β

Final Report
RAI-39-RE-2

Purchase Order : $\because-30505 B$

> Period Covered:
> $3 / 27 / 89-9 / 27 / 90$

Prepared for:
George C. Marshall Space Flight Center: MSFC, AL 35812

Prepared by:
Dr. Glyn O. Roberts

Date:
January 10, 1991

Roberts Associates, Incorporated 380 West Maple Avenue, Suite I -IA

Vienna, VA 22180-5616

Roberts Associates, Incorporated
380 West Maple Avence, Suite L-1A
Vienna, VA 22180-5616
(703) 242-2115 or (-03) 356-5630

Procurement Office
Code AP29F
MSFC, AL 35812
Subject: Final Report on Purchase Order H-30505B
Dear Sirs,
We are pleased to sumit the subject repor. The distribution lise is that required by the order.

Yours sincerely,

Dr. Glyn O. Rcberts
President
Distribution:
AP29-F (letter of transmittal only)
CN24D (5)
ATO1
CC01/Wofford
EMI 3A-27
ES76/Snyder (1 + repro.)
NASA/STIF (1 + repro.)

TABIE OF CCNTEVTS

Abstiract 1

1. Introcuction 2
1.1 Background. 2
1.2 Applications 2
1.3 Requirements 3
1.4 Subjects for Analysis 3
1.5 Methods of Study 4
2. Results 5
2.1 Experiments with Polystyrene Latex Microspheres 5
2.2 Theory of the Secondary Flows 6
2.3 Computer Solution for Uniform Rctation 7
2.4 Report on Uniform-Rotation Thecry 9
3. Recommendations 12
Acknowledgements. 12
References. 13
Appendix A. Viscosity Formulation for Water 14
Appendix B. Solution of the Cubic Equation for Delta. 17
Appendix C. The ROTREAC Computer Program. 21
Appendix D. Particle Orbits in a Rotating Liquid. 30
IIST OF FIGRES
Figure 1. Reactor Cross Section with the Inrer and Outer Circles 10
Figure 2. Sample Plot for Radius Ratios as Functions of Rotation Rate 11

Abstinact

Urdesired gravitationai efiects suin as comection or sedimentation in a fluid can sometimes be avcided or decreased by the use of a closed chamber uniformy rotated about a horizontal axis.

In a provicus stuay (Roberts, Kcrizeid ard Fowlis, 1989) we deramined the spiral orbits of a heavy or bucyare particie in a unizomily rotating fluid. The particles move in circles, and spiral in or out urder the comined effects of the centrifugal force ard centriExgal bucyancy. We aiso formulated and solved an cptimization probiem for the rotation rate of a cylindrical reactor rotated abcut its axis and containing distrijuted particles.

This report is concemed with related studies in several areas.
We have upgraded a computer program based on our analysis, correcting some minor errors, adding a scphisticated screen-and-printer graphics capability and other output options, and improving the automation.

We have supported the design, performance, and aralysis of a series of experiments with monodisperse polystyrene latex microspheres in water, to test the theory and its limitations.

The theory was amply confimed at high rotation rates. But at low rotation rates (1rpm or less) the assumption of uniform solid-body rotation of the fluid became invaild, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015%.

To a first approximation, these fiows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the coriolis force in the interior. A full analysis is beyond the scope of this study.

Secondary flows are likely to be stronger for bucyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is thicker, and extends all the way around the reactor.

INIRCLUCTEON

1.1 Backcrourd

The effects of particle or cain sedimentation in a fluid can be minimized by rotatirg tie fluid contairer abcut a rorizontal axis. The cortainer itself need not necessariny be axisymmetic.

The technique has been used for experiments and for materials processing. It is useful alcne, and as a preliminary to microgravity experiments in space.

If the fluid rotates uniformly with its container, then individual particles move in circular orbits, with the same rotation rate, abcut a center displaced horizontally from the axis of rotation. For particles at this center, their sedimentation velocity just cancels the upwari or downward flow of the surrounding fluid. For particles denser than the fluid, the orit radius increases slowly with time due to the net centrifucgal force, so that the particles spiral cutward from their center. Buoyart particles spiral inwards, due to the net bucyancy force.

Relative to rotating axes fixed to the container and fluid, all the particles with a given sedimentation rata move in phase, in circular orbits with a fixed radius equal to the separation between the axis and the center described above. The velocity of every particle is its sedimentation rate, in the current direction of gravity. This circular moticn is superposed on a centrifugal motion away from or towards the axis. Farticles with larger sedimentation rates move in larger circles.

1.2 Applications

The technique has been used in the following applications, among others:

Production of latex microspheres of uniform size;
Study microgravity effects on cells and tissue; and
Minimize gravitational flow disturtances in free-flow iscelectric focusing.

Other potential applications include crystal growth (where convection is sometimes a problem).

The altematives of microgravity processing in space flight, in a plane flown on a parabciic flight path, or in a drop tower, are generally either too inconvenient ard expensive, or too brief.
1.2 Recuiraments

Successfill use of this tecinnique in regard to pan-icle processing (as for latex) imocses the following requiremens:

Keep particies from colieeting at coniainer kcundary before processing;

Keep particles from collecting at cortainer bcundary during processing;

Selective withdrawal of particles after processing, to exclude these that have interacted (or interacted excessively) with the container boundaries; and

Temperature control, where cells, tissues, or processes require it.

In addition, it is necessary to detemine and increase any upper limits on the particle concentration that can be processed withcut sericusly modifying the flow.

1.4 Subjects for Analysis

Experimental and theoretical study is needed in regard to the following questions, among others:

What happens to particles that hit the container bcundary?
Are non-axisymnetric containers useful? For Cflinders, what size and aspect ratio is appropriate?

Can useful flows be established during initialization by changes in the rotation rate? These soin-up and spin-down effects are dominated by the coriolis force.

How is the mean flow mocified by the agcregate net weight of the particle distribution? At what stage does this modification become a problem? An exarple of a related study is the work of Batchelor and Janse Van Rersbury on bidisperse sedimentation (1986).

1.5 Methods of Study

These problems should be studied using an appropriate combination of experiments, analytic methods, and computer mociels. A ciose interaction between these approaches is appropriate.

Analytic methods include solving ordinary differertial equation systems (as for oriots, cf. Roierts et al. 1989), or partial differential equations (linearized calculations of rotating flows using a balance of bucyancy, viscosity forces, and pressure gradients).

Computer models are generally required when the problers are to hard for analytic methods. Cur Atmospheric Gereral Circulation Experiment (AGN) computer code, developed under MSFC sponsorship, has great flexibility in the study of a wide range of rotating flows, with or without temperature variation, and has previcusly been applied to spin-up and to the iscelectric focusing case described above. In the linited scope of this program, computer modeling was limited to orbit calculations.

Frequent interaction with laboratory workers and involvement in the experiments should be a part of every such study. Our practice has been to maintain a close relationship with the laboratory workers, and to support the design of the equipment, the choice of the experimental procedures and techniques, and the interpretation of the coservations and results.

Section 2

RESULTS

2.1 Exceriments with Folustrene Latex Microsoheres

We have supported the design, performance, and anainsis of a series of experiments on reactor performance. Thes experiments iere done by Dale Komield at MSFC. Cur contributions included assisting in the improvemert of the optical systems, and in setuo and periomance of the dizEerent tests.

The experiments were done with suspensions in wãer of monodisperse poiystrrane latex microspheres, with diameters from $30=100$ microns. The particle concentrations were of order 0.1% by volume. The reactor was a cylinder, with interior diameter 2.125 inches and length 3 inches. The curved bcundary and one plane end boundary were transparent. The ron-transparent end of the bath was a piston, moving in ard cut to compensate for changes in the fluid volume in the cylinder.

The reactor was set up with water, and allcred to reach uniform rotation. High-concentration latex suspension was ther injected with a syringe through the moving piston. The syringe could be cperated in and out with sufficient force to flush the syringe and to create tivioulence inside the chamber, with thorough mixing. Within a minute of injection, observation showed uniform particle concentration, with no apparent deriations from solid body rotation of the fluid.

The particles were illuminated in a darkened labcratory by a vertical slice of laser light with thickness about a millimeter, ertering horizontally and normal to the chamber axis. Refraction problems were minimized by filling the surrounding water bath. The particles in the illumirated slice could be viewed directly through the sides of the cylinder, and through a rotoscope at the end of the cylinder (which eliminated the rotation and made the chamber appear stationary). The light was strongest at small scattering angles from the incident light. The most useful results were obtained using a video camera, with a special cylindrical lens to make the image of the illuminated slice appear circular even though it was viewed at a small scattering angle. This led to focusing problems; our only solution to date has been to use so much light that the camera aperture was very small.

Until now, all our experiments have been done with latex particles of density 1.05, heavier than the fluid which was water. We are considering using the same latex particles in a fluid with a density greater than 1.05.

The first group of experiments were designed to confinm the rate of centrifugal spiralling outward, and therefore used relatively large rotation rates, of order 20 pmm . At these rates, no secondary flow effects were coserved. The exponential decrease in the particle concentration with time was measured, and was in agreement with the centrifugal settling theory.

The second group of experiments used lower rotation rates, from abcut 0.6 rpm to 2 rpm . At these rates, the centrifugal spiralling cutward is relatively minor, and the depleted crescent formation is in theory likely to be more significant. This was confimed, with a visible crescent on the descerding side at 1.5 rcm .

But at lower rotation rates, strong seconcary flow effects became apparent, with time and space variations in the particle concentration and motion. The charge with decreasing rotation rate was quite abrupt, especially at cur largest concentration of 0.3%. $i=1.5 \mathrm{rm}$ ncthing interesting happened except for the crescent, while at 0.7 mw the seconciary flows grew rapidly, in arcut 10 minutes, ard moved most of the particles to the walls, leaving thin plumes of high concentration ascending at the asconding wall, ard descerding across the chamber interior under their own weight. The patterms varied on a time scale of about 2 minutes. Large regions of the visible slice became almost void of particles. The results at lrom showed significant secondary flows, but they were not nearly so chactic as those at 0.7 rpm .

The flow fields were three-dimersional; this is the only explanation for some abrupt changes in the local corsentration which were not advected in from adjacent parts of the visible slice. And they were driven by variations in the particle concentration.

2.2 Theory of the Secondary Flows

We have analyzed the video results extensively. Particles with specific density 1.05 , at 0.3% concentration by volume, increase the density of the water by about 0.015%. Even at particle concentrations as low as 0.03%, the nonuniformities in the particle concentration clearly drive a secondary flow, superposed on the uniform rotation, for rotation rates of 1 rpm and smaller. The nonuniformities in the particle concentration can arise only from the wall, since particle concentration is conserved following a fluid element, while decreasing exponentially at a low rate due to centrifugal buoyancy.

From observation, once particles collide with the wall (or with the aggregate of particles against the wall), only a small proportion are ever resuspended. The secondary flows are driven primarily by the net buoyancy of the depleted crescent, and secondarily by nonuniformities in the particle concentration associated with resuspension. Theoretically, these flows are proportional to the square of the thickness of the depleted crescent, which is in turn inversely proportional to the rotation rate. If these secondary flows become comparable with the solid body rotation, the theory based on uniform rotation breaks down completely, and the flows and particle distributions are quite different (and plainly three-dimensicnal in the videos).

The experiments make it plain that the lower limit on the rotation rate, predicted in the earlier theory based on the approximation of solid-body rotation, is not realistic for a concertration by volume of even 0.01%. But
concentrations of up to 30% are used in typical recipes for poiymerization of moncmer-swollen latex microseheres. The rotation rate mist be larger by a factor of order 100, so that the depletion layer thiciness is only 1% of the diameter.

This statament assumes that the reactor has a lenctin womaraioie oith its diametar. If the lercth is very mall comparac witi $=$ te jiametar, ther. the secondary flows will be limited dy viscous intaraction $i=2$ the ercis.

In a latex reaction, the initial monomer-swilien particles have a relative dersity of orier 0.9, ard terd to centrifuce irwaris, away from the walls. They increase in dersity as the aisoried lor-iersity monomer is polymerized to high-density polymer, acooraing to a non-inear conversion versus time curve. This bucyancy dismibution will aiso estabiish its own secordary flow, and the overall result is hard to predict.

2.3 Computer Solution for Uniform Rotation

We have completed the computer program upgrade.
We reviewed two computer procrams written by ctiens. The first, FAST.FOR, was written by a summer student employee under the supervision of William Fowlis, during 1987. It implements the analysis of our report, and for given keyboard input parameters computes the varicus resulting parameters as described in the report. It also writes output files in a suitable form for the commercial EnerGraphics program, which reads these files and produces screen and printer plots of the spiral particle tracks.

The second program was written by Jchn Cleland, at the Research Triangle Institute, NC. It is identified as KORN2.FCR, named for Dale Kornfeld, who manages this effort at MSFC. This program is a similar implementation of the analysis of our report, reading input parameters from the keyboard, and computing the varicus resulting paraneters. It also generates simple plots of particles distributed at the computed concentration, at successive times, using the commercial Grapher software.

