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Abstract

Reliable predictions of how changing climate and disturbance regimes will affect forest 
ecosystems are crucial for effective forest management. Current fire and climate research 
in forest ecosystem and community ecology offers data and methods that can inform such 
predictions. However, research in these fields occurs at different scales, with disparate goals, 
methods, and context. Often results are not readily comparable among studies and defy 
integration. We discuss the strengths and weaknesses of three modeling paradigms: empirical 
gradient models, mechanistic ecosystem models, and stochastic landscape disturbance 
models. We then propose a synthetic approach to multi-scale analysis of the effects of climatic 
change and disturbance on forest ecosystems. Empirical gradient models provide an anchor 
and spatial template for stand-level forest ecosystem models by quantifying key parameters 
for individual species and accounting for broad-scale geographic variation among them. 
Gradient imputation transfers predictions of fine-scale forest composition and structure across 
geographic space. Mechanistic ecosystem dynamic models predict the responses of biological 
variables to specific environmental drivers and facilitate understanding of temporal dynamics 
and disequilibrium. Stochastic landscape dynamics models predict frequency, extent, and 
severity of broad-scale disturbance. A robust linkage of these three modeling paradigms 
will facilitate prediction of the effects of altered fire and other disturbance regimes on forest 
ecosystems at multiple scales and in the context of climatic variability and change.
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pirical gradient model, mechanistic ecosystem model, stochastic landscape disturbance 
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Executive Summary

The overall goal of the integrated modeling program described in this document is to obtain 
fine-scale predictions of ecosystem attributes across large geographical areas and project 
them over time under changing climate and disturbance regimes.

Reliable prediction requires focus on mechanisms and responses and attention to spatial  
heterogeneity and temporal disequilibria.

The fundamental unit of ecological analysis is the organism, and fundamental scales are those 
at which the organism strongly interacts with critical or limiting resources.

A multi-scale approach is thus required, incorporating ecological conditions at the scale of 
treefall gaps, slope facets, catchments, and watersheds.

Gradient analysis of environmental tolerances, ecosystem dynamics modeling, and landscape 
dynamics simulation modeling all contribute components required to predict the ecological 
responses of forests to changing climate and disturbance

Many of the sources of uncertainty in gradient modeling can be mitigated by addressing biotic 
interactions, spatial dependence, and scaling relationships with multi-scale modeling and hier-
archical variance partitioning within the driver-response paradigm.

Predictive vegetation mapping predicts vegetation composition and structure across complex 
landscapes using gradient models describing relationships between existing vegetation and 
synoptically measured predictor variables to infer vegetation composition and structure at fine 
spatial scales across broad landscapes.

Integration of multi-scale gradient modeling with process-based ecosystem dynamics model-
ing is needed to robustly predict future vegetation conditions at fine spatial scales.

A major limitation of gradient and ecosystem models is the difficulty of incorporating large-scale 
disturbance processes.

We suggest linking stochastic landscape dynamics models with ecosystem and gradient mod-
eling to address large-scale disturbance, such as wildfire, within the context of individualistic 
species responses to biophysical drivers across space and through time.

We outline four major steps to accomplish this integration.

The first step is multi-scale gradient modeling of vegetation responses to limiting resources 
and conditions.

The second step is gradient imputation to apply gradient models to produce predictive maps 
of current vegetation.

The third step is to link ecosystem dynamics models to gradient modeling and imputation.

The final step is to link landscape dynamics simulation to ecosystem dynamics and gradient 
models.

There are a number of gaps in current understanding of ecological processes that must be 
overcome to complete this integration.

This document identifies these gaps and proposes a research agenda to provide the required 
knowledge and lead to the integration of gradient, ecosystem, and landscape models to pre-
dict vegetation dynamics over broad landscapes under changing climatic and disturbance 
regimes.
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Global climate is expected to change rapidly over the 
next century (Thompson and others 1998, Houghton and 
others 2001), affecting forest ecosystems both directly 
by altering biophysical conditions (Neilson 1995, 
Neilson and Drapek 1998, Bachelet and others 2001b) 
and indirectly through changing disturbance regimes 
(Baker 1995, McKenzie and others 1996, Keane and 
others 1999, Dale and others 2001, He and others 2002). 
Changes in biophysical conditions could lead to species 
replacement in communities and latitudinal and altitu-
dinal migrations. Expected increases in the size, severity, 
and frequency of wildfires (Mearns and others 1984, 
Overpeck and others 1990, Solomon and Leemans 1997, 
IPCC 2001) will lead to changes in vegetation structure, 
species composition, and diversity (Christensen 1988, 
McKenzie and others 2004). The changes in distribu-
tions of plant species caused by changing climate, and 
associated changes in disturbance regimes, may have 
large impacts on many aspects of ecological diversity 
and function (Peters and Lovejoy 1992, Miller 2003).

Natural resource managers need reliable predictions 
of how changing climate and disturbance regimes will 
affect forest ecosystems at scales from stands to regions. 
To that end, a synthesis of modeling efforts and empir-
ical approaches is needed to unify understanding of 
forest-climate-fire relationships across a range of spatial 
and temporal scales. Such a synthesis must simultane-
ously address several challenges. First, robust prediction 
of forest response requires researchers to focus on 
mechanistic relationships among organisms, processes, 
and drivers at appropriate scales in space and time. 
Second, spatial heterogeneity and temporal disequilib-
rium are fundamental attributes of forest systems (Davis 
1986); thus, research must adopt flexible multi-scale 
approaches that address transient dynamics, time lags, 
and site history in the context of spatially complex land-
scapes. Third, spatially contagious disturbance processes  

(e. g., fire and insect outbreaks) introduce discontinuities 
and spatial dependence into the temporal dynamics of 
ecosystems. Furthermore, the partially stochastic nature 
of individual disturbances often precludes mechanistic 
(deterministic) modeling, thereby introducing incon-
gruities between model paradigms that are difficult to 
resolve.

To understand how climatic change influences vege-
tation, we need to predict the effects of these changes 
on disturbance regimes; likewise, to predict effects of 
climate change on disturbance regimes, we need to 
understand vegetation response (Clark 1993). Only by 
combining multi-scale studies of disturbance regimes 
with analysis of vegetation responses to biophysical 
gradients across time and space will it be possible to 
understand the interactions between climate change, 
forest vegetation, and disturbance regimes.

Here we focus on integrating stand- and land-
scape-level patterns of fire with site-level responses of 
vegetation to biophysical gradients. The major theme of 
this work is the primacy of associating mechanisms with 
responses at appropriate scales in spatially complex and 
temporally varying environments (Turner 1989, Levin 
1992, Schneider 1994). In this paper, we identify key 
issues whose resolution will facilitate analysis of 
forest-climate-fire relationships. We then review three 
components of integrated modeling: gradient modeling 
of individual species responses, ecosystem dynamics 
simulation, and landscape disturbance simulation. We 
discuss the strengths and limits of each type of anal-
ysis and propose a synthetic approach to multi-scale 
analysis of forest ecosystem response to disturbance 
mediated climatic change. We focus on forest ecosys-
tems and plant species in this paper; however, the issues 
and approaches discussed will be transferable to other 
ecological research efforts, such as wildlife species 
distributions and population performance.

Introduction
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There are several key issues that must be addressed to 
reliably predict future vegetation composition and struc-
ture under altered climatic and disturbance regimes. 
For example, past changes in climate often triggered 
disassembly of communities. Subsequently, commu-
nities reassembled unpredictably, producing mixtures 
of species that are rare or absent at present (Barnosky 
and others 1987, Bartlein and others 1997). Typically, 
displacement of entire vegetation zones or communities 
did not occur. Instead, species responded individualis-
tically to climate change according to environmental 
tolerance, dispersal ability, and biotic interactions (Davis 
1986, McLachlan and Brubaker 1995). Because species 
do not respond en masse, predicting changes in forest 
composition requires species-level resolution; all hierar-
chal levels above the species are transient.

Accordingly, we advocate addressing issues of vege-
tation response to climate and disturbance regime at the 
level of individual species and their interactions with 
key resources and limiting factors. Multivariate models 
characterizing the responses of individual species to 
gradients of ecological conditions are a primary tool 
in this effort. These multivariate models predict the 
response of individual plant species and the composition 
of plant communities. Importantly, they avoid ques-
tionable assumptions about the reality and stability of 
categorical vegetation types (Gleason 1926, Whittaker 
1967).

Traditional gradient modeling predicts vegetation 
community composition and structure in an environ-
ment composed of multiple, but stable, gradients of 
biophysical conditions and resources. Static species-
environment models, however, do not account for the 
influences of temporal dynamics and spatial complexity. 
Thus they often leave a considerable portion of the 
variance in vegetation structure and composition unex-
plained (Franklin 1995, Guisan and Zimmerman 2000, 
McKenzie and others 2003). Altered disturbance regimes 
compound the challenge. Disturbance regimes have 
been sensitive to past climate change (Clark 1990a). 
Due to feedbacks among species responses to biophys-
ical conditions, spatial heterogeneity in the physical 
environment, vegetation succession, and fluctuating 
climatic and disturbance regimes, forest-climate-fire 
relationships lack stable point equilibria (Pickett and 
others 1994) and are highly sensitive to contingencies 
of history, landscape structure (Baker 2003), and the 
autecologies of individual species. Thus, predicting 

individualistic species responses to changing climate 
and disturbance regimes requires quantification of their 
responses to non-equilibrium and spatially complex 
environmental conditions. Below we identify several of 
these key issues and discuss how they relate to the task 
of integrated landscape modeling of vegetation response 
to changing climatic and disturbance regimes.

Species Niche Relations Along  
Biophysical Gradients

Ecological theory suggests that species exhibit a 
unimodal response to limiting resources in n-dimen-
sional ecological space (Whittaker 1967, Austin 1985, 
ter Braak 1986). The volume of ecological space in 
which the organism can survive and reproduce defines 
its “environmental niche” (Hutchinson 1957, ter Braak 
1986, ter Braak and Prentice 1988, Ohmann and Spies 
1998, Guisan and Zimmerman 2000). Quantification 
of niche space at the species level is a first step toward 
predicting the effects of climatic change and altered 
disturbance regimes on forest communities.

There are three levels of niche characterization impor-
tant for linking forest vegetation response to climate 
and disturbance regime. The occurrence niche, which 
describes the combination of biophysical conditions 
that are occupied by each species, gives the broadest 
measure of species-environment relationships. Species 
occurrence may not perfectly reflect environmental 
suitability, however. Ecological conditions suitable for 
survival are typically broader than conditions necessary 
for reproduction and optimal growth. Thus, two addi-
tional niche characterizations are important. The second 
is the growth niche. A direct measure of current biological 
response of a species to the environment is the associa-
tion of recent “performance” (for which growth rate is 
a useful proxy) with biophysical gradients. This growth 
niche describes rate of growth as a function of biophys-
ical gradients, adjusted for factors such as stand age, tree 
age, and competitive position. Mature trees, for example, 
may persist for centuries and continue to accrue biomass 
in locations that are no longer optimal due to changing 
climate or biological interactions. These first two niches 
both describe behavior and distribution of mature organ-
isms and can be combined into a “mature” niche. A third 
is the regeneration niche. Regeneration often is limited 
to a restricted subset of conditions (Figure 1). Modeling 
the biophysical conditions conducive to regeneration of 

Key Issues
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each species is essential for projecting changes in species 
composition over time in response to changing climate 
and disturbance regimes.

These three environmental niches are described by 
an optimum and isoclines of tolerance in an n-dimen-
sional environmental space. Often, the large number of 
factors that compose the niche can be reduced to a rela-
tive few that explain much of the variance in species 
responses. Multivariate gradient analysis (ter Braak and 
Prentice 1988) collapses environmental niche space into 
the few dimensions that maximize explanation of vege-
tation structure based on patterns of correlation between 
species and environmental conditions. This technique is 
heuristically powerful, but it can often obscure relation-
ships between mechanism and response. Importantly, 
without clear linkages between cause and effect, reliable 
extrapolation to new conditions (e.g., warmer climate) 
is problematic. Therefore, it is preferable to identify 
limiting factors, which are key variables associated with 
species tolerance that explain substantial proportions 
of variance and make sense in terms of well-under-
stood mechanisms. Gradient modeling based on limiting 
factors is likely to produce more interpretable predictions 
of species niche relationships and, most importantly, 
provide a robust means of predicting future responses in 
altered climatic and disturbance regimes.

Scale and Spatial Complexity

Biophysical gradients are clines in n-dimensional 
ecological space. In geographical space these gradients 
often form complex patterns across a range of scales. 
The fundamental challenge to integrating landscape 

and community ecology is linking non-spatial niche 
relationships with the complex patterns of how envi-
ronmental gradients overlay heterogeneous landscapes 
(Austin 1985, ter Braak and Prentice 1988, Littell and 
others, submitted). By establishing species optima and 
tolerances along environmental gradients, researchers 
can quantify the characteristics of each species’ envi-
ronmental niche. The resulting statistical model can be 
used to predict the biophysical suitability of each loca-
tion on a landscape for each species (Figures 2, 3). This 
mapping of niche suitability onto complex landscapes is 
the fundamental task required to predict individualistic 
species responses, and it is fundamentally important as 
a foundation for predicting effects of altered climate and 
disturbance regimes.

Spatial and temporal complexity
High levels of spatial and temporal variability are typi-

cally found in forest ecosystems systems. For example, 
site-level variation in air and ground temperatures, mois-
ture, and nutrients are often high (Swanson and others 
1988). This variability in environmental conditions 
strongly affects the distributions and abundances of plant 
species and the structure of plant communities across the 
landscape (Whittaker 1956, Swanson and others 1988, 
Bunn and others 2005a). Landform explains a large 
proportion of variability in successional pathways, even 
in areas having relatively little topographic relief (Host 
and others 1987) or biomass (Host and others 1988). 
The spatial structure of landscapes also has a major 
influence on the type, extent, severity, and frequency 
of disturbance events. Landforms and landscape struc-
ture affect the frequency and spatial pattern of natural 

Figure 1. Hypothetical comparison 
of the “mature niche” (occurrence 
and growth) of three species with 
the “regeneration niche.” These 
three species overlap in the space 
of tolerable conditions once estab-
lished, but not with respect to 
where they can initially establish.
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Figure 2. Organisms are influenced 
by multiple factors simultane-
ously.  In this example, the 
tolerances of three species are 
mapped (top) in a 3D environ-
mental space. The lower map 
shows the suitability of each 
cell in 2D geographic space for 
one of the species as a function 
of the three factors.  Rigorously 
quantifying organism niches in 
ecological space is essential 
for predicting their distribution 
across landscapes.  This linkage 
allows mapping of suitable condi-
tions for each species.
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Figure 3. Predictor variables for gradient modeling are measured in the field or extracted from topographical, climatological, 
and remotely sensed data.  For gradient models that are robust to climatic change, we eschew surrogate variables that are 
unchanging in ecological time in favor of those that reflect responses of the landscape to climatic variability.  Examples of 
the latter are the 1-km DAYMET data (lower left) and modeled output such as soil moisture, evapotranspiration, and water 
balances (Thornton and others 1998, Wigmosta and others 1998, McKenzie and others 2003).
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disturbances such as fire, wind, or bark beetle outbreaks. 
For example, in Labrador, fire and topography jointly 
influenced vegetation patterns (Foster and King 1986). 
Similarly, both topographic position and fire history 
contribute to susceptibility to wind damage (Foster 
and Boose 1992, Boose and others 1994, Kulakowski 
and Veblen 2002). Landscape context, i.e., patterns of 
local landforms, geomorphic processes, and existing 
biotic communities, influences both dispersal and biotic 
interactions (Host and others 1988, Swanson and others 
1988, Bunn and others 2005b). Details of the spatial and 
temporal structure of forest ecosystems are important at 
a range of scales, but especially those that constitute the 
organisms’ “operational environment” (Spomer 1973) 
where individual organisms directly interact with local 
topography and microclimate (Bunn and others 2003, 
2005b), respond to successional dynamics, and experi-
ence disturbance (Whittaker 1967, Tilman 1982, Levin 
1992, Schneider 1994.

