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Abstract

An outstanding issue in the computational analysis of time dependent prob-

lems is the imposition of appropriate radiation boundary conditions at artificial

boundaries. In this work we develop accurate conditions based on the asymptotic

analysis of wave propagation over long ranges. Employing the method of steepest

descents, we identify dominant wave groups and consider simple appro_mations to

the dispersion relation in order to derive local boundary operators. The existence

of a small number of dominant wave groups may be expected for systems with

dissipation. Estimates of the error as a function of domain size are derived under

general hypotheses, leading to convergence results. Some practical aspects of the

numerical construction of the asymptotic boundary operators axe also discussed.

1 Introduction

Many interesting and important problems involving wave propagation are posed on un-

bounded spatial domains. Examples include wave propagation in the atmosphere and

the ocean as well as flows past bodies and in channels and tubes. For purposes of numer-

ical computation, an artificial boundary is often introduced. For long time computations

the interaction of the solution and the artificial boundary cannot be avoided. This may
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result in unacceptablylarge errors throughout the computational domain, especiallyif
the systemhas instabilities. (For an exampleof this seeHagstromand Keller [11].)

The primary purposeof this work is to developaccurateboundary conditions to be
imposedat suchboundaries. We are also interestedin establishingerror estimatesand
convergencetheorems,standardcomponentsof theoretical numericalanalysiswhichseem
rarely to havebeenstudiedin the context of time dependentpartial differential equations
on unboundeddomains. For linear, separabledifferential operators,the exact boundary
conditions may be representedin terms of appropriate eigenfunction expansionsand
transform variables. (See,e.g., Gustafssonand Kreiss [7].) For example,supposex is

the spatial coordinate normal to the boundary and the x-dependence of the transform

solutions takes the form e_(°)x with s the dual variable to time and l indexing a tangential

normal mode. An exact relation at the boundary is given in transform space by:

(0__xx)_,(s)) _ta = 0. (1)

Unfortunately, the expression of this relation in the original variables is typically nonlocal

in both space and time. For computational efficiency, the added storage and arithmetic

operations required by the implementation of nonlocal conditions must, to the extent

possible, be avoided. Ideally, local boundary operators would be used. These may be

obtained using polynomial or rational approximations to the dispersion relation, At(s),

which in turn can generally be accurate only in a restricted neighborhood of transform

space.

An approach to the derivation of boundary conditions is, evidently, to identify re-

gion(s) in transform space where polynomial or rational approximations are to be made

and, then, to compute the coefficients of the approximation. In their pioneering study

of hyperbolic problems, Engquist and Majda [5] considered a particular high frequency

limit. For problems with dissipation, on the other hand, this limit is less likely to lead

to accurate results. In this work we consider the use of asymptotic expansions of waves

propagating over long distances computed using the method of steepest descent. A

consequence of the dissipative terms in the equations studied here is the association of

growth or decay with each wave group. By locating minimum decay (maximum growth)

rates, we locate appropriate regions for the required approximations. That is, we iden-

tify a small number of dominant wave groups, characterized by (.q_, l_), and compute local

linear approximations to the dispersion relation,

)_t,(s) _ .Xt,(_,) + )t',,(._i)(s - _,). (2)

Substituting this into (1) leads to a local operator. The complete asymptotic boundary

condition is defined by the composition of a small number of these operators:

17I - At,(g,) - At,(g,)( - g,) u = O. (3)



In Sections2 and 3, wepresentin detail the asymptotic analysisand the subsequent
derivation of asymptotic boundary conditions. Somenumerical considerationsare dis-
cussedin Section 4. In Section5 we deriveestimatesof the error as a function of the
sizeof the computational domain. Theselead to the convergenceof the solution of the
problemon the truncated domain to the solution on the full domain.