We chose to upgrade the second computer program and to add superior graphics. Basically, the two codes perform similar functions. The spiral plots produced by FAST.FOR are not particularly helpful, since in practical cases the thickness of the lines fills the figure. Similarly, it takes two of the KORN2. FOR particle plots to reveal a single concentration change factor. And the use of the Energraphics and Grapher packages, in two stages, was unnecessarily complex.

We corrected two errors in the KORN2.FOR program. First, there was a minor error in the computation of the viscosity of water at low temperatures, possibly caused by an error in transmission of the code. This is documented in Appendix A. Secondly, the approximate solution of a cubic equation for the parameter as a function of was sericusly in error for larger values. We implemented a high-accuracy iterative solution, as described in Appendix B.

We urograded the data input for the program. It now reads its parameters from a file containing the vailues used last, and the user need cnly enter charges from these values. Each oropram execution will computa cases one aftar the other, until the series is taminated oy entering a negative tine. Aiso, we imolementad a variaicie zeacoor radius.

We have adced optional graphic piots of the resiiv. These graphics are pioteed using the comercial sofivare packace Graninc, from Scientific Enceavors corporation, of Kirgston, IN. For eaci case, two plots can be produca.

The finst grachic is iniustrated in Figure 1. It displays a cross section of the rotating reactor, with the fluid in solic-bocy rotation abcut the center 0 . There are tio other concentric circles, centered on the point A where a stationary particie is just supported against its weight (net of the weight of the displaced fluid) by the viscous drag of the fluid flow past it. The interpretation of this figure is different depending on whether the particles are heavier or lighter than the Eluid.

For particles heavier than tie fluid, the fluid flow is counterclockwise in the figure, and is assumed to be solid-body rotation as described earlier. Particles at the point A remain stationary; with the downward force of gravity balanced by the upward buoyancy and drag forces. All other particles move outward from A in counterclockwise spiral orbits, with the radius increasing by a fixed and very small fraction on each orbit.

Particles which start in the crescent shape hit the lower semicircle of the wall during their first orbit. Iceally they can fall off the wall in the upper right of the figure, but observation of latex particle experiments suggests that few do, and the crescent is cleared of particles in ten or so rotations.

Heavy particles starting out between the two concentric circles spiral outwards during the fixed time period of interest until they cross the outer circle and hit the wall. As stated earlier, after one or more such impacts, they adhere to the wall, and do not fall away.

Heavy particles starting out inside the inner circle also spiral outwards, until at the end of the time of interest they fill the outer of the concentric circles. The particle concentration remains uniform during this process.

For particles lighter than the fluid, the fluid flow is clockwise in the figure, and is assumed to be solid-body rotation as described earlier. Particles at the point A remain stationary; with the upward buoyancy force due to the weight of the fluid displaced balanced by the downward gravity and drag forces. All other particles move inwards towards A in clockwise spiral orbits, with the radius decreasing by a fixed and very small fraction on each orbit.

Bucyant particles which start in the crescent shape hit the upper semicircle of the wall during their first onitit. In theory they can lift off the wall in the lower right of the ficina, but the observations of latex particle experiments (with heavy particles, as described above) suggest that most of them will achere to the wail, with the crescent cleared of particles in ten or fewer rotations.

Light particles starting out with uniform concentration insice the cutermost of the tio concentric circles seiral inwards during the fixed time pericd of interest. By the end of the tire interval, they are ail inside the inner cimle, with their concentration still uniform.

The second graphic procuced for each case is illustrated in Figure 2. It shows plots of the following three dimersionless functions of the rotation rate Ω in rmi :

$$
\begin{aligned}
& r_{o} \beta=1-\Omega_{\min } / \Omega=1-\delta ; \\
& r_{i} / r_{0}=\exp \left[-(\Omega / \Omega \max)^{2}\right]=\exp (-\epsilon) ; \text { and } \\
& r_{i} / b=(1-\Omega \min \Omega) \exp \left[-\left(\Omega \Omega \max ^{2}\right)^{2}\right]=(1-\delta) \exp (-\epsilon)=\sqrt{F}
\end{aligned}
$$

Here r_{i} and r_{0} are the radii of the inner and outer concentric circles, and b is the reactor radius. The other notation is as in the report in Appendix D. We have chosen to maximize F, which is the ratio of the area of the small circle to the cross section area of the reactor. Thus the optimum rotation rate Ω corresponds to the peak value of the third function. It should be noted that the shape of the first two functions is always the same, but the form of their product depends on the relative values of $\Omega_{\text {min }}$ and $\Omega_{\max }$.

2.4 Report on Uniform-Rotation Theory

We have made changes to our earlier report "Particle orbits in a Rotating Liquid" on rotating reactor theory, as requested by the referees, and resubmitted it to the Journal of Fluid Mechanics. The report is attached as Appendix D. This paper assumes solid-bociy fluid rotation, and neglects all secondary flows. It is the basis for the camputer program described above.

Figure 1. Reactor Cross Section with the Inner and outer Circles
Particles starting in the crescent hit the wall inmediately. Heavy particles starting between the circles spiral out to hit the wall. Heavy particles starting in the inner circle spiral out to fill the outer. Light particles starting in the outer circle spiral in to fill the inner.

Figure 2. Sample Plot for Radius Ratics as Functions of Rotation Rate

Secticn 3

RECMMETLITCNS

```
We strorgiy racomeri ar owerimertin investigation of reactor
```



``` likely that secondiary incws will niay a rore imporant roie in this case, becauce the depietec" zone outards ail mund the bcurdary, and its thicloess increases with time as the particles cerciotise inturis.
We racomerd evarded araigtic ard numerical stuäies of the flows driven by thin depierad layers. We believe that an aporoximate araiytic sciution can be dimaned usirg the nethods of Eman layer aralysis, incluaing end effects at the chlinder ercis. These solutions an be confimed ard refined numericaily, ard with appropriate measuraments. Such a program would provide a basis for optimizing the rotating reactor system and extending its range of application.
```


ACKNCWLEDCEMENTS

Dale Komfeld of MSFC introduced me to this field, and was responsible for the experimental program which we suxported. David Donovan of RAI has made significant contributions on the experimental side. I was privileged to work with william Fowlis of MSFC for many years before his deteriorating health and untimely death at the beginning of this year; we cocperated on this problem for several months. John Cleland, of Research Triangle Institute, NC, has provided helpful insights, and authored a computer program which was developed into the program described above.

REFERENCSS

G．O．Rcierts，W．W．Fowlis，and D．Komfeld（1989）；＂Eミーicle Orivits in a Rotatirg Liquid＂；submittee to Jcumal of Fluid Mecinanics．

G．O．Rckerts（1984）；＂Mcaiels of Electrocemesis in Segrentej こilincers ard the Efミects of Rctation＂；Report RAI－34－A－1，Rcierts Assecis＝es，Incomporated， prepared for the Universiti of Arizona．
G．O．Rcicerts，W．W．Fowlis，arc T．L．Miner（1985）；＂The IGE Code：Finite－ Dizeerence Fluid Dynamics Computer Matiematical Mocels Eze the Desiom ard Intemretation of Experimerts for scace Flight＂；NASA Tecinrian：Paper 2323.
G．K．Batchelor and R．W．Janse Van Renburg（1986），＂Stricture Formation in Bidisperse Sedimentation＂；J．Fluid Mech．166，379－407．
Weast，ed．，＂Handbook of Physics and Chemistry＂，CRC Zress，7Oth Edition， 1989.

VISCOSTM, EORMTLMECN FCR WRER

```
The viscosity of ivater decreasec jy a factor of of as the temperature increases from freezirc to boiring. This ciange is imorment as some processes of biciosicai interest are cicne at low terperatures, while the procuction of monodiscerse latex microsciteres requires temerationes of order 70 degrees \(C\).
Cur computar program reads the temperature from the ieytcari, and computes the viscosity usirg two empinicai formulas from weest (2989), based on data from the National Bursau of Stardards. The formias anoly to temperature above and below 20 degrees \(こ\), and were inciucied in the program KORN2.FOR which we have upgraded.
In validating the formulas, we discovered an emor in their code implementation for low temperaturas. The following program and listing computes the bad formula and the two good ones over the wincle range of temperatures, and lists aiso the tabulated values from Weast (1989;.
The following two points should be noted. First, the computed viscosity was too large by only about \(1 \%\) at zero degrees, an insignificant error. Secondly, the formulas agree with the tabulated values for temperatures below and above 20 degrees, except that the tabulatei values were truncated to four significant figures acove 20 degrees, instead of being rounded.
```

```
                                    fricar, dariary 11, 1991 3:50 am
    program nosvisc
    NATIONAL SLREAU OF SIDS. FORMULAE FCR H2O %:EOSITY =O:SE,
    OR 1 GM/SEC CM); CRC HANDSOOK OF CHEM. AND 2-*S., SE:- SO.,
    PP. F-4G TO F-51.
        write(0,2)
    format(' COMPARISON OF NBS FORMULAS FOR VISCOSITY OF #M TER'//
    1T3,'TEMP',T13,'VISCO',T25,'VISC1',T37,'VISC2',T46,'VISC'-VISC2'/)
    do 1 temp=0.,100.,2.
            if (temp.le.20.) then
                v=(1301.//(998.333+8.1855*(: erp-20.)+1.20585*
    |
            ((temp-20.)*2))) - 3.30233
                visc0=(10.0)**V
    PROGRAM KORN2.FOR AS RECEIVED DID NOT SQUARE THE SECOND TERM
    IN THE POWER SERIES
                                    v=(1301./(998.333+8.1855*(temp-20.)+1.30585*
    1((temp-20.)**2))) - 3.30233
                visc1=(10.0)**v
            else
                v=(1.3272*(20.-temp)-0.001053*((temp-20.)**2))/
    1
            (temp+105.)
                visc2=.01002 * (10.0)**v
            endif
    write(0,'(f8.0,4f12.8)') temp,visc0,visc1,visc2,visc'•visc2
    end
```

Gricime trat is of peos onathy

こCMEARISCN OF NBS FORMULAS FOR VISCCS：IY OF \％mes						
Temp	VISCO	VISC1	V ：Sc2	V：ミご・VISC2	TAGL ： N E0：$-: 24$	PAGE F－40
3.	． 01306360	． 01736897	．0：776873	200：0024	：787	
2	． 01085960	． 01671371	． 0.603208	こ0．093163		
\checkmark	． 01577390	． 01506859	． $0: 550318$	． $3000654 ;$		
5.	． 01479450	． 01472047	． 21.06008	． 20005133		
3.	． 01390846	． 01385806	．J 3 S1371	20003935		
\bigcirc.	． 01310437	．01307：62	． $0 \cdot 304250$	． 30032912	350	
2.	． 01237263	． 01235273	．09233220	． 200202053		
\checkmark	． 01170497	． 01169405	．0＂ 58064	． 20001340		
3.	． 01109422	． 01108921	．01：38161	． 20000760		
3.	． 01053416	． 01053263	． 01052965	こここ002298		
2.	． $0100194 i$	． 01001941	． 01002000	－． 20000059	1002	
$2 ?$.	． 00954526	． 00954526	． 00954847	－． 3000032 ！		
2.	． 00910757	． 00910637	． 00911137	－． 20000500		
25.	． 00870273	． 00869940	． 00870544	－． 20000604		
28.	． 00832754	． 00832136	． 00832778	－． 20000642		
30.	． 00797920	． 00796963	． 00797584	－． 00000622	7975	
32.	． 00765520	． 00764184	． 00754733	－． .00000549		
35.	． 00735334	． 00733590	． 00734020	－． 30000431		
36.	． 00707162	． 00704992	． 00705264	－． 30000272		
38.	． 00680831	． 00678223	． 00678300	－． 00000077		
40.	． 00656182	． 00653130	． 00652981	． 00000149	6529	
42.	． 00633075	． 00629578	． 006629176	． 00000402		
4.	． 00611383	． 00657444	． 00606764	． 00000680		
－6．	． 00590991	． 00586617	． 00585638	． 30000979		
48.	． 00571797	． 00566995	． 00505699	． 00001296		
50.	． 00553708	． 00548488	． 00546860	． 00001629	5468	
52.	． 00536640	． 00531013	． 00529039	． 00001974		
54.	． 00520516	． 00514495	． 00512163	． 00002332		
56.	． 00505267	． 00498865	． 00496165	． 00002700		
58.	． 00490830	． 00484060	． 00430984	． 000003076		
60.	． 00477148	． 00470023	． 00466564	． 00003459	4665	
62.	． 00464167	． 00456702	． 00452854	． 00003848		
64.	． 00451840	． 00444048	． 00439807	． 00004241		
66.	． 00440123	． 00432016	． 00427379	． 00004638		
68.	． 00428975	． 00420568	． 00495531	． 00005037		
70.	． 00418359	． 00409665	． 00404227	． 0000543840	4042	
72.	． 00408241	． 00399272	． 00393432	． 00005841		
74.	.00398590	． 00389359	． 00383115	． 00006244		
76.	． 00389377	． 00379895	． 00373248	． 00006647		
78.	． 00380574	． 00370854	． 00363805	． 00007050		
80.	． 00372158	． 00362211	． 00354759	． 00007451		
82.	． 00364105	． 00353941	． 00346089	． 00007852		
84.	． 00356394	． 00346024	． 00337773	． 00008251		
86.	． 00349006	． 00338439	． 00329791	． 00008648		
88.	． 00341922	． 00331168	． 00322125	． 000099043		
90.	． 00335124	． 00324193	． 00314758	． 00009435		
92.	． 00328598	． 00317498	． 00307674	． 00009825		
94.	． 00322329	． 00311069	． 00300857	． 00010212		
96.	． 00316302	． 00304890	． 00294294	． 00010596		
98.	． 00310506	． 00298949	． 00287972	． 00010977		
100.	． 00304927	． 00293233	． 00281878	． 00011355		

visci is corrected，and agrees with the 4 signifcant figures in the reference．
VISC2（FOR T＞20）AGREES WITH THE REFERENCE，EXCEPT THAT THE RE：ERENCE TABLE VALUES ARE TRUNCATED TO 4 FIGURES INSTEAD OF ROUNDED！

APEENDI: 3

SOLUTTCN OF THE CUBIC EITATTCN FOR DETTA

The two procrams FAST.FCR ard KORN. FCR mace availacie to us for
 witich arises in our analysis in the repor in Apperdir A of the optimization. cf tio rotation rate. Fhysicaily and mationaticainy, f increases from zero to one as fincreases from zero to infinity. The secord procmam incraduced three aproximate formulations for δ, nominaliy vaic in differerv rarges of $\$$. We have replaced these with an efficient Verative solution. The folilowirg procram validates cur solution aigori=n, and compares it with the approximations.