Scale
There is no single correct scale of analysis for forest 

ecology. The fundamental unit of ecological analysis is 
the organism (Schneider 1994) and fundamental scales 
are those at which the organism strongly interacts with 
critical or limiting resources in its environment. Each 
species will respond to factors across a range of scales 
in space and time based on its life history strategy and 
ecological adaptations (Ball and Gimblett 1992, Ettl and 
Peterson 1995, Peterson and Peterson 2001). Ecological 
responses to biophysical gradients must be quantified at 
scales that match the biological interactions of individual 
organisms. Analyses at inappropriate scales risk missing 
or misconstruing relationships between mechanisms 
and responses (Wiens 1989, Cushman and McGarigal 
2003). Biophysical conditions directly experienced 
by individual trees, for example, occur at the scale of 
treefall gaps, slope facets, or stands. Site-level condi-
tions are necessary, but not sufficient, to explain current 
vegetation or predict future changes due to disturbances, 
species movements, and succession. While the scale of 
direct species-environment interactions is fundamental 
to understanding and prediction, one must also address 
the influences of landscape context, including land-
form, vegetation, and climate on ecosystem patterns and 
processes. Accounting for multiple interactions across 
ranges of spatial and temporal scales is the fundamental 
challenge to understanding relationships between forests, 
climate, and disturbance regimes (Levin 1992, Turner 
and others 2003). Thus, studies of relationships between 
forest communities, climate, and disturbance regimes 
should use multi-scale approaches that are directly tied 
to the dominant scales of organism interaction with the 

environment. Where data allow, it is advantageous to 
quantitatively measure the relationships among driving 
factors across a range of scales simultaneously to iden-
tify these dominant scales and quantify interaction 
of factors across scale (e.g., Cushman and McGarigal 
2003). Ideally, ecological analysis will therefore not 
be between hierarchical “levels,” such as populations, 
communities, or ecosystems, but instead will focus on 
relationships among organisms and driving processes 
across continuous ranges of scale (Levin 1992, Littell 
and others, submitted).

Non-Equilibrium Dynamics  
and Disturbance

Disturbance is central to forest landscape dynamics 
(Cooper 1913, Leopold 1933, Watt 1947, Reiners and 
Lang 1979, Turner and others 2003). Many ecosystems 
are inherently non-equilibrial or depend on disturbances 
to maintain community structure and ecosystem func-
tion (White 1979, Mooney and Godron 1983, Sousa 
1984, Glenn and Collins 1992, Collins and others 
1998). Linking niche relationships of forest trees to 
current and future vegetation at the local and landscape 
levels is complicated by changing biophysical condi-
tions through time, species invasion and succession, 
and the legacy of past disturbances (Peet and Loucks 
1977, Pickett 1980). Older stand elements originated in 
a possibly quite different environment, creating a legacy 
of species composition and forest structure that may not 
be in equilibrium with current biophysical conditions or 
disturbance regimes (Baker 2003). In a changing climate, 
the plant communities established after disturbance may 
differ from those present at the time of disturbance. 
Mature trees usually tolerate short-term climatic fluctu-
ations, and species best adapted to current climate may 
colonize only following disturbance (Dunwiddie 1986). 
Thus, adjustment of forest composition to climatic 
change may take centuries (Campbell and McAndrews 
1993). Therefore, community composition and struc-
ture in older forests likely reflect a long sequence of 
climatic conditions and disturbances no longer present 
in the landscape (Baker 2003). If so, current biophysical 
conditions and disturbance regime will not fully explain 
existing forest structure (Clark 1990b).

Recovery following disturbance is sensitive to spatial 
patterns created by the disturbance and is influenced 
by biological legacies. The ecological characteristics 
of individual species play a key role in determining the 
biological effects of a disturbance and the nature of the 
following recovery (Connell and Slatyer 1977, Noble 
and Slatyer 1980, Peet and Christensen 1980, Pickett 
and others 1987, Halpern 1988). Species responses vary 
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depending on the kind and severity of a disturbance and 
its broader spatial and temporal context (Finegan 1984, 
Glenn and Collins 1992). Species life-history char-
acteristics determine what the effects of disturbance 
size, heterogeneity, and distance from undisturbed sites 
may have on recolonization and subsequent succes-
sion (Denslow 1980, Hartshorn 1980, Miller 1982, 
Malanson 1984, Turner 1989, Peterson and Carson 
1996). Ultimately, successional patterns of vegeta-
tion are constrained by the availability of seeds, which 
depends on species traits, plant health, long- and short-
term weather, distance to seed source, and predation (Eis 
and Craigdallie 1983, Nepstad and others 1990, Johnson 
1992, Aide and Cavelier 1994, da Silva and others 1996, 
He and Mladenoff 1999b).

Vegetation communities do not adjust immediately to 
altered disturbance regimes (Baker 1995). For example, 
the extent to which landscape heterogeneity controls 
fire spread determines the time required to fully burn 
through a landscape and reset both disturbance regime 
and succession (Givnish 1981, Foster 1983, Foster and 
King 1986, Baker 2003). Baker (1995) argued that 
the time required for fire regimes to adjust to climatic 
change may often exceed the time that climate is stable, 
creating a perpetual temporal disequilibrium between 
climate, fire regimes, fuel loads, and forest structure. 
If climate changes gradually in a directional way, then 
the fire regime will be perpetually adjusting to the new 
climate, constrained by the legacy of fuel loads and 
forest structures (Baker 1995, 2003).

Integrating Biophysical Niche 
Relationships With Disturbance Regimes

Biophysical niche relationships are inextricably 
linked to landscape disturbance. For example, although 
the ultimate cause of post-glacial vegetation change in 
the Pacific Northwest was climate, the proximate cause 
was altered fire regime (Cwynar 1987, Prichard 2003). 
A small change to a drier climate probably triggered a 
significant increase in fire frequency, allowing coloniza-
tion by fire-adapted species (Cwynar 1987).

Existing vegetation and underlying biophysical 
gradients influence ecological processes across a 

broad range of scales, from interactions of individual  
organisms with their operational environment to 
dynamics of landscape structure associated with climate, 
fire regime, and subsequent succession. The key to 
understanding and predicting these multi-scale dynamics 
across space and time lies in the responses of individual 
organisms to climate, other species, and disturbance 
across a range of spatial and temporal scales (Rowe 1981, 
Woodward 1987, 1988, Woodward and others 2004). 
We submit that the analysis of these dynamics has three 
parts. First, we require mechanistic understanding of the 
key drivers that limit occurrence, growth, and regenera-
tion. Second, we need to explain current spatial patterns 
of distribution, growth, and regeneration across complex 
landscapes. Third, we need to understand how landscape 
spatial processes, i.e., disturbance and dispersal, condi-
tion these drivers, thereby modifying said patterns.

Recent research has provided substantial insight 
into this challenging task. In the following sections we 
review several major research approaches in the context 
of integrated vegetation modeling. Gradient analysis of 
niche relationships, ecosystems dynamics modeling, 
fire behavior and effects modeling, fire history research, 
landscape dynamics modeling, and global circulation 
modeling of climate have all contributed greatly. None 
of these approaches in itself is sufficient, however, to 
provide rigorous understanding or robust prediction of 
forest-climate-fire interactions. Below we suggest how 
progress might be made by integrating methods associ-
ated with several of these lines of research. Incorporating 
site history and environmental gradients into models 
of occurrence, growth, and regeneration provides 
a means to mechanistically understand and predict 
forest community dynamics at scales from stands to 
landscapes. The data-rich models arising from this inte-
gration can populate key parameters in process-based, 
ecosystem dynamics models. Finally, linking both types 
of models to spatially explicit simulations of alternative 
disturbance regimes provides a means to incorporate 
the influence of non-equilibrium conditions. This suite 
of models, properly integrated, can provide a coherent 
and practical approach for estimating the likely effects 
of climate change on forest ecosystems.
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The Biophysical Niche and  
Gradient Modeling

All species occur in a characteristic, limited range of 
biophysical conditions. Within that range, a species will 
tend to be most abundant and have the highest growth 
and reproductive rates towards the center. A species not 
only requires a certain minimum amount of each resource 
but also cannot tolerate more than a certain maximum 
amount (Shelford 1931, Schwerdtfeger 1977). Therefore, 
each species performs best near an optimum (modal) 
value of a necessary environmental variable and cannot 
survive when the value diverges beyond its tolerance 
(Shelford 1931, Schwerdtfeger 1977). The relationships 
between a species performance and gradients of critical 
resources and conditions describe its fundamental niche 
(Hutchinson 1957). The composition of biotic commu-
nities changes along biophysical gradients because of 
how the niche relationships of the constituent species 
interact with the spatial structure of the environment and 
competing species (Hutchinson 1957, Whittaker 1967, 
Tilman 1982, Austin 1985). Species replacements occur 
as a function of variation in the environment (ter Braak 
and Prentice 1988) or with successional time (Pickett 
1980, Peet and Loucks 1977).

When data are collected over a sufficient range of envi-
ronmental conditions, species occurrence, abundance, 
and regeneration success will change nonlinearly along 
environmental gradients (Whittaker 1967, ter Braak 
1986). It is therefore inappropriate to evaluate niche 
space using standard statistical methods that assume 
linear responses. The Gaussian response distribution has 
received most attention as a model for species responses to 
environmental gradients (ter Braak 1986). When species 
are measured along gradients of environmental variables 
that are critical and limiting, unimodal responses should 
be seen that are approximated by the Gaussian distri-
bution (Guisan and Zimmerman 2000, Austin 2002). 

Many studies have reported non-Gaussian responses of  
vegetation to environmental gradients (Mueller-
Dombois and Ellenberg 1974, Austin and Cunningham 
1981, Austin 1987). In many cases the measured envi-
ronmental variables are not critical or limiting factors. 
In other cases, critical factors may be measured, but at 
incorrect scales that distort their relationship with species 
response. In such cases, species responses may appear 
to follow complex, multimodal patterns that cannot be 
modeled with the Gaussian distribution.

There are two general kinds of models used to evaluate 
species-environment relationships along environmental 
gradients (Table 1). In the first, the Pattern Matching 
Paradigm (PMP), the focus is on developing the most 
successful predictions of current patterns, rather than 
providing explanations for observed responses or means 
to predict future changes (e.g., Moisen and Frescino 
2002). In the second, the Driver Response Paradigm 
(DRP), prior knowledge or preliminary modeling is 
used to identify critical and limiting environmental 
gradients and proper spatial and temporal scales for 
the modeling effort (e.g., McKenzie and others 2003). 
This second approach directly links species responses to 
driving mechanisms at appropriate scales, providing the 
strongest explanations of current conditions and predic-
tions of expected future changes. There are advantages 
and disadvantages of both kinds of modeling, discussed 
below (Figure 4).

Pattern Matching Paradigm (PMP)

In PMP, the goal is to describe the strongest empirical 
correlations between measured vegetation conditions 
and a suite of independent variables describing aspects 
of the environment thought to be related to species occur-
rence or performance. A common objective is to produce 
maps of current vegetation composition and structure 
across broad geographical areas, rather than to explain 

Review of Research Approaches

Table 1. Classification of biophysical modeling approaches. Machine-learning methods 
often have superior explanatory power or classification accuracy for pattern matching, 
whereas parametric models are more robust and appropriate for driver-response 
relationships.

	 Predictor variables

Statistical method	 Pattern matching (Elevation, 	 Driver-response (climate & 
	 geographic coordinates, 	 climate-derived variables, 
	 satellite spectra)	 biotic factors)
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Figure 4. Whatever statistical modeling method is employed, there are three general steps in conducting biophysical gradient 
modeling. First, a large and representative sample of plots must be sampled for both vegetation response variables and 
biophysical driver variables. Second, these samples are compiled into matrices recording patterns of vegetation among plots 
and biophysical variables among plots. Third, these matrices, or selected vectors within them, are analyzed with canonical 
ordination or regression approaches to predict the realized niche structure and functional response of the vegetation variables 
to biophysical variables at multiple spatial scales. These models produce functions describing the quantitative relationships 
between response variables and biophysical variables, and provide parameters for modeling ecosystem dynamics and land-
scape disturbance. They also provide the relationship space for imputation.

observed patterns on the basis of relationships between 
environmental drivers and species responses.

A variety of methods have been used in this kind of 
modeling, including gradient modeling and machine-
learning or expert-system methods (Frescino and others 
2001, Moisen and Frescino 2002, Ohmann and Gregory 
2002, Olden and Jackson 2002). Generalized additive 
models (GAMs—Hastie and Tibshirani 1986), that 
include non-parametric terms to extend the general-
ized linear model, have often proven quite effective in 
predicting current vegetation (Moisen and Edwards 1999, 
Frescino and others 2001, Moisen and Frescino 2002). 
Classification and regression trees (CART) use binary 
recursive partitioning to divide the data into branches 
that maximize the relationship between predictor and 
response variables (Morgan and Sonquist 1963, Breiman 
and others1984). CART was one of the least successful 
of the five modeling techniques compared by Moisen 

and Frescino (2002) for predicting forest composition 
and structure. This may be because CART imposes 
a categorical model structure on continuous gradient 
responses. Predicted responses for new observations in 
CART are limited by its hierarchical structure to those 
already estimated by the original model (Clark and 
Pregibon 1992). Multivariate adaptive regression splines 
(MARS; Friedman 1991) generalize the piecewise cate-
gorical functions of CART into continuous functions by 
fitting multivariate splines and matching the values at 
the boundaries of the regions. MARS and GAM were the 
most successful methods tested by Moisen and Frescino 
(2002).