A primary motivation of this work is the developmentof accurateboundary condi-
tions at artificial boundariesfor the Navier-Stokesequations.This is carried out in [10]
for incompressibleflows, whereextensivenumericalexperimentsare described. Earlier
applicationsof someof the ideasgiven here appear in [8] and [9]. Boundary conditions

for similar equations with constant coefficients have been derived by Halpern [12] and

Halpern and Schatzman [13].

2 Asymptotic Expansions

We consider, for definiteness, a general system of equations in a semi-infinite channel:

Ou Ou v OU 02u 02u
0-7+ + oy + wu = + (4)

z>__0, yo_<y<_yl. (5)

These are supplemented by boundary and initial conditions defining a signalling problem:

(6)

Dou(x, yo, t) =0, (7)

Dlu(x, yl,t) =0, (8)

Eou(O,y,t) = g(y,t). (9)

We assume that the matrices Do, Da and E0 are such that the problem is well-posed.

We allow a stratified medium; that is U, V, W, A and B are functions of y. Note that

equation (4) may be a far field approximation to a problem whose coefficients are either
nonlinear or functions of x.

A representation of the solution of problem (4-9) may be obtained by means of Laplace

transforms and eigenfunction expansions. The eigenvalue problem to be solved is:

svt + AtUvt + V dvt _ d2vt
dy + Wvt = A_Avt + lJ--_y 2 , yo <_ y <_ Yl,

(10)

Dov,(yo;S) = O, Dlv,(y_;s) = 0. (11)
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For solutions, u, which grow at most exponentially in time we may restrict attention to

eigenvalues, At, satisfying:

_()_l(s)) < 0, _(s) sufficiently large. (12)

We denote by N" the set of indices of eigenvalues which meet the condition above and

will refer to the function At(s) as the dispersion relation. Let

/2O(y; s) = e-'tg(y,t)dt. (13)

The assumption of well-posedness then implies the existence of a unique collection of

functions al(s) such that:

Eo(Y'_l(s)vl(y;s))ZEAr = _(y;s). (14)

If cj(t) is the inverse transform of at(s), a final expression for u may be obtained:

=
LEAr

j_Otu,(x,y,t) = c,(p)q,(x,y,t- p)dp, (16)

where
1

qt(x, y,t) = _ri fc e't+x'(°)" vt(y; s)ds (17)

and C is an appropriate inversion contour.

To compute asymptotic expansions of u, valid for x large, we must evidently find

expansions of ql- If (17) is evaluated along rays t = -yx , x >> 1, the exponent becomes

x("Is + At(s)). (18)

In order to use the method of steepest descent, we seek points s* such that:

_',(s') = -_, (19)

> 0, (20)

= 0. (21)

Then, assuming that for 0 < 7,,,;,, < 7 < 7,=_ < _ there exists s*(7) satisfying (19-21)

with inversion contour, C, which can be deformed to the steepest descent path, we have:

s (-_)) = Cj(x,y,t), (22)ql(x,y,t) ,'_ e_(_'(_)(,s)+_'("(_))) v_(y; * t



t
3'mi_ _<- _< 3'._a_. (23)

X

Substituting these into (16) formally yields an approximation of ut for t > 3".._x;

ft--_minX
u_(x,y,t) _ Jm_(0,t--_,_,x_)c,(p)¢l(x,y,t - p)dp. (24)

This representation has a simple interpretation: the signal data, c_, generates wave pack-

ets which propagate at their group velocity. At the point (x,t), x >> 1, the solution is

approximately the superposition of waves generated at times varying from t - 3'marX for

the slowest waves to t - 3'mi,_x for the fastest.

Now consider the specialization of these results to hyperbolic systems. In particular,

we take the wave equation written as a first order system:

and suppose that Y0 = 0 and yl = 1. For an appropriate choice of boundary conditions

we have:

£,(s) = -x/s 2 + 127r2, (26)

d_ -s

ds - x/s2 + l  r2" (27)

From (27) we see that group velocities ranging from 0 to 1 are associated with values of

s -- iw, ]w I > l_r. Furthermore, _(&) = 0, that is the wave packets do not decay expo-

nentially as they propagate. These observations hold in general for the high frequencies

of all hyperbolic problems. (See, e.g. [15].)

