that exist in the guide. As
shown in Chapter 2, for limiting cases of the jump admittance, the dispersion relation and cut-
off conditions approach the solutions for the isotropic step-index fiber and circular,metallic guide.
To find the roots of complex-valued equations, the Newton-Raphson iterative procedure was em-
ployed [13]. The FORTRAN program constructed to apply the Newton-Raphson technique to the

dispersion relation is given in Appendix A.

Chapter 3 provides the results of the numerical solution of the dispersion relation. First, the
solutions are tested against known results for the step-index fiber and circular metallic guide. Next,
cutoff values for the propagation constant are computed for the case of a lossless sheet. Finally,
examples are included to illustrate how propagation and attenuation of the modes of the waveguide

are affected by variations in the parameters of the anisotropic sheet.






1.3 Geometry of Waveguide

The cross section of the circularly symmetric waveguide is shown in Figure 1. A dielectric core

of radius p = a and index of refraction n = /& & is coated by an anisotropic layer.

ﬂ)d’ €o 1 /Mo 77: /2= A
p'( 14 Eoly, Ho/-/r

Figure 1. Waveguide cross section.

The layer is modeled with a jump admittance given by [11):

T2

o (1) TIo=Yo(n81 0 ><€ ; Yo = Veo/to

The coordinates of the sheet and rod are shown in Figure 2.

N
Z

Figure 2. Orientation of coordinate axes.







A coordinate transformation [14] is performed represented by:

(2a) = R?]ORT,
where
(2b) R = [ @ —sina
T \sina cosa /°

This transforms the arbitrary orientation of the sheet admittance into the p, ¢,z coordinates of the

rod. The result is:

= m m
3 (3 7)
) ° 3 M/,
with
(4a) 7 = N1 cos? a + 1oz sin? a
(4b) 72 = To1 sin2 a + No2 COS2 «

(4¢) 73 = sina cos a(no1 — 7o2)






2. FIELD SOLUTION

2.1 Field Components

Maxwell’s curl equations for fields of angular frequency w are, in the absence of sources:

(5a) V x H = jweE

(55) Vx E=—jwuH.

We consider modes with longitudinal wave number S and attempt solutions of the form:

(6) F = F(p)e#strmetsut

where F represents either the E or H field vector [6]. Note that

8F .
(7) 52— = -8

Also, the periodicity of 27 radians in the variable ¢ requires that

oF
(8) %:jm; m=0,x1,£2,---

The curls of (5) are expressed in the given cylindrical coordinates to produce a set of six scalar
equations. With the use of (7) and (8), the transverse components Ey, E,, H, , and H, may be

expressed as functions of the longitudinal components E, and H, , as follows:

(9a) E,= g(-ip gt + T K
(9b) Ey= El?(mTfsEz + jwudi‘)

(9¢) H,= k]_?(_TWE‘ - jﬁdi‘)
(9d) Hy = El?(—-Jwe ddIf: + mTﬁHz)






The transverse wave number k. is given by

(10a) E=F-p

_ wyeu =kon, p<a
(108) k_{w €opo = ko, p>a’

For the region inside the core we must establish fields E, and H, which are finite at p = 0.

Choosing
(11) k2 = k2n? - B2,
we have for p < a
(12) F, « Jm(k,p)e""d""ﬁ‘.

Outside the core, an evanescent field is required,or

K2, = k2 -5
(13) =-~2<0.
We have for p > a
{14) F, x Km('np)e’"‘""ﬁ‘,

where K,, is the modified Bessel function of the second type. This guarantees exponential decay

as p — oco. Also, both ¥? and 47 must be greater than zero for guidance. The bounds on § are then

(15) kon > ﬁ > ko .






The resulting modal components of all fields are:

in the core, p < a:

(16a) E, = Alm(kep)e ™%
(16b) H, = BJm(ktp)ejm¢'jﬁ‘
-J mw .
(16c) E,= [—’;ZEAJ’ (kip) + o “BJm(k:P)]eJm¢—Jﬁz
(16d) ‘E¢ = {':5 AT (kep) — —ﬁ-BJ' (kep))e?™? 2%
(16e) H,= [_:L‘;GAJm(ktp) _éBj' (ke )™ -18:
t
(161) Hy= i'i“"AJ' (kep) + —-"-Bjm(k o)™ 1#,
and outside the core, p > a:
(17a) E, = CKm(,np)eJm¢"Jﬁz
(17b) H, = DKm(,Wp)eJm¢—Jﬁz
B Wuo -
17 E, = CK., " DEm jme—3 Bz
(11 = (R oKt - T DRm(ell
(17d) Ey = =L CR () + “EO b Kl ()il ™7
1ip Im
MU € . mb—1Bz
(17¢) B, = P22 Kn(v) ~ 2 DER (o)™
vip Vit
m P
(171) Hy = [~ 52CK (ve0) = ,ﬁpgm(%p)}e;m—m.
It ~Ep