A recent implementation of a genetic algorithm—the 
Genetic Algorithm for Rule-set Prediction (GARP—
Stockwell and Peters 1999)—has proven successful in 
modeling the ecological niches of both plant and animal 
species across a wide range of ecosystems (Peterson 
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and others 1999, Anderson and others 2003, Oberhauser 
and Peterson, 2003). GARP generates a set of rules for 
predicting presence or absence, each of which applies 
to a portion of the data. Some of these rules (“logit” 
rules) are rule-based analogues to logistic regression, 
whereas others determine presence or absence of a 
species based on ranges of predictors or on whether one 
or more predictors takes on a unique value or values. In 
contrast to classical models, not all rules apply to every 
data point. For a full description of the GARP algorithm, 
see Stockwell and Noble (1992) or Stockwell and Peters 
(1999).

Such flexible non-parametric or machine-learning 
statistical methods can optimize the fit of one pattern 
to another, providing a means of producing predictions 
across broad spatial extents, but they have limited ability 
to distinguish drivers and responses and are vulnerable to 
overfitting (Venables and Ripley 2002). Such fine-scale 
model fitting may offer high performance for predicting 
within a single data set but is less successful in 1) identi-
fying the form of underlying mechanistic relationships, 
2) extrapolating or interpolating beyond the samples, or 
3) making predictions for the future under altered condi-
tions. Thus, while pattern-fitting approaches equal or 
exceed parametric models in prediction accuracy, they 
are more difficult to interpret with respect to limiting 
factors, are less parsimonious in variable selection, and 
often are computationally expensive (Stockwell and 
Peters 1999, McKenzie unpubl. data�). Further, they 
often perform better in simulation studies than with real 
data, giving a false sense of accuracy and robustness to 
extrapolation (Moisen and Frescino 2002). The strengths 
of PMP are for prediction within a given time and space; 
the lack of mechanistic underpinnings is far less critical 
for interpolation than for extrapolation, and the flexi-
bility of the algorithms allows precise fit to specific data 
sets. However, evaluating the effects of future climates 
on a forested landscape or applying models developed 
in one area to produce predictions in another are clearly 
extrapolative in nature, and PMP is likely to produce 
erratic results when used in this context.

The Driver-Response Paradigm (DRP)

DRP seeks to identify limiting factors and the func-
tional relationships between these limiting factors and 
vegetation responses using gradient modeling (Figure 5). 
By focusing on limiting factors it is possible to interpret 

�  Unpublished manuscript on file at Pacific Wildland Fire 
Sciences Lab, Seattle, WA.

species-environment relationships with more confi-
dence than is possible using PMP. Importantly, gradient 
modeling is better grounded in ecological theory than 
more complex approaches using machine-learning 
techniques (ter Braak and Prentice 1988). Parametric 
gradient models also provide better discrimination 
among the niches of closely related species (Doebell and 
Dieckmann 2003) and are more amenable to multi-scale 
and hierarchical analysis (Cushman and McGarigal 2003) 
than non-parametric or machine learning approaches. 
Finally, in the integrated modeling environment we 
propose below, clearly defined species responses to 
biophysical gradients are essential because they are 
used to specify parameters in ecosystem models. We 
therefore propose a combined approach that nests mech-
anistic biophysical modeling of limiting factors within a 
more general gradient modeling framework (Figure 3). 
Multi-scale, hierarchical gradient modeling facilitates 
both mechanistic understanding and robust extrapola-
tion for landscape mapping.

DRP gradient modeling and limiting resources
There are three major challenges to obtaining suit-

able predictor variables for parametric DRP gradient 
modeling. First, one must identify the key factors that 
govern the responses of each species across space, time, 
and biophysical conditions. Second, one must be able 
to obtain accurate measurements of these factors, or 
appropriate surrogates, for a large number of sample 
locations distributed across a representative combination 
of biophysical conditions in broad landscapes. Third, 
these measurements must be made at the scales at which 
the species is most strongly responding to the limiting 
factor; measurements at other scales may not produce 
clear or consistent predictions (Wiens 1989).

Examples of key limiting resources are energy and 
water. Energy and water limitations interact to affect 
water balance at the level of sites and individual organ-
isms (Stephenson 1990, 1998). Indeed, water balance 
is a key variable in both ecosystem simulation models 
(Neilson 1995) and empirical gradient models, though 
indirectly in the latter via energy and water variables. 
Hawkins and others (2003) suggest that energy and water 
balances and their interactions globally affect species 
distributions and patterns of species richness. Milne 
and others (2002) used terrain modeling to quantify a 
threshold between energy-limited and water-limited 
ecosystems in the Interior Columbia River Basin. Much 
of the biophysical gradient modeling heretofore accom-
plished, including that of Milne and others (2002), was 
either in clearly water-limited systems—e.g., arid moun-
tains or shrublands—or in extreme environments in 
which biotic interactions are less important than abiotic 
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Figure 5. The strongest inferences about causality and the most robust predictions to new locations or future conditions are 
obtained from modeling the occurrence or performance of each species along gradients of limiting biophysical variables. 
In this example, the limiting biophysical variables are water, temperature, and energy and the response variable is annual 
growth. Each species will have unique response curves along each of these critical resource gradients. Response curves for 
a hypothetical species are shown at the top. The bivariate response surfaces for each pair of these resources are shown in 
the middle, and the trivariate response volume is shown at the bottom. In the response volume, the outer blue shell represents 
a 25% of maximum growth isocline, the purple shell a 50% of maximum, and the inner lavender shell 75% of maximum growth 
rate. By modeling species responses directly on limiting biophysical variables, one can link mechanistic relationships between 
driving variables and biotic responses directly.
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limiting factors (Austin and others 1994, Franklin 1998, 
Bolliger and others 2000a, McKenzie and others 2003). 
Correlations between individual species responses and 
moisture may, in many other systems, be more difficult 
to identify due to the confounding effects of biotic inter-
actions (i.e., competition—McKenzie and others 2003), 
or may be correlated with other controlling factors. For 
example, Peterson and Peterson (2001) found that spring 
snowpack clearly limited growth of mountain hemlock 
(Tsuga mertensiana) in the upper elevations of its range 
in the Pacific Northwest, but at drier lower elevations 
growth was limited by moisture deficits. At high eleva-
tions, abundant moisture in the form of snow was 
correlated with reduced light and temperature leading to 
differential responses to moisture with changing eleva-
tion. Biotic interactions and correlations with other 
limiting factors can cause the effects of any limiting 
factors to be increased or decreased under climatic 
change, and within a specific species may differ across 
its range. In general, however, unimodal response func-
tions identify limiting factors at both ends of a species’ 
range, if sampled gradients are broad enough to span all 
or most of that range.

Once the key limiting factors are identified it is essen-
tial to obtain accurate measurements or predictions of 
these factors for each sample plot. This usually will 
require measurements or estimates of each driving vari-
able at hundreds to thousands of individual locations 
across complex landscapes for which existing vegetation 
and disturbance history are also quantified. The challenge 
is obtaining direct measurements of climatic and edaphic 
variables for such large and dispersed grids of sample 
plots. A combination of approaches, including networks 
of sensor stations placed on the sample grid and spatial 
modeling relationships between terrain and climatic 
conditions, will provide the most reliable inferences. In 
the research agenda section at the end of this document we 
identify several alternative approaches for obtaining these 
key independent variables for large and dispersed sample 
grids across complex landscapes. Once these driving 
variables have been obtained for all sample plots, the next 
main consideration is what approach to use for gradient 
modeling. In this regard there are two major alternatives, 
univariate and multivariate gradient modeling.

Univariate and Multivariate Approaches to 
Gradient Modeling

Parametric gradient models of species-environment 
relationships can be fit in both univariate and multi-
variate frameworks. Individual species responses to 
environmental gradients can be quantified using gener-
alized linear models by specifying polynomial or other 

nonlinear terms in the linear predictor (Forsythe and 
Loucks 1972, McCullagh and Nelder 1989, Guisan 
and others 2002). Lenihan (1993) fit two- and three-
dimensional response surfaces to boreal tree species 
distributions using logistic regression and biophys-
ical variables (snowfall, degree days, minimum 
temperature, soil moisture deficit, and evapotranspira-
tion). Austin and others (1994) successfully modeled 
Australian vegetation by modeling unimodal response 
with a right-skewed beta function. Bolliger and others 
(2000b), modeling subalpine species in Switzerland, and 
McKenzie and others (2003), modeling conifer species 
in the Pacific Northwest, USA, identified proxy sets of 
predictor variables (Booth and others 1994), grouping 
variables associated with expected limiting factors of 
energy (mean temperature, growing degree days, soil 
temperature, etc.) and moisture (precipitation, snow-
fall, soil moisture, etc.). Only one variable from each 
set was allowed as a predictor, reducing collinearity 
and clarifying potential limits to growth or distribution. 
McKenzie and others (2003) also fit unimodal response 
curves successfully for the majority of species tested.

When the number of species is large, it may be 
impractical to conduct separate analyses for each. It 
is also challenging to combine separate analyses to 
quantify species interactions and niche separation, 
particularly when there are more than 2-3 environmental 
variables. Additionally, regression is often limited in 
studying vegetation responses to biophysical gradients 
because vegetation data contain many zeros, violating 
the assumption of normal error distribution implicit in 
many regression techniques. In addition, environmental 
variables are often highly correlated, violating assump-
tions of independent predictor variables implicit in most 
regression approaches. These challenges can be most 
readily addressed in a multivariate context.

In a multivariate context, canonical ordination 
(ter Braak 1986, ter Braak and Prentice 1988, Palmer 
1993) uses a heuristic mathematical approximation to 
a Gaussian response curve, applied simultaneously to 
each species. Canonical ordination is unaffected by zero 
values in the species data and is quite robust to inter-
correlation among predictors (Palmer 1993). Thus, if 
species react to the same linear combinations of envi-
ronmental variables according to a common response 
model, canonical ordination is an attractive alternative 
to individual regression models (ter Braak and Prentice 
1988).

The decision whether to use constrained ordination 
or a series of separate regressions depends on if there 
is an advantage to analyzing all species simultaneously 
(ter Braak and Prentice 1988). Constrained ordination 
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assumes that species react to the same biophysical gradi-
ents, while, in regression, a separate composite gradient 
is constructed for each species. Regression, therefore, 
allows more detailed and accurate prediction and calibra-
tion. Single-species models often yield better predictions 
than a multi-species model for the same species (Guisan 
and others 1999). However, single-species regressions 
lose information about the co-occurrence of multiple 
species within samples (Gottfried and others 1998), 
whereas constrained ordination makes use of this infor-
mation in the weighted averaging algorithm (Ohmann 
and Gregory 2002). Also, multi-species constrained 
ordination ensures that predicted plant communities are 
realistic assemblages of species and structures. If all 
species distributions were modeled independently and 
then assembled into communities, it is likely that unre-
alistic collections of species would be predicted (Moeur 
and Stage 1995).

Uncertainties in Gradient Modeling

Despite their theoretical and practical advantages, 
past applications of gradient modeling have usually left 
a substantial proportion of the variance in species abun-
dance or occurrence unexplained (e.g., Ohmann and 
Gregory 2002, McKenzie and others 2003). We identify 
three types of error associated with gradient models. The 
first two are partially avoidable within the paradigm, 
whereas the third is intrinsic to the paradigm and neces-
sitates integration with other paradigms:

 Technical issues requiring better quality control and 
minimization of error.

Model assumptions are inappropriate for the 
covariance structure within the data. Lack of fit 
appears in strongly patterned residuals or unequal 
variances, particularly at the ends of ranges (Littell 
and others, submitted).
Response or predictors or both not accurately 
measured. This is likely, for example, when 
data-poor extrapolations are made to unsampled 
sites, when predictor variables are assumed to be 
homogeneous across complex terrain, or when 
questionable allometry is used to calculate response 
variables.

Limitations partially resolvable within the paradigm. 
Addressing the first two of these requires coupled 
models within the paradigm. Addressing the second 
two requires some additional creative thinking about 
driver-response vs. pattern matching methods. We 
take up these topics up later in this section.

Biotic interactions are not considered. For example, 
in energy-limited systems with high biomass and 

1.

a)

b)

2.

a)

productivity, such as mesic low-elevation forests, 
the majority of trees are buffered from the “true” 
biophysical environment but limited by competition 
for scarce resources (energy, e.g., light) by more 
dominant individuals.
Spatial dependence is not considered. This is not 
a problem in the mechanism-response relation 
per se, but a question of adding another statistical 
coupling to take advantage of knowing true 
degrees of freedom and weighting observations 
accordingly.
The use of surrogate variables leads to imperfect 
coupling of driver and response (Figure 6). 
Much past gradient modeling has been based on 
correlating patterns of species in the environment 
to spectral, topographic, or other spatial variables. 
These predictor variables are not themselves actors 
on the organisms. Organisms respond to limiting 
resources that may vary in correlation with these 
surrogates, but not to these surrogates themselves. 
In complex environments, it is common that the 
surrogate relationship between organism responses 
and these proxy variables is non-stationary 
across space, time, and biophysical context. This 
increases model imprecision and can lead to spatial 
bias. It also prevents mechanistic understanding 
of relationships between species and the limiting 
resources that actually drive their responses. 
Reliable understanding and prediction requires that 
the variables that govern species response must be 
directly measured and associated with organism 
performance.
A scale mismatch between the action of the driving 
variable, the response of the organism and the 
scales at which the variable and the organism 
are measured obscures or distorts the nature of 
the species-environment relationship (Figure 7). 
The response of organisms to driving variables 
will be expressed over a limited range of scales. 
Incorrect scale of measurement of the driving 
variable or the organism responses may lead to 
incorrect conclusions about the importance and 
nature of the relationship between that factor and 
that organism (Wiens 1989). Scaling issues pertain 
to both response and predictor variables. Often, the 
response variable is predicted at a different scale 
than it was measured, requiring data aggregation 
that is a source of substantial error (Rastetter and 
others 1992). Increasing spatial scale in prediction 
can be achieved through spatial imputation of 
results at the native grain (see Imputation section 
below), which maintains the scaling relationships 

b)

c)

d)
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Figure 6. A. Relationships between biological responses and limiting biophysical variables usually have high predictive power 
and low residual deviance. B. In contrast, relationships between limiting biophysical variables and spatial surrogates, such 
as elevation for temperature, usually have somewhat weaker relationships and higher residual deviance. C. Relationships 
between the surrogate and the biological response compounds the imprecision in both A and B, resulting in weaker 
relationships with high residual deviance. There are many factors that influence temperature regimes across complex 
landscapes in addition to elevation. D. For example, elevation and aspect interact to influence local temperature regime. 
The interaction of several factors results in low predictive power for any particular surrogate variable.