For problems with dissipation, on the other hand, it may be possible to further sim-

plify the results. Then, some exponential decay rate may be associated with each wave

group. That is:

R(Ts* + A_(s')) # O. (28)

For general signal data the large x behavior will be dominated by the wave group with

least decay (which may be growth for problems with instabilities). Therefore we seek 3'

such that the expression above is maximized. Setting to zero the derivative of the decay

rate with respect to 3' yields:

ds*
N(s* + --7-(3' + A_)) = 0, (29)

a3'

which by 19) reduces to:

=o. (30)
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That is, assuming (19) defines a curve in s space, critical points of the decay rate occur

as the curve crosses the imaginary axis.

Suppose, for simplicity, that a unique solution of (30), _t, exists. (If s* is imaginary,

its complex conjugate must also be used.) So long as this wave packet is excited by

the initial data, we expect that the dominant contribution to the convolution integral

defining ut(x, y, t) will come from a neighborhood of

(_-p)
x

Introducing a local approximation to el we obtain:

$--_[rn_n.V

ud x, y, t) .._ J,,_(o.t-_m°_x)

Here we have:

where s" is evaluated at "_l.

(31)

t-p

c,(p)eX°*F(x + --_,t - p)v_(y)dp,

• "1 (_})3,2

F(z,r)=eS_A,+_ 1

(32)

(33)

_? = _,_"+ _(_'),

dAt (s*A_= _ )=-;r,

1 d2Al

V :- _ ds_ (s*),

Also we assume that t > _tx.

(34)

(35)

(36)

The expressions above

represent a restriction to the neighborhood of a single point in the dispersion relation.

In what follows this restriction will enable us to find an asymptotic boundary condition

which consists of local operators. Furthermore, techniques will be given for the numerical

computation of the various quantities defined in (34-36).

3 Construction of the boundary conditions

We now suppose that an artificial boundary is located at x = r. The representation of

the solution (15-16) may be manipulated to yield a variety of exact relationships at the

boundary. For example, if the matrix A is positive definite, a characterization of the

exact boundary conditions is that a collection of functions, rdt), exists such that:

(0ur ( )_ ,y, _ _(,,y,t- p) dp.
u(r,y,t) = ,_ fo rt(p) qt(v,y,t - p)

(37)



In many casesthe unknownfunctions rl may be eliminated to yield a direct relationship

between u and 0_, Of course, this condition will be nonlocal in y and t and, in general,

too difficult to use.

If, however, the asymptotic expansion given in (32) is valid, it may be used to develop

a local asymptotic boundary condition. The Laplace transforms of _ and qt are related

by:
0_tJ

= v;s). (3s)
The steepest descent result involves the restriction of the transforms to a neighborhood

of s*(_t). An asymptotic expansion of the x derivative may then be obtained by replacing

Al(s) by its Taylor series about the critical value of s:

A,(s) _ Az(s'('_,)) + A_(s - s'('_)) + A_(s - s'(-_,)) 2 + .... (39)

Using, for example, the first two terms we have:

--~( + (40)
Ox z Ot J qt.

These may be substituted into (37) to finally obtain a condition on ut. The time derivative

is brought outside the integral to further simplify the expression. This involves the

neglect of terms from the limits of integration which should be exponentially small. The

asymptotic boundary condition we propose is, then, given by:

-- -- ( ,,_ 1-_-_'_
Oul _ _ + ul.
Ox l OtJ (41)

A hierarchy of conditions may be obtained by use of more terms in the Taylor series.