2.2 Application of Boundary Conditions

We have already satisfied the boundary conditions at p = 0 and as p — oo 8§ described by (12)

and (14). Across the interface at p = a, the tangential electric field is continuous:

(180) (Ez)pza_ = (Ez)p=a+

(18b) (Bg)pm. = (Eo)o=ar-






The tangential magnetic field is discontinuous and satisfies the jump condition [10]:

(19) P x (Hp=¢+ - Hp=a+—) = ﬁ(Etan)p=a )
or,

(20a) —H.(ay)+ H.(a-) = Yo[m Ey(a) + n3E. (a)]
(200) Hgy(ay) — Hy(a-) = Yo[nsE(a) + mE.(a)]-

Equations (18) and (20) will be applied to the field equations of (16) and (17). The result is a

homogeneous system of four equations in the four unknowns A, B,C,and D,

(21) M

DOYWw >

For a nontrivial solution it is necessary that detM = 0. The resulting equation is known as the

dispersion relation.

2.3 Formulation of Dispersion Relation

As shown in (21), the coefficients A, B, C,and D,are chosen as the column vector and (18) and

(20) are the rows. The right hand sides of (20) are evaluated at p = a_. The matrix M becomes:






(22)

M

k + Yo(m + Tisp-ﬁ‘)-]m(kta) + 307?3 Jr(kea)
ia k

Jm(kea) 0 —Km(mea) 0 \
72 Im(kea) e (ka) B Km(v:0) et K/ (vea)
Jm(kga)

~YoJm(k +mBE j 0 —Km(qea

osm ) 5 ) )
t
232 g1, (kea) me Jm(k,a)
ke kZa

U B
%Kin('r:a) ,;n!‘;Km(‘ha)

Taking the determinant of (22):

BT, (k) i K(a) Km0
Jn(kia) | Jm(kea) — Yom 1§ I (kea) 0 —Kum(1a)
%"ﬁ]m(k,a)+)on31——'iJ ! (ko) 22En(na) € Km(wa)
B Tm(kea) 122 1, (kea) =e£e K, (va)
Jm(kea)
~YoJm(kea)(ns + M ;’:—:%) —Em(na)

— Yom k“J;n(k,a)

'—Km(’ha) t = 0.

—JWE
i J! (k) k2 mB ;. (ka)
' ,;':!%Km('ha)

+Yo(m +m13 kf )m(kea) + hma-k'- m(kra)
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This last expression leads to the following result:

(/€0 + 1/ ko)

n?k? ( J! (ko) )’ k3 Im(kea) K'! (vea)
k2 \ keJm(kea) keve kedm(kea) 77eKm(720)

_z_cg( K. (va) )’_ (mﬁ)’(l . 1)’
72 \jv¢ Km(7ea) a N2 k?

P8k o Tm(ke) Km(wea)
kv 0 ktJm(kta) j'Tth('Yta)

mm2 — 17:3)

Jha(kea) Kp(vea) (uo"2k§ T (kea) | jukd En(na) )

w
+ —Yon - -
Yeke 0 lktJm(kta) J'Yth(‘Yta) ky ktJm(kta) Tt J‘Yth(’YtG)

) . I (ke m 2 m,
+M3'o (ke ))[< ﬁo) 771—2—;2%97734*712]
t

k, keJm(kea yia

wio.. KEl(va) [(mBo)’ mfo
24 - 22Y 29— =0.
(24) Yt }Oj%Km('na)[( 2a) ™ TR +m]

To develop a general case, normalized variables [4] are introduced according to the following

equations:

(25a) bo = B/ko
(25b) keo = ke /ko
(25c) Y0 = vt/ ko
(25d) ao = ako.

The guidance condition becomes:

(26) n>by>1






Equation (24) becomes:

, 2 ' 4
e'“f( J! (koa0) ) J! (keoao) Km(7t000))(€r+“f)

keoJm (k000) keodm (Et080) YeoKm (V000

() (2 ()
vt0 K m (72000) ag N3 kL

o J! (keoao) K! (71t00)
ksoJm(ktoao) 10 Km (7t080)

(mm2 — m3)

K!.(71000)

- jmu J. (ktoao) K., (vt000) (e J!. (keoao)
" kyodm (keo2o) veoKm(11080) \ kyoJom (Ee000)

J"n(ktoao) ( mbo

+in )2 2250 1y 4 )
" keoJm (keoao)  \ Y5oa0 m 3T

W
YtoQo

K. (70%) (mbo)2 mb
27 + = +2
(27 J'Y:oKm(’hoao)[ m

To write more compactly, let

(280) u '—‘kgoao
(28d) g =7t0a0
(28¢) Tm :%
_ Kml(9)
(284) Km _—————-qu(q)

Note that the dispersion relation is quadratic in Jm. It is of the form

(29) CoT2:+C1Im+C2 =0 .

