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Abstract

This paper analytically studies the performance of a synchronous conserwtive par-

allel discrete-event simulation protocol. The class of simulation models considered are

oriented around a physical domain, and possess a limited ability to predict future be-

havior. Using a stochastic model we show that as the volume of simulation activity
in the model increases relative to a fixed architecture, the complexity of the average

per-event overhead due to synchronization, event list manipulation, lookahead calcu-

lations, and processor idle time approaches the complexity of the average per-event
overhead of a serial simulation. The method is therefore within a constant factor of

optimal. Our analysis demonstrates that on large problems--those for which parallel

processing is ideally suited--there is often enough parallel workload so that processors

are not usually idle. We also demonstrate the viability of the method empirically,

showing how good performance is achieved on large problems using a thirty-two node

Intel iPSC/2 distributed memory multiprocessor.

*Supported in part by the Virginia Center for Innovative Technology, by NASA grants NAG-I-060 and
NAS1-18605, and NSF grant ASC 8819393
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1 Introduction

The problem of parallelizing discrete-event simulations has received a great deal of attention

in the last several years. Simulations pose unique synchronization constraints due to their

underlying sense of time. When the simulation model can be simultaneously changed by

different processors, actions by one processor can affect actions by another. One must not

simulate any element of the model too far ahead of any other in simulation time, to avoid the

risk of having its logical past affected. Alternately, one must be prepared to fix the logical

past of any element determined to have been simulated too far.

Two schools of thought have emerged concerning synchronization, The conservative

school [5], [13], [23], [24] employs methods which prevent any processor from simulating

beyond a point at which another processor might affect it. These synchronization points

need to be re-established periodically to allow the simulation to progress. Early efforts

focussed on finding protocols which were either free from deadlock, or which detected and

corrected deadlock [17]. The optimistic school [7] allows a processor to simulate as far forward

in time as it wants, without regard for the risk of having its simulation past affected. If its

past is changed (due to interaction with a processor farther behind in simulation time) it

must then be able to "rollback" in time at least that far, and must cancel any erroneous

actions it has taken in its false future.

Conservative protocols are sometimes faulted for leaving processors idle, due to overly

pessimistic synchronization assumptions. It is almost always true that individual model

elements are blocked because of pessimistic synchronization; the conclusion that processors

tend to be blocked requires the assumption that all model elements assigned to a processor

tend to be blocked simultaneously, or that each processor has only one model element. The

latter assumption pervades many performance studies, and is unrealistic for fined-grained

simulation models executed on coarser grained multiprocessors. Intuition suggests that if

there are many model elements assigned to each processor, then it is unlikely that all model

elements on a processor will be blocked. Given sufficient workload, a properly designed

conservative method should not leave processors idle, because there is so much work to do.

While some model elements are blocked due to synchronization concerns, other elements,

with high probability, are not.

It is natural to ask how much performance degradation due to blocking a conservative

method suffers. We answer that question, by analyzing a simple conservative synchronization

method. The method assumes the ability to pre-sample activity duration times[20], and

assumes that any queueing discipline used is non-preemptive. The protocol itself is quite

simple. As applied to a queueing network it works as follows. First, whenever a job enters

service, the queue to which the job will be routed is immediately notified of that arrival

(sometime in the future), and the receiving queue computes a service time for the new arrival.

These two actions constitute lookahead, a concept which is key to the protocol's success. Now

imagine that all events with time-stamps less than t have already been processed and that

the processors are globally synchronized. For each queue we determine the time-stamp of the



next job it would route (excluding one in service) if no further arrivals occur at that queue.

The processors cooperatively compute the minimum such time, say _(t). We will show that

all further messages to be sent in the simulation have time-stamps at least as large as 8(t).

Consequently a processor may evaluate, in parallel with all other processors, all of its events

with time-stamps less than 6(t). Having done so, the processors synchronize globally, and

repeat the process. The interval [t, 3(t)) is called a-window, and _(t) - t is its width.