These would involve derivatives of higher order. Their stable implementation would

require the use of Pad6 approximants, as discussed by Engquist and Majda [5]. For

example, a potential approximation at the next order is:

(1-A"O-s')) (_x"r;_'_,A2.(o,_ -A,(s'))ut=A_(_-s')u,. (42)

The condition derived involves only one normal mode, ul. We may, however, apply it

directly to u if I is such that _(A0) is maximized. For problems where a small number of

modes have similar minimum decay rates, a product boundary condition is used. Also,

if the criticM s" is imaginary we must include its complex conjugate in the product. We

have in general:

[l_I(_xx0 _ A0_,- A_.a0 ) (complex conjugate)] u =0._-_ (43)

We have never used more than two modes.



4 Numerical considerations

In order to apply the asymptotic boundary conditions derived above, we must find _t

as well as the first two terms of the Taylor series of At. For fixed s, the substitution

w = ,kv in conjunction with an appropriate discretization of the y derivatives leads to a

generalized matrix eigenvalue problem:

M(s)r=ILr, r= t_ "

This may be solved using standard linear algebra software which implements, say, the

QZ algorithm [6]. An analysis of the discretization error is given by Kreiss [17]. The

asymptotic expansion requires that s be imaginary and d_ be real. As s varies along the

imaginary axis, the latter implies a maximum or minimum for i_(t). Our problem is,

then, to maximize N(lt(s)) as s varies over the imaginaries. This is a line search problem

for which many strategies have been developed, though they may be expensive to carry

out. (See, e.g., Dennis and Schnabel [31. ) For many of our examples, s = 0 has been the

solution. A necessary condition for this is that _r0_ be real and negative. This may beds _, ]

checked by solving (44) only once.

Once the critical value of s has been found, we must compute ,k_. Differentiating (44)

with respect to s yields:
d,k dM

(M - AL)-_ = (-d-_sL - --_-s )r. (45)

Since the matrix on the left is singular, A_ a& may be obtained from a compatibilityds

condition. If _ is a left null vector we have:

_T dM r

A_ - _ (46)
fTLr •

The cost of this computation is typically negligible in comparison with the cost of finding

the critical frequency. Expressions for more terms in the Taylor series can be similarly
found.

There are a variety of reasonable numerical implementations of the boundary con-

ditions. For conditions involving derivatives of at most first order, many stable dis-

cretizations axe known. Product boundary conditions (for wave equations) axe studied

by Higdon [16]. He develops the useful principle of employing products of stable dis-

cretizations. We have successfully employed this procedure throughout our numerical

experiments.
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5 Error estimates

Estimating the error caused by the introduction of an artificial boundary can be broken

up into two parts. The first is to estimate the residual resulting from the application of the

boundary condition to the exact solution. The complete error estimate then follows from

estimates of the solution of the initial boundary value problem in terms of inhomogeneous

boundary data. The latter is simply a proof of well-posedness.

For reference we write down the problem satisfied by the error, e(x, y, t).

Problem 1

Le =0, (x,y)C (0,r) × (y0,Ya), (47)

_(x,U,0) = 0, (48)

Dje(x,yj,t)=O, j =0,1, (49)

Eoc(O,y,t) =0, (50)

Be(r,y,t) = Bu(r,y,t). (51)

Here, L is the differential operator appearing in (4) and B is the asymptotic boundary

operator appearing in (43).

A general approach to the investigation of the effect of the boundary conditions on the

well-posedness of an initial-boundary value problem is to freeze coefficients at each point

of the boundary and to study solutions of the frozen coefficient system. In particular, we

must show that no solutions of the frozen coefficient problem of the form:

e"t+"x+i_'_'u, _x _> O, _ > O, (52)

are in the null space of the boundary operator. For problems with decay in the dominant

wave groups, that is NA_ < 0 in (43), it is clear that an eigensolution satisfying the
conditions above cannot exist as:

_(_ Ao 2x)>O.-- li -- li (53)

(Recall that Aa is real and negative.)li

Translating this condition into a bonafide proof of well-posedness requires further

assumptions on the coefficients of (4). Indeed, the conditions we have constructed may

result in an overdetermined problem if A is rank deficient. Complete discussions are given

by Eidel'man [4] for the parabolic case and by Strikwerda [19] for incompletely parabolic

systems, though in general their results require boundary operators of low order. See

also the more stringent requirement of dissipativity introduced by Barry, Bielak and