’)‘zoKm(’Ytoao)

)

11
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Collecting terms,

J2erpr (1 - jmaokm)

+Jm{—jmurao7cfn + K[ (1 +mm - n3) + €]
i 2
. | { mboa mboa
+7_”‘_[( ‘;0) ) 020773+772]}
aop q q

Ko | { mboao b 1 1y
(30) +K2 + Iom [(—%) m +20 0a0773+172} — (mbo)? (:ﬁ + —;) =0 .

ao u?

The step-index solution is contained in the real portion of (30) , while the anisotropic sheet adds
additional complex terms. In this form, the dispersion relation is solved numerically; its roots are

computed as explained in Appendix A. The solutions are (4]

—C1 -+ \/Cl: - 40002

(31a) EHp, modes: Jm = 2Cq
-C; — \/Ci — 4CoC
(31b) HEm, modes: Jm = ! 1 02
2Co

Two cases are examined to test the jump admittance condition. The relative sheet admittances

are complex:

gi, b real,with:
_ . gi=0 lossless sheets,
(32) ™= gi+ b g, = b, = 0 mo sheet present,

1/b,=0 perfectly conducting sheet.

Substituting the condition for no sheet, n, = 0, (30) obviously reduces to the equation for the

step-index guide [1],

T
(33) €rpir T2 + TmKm(er + pr) — (mb0)2 (;1—2 + ;]_2) =0

Next, the metallic boundary of a perfect conductor is a particular case of an isotropic surface
admittance (73 = 0) in the limit as 7, = m — oo If (30) is multiplied by the factor %%l, the

defining equation for the circular, metallic guide results:
(34) T () Jm(u) =0

At the limiting cases of no sheet and a perfectly conducting sheet, the derived dispersion relation

matches the dispersion relations for the step-index fiber and the circular metallic guide.
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2.4 Derivation of Cutoff Conditions

2.4.1 Limits at Cutoff

To find the cutoff conditions of the various modes, (30) is examined in the limit as

(35a) g—0
(35b) b—1

(35¢) U — Goy€Erptr — 1

Under these conditions, K, takes the following form [4]:

1
(36a) m=0; Ko¢— qzln%ﬂ
1 1 ¢
m 1
36 I Kjy—m—— — ———~.
( C) m > 1 ™m q2 2(m_ l)

A detailed derivation of the cutoff conditions is presented in Appendix B.

24.2 Casel. : m > 1 At first glance, the dispersion relation would appear to be a
function of q—lg given the order of (36¢c). Upon combining the higher order terms and using the
relation ¢® = a3(b3 ~ 1), it is seen that b is the highest factor. Equation (30) is multiplied by the

factor 9,% with the following result:

injnlffﬂfao+
; do . 2
Tem [Ibe | — — — 2inatis — e (1+ M7z — N3) — &
ap m-—1
! m % 2m j mag 2 mag
i T ao \ao o (B 2— )=0 .
7 ao (ao m—l) u?  ag (u2)771+ " N3+ M2

A numerical solution is computed from an equation of this form. The cutoff conditions are defined

for modes in (31) with m > 1.
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243 Casell. : m=1 The m = 1 cutoff conditions are found using K, as defined

by (36b). After performing a similar simplifying combination as in Section 2.4.2, the dispersion

relation is multiplied by Jm(“)rg,:g- The result is

(38) Jy(w)[—jmuraodi(w) + J1(w)] =0
which implies the cutoff conditions:
(39a) EH,, modes : Ji{u)=10 ag#0

Ji(u) _ 1

39 n :
(350) HE;pmodes uJi(u)  Imprdo

2.44 CaseIIl. : m=0 For modes of the order m =0 ,the dispersion relation factors

easily. The resulting cutoff conditions from Appendix B are:

(40a) TMos modes :  Jo(u) =0

J&(u) & — T3
40b TEon modes : oW _ B3
( ) on uJo(u) JM1G0€r Hr

Since the cutoff conditions (37),(39), and (40) are a special case of the dispersion relation,
it is not surprising that they also produce the expected cutoff equations when examined for the
limiting cases of no sheet and a perfectly conducting sheet. Note that the EH and HE modes of the
step-index fiber become respectively the corresponding order TM and TE modes of the metallic
guide [10]. For m < 1, the TM and EH mode cutoff remains unchanged regardiess of the lossless
sheet parameters. The equation determining the cutoff frequencies becomes more complicated for
higher order modes.