We analyze the performance of the protocol by first deriving an approximated lower bound

on the equilibrium mean window width. We then multiply this width by the equilibrium rate

at which the simulation generates events. The resulting product is an approximated-lower

bound on the the average number of events that are processed within a window. We then

identify conditions under which the average number of events processed in a window increases

without bound as the system simulation event generation rate increases. Next we analyze the

synchronization, idle time, lookahead calculation, and event-list overheads of the protocol as

a function of T, events in the system at a time. The average overhead per processed event is

shown to be O(f(T)), where f(T) is the complexity of the average per-event overhead in a

optimized serial simulation. Therefore the protocol's asymptotic performance (as T _ c_)

is within a constant factor of optimal. Finally, we demonstrate the viability of the protocol

empirically. A parallel simulation system based on the protocol has been implemented on

a thirty-two node Intel iPSC/2 distributed memory multiprocessor[2]. Processor efficiencies

in the range of 60% - 90% are reported for several different large simulation models.

It is important to remember that our analysis concerns average case performance based

on a general stochastic model. Specific problem examples can be constructed to ensure that

the protocol essentially executes serially, while another can execute many things in parallel.

We believe that such examples are somewhat artificial and do not shed a great deal of light

on how performance will behave over a wide range Of problems. Our intention is to study

the average case performance on a model of typical simulation problems.

This paper makes two basic Contributions. One is to develop a new approach for the

analysis of parallel discrete-event simulations. The second is a demonstration that many

large simulation models having nmch concurrent activity can be effectively simulated in

parallel using a simple conservative protocol.

This paper is organized as follows. §2 gives some background for this work. §3 describes

the model of discrete-event simulations we use in our protocol descriptio n and analysis, and

then introduces the protocol. §4 derives an approximated lower bound on tlie average number

of events processed in a window. §5 determines the complexity of the average total overhead

per event suffered by using the protocol. §6 report-s o_the :performance of the protocol on

several different simulation models. §7 gives our conclusions.
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2 Background

Our protocol is similar to others recently proposed [1], [4], [131, [14], [28]. Unlike earlier

asynchronous protocols, these synchronously move a window across simulation time, roughly

as follows. Let floor be the lower edge of the window. This means that all events with

time-stamps less than floor have already been processed. The processors then cooperatively

determine the upper window edge, ceiling. This value is chosen in such a way that all events

within [floor, ceiling) can safely be processed in parallel, ceiling becomes floor for the next

window, and so on.

The major question with synchronous conservative protocols is whether windows small

enough to prevent dependencies between window events admit enough such events to keep

all the processors busy. Lubachevsky was the first to answer this question [14], by deriving

a lower bound on the number of events processed within a window defined by his method.

Using this bound and some assumptions concerning event density (in simulation time), he

shows that the performance of his method scales up as the problem size and number of

processors are simultaneously increased, ttowever, his results are not quantitative, although

they might have been so developed. Our analysis is different, in that we define a model

from which event densities follow naturally, and we quantify the average number of events

processed in a window. Ours is an average case analysis, while Lubachevsky's is a worst

case analysis. Also, Lubachevsky's analysis hinges on the assumption of a non-zero mini-

mal propagation delay, while ours does not. We do show that minimum service times can

dramatically improve the average number of events processed each window.

The protocol we study is an application of the one described by Chandy and Sherman [4]

to a more restricted problem domain. Like Lubachevsky's method, they require periodic

global synchronization among processors. Each window their protocol computes the min-

imum time-stamp among all "conditional" events, and then processes all "unconditional"

events with smaller time-stamps. In addition, their technique incorporates the conversion of

"conditional" events into "unconditional" events, as a function of messages exchanged in the

simulation. Such conversion is highly application dependent. The most important difference

between our protocol and the general conditional-event approach lies in the specificity of

our conversion of conditional events into unconditional events, in a way that requires lit-

tle model-specific information. Furthermore, our protocol is stated within the context of a

model closer to those used by simulation practitioners than is the model used to describe

the conditional-event approach.

Our analysis of lookahead is related to that developed by Lin and Lazowska in [10], and

by Wagner and Lazowska in [30]. Their work analyzes the ability of different queue types

to predict future behavior, and focuses on lookahead at a single queue. Our analysis is of a

much simpler lookahead scheme, but analyzed over the entire simulation. The protocol we

describe can be easily adapted to accommodate these more complex techniques for computing

Iookahead. We have also analyzed a different class of simulations than the one studied

here, on massively parallel architectures[19]. The sensitivity of performance to lookahead is
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quantified, upper bounds on optimal and optimistic performance are derived, as is a lower

bound on the performance of the same protocol we study in this paper.