Figure 7. The strength and nature of relationship observed between a response variable and a predictor variable will 
change as functions of the scale of each (A).  Scaling response variables is problematic and requires either upscaling 
(e.g., plot-level vegetation response to predicted landscape-level aggregate properties) (B), or downscaling (e.g.,  
1-km scale measured response data to plot-level predicted response) (C). These extrapolations require information 
at multiple scales. Forest plots are rarely nested across a broad range of scales, for example. The errors associated 
with scaling response variables are avoided by making predictions at the same grain at which response variables were 
measured.  Spatial scope can then be achieved by imputing model predictions across large spatial extents at the native 
grain of the response variable (see Imputation section). Scaling predictor variables, in contrast, is an essential task in 
modeling species-environment relationships. The grain at which environmental data are most strongly related to the 
response of the dependent variable may be finer (D) or coarser (E) than the grain of the response variable. Haphazard 
selection of scales of variables leads to equivocal conclusions. Ideally, the grain of the response variable should be 
fixed at an appropriate level and modeled across spatial and temporal extents (F). The predictor variables ideally 
would be measured at the finest possible grain over the largest possible extent. Partial bivariate scaling (Figure 7F and 
Figure 9) could then be used to identify the neighborhood extent around sampling units at which the predictor variable 
has the strongest relationship with the response variable.
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between patterns and processes while extending 
predictions across broad spatial extents. Scaling 
predictor variables is an equally important issue. 
The relationship between a predictor and a response 
variable will change as a function of the extent 
over which the predictor variable is measured. 
It is important to identify the scale(s) at which 
this relationship is strongest. Bivariate scaling 
(Figure 9) is a formal approach to determine the 
scales at which environmental variables are most 
strongly influencing the response of vegetation at 
the scale at which the vegetation is sampled.

Figure 8. Biophysical conditions at each location in a landscape fluctuate over time on seasonal, annual, and decadal 
time scales. Thus the biophysical character of a location cannot be adequately represented by measurements taken 
at a single time. The current vegetation at the site reflects the results of a variety of nonequilibrium processes over 
various temporal scales, so it is essential to address temporal variability. In this figure the axes represent the limiting 
resources of water, temperature, and solar energy. The surfaces reflect the concentric 25th, 50th, and 75th percentile 
of maximum annual growth for a hypothetical species along those three limiting resources. The black dots represent 
sequential measurements of biophysical conditions at a single plot. The trajectory illustrates variable biophysical 
conditions over time. The pathway of the trajectory through the growth isoclines indicates temporal changes in the 
suitability of this single plot location for growth of the species.

 Limitations requiring integrating gradient modeling 
with other paradigms

Lag effects and non-equilibrium dynamics 
compromise the interpretation and power of 
equilibrium models. Lag effects incorporate the 
entire history of the site prior to the point at which 
vegetation and biophysical limiting factors were 
measured. These effects persist across a vast range 
of temporal scales. Species occurrence on a site 
will be related not only to current moisture and 
temperature gradients, but also to the separation 
of the North American continent from Europe 

3.

e)
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Figure 9. Partial bivariate scaling to identify the appropriate scales for each explanatory variable. This example illustrates the 
process for a single hypothetical explanatory variable measured over five spatial scales. In the image in the upper left, the 
square represents the footprint of the sample plot, and the concentric rings each of four radii around the plot. The variable is 
extracted from each of these five spatial scales. Across plots, we derive a matrix of plots by variable-by-scale combinations 
(lower left), and a matrix of plots by species (upper right). Bivariate scaling associates the patterns in the species among 
plots with the values of the variable-by-scale among plots. The first step is to model the species response as a function of all 
scales of the variable 1). In this example, scale 1, 2, and 5 have statistically significant explanatory power, and scale 1 has 
the largest marginal explanatory power. Scale 1 is selected. In step 2, the model is rebuilt using scales 2-5 as explanatory 
variables and scale 1 as a covariable. In this step, scale 5 is found to be the only significant scale and is selected. In step 3 
no additional significant scales are selected. Scales 1 and 5 are selected for inclusion in the model building and the process 
is repeated for the next explanatory variable.

(millions of years), presence of ice-age refugia 
(thousands of years), fire history (hundreds of 
years), and more immediate influences such as the 
seasonal, annual, and decadal climatic variability. 
Any particular plot will follow a trajectory through 
biophysical conditions, and thus species tolerance, 
space (Figure 8), and composition and growth will 
be strongly influenced by past events.
Limiting factors are not stationary. Even if one 
could solve the problem of lag effects within an 
equilibrium model, the parameters of gradient 
models would be expected to change over time. For 
example, if limiting factors change, so will the key 

f)

predictor variables (Peterson and Peterson 2001). 
For dynamic modeling, then, gradient models are 
best utilized for establishing initial conditions and 
for building transfer functions to take landscape 
outputs in future time-steps back to fine-scale 
ecosystem attributes (see below).

Biotic Interactions, Hierarchical Variance 
Partitioning, Multi-Scale Modeling,  

and Spatial Dependence

Many of the sources of error and imprecision detailed 
above can be mitigated within the gradient modeling 



18	 USDA Forest Service RMRS GTR-194.  2007

approach by addressing biotic interactions, spatial 
dependence, and scaling relationships with multi-
scale modeling (Thompson and McGarigal 2002), 
and hierarchical variance partitioning (Cushman and 
McGarigal 2003, Cushman and Wallin 2002, Cushman 
and McGarigal 2004). The relationships between a 
species and an important environmental variable will 
appear only when measurements are made at appro-
priate spatial scales (Wiens 1989). Thus it is essential 
to optimally match the scale of environmental pattern 
in each predictor variable to vegetation response. In the 
past, most efforts have been restricted to single scales of 
analysis, often arbitrarily imposed by the scale of avail-
able data (e.g., TM or AVHRR imagery). Much effort 
has recently been committed to determining which 
methods are most effective at identifying the correct 
scale for associating environmental variation to species 
responses; partial bivariate scaling (Thompson and 
McGarigal 2002, Grand and others 2004) is among the 
most effective.

Partial bivariate scaling
In partial bivariate scaling, the patterns of the response 

variables (vegetation composition and structure) are 
associated with multiple environmental variables, each 
measured across a range of spatial scales. A priori, we 
have no basis to assume which spatial extent surrounding 
the sampled plot is the scale at which the environmental 
variable is most strongly related to vegetation response. 
Accordingly, it is best to measure each environmental 
variable across a broad range of radii surrounding the 
plot. Partial CCA or partial regression is then used to 
determine the scale(s) at which each predictor vari-
able is most related to vegetation response (Figure 9). 
Separate models are constructed for each predictor vari-
able, with each model including variables at each spatial 
scale. Canonical ordination or regression then identifies 
the spatial scale with the largest marginal relationship 
between the response and any predictor variable. If there 
is no scale at which a variable is significant then that 
variable is dropped. If the most influential scale is a 
significant predictor, the process is repeated, treating the 
previously identified scale as a covariate. If additional 
scales are found to be significant predictors then they 
too are selected and partialled out, and the process is 
continued until no more scales contribute significantly 
to prediction. In practice, one or at most two significant 
scales are usually associated with each variable, and 
many variables have no significant explanatory power 
and are dropped (Grand and others 2004).

Hierarchical gradient modeling
Once the appropriate scales have been identified for 

each variable, gradient models are then built using step-
wise approaches incorporating significant variables at the 
identified scales. In this model building, it is often useful 
to use hierarchical variance partitioning (Cushman and 
McGarigal 2003, Cushman and Wallin 2002, Cushman 
and McGarigal 2004). Hierarchical variance partitioning 
is a statistical method that breaks down the explanatory 
power among multiple sets of explanatory variables into 
their individual components (Figure 10). The method 
translates a hierarchical or multi-scale conceptual model 
into a statistical decomposition of variance. The decom-
posed model allows one to assess the relative importance, 
confounding, and interaction among variables. This 
facilitates ecological understanding of the relationships 
between mechanisms and responses across scale and 
organizational levels. Hierarchical model partitioning 
is particularly useful for the specific challenges facing 
research on relationships among forest vegetation, fire, and 
climate. It allows quantitative assessment of the relative 
predictive abilities and interactions of 1) local “fine-filter” 
measurements of environmental conditions in the field 
and “coarse-filter” environmental conditions extracted 
from synoptic GIS, 2) mechanistic limiting factors and 
the potpourri of other available surrogate variables,  
3) abiotic environmental conditions and biotic interac-
tions, 4) spatial dependence, and 5) time lag effects.

Biotic-interactions and time lag effects—Hierarchical, 
multi-scale gradient models can also incorporate biotic 
interactions, succession, disturbance history, and 
temporal disequilibria between current vegetation and 
the environment (Figure 10). Both temporal and envi-
ronmental variables are included as separate predictor 
sets and partitioned to quantify the relative effects and 
interaction of time since disturbance, disturbance type, 
and environmental gradients. For example, the effect 
of competition upon a target species can be seen as a 
local modification of environmental conditions by other 
species (Tilman 1990). Biotic interactions can be modeled 
directly, where vectors of proportional composition are 
a multivariate response (Aitchison 1986, Billheimer 
and others 2001, Cumming 2001). Although this tech-
nique is of theoretical interest, it may prove difficult to 
apply to any but the simplest compositional patterns (but 
see Cumming 2001). For example, McKenzie (unpub-
lished) was able to explain negligible variance with this 
approach using the same data (McKenzie and others 
2003) that produced robust gradient models for indi-
vidual species.
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An analogous indirect method is to estimate propor-
tional composition of individual species via a GLM of 
the binomial family, as is used to predict probability of 
presence/absence. Like the methods of Aitchison (1986) 
and others, this approach requires a non-zero value for 
every species in every observation or plot so it is difficult 
to apply in real ecosystems. A more practical approach 
may be a canonical ordination method such as canon-
ical correspondence analysis, where individual species’ 
optima and tolerances in multidimensional gradient space 
are constrained both by predictor variables (linearly) 
and by changes in species composition itself (via 
unimodal functions), thereby implicitly incorporating  
biotic interactions among species. Hierarchical variance 

partitioning of canonical ordination models provides a 
means of addressing species interactions by including 
appropriate biotic variables among the environmental 
predictor sets. It is then possible to separate the effects of 
abiotic environmental control from the effects of species 
interactions (Figure 10).

Success in this effort will depend on samples from 
combinations of all pertinent biophysical contexts with 
and without past disturbance types of interest. The  
database of sample plots must contain the full combi-
nation of species occurrences along environmental 
gradients. Quantifying competition and species inter-
actions requires measurement of performance of each 
species in each biophysical context both in the presence 

Figure 10. Hierarchical model building and decomposition. In regression and canonical ordination, subsets of vari-
ables are partitioned to quantify their independent and interactive influences. In this example, we hierarchically 
build a model to explain vegetation composition and structure based on spatial, temporal, and environmental 
factors. Each of these data sets in turn contains nested subsets. By decomposing the relationships among 
these components we can quantify the relative importance, interaction, and confounding among multiple 
explanatory variables derived at different spatial scales and different organizational levels. This provides a 
means to both build the most powerful predictive models, but also to gain the most complete insight into the 
importance and shape of the relationship between each driving factor and vegetation response.
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and the absence of the putative competitors. For example, 
vegetation responses are highly sensitive to the details 
of site level resources and disturbance history (Bunn and 
others 2003). Seed dispersal depends on release height, 
topography, wind speed and direction, tree density, and 
seed morphology (Johnson and others 1981, Van der 
Pijl 1982, Green and Johnson 1996). Cycling of organic 
matter and nutrients depends on litterfall, atmospheric 
deposition, and decomposition (Waring and Schlesinger 
1985), which are highly influenced by local stand condi-
tions, history, and biophysical context. In a hierarchical 
gradient model, these local influences can be separated 
from coarse-scale influences, rather than just combined 
with them in interaction terms, and the variance attrib-
utable to each can be precisely quantified (Cushman 
and McGarigal 2004). Such an approach partially over-
comes errors associated with spatial scale mismatches 
and temporal lag effects.

Spatial Dependence and Autocorrelation—Biotic 
response along environmental gradients has two compo-
nents of spatial dependence: spatial biotic processes 
within the community and the spatial structure of envi-
ronmental factors (Legendre 1993). Spatial dependence 
among observations reduces degrees of freedom in a 
model and can drastically change significance levels. 
Because many ecological processes exhibit spatial auto-
correlation to some degree, ignoring spatial dependence 
where non-negligible can distort ecological inference. 
The core statistical techniques in gradient modeling 
(multiple regression, GLMs, canonical ordination in 
its regression phase) carry assumptions of indepen-
dence. Violation of these assumptions does not bias 
estimation per se, but it does render significance tests 
unreliable. Explicit consideration of spatial dependence 
can improve model estimation and in some cases predic-
tive power. For example, Miller and Franklin (2002) 
improved predictive models for shrub species in the 
American Southwest by combining GLMs (including 
a preponderance of unimodal functions) with indicator 
Kriging (Isaaks and Srivastava 1989).

Hierarchical gradient modeling with direct ordina-
tion can account for spatial dependence in several ways. 
First, one can include spatial variables, such as the terms 
of a trend surface analysis, as predictor variables. By 
partitioning the models one can determine the amount 
of variance attributable to independent environmental 
control, spatially structured environmental control, and 
biotic spatial autocorrelation (Borcard and Legendre 
1994). Alternatively, Wagner (2004) integrated geosta-
tistical spatial modeling with direct canonical ordination 
to address spatial autocorrelation in community patterns. 
This allows the ordination results to be portioned by 

distance and integrated with geostatistics. The diag-
nostic tools provided by direct multi-scale ordination 
(sensu Wagner 2004) allow ecologists to distinguish 
between spatial dependence and spatial autocorrela-
tion and to check assumptions of independent residuals, 
stationarity, and scale-invariant correlation.

Not all biophysical gradient models will benefit from 
incorporating spatial dependence, however. Spatial auto-
correlation will be evident in sample data only if its range 
(more precisely, the range of its empirical variogram) 
is much greater than the average geographic distance 
between observations. In complex terrain, observations 
have to be very close in space for this to be true. For 
example, McKenzie and others (2003) tested for spatial 
dependence indirectly by computing empirical vario-
grams of the residuals from their gradient models, finding 
no mean change in covariance from adjacent plots to 
those separated by kilometers. However, in imputation 
(see below), predictions are made for all pixels across 
all lag distances. Accounting for spatial dependence will 
be of great importance in producing the most accurate 
imputed maps of expected vegetation conditions across 
complex landscapes.

Existing FIA sample protocols use a sub-plot design 
that could be utilized to provide a measure of spatial 
autocorrelation by comparing vegetation, climate, distur-
bance, and biophysical environments between sub-plots. 
FIA plot structures allow autocorrelation to be computed 
at 2 lag-distances (36.6 and 63.4 m). Additional plots 
could be added to provide additional scales at which auto-
correlation could be measured. Spatial autocorrelation 
itself can then be modeled as an autoregressive gradient 
function of disturbance and biophysical environment.