MacCamy [1], which may be necessary for the estimates used below. We will simply



assume that Problem 1 is well-posed.

interior, I1" I1(0,_)×(_0,_i), and on the boundary, ]l" I1(_o,_,) and define:

Ilwlll= IIw(.,.,

ZIlWlll,. = Ilw(x,., t)ll(y0,u,)dt,

and, for functions of t:

We introduce appropriate Sobolev norms in the

(54)

(55)

_0 '°°Iwll = [w(t)ldt. (56)

We then make:

Assumption 1 3 C > 0 independent of r such that,

Ilell_ _< CIIBulII,_. (57)

(In what follows we mean all constants to be independent of T unless otherwise stated.)

The requirement that C be independent of T can easily be dropped, though we must

be able to estimate its growth in order to estimate the rate of convergence of the solution

on the truncated domain. For example, in the error analysis of asymptotic boundary

conditions for second order scalar hyperbolic equations in exterior domains as given by

Bayliss and Turkel [2] and Hariharan and Hagstrom [14], algebraic growth of C with T is

encountered. For the problems under consideration, however, Assumption (1) is typically

satisfied due to the exponential decay of solutions. An interesting possibility is to use

weighted norms in x, in which case C may decrease with increasing r.

We proceed to estimate Ht3uHl,r. We make a variety of simplifying assumptions, as

our main purpose is to extract the dependence of the error on T as well as to give the flavor

of tile necessary computations. Many of the assumptions could be relaxed somewhat,

though their verification for any practical problem is likely to be difficult. We freely quote

error estimates from the asymptotic theory of integrals with large parameters. These may

be found in any of a variety of texts on the subject, for example Sirovich [18].

We make, then, the following assumptions:

Assumption 2 For all l E A/" and all 3' • [0, o¢) there exists a unique (up to complex

conjugation) s*(7) satisfying (19) and the contour of integration in (17) can be deformed

to the steepest descent path through s* without passing through singularities of the inte-

grand. Furthermore, for r sufficiently large, DJ(qt - et) is absolutely integrable in 7 and

the integral is uniformly bounded in l where D represents a derivative in t or x and j < 2.

Assumption 3 There exists lo • .IV" such that a unique z_to exists at which _(Ts" +

.\t0(_')) ------#0 attains a global maximum. [f s'(_,o) = O, then, for I = lo, -_(s'(7)) = 0 for

,ll 7 in a neighborhood of _fto. Furthe,'more, 35 > 0 such that _(7s* + )_t(s')) < tto -

for all _/ and l _ lo.
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Assumption 4 There exists z such that, for 0 < j < 2:

fO °
¢z"'(")hj,j(p)dp< go < _,

1¢ Io

(58)

where,

z,(p) = _(_'(v)p + _,(s*(p))),

I[vt("s*(P))ll(u°'u_') (Is'(p)V + IAds'(p))V).
ht,j(p) = V/-(-_,l,{(s.)l

(We will always take _"> z.)

(59)

(60)

Assumption 5 There exists K1 > O, K2 > 0 and K3 > 0 such that,

Ict[1 <_ K_lctol,, l # 4, (61)

[lU,olla,__ K_lc,olxllq,oll,,_,

Ic,oll_ g3llull_,o.

(62)

(63)

Assumptions (2 - 4) are constraints on the coefficients of equation (4). They are easily

verified in the interesting special case of the advection diffusion equation with constant

coefficients and the usual (e.g. Dirichlet or Neumann) conditions on the channel wall.

Assumption (5) is in effect a restriction to signal data which excites the dominant wave

group. If the data is such that only a certain wave group is excited, that information

should be used to modify the asymptotic analysis.

The main estimates are derived in the following collection of lemmas, whose proofs

depend on the validity of Assumptions (2 - 5).