Some analysis exists of the optimistic "Time Warp" method of synchronization. The ear-

liest analyses concerned detailed stochastic models of two processor systems [9, 18]. These

models include overhead costs and permit heterogeneous processors. Most other studies of

Time Warp tend to assumenegligible state-saving and rollback costs. For example, Lin and

Lazowska have shown that if Time Warp has no state-saving or rollback costs, and if "cor-

rect" computations are never rolled back, then Time Warp achieves optimality [11]. This is

intuitive, because Time Warp aggressively searches for the simulation's critical path--if it is

able to do so without cost, its performance must be optimal. Other analyses highlight the

fact that TimeWarp can "guess righC wh_le conservative methods'must block. Lipton and

Mizell have shown that there is a certain asymmetry between optimistic and conservative

methods: while it is possible for an optimistic method to arbitrarily outperform a conserva-

tive method, the converse is not true [12]. Their analysis explicitly includes overhead costs.

Madisetti, Walrand, and Messerschmitt [16] have developed a performance model which es-

timates the rate at which simulation time advances under an optimistic strategy such as

Time Warp. They model the behavior of the system as a Markov chain, and include the

cost of communication and of synchronization. Their analysis is exact for two processors,

and approximate for a general number of processors. Lubachevsky, Schwartz, and Weiss use

a sophisticated stochastic model to show how it is possible for Time Warp simulations to

thrash in periods of "cascading rollbacks"[15].

3 Model and Protocol

We now describe our model of discrete-event simulations more formally, and define the

synchronization protocol.

3.1 Model Assumptions

Consider a domain containing S sites, where activities occur. An activity (e.g., service

given to a job at a queue) begins, ends, and upon its completion enables (i'e. causes) other

activities. These causations are reported to the appropriate sites by way of completion

messages. Consequently, three distinct events are associated with each activity: enable,

begin, and complete. The enable event for a given activity can be different from the begin

event if the site imposes queueing. We permit a completion to cause more than one activity

in order to include simulation problems such as Petri-nets, where a single transition firing

may cause token arrivals at multiple Petri-net places. Thus, we assume that a complete

event at site Si causes an activity at each member of a random subset of other sites. All

enable events caused by a completion have the same time-stamp as the completion. An

activity is said to be occurring at time t if its associated begin event has a time:stamp no

greater than t, _and=_tS complete event has: time-stamp no less than t. :Each site maintains
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its own priority queue of events associated with activities enqueued or occurring at the site.

Each site also maintains its own simulation clock, which records the time-stamp on the last

event processed.

Under the assumptions of our model the enable and complete events are unconditional--.

once placed on the event list, no further activity in tile simulation will change them. begin

events may be conditional. For example, a begin event at time t might describe the future

placement of a particular job into service at a queue at time t. If before t another job with

higher priority arrives, that begin event may be removed from the event list.

Depending on the ability of the site, activities may occur there one at a time, or concur-

rently. We assume that either an unbounded number of activities may simultaneously occur

at a site, or that only one activity may occur at a time. In the former case, we say the site

has infinite servers. In the latter case, enabled activities may be enqueued before occurring.

The delay in simulation time between when an activity begins and ends is called its dura-

tion. We assume that a duration is strictly positive, but do not assume a minimal duration.

For the purposes of analysis we assume that the simulation model is ergodic, and that each

duration time comes from a distribution composed by adding a nonnegative constant to an

exponentially distributed random variable. Each site may have a unique distribution.

Our performance analysis rests on a number of assumptions about the simulation model

which are exploited by the protocol.

1. We assume that once an activity begins, the causation of further activities cannot affect

its completion time.

. We assume that the simulation state change due to an activity completion is very

local--the state change is implied by knowledge of which activity completed, which

activities are subsequently caused, and the time of the completion.

3. We assume that the activities caused by the completion of activity Aj can be reported

to their respective sites at the time that Aj begins.

4. We assume that a lower bound on the duration of an activity can be determined at

the time of the receipt of the completion message which causes the activity.