The program takes a representative set of exact δ values, and for each ore it computes the corresponding ϕ. Witiout using the krown δ, it computes the three empirical approximations ard the first five iterations. The results list the exact value, the empirical approximations, their emors, the ϕ value, the fifth iteration value, and the errors of the first five iterative values.

The following points should be ncted. First, the empirical formulas are reasonable for ϕ values up to abcut 1.3 , with errors in δ of less than 10%. Secondly, the first formula is better than the second for δ values up to 0.15 , rather than the 0.05 in the suppied code. Thirily, the empirical formula is a disaster for larger ϕ values, predicting an unphysical δ value of more than unity, and leading to procram failure when a fractional power of $1-\delta$ is evaluated.

GOMPAR：SEN OF CLELANO＂CURVE FITTING＂SOLUTIONS FOR JELTA dITH EKAC：VALUE AND SIMPIE VENTON ITERATICN SCLUTION

DE：	OELC：	1 DELC2	DELC3	3 DIF1	1 DiF2	DIFS	3 PHI	DE： 5	2： $0: 9$	Dif：2	DIFIS	DIF：4	F：5
． 00000	． 00000	． 00000	． 00000	．． 00000	． 00000	00000	O ． 00000	OC000					
． 31002	． 31003	． 00023	． 012400	． .00003	－． .0007	． 0024	01003	．jicco		0．JE－b0	0	J．0E－00	こ．ここ－以
． 22000	． 02014	4.01843	． 02288	－．00014	$4-.00157$	． 00230	02014	02000					
． 33000	． 03031	1 ．02767	． 33263	$3.0003 i$	．．00233	． 00253	－．J303i	23000					
－ 30000	． 04055	． .03054	． 04205	3．0005	－．00300	． 30205	5 ． 3435	24000					
25000	． 05086	－ 04026	． 35122	． 00085	－．00374	． 0012 L	－． 35086	35000		J			
． 30000	． 06125	． 05304	． 06022	． 00125	－．00435	．00022	－．36ias	35000	－． E				
． 07000	． 07171	． 06507	． 06909	－．00179	－． 00493	． 00008 ：	． 3717 ？	． 37500	\bigcirc		2.		
． 38000	． 08225	． 07457	． 07785	． 00225	－．00563	－．002：5	－．38225	32000	0	－ $1.3 \mathrm{E}-\mathrm{C}$		2．3E－：$\%$	
.09000 .10000	． 09287	． $084 i 2$	． 03653	－00237	－． 00538	－． 0034.	－． 39283	29000	as－ 2	－ $3 .+$ E－ 2	3．JE－ 7	2． 3 E－17	
． 5000	． 10351	． 09374	． 09515	．00357	－．006こ5	－． 00435	－1035	－ 0000	－ 2 ，SE－	－7．PE－ 2	5．SE－T	5.	
． 20000	． 21544	－ 194600	8006	－．00835	． $.007^{*} 0$	． 01229	．$\ddagger 5835$	． 5000		2.	－5． 5 E	$3.3 E-17$	
． 25000	． 27516	－ 24735	． 22281	． 02516						2．1E－39	5.	三	
． 30000	． 33787	． 30329	． 26045	－．03737	003．	． 03357		50000			8． SE － 7	7	
． 35000	． 40405	． 36224	． 31133	－ 05405	－00－2．		－	50				3．JE－17	
． 40000	． 47425	． 42470	． 35794	． 07425	． 02470	04206	7425	0000					
． 45000	． 54924	． 49135	． 40675	． 09924	． 04135	－． 04325	54924	5000					
． 50000	． 62996	． 50302	． 45834	12996	． 06302	－． 04160	． 52996	． 50000	－				
． 55000	． 71773	． 64088	． 51347	． 16773	． 09088	－． 03653	． 71773	． 55000	－2．2E	$2.9 E-10$ $5.7 E-106$	$-9.7 E-12$ $-4.2 E-19$	2．SE－17 1． $1 E-16$	5． $35-17$ $3.25-00$
． 60000	． 81433	． 72649	． 57315	． 21433	． 12649	． 02685	81433	． 50000	－3． 5 － 3	1．1E－105	－ $1.5 E-10$	1．$E-16$ 1． $1 \mathrm{E}-16$	3． $3.2 \mathrm{E}-30$
． 65000	． 92234	． 82214	． 53881	． 27234	． 17214	． .01119	92234	． 55000	－4．．E－－3	－2．0E－05	－4．9E－10	－－．1E－16	
． 70000	1.04566	． 93125	． 71257	． 345060	． 23125	． 01257	－． 34506	． 70000	－5．2E－3	－3．2E－05	－1．3E－J9	－1．1E－16	コ．$=-10$
000	19055	1.05932	． 79782	． 44055	． 30932	． 04782	¢．9055	． 75000	－6． S － 3	－4．3E－35	－3．1E－09	0．JE－100	－．こE－i0
.80000 .85000	1.36798 1.59976	1.21601	． 90041	． 56798	． 49601	． 10041	1． 36798	． 80000	－7．こE－こう	－6．SE－ 35	－6．15－39	$0.0 E-C 0$	3． 5 －-30
． 90000	1.93899	1.71939		76	． 57049	． 18189	i． 59976	． 85000	－7．5E－ 03	－8．0E－05	－9． $2 \mathrm{E}-\mathrm{-9}$	－1．1E－16	－． 5 － 0
． 91000	2.03061	1.80006	1.27006		． 81939	.32001	$\therefore .73899$	． 90000	－7．3E－．33	－7．7E－05	－8．3E－39	1．iE－16	0．こE－00
． 92000	2.13513	1.89204	1.32680	1.21513	4	． 36006	2.33061	． 9×000	－7．2E－13	－7．3E－05	－8．0E－09	－1．1E－16	0． 2 － 00
． 93000	2.25658	1.99889	1.39229	1.32658	1.06889		2．：3513	． 92000	6．7E－J3	－6．7E－05	－6．9E－199	－1．1E－16	0．こミ－70
． 94000	2.40110	2.12599	1.46962	1.46110	1.18599			，93000	－6．3E－C3	－6．0E－05	5．5E－09	$0.0 E-00$	0．2E－90
． 95000	2.57870	2.28210	1.56384	1.62870	1.33210				5． 35 －．03	－5．1E－15	4．1E－09	$0 . \mathrm{JE}+00$	0． 2 －－ 0
． 96000	2.30706	2.48272	1.68376	1.84706	1.52272						2．7E－09	$0.0 E+00$	0．こミ－100
． 97000	3.12175	2.75900	1.84700	2.15175	1.78900	． 87700	3.1217	97000				00	0． $2 \mathrm{E}-00$
． 98000	3.61035	3.18758	2.09632	2.63035	2.20758	1.11632	3.51035	98000	2				
． 99000	4.59517	4.05025	2.58629	3.60517	3.06025	1.59629	4.59517	． 99000	1．2E－03	2	2	$0.0 E+00$	
． 99100	4.76423	4.19820	2.66895	3.77323	3.20720	1.67795	4.76423	． 99100	－1．1E－03	－1．8E－06	FE－12	$0.0 E+O D$ $0.0 E+O 0$	0．0E－D0
． 99200	4.96000	4.36948	2.76420	3.96800	3.37748	1.77220	4.96000	． 99200	－9．3E－03	－1．4E－06	－3．2E－12	O．OE＋ 00 $0.0 E+00$	$0.0 E+00$ $0.0 E-00$
． 99300	5.19099	4.57151	2.87597	4.19799	3.57851	1.88297	5.19099	． 99300	－8．JE－04	－1．0E－06	－1．8E－12	0．0E＋00	O． $0 . J E-00$
． 99400	5.47019	4.81563	3.01021	4.47619	3.82163	2.01621	5.47019	． 99400	－6．7E－34	－7．2E－07	－8．7E－13	$0.0 \mathrm{E}+00$	0． $0.0-100$
． 99500	5.81880	5.12031	3.17659	4.82380	4.12531	2.18159	5.31880	． 99500	－5．－E－04	4．7E－07	－3．7E－13	$0.0 \mathrm{E}+00$	0．OE－D0
.99600 .99700	6.27441	5.51832	3.39211	5.27841	4.52232	2.39611	6.27441	． 99600	－4．iE－O4	2．7E－07	－1．2E－13	$0.0 E-00$	0．OE－00
.99700 .99800	6.91281	6.07568	3.69076	5.91581	5.07868	2.69376	6.91281	． 99700	－2．9E－04	1．3E－07	－3．0E－14	$0.0 E+00$	0．0E－00
． 99900	9.99000	8.75766	4.95535	6.92313	5.95727	3.15735	7.92113	． 99800	－1．7E－04	－4．3E－08	－3．9E－15	$0.0 E+00$	0．0E－00
.999101	10.34812	9.06937			7.75866	4.08688	9.99000	． 99900	－6．9E－05	－7．9E－09	－1．1E－16	0． $0.5+00$	0．3E－00
． 999201	10.76356	9.43087	5.42714	9.76436	8.07027 8.43167	4.24518	10.34812	． 99910	－6．JE－15	6．0E－09	－1．1E－16	0．OE＋00	0．OE－00
.999301	11.25460	9.85804	5.64212	10.25530	8.85874	64282		． 999930		4.4	OE＋00	0． $05+00$	0．OE－10
． 999401	11.84920	10.37512	5.90082	10.84980	9.37572	4.90142	11.84920	99940					0．0E－00
．99950 1	12.59291	11.02163	6.22206	11.59341	10.02213	5.22256	12.59291	． .99950	2．7E		＋00		$0.0 E-00$ $0.0 E \rightarrow 00$
999601	13.56666	11.86770	6.63898	12.56706	10.86810	5.63938	13.50666	． 999960	－2．0E－05	6．7E－	． $0 E+00$	$0.0 E+00$ $0.0 E+00$	0．OE－00
99970	14.93353	13.05463	7.21780	13.93383	12.05493	6.21810	14.93353	． 99970	－1．4E－05	－3．OE－10	$0.0 E+00$	$0.0 E+00$ $0.0 E+00$	$0.0 E-10$ $0.0 E-10$
999801	17.09634	14.93120	8.12000	16.09654	13.93140	7.12020	17.09634	． 99980	－7．3E－06	9．9E－11	$0.0 \mathrm{E}+00$	0．0E＋ 00	0．0E－00
999902	21.542191	18.78364	9.93054	20.5422917	17.78374	8.93064	21.54219	． 99990	－3．0E－06	－1．4E－11	0．OE +00	$0.0 E+00$	$0.0 E-00$ $0.0 E-00$

EXACT CLELAND SOLUTIONS WITH
SOLUTION SOLUTION APPLICABLE TO this phi value marked．

NOTE THAT DEL VALUES OVER
UNITY ARE UNPHYSICAL．
Parameters leading to phi values
OVER 1．6 CAUSE KORN2．EXE TO FAIL．

dIfferences between cleland pht

 AND EXACT SOLUT：ONS5TH
ITERATION
ERRORS FOR FIRST THRU 5TH ITERATIONS nCte that the first iteration is very GOOD，AND the third is effectively exact． the calculation used double precision．

```
PROGRAM SOLVCUBC
IMPIICIT REAL*8 (A-H,O-Z)
10 FORMAT(' CCMPARISON OF CLELAND "CURVE FITT:ING" SCLUTICNS
    , MCR DELTA dITH EXACT'
2.'VALUE AND SIMPLE NEMTCN :TERAT:ON SOLUTICN'//
,14A9/)
```

 WRITE: 0,10 (DEE', 'DELC:', DEECC', 'DEIC3', 'DIF1', 'DIF2', 'DIF3'
 , 'PMI', 'DELI5', 'DIFI'1, 'D:FI2', 'DIFIJ', 'DIFI ', 'D:FI5