Given that the normalized propagation constant of (35) is real, the cutoff conditions are defined
for propagating modes which are lossless. Therefore, sheet parameters contained in the preceding
cutoff equations are taken as pure imaginary. Simple solutions for lossy sheets are difficult to obtain.

However, such solutions are easily computed due to the availability of subroutines which calculate

Bessel functions of complex arguments.



o



3. NUMERICAL RESULTS AND CONCLUSION

3.1 Lossless Sheet Parameters

Due to the complexity of the dispersion relation, a numerical solution is attempted. Appendix A
outlines the solution and provides the FORTRAN program constructed for the purpose of obtaining
the zeros of the dispersion relation. Lossless examples are examined first; the sheet admittance
values are chosen to be pure imaginary. Marcuse |2] examines a step-index guide with ¢, = 1.0201
and g, = 1.0 , plotting normalized propagation constant against normalized radius. The results
of Figure 3 agree with those shown in {2]. The HEn mode is actually cutoff at zero, but the curve
is nearly parallel to the ao axis at ao = 5 . The HE;; mode is also plotted and it is not discernible

from the TEg; and TMp; curve.

o
S
—
//
e ]
HE“// -

0
1.005
—
™

=

1.000
N\

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

Figure 3. Normalized propagation constant
vs. normalized radius for step-index fiber.
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In Figure 4, plots of the step-index guide are provided with those of the corresponding modes

of the circular, metallic guide. Here, the horizontal axis has been changed to the cutoff number
V = aov/e, pir — 1. Remember, the TMo; cutoff value remains unchanged. In genereal, as no. varies
from —j0 to —joo (no sheet to a perfectly conducting sheet), the cutoff numbers will vary between
the two curves shown. This variation is summarized in Table 1., the cutoff values are computed for
some of the lower order modes. As the lossless sheet values are decreased from zero, the step-index

cutoff values increase towards the cutoff values of the circular, metallic guide.

2
o
- |
..... ;;;;539*‘;;
D = “
— o
o3 HE / o =
o / i
/el W B
// /M)A
= I A
A N

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
v - CUTOFF NUMBER

Figure 4. Normalized propagation constant vs. cutoff
number, step-index fiber and
circular, metallic guide  ------- -
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TABLE 1. CUTOFF VALUES
FOR LOSSLESS SHEETS
u=V At Cutoff
o1, Moz, @ HE, HE, TEo;
330. 730., 0 0 541 54l
53,31, 60 75 3.58 3.06
32,91, 45 86 271 314
32,51, 0 1.02 584 3.26
53,52, 0 124 5.05 341
251, 0 174 3.05 3.76
Foo g, 0 1.84 3.05 383

3.2 Lossy Sheet Parameters

Suppose the sheet admittances are real or complex. Because loss terms are now present, the

propagation constant will no longer be real. Instead,

The field equations will contain the term

ebo,‘le—jbu,z’

(42)
where bo; is the normalized attenuation constant. Therefore, solutions with by; < 0 will describe
attenuated, propagating modes.

The remaining graphs are plots of both the real and imaginary parts of the normalized propa-
gation constant versus normalized radius. The normalized attenuation constants have been plotted
up to the cutoff values of the propagation constant. Figure 5 represents the propagation curves for
the TM,, mode for sheet admittances that are real. The solid curve is the step-index fiber plot.
Although the cutoff radius remained unchanged in the lossless examples, it has been increased for
gsheet parameters with small losses. For larger losses, the TMo, mode cutoff radius again becomes

that of the step-index fiber.






1.010

DN
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0.0 15.0 50.0 25.0 30.0 35.0 40.

S

Figure 5. Normalized propagation constant versus normalized
radius for TMg; mode with real sheet admittances.
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The corresponding attenuation curves in Figure 6 reveal that a large attenuation near cutoff

occurs for no, = —j.2 and becomes negligible near cutoff for ng, =

curve for the no, =

0
100.0 200.0 300.0

0.0

—j1. The propagation constant

~ 41 case is not distinguishable from that of the step-index fiber.

A\
\ '\\
\
k . \
! N\
‘ .
| N\
I A It \\
\ N
I N P
S
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
a

C

Figure 6. Normalized attenuation constant versus normalized
radius for TM,, mode with real sheet admittances.
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The same TMo; mode was examined for complex sheet parameters. While the propagation
curves of Figure 7 are now nearly coincident, the attenuation near cutoff has been reduced signifi-

cantly (Figure 8).
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_ /1l
0.0 5.0 10.0 15.0 20.0 25.0 30.0 735.0 40.0 45.0

Figure 7. Normalized propagation constant versus normalized
radius for TMg; mode with complex sheet admittances.