To illustrate these assumptions, consider a job J which at time s begins service at a non-

preemptive queue Ql, completes at time _, and is routed to Q2. Assumption 1 is satisfied

by the nature of Ql's queueing discipline. Assumption 2 is satisfied because the change in

model state due to this departure is completely characterized by knowledge of Q1, Q2, and

_. Assumption 3 is satisfied if the service discipline at Q1 is non-preemptive and the routing

is independent of the jobs enqueued at time _: in the simulation we can report the arrival

of J at time _ to Q2 concurrently with the entering of J into service at Q1, at time s. By

doing so, the processing required of J's completion event at _ does not include reporting

J's departure, but may include the recording of statistics which depend on all simulation

activity at Q1 (including arrivals) up to time _. Assumption 4 is satisfied if J's service time



at Q2 can be computed at the time that Q1 reports the arrival of J to Q_. This is possible

if the service time of every job at Q2 is drawn independently from the same probability

distribution.

This model describes a large number of common simulation models, and is related to

event graphs described in [26] and [27]. Many queueing networks are obviously captured.

Logic networks are described, with activities corresponding to logical module evaluations.

Here new activities are caused when a module output changes state. The movement and

interaction of objects in a domain can also be captured. One assumes no queueing at sites,

and models the passage of an object across some discrete region of the domain as an activity.

Lookahead plays a major role in our synehr0n]zation method and its analysis. L0okahead

exists and is exploited by assumptions 3 and 4 above.

Simulation workload is the event processing. This includes changing anticipated event

times as a result of newly caused activities, in changing simulation state variables, and in

gathering/recording statistics. We view event list management costs as inescapable overheads

associated with the processing of events.

Our protocol does not require a minimal duration time for its correctness. However,

performance is substantially enhanced if every duration time is bounded from below by

Dmin > 0. Equivalently, we can introduce a minimal time Drain delay between when-an

activity completes, and when activities it causes are enabled. We will use D_,_ throughout

our analysis, but may take it to be zero.

3.2 Protocol Definition

Next we define the synchronization protocol in terms of the model given in §3.1. Our only

architectural assumptions are that the simulation model is executed on a multiprocessor

having P processors; any processor can send a message (indirectly, if needed) to any other

processor, and the processors can synchronize globally.

One important aspect of our protocol is the "pre-sending" of completion messages. Let

Aj be some activity whose begin event has time-stamp s. Let _ be A/s completion time.

Under our protocol Aj's site must send completion messages to all sites where activities

caused by Aj's completion will occur, at the time Aj begins. Observe that even though the

simulation time at Aj's site is s, these completion messages are time-stamped with time

> s. A site which receives such a notification inserts an enable event with time-stamp

into its event list (a non-queueing site may directly ifi_ert-a begin event with time _); it also

selects a duration time (or a lower bound on it) for the newly caused activity.

Suppose the processors have globally synchronized, and let t be the minimum time-stamp

among events at all sites. Each site Si can determine a lower bound ,Si(t) on the earliest

completion time of any of its pending (i.e., as yet not begun) activities, assuming no further

enable events are received. We call this the site's lookahead bound. For example, consider a

site Si with queueing. There are three cases to consider.

Case i: Si's event list is void of enable events. In this case we define (Si(t) = c_.
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Case 2: No activity is occurring at t, and S_ 's event list contains enable events. Let u be

the earliest enable time among these, and define 5i(t) to be the completion time of the

activity enabled at u.

Case 3: Some activity is occurring at t, and Si's event list contains enable events. Define

5_(t) to be the completion time of the next enabled activity to receive service, assuming

that no further enable events will be inserted into the event list.

If S_ has infinite servers, only two cases arise. If there are no begin events in Si's event

list, then define 5_(t) = c_. If there are begin events in Si's event list, define 5i(t) to be the

minimum completion time among these.

Finally, define

5(t) = min {bi(t)}.
all sites St

The protocol is very simple. Define Wl = 0, and proceed as follows.

1. Given wn, the processors cooperatively determine 5(wn).

2. Each site may be simulated in parallel with all others until the time of the event witL

least time-stamp at that site is as large as 5(w,_). The processing of any begin event

in this interval must include pre-sending the associated completion messages.

3. Sites receive the messages sent during the processing of [w,_,5(w,_)), select duration

times for the associated caused activities, and insert events into their event lists.