- SELEC: a zANGE OF EXACT DEL VAL'JES BE TnEEv ZERO AND ONE
DO $\operatorname{IDEL}=0,90,10$
$D E 1=1 D E L / 1000.00$
CALL SOLVE(DEL)
ENDDO
DO $1 D E L=100,850,50$
DEL=IDEL/1000.DO
CALL SOLVE(DEL)
ENCDO
DO IDEL=900,990,10
$D E L=I D E L / 1000.00$
CALL SOLVE(DEL)
ENDDO
DO IDEL $=991,999,1$
DEL=[DEL/1000.DO
CALL SOLVE(DEL)
ENDOO
00 IDEL $=9991.9999,1$
$D E L=10 E L / 10000 . D 0$
CALL SOLVE(DEL)
ENODO
END
SUBROUTINE SOLVE(DEL)
IMPLICIT REAL* 8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION DIFF(5)
$T H I R D=1 / 3.00$
PHI=DEL/(1-DEL)**THIRD
C the problem is to solve this equation for del, with phi known,
C (WITHOUT USING the KNOWN DEL VALUE, OF COURSE).
C CLELAND "CURVE-FITTING" SOLUTIONS APPLY TO DIFFERENT PHI REGICNS
C as indicated by the comments
if (PHI . (e. .05) then
DELC1=PHI
c
else
OELC2 $=.89086^{* P H I * * . ~} 99301$
c
if (DELC2.gt.0.60) then
DELC3 $=.6854^{\star 2} \mathrm{HI}{ }^{\star \star} 0.8708$
c
C NETTON'S ITERATION SOLUTION
こ INITIAL APPRCXIMATION IS EXACT SCLUTION ZF THE EQUATICN
C Wit THE CUBES REPLACED 3Y SCliares
PHI2=PHI*PHI
OELI=(SQRT(PHI2*(4+PHI2))-PHI2)/2
c iterate
$C R$ IS THE FIRST RESIDUAL FORMULATION, ANO RD IS ITS JERIVATIVE
C USE $S=1-(1-R) * * 3$, AND ITS DERIVATIVE SO, TO GIVE FASTER CCNVERGENCE
C AND AVOID PROBLEMS FOR LARGE PH!.
DO $2 I=1,5$
RCOT=(1-OELI)**THIRD
R=DELI - PHI*ROOT
$R D=1+P H I * T H I R D * R C O T /(1-D E L!)$
$T=1-R$
$T 2=T * T$
$S=1-T 2^{*} T$
SO=3*T2*RD
DELI $=D E L I-S / S D$
C SAVE DIFFERENCE FROM EXACT SOLUTION, FOR DISPLAY
2 DIFF(I)=DELI-DEL

C WRITE OUT THE SOLUTIONS AND ERRORS

```
    write(0,'(9f9.5,1P,5E9.1)')DEL, DELC1, DELC2, DELC3
                                    ,DELCT-DEL, DELC2-DEL, DELC3-DEL, PHI,DELI,DIFF
```

1
end

APEENDI:
 THE RCTREAC COMETE PECGAM

 foilowing pages. The sourse programs, tie executable rozEnc. EE (compiled ard linked with Microsort softiare), and the comercial packase graphic (with a single user licersa) have been sumpied to Robert s. Eriaer ard laie Komfeld of MSFC. The executable shoule not be distrioutes to any user without a Grachic licarse. The executicie RCTREDCD. ELE was made using the replacement dumy program coiont.c, and dces not cail the onanic packace; RAI authorizes the general distribution of this woie.

The program runs on IBM PC or AT compatibles, and can Erocuce graphics on a very wide range of displays and printers. Before running tie program for the first tine, it is necessary to run the program EQUID.EE, wich comes with the Graphic software. This program allows the user to select a display option and printer options from a menu of croices, and writes a permanent configuration file which is read each tine by the RCTFEAC program. More details are of course provided with the sotware. The envimment parameter $G P C$ should be set to $C: \backslash G P C$, or to some ctiher DCS director: containing font files and the files written by EQUIP.EXE.

The program solicits keyboard input for each of eigit parameters defining the problem. For each parameter, the default is the value used the last time, which is saved in the file ROTREAC.DAT and used in the input data is null. Once each case is finished, the program begins again, soliciting new keybcard data. The sequence of cases is teminated using $c=1$-Break (or any other intermupt such as invalid data, Ctri-C, power off, or Alt-Ctrl-Del) at any stage, or by providing a negative time in response to the first prompt of a new case.

For each case, the program writes its cutput to the screen. After producing its text output for each case, tiee procram prociuces graphs. These are written both to the screen and to the graphics file ROTFEAC.TKF. Printer output is produced by responding to the beep prompt with the keys L or 1 (for large full-page plots at high or low resolution), or M or m (for medium halfpage plots at high or low resolution).
once the run is over, the graphics file can be played back using the command

PLAY ROIREAC.TKF

(where PLAY.EXE is another Graphic program). This leads to the same beep prompts as the graphs are displayed, with the sane printer options. There is little point in using this option, however, since the ROIREAC program runs
quickiy, and can be run again to obtain any desired graphical output. The full list of beep options is belcw.

Sample screen cutput (cistained using Ctwl-P) is also shown below. File cutput is similar, excapt that the prompts and data entin are not shown. Items after the colons are entered from the keybcard. The source programs are listed on the following pages.

	- ${ }^{\text {a }}$ convert tk file to another forma
	--> iarge, 'on -esoiution plot
	.-.) large, hign resolution plot
	...) necium sized, low resolution plot
	...) medium sized, high resolution plot
	--, cnange printer selections
	-.> quit and ciose files
	--> vary postscript parameters
	--> sirink picture to fit window
	-.-> zoom marked area to fill screen
	--> go on to next plot
	return :o picture

ENTER ANY CHANGES FROM THE BRACKETED DATA USED LAST. ALWAYS INCLUDE THE DECIMAL POINT WHEN YOU ENTER DATA. THEN PRESS THE ENTER KEY. TOTAL TIME IN HOURS (NEGATIVE TO QUIT) [10.0000]:
PARTICLE DIAMETER (MICRONS) [200.0000]:
ROTATION RATE (RPM) [2.0000]:
REACTOR RADIUS (CM) [3.0000]:
PARTICLE DENSITY [1.1000]:
FLUID DENSITY [1.2000]:
TEMPERATURE (DEG C) [20.0000]:
ALTERNATE VISCOSITY (POISE) (NEGATIVE MEANS USE WATER @ T) [.0100] :

PROBLEM	PARAMETERS:	ROTATI	ON RATE	REACTOR	DENS	TIES	VISCOSITY
TIME				RADIUS (CM)	PARTICL	FLUID	POISE
(HR)	DIAM (MICRON) 200.00	RPM 2.000	RAD/SEC .2094	RADIUS(CM)	1.1000	1.2000	01000

| SPIRAL ORBIT | DESCRIPTION: | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FINAL | AREA | XOFFSET | BRADIUS | SRADIUS | REYNOLDS | TAYIOR | SPIRAL GROWTH |
| CONCENTRATION | FRACTION | (CM) | (CM) | (CM) | NUMBER | NUMBER | PER RADIAN |
| 2.01746 | $.21162-1.0398$ | 1.9602 | 1.3801 | $2.6 E-01$ | $2.5 E-03$ | $-4.7 E-05$ | |

ROTATION RATE CHOICE:						
OMAX	OMIN	PHI	DELTA	AREA	ROTATION RATE	
1/SEC	1/SEC			FRACTION	$1 /$ SEC	RPM
.354	.072593	.43850	.37493	.21447	.1936	1.8489

-22-

```
    INTERFACE TO SUBROUTINE SGNPLOT [C,ALIAS:'_bgnDive']
```

x (MP,ISC,TKFILE)
INTEGER *2 MP,ISC
CHARACTER *20 TKFILE [REFERENCE?
END
INTERFACE TO SL'BRCUTINE CPLOT [C] [FIMH,ADIAM,RFM, 3RAD, DRHO, VISCOS
, ARERAT, XSPIRAL, BRADIUS, SRADIUS
1 , OMAX, OMIN, OMOPT, FCPT)
REAL * 4 TIMH, ADIAM, RPM, 3RAD, DRHO, VISCCS
, ARERAT, XSPIRAL, 3RADIUS, SRADIUS
x, OMAX, OMIN, OMOPT, FOPT
ENO
INTERFACE TO SUBRCUTINE STOPPLOT [C,AL:AS:'_stcisiot'] ()
END
PROGRAM ROTREAC
C ANALYZE ROTATING REACTOR PERFORMANCE
C ASSUME FLUID REMAINS IN SOLID-bODY ROTATION
IMPLICIT REAL*4 (A-H,O-Z)
LOGICAL LEXIST
$M P=i$
$I S C=' g '$
CALL BGNPLOT(MP,ISC,'ROTREAC.TKF'C)
GET INITIAL VALUES OF PARAMETERS fRGM DATA FILE OR INITIAL DEFAULTS.
OPEN DATA FILE.
[NQUIRE(FILE='ROTREAC. DAT', EXIST=LEXIST)
IF (.NOT. LEXIST) THEN
TIMH=20.
TEMP $=20$.
RHOP $=1.05$
RHOF $=1.00$
VALT=-1.
$A D: A M=20$
$B R A D=3$
$R P M=1$.
OPEN (1, FILE = 'ROTREAC. OAT', STATUS = 'NEW')
ELSE
OPEN(1,FILE='ROTREAC.DAT', STATUS='OLD')
READ (1,'(/8F10.5)')
1 TIMH, TEMP, RHOP,RHOF, VALT,ADIAM, BRAD,RPM
ENDIF
C READ IN CHANGES FROM DATA OF LAST RUN
C FORMATS

30
31
32
FORMAT ($\left.1 \mathrm{X}, \mathrm{A}, \mathrm{FB} .4, \mathrm{I}]:{ }^{\prime} \mathrm{V}\right)$
FORMAT (F10.3)
FORMAT(/' ENTER ANY CHANGES FROM THE BRACKETED DATA USED LAST.'
/' always include the decimal point when you enter data.'
/' THEN PRESS THE ENTER KEY.')
C CONTROL RETURNS HERE FROM THE ENO OF THE PROGRAM

```
33 WRITE(0,32)
C READ TIME IN HOURS, STOP ON VEGATIVE. OONVER: - SEEONDS
    WRITE(0,30) 'TOTAL TIME IN YCURS (NEG:-:,E IO QUI:) [',TIMH
    REMD (O,Ј1) TIMHD
    IF (TIMHD .LT. O.J) THEN
        CALL STOPPIOT
        STOP 1 1
    ENO:F
    IF (TIMHD .NE. O.J) TIMH = IIMMD
    TIMSEL=TiMH*Z600.
C READ IN PARTICLE DIAMETER IN MICRONS
C COMPUTE the particle padius in cm.
        WRITE(0,30) 'PARTICLE DIAMETER (MICRCN:; !',ADIAM
        READ(0,39) ADIAMD
        IF (ADIAMD .GT. O.O) AD:AM = AC:AMD
        ARAD=AD:AM*O.0001/2.
C READ IN REACIOR ROTATION RATE IN RPM ANO CONVE*- -O RAD/SEC
        WRITE(0,30) 'ROTATION RATE (RFM) [',RFM
        READ(0,31) RPMD
        IF (RPMD .NE. O.0) RPM = RPMD
        ONE=1
        PI=4*ATAN(ONE)
        OMEGA=RPM*2*P1/60
C READ IN REACTOR REACTOR RADIUS (CM).
        WRITE(O,30) 'REACTOR RADIUS (CM) [',BRM)
        READ(0,31) BRADO
        IF (BRADD .GT. O.0) BRAD = BRACD
C READ IN SPECIFIC GRAVITY (DENSITY IN GM/CC) FOR `HE FLUID
C AND THE PARTICLES.
    WRITE(0,30) 'PARTICLE DENSITY [',RHOP
        READ(0,31) RHOPO
        IF (RHOPD .GT. O.O) RHOP = RHOPO
        WRITE(0,30) 'FLUID DENSITY [',RHOF
        READ(0,31) RHOFD
        IF (RHOFD .GT. O.O) RHOF = RHOFD
        C
C
    OR 1 GM/SEC CM); CRC HANDBOOK OF CHEM. AND PHYS., 7OTH ED., P. F-40.
        IF (TEMP.LE.20.) THEN
            V=(1301./(998.333+8.1855*(TEMP-20.)+0.00585*
            ((TEMP-20.)**2))3 - 3.30233
            VISCOS=(10.0)**V
        ELSE
            V=(1.3272*(20.-TEMP)-0.001053*((「EMP-20.)**2))/
    (TEMP+105.)
```