No1 702 a
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142 141 0 e
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(all four curves are nearly coincident)
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The effect of real sheet admittances on the HE;; mode is now examined. Figure 9 shows the

expected rise in cutoff radius.

. 7 i1

iy Ay

ED 5‘.0 16.0 1%.0 20.0 25.0 30.0 75.0 40.0 45.0
OO

Figure 9. Normalized propagation constant versus normalized
radius for HE;, mode with real sheet admittances.
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Note the slight change in scale of the attenuation curve of Figure 10. The lower values of no. show
less attenuation near cutoff than the TMo mode. However, for the no, = —j1 , the HEq mode has

the greater attenuation.
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Figure 10. Normalized attenuation constant versus normalized
radius for HE;, mode with real sheet admittances.
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Figure 11 shows a

towards the metallic guide limit.
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Figure 11. Normalized propagation constant versus normalized
radius for HE;; mode with complex sheet admittances.
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Figure 12 shows that the complex admittances also reduce the attenuation of the HE;; mode, but

not as large a reduction as that which resulted for the TMo; mode.
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Figure 12. Normalized attenuation constant versus normalized
radius for HE;; mode with complex sheet admittances.
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s 13 and 14 reveal the dependence of the propagation propagation and atten-

ode, increasing the parameter a has little
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9

Figure 13. Normalized propagation constant versus normalized
radius for HE;,; mode with complex sheet admittances
and variation in the parameter a.
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The general effect of the anisotropic sheet admittance is to raise the cutoff frequencies of the
propagating modes. The cutoff frequncies vary from those of the step-index fiber to those of the
circular, metallic guide as the sheet admittance varies from zero to infinity. Use of lossy sheets
also affected the cutoff of the lower order TM modes which were unchanged in the lossless case.
Attenuated, propagating modes exist when lossy sheet admittances are present, although it was
shown that the attenuation could be controlled by adjusting the sheet parameters and orientation.
The dielectric waveguide analyzed is a relatively simple structure. However, the method of
analysis used is easily extended to multilayered structures. Additional boundary conditions will
result, the jump immitance condition is applied at each sheet interface. The method of solution

will remain the same; solutions must be found for a complex valued dispersion relation.
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APPENDICES
APPENDIX A. DISPERSION RELATION ROOT COMPUTATION

As stated previously, the dispersion relation, (30), is quadratic in Jm. It is of the form

(A1) CoJ2 + C1Tm+C2 =0

with,

(AQG-) Co = frl’-r(l - jﬂxﬂo’cm)

C: = {‘jﬂluraolcf,, + K [pe (T +mm2 — n3) + €]

: 2
Jher mbopag mboao
(A2b) + oo {(-—qr) m-—2 e N3 + le}}
. 2 2
K mboao mboao 1 1
(A2¢) C2=K3n+':f'{(—;2—'> m+2—; 173+772}’(mbo)2 (;‘5-%-‘1—2) =0 .

By applying the quadratic formula, solutions for H-type and E-type modes are easily separated [3):

(A3) F(ao, bo) = 2CoTm + C1 £ 1/ CF — 4CoC2 = 0.

The HE modes are the solutions taken from the positive radical and the EH modes are taken
from the negative sign [4]. The method of solution is the Newton-Raphson technique; it is capable
of determining complex roots [13] and thus accommodates both the lossless and lossy cases.The
dispersion relation shown in (A3) is a function of two variables. The following FORTRAN program
solves this dispersion relation for selected parameters of the dielectric core and sheet admittances
(& e » 01+ 025 and o). Initial guesses for the Newton-Raphson technique are provided from a
knowledge of the cutoff conditions or from published data for the step-index fiber (2]. The calculated

root is then used as the next guess. As one of the variables is incremented, this is continued to

generate
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the dispersion and attenuation plots over the desired range. Cutoff values are obtained in a similar

fashion, the cutoff equations are substituted in the function subroutine section of the program.

C‘#*#**#********#*********#**t**#****#*************#***********#********

PROGRAM DISP

THIS PROGRAM CACULATES THE 2EROS OF THE DISPERSION RELATION FOR A
CYLINDRICAL WAVEGUIDE CONSISTING OF A DIELECTRIC CORE SURROUNDED

BY AN ANISOTROPIC SHEET IN FREE SPACE.