4. n = n + 1. Goto step 1.

The obvious question to ask of this protocol is whether the sites can safely process all

events within a window. The protocol is safe if, once the window is established, no further

messages with time-stamps less than the upper edge of the window will ever be sent. The

following theorem establishes this fact.

Theorem 3.1 Let [wn, 6(wn)) be a window established by the protocol. Then every comple-

tion message sent during the processing of [wn, 5(w,_)) has a time-stamp at least as large as

6(w.).

Proofi Completion messages are pre-sent by the processing of begin events. Let bo,.. •, bk

be the times of all begin events in [w,_,5(w,_)), in increasing order. We use induction to

show that for i = 0,...,k, the completion messages associated with the begin event at

time bi have time-stamps at least as large as 5(wn). For the base case consider b0, and let

Si be the associated site. Si computes 5i(wn) to be the minimum time-stamp on the next

message it sends, provided no further messages are received at S;. By construction Si will

not receive any further messages with time-stamps less than b0, therefore the decision to
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begin the activity at b0 was correctly fore-seen during the computation of 5,(w,_), implying

that the completion time of the activity beginning at b0 is no smaller than 6i(wn) , and hence

is no smaller than 3(w,). This establishes the base of the induction. For the induction

step suppose that the completion times of the activities begun at times bo,. • •, bj-1 are all

no smaller than 5(wn). Consider the activity begun at time bj, and let Si be its site. As

a consequence of the induction hypothesis, during the processing of [w_, 5(wn)) Si cannot

receive any messages with time-stamps less than bj. Consequently, the decision to begin an

activity at time bj was correctly fore-seen during the computation of 6i(wn). The completion

time of theactlvity beginning at bj is thus no smaller than 5.i(w,_), and so is no smaller than

5(wn). This completes the induction.
[]

Under the assumption of non-zero duration times, it will always be true that w,_ < 6(w,_).

Consequently, simulation time advances each window (even if no events occur in the window),

and deadlock never occurs.

3.3 Example

An example helps to illustrate the protocol's mechanism. Consider a system with sites S1 and

$2. Site $1 permits an unbounded number of activities to occur simultaneously, while site

$2 imposes queueing. The system moves objects between sites. Duration times are random.

When an object completes its duration it either disappears, moves to another (possibly the

same) site, or splits into a number of objects that move. $2 uses Last-Come-First-Serve

queueing.

Let w,_ = 100, and imagine that objects O1 and 02 are present at SI, with scheduled

completion times of 100 and 103. Object 03 is in service at 5'2, and will complete at time

101. Object 04 is enqueued at 5'2, and will eventually receive 4 units of service.

The completion of O1 at time i00 sends O_ back to col, where it will receive another 8

units of service; the completion of 02 at time 103 sends 02 to $2 where it will eventually

receive 6 units of service; O2's completion at time 103 also creates a new object O_ which

is sent to $1, where it receives 4 units of service. At site 5'2, O3 completes at time 101,

and then remains at $2, where it will receive another 5 units of service. Observe that the

messages reporting the completions of O1, 02, and O3 have already been sent, and the "next"

durations of those objects have already been chosen.

This Scenario is Summarized in figure 1, along with the contents of $1 and S2's event lists

as observed at time 100. The event lists reflect the practice of pre-sending object arrival

noticesl S_ determines its iookahead bound 51(100) by finding the minimum completion

time among all objects it knows will arrive at or after time 100. O2 arrives (again) at time

100 and completes at 108. O5 arrives at 103 and completes at 107, making 51(100) = 107.

$2 determines 52(100) by identifying the next object to complete service that isn't already in

service. Because $2 is LCFS, the arrival of O3 at time 101 causes O3 to receive service before

04. 52(100) is 106, so that 6(100) = 106. S_ and $2 are thus free to simulate all events with

8

!

-=



Objects 'at time 100

Object Site Arrives Duration Completes Routed

01 S1 ? ? 100 $1

O1 S1 100 8 108 ?

02 $1 ? ? 103 $2

02 $2 103 6 ? ?

Os S_ 103 4 107 ?

03 $2 ? ? i01 $2

0 3 S 2 101 5 106 ?

04 $2 "7 4 ? ?