Implementing Multi-scale Gradient Modeling with 
Canonical Ordination—Multi-scale and hierarchical 
gradient modeling has been developed using partial 
canonical correspondence analysis (ter Braak 1986, 
Cushman and McGarigal 2003, 2004). Partial CCA is a 
particularly useful tool for analysis of temporal, multi-
scale, or hierarchical relationships (e.g., Cushman and 
McGarigal 2003). Partial CCA can be used to separate 
the effects of environmental control from the autogenic 
changes in the community related to successional time. 
It is also an ideal tool with which to identify the scales 
at which each biophysical variable is most strongly 
related to the species responses (Figure 4) and to parti-
tion the effects of variables from multiple data sources 
and organizational levels (Cushman and McGarigal 
2003, Figure 5). Thus partial CCA provides a rigorous 
framework to quantitatively link vegetation responses to 
the influences of environmental factors across a range 
of spatial scales, temporal dynamics, and succession 
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and to partition the effects of factors measured across 
multiple levels of organization. Bivariate scaling and 
hierarchical gradient modeling should be possible using 
alternative approaches such as GAM and nonlinear 
regression. However, more development is required 
before the potential of these other methods is known. 
At this time, multi-scale, hierarchical gradient modeling 
is the only well-developed tool allowing proper linkage 
of the patterns and processes across spatial scales and 
over time essential to the task of predicting relationships 
between climate, fire regimes, and forest ecosystems.

Predictive Vegetation Mapping:  
Univariate Prediction and Multivariate 

Gradient Imputation

Spatially explicit predictions of species composition 
and the structure of forest vegetation are needed at broad 
spatial scales (Moisen and Frescino 2002, Ohmann and 
Gregory 2002). A detailed spatial prediction of current 
vegetation composition and structure is the foundation 
on which predictions of the effects of future climate 
and disturbance regimes are based and evaluated. This 
information is obtained through predictive vegeta-
tion mapping (Franklin 1995). Predictive vegetation 
mapping uses relationships between observed patterns 
of species occurrence, obtained from a large, represen-
tative sample of field plots, and synoptically measured 
predictor variables.

Most efforts at predictive vegetation mapping 
have been based on classification of satellite imagery. 
Categorical, patch-based classifications are limited 
to general characteristics of upper canopy (Cohen 
and others 2001, Wolter and others 1995, Woodcock 
and others 1994) and cannot reflect the continuously 
varying structure of the plant community. If a minimum 
patch size is imposed, small scale features may vanish. 
Perhaps even more importantly, classification results is 
a necessary compromise between information loss and 
categorical error rates. As the numbers of classification 
types increase, error rates also increase (Hunsaker and 
others 2001, McGarigal and Cushman 2005). Thus clas-
sified maps are limited to relatively few, broadly defined 
patch types.

An alternative approach is to predict detailed vegeta-
tion conditions at each cell across the landscape based 
on a gradient model (Van Deusen 1997). There are two 
main approaches for predictive vegetation mapping. If 
univariate models are used the model itself can produce 
predictions for each unsampled location based on 
the value of predictor variables at each location. For 
example, Frescino and others (2001) used generalized 

additive models to predict forest presence, lodgepole 
pine (Pinus contorta) presence, basal area, shrub cover, 
and snag density in the Uintah Mountains of Utah. The 
input data was provided by the Interior West Resource 
Inventory, Monitoring and Evaluation Program database, 
and consisted of forest vegetation measurements taken 
from 0.4 ha plots. The explanatory variables included 
downscaled PRISM precipitation data, elevation, aspect 
and slope, geology, geographic location, classified TM 
imagery, unclassified TM imagery, and AVHRR imagery. 
All variables were rescaled within GIS to a cell size of 
0.4 ha. Their results indicate that TM data, elevation, 
and geology are significantly related to the response 
variables, but predictive accuracy was low. Prediction 
accuracy for forest vs. non-forest was 88% and was 80% 
for lodgepole pine. Only 62% of predictions for basal 
area, shrub cover, and snag density fell within 15% of 
measured values.

Moisen and Frescino (2002) compared five modeling 
approaches for predicting forest presence: spruce-fir 
forest, biomass, tree age, quadratic mean diameter, and 
crown cover. Vegetation training data were from FIA 
plots at a spatial resolution of 0.4 ha. The explanatory 
variables included elevation, slope, aspect, geographic 
location, AVHRR data, and TM-classified land cover 
data. All predictions were made to 1-km output pixels. 
The modeling approaches included simple linear models, 
GAM, CART, MARS, and artificial neural networks 
(ANN). Models built on simulated complex nonlinear 
responses indicated that MARS and ANN performed 
best. In contrast, models built using measured data 
appeared to favor GAM and MARS. Predictive success 
was relatively low overall, however. Kappa values for 
predicting forest vs. nonforest ranged between 0.3 and 
0.8. Correlations between observed and predicted values 
for continuous variables were relatively low, with none 
over 0.6. Few models produced maps with more than 
50% of predicted values within 25% of actual.

When a multivariate approach is adopted, in which 
the responses of multiple species are simultaneously 
predicted based on combinations of predictor variables, 
it is not possible to use the model to directly predict 
expected values of each species. When a multivariate 
gradient model is used, gradient imputation (Figure 11—
Ohmann and Spies 1998, Ohmann and Gregory 2002, 
Wimberly and Ohmann 2004) provides an efficient 
means of estimating expected values for dependent vari-
ables at unsampled locations based on the complex of 
environmental gradients at those locations. Gradient 
imputation has several technical advantages over alter-
native methods. First, gradient models utilize patterns 
of covariance among interrelated biological patterns 
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Figure 11. Gradient imputation of niche struc-
ture with scaled biophysical variables. (A) 
Independent variables at a range of spatial 
scales are used for a nonlinear gradient model 
of niche structure for each species. This 
example uses CCA (ter Braak and Prentice 
1986). Axes are orthogonal dimensions of 
ecological space. Species optima locate the 
center of their environmental niche with respect 
to the measured predictor variables. (B) The 
niche model uses ecological space, but we can 
make inferences about suitability in geographic 
space using gradient imputation (Ohmann and 
Gregory 2002). Each unsampled location (cell) 
is projected iteratively into the environmental 
space defined by the niche model. By imputing 
the value of the species at the nearest sampled 
plot (or a weighted average of nearby plots) we 
estimate the suitability of the new location for 
that species. (C) Gradient imputation allows 
the explicit translation from quantitative models 
in environmental space to suitability maps 
in geographic space. Normalized values for 
multiple species at each location provide equi-
librium estimates of relative competitive ability, 
useful for defining parameters in ecosystem 
dynamics (gap) models.
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and processes to make their predictions. This yields 
models that are self-calibrating and do not suffer from 
compounding error rates across levels of estimation 
(McKenzie and others 1996). Second, the imputations are 
made at the native scale of the input predictor variables, 
avoiding the very troublesome issues of aggregation and 
extrapolation error (King 1991, Rastetter and others 1992. 
Gradient modeling also avoids the subjectivity and infor-
mation losses associated with discrete classifications of  
inherently continuous and covarying ecological gradients 
(McGarigal and Cushman 2005) and facilitates optimal 
multi-scale analysis of multiple response surfaces.

Ohmann and Gregory (2002) used canonical ordi-
nation (CCA) and gradient nearest neighbor (GNN) 
imputation (Figure 11) to produce predictive maps of 
forest composition and structure in coastal Oregon. 
CCA is effective at predicting responses of multiple, 
continuous biotic response variables, is widely used by 
ecologists, and is robust to correlations among environ-
mental variables and sparse data matrices (Palmer 1993, 
Guisan and Zimmerman 2000, Ohmann and Gregory 
2002). Response variables were basal area by species 
and size class. Predictor variables were derived from 
LANDSAT TM bands, PRISM climatic data, geographic 
location, topographical indices, and geologic vari-
ables. They argued that the GNN method has several 
advantages over alternatives. First, each imputed pixel 
is attributed with a list of trees by species, size, and 
density (essentially the tree list required by vegetation 
simulators), so vegetation data are not transformed and 
thereby subject to information loss. Second, because 
GNN imputes from a single nearest-neighbor plot the 
covariance among predicted species and structures is 
not under-estimated. Third, the range of variability 
present in the sampled stands is maintained in predic-
tions. Fourth, CCA models are interpretable in terms of 
species responses, connecting regional environmental 
gradients directly to forest vegetation.

Uncertainty in gradient imputation

As with any modeling, the choice of modeling 
approach, predictive variables, and scales of measurement 
have profound influences on imputation performance. 
The uncertainties associated with gradient imputation 
arise from the interplay of several factors.

Spatial variables used to construct the models often 
do not reflect the factors to which the vegetation is 
responding. In the past, most imputation efforts have 
used what spatial data were available, rather than 
seeking out specific variables that represent driving 
mechanisms.

•

The spatial data used to construct the models are  
often at inappropriate scales. Many data layers used 
to predict species responses at the scale of an FIA plot 
(0.4 ha) have a grain that is much larger. This scale 
mismatch greatly reduces the likelihood of observing 
strong relationships. For example, AVHRR data has 
a 1-km cell size. Vegetation structure at a finer spa-
tial scale cannot be accurately resolved from AVHRR 
data regardless of the modeling method used. It will 
be informative to use GNN modeling approaches 
using higher resolution remotely sensed data sets, 
such as hyperspectral imagery, Quickbird, and NAIP 
imagery.
The climate data often used in imputation modeling 
are derived from coarse-scale GIS layers or mod-
eled extrapolations of low elevation, valley bottom 
climate from meteorological stations. Microclimate 
varies over much finer scales and is a strong influ-
ence on vegetation patterns. It is essential to obtain 
climatic data at a spatial scale that matches the scale 
of the plot-level response of vegetation. DAYMET  
(1 km) and PRISM (4 km) data are too coarse to meet 
this need. If, for example, gradient models used a grid 
of micro-weather stations placed across the range of 
biophysical conditions, the scales of predictors and 
response would match.
Most models developed to predict vegetation use 
spectral, topographical, and mapped geological data 
at the immediate footprint of each plot. It is likely, 
however, that these predictor variables drive vegeta-
tion responses at a variety of spatial extents, and not 
necessarily most strongly at the scale of the plot’s 
immediate footprint. Accordingly, using multi-scale 
ordination and partial bivariate scaling (Figure 9) 
may improve models by identifying the scales at 
which each variable has the strongest influence on 
plot-level vegetation response.
In many cases, models built on fine-scale plot-level 
data make inferences to much larger spatial extents. 
For example, Moisen and Frescino (2002) pro-
duced predictions at a 1-km scale from single 0.4 ha 
plots nested within. This assumes that the sampled 
plot is representative of the vegetation condition 
throughout the 1-km cell. Given the high spatial vari-
ability of vegetation and biophysical gradients within a  
1-km scale, this is an unsupportable assumption. 
Such unsupported scale extrapolations produce high-
ly equivocal predictions.
Most past gradient imputation has ignored the issues 
of temporal nonequilibrium and time lags. However, 

•

•

•

•

•
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by including disturbance history and stand age as  
predictor variables in hierarchical gradient modeling 
we will be able to incorporate temporal dynamics in 
the models by in effect trading space for time.

In the past, gradient imputation has ignored patterns 
of spatial autocorrelation. As these patterns are strong 
at the fine scales to which imputation modeling is de-
fined, their influence can be profound.

Most of the sources of uncertainty listed above are 
directly addressable either through more sophisticated 
modeling, better data collection, or both. The interpret-
ability or gradient models and their utility in making 
predictions at fine scales, in new landscapes, or in 
future conditions will be improved by building gradient 
models with theoretically understood limiting factors. 
Additionally, bivariate scaling and variance partitioning 
address important sources of uncertainty associated with 
imputation modeling. By linking gradient imputation to 
canonical ordination models developed using partial 
bivariate scaling and hierarchical variance partitioning 
of limiting factors we should be able to improve both 
predictions of current conditions and inferences about 
expected changes in occurrence, growth, and regen-
eration under possible future climate and disturbance 
regimes.

Intrinsic limits to gradient modeling
By linking the limiting factor niche modeling 

(McKenzie and others 2003), hierarchical partitioning 
(Cushman and McGarigal 2003), partial bivariate scaling 
(Thompson and McGarigal 2002), and gradient imputa-
tion (e.g., Ohmann and Gregory 2002), we can address 
most key issues of spatial and temporal scale, spatial auto-
correlation, and temporal disequilibrium in models of 
species occurrence, growth, and regeneration. However, 
gradient models do not explicitly address a chain of 
causation. Gradient models are rooted in species-environ-
ment correlations, which do not always reflect causation. 
Also ecological mechanisms have transient dynamics. 
These temporal dynamics of biophysical conditions are 
difficult to represent in equilibrium gradient models. In 
contrast, process-based modeling with explicit time-
steps can more directly relate organism responses to 
the action of specific mechanisms and address temporal 
disequilibria and transient dynamics (Neilson 1995, 
Keane and others 1996, Waring and Running 1998). 
We therefore suggest that understanding the causes and 
effects of pattern-process relationships in forest systems 
will benefit from linking empirical gradient models with 
mechanistic ecosystem models. Also, gradient models 
are limited in their ability to project landscape changes 
from large-scale and temporally punctuated disturbances 

•

such as insects and wildfire, which are disturbances that 
will likely be the direct agents of ecosystem changes in 
response to global climate change (McKenzie and others 
2004). Thus we suggest integrating landscape dynamics 
modeling of broad-scale disturbance with gradient and 
ecosystem dynamics models. The following sections 
review these two additional modeling paradigms in the 
context of integrated landscape modeling.

Ecosystem Dynamics Modeling

Time lags, nonequilibrium dynamics, and mismatch of 
temporal scale between responses and drivers reduce the 
effectiveness of equilibrium models. Gradient models can 
address time lags and non-equilibrium dynamics implic-
itly by incorporating dynamic climates, disturbance 
history, and species interactions within the hierarchical 
gradient modeling framework. In contrast, ecosystem 
dynamics models bring an explicit temporal dimen-
sion by simulating responses of vegetation to specific 
combinations of mechanisms across formal time-steps. 
Whereas gradient models in effect trade space for time 
(McGarigal and Cushman 2002), ecosystem dynamics 
models make predictions at successive time-steps, with 
each state depending on the previous one. This greatly 
improves the realism and flexibility with which time 
lags and temporal dynamics can be addressed.

Comprehensive reviews of ecosystem dynamics 
models are found in Waring and Running (1998) and 
Keane and Finney (2003). We focus on the characteris-
tics of ecosystem dynamics models that would mesh with 
gradient and landscape dynamics modeling to synthesize 
analyses of forest vegetation responses to climate and 
disturbance regimes across spatial and temporal scale. 
Vegetation dynamics models use mechanistic approaches 
to simulate plant growth, regeneration, mortality, decom-
position, and nutrient cycling (Landsberg and Gower 
1997). Waring and Running (1998) distinguish between 
biogeochemical (BGC) models and “gap-phase” (gap) 
models. BGC-type models emphasize physiology and 
biogeochemistry, whereas gap models emphasize life-
cycle dynamics.

Gap-phase models simulate relationships between 
species occurrence, growth, and regeneration and 
biophysical drivers over time. They are readily linked 
to multi-scale gradient models because both predict the 
same response variables (vegetation composition and 
structure) based on the same predictor variables (biophys-
ical drivers at the level of each plot). Gap models track 
individual trees and distinguish vegetation responses at 
the species level, thereby factoring in competitive inter-
actions via reciprocal influences of individual trees on 
each other’s microenvironment. Comprehensive reviews 
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of gap models are provided by Botkin and Schenk (1996) 
and Urban and Shugart (1992).