VARIABLE ASSIGNMENTS
BO NORMALIZED PROPAGATION CONSTANT
g%g NORMALIZED TRANVERSE WAVE NUMBER INSIDE

C

C

C

C

C

C

C

C

C

C

g

C A0 NORMALIZED RADIUS
C U KTO%AO, BESSEL ARGUMENT

c qQ GTO%AO, MODIFIED BESSEL ARGUMENT
c BGES INITIAL GUESS FOR BO

S INITIAL GUESS FOR

C
C
C
C
C
C
C
c
C
C
C
C
C

AO
VALUE OF DISPERSION RELATION

AGES
FOUT

MSTART ,MSTOP- RANGE OF BESSEL ORDER
HESTART ,BSTOP- RANGE OF MODE TYPE (HE=0, EH=1)

EPSR - CORE RELATIVE PERMITTIVITY
MUR - CO

RE RELATIVE PERMEABILITY

SHEET PARAMETERS
TRANSFORMED SHEET PARAMETERS

NO1,NO2,ANG-
N1,N2,N3 -

************#*************#*******#***********************************

BETWEEN SUBROUTINES.

COMMON /PARAM/ U,KT0,Q,GTO
COMPLEX U,KTO,Q,GTO,NO1,NO
REAL ANG,EPSR,MUR,R
INTEGER ITS2,NIN2

C
C
C
C
C
c

NORMALIZED TRANSVESE WAVE NUMBER OUTSIDE CORE

CORE

COMMON BLOCK PARAM PASSES BACK MEDIA DATA AND TRANSVERSE WAVE NOS.

,N01,NO2,ANG,EPSR,MUR,ITS2,NIN2

INTEGER MSTART,MSTOP,M,HSTART,HSTDP,H,ITS,INC2,AMIN

REAL AO,AGES,REF,DEC
COMPLEX BO,BGES,FOUT,F
EXTERNAL NEWT,CBJNS

3 FORMAT (1X,I2)

.--__——--—-----------_-—--------—---—-—...._-__—-—-—--_-———-——_-—---_—-

aan
|t
[~
-
=
(=,
b=
=,
.4
ol
-
o
—
=
4
3
S
w
[72]

UPEN(UNIT=79,STATUS=’DLD’)

C DIELECTRIC PARAMETERS
READ(79,7)EPSR,MUR
7 FORMAT(1X,2(F8.4,2X))
C SHEET PARAMETERS
READ(79,9)N01,N02,ANG
9 FORMAT(1X,5(F8.4,2X))
C MIN RADIUS,MODE ORDER/TYPE
READ(79,11)AMIN,MSTART,MSTUP,HSTART,HSTDP
11 FORMAT(1X,5(14,2X))
C INIT. VALUES AND ITERATIONS

READ(79,13)BGES,AGES, ITS
13 FORMAT(1X,3(F10.5,2X),I3)






APPENDIX A. (Continued)
CLOSE(UNIT=79)

ANG’)

C
8 OPEN OUTPUT FILE

OPEN (UNIT=80)

WRITE(80,*)(’ EPSR MUR’)

WRITE(80,7)EPSR,MUR

WRITE(80,*) (> NO1i NO2

WRITE(80,9)N01,N02,ANG

WRITE(80,*) (> MIN RAD MSTART  MSTOP  HSTART HSTOP’)

WRITE(BO,ll)AMIN,MSTART,MSTOP,HSTART,HSTOP

WRITE(80,*)(’ BO GUESS A0 GUESS ITERATIONS’)
c WRITE(80,13)BGES,AGES,ITS
Commmmmmmemmmmm—mmemee—==m—om o s s s o e m e Tl

C******#***************************t******************##************##*

C CALCULATE ZEROS OF DISPERSION RELATION

C********t*#*****************************#*********t***********#*******
WRITE(6,*) (’DO YOU WANT ITERATIONS PRINTED?’)
WRITE(6,*) (’REAL ROOTS: Y(1) N(2) CUMPLEX:Y('i),N(‘2)’)

READ(6,3)NIN2

WRITE(6,*) (’INPUT RADIUS INCREMENT?’)
HRITE(G,*)(’DEC=IDEC*.1’)

READ(6,3) IDEC

REF=SQRT (EPSR*MUR)

WRITE(80,%)(’ MODE TYPE’)
WRITE(80,*)(*H=’) ,H
D0 1 H=HSTART,ESTOP

DO 2 M=MSTART,MSTOP
BO=BGES
AO=AGES
R=FLOAT (AMIN)
DEC=FLOAT(IDEC)*.1
ITS2=ITS
WRITE(80,*) (* ROOT FILE’)
WRITE(80,*) (’M=") M
WRITE(80,*)(’ A0 BO U
WRITE(80,39)

39 FORMAT (3(/))

PROPAGATING MODES

DO 4 WHILE ((REAL(BO) .GE. 1.)
& _AND. (REAL(BO) .LE. REF)
4 .AND. (AO .GT. R))

CALL NEWT(BO,AO,M,H,FOUT)
WRITE(6,*)A0,B0,U
WRITE(80,14)40,B0,U,FOUT

14 FDRMAT(11,2(F10.5),2X,E12.5.4(F8.4)
A0=AO-DEC

4 ENDDO

% CONTINUE

CONTINUE
CLOSE (UNIT=80)
STOP
99 END
8
C*t*******#**t#****#*t******#*********#******

C COMPLEX FUNCTION F CALCULATES THE VALUE OF
C***t*******t*****#**t************t#**#**t***

[elelelel

Qo

_-------——-———_-.—---———--_---—-—-—---------..