Comments

Occurring at time 100

Caused by completion of self

Occurring at time 100

Caused by completion of self

Caused by 02 at $1

Occurring at time 100

Highest priority activity at 101

Lower priority at 101

_f(100) = 106

Event Lists

$1 Event List at time 100 $2 Event List at time 100

Event Time Event Time

O1 completes 100

O1 arrives 100

02 completes 103

Os arrives 103

4 events processed in [100,106)

03 completes 101

0 3 arrives 101

02 arrives 103

3 events processed in [100,106)

Figure 1: Example of Synchronous Protocol Operation

times no greater than 106, in parallel. Sx has four such events, S: has three (or four, if the

processing of the 03 arrival event at 101 creates a begin event at 101).

Arrival events (enable events) at $1 may also serve as begin events since no queueing is

imposed. Each site's processing of arrival events includes the decision of where to route the

object upon completion, and the generation of completion messages with the appropriate

time-stamp.

4 Analysis of Protocol

Our performance analysis derives an approximated lower bound on the mean window width,

then multiplies by the equilibrium event creation rate in order to bound the average number

of events created per window. By flow balance this bounds the average number of events

processed per window. We then consider the behavior of this average as a function of



simulation activity rate, and minimum duration time.

The analysis to follow uses results from the theory of stochastic order relations, and ma-

nipulates hazard rate functions. Readers unfamiliar with these tools should consult Ross [25];

the appendix quickly sketches the main ideas and results we use.

We are interested in the limiting value of the expected window width E[5(w,_) - w,_] as

n --* oo, supposing that the limit exists. As we will see, a window's width is comprised

of the minimum of a number of complicated random variables. Complications arise both

due to randomness in the model (e.g., random selection of sites where activities are caused

following a completion), and due to dependence of the random variables' distributions on the

past activity in the simulation. Our approach is to bound the mean window width from below

with the mean minimum of much simpler, and stochastically smaller, random variables. The

stochastically smaller variables are constructed by considering hazard rate functions. This is

a useful analytic trick which exploits the fact that the hazard rate function for the minimum

of a group of independent random variables is just the sum of their individual hazard rate
functions.

One step in the bounding argument is intuitive, but not rigorously justified. Therefore

one can only rigorously call our results approximate.

The analysis uses a slightly more formal model than we have yet described. The duration

time distribution for site Si is taken to be D_+exp{ILi}, where Di _> 0 is constant and exp{p_}

is exponential with mean _i = 1/1i. We let D_n be the minimum Di value among all sites.

The discussion of random variables, means, and hazard rates all concern the stochastic

portion of the duration times.

Our bounds depend on the manner in which a completing activity causes activities else-

where. To more precisely describe these effects, for every site Si let Reach(Si) be the set

of all sites where activities caused by a completion at S_ can occur. For convenience we

assume that the activities caused by a single completion are all at different sites. Activity

Aj completing at Si randomly chooses a subset Bj C_ Reach(Si), and causes one activity

at each site in Bj. We assume Bj is chosen independently of the duration values of the

caused activities. The distribution governing this choice is particular to Si; p(B,i) denotes
the probability that B C_ Reach(Si) is the selected set.

Let Aj be an activity occurring at site Si, and let B be the set of sites with activities

caused by Aj. We will be interested in the rate at which the first activity completes, among

all those caused by Aj. Towards this end, we focus on the stochastic portion of these activity

durations. The "rate" of the minimum stochastic portion is just As = _SjeB Aj (see §A.2).

The expected rate (with respect to the distribution of B) is defined by

BC_Reach( Si ) 3E B

= _ Pr{completion at Si causes an activity at Sj}Aj. (1)
s_ P_ach(sd

Pathological analytic difficulties are avoided by assuming that the simulation model al-
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ways has at least one activity occurring that causes other activities. This can be ensured,

for example, by adding a "clock" site that does nothing but process a single, periodically

self-causing activity.

Let .A(w,) be the random set of activities occurring at time wn. During most of the

analysis to follow we will condition on knowing that .A(w,_) is some fixed subset V. The

conditioning is undone later when we take an expectation with respect to the distribution

of .A(w,_ ).