Lemma 1
1

IIBq_01ll.,= 0(-_). IIq,olll._.

Proof: We have, by our assumptions on the properties of the transforms,

(64)

IIq,olla._= I1¢_011a,_(1+ 0(_)). (65)

Writing out the integral expression for IlCt0ll_,,and introducing the change of variables

p = t yields:
"g

r e'f(P)lcos(rg(p) + O(p))lh(p)dp. (66)

Here,

f(p) = _(s*(p)p+ )Wo(S*(p))), (67)
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g(p) = _(s'(p)p + _,oO'(p))), (68)

II,to(-;_'(p))ll(_o,_) (69)
h(p) = _/i.A_,o(s.(p))l ,

1

O(p) = -2 arg (AT°O*(P)))" (70)

Again, by assumption, f(p) has a maximum at p = "_10= p0. The approximation of

this integral by Laplace's method is slightly complicated by the presence of the absolute

value of the oscillatory term. There are two cases to consider. If s*(po) = 0 then, by

Assumption (3), it is 0 in a neighborhood of po and by direct computation we find that

g(P) is constant. Then Laplace's formula may be directly applied. If s*(po) :/: 0 then

g'(Po) = ._(s*) -fl 0. Then the generalization of Laplace's formula given in Theorem (2)

in the appendix applies. In each case the result is:

11¢_011,,_= I(_'.o(1 + o(-rl_,)), (71)
3"2

where K is independent of r. Similarly, asymptotic expansions of B(°,°)% can be

computed. In particular we have:

[]Bqlo]ll,r = IlB¢_0l[_,,(1 + O(1)). (72)

As above we consider the integral expression for [IB¢,0[[:

C/0r e_Z(P)[cos (rg(p) + O(p))[-h(p)dp. (73)

Here f and g are as above while t} and it are determined by:

h(p) = Ilvzo(';s'(p))ll(_0,_,)IB(s*(p),A_o(S'(p)))l
@A,L; (s.(p)) [ , (74)

1 A" *
O(p) = arg(B(s*(p),A,o(s*(p))))- _ arg( ,0(s (p))). (75)

Again we will compute an _ymptotic approximation to this integral using Laplace's

formula if s*(po) = 0 or Theorem (2) if it isn't. We note that B has been chosen to have

a simple zero at p = po, which implies that:

We thereby conclude:

i(p) = o(p- p0), p -_ po. (76)

]]B¢,0lla., : o(_)]]¢,olla,,.

The conclusion of the lemma follows directly.

(77)
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Lemma 2

IIBu,olll,¢= O(1)11U,o111,¢• (78)

Proof: By direct computation,

Bulo = Cto * Bqto + boundary terms. (79)

The asymptotic analysis indicates that the boundary terms are exponentially small. We

then have, using Lernma (1) and Assumption (5),

IIBu,0111,__ IIc,o*Bq,olll,,
<_ Ic,ollllBq,olll,_
< o(_)lc,ol,llq,oll_,_
__ 0('_) II Ulo llX,'r •

(80)

Lelaama 3 There exists rI > 0 such that:

IIB(_ - _,o)11,,,= o(e-'_)ll_,oll,,, • (81)

Proof: We directly estimate IIB(u - U_o)ll:

IIB(u - U,o)lll,,_ II_ c,, Bq, lll,_ _ IClc,01,_ IIB¢,II1,,,
l_lo l_lo

(82)

where we have used Assumptions (2) and (5). From the integral representation of 11¢,11

we have:

Z I[ B¢/l[l''r _ _ l_lO fO0O°eH'(P'ht(p)dp' (83)
l#lo

where

fl(P) = N(s*(p)p + A,(s*(p))), (84)

[B(s*(p), At(s'(p)))[ (85)
h,(p) = IIv,(';s*(p))ll(_o,u,) X/IAT(s*(p))l

However, by Assumptions (4) and (3), the expression on the right is bounded by:

Ko_-_re("-O(_-6).
(86)

We have, therefore, for some constant K4:

K4 e 67 (e_,o
liB(u-U,o)ll,,_ < _ - Ic,ol,).