(]

Q FOUT’)

DO LOOP SEARCHES FOR ROOTS WITHIN THE BOUNDS OF BO FOR

)

******#*******************

THE DISPERSION RELATION
o o o o ok o o o o o R RO

— - ———— = e S
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APPENDIX A. (Continued)

COMMON /PARAM/ U,KT0,Q,
COMPLEX U,KT0,Q,GTO,NO1
REAL ANG,EPSR,MUR,R
INTEGER ITS2,NIN2

-——---—-------—---—----------—--o-—----—----———--———-——--_--—--—--————

aa

FUNCTION F_VARIABLES
FJ - STORES VALUES OF BESS_FUNC
- STORES VALUES OF MOD BESS FUNC
JM - DERIVATIVE OF BESS FUNC / (BESS ARG =* BESS FUNC.)
- ABOVE RATIO FOR MOD BESS FUNC

€0,C1,C2 - COEFFICIENTS OF QUDRATIC FORM OF DISPERSION RELATION
DISCR - QUADRATIC FORM DISCRIMINANT

QOOOOONOOaO0

INTEGER H

REAL AO,RANG

COMPLEX Ni,N2,N3

COMPLEX BO,JM,KM,MB,CO,CI,C2,DISCR,FK(5),FJ(S),CJ

PI=DCUNST(’PI’)

RANG=ANG*PI/180.

N1=N01*CDS(RANG)**2+N02*SIN(RANG)**2

N2=N01*SIN(RANG)**2+N02*COS(RANG)**2

N3=(N01-N02)*CUS(RANG)*SIN(RANG)

KTO=CSQRT(EPSR*MUR*(1.,0.)-B0**2)

GTO=CSQRT(BO**2-(1.,O.))

U=KTO=*AO

Q=GTO*AOQ

CALL CBJINS(U,M+2,FJ)

CALL CBESNK(GA,M+2,FK)

IF (M .EQ. 0) THEN
JM=(-1.,0.)*FJ(M*2)/FJ(M+1)/U
KM=-FK (M+2) /FK(M+1)/Q

ELSE
JM=(FJ(M)-FJ(M+2))/FJ(M+1)/U
KM=-(FK(M)+FK(M+2))/FK(M+1)/Q
ENDIF
cj=(0.,1.)
MB=FLOAT(M)*B
C0=EPSR*MUR*(1.-CJ*NI*AO*KM)
C1=-CJ*Ni*MUR*AO*KM**2+KM*(MUR*(1.+N1*N2-N3**2)+EPSR)
& +CJ*MUR*((MB*AO/Q**2)**2*N1-2.*MB*AO*NS/Q**2+N2)/AO
C2=KM**2+CJ*KH*((MB*AO/U**2)**2*N1+2.*MB*AO*NB/U**2+N2)/Ao
g - (MBX(1/Un#2+1/Qex2))*x2
DISCR=CSQRT(01**2-4.*CO*CZ)
IF (4 .EQ. 1) THEN
DISCR=-DISCR

ENDIF
F=JM+(C1+DISCR)/(2.%CO)
RETURN

END

C*t*#*#****#***********************#********#**********#***#**#***#***#
¢  SUBROUTINE NEWT PERFORMS NEWT-RAPHSON ITERATIVE PROCEDURE TO

¢ CALC RODTS OF DIPERSION RELATION
C*t*t*****##***t************#**##t*#*##***********#*********t*******#t*

o]

c
COMMON /PARAM/ U,KT0,Q,G N01,N02,ANG,EPSR,MUR,ITSQ,NIN2

TO,
COMPLEX U,KT0,Q,GTO,NO1,NO2
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[e1zlsizigiel

REAL ANG,EPSR,MUR,R
INTEGER ITS2,NIN2

-——--—---—--—---—----—------—-----—---—---—--_--_----—---—----—---—-—-

——-o----—-_---_—---—--_—-----—---—--——---——-_—----—--_—_---——-----—--—

SUBROUTINE NEWT VARIABLES
FP - APPROXIMATES DERIVATIVE OF DISPERSION RELATION OVER

THE INTERVAL INC IN BO

INTEGER M,H

REAL AO

COMPLEX BO,FOUT,F,FP,INC
INC=(.10E-06,0.)

IF (NIN2 .LT. 0) THEN
INC=INC*(1.,1.)