 12
 113
 114
 115
 116
 117 C
 118 C
 119
 120
 121
 122
 123
 124
 125
 126

190	c	COMPUTE THE RADIUS RSPIRAL (cm) OF THE SMAL! C:RCLE.
191		
192	c	heavy particies originally in the circie 20 Not sf:kal out io
193	\checkmark	H!T The wall in ilme timh.
194		
195	c	BUDYANT PARTICES WHICH OO YCT HIT THE NAL DUR:NU HE FIRS
196	C	SPIRAL SPIRAL INWARDS TO [NS:OE THIS C:RCLE
197		
198		DELTA $=$ AXSP/SRAD
199		BRADIUS $=$ SRAD-AXSP
200		SRADIUS $=$ BRADIUS*EXP(-AETA)
201		ARERAT $=(S R A D I U S / 3 R A D) * * 2$
202		
203	C	the remaining calculations : incre the given rotai.cn pate
204 (20 (RAD/SEC).		
205	C	COMPUTE THE mAXIMUM And minimum values of the rothion mate (rnorse).
207	c	THE MINIMUM IS DEFINED SO THAT THE SPIRAL CENIER S S
208	C	THE MAXIMUM IS DEFINED ARBITRARILY BY ABS(ETA)=1, SO THAT PARTiCOES
209	c	MIGRATE INWARDS OR OUTWARDS CENTRIFUGALIY ay a sac.or e in time fimh.
210		
211		
212		OMIN $=\mathrm{G}^{*}($ ADELRH $) /(8 R A D * C D R)$
214	C	AN OPTIMIZED ROTATION RATE IS COMPUTED BY MaXImIz.ing the ratio of hhe
215	C	
216	C	FIRST DEFINE PHI. NOTE THAT PHI**3/2 = (OMMIN/OMMAX)**2 $=$ (ARAO/AMAX) ${ }^{\text {a }}$ (${ }^{\text {a }}$
217		
218		THIRD $=1 / 3.00$
219		
220		
221		*(2.*ADELRH/(9.*VISCOS))
222		
223	\bigcirc	SOLVE DEL = PHI*(1-DEL)**(1/3)
224	C	DEL IS OMOPT/OMMIN = XSPIRAL/BRAD
225		
226	C	NEWTON'S ItERATION SOLUTION
227		
228	C	INITIAL APPROXIMATION IS EXACT SOLUTION OF THE ECUATION
229	c	WITH THE CUBE ROOT REPLACED BY A SQUARE ROOT. THE POSITIVE
230	c	ROOT IS CHOSEN, AND FORMULATED TO AVOID ROUNDING ERROR FOR
231	C	VERY LARGE PHI
232		
233		PHI2=PHI*PHI
234		DELI $=$ PHI2*2/(SORT $($ PHI2* $(4+$ PHI2) $)+$ PHI2)
235		
236	C	ITERATE
237	C	R IS The first residual formulation, And RD is ITS derivailve
238	C	USE $S=9-(1-R)^{* *} 3$, AND ITS DERIVATIVE SO, TO GIVE FASTER CONVERGENCE
239	C	ANO AVOID PROBLEMS FOR LARGE PHI.
240		
241		DO $2 \mathrm{l}=1,5$
242		ROOT $=(1-\mathrm{DELI})^{* * T H I R D}$
243		R=DELI-PHI*ROOT
244		RD= 1+PHI*ROOT*THIRD/(1-DELI)
245		$Q=1-\mathrm{R}$
246		$02=0 * \square$
247		$\mathrm{S}=1-\mathrm{Q} 2^{*} \mathrm{Q}$
248		SD $=3 *$ Q ${ }^{*}$ RD
249	2	DELI $=$ DELI - ${ }^{\text {/ }}$ SD
250		
251		DELOPT=OELI
252		FOPT $=(1-$ EELOPT)**2/EXP $($ PHI**3/DELOPT**2)

Friday，January $\cdots, 1991$ 4：25 pm

```
            CMOPT = (G/(2.*SRAD*TIMSES*(`-OESSPT)))***IRD
    AN APDROXIMATE UPPER LIMIT ON PARTICLE RADIUS, 4HAX (CM), IS CCMPUTED
    gy EQUATING OMAX AND OMIN. ALL OTHER こALCULATIことS jSE THE GIVEN SIZE.
            AMAX = (0.*VISCOS;(2.*ADELRH))**O.5*
            (BRAD**2/(C**2*TMMSES))**(1..t. )
            DMAX = AMAX*20000.
            WRITE(0,30)T:MH,ADIAM,RPM,OME S^, 3RAD,3H==, 2HCF,VISCOS
            IF (BRAD.GT.ABS(XSP!RAL)) THEY
                WRITE(O,31)CONC,ARERAT,XSP!RAL,3Z =2IUS, SRADIUS,REY,TAYLこR,SFGRPR
            ELSE
                WRITE(0,83)CONC,ARERAT,XSPIRAL, ЭR:בIUS, SRADIUS,REY,TAYLCR,SFGÑFR
                    ENDIF
                    WRITE(O, 82)OMAX,OMIN, PHI, DELCPT, FOPT, OMCP*,OMOPT*30/PI
    FORMAT(//' PROBLEM PARAMETERS:',/,
    1 ' tIME PARTICLE ROTATION RATE ',
    ' REACTOR DENSITIES VISCOSITY',/.
    2: (HR) DIAM(MICRON) RPM RAD/SEC
    2 'RADIUS(CM) PARTICLE FLUID POISE',/,
    3 F6.1,F12.2,F1O.3,F8.4,F12.4,F9.4,F8.4,F9.5.//)
    FORMAT(' SPIRAL ORBIT OESCRIPTION:',/,
    1, FINAL AREA XOFFSET BRADIUS SRADIUS ',
    'REYNOLDS TAYLOR SPIRAL GROWTH'./.
    2 ' CONCENTRATION FRACTION (CM) (CM) (CM) '.
    3 ' NUMBER NUMBER PER RADIAN'./;
    4 F10.5,F12.5,F8.4,F9.4,F8.4,1P,2E9.1,E11.1//)
    FORMAT(' SPIRAL ORBIT OESCRIPTION IMPOSSIBLE:'./,
    1 ' FINAL AREA XOFFSET BRADIUS SRADIUS '.
    IREYNOLDS TAYLOR SPIRAL GROWTH'./,
    2 ' CONCENTRATION FRACTION (CM) (CM) (CM) ',
    3. NUMBER NUMBER PER RADIAN',/,
    4 F10.5,F12.5,F8.4,F9.4,F8.4,1P,2E9.1,E11.1//)
            FORMAT(' ROTATION RATE CHOICE:',/,
        1 OMAX DMIN PHI DELTÁ AREA ',
        I 'ROTATION RATE ',/,
    3'1/SEC 1/SEC FFRACTION ',
    1 1//SEC RPM 1./,
    F7.3,F9.6,3F9.5,2F9.4,/1)
    WRITE (O,*) 'ENTER N IF YOU DO NOT WANT A PLOT'
        READ (O,'(A!)') CNO
        IF (CNO.EQ.'N') GO TO 33
            CALL CPLOT (TIMH,ADIAM,RPM,BRAD,DRHO,VISCOS
        1,ARERAT, XSPIRAL,BRADIUS, SRADIUS
        1, OMAX, OMIN, OMOPT, FOPT)
        GO TO 33
    C
    IT KEEPS SOLICITING A NEW CASE, AND STOPS ON A NEJATIVE TIMH VALUE
    END
```

```
#include "graphic.h" /* will include all necessary include files *i
f*
        CALL CPLOT (TIMH,ADIAM, RPM, SR:AD,DRHO,VISCOS,ARERAT
        1,XSP!RAL,GRADIUS, SRADIUS
        1 ,OMAX, OMIN,OMOPT,FOPT)
*;
vcid cplot (float timn, float aciam, float rpm, float brad, floar drho, float viscos,
        float arerat, float xspiral, float bradius, flcat sradius,
        float omax, float min, float mopr, float for:)
<
/*
    declarations
*/
            float brads,xs,bra,sra,rgrowth;
            int i,nxdiv,nydiv,npts;
            char buffer[99];
            float om[301], y[301], z[301j, w[301];
            float ymin, ymax, ystep, maxd;
/*
    first plot
*/
    if (abs(xspiral)<brad)
            {
                /* CONVERT TO RADIUS 2.3 INCHES */
                    xs=(2.3/brad)*xspiral;
                    bra=(2.3/brad)*bradius;
                    sra=(2.3/brad)*sradius;
                    brads=2.3;
                    startplot(7); /* initializes each plot and sets the background color */
            /* 0-7 are black, blue, green, cyan; red, magenta, brown, white */
            font(3,"simplex.fnt",'\310',"triplex.fnt",'\311',"complex.fnt",'\312'
                    ."',' ');
                            /* loads your chosen fonts */
                rotate(0);
                page(9..6.855); /* sets the output page size */
                setscale(0);
                /* this is the same aspect ratio as 4095 by 3119 */
            ** cross(1); crossed axes if either axis goes through zero */
                /* area2d(8.0,5.5); sets the area of the plot (drawing page) */
                color(2); /* Green */
                &ox();
                color(5); /* sets color to magenta */
                tmargin(.15);
                ctline("\311ROTARY REACTOR CROSS SECTION",.31); f* titles plot */
                color(4);
                    dashf(1);
                circle(2.7+0., 2.7+0.,brads,0.,6.3);
                    dashf(9);
                circle(2.7+xs,2.7+0.,bra,0.,6.3);
                circle(2.7+xs,2.7+0.,sra,0.,6.3);
                color(2); /* Green */
                dateit('\310');
                    page(3.2,4.6);
                    pgshift(5.4,.4);
            linesp(1.8);
            setscale(1);
            box();
```

```
    lmargin(.2):
    tmargin(.0);
    c:line("\311DATA",.7);
    tmargin(1.5);
    sprintf(buffer, "%%.!f",timi);
    rtline\buffer,.45);
    sprint%(buffer,"%g.;f",adiam);
rtline(buffer,.45);
sprintf(buffer,"%8.1f",rpm);
rtline(buffer,.45);
sprintf(buffer, "1%8.{f",brad);
rtline(buffer..45);
sprintf(buffer, "%8.3f",drho);
rtline(buffer,.45);
sprintf(buffer,11%8.4'',viscos);
rtline(buffer,.45);
tmargin(1.5);
ltline("Hours",.45);
ltline("Microns",.45);
ltline("RPM",.45);
(tline("Reactor Radius",. 45);
ltline("Density Excess",.45);
ltline("Viscosity",.45);
tmargin(7.0);
ctline("\311RESULTS",.7);
tmargin(8.5);
sprintf(buffer,""%.4f",arerat);
rtline(buffer,.45);
sprintf(buffer,"%8.4f",xspiral);
rtline(buffer,.45);
if (drho>0.) rgrowth=bradius/sradius;
else rgrowth=sradius/bradius;
sprintf(buffer, "%8.4f",rgrowth);
rtline(buffer,.45);
tmargin(8.5);
(tline("Area Fraction",.45);
ltline("Spiral offset",.45);
ltline("Radius Growth",.45);
endpiot();
}
/* END OF IF BLOCK ON XSPIRAL TEST. START OPTIMIZATION PLOT */
startplot(7); /* initializes each plot and sers the background color */
    /* 0.7 are black, blue, green, cyan; red, magenta, brown, white */
font(3,"simplex.fnt",'\310',"triplex.fnt",'\311',"complex.fnt",'\312'
            ,"!', 1);
                                /* loacs your chosen fonts */
rotate(90);
page(6.855,9.); /* sets the output page size */
setscale(0);
                                /* this is the same aspect rario as 4095 by 3119*/
color(2); /* Green */
box();
color(5); /* sets color to magenta */
tmargin(.12);
ctline("\31iROTATION RATE OPTIMIZATION",.25); /* qitles plot */
```

```
    color(4);
    * sets coior to red */
    dateit('\310');
    ymin=0.;
    ymax=1;
    ystep=.2;
    page(6.355,5.5); /* #e:s the ourour page size */
    pgsinift(0.,2.7);
    areaž(5.355,+.0); /* P!ot diminisions */
    color(10); /* 3lack grid*/
    grid(1); /* Jotted line grid */
    fgrid(2,2,2); /* Sumdivide the =.zr with tick marks only */
    frame(1,1); /* Jram 3 irame around the piot */
    cross(0):
    fntchg('\310');
    /* Charge fonts for axes labels */
omaxd=max(2* max, 5* min);
    for(i=0; i<=300; i++){ / Make vec:ors to plot */
        om[i]=omin*}\operatorname{mxp}(log(omaxd/omin)*i/300.);
        y[i]=1-omin/om[i];
        z[i]=exp(\cdot(om[i]/omax)*(om[i]/omax));
    w[i]=y[i]*z[i];
    }
    npts=301;
    xlog(omin,omaxd, "%-1.1f",ymin,ystep, ymax);
    color(11):
    xname("\3i0RPM"); /* om-axis name */
    yname("\310Radius Ratios"); I* y-axis name */
    color(10);
    curve(om, y, npts, 0); /* Oraw curve with no symbols */
    color(14);
    curve(om, z, npts, 0); /* Draw second eurve */
    color(12); 2, npts, 0),
    curve(om, w, npts, 0): /* Oraw third curve */
    page(3.2,2.2);
    pgshift(.15,.15);
    linesp(1.8);
    box();
    lmargin(.2);
    tmargin(.0);
    ctline("\3410ata",.20);
    tmargin(.38);
    sprintf(buffer,"%8.1f",timh);
    rtline(buffer,.13);
    sprintf(buffer,"%8.1f",adiam);
    rtline(buffer,.13);
    sprintf(buffer,"%8.1f",brad);
    rtline(buffer,.13);
    sprintf(buffer, "$8.3f",drho);
    rtline(buffer,.13);
    sprintf(buffer,"%8.4f",viscos);
    rtline(buffer,.13);
    tmargin(.38);
    ltline("Hours",.13);
    Itline("Microns",.13);
    ltline("Reactor Radius",.13);
    ltline("Density Excess",.13);
    ttline("Viscosity",.13);
    page(3.2,2.2);
    pgshift(3.5,.15);
/* size of the x 3 y vectors */
                        /* Manual scaled om-axis */
```

```
box();
    lmargin(.2);
    tmargin(.0);
    ctline("\311RESULTS",.20);
    tmargin(.38);
    sprintf(buffer, "%8.3f",omin);
    rtline(burfer,.13);
    sprintf(buffer, "%8.3f",omax);
    rtline(buffer,.13);
    sprintf(buffer,"%8.3f",omopt);
    rtline(buffer,.13);
    sprintf(buffer,"%8.3f",sqrt(fopt));
    rtline(buffer,.13);
    tmargin(.38);
    ltline("Minimum RPM",.13);
    Itline("Maximum RPM",.13);
    ltline("Optimum RPM",.13);
    Itline("Optimum Fraction",.13);
    endplot();
    scrt(); /* text mode for interactive stuff */
```