(87)
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By Assumption(5) and the asymptotic expansion of [[qs0[[ computed in the proof of Lemma

(1), the term in parentheses is bounded by [[Uto[[1,,. We have thus shown that 7/> 0 can
be chosen such that:

[[B(u - U,o)ll = O(e-")llu,olll.., (88)

completing the proof of the lemma.

Lemma 4 There exists K such that:

eT P.o

IlBulll,. < K--Ilull,,o.
T

(89)

Proof: We have, by lemmas (2) and (3):

IIBulll._ _<IIBu,oll,., + IlB(u - U,o)lll., _<0(1)11U,o111.,. (90)

Furthermore, using the asymptotic expansion of [let0 Ill,, computed in tile proof of lemma

(1) along with Assumption (5)we find:

(91)

Combining these equations yields the statement of the lemma.

Finally, by combining Assumption (1) with lamina (4) we obtain the desired error
estimate:

Theorem 1 Suppose e is the solution of Problem 1 and Assumptions (1-5) hold. Then

j'or r sufficiently large 3t_ " independent of r and the data such that:

_ ertto

Ilell_ ___K--llulll,o. (92)
T

6 Concluding Remarks

We have developed a general technique for the construction of asymptotic boundary

conditions for problems with dissipative wave propagation. Theorem 1 clearly implies

the convergence of the solution on the truncated domain as r --, oe if #0 _< 0. The

factor of x, which is a direct consequence of the use of our asymptotic boundary con-

ditions, is of importance when #0 is small. Precisely such a situation occurs when our

technique is applied to the incompressible Navier-Stokes equations for moderate to large

Reynolds numbers. This is studied in detail in [10]. Applications to other problems in

computational mechanics are also under consideration.
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A Asymptotic expansion of an integral

In this section we compute the asymptotic expansion as r _ o¢ of the following integral

which is needed for the derivation of our error estimates:

f P+I = e'](P)lcos(rg(p ) + O(p))lh(p)d p. (93)

The assumptions we will make are:

Assumption 6 • The function f attains a global maximum at Po C (p_,p+) and is

thrice continuously differentiable in a neighborhood of po with f"(p0) ¢ 0.

• The function g is twice continuously differentiable in a neighborhood of Po and

9'(po)¢ o.

• The function h is bounded outside a neighborhood ofpo and near p = po satisfies:

h(p) = h0(p- po)_ + h,(p - p0F +1(1 + O(p - p0)), (94)

where ho _t 0 and, if m is odd:

hx - (m + 2)h0 f"(po)
3f"(po-------_5¢ 0. (95)

• The function 0 is continuous in a neighborhood ofpo.

• If p± = :l:oo then f(p) ---, -(x_ at least algebraically as Ipl _ _.

16



The smoothnessand decayconditions can be relaxed somewhat. If m is odd and (95)

does not hold we must simply consider higher order terms in the expansion of f and h.

Despite its apparent simplicity, this integral does not seem to be discussed in the

standard references. Due to the presence of the oscillatory term, Laplace's method cannot

be directly applied. Intuitively, we expect to obtain the dominant behavior by replacing

Icos (rg + O)l by its mean value. This is established in the following theorem. Although

we have been able to estimate the contribution of the oscillatory terms, we have been

unable to compute it to leading order for general f and g.