The FM model (Miller and Urban 2000, Miller 2003), 
an extension of ZELIG (Urban and others 1991), exem-
plifies how ecosystem modeling can support and extend 
gradient modeling. FM simulates the establishment, 
growth, and death of individual trees on a tree-sized plot, 
which is considered to be homogeneous. A key attribute 
of the FM model is that it simulates feedbacks. Trees 
are affected by the environment and in turn, trees affect 
the environment. Species tolerances to environmental 
conditions are formalized in the model as heuristic, 
unimodal response curves; species replacements during 
succession or with climate change are a function of 
their relative positions with respect to the centers of 
the response functions. Gap-phase models such as 
FM are not spatially explicit, in that they simulate the 
dynamics of individual stands at specific locations in a 

landscape rather than the pattern of vegetation continu-
ously across space. However, the FM model addresses 
spatial complexity by simulating arrays of individual 
plots in a rectangular grid across the landscape. The 
plots interact with one another via shading and seed 
sources. This relaxes the assumption of a homogeneous 
stand and allows for spatial interactions that modify the  
microenvironment within a stand (Smith and Urban 
1988, Urban and others 1991).

Gap models such as FM are an ideal means by which 
to strengthen and extend the predictions of gradient 
modeling (Figure 12) because they simulate feedbacks 
between vegetation and the environment. Species are 
ranked by tolerances to environmental conditions, explic-
itly linking the simulation to niche characterization. Gap 
models simulate regeneration, growth, and death of trees 
based on the interaction between the optima and toler-
ances with respect to environmental conditions present 

Figure 12. Gap-phase ecosystem dynamics models simulate growth, death, regeneration, and stand structure based on initial 
vegetation and biophysical conditions. They are based on mechanistic relationships between biological response variables 
and environmental drivers. In the conceptual model here, biotic responses (green boxes) are predicted as functions (pink 
boxes) of climate and soil characteristics (yellow boxes). The climate and soil characteristics at each simulated plot can be 
measured in the field. Gap models require a statement of initial vegetation conditions for initialization, which can be measured 
on a sample of plots. Extending predictions across space requires estimates of initial vegetation and biophysical conditions 
for unsampled plots. Imputation of multi-scale biophysical models is perhaps the best means of gaining these estimates of 
driving variables across space. Ecosystem models also require explicit information about the functional nature of vegetation 
response to each driving variable. These functional relationships must be based on empirical data from the system of interest. 
Extensive samples of vegetation across biophysical gradients, coupled with gradient modeling, provide information needed to 
quantify mechanistic relationships between specific environmental drivers and vegetation response.
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at the site and changes in those conditions through time 
due to biotic interactions, climate change, or distur-
bance. These attributes of gap models can circumvent 
some limitations of gradient modeling, most notably 
the difficulty of dealing with temporal disequilibrium 
between current vegetation and the environment.

Conversely, gradient modeling offers solutions to the 
major challenges facing implementation of gap models 
across complex landscapes (Figure 12). Gap models 
rely on a quantitative understanding of the optima, toler-
ance, and performance of each species along biophysical 
gradients. Specifically, gap models use relationships 
between soil moisture, precipitation, snow pack, solar  
radiation and growth, mortality, and regeneration. 
Gradient modeling provides critical parameters by 
estimating the optima and tolerances of each species 
for growth, regeneration, and occurrence along each 
biophysical gradient. Large, representative samples 
taken across the full span of biophysical gradients, 
followed by multi-scale gradient modeling, are the best 
means to minimize the uncertainty associated with these 
critical relationships.

Gap-phase models have been implemented within 
landscape applications (Shugart and Seagle 1985, Urban 
and others 1991, Mladenoff and Baker 1999) but have 
used aggregation techniques that involve information loss 
and error propagation (Rastetter and others 1992, King 
1991). The uncertainties in aggregation to a landscape 
mosaic can be partially obviated by using multi-scale 
gradient imputation models (Cushman and McGarigal 
2003, Ohmann and Gregory 2002). Gap-phase models 
can produce expected future stand structure and compo-
sition for grids of forest plots. Gradient imputation on the 
simulated future plot values provided by the gap models 
can then be used to infer future vegetation composition 
and structure as a function of spatial location and biophys-
ical gradients at each plot-sized cell in a landscape. Thus, 
by combining gap-phase futuring of permanent forest 
plots with gradient imputation, it is possible to simulate 
vegetation dynamics continuously across complex land-
scapes (e.g., Spies and others 2002).

Landscape-Level Disturbance Modeling

A major limitation of ecosystem modeling is the diffi-
culty of addressing large-scale disturbance. Ecosystem 
dynamics models excel at predicting the effects of 
processes acting at the gap and stand scale, but they 
have difficulty addressing broad-scale, contagious 
spatial processes such as wildfire. Although some gap-
phase models simulate disturbance (e.g., Shugart and 
Noble 1981, Bonan and Shugart 1989, Miller and Urban 
2000), they do not simulate the propagation of fire across 

landscapes (Miller 2003). Instead, disturbance is repre-
sented in ecosystem models by linking multiple plots 
within a spatial network and using aggregate results 
(Urban and others 1991, Acevedo and others 1996). 
Interaction among cells, a key to successful simulation 
of contagious processes, is limited. Attempts to fully 
incorporate spatial interactions in a mechanistic frame-
work encounter not only logistical problems associated 
with limits on data and computing resources, but also a 
host of inherent problems that may be intractable.

Limitations of mechanistic fire modeling
Keane and Finney (2003) describe in detail the 

components that a mechanistic fire effects simulation 
model (FESM) would need in order to predict fire occur-
rence, spread, and intensity across large landscapes and 
incorporate both succession after fire and repeated fire 
events. The program outlined is ambitious and suggests 
that robust mechanistic simulation of landscape-level 
fire effects is still out of reach. Drawing on Keane and 
Finney’s (2003) exposition, we recognize the following 
impediments to broad-scale mechanistic fire modeling: 

Fully physical fire models that mechanistically rep-
resent the three-dimensional fire environment do 
not run in real time even on small patches (Linn and 
others 2005). Thus, we are a long way from having 
computing resources adequate for landscape physical 
modeling. Current fire-behavior and fire-spread mod-
els rely on empirical approximations of crown and 
surface fire behavior (e.g., Finney 2003), and they 
have a maximum resolution of 30 m—too coarse to 
accurately capture the combustion process and the 
spatial heterogeneity of fuels.
Even if these resource limitations were to be over-
come, two other problems might be intractable.

There will likely always be a lack of good data at 
the scale of the landscape application. Keane and 
Finney (2003) suggest that five major processes 
should be included in a mechanistic landscape 
model: climate, fire, insect, disease, seed dispersal, 
and hydrology. Just looking at climate data, top 
down approaches usually couple coarse predictions 
from global circulation models to mesoscale gridded 
mechanistic climate models, such as RegCM2 
(Giorgi and others 1993, Luce and others 1999), 
MM5 (Grell and others 1994), or RAMS (Pielke 
and others 1992). The predictions of these gridded 
weather estimates are then used to compute site-
specific weather through interpolation (Luce and 
others 1999) or finer-scale mechanistic modeling 
(Running and others 1987). However, with up 
to four orders of estimation in this process, the  

1.

2.

a)
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site-level error rates are likely to be unacceptably 
high, particularly in complex mountainous 
topography.

Even with data as accurate as reasonably possible, 
sensitive dependence on initial conditions (Ruelle 
1991) may rapidly degrade the accuracy of such 
a mechanistic model with multiple non-linear 
dependencies. For example, both fireline intensity 
and fire spread depend nonlinearly on the packing 
ratio of combustible fuels and its variability at fine 
scales (Rothermel 1972). In turn, fireline intensity is 
a key predictor of crown-fire initiation and spread, 
which can influence ecosystem properties for 
decades into the future. Data are lacking as to how 
serious this problem is, but ongoing experiments 
suggest that ecosystem-scale fire effects are very 
sensitive to small adjustments in fire-behavior 
parameters (Stocks and others 2004, Linn and 
others 2005).

Extreme events, which are the principal drivers of 
ecosystem change, are associated with coarse-scale 
controls. Even given error-free fine-scale modeling, 
there is a scale mismatch between driver and re-
sponse. Extreme weather events, characterized by low 
relative humidity, high temperature, and high winds, 
trigger and maintain large high-severity fires (Johnson 
and Wowchuk 1993, Agee 1997, Skinner and others 
1999, Baker 2003, Gedalof and others 2005). Some 
success in prediction of total area burned has been 
achieved with fire behavior simulated at coarse res-
olution, assuming a homogeneous fuel environment 
at a scale matching climatic controls (Lenihan and 
others 2003), but these authors did not simulate fire 
spread nor did they incorporate the sub-cell heteroge-
neity associated with mountain landscapes.
Successful ignition, represented as fire starts, is a 
limiting factor whose accurate implementation is be-
yond the capacity of current mechanistic modeling. 
Broad-scale atmospheric conditions conducive to dry 
lightning have been identified (Rorig and Ferguson 
1999), but individual fire starts have not been direct-
ly linked to them. Thus, ignition is usually simulated 
with stochastic methods (Keane and others 1996, 
Keane and Long 1998).
Mechanistic fire modeling across large landscapes 
may be inherently intractable, as it encounters the 
“middle-number” problem (Allen and Hoekstra 
1992). Allen and Hoekstra (1992) compare landscape 
modeling to statistical thermodynamics, wherein the 
number of individual molecules that interact is astro-
nomical, therefore impossible to model individually, 

b)

3.

4.

5.

but accessible using aggregate statistics. Analogously, 
aggregating ecosystem and landscape attributes to 
coarse scales (resolutions of multiple km) enables 
broad-scale modeling (e.g., Keane and Long 1998, 
Lenihan and others 1998) but cannot reproduce land-
scape variation at meaningful scales for contagious 
processes such as fire.
Because all of these limitations cannot be solved 

without major scientific advances, we submit that a 
stochastic paradigm, using aggregate properties of fire 
regimes and ensemble modeling, though eschewing the 
direct representation of fire behavior and fire spread, 
provides the best approach to landscape fire modeling.

Stochastic landscape dynamics simulators
Stochastic models exploit aggregate statistical prop-

erties of disturbance processes, rather than attempting to 
predict individual events and their behavior mechanisti-
cally. Fire, in particular, is appropriately modeled as a 
stochastic process, of which each fire history, whether 
from field observations or simulations, is just one real-
ization (Lertzman and others 1998, Falk 2004, McKenzie 
and others 2005). Landscape dynamics simulators do not 
simulate fire behavior per se. Instead they use empirical 
models to estimate fire frequency, size, spread behavior, 
and intensity along biophysical gradients. These statis-
tical relationships are used to populate landscapes with 
fire events that match expected patterns and frequency. 
Via “ensemble” simulations (see above), they are able 
to simulate properties of fire regimes accurately and 
can incorporate seasonal to multi-decadal climatic vari-
ability in the form of altered fire patterns. Rather than 
attempting to use coarse climatic predictions to mech-
anistically produce fires, these predictions are used to 
infer changes in fire regime.

Dynamic landscape simulation models have been 
used to explore synergistic effects of long-term climatic 
change and fire on landscape-level patterns of vegeta-
tion (Baker and others 1991, Keane and others 1996, 
Gardner and others 1999, He and Mladenoff 1999a, 
Hargrove and others 2000). A thorough review of land-
scape dynamics simulation models is found in Mladenoff 
and Baker (1999). The LANDIS (Mladenoff and 
others 1996), SIMPPLLE (Chew and others 2004) and 
RMLANDS (http://www.umass.edu/landeco/research/
rmlands/rmlands.html) models simulate fire, wind 
throw, and “harvest” on landscape pattern and structure. 
LANDSIM (Roberts 1996) uses life history and vital 
attributes to drive succession in polygons. DISPATCH 
(Baker 1992, 1993) uses stochastic simulation of fire 
occurrence and spread based on dynamically simulated 
weather, fuel loadings, and topographic setting, and then 
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simulates forest succession in change of cover type and 
stand age. Fire-BGC (Keane and others 1996) aggregates 
stand-level output of the ecosystem dynamics model 
Forest-BGC and applies disturbance stochastically 
using random ignitions. This model comes closest of 
any to date in linking mechanistic stand-level ecosystem 
dynamics to landscape disturbance; a revision is now 
complete and being applied across the northwestern 
United States (personal communication, Robert Keane, 
Rocky Mountain Research Station).

Fire regimes are defined in terms of probability 
distributions of size, frequency, and severity. Statistical 
models can be used to estimate expected values of fire-
regime parameters (McKenzie and others 2004, Duffy 
and others 2005, Gedalof and others 2005, Littell and 
others, submitted) as functions of climatic variability, 
using historical records. They can be extrapolated with 
some confidence to predict future fire-size and frequency 
distributions under changing climatic regimes, and 
to a certain extent past fire regimes can inform likely 
changes associated with potential future climates. If, for 
instance, hot dry years are associated with increases in 
fire size, frequency, or both, then a warmer and dryer 
future climate can be expected to produce similar results. 
Alternatively, instead of being constrained in advance, 
fire-size distributions may arise from deterministic or 
stochastic rules applied during the simulation of a fire 
event. For example, in grid-based cellular automata 
models, fire susceptibility in a cell adjacent to a burning 
cell may be “on” or “off,” or probabilistic. An inter-
esting hybrid model is MC1 (Bachelet and others 2001a, 
Lenihan and others 2003), in which the flammable 
proportion of a cell is determined by biomass and fuel 

moisture thresholds during the event but constrained at 
the upper end by natural fire rotation.

An ideal landscape dynamics model would preserve 
the empirical detail provided by gradient models and 
the mechanism/response paradigm associated with the 
ecosystem dynamics models. However, as we noted 
above, the aggregate properties of a landscape subject to 
physical and ecological mechanisms are best captured 
with a stochastic approach, because of the logistical and 
technical limitations of mechanistic modeling at broad 
spatial scales. Stochastic landscape dynamics models, 
however, simulate the patch dynamics associated with 
each disturbance regime, a different organizational level 
than species-level responses to biophysical gradients. 
Stochastic landscape dynamics models address different 
entities (patches instead of organisms) at different scales 
(patches vs. plots), creating an obstacle to model integra-
tion, as discussed in more detail in the following section. 
Also, most landscape dynamics models under-represent 
variability in fire severity through space, because most 
are patch-based and force fire to spread along polygon 
boundaries or from cell to cell, ignoring spatial variability 
in biophysical gradients. Within-cell heterogeneity in fire 
severity can have significant effects on stand- and commu-
nity-level succession (Turner and others 2003), and 
vegetation succession provides important constraints on 
future fire. Unlike some other sources of error, the biases 
associated with this underestimation of variance are not 
correctable with the ensemble approach to modeling. 
In the next section, we propose an approach to integrate 
gradient, ecosystem dynamics, and landscape dynamics 
models to overcome these difficulties.
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The overall goal of the integrated modeling program 
described in this document is to obtain fine-scale predic-
tions of ecosystem attributes across large geographical 
areas and project them over time under changing climate 
and disturbance regimes. The effort aims to extend plot-
level measurements of vegetation composition and 
structure across space with gradient imputation, and 
through time with mechanistic ecosystem and stochastic 
landscape dynamics models. The challenge is to integrate 
these three different modeling approaches to account for 
non-equilibrium relationships between current vegeta-
tion and biophysical drivers, spatial complexity across 
broad landscapes, and the large differences in scale of 
processes that drive local vegetation response to biophys-
ical conditions and disturbance processes such as timber 
harvest and wildfire. The integration will depend on the 
adequacy of three major components, discussed in the 
sections below. This research agenda is ambitious and 
full implementation under a single funding source is 
highly unlikely. However, the agenda consists of a series 
of interrelated tasks that could be addressed incremen-
tally under a series of independently funded research 
projects. For example, the base empirical data required to 
anchor the analysis may be collected as parts of existing 
or future broad-scale vegetation monitoring programs, 
such as FIA and CVS. Numerous researchers are actively 
engaged in addressing many of the issues we identified 
in gradient modeling, ecosystem dynamics modeling, 
and landscape simulation. Progress in these areas is 
approaching the point where one or several formal inte-
gration efforts will be able to combine methods between 
these components to achieve reliable predictions of 
forest vegetation across complex landscapes and over 
time under altered climate and disturbance regimes.

The Empirical Anchor

The most fundamental requirement for successful 
integration is the adequacy of empirical data relating 
species distribution, growth, and regeneration to biophys-
ical drivers and disturbance history. This empirical data 
anchor has three components.

First, it is essential to base the modeling efforts on 
large and representative samples of vegetation compo-
sition and structure along gradients of biophysical 
condition and disturbance history. These data should 
include species, size, and condition of each individual 
tree in the plot, including seedlings, the density and 

volume of woody debris in several size classes, and 
the cover of shrubs, forbs, and grasses by species and 
non-vegetation cover by type (e.g., rock, soil, water). 
Rates of growth for each species should be measured 
by computing annual increment from cores and diam-
eters of canopy dominant trees. Grid-based efforts 
such as FIA (Rudis 2003) sample biophysical condi-
tions across broad spatial and ecological gradients, via 
massive replication of vegetation plots. These plots 
would be distributed on a grid across large geographical 
areas. Sample sizes in the hundreds to thousands would 
be ideal to cover the range of biophysical conditions 
and temporal disequilibria of vegetation. This magni-
tude of data collection is realistic, as the FIA system 
includes tens of thousands of vegetation plots on which 
much of the required data have already been collected. 
Alternatively, in areas where gridded plots are incom-
plete or to augment the grid to obtain data for specific 
areas of interest, one could design a sample a priori to 
capture key biophysical gradients. For example, Littell 
and others (2005) used digital terrain models and GIS-
based modeling of environmental gradients to locate 
plots that filled the hyperspace of biophysical gradients 
expected to be key predictors of the response (in this 
case annual growth of montane Douglas-fir).

The second essential component is the adequacy of 
biophysical data. Plot-level biophysical variables would 
include soil depth and texture, slope, elevation, aspect, 
parent material, and microclimate records from portable 
weather stations (e.g., Hobo http://www.microdaq.com 
/occ/hws/index.php). The microclimate data would 
include photosynthetically active radiation, daily precip-
itation, maximum temperature, minimum temperature, 
relative humidity, soil moisture, and April 1 snow-water 
equivalent. Gradient modeling and geostatistics can then 
be used to infer microclimate characteristics continu-
ously across complex landscapes at a fine spatial scale. 
This obviates major scaling and extrapolation problems 
with downscaling regional climate models to landscape 
scales. There is no need to extrapolate across scale; rather 
the task is to model microclimate based on biophysical 
gradients and then impute it at its native scale to unsam-
pled locations within the spatial domain of the sampling 
network. Also, plot-level biophysical data is not a suffi-
cient predictor set, as biophysical factors from a range of 
scales simultaneously influence vegetation response. In 
addition, synoptic biophysical data is required to impute 
vegetation composition and structure to unsampled 

The Challenge of Integration
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locations across the landscape. Thus, indices derived 
at multiple spatial scales from remotely sensed multi-
spectral imagery and DEM will be essential for gradient 
modeling and imputation.

Accurate and spatially comprehensive informa-
tion about disturbance history is the final component 
of essential empirical information. Disturbance history 
should include the dates of previous disturbances and 
their types, severities, and extents across the landscape. 
The availability of these data is currently limited for 
most landscapes and this is among the most substan-
tial challenges facing this integrated modeling effort. 
Spatially comprehensive disturbance history is diffi-
cult to obtain. Most methods of estimating disturbance 
history, such as fire scars and charcoal analysis, do not 
produce spatially complete inferences of the disturbance 
histories of specific landscapes. These efforts are usually 
based on sparse samples across broad spatial extents and 
do not readily produce spatially synoptic estimates of 
fire history in terms of dates, extents and severities of 
past fires. Geostatistical modeling of fire scar chronolo-
gies is technically possible but logistically prohibitive 
in most landscapes. Stand age as a surrogate for distur-
bance history is more promising in areas of high intensity 
fire regime. However, in mixed- and low-severity fire 
regimes stand age is not a reliable surrogate for time since 
last disturbance. In addition, in complex mountainous 
landscapes, fire regime is expected to vary substan-
tially based on topography, microclimate, barriers, and 
refugia, making the utility of stand age questionable as a 
surrogate for disturbance history. In many forested land-
scapes management history has had a major influence 
on the development of current vegetation. It is essential 
to obtain accurate maps of past management activities. 
Spatial databases describing management history should 
include the date, type, and perimeter of past manage-
ment activities. Most public land management agencies 
have reasonably complete and accurate records of this 
kind. The integrated research agenda outlined in the 
final section of this document describes steps to improve 
the sufficiency of each component of the empirical data 
that is the core of this modeling paradigm.

Gradient Modeling and Ecosystem  
Modeling on Grids

Linking multi-scale gradient modeling with gap 
dynamics models is the second major component of the 
integrated modeling effort. Once the range of environ-
mental hyperspace has been sampled, gradient models 
relating responses of interest (e.g., species distribution, 
growth, and establishment) to biophysical drivers and 
disturbance history can be built at multiple geographic 

scales. With sufficient sampling across gradient space, 
imputation can provide unbiased estimates across the 
landscape at a fine spatial resolution (Ohmann and 
Gregory 2002). Simultaneously, the gradient models 
can provide species-specific parameters for ecosystem 
dynamics models. Ecosystem dynamics models then 
can project plot-level vegetation on the sampled grid 
into the future, accounting for growth, mortality, and 
succession. These futured plot-level vegetation data 
then provide the training set to build gradient models 
for imputing future vegetation condition across the full 
landscape. This integration offers a means to extend 
non-equilibrium predictions across space and through 
time, wherein gradient models provide species response 
parameters, ecosystem models project future conditions 
on the sampled plots, and imputation provides spatial 
prediction of current and expected future vegetation 
composition and structure at a fine spatial scale (Figure 
13). Importantly, climate change can be incorporated 
directly in the gradient and ecosystem dynamics models 
(Figure 13). This integration facilitates prediction of 
expected changes in vegetation composition and struc-
ture across complex landscapes under changing climatic 
conditions at a fine spatial scale.

Linking Gradient, Ecosystem, and  
Landscape Models

The final component of the integration is the linkage 
of stochastic landscape-dynamics models with gradient 
models of vegetation response to biophysical condi-
tions and disturbance history. Multi-scale gradient 
modeling and imputation, linked to gap-phase ecosystem 
dynamics, can predict species distributions, growth, 
regeneration, succession, and fuels at a fine spatial scale 
and then can impute these variables with known error 
characteristics across large landscapes. However, neither 
approach is sufficient to address large-scale disturbance 
processes. Large-scale disturbances, such as wildfire 
and timber harvest, are the dominant proximate drivers 
of landscape-level vegetation dynamics in the western 
United States. However, they are not predictable based 
on the fine-scale relationships between vegetation and 
biophysical conditions at specific locations on the land-
scape, and thus beyond the scope of gradient and gap 
dynamics models. These disturbances are largely related 
to processes acting at much broader spatial and temporal 
scales. For example, timber harvest may be determined 
by a complex political and economic process that may 
or may not relate to the biophysical drivers and current 
vegetation condition of a given harvested stand. The 
size, frequency, and severity of wildfire is often related 
to extreme fire weather events within the constraints of 
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Figure 13. Integrating gap-phase ecosystem dynamics models with gradient modeling and simulation. We begin with a large 
sample of vegetation plots distributed across a landscape (A). Gradient models (B) are then used to quantify relationships 
between growth and mortality of trees by species and size by biophysical condition. Current vegetation and composition 
across the landscape are then mapped (C) with gradient imputation. The gap dynamics model (D) is used to project the future 
condition of vegetation (E) based on growth, mortality and succession in each of these plots. Gradient modeling (F) is then 
used to associate vegetation composition and structure with biophysical gradients, and gradient imputation (G) is used to infer 
expected composition and structure of vegetation across the full landscape. Changes in climate across time-steps (H) can be 
inserted into the ecosystem dynamics model and gradient model to project how changes in microclimate at each plot affects 
expected future patterns of vegetation in the imputed landscape.
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biophysical context, past disturbance history, and current 
vegetation and fuels. Fire is also spatially contagious. 
Thus the occurrence of fire at a given location at a given 
time is not predictable based on the biophysical and 
vegetational characteristics of that specific location.

As discussed in the landscape dynamics modeling 
section above, we believe that stochastic models that 
simulate area, frequency, shape, and intensity of wild-
fires under alternative climatic scenarios provide the 
most reliable means to project effects of changing 
climate regimes on wildfire. By linking these landscape-
level disturbance simulations with gradient modeling 
and gap-phase ecosystem modeling, it may be possible 
to obtain a broad integration of the processes that drive 
the relationships between forests, climate and fire, and 
the ability to produce expectations about the effects of 
future changes in climate and disturbance regime on 
forest ecosystems across space and through time.

The challenge lies in the fact that stochastic landscape 
dynamics models simulate patches, while ecosystem 
and gradient models predict vegetation composition 

and structure within stands. This disjunction in orga-
nizational level is the major challenge in uniting these 
models to predict the effects of altered climate and fire 
regimes on vegetation composition and structure across 
broad landscapes. It is essential to translate the patch-
dynamics predictions of stochastic landscape dynamics 
models back down to stand level vegetation and compo-
sition. As discussed in the integrated research agenda 
below, this may be accomplished by using appropriate 
transfer functions. The stochastic landscape models 
produce perimeters of disturbance polygons (e.g., timber 
harvest, insects, wildfire). Disturbance effects on vege-
tation can be inferred using empirically derived transfer 
functions, developed from large samples of plots across 
biophysical context and disturbance history, or appro-
priate submodels, such as FOFEM (Peterson and Ryan 
1986, http://fire.org). Through these transfer functions 
the local effects of broad-scale disturbance on vegeta-
tion composition and structure can be inferred. Figure 14 
illustrates the approach we suggest for integrating land-
scape, ecosystem, and gradient models.
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Figure 14. Integrating stochastic landscape dynamics with gradient and gap models. The approach is the same as outlined in 
Figure 13, with the addition of climate affects on fire regime (H), stochastic simulation of landscape disturbance, including fire 
and timber harvest (B), and transfer functions or submodels (C) to translate from the patch mosaic produced by the landscape 
model to vegetation composition and structure within stands. At each time-step the sequence of steps is:  (A) begin with a 
large sample of vegetation plots distributed across a landscape, (B) simulate disturbances with the landscape model, (C) 
infer effects of these disturbances on existing vegetation in sampled plots, (D) grow sampled plots with ecosystem dynamics 
model, (E) apply gradient models to predict vegetation composition, structure, and growth based on biophysical and distur-
bance factors, and (F) impute gradient models to produce spatially explicit predictions of vegetation composition and structure 
across the landscape. This imputed landscape is then the initial condition for the next time-step and the process continues 
iteratively. Changes in climate across time-steps (G) influences fire regime parameters (H), transfer functions (C), ecosystem 
dynamics models (D), biophysical gradient models (E), and imputation across the landscape (F), as described more fully in 
the integrated research agenda section below.
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Step 1—Multi-scale Gradient Modeling

Questions
What are the multi-scale relationships between topog-
raphy and microclimatic variability (e.g., temperature, 
humidity, soil moisture, and snow pack)?
How does microclimatic variability affect the distri-
bution of individual tree species, the composition of 
plant communities, growth at the species and commu-
nity levels, and regeneration?
To what extent is current vegetation prediction affect-
ed by disturbance history?
How do fine and coarse fuel loads and their rates of 
accumulation depend on energy, temperature, hu-
midity, water, snow-pack, soils, and topography in 
interaction with vegetation condition and age?
What is the relative importance of spatial dependence 
vs. non-spatial biophysical variables for predicting 
the response of individual tree species and the plant 
community?
What is the relative predictive power of coarser-scale 
predictors, such as DAYMET, PRISM, and MTCLIM, 
compared to plot-derived measurements of energy, 
temperature, humidity, water, snowpack, soils, and 
topography?
Can we successfully aggregate predictions from plot-
level measurements to the scale of coarser (DAYMET, 
etc.) grids?

Data
Plot-level measurements of topography, vegetation 
composition and structure, annual growth, microcli-
mate, seedling establishment, snow-water equivalent, 
and soils.
Topographical variables for each plot DEM include 
slope, aspect, elevation, profile curvature, tangent 
curvature, topographical wetness index, and others at 
a range of radii (approximately 100, 200…1,000 m), 
that spans the plausible range of influence of local to-
pography on microclimate and vegetation.
Disturbance history data such as fire perimeter and 
cutting history maps, plot level evidence of past fire 
dates and intensities, beetle infestations, and timber 
harvest.
A large sample of plots, distributed representatively 
across the full combination of biophysical gradients. 
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Existing re-measure plot grids should be utilized to 
gain the benefit of prior investment and data collec-
tion. FIA and related sample grids such as the National 
Vegetation Pilot provide sufficient replication and 
geographic coverage, and they are ideal as a base for 
these analyses. Plot structures should be augmented 
to better capture spatial autocorrelation factors criti-
cal to successful imputation.
We suggest developing these approaches on one or 
several pilot grids, e.g., the National Vegetation Pilot 
grid located in the Idaho Panhandle National Forests. 
These grids should be augmented to ensure that 
rare types and disturbance histories are adequately 
sampled.
The following climatological/ecological variables on 
each plot, weekly, monthly, seasonally, annually, for 
five years:

ambient temperature
solar radiation (incident, diffuse)
humidity
precipitation
snow pack
soil depth and texture

At the end of the five-year period vegetation condi-
tions on the plots should be remeasured, including 
measurement of annual increment of canopy domi-
nant trees, seedlings, and coarse and fine fuels.