3
void eplot (float timh, float adiam, float rpm, float brad, float drho, float viscos, float arerat, float xspiral, float bradius, float sradius, flat omax, float omin, float omopt, float fopt)
<
3
void bgnplot (int mp, int isc, char * tkfile)
<
\}
void stopplot ()
<
3

APDENDIX D

PARTICTE CRBITS IN A ROTATING LIOUID

An earlier version of the appencied report, with William Fowlis as the first author, was submitted in early 1988 to Prof. Owen Phillips at Jchns Hopkins University, for publication in the Joumal of Fluid Mechanics. A favcrable report was received from the two referees, with only minor corrections required. Submission of a corrected version was delayed by the increasing incapacity of Dr. Fowlis, who went on extended sick leave in the sumer of 1988, later took medical disability retirement, and died at the beginning of 1989.

With the concurrence of Dale Kornfeld and of Dr. Rcbert S. Snyder (supervisor of Dr. Fowlis at MSFC until his retirement) Dr. Roberts of RAI agreed to become first author and to resubmit the paper. The new version follows.

```
Rckerts Asscciates, Incorporated
380 West Maple Avenue, Suite L-iA
    Vierna, VA \(2=180-5616\)
(703) 242-2115 or (03) \(350-5520\)
(Washirgton Metmoncitian Area)
```

Januan 10, 2ec:
Prot. O.M. Fhilizes
Jcumal of Fluid Mechanics Dept. of Earti ard Plaretary Scierces
The Johns Fcpi-ins University
Eaitincre, ND 21213
Dear Professor Fhillips:
I enciose a revised manuscript for our paper "Particie crioits in a Rotating Liquid". I kelieve this revision satisfíes ail the comments bcth of referees A ard B.

Bill Fowlis died in Lecember, 19se. He had been increasingiy sick for three years, with what was ultirately diagnosed as a form of Parkinson's disease. He stopped working in the summer of 1988.

Dale Kornfeld and Dr. Rcieert S. Snycer (of Code EST6, MSFC, Tel. 205/544-7813 and 7805) have agreed that I should be identified as first author, as reflected on the amended title page. Dr. Snycer is the contracting officer's technical representative on my company's contracts, and is Komfeld's supervisor. He was also Bill Fowlis's supervisor until his deati.

The original manuscript was lost from the word-processor. You will note that this manuscript is a photocopy, with the changes cut-and-pasted in. I hope this is acceptable; it was easier than retyping the whole thing would have been. I do not have originals for the figures 1 and 2; so if you do mot have them, please let me know and we will get replacements to you.

I believe this revision satisfies all the comments and suggestions of referees A and B.

We have included the references mentioned by referee A, and one other new reference. Also, we have corrected the Ekman number definition; we thank him for pointing out this error.

With regard to the first paragraph of referee B, our process has been used to make large spherical latex microspheres with quality and uniformity approaching that of microgravity processing, as described in Section 1, at the bottom of page 3. And our analysis has been used in setting the rotation rate range for new rotating apparatus designs; we have expanded section 5 slightly to clarify this.

We have modified the paper in response to succestions 2 and 3 of referee B. With regard to suggestion 1, equations (27) through (29) are derived from equation (16), using the approximation (24), as stated at the bottom of page 11 .

Suggestion 4 is answered by the wiole of Section 4, where a specific optimization probiem is solved. We have modified the text on pace 15 to emphasize that this is done withcut using (33). A sligntly dizferent cptimization problem miche have a slightiy different answer for the cptimum rotation rata. There is no strict upcer limit on the rotation rata; but the faster the chamber spins, the more rapidly the particles centrifuce cutivard to the walls or inward towards the axis.

We have adced figure 3, to clarijl the cptimization proclem solved in section 4. And we have adaed brief remarks on page 25 conceming seconciary flows driven by the excess density districution due to variations in the particle concentration.

We thank the referees for their work.
I apologize for the delay in retuming this paper. This should have been done much more quickly after Bill's death.

Yours sincerely,

Dr. Glyn O. Roberts
President

PARTICTE ORBIMS IN A RCTATING LICUID

by
Glyn O. Rcierts
Rcierts Asscciates, Incorporated
380 West Maple Averue, Suite L-1A
Vienna, VA 22:30-5616
and
Dale M. Komfeld
and
William W. Fowlis ${ }^{1}$
Space Science Laboratory, Code ES76 NASA Marshall Space Flight Center Huntsville, Alabama 35812

${ }^{1}$ Dr. Fowlis died in December, 1988

Abstュacた

 3 micrometers due to buoyancy and sミEミmentation eミミecis．In an

 these monodisperse microspheres in Results have been highly successsi：－．

Using technology gained E＝om シi：is soace exミeェinent，a ground－based rotating latex reactar tas been ミaこここのaむeed in an attempt to minimize sedimentation winhout using－icrogravity． The entire reactor cylinder is roこミこ＝0 about a hovizontal axis to keep the particles in suspension．

For a large ratation rata，tȧ partizles s：inal outảads or
 of the orbit center from the rota：ion axis is Exajミミive in relation to the reactor radius．We deteamine the rotation rate which maximizes the fraction of the reastor cooss section area whian contains particles which will not soiral out to the wall in the experimental time（for heavy part：ales），or which have spiralled ir without hitting the wall（for ligh partioles）．Typically，the ratミ is close to 1 rpm，and design rotation rate ranges should span thi value．

1．INTRODOCTION

 for these apoitcations． 1
 several micrometers（ $\because=$ ）in ciameter．Over the yesrs as lavger polystyrene mizrosohezes weve prepazed，a major ai三Ezoviey in their manuEactu＝e was tiat amounts oE coagulum groeuoed always increased along with size，giving complete coaguium instead c particles in the size range greater than about lo y．．．．A＝tempts to adjust the chemistry oE the latex to reduce coacunum usually resulted in the production of a nor－monodisperse latex， contaminated witi particles of other sizes．${ }^{2}$

The main cause 0 tiese problens was buoyanay and
 emulsion polymerization reaことion using stanciard technigues and equipment，the large monome＝－swollen latex seed paこticles tend to rise to the surEace o the rixture（cream）because the average density of the particies is less than that of the water medium in which they are suspenced．During the later stages of the polymerization，the g＝owing seed particles become heavier as more lower－density monomer is converted to higher－density polymer，and they settle to the bottom of the reactor．As the particles are grown to sizes larger than about 2 um （at which size they show

 ciEEerent method of agitation had to be develoned to procuce these larger－size monozisperse latex particles．́ncziner possizle
 stirring was needed at all．

Because this diEEiculty in p＝ozuaing usabye zojantities oz

 them in the microgrevity er：inonment of space．

This effort resur＝ed in the hizhiy success＝i Yonodisperse Latex Reactor（MLR）Space Process：ng Experiment，nitizh has now been flown into Earth orbit on five space shutこここ－issions．With Dr．John w．Vanderhoze of Lenigh University as the principal investigator，this MLR experiment has successE：IIY produced large－particle monocisperse polystyzene latexes ly to $30 \mu \mathrm{~m}$ in diameter with coefficients of variミニion of less tinn 2 percent．${ }^{3}$ The $10 \mu \mathrm{~m}$ and $30 \mu \mathrm{~m}$ microspheres manufactuzed aboard the Space Shuttle are currently being ma＝keted by the U．S．National Bureau of Standards as Stancard Reミezence Mateここミミ（SRM）\＃1960
and SRM 三1961 respectively．These aze the first products ever
 During the couzse of the sajoe experiments，one of the

 minimize gravitational setたing on Earth Eor the gこowing latex こここえicles．

In this apparatus a č：inčiz＝I polymerization reactor． chamber is rotated about its horizontal axis within a water bath．The Rotary Reaztor is ces：zred to maintain uniformity in particle concentration and temperavure profile with minimal or no stirring．The particles are kept in suspension only tirough the rotation of the reactor，the slow rotation of the entire chamber during polymerization helps to prevent the growing paticles Erom either creaming or settling．Once steacy rotation of the seed latex mixture is achieved in this apparatus，there is no agitation to cause the violent ga：＝icle collisions that result in flocculation．

It has already been establisied experimentally that large－ size latex particles up to $100 \mu m$ diameter can be successfully suspended and polymerized at low reactor rotation rates． Particles manufactured thus far in this prototype reactor have exhibited coefficients of variation inferior to those produced in

 コニニきx reこさつe•

 censity throughout the course of tioe＝eaction．binise siowly

 motion relative to the＝otating Enuid is determined by a balarae of their gravitational and cenこニizugel Eorces with the viscous drag，and the sign of the buoyancy Eorces depencs on the densit？ CiミEッzence between the particies ard the fluid．

At higher rotation rates，more dense particles will tend to be centzifuged outward and cepos：＝ed on the cylineez wayl of tien Rotary Reactor．Less dense ミaこticies will be centriEuged inwazes and will form a mass near the axis．A lower limit on the rotation rate is detemined by the time it takes the particles to Eall through（or rise througin）a cistance close to the radius of the reactor cylinder．Cleazly there is an optimization problem Eor the rotation rate．

In this paper the particle orjits in the Rotary Reactor ane determined，and the optimization problem is solved with the assumption that the particle density and radius remain Eixed． Section 2 contains the formulation and solution of the particle
orbit problem and Section 3 contains the formulation and solution of the rotation rate optimization problem. In Section 3 the principal conclusions are stated.
2. FORMULATION AND SOLUTION CE TEE PROBLEM FOR PARTICLE ORBIMS

Basic mechanisms for the suspension of heavy particles in a rotating cylinder of fluid weze discussed by Otto and Lorenz', but a formal solution was not obtained. A more complete study of the particle orbit problem was preserieed by Schasz, 7 but the centrifugal buoyancy was not handled correctly. Related studies by Di Il and Brenner ${ }^{8}$, by Nadia, Cox and Brenner ${ }^{9}$, by Aoki, Shirane, Tokimots and Nakagawi ${ }^{10}$, and by Annamalai and cole ${ }^{11}$, addressed pares of the problem. In their later work, Annamalai and Cole ${ }^{12}$ obtained an orbit solution essentially equivalent to ours, in the context of bubbles. None of these references analyzed the optimization problem studied here.

In this section the
particle orbit problem is correctly solved. The ambient fluid is taken to be in solid-bocy rotation about the horizontal z axis through the origin (see Figure 2) with rotation rate Ω. Then the fluid flow in the (x, y) plane is given by

$$
\begin{equation*}
\underline{u}=\underline{\Omega} \times \underline{x}=(-\Omega y, \Omega x) \tag{I}
\end{equation*}
$$

The corresponding pressure distribution is

$$
\begin{equation*}
p=p_{0}+\rho_{f}\left(\frac{1}{2} \Omega^{2} r^{2}-G Y\right) \tag{2}
\end{equation*}
$$

where p_{0} is a constant, ρ_{f} is the fluid density and r^{2} is $x^{2}+y^{2}$, so that r is the cylindrical radius coordinate. The gradient of this pressure balances the gravitational and centrifugal forces on the fluid.

The vector equation of motion for a spherical particle of radius a, density ρ_{p}, volume v, and mass M at position x is

$$
\begin{equation*}
\underline{M} \underline{\underline{B}}=-M \underline{Q}+\underline{\underline{D}} \div \underline{D} \tag{3}
\end{equation*}
$$

where the stress forces exeried by the fluid on tine particle have been separated into a pressure Ez=ze $\frac{P}{}$ and a $\mathrm{c}=\equiv \mathrm{E}$ Force D. The pressure force is defined as

$$
\underline{p}=-\int p \mathrm{c} s,
$$

where p is tie Fluid pressure given by equation (2) above, and the integration is over the particie surface. Using Gauss' theorem,

$$
\begin{equation*}
\underline{P}=\rho_{E} V\left(-\Omega^{2} x, G-\Omega^{2} y\right) . \tag{इ}
\end{equation*}
$$

The g term is the familiar Archimedes buoyancy Ere. The Ω^{2} term is the corresponding inward pressure gradient which would cancel the centrifugal acceleration of the liquid which the particle has displaced. This tern was apparently omitted by Schatz ${ }^{7}$.