Theorem 2 If Assumption (6) holds then as T ---_ Oc:

I 2Kme'l(_)(-rf"(P°)) -'ym_ F('_m), (96)
zr 2

where,

_ m even.),,_ = 2 , (97)odd '
2 ' 77/

h0, m even
Km= (h I (1)2 + / 3f (po)1' ??2

(9S)
- 2_h0_ odd

Proof: We begin by replacing l cos (rg + 0)1 by its Fourier series:

oQ

Icos01 = - + y_ c,_cos2nO, (99)
71" n=l

4(-1) "+'
c,_ - . (100)

_r 4n 2 - 1

As the series converges uniformly, I may be expressed as the sum of integrals:

fpP+ 2
I= e'l(PIh(p)dp+ __,c,J,_, (101)

where

I,_ = e"f0') cos(2n(r9(p) + O(p)))h(p)dp. (102)

The asymptotic expansion of the first integral follows directly from the use of Laplace's

method and yields the results stated in the theorem [18]. What remains is to show that

the contribution of the oscillatory integrals is of lower order. Therefore we consider the

asymptotic analysis of In.
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In the usualwaywerestrict the integral to asmall, fixed interval about P0, introducing

an error which is exponentially small. Using the fact that g'(Po) 7_ 0 we are able to make

a change of variables so that the remaining integral becomes:

eTJ(P°) f_l<_ e-TF(") c°s(nrulfI(u' Tldu' (103)

where

F(_) = F_ 2+ F3_3+ o(_3), F2> 0, (104)

and

/_(u, r) = HCu)(1 + O(_)), (105)

H(u) = Hou m + Hlu _+1 + o(u_+_), Ho # O. (106)

We l)reak this integral into two parts,

i_ = e_:(_)(1_+ I_), (107)

= / e -rF2ua COS (nTtt)A(u, T)dtt. (109)

Here we have,

Z_(U, T) = (e -r(F(u)-F_u2) -- 1)//(u, T) + ([-I(U, r) -- Houm). (110)

The asymptotic analysis of I_ may be carried out using the method of steepest descent.

i" leading to an exponentially smallThe exponent has a single critical point at u = 2-_2

contribution. To estimate 1_ we first rewrite A:

_X(u, r) = ru_+%(u, r) + u'+'5_(u, r), (111)

where 6a and 62 are bounded functions. Introducing the change of variables,

v = r_u, (112)

we obtain:

1,2_= r- 2 e-v2 cos( nv)(vm+adx(v,r) + vm+ad2(v,r))dv. (113)

Here, d, and d2 are uniformly bounded and v+ = -I-rx/7-_2e. For convenience we extend

the domain of integration to the entire real line, extending dl and d2 so that they remain
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uniformly bounded. As the integrand is absolutely integrable on the entire real line
uniformly in r, the additional term is o(r-_). To estimate the remaining integral we

essentially use the Riemann-Lebesgue lemma, modified to take account of the dependence

of the nonoscillatory terms on r. We have:

_ ,,_+2 _ _ m.+.3.
l_ = 7 2 I3 + otr 2 ), (114)

where, following the usual transformation,

(a(v,T)-a(v+ ,r))
oo

Here G is given by:

cos( nv)dv. (115)

a(v, T) = T) + <+'d2(v,

Again G is absolutely integrabh, uniformly in r so we need only show that

)12nl((_(V,T ) -- G(?)+ tT--_T,T)) ---_ 0.

Making use of the fact that for fixed v the limit r --+ cxDimplies u --_ 0 we have:

lira dl(v,T = lira ---z = -F3n0,
r--*oo u_O _)2 U It TM

and

(116)

(117)

(118)

lim d2(v,r)= lira (H(u)(1 + O(u2)) - Hou m)
r--*oo u'-*O U m+l = HI. (119)

From these we may conclude that (117) holds and, therefore, that lim,_oo I_ = 0. We

have shown, then, that I_ = o(r- 2 ). This, in turn, implies:

I,_ = o (e'1('°)r-'_a2) , r -_ oo. (120)

As the bounds obtained above may be made independent of n, we conclude that the

contribution of the oscillatory terms is dominated by the contribution of the first term

in the Fourier series, completing the proof of the theorem.

It should be noted that we have not computed the leading order asymptotics of I,_.

One might at first glance expect that I_ determines the leading order behavior. We

have, however, shown that it is exponentially small while the bounds obtained for the

remaining terms decay algebraically.
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