%!?IF

D0 12 WHILE ((REAL(BO) .GE. 1.)

& .AND. (REAL(BO) .LE. (SQRT(EPSR*MUR)))
& JAND. (I .LT. ITS2))

FP=(F(BO+INC,AO,M,H)-F(BO,AO.M.H))/INC
BO=BO- (F(BO,A0,M,H) /FP)
FOUT=F (BO,AQ,M,H)
IF (ABS(NIN2) .EQ. 1) THEN
WRITE(6,21)40,B0,U,Q,FOUT
21 FORMAT(1X,9(F8.4,2X))
ENDIF
I=I+1
12 ENDDO
RETURN
END

33






APPENDIX B. DERIVATION OF CUTOFF CONDITIONS

B.1 Limits at Cutoff

To find the cutoff conditions of the various modes, the dispersion relation

Tlerp (11— jmaoKm)
4 T { ~ 510K + Kimlpin (14 mama = 75) + ]
. 2
JHer mboa mboa
+— (——Orq m -2 20773'*'772}
aop q q

K mbga mboa 1 1\?
(B1) +’Cfn+%;—[(—frq)m+2 00n3+ﬂ2]—(mb0)2 (;;+—5> =0 .

u?

is examined in the limit as

(B2a) g—0
(B2b) b—1
(B2c) U — G/ Erphs — 1

Under these conditions, K., takes the following form [4]:

1
(B3a) m=0; Ko—*——-—r—'
g?in=l
1 1, ¢
m 1
B3 I Kp——— —
(B3c) m>1 Km 2 2m-1)

B2 Casel. : m>1

Equation (B1) is multiplied out and the factors of ¢ are collected. Note that

2
1 1 1 2 1
(Bse) (55+?) = tag T
m? m 1
B4b K: = — 4+ ——=+t 1712
(B4 PO o P TR
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APPENDIX B. (Continued) 35

The dispersion relation will be of the form X/¢* +Y . Therefore, constant terms with no ¢

dependence w

ill be dropped. They will approach zero as the equation is multiplied by ¢* and ¢

approaches gero. The surviving terms are

1.,.
J:a(q—z)(mlfr#vaom)+

Jm(;;)ufhu,aom’(b?, ~1)]

1
Jm(—)['—jnll“rao

— 2jnap,mbo — m(p, (1 + mm2 — n2) + € )]

1 1 mb b
(B5) - (RE-D-() [—— ey, 2T ¢ ]
Since a3(b3 — 1) = ¢* ,(B5) actually contains terms of highest order 5 ,
Ji(ﬂg)jmefurao
(——) [.7771#1 (—rﬁ - maf 1) — 2jnapy — pe(1+mm = 13) = e,]
m m ao 2m ) mag _
(B6) —E(;-O'—r>—?2-———((——)1714’2—;2—7?34'172)—0 .

Multilplying (B6) by ¢*/m , the result is,

(B7)

-73;3'771(' fgrao

} m ap .
T {thur (— - ) — 2jnape — He(1+mm2 — n) - e']
ag m-—1

1 /m a 2m ] ma
——-(—————0—>————l-(( u,°)m+2——na+nz)=0 :

which is equivalent to (37), the cutoff equation for the m > 1 modes.
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B.3 Casell. : m=1

For the m =1 cutoff conditions, use K, from (B3b) and

1 Ini q
B8 K2 = = — —2 +(In3)
(58) = Lo+ Ung)
(B1)is multiplied by Tf—; , this allows removal of the terms containing (Km)? terms up to the order

315 , and constants with respect to g. The surviving terms are
q 2
(B9) (L)l oo + Ky = m*tE] =0
2
With applications of De I’Hospital’s Rule, this is equivalent to

(BlO) —jnlu,aojl +1= 0.

Equation (B10) is the same as (39), the cutoff equation for the m =1 modes.

B4 Caselll. : m=20

Letting m = 0, the remaining terms of (B1) are,

J2e, pr (1 = jmaoko)

; JHeM2
+Jo{—-ymmaoK§ + Kolur (1 +mm2 — n2) + €]+ _;0__}
K
(B11) +K3+ T2 =0
0

This equation actually factors into the following two solutions

KO(‘r - 77%)
BlZa TEC&SE J = ——
( ) °7 & u. (1 — imaoKe
-1
(B12b) TMcase  Jo= — (Ko +jZ——2).
r o]

As K, becomes large at cutoff, these reduce to the quantities in (40) by inspection,

(B13a) TMon modes : Jo(u) =0

Jo(u) €& — 13
B13b TEo, modes : ——r= = T —
( ) on uJo(u)  JMaoErir

From equation (B12b), it is apparent cutoff frequencies of the lossless TMo; modes are not

affected by sheet parameters.
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