The drag force is written using the Stokes slow-Elow approximation. In this viscous limit

$$
\begin{equation*}
\underline{D}=-6 \pi n a(\underline{\dot{x}}-\underline{\Omega} x \underline{x}) \tag{6}
\end{equation*}
$$

where η is the fluid viscosity. The drag force opposes the motion of the particle relative to the fluid. The approximation requires that the Reynolds number and the Taylor: number be much smaller than unity, where

$$
\begin{align*}
& \operatorname{Re}=\rho_{E^{a V / i n}}, \tag{7}\\
& T_{a}=\rho_{E} a^{2} \Omega / n, \tag{3}
\end{align*}
$$

 Combining these expressiors，the two non－t＝ivial components
of the equation of motion can be w上：ここen as

$$
\begin{align*}
& \prime \prime \prime+c x^{\prime}+\frac{\rho_{\hat{I}}}{\rho_{p}} \Omega^{2} x+c \Omega y=0, \tag{9}\\
& \bar{y}+c y^{\prime}+\frac{\rho_{\hat{E}}}{\rho_{p}} \Omega^{2} y-c \Omega x=-\frac{\Delta \rho}{\rho_{p}} \Omega, \tag{10}
\end{align*}
$$

where the drag constant，

$$
\begin{equation*}
c=\frac{9 \eta}{20_{p} a^{2}} \tag{11}
\end{equation*}
$$

is the rate at which motion decays through drag forces alone and $\Delta \rho=\rho_{P}-\rho_{f}$ ．The tem on the right hand side of equation（10） arises from the particle weight less the Archimedes buoyancy force．The Ω^{2} terms on the lezt hand sides of the equations（ 9 ） and（10）arise from the centrisugal pressure term in equation （5）．

The coupled x and y equations can be solved conveniently by introducing the complex variable

$$
\begin{equation*}
w=x+i y \tag{12}
\end{equation*}
$$

Multiplying equation（10）by i and acing equation（9）gives the complex，seconc－orjer，lines＝equation

$$
\begin{align*}
& \pi+c_{N}^{1}+\left(\frac{D_{0}}{D_{D}} a^{2}-i z a\right)=-i \frac{\Delta D}{\rho_{D}} G \cdot \tag{23}
\end{align*}
$$

$$
\begin{equation*}
w=w_{0}+A_{1} \exp \left(m_{1} t\right) \div A_{2} \exp \left(m_{2} t\right) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
w_{0}=x_{0}+i Y_{0}=\frac{\Delta 0 q}{\rho_{\underline{D}}^{C I}}\left(I+i \frac{\rho_{E}}{\rho_{D}} \frac{\Omega}{c}\right)^{-1} . \tag{15}
\end{equation*}
$$

The real and imaginary parts represent the equiliz＝ium position of the particle in the $x-y$ plane．The complex constants m_{l} and m_{2} are the roots of the quaミこatic auxiliary equal：

$$
\begin{equation*}
m^{2}+c m+\left(\frac{\rho_{f}}{\rho_{p}} \Omega^{2}-i c \Omega\right)=0 . \tag{16}
\end{equation*}
$$

The complex constants A_{1} and A_{2} are determined E_{Y} the initial values $w(0)$ and $\dot{w}(0)$ at time zero，using the eguミニions

$$
\begin{align*}
& A_{1}+A_{2}=w(0)-w_{0}, \tag{17}\\
& m_{1} A_{1}+m_{2} A_{2}=\dot{w}(0) . \tag{18}
\end{align*}
$$

These simultaneous equations can be easily solved for A_{1} and A_{2}. The general solution (14) represents the superposition of two spiral motions about the equilibrium position (x_{0}, y_{0}). Consider the one solution

$$
\begin{equation*}
w=x+i y=A_{1} a x z\left(m_{1} y\right), \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1}=\alpha \exp (i \theta), \tag{20}\\
& m_{I}=m_{r}+i m_{i} \tag{21}
\end{align*}
$$

Here α is the positive amplitude of A_{1} and θ is its phase, while m_{r} and m_{i} are the real and imaginary part of m_{1}. The real and imaginary parts of ware

$$
\begin{align*}
& x=a e^{m_{r} t} \cos \left(m_{i} t+\theta\right), \tag{22}\\
& y=a e^{m_{r} t} \sin \left(m_{i} t+\theta\right) \tag{23}
\end{align*}
$$

The instantaneous spiral radius is $a e^{m_{r}}$, and grows or decays exponentially depending on the sign of m_{r}. The phase angle $m_{i} t$ + θ determines the direction of the vector displacement (x, y) in the $x-y$ plane.

We now use the inequality

$$
\begin{equation*}
\Omega \ll c . \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
w_{0}=x_{0} \div i y_{0}=\frac{g \Delta o}{\Omega c D_{p}}=\frac{2 a a^{2} \Delta 0}{g \eta \Omega} \tag{25}
\end{equation*}
$$

so that the spirals are centered about a point on the x-axis, displaced horizontally from tie anis of rotation. At this point the drag force balances the net weight. Naturally, this point must be inside the rotating reactor, since if the point is outside or on the rotating reactor wall all the particle orbits will strike the wall. This guts a lower limit on Ω;

$$
\begin{equation*}
\Omega>\Omega_{\min }=\frac{c|\Delta 0|}{b c \rho_{p}}=\frac{2 c a^{2}|\Delta 0|}{g n z}, \tag{25}
\end{equation*}
$$

where b is the radius of the rotating reactor. For $|\Delta \rho| / \rho_{p} \sim 0.1, g \sim 10^{3} \mathrm{~cm} / \mathrm{sec}^{2}, \mathrm{~b} \sim 3.0 \mathrm{~cm}$ and the above value for $\mathrm{c}, \Omega_{\mathrm{min}}$ is $7.4 \times 10^{-4} \mathrm{se} \mathrm{c}^{-1}$, cf. Table 2 .

Using the assumption (24), the two roots of the quadratic equation (16) can be approximated as

$$
\begin{equation*}
m_{l}=i \Omega+d \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
m_{2}=-c-i \Omega, \tag{29}
\end{equation*}
$$

where the growti or dezay＝ミこe for the ミirst sミミュミ1，in equation （2．），is

$$
\begin{equation*}
d=\frac{\Delta o}{a_{p}} \frac{\Omega^{2}}{c} \tag{29}
\end{equation*}
$$

which is real and much less than Ω ．Note that Ery the second spiral，the real part is－c，so that the radius decreases exponentially on the very short drag time scale， $1 / \varepsilon$ ．Thus the second spizal solution becomes negligibly small in a few drag time scales，for any reミlistic initial concitions．The full general solution thereミore $\sigma=$ b be approximated as

$$
\begin{align*}
& x=x_{0}+a e^{d t} \cos (\Omega t+\theta) \tag{30}\\
& y=a e^{d t} \sin (\Omega t \div \theta) \tag{3I}
\end{align*}
$$

where α and θ are detemmined by the initial displacement from the center of the spiral．

Note that the racius of the displaement from the spiral center is $\alpha e^{d t}$ ，where \dot{d} is much less than Ω and has the sign Of $\Delta \rho$ ．The rotation rate of the spiral is Ω ，so the particle rotates about the center of the spiral at the same rate as the fluid rotates about the axis．The exponent for growth or decay of the radius during the experimental time T is

$$
\begin{equation*}
\varepsilon=|d|=\frac{1 \Delta \|_{2}^{2} T}{Q_{\underline{D}} C} \tag{32}
\end{equation*}
$$

 we require

$$
\begin{equation*}
\Omega^{2}<\Omega_{\max }^{2}=\frac{\rho_{p}^{c}}{|\Delta p| \tau}=\frac{Q_{n}}{2 a^{2} n_{i}-2 \mid} . \tag{33}
\end{equation*}
$$

 limit for Ω using the previous assumptions is 2.12 sec ${ }^{-1}$. .

Physically, tie spiraling in or out is caused by tie
 That is winy it has the sign of ia. This force is balances by tie drag force to determine the rate of spiralling inwaris on outwards.

By equating the lower and loper limits, (25) and (33), for Ω, we can obtain an approximate upper limit for the raíus of the particles for the rotating reactor to be useful,

$$
\begin{equation*}
a_{\max }^{6}=\left(\frac{9 \pi}{2|\Delta \rho|}\right)^{3} \frac{b^{2}}{g^{2} I} \tag{34}
\end{equation*}
$$

Using $\eta \sim 10^{-2} \mathrm{gm} / \mathrm{cm} \sec ,|\Delta \rho|=0.1 \mathrm{gm} / \mathrm{cc}, \mathrm{b}=3 \mathrm{~cm}, \mathrm{~g}=10^{3}$ $\mathrm{cm} / \mathrm{sec}^{2}$ and $\mathrm{T}=10^{5} \mathrm{sec}$, as before, we obtain anat as $1.42 \mathrm{x} 10^{-2}$ cm , corresponding to a diameter of 284 pm. This upper limit is further discussed in the following section.
4. OPTIMIZATION OF THE ROTAMION RATE

Erom the previous section, the choice of the rotation rate involves the following cimensionless variabies

$$
\begin{align*}
& \delta=\frac{\left|x_{0}\right|}{b}=\frac{\Omega_{\min }}{\Omega}=\frac{2 \pi a^{2}| \pm|}{9 D \pi \cdot}, \\
& \varepsilon=\frac{\phi^{3}}{2 \delta^{2}}=\left(\frac{\Omega}{\Omega_{\max }}\right)^{2}=\frac{2 a^{2}-10 \mid \Omega^{2}}{\Omega n} . \tag{36}
\end{align*}
$$

Here we have introduced the cimensioniess quantivi ϕ^{3},
incependent of the rotation rミte, and derived by the relations

$$
\begin{align*}
\phi^{3} & =2 \varepsilon \delta^{2} \\
& =2\left(\Omega_{\min } / \Omega_{\max }\right)^{2} \\
& =2\left(a / a_{\max }\right)^{6} \\
& =2 a^{6} g^{2} \mathrm{~Tb}^{-2}(2|\Delta \rho| / 97)^{3} . \tag{37}
\end{align*}
$$

The definition using ϕ^{3}, and the factor 2, are for later convenience.

The limit $\Omega_{\text {min }}$ corresponis to the strict requinement
$\delta<1$,
so that the spiral center is inside the rotating reactor. The Iimit $\Omega_{\max }$ correspnds to the loose requirement
$=\leq 1$,
so that the centrifugal sp：r三ining is not excessive during the period T ．The radius changes by a Exactor es during tits time シュさシャロコ。

 hit the reactor wail in the＝ike inこeval T ．For negative $\Delta=$ ， the particles spiral inwards，and we maximize the ElEction $E=$
 not hit the wall in the preveaing＝ike interval T．T is much more than a rotation period，and is taken as $10^{5} \mathrm{sez}$ for 27.3

In both cases，the area involved is a circle wit in its center＝ at the spiral center．The distance From the spiral center to the cylinder wall is（b－｜xo｜）．The radius of the circle is therefore

$$
\begin{equation*}
r_{F}=\left(b-\left|x_{0}\right|\right) e^{-\varepsilon} . \tag{40}
\end{equation*}
$$

The traction F is the ratio o：the area of this circle（the smallest circle in figure 3 ：to the cylinder cross section area（he largest circle）．Thus

$$
\begin{align*}
F & =\frac{\pi r_{F}^{2}}{\pi b^{2}}=(1-\delta)^{2} e^{-2 \varepsilon} \\
& =(1-\delta)^{2} \exp \left(-\phi^{3} / \delta^{2}\right) \tag{41}
\end{align*}
$$

In this last expression Eor $\equiv, 0^{3}$ remains constant winile Ω and j

$$
\begin{equation*}
\frac{0^{3}}{I-5}=\phi^{3} \tag{42}
\end{equation*}
$$

This is a cubic equation in o，with \equiv single soluzion in the allowed interval $0<\delta<1$ ，for all Easitive ϕ vaiues． Approximate analytic solutions Eor \dot{o} an be obtained when ϕ is
 metiods can be used，or ó can be obtミミned using Eミミミe 1 as． described below．

Once the optimum óand E have zeミn found，f＝＝a particula＝ set of rotating reactor parameters ce＝ermining the ϕ^{3} values （37），the optimum rotation rate is g：\because（en by equation（35），in the Eorm

$$
\begin{equation*}
\Omega=\Omega_{\min } / 0 \tag{43}
\end{equation*}
$$

Using equation（42），with the deEin：ニions（35）and（37），this can be written as the alternative form

$$
\begin{equation*}
\Omega=\Omega_{s}(1-\delta)^{-1 / 3} \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{s}=\Omega_{m i n} / \phi=\left(\frac{c}{2 b T}\right)^{1 / 3} \tag{45}
\end{equation*}
$$

is independent of the particle size and density, and of the fluid properties. For our example, with $\subseteq=10^{3} \mathrm{~cm} / \mathrm{sec}^{2}, \mathrm{~b}=3 \mathrm{~cm}$, and $I=10^{5} \mathrm{sec}, \Omega_{s}$ is $0.113 \mathrm{sec}^{-1}$ or 1.132 Ipa. The expression (45) is useful, because (1-0) 1 (1/3 does not increase significantly? Edom unity until o approaches unize. For the easy case of very main $\phi, \Omega_{m i n}$ is much less than Ω_{max}. The approximate analytic solution is

$$
\delta=\phi,
$$

$$
\varepsilon=\phi / 2,
$$

$$
\begin{equation*}
E=1-3 \phi . \tag{46}
\end{equation*}
$$

The corresponding optimum rotation rate for small ϕ is

$$
\begin{equation*}
\Omega=\Omega_{s}(1+\phi / 3) \tag{47}
\end{equation*}
$$

or approximately Ω_{s}. The rotation $r a t e$ is independent of the particle and fluid properties so long as they ensure that ϕ is small.