Analysis
Gradient modeling appropriate for identifying driv-
er-response relationships (Table 1) for example CCA, 
GLM, GAM.
A combination of multiple scale variables, partial 
bivariate scaling (Thompson and McGarigal 2002), 
and hierarchical variance partitioning (Cushman and 
McGarigal 2003) to optimize scaling relationships 
across independent variables and incorporate the in-
fluence of spatial dependence.
Data splitting or Monte Carlo resampling methods to 
evaluate the predictive power of the models, and for-
mal accuracy assessment involving ROC, Kappa, and 
other appropriate tests.

Expected products
Multi-scale gradient models predicting microclimate 
from topographical data.
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An Integrated Research Agenda
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Multi-scale gradient models predicting species occur-
rence, growth and regeneration, forest structure, and 
fuels.

Importance
These models in themselves will be useful to managers 
by providing quantitative predictions of relationships 
between biophysical gradients and the responses of 
forest ecosystems.
Gradient models are the basis for gradient imputa-
tion, in which the expected condition of vegetation is 
mapped at a fine spatial resolution across landscapes.
Gradient models will provide species-specific param-
eters for ecosystem dynamics models. Specifically, 
they will provide growth, mortality, and regeneration 
curves for each species across each dimension of the 
biophysical niche.

2.

1.

2.

3.

Figure 15. Gradient modeling produces statistical models of relationships between species distributions, community structure, 
growth, and other dependent variables and gradients of biophysical driving variables and disturbance history. These gradient 
models are non-spatial and limited to the single instance in time at which their data was gathered.  Temporal factors such 
as disturbance history are included as explanatory variables.  These are reasonable time-proxies, giving gradient models 
temporal depth looking backward in time, but with limited ability to project change into the future. Thus, looking forward in 
time, the gradient method produces predictions that have zero dimension in the Time-by-Space scale space (a point in the 
two-dimensional space on the left).
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Step 2—Gradient Imputation

Questions
What is the spatial structure of microclimatic gradi-
ents across complex landscapes?
What is the spatial pattern of vegetation composition 
and structure, growth, and regeneration across com-
plex landscapes?
What is the accuracy of these imputed maps of mi-
croclimate and forest structure for each dependent 
variable?

Data
Multi-scale data derived from DEM including slope, 
aspect, elevation, profile curvature, tangent curvature, 
topographical wetness index, and others at a range of 
radii. These will be produced by moving window al-
gorithms for each variable at the same radii as used 
in Step 1.
Remotely sensed data and GIS data:

Spectral data from TM imagery and, ideally, recent 
images from spring and summer.
Spectral data from Quickbird if available and NAIP 
color imagery. These provide much higher spatial 
resolution than TM imagery, which could be critical 
in producing powerful imputation models.
GIS layers showing stand histories, past distur-
bances, soil, geology, and hydrology.

Analysis
Gradient imputation to derive expected values for 
each dependent variable at each location in the land-
scape based on the multi-scale gradient models. The 
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models used for imputation will include both the 
biophysical driving variables used in Step 1 and the 
synoptic scale GIS and remote sensing variables col-
lected for this Step, including disturbance history.
The imputation methods will include gradient nearest 
neighbor and k-nearest neighbor for canonical ordi-
nation, or analogous methods for GLM and GAM.
Quantify spatial patterns of each dependent variable 
across the landscape using landscape pattern analysis 
software such as FRAGSTATS.

Expected products
Predicted values of each dependent variable mapped 
across complex landscapes.
These variables will include microclimate and veg-
etation. Predicted microclimate variables include 
growing degree days, spring snow-water equiva-
lent, expected temperature, and soil moisture regime. 
Predicted vegetation variables will include occurrence 
probability and basal area by tree species, stand age, 
canopy closure, cover by shrub species, and coarse 
and fine fuels.

Importance
These spatially explicit, fine-scale, broad-extent pre-
dictions of forest composition, structure, growth, and 
regeneration will provide managers more detail about 
the condition of forest resources across complex land-
scapes than has been possible in the past.
Such information is essential to quantify the site-lev-
el and cumulative effects of management actions and 
natural disturbances.

2.

3.

1.
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2.

Figure 16. Gradient models predict the value of a dependent variable as a function of n-dimensional environmental data. 
These models are multi-scale and multi-dimensional in ecological space (Figure 15). Gradient imputation links the model in 
ecological space to the structure of biophysical gradients across the landscape, thereby extending the gradient approach in 
the spatial dimension. Output maps provide quantitative estimates of the distribution of each variable across the landscape, 
providing spatially explicit information about resource conditions at multiple spatial scales.
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Step 3—Linking ecosystem dynamics to 
gradient imputation

Questions
How can parameters for stand-level, plant-based 
ecosystem dynamics models (growth, mortality, re-
generation, competition, soil, climate) be developed 
using multi-scale gradient models?
What are the initial conditions for each cell on com-
plex landscapes?
How reliably can we integrate predictions of future 
vegetation on plots with gradient imputation to pre-
dict future vegetation across complex landscapes?
How will altered climate affect the response of veg-
etation across the simulated landscape?

Data
Initial vegetation condition among sampled plots.
Initial microclimate and biophysical characteristics of 
each plot.
Empirical models of growth, death, and regeneration 
responses by species, age, and competitive position, 
across biophysical gradient space. This is provided by 
Step 1.
Empirical models of microclimate across biophysical 
gradient space. This is provided by Step 1.
Expected initial condition of cell across the simulat-
ed landscape, in terms of species composition, age, 
biophysical context, and microclimate, provided from 
Step 2.

Analysis
Use gradient models of growth, mortality, and re-
generation by species, age, and competitive position, 
across biophysical gradient space to quantify response 
functions in a forest dynamics model, such as FM.
Use imputation results from Step 2 to provide the bio-
physical context and microclimate for each cell across 
the landscape.
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Simulate changes in forest composition and structure 
in sampled plots under an equilibrium climate.
Simulate changes in forest composition and struc-
ture under four alternative climate change scenarios:  
1) warmer/wetter, 2) warmer/drier, 3) colder/wetter, 
4) colder/drier.
Use the results of 3 and 4 as input into gradient models 
to produce imputed expectations of the composition 
and structure of vegetation across the full landscape 
under each scenario.
Quantify expected changes in vegetation composi-
tion and structure under current and altered climate 
regimes in the absence of exogenous disturbance. 
Quantify changes in the spatial configuration of the 
vegetation mosaic using landscape pattern analysis 
tools such as FRAGSTATS.

Expected products
Predictions of future vegetation on measured plots 
accounting for succession and climatic change.
Prediction of future vegetation across complex 
landscapes under alternative climate regimes in the 
absence of disturbance.

Importance
The forest dynamics model will explicitly address 
nonequilibrium dynamics of existing vegetation due 
to succession and interspecific interactions.
The linkage of the forest dynamics model with gra-
dient imputation will allow projection of growth, 
mortality, and succession across landscapes at fine 
spatial scale.
Simulation under current and altered climate regimes 
will provide an estimate of impact possible from al-
tered climate due to autogenous community-level 
processes.
Mapping expected future fine-scale vegetation across 
complex landscapes will provide managers with im-
proved information about expected condition of forest 
resources in the coming decades.

3.

4.

5.

6.

1.

2.

1.

2.

3.
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Step 4—Linking landscape dynamics 
simulation to ecosystem and  

gradient models

4a implementing alternative disturbance  
regimes in a landscape dynamics model

Questions
What is the relationship between climate, weather, 
microclimate, vegetation, topography, and fire regime 
in terms of frequency, size, and severity of fires?
How do insect outbreaks and expected future land use 
confound these relationships?
How can these relationships be translated into input 
for landscape dynamics models such that uncertain-
ties and error propagation are minimized?
How will expected fire regimes, management, and 
insect outbreaks under different climate affect forest 
ecosystems on complex landscapes?

Data
Predictive models of the responses of fire regimes to 
climate.
Extent and pattern of expected land use change.
Method for estimating insect disturbance (quantita-
tive or heuristic).
Initial vegetation conditions (imputed from gradient 
models) and ecosystem model outputs at appropriate 
time-steps.

Analysis
Use a landscape dynamics simulation model, such as 
RMLands, to simulate current and alternative distur-
bance regimes.
Define current disturbance regime based on frequen-
cy, extent, pattern, and severity of each disturbance 
type by biophysical context.
Define alternative disturbance regimes based on ex-
pected changes to frequency, extent, severity, and 
pattern of each disturbance type across biophysical 
gradients.
Alternative scenarios should include the warm/
wet, warm/dry, cold/wet, cold/dry scenarios used in 
Step 3.

1.

2.

3.

4.

1.

2.
3.

4.

1.

2.

3.

4.

Apply estimated parameters of disturbance regimes 
to the landscape dynamics simulation model for cur-
rent and alternative scenarios.
Initialize each scenario with current vegetation and 
biophysical conditions.
Simulate each scenario with multiple runs (minimum 
of 100 over 500+ years), at a relatively short time-
step (5-20 years).
Characterize change in landscape pattern of cover 
types and successional stages under each scenario 
using landscape pattern analysis software such as 
FRAGSTATS and multivariate landscape trajectory 
analysis (Cushman and McGarigal 2007, in press).

Expected products
Quantification of range of variation in patch mosaic 
consisting of cover types and successional stages un-
der the current climate.
Range of variation of vegetation mosaic under alter-
native future climates.
Predicted effects of altered disturbance regimes on 
the area and configuration of cover types and succes-
sional stages, enabling managers to infer the effects 
of alternative management at the stand level.

Importance
Information about the range of variation of cover type 
and successional stage mosaic under current climatic 
conditions will provide critical information for eval-
uating the current condition with respect to historic 
ranges and desired future conditions.
Information about expected ranges of variation of 
cover types and successional stages under possible 
future climatic regimes will provide managers criti-
cal information about the possible extent and nature 
of changes in forest ecosystems resulting from altered 
climate and disturbance regimes.
This information will enable managers to anticipate 
changes in disturbance regimes and to take proactive 
measures to appropriately manage resources under 
changing ecological conditions.

5.

6.

7.

8.

1.

2.

3.

1.

2.

3.
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Figure 18. Stochastic landscape simulation models provide a means to simulate how disturbance regimes affect the area and 
configuration of cover types and successional stages across complex landscapes and through time. The predictions are 
probabilistic and patch-based. Thus although they explicitly model broad-scale disturbance, they do so with different entities 
(patches instead of organisms) than the ecosystem and gradient models. A significant remaining challenge is to link patch 
level predictions of fire size, shape, and severity with the responses of organisms across complex biophysical gradients.
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4b linking extent, frequency, and severity of 
fires to vegetation response at a fine spatial 
scale, continuously across the landscape

Questions
What are the relationships between type, extent, fre-
quency, and severity of disturbance and fine-scale 
vegetation composition and structure across broad 
landscapes?
What are the uncertainties in predicting site-level 
changes in vegetation composition, structure, growth, 
mortality, and regeneration from the output of patch-
based landscape dynamics models?
Does the integration of gradient models, ecosystem 
dynamic models, and landscape disturbance models 
improve our ability to predict the effects of changing 
biophysical conditions and disturbance regimes on 
forest vegetation, at a fine-spatial scale, across large 
spatial extents, and through time?

Data
Empirical measurements of fire impacts on vegeta-
tion. Requires measurement of vegetation response 
on a large number of fires of varying age, size, and 
severity across biophysical gradients.
Requires a large and representative sample of remea-
sure plots before and after disturbance within the 
perimeter of each fire.
These plots must cover the full combination of bio-
physical gradients and disturbance size, severity, and 
age in order to derive robust models.
A large investment to collect samples prior to fires, 
to populate the landscape with “pre-treatment” 
measurements.

1.

2.

3.

1.

2.

3.

4.

A large investment in post-fire remeasurements on 
these permanent plots to quantify fire impacts in the 
context of initial vegetation condition, biophysical 
context, and disturbance characteristics.

Analysis
Use gradient modeling to infer relationships between 
species response and type, size, intensity, biophysical 
context, and time since fire.
Apply these models to predict effects of simulated fires 
on vegetation condition across complex landscapes.
Predict post-fire vegetation response and recovery. 
This is done for each cell post-fire in the succeeding 
time-step. Within scenarios, this provides expect-
ed response of fine-scale vegetation across the full 
landscape to one realization of a disturbance regime. 
Across scenarios, this provides aggregate statistics 
of vegetation response to altered climate and fire 
regime.

Expected products
Spatially explicit predictions of expected future veg-
etation across complex landscapes under alternative 
climatic and disturbance regimes.

Importance
Effectively translating from the patch-mosaic dynam-
ics of landscape simulation models back to fine-scale 
vegetation dynamics is the key to integrating biophys-
ical modeling of individualistic vegetation response 
with large-scale disturbances.
This integration is essential if we are to successfully 
understand and predict the effects of climate change 
and disturbance regime change on forest ecosystems.

5.

1.

2.

3.

1.

1.

2.
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The response of forest ecosystems and fire regimes to 
global climate change will depend on factors at multiple 
scales and complex interactions among climate, fire, 
and vegetation. Altered fire regimes may have larger 
impacts on species distribution, migration, substitu-
tion, and extinction than the direct effects of climate 
change itself (Weber and Flannigan 1997, McKenzie 
and others 2004). An integrated approach is needed that 
addresses the nonequilibrium and often discontinuous 
dynamics of mechanisms and responses at biologi-
cally meaningful scales, including the critical scale of 
direct interactions between organisms and the environ-
ment. Our agenda links multi-scale gradient modeling, 
ecosystem dynamics modeling, and landscape simula-
tion, to predict the changes to forest ecosystems from 
a changing biophysical environment and disturbance 
regimes.

Complete model integration brings us back full-
cycle to the relationships between forest vegetation 
and biophysical gradients. Without a linkage to fine-
scale vegetation and the biophysical limiting factors 
that govern its response, landscape disturbance models 
cannot reliably predict changes in species distributions, 

community structure, stand structure, and other critical 
attributes of forest ecosystems. Conversely, without 
addressing landscape dynamics, predictions of relation-
ships between biophysical limiting factors and vegetation 
are confounded by disturbance. Wildfire is likely to be 
the proximate cause of ecosystem change in the context 
of climate change, and meaningful understanding must 
involve linking vegetation response to biophysical gradi-
ents with the effects of large-scale disturbance.

Synthesis of existing data sets will be helpful in guiding 
this effort but will not be sufficient. Successful integra-
tion of forest ecosystem dynamics, climate change, and 
disturbance regimes will require investment in sampling 
efforts to gather empirical data on species distributions, 
growth, regeneration, and fire histories across broad 
scales and over extensive biophysical gradients. As the 
effort will necessarily be large and involve integration 
of several major fields of research, it will also require 
collaboration among many partners. No one scien-
tist, institution, or research discipline has the expertise 
required for this integration. Broad and magnanimous 
collaboration will be essential.

Conclusion
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