The discussion to follow focuses on activities. To facilitate precise reference to the site

where a given activity occurs, we often use the notation S,(j) to describe the site at which

activity Aj occurs.

Consider the construction of the nth window. To compute _(w,_) we examine each site

to determine the time of the next message it will send, in the absence of receiving any

further messages. For a non-queueing site S_ this is the minimum completion time among all

activities with begin events in Si's event list. For each such activity there is another which

caused it, and which is occurring at time w,_. If Si is a queueing site, the activity Aj whose

completion defines Si's lookahead bound is either enqueued waiting for the completion of an

occurring activity at Si, or has its onable event sometime in the future. In the latter case we

know there must be another site with an activity which is occurring at time w,, and which

causes Aj. Therefore, every activity whose completion defines some lookahead bound can be

associated with an activity occurring at w_. Conversely, for every Aj E V we can associate

a set of sites Cj with activities caused by Aj, such that the completion time of each activity

Ak E Cj equals 8s(k)(w,_). Cj is obviously a subset of Bj, the set of all sites with activities

caused by Aj, so that the minimum completion time among all activities caused by Aj at

sites in Bj is no larger than the minimum taken over Cj.

We will want to distinguish queueing sites from non-queueing sites. We therefore define

the indicator coefficient 7i to have value 1 if site Si is a queueing site, and to have value 0 if

not.

For every Aj E V let Rj(wn) denote the residual duration time of Aj--the difference

between Aj's completion time and w_. For every A# E V at a queueing site Ss(j) define

Nj(w_) to be oo if 6s(j) = oc, otherwise it is the duration of the enqueued activity whose

completion time is _s(j)(w_). Let E_(w,_) be the enabling time of the activity defining Nj(w_).

Observe that this activity is sensitive to wn: if Aj was occurring at time w=-i it is possible

for a higher priority activity to be enabled between times w,_-i and wn, so that the activities

defining Nj(w__l) and Nj(w,_) may be different.

We define Nj(w,,) = oc if S,(j) is a non-queueing site. Regardless of whether S_(j) is a

queueing or non-queueing site we may say that the completion rate of N/(w_)'s stochastic

portion is %(j}_(j).

Again, let Bj be the set of sites with activities caused by Aj; for each Sk E Bj let Dk+Yj,k

be the duration of the activity at Sk caused by Aj. We define Aj's lookahead bound to be

the minimum completion time among (i) the activities caused by Aj, (ii) the next activity

to complete at Ss(j) if Ss(j) is non-queueing and receives no further enable events. Aj's

11



lookahead bound as measured at time w_ may be written as

Kj(w,) = w, + Rj(w,_) + min{max{O, Ej(w,)- Rj(w,_)} + Nj(w,_), min {Dk + Yj,k}}}.
Sk 6 C i

6(w,_) is the minimum lookahead bound among all activities Aj 6 V. We may therefore write

w. I .4(w.)= V] = E[ min {IQ(w=)}]
A 3 EV

_> E[ min {Rj(w, 0 +min{Nj(w,_), min
A) E V Sk 6 B i

{Dk + YZk}}}]

(2)

The expectation above is complicated by its dependence on the history of the synchronization

behavior up to time w,_. For example, suppose that activity Aj began in the (n - bj)th

window, for some bj > 0. The distribution of I'i_(w,) must be conditioned on the event

gj(w,_) that Kj(w,__c) > w,_-c+l for all 1 _< c < bj. Since K.i(w, 0 is largely comprised of

random variables that also comprise I'(j(wn_c) for each c, conditioning on gj(w,_) makes

each Kj(w,) probabilistically larger than it would be if each component random variable

had its original, unconditional distribution. The starting point for our bound is to build a

stochastically smaller replacement for each IQ(wn) by replacing each of Kj(wn)'s components

with a pristine unconditional random variable with the appropriate distribution.

We construct an "unconditioned" lookahead variable for each Aj as follows. Randomly

choose a subset U,(S) C_ Reach(Ss(j)) in accordance with the probability distribution {p(B, s(j)) },

and independently choose a duration time Dk + Xj,k for each Sk 6 b/4j ). Dk + X_,k will re-

place the actual corresponding duration time Dk + YZk. Randomly and independently choose

some value Ds(j) + Wj,s(j) from S4j)'s duration time distribution. If S,