The example introduced in the previous section leads to a very small ϕ value. Using those values,

$$
\begin{align*}
& \Omega_{\min }=7.4 \times 10^{-4} \mathrm{sec}^{-1}, \\
& \Omega_{\max }=2.12 \quad \sec \\
& \phi^{-1} \\
&=2\left(\Omega_{\mathrm{min}} / \Omega_{m a x}\right)^{2}=2.44 \times 10^{-7}, \\
& \delta=\phi=0.00625, \\
& \varepsilon=1-3=0.00312, \tag{43}\\
& E=1-3 \phi=0.0813,
\end{align*}
$$

The optimum rotation rate is accurately given, by equation (47), and is almost exactly Ω_{s}. The spiral center is $a=$

$$
\left|x_{0}\right|=b \delta=0.019 \mathrm{~cm}
$$

which is an imperceptible displacement from the reactor axis. On the other hand, the approximate solution for large ϕ is

$$
\delta=1-\phi^{-3}
$$

$$
\begin{equation*}
\varepsilon=\phi^{3} / 2 \tag{50}
\end{equation*}
$$

This is the hard case of large particies, with $\Omega_{\text {min }}$ much greater than $\Omega_{\text {max }}$. The optimum Ω is only sightly larger than $\Omega_{\text {min }}$ and the particles centrizuge so rapidly that the fraction F is
 useless.

For intermediate values $o=\phi^{3}$, as given by equation (37), the use of mable 1 may be preferable to solving the curio equation (42), particularly since F is insensitive to δ near the optimum value. The table shows optimal values of spaced uniformly from zero to one, with the corresponding values of

$$
\begin{aligned}
& \phi^{3}=\delta^{3} /(1-\delta), \\
& \varepsilon=\phi^{3} / 2 \delta^{2}, \\
& E=(1-\delta)^{2} e^{-2 \varepsilon}, \\
& (1-\delta)^{-1 / 3}
\end{aligned}
$$

The table can be used, with hand interpolation, to determine values for the other parameters, assuming an optimized rotation rate, for any value of ϕ^{3} (or of ε or F).

To illustrate the application of Table l, consider the example given in the previous section for which the radius is calculated using $\Omega_{\text {max }}=\Omega_{\text {min }}$. This gives in succession

$$
\begin{aligned}
& a=a_{\max }=1.42 \times 10^{-2} \mathrm{~cm}, \\
& \Omega_{\max }=\Omega_{\text {min }}=2^{1 / 3} \Omega_{s}=0.1405^{10 e c^{-1},} \\
& \phi^{3}=2, \\
& j=0.77, \\
& \varepsilon=\phi^{3} / 25^{2}=1.53, \\
& E=(1-0)^{2} \operatorname{exz}(-2 \varepsilon)=0.00^{\circ}-3, \\
& \Omega=\Omega_{\text {min }} / 0=\Omega_{\mathrm{s}} /(1-0)^{1 / 3}=0.1939 \mathrm{sec}^{-1} .
\end{aligned}
$$

Here δ is obtained Exam ϕ^{3} by interpolation in the table, and $=$ and F are then obtained from the fonulas. The Exaction f of the particles not hitting the wall is unacceptably small, even at tie optimum rotation radius.

To determine the largest radius for which a fraction E of 0.5 can be obtained, we again look to the table, and obtain approximately,

$$
\begin{aligned}
& \delta=0.2, \\
& \phi^{3}=0.01 .
\end{aligned}
$$

From equation (37),

$$
\left(a / a_{\max }\right)^{6}=\phi^{3} / 2=(0.4135)^{6}
$$

which gives a racius limit of $5.9 \times 10^{-3} \mathrm{~cm}$ (corresponding to a diameter of 117 um) for our example. The corresponding optimum rotation rate is

$$
\Omega_{s} /(1-0)^{1 / 3}=0.1278 \mathrm{sec}^{-1} .
$$

5. CONCLUSIONS

A rotary reactor is a cylinder of fluid rotミニing about its horizontal axis in orier to keep particles in suspension. Such a reactor has been used to procuce lazger latex microspheres in the laboratory without flocculation, with results apg=oaching those cotained in space.

In anounata sovution for the path Eollowed by a pe=ticle in a rotating reactor has been obtained. The pati cepencs on whether the particle is heavier or lighter than the fluid. For counterciockwise =otation, a heavy particle spirais outiards around a spiral center displaced to the right of the axis. A light particle spirals inwareis around a center displaced to the left. The spiral rotation rate is the same as the rotation rate of the reactor. The relative change in the racius, for each spiral rotation, is very small.

Physically, the horizontal displacement of the seinal center from the axis of rotation is determined by the condition that the net weight or buoyancy should balance the viscous drag from the fluid flow past the particle. The spiralling outwards or inwards is due to the centrifugal buoyancy (i.e. the centrifugal force on the particle as compared with the centrifugal force on the fluid it displaces).

There are two constraints on the rotation rate of the reactor. It must exceed the minimum value (26), to keep the spiral center inside the reactor. And it must not be much larger than the maximum value (33), since either too many particles hit the reactor wall or the particle concentration becomes excessive (for light particles spiralling inwards).

For both cases，there is a naこここal optimization problem，to choose the rotation rate to maximize the Exaction of the reactor
 spiral out to the reactor way during the experimer：al time，or have sロミェミlled in without hiz＝ing tie wail．

The cミヒim：zaこion problen was ミこうred，to detu＝nine the
 any set of parameters．Remari：ably，the oŋtimum rotation rate is independent of the particle and fluid properties，for small particles，anc increases only a liたこie as the particie size increases．

Table 2 presents the parameter values for the three examgies used in the text．The Eluid p＝ope＝：ies，censity diEzerence， reactor diameter，and experimental $=$ 隹e aこe the same in each case．Particle $்$ iameters in micrometers of 20，284，and 117 are considered．The computed rot三tion こ三tes aze presented in rpm units for engineering convenience．The optimum rotation rate maximized the success fraction F of the reactor cross section area．The spiral center displacements（Erom the reactor axis） are shown．The distance of each particle from the spiral center changes by the indicated factor during the experimental time． For the first column，the particle diameter was chosen as a typical value of interest．The minimum rotation rate is much less than the nominal maximum，and a high success fraction is obtained，with a small spiral center cisplacement and a radius change factor close to unity．

In the second column, the particle diameter ias chosen to make the maximum and minimum rotation rates equal. The optimum rotation rate is somewhat higher, the spiral center is near the reactor wall, the $=\equiv$ ai: us changes by \equiv factor of ore v Eire, and the success Exaction is very swat: .

 are shown.
 microsphere processing. Note that the optimum roisoizn rate given b equation (44) and ias varies only with the one-inifi power ot g and is practically independent of the particle riding and density, provided (37) is small:. Thus the optimum rotation raze is close t rpm for latex microspheres, and is probably between 0.1 rpm and 10

Further work is required for a full application of this analysis to the production of monocisperse latex microspheres. As described in Section 1 , the moncmer-swollen seed particles are buoyant in the early stages, and converge on the soミ上al center. In the later stages, tie particles shrink slightly and become heavier than water, and the spiral center crosses the axis. The heavier particles centrifuge out as the polymerization approaches completion.

The risk and extent of coagulum formation curing this process, and the deviations from a monodisperse size distribution due to variations in the particle distribution, $a=e$ unknown. It can be expected that even if the particles collide near the spiral center as they centrifuge in during the early stages, the forces between the particles will be much smaller than for owning PRGE
particles creamed to the top in a non－rotating reactor．This is because the centri三ugal accele＝三tions are extremely small．Thus coaguium fomation might be minimal．In the late stages，as particles centrizuge out and $h:=$ the wEIl，there will be further paتticle coliisions，with again the possibility of coagulum formation or size dispersion．

A Eurther issue involves the beginning of production，and the dynamios and themodynamies of raising the terperature，with or without stir＝ing．The stizring could also be continued into the polymerization stage．

Final：\％，we assumed that the so．a－body rotatian of the tidiz i三 not disturbed by the presence c the farticles．However，recent experiments by Kornield show siznificant secondary flows driven by concentration variations，for 0.3% suspensions of 50 miaron latex particles，at rotation rates below 1 rpm．The dependence of this phenomenon on concentration is weak，while its dependence on rotation rate is very abrupt：at 1.4 rpm there is no observable modification from uniform rotation，while at 0.7 rpm the flow field and particle distribution are totally different．We plan further study of this ＝ttect．
 （2）， 223 （1964）．

2．Vanderhoff，J．W．，El－iasミar，M．S．，anc Micaje，E．J．， Abstracts，175－h ACS Maきさミng，Anaheim，CA，Ma＝ch 1ミ－17，1978， COLL－110．

3．Vanderhoff，J．W．，El－Aasser，M．S．，Kornfeld，D．M．，Micale， F：J．，Sudol，E．D．，Iseng，C．－M．，and Sheu，A．－R．，Mat．Res． Soc．Symp．P＝oc．，87，213－223（1987）．

4．KornEeld，D．M．，${ }^{\text {Monctisperse Latex Reactor－A Materials }}$ Processing Space Shuttie Mid－Deck Payload，＂NASA ZM－36487， Marshall Space Elight Center，Alabama，Januazy lag ．

5．U．S．Patent No．4，247，434；issued January 27，1981，＂Process for Preparation of Large－Particle－Size Monodisperse Latexes，＂ Inventors：Vanderhoff，J．W．，Micale，F．J．，El－Aasser，M． S．，and Kornfeld，D．M．

6．Otto，G．H．，and Lorenz，A．，＂Simulation of Low Gzavity Conditions by Rotation．＂AIAA Paper Number 78－273， 1978.
7. Schatz, A., "Problems of $0-g$ Simulation With the Fast-Running Cinostat." Institute for Aerospace Medicine, Cologne, Germany.
8. Dill, L.H. and Brenner, H., J. Colloid Interface Sci. 94, 430. (1983)
9. Nadim, A., Cox, R.G. and Brenner, H., Phys. Fluids 28, 3457 (1985).
10. Aoki, A., Shirane, K., Tokimoto, T. and Nakagawi, K., Rev. Sci. Instrum. 57, 2859 (1986).
11. Annamalai, A. and Cole, R., Adv. Space Res. 3, 165 (1983).
12. Annamalai, A. and Cole, R., Adv. Space Res. 8, 321 (1987).
∞ $\begin{array}{lllllllll}n & 0 & n & 0 & n & 0 & n & 0 & n \\ 0 & - & n & n & N & n & n & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
Rate Limits

Quantity	Symbol		alues	-	Unit
Particle Diameter	2 a	20	284	117	1111
Water Viscosity	η	0.01	0.01	0.01	$\mathrm{grm} / \mathrm{cm} / \mathrm{sec}$
Water Density	$\rho \mathrm{E}$	1	1	1	(1m/co
Density Difference	$\Delta \rho$	0.1	0.1	0.1	(9m/00
Reactor Diameter	2 b	6	6	6	cm
Experimental. Time	'r	10^{5}	10^{5}	$1.0{ }^{5}$	sed
Rotation Rate Minlmum	$\Omega_{\text {min }}$	0.0071	1.43	0. 243	re"i
Nominal Rotation Rate Maximum	$\Omega_{\text {max }}$	20.2	1.43	8.43	rpm
Optimum Rotation Rate	n	1.13	1.85	1.22	rpm
Spiral Center Displacement	x_{0}	0.01 .9	2.31	0.60	Cm
Radius Change Factor	$e^{-\boldsymbol{E}}$	0.997	0.186	0.882	-
Optimized Success Fraction	F	0.981	0.0018	0.500	--

```
rigu=e 1. A prototype Rotary Feactory to minimize gravi=ational
    settling (or areミming) Eor the growing Iaここス
    particles.
    Eig:ure 2. Schematic vivou a`omg the axis of symme=~y oz the
    Rotarl Reactor showing the cooziinate systen used.
```



```
    by the counterglockwise or clockwise flow. orner paseiz: =ミ
    move around A in ciz=les, spiralling slowiy outward os
    inward. Partisles in the crescent hit the was: on the
    fifst cycle. Heavy particles initially betwesn the
    concentrie circles spiral out to hit the wall in time T.
    Heavy particles in the inner circle spira! out to fill the
    outer circle. Light particles initially filling the out=e
    circle fill the inner cifcle after time T. In both cajes
    we choose the rotation rate to maximize the area of tin=
    inner circle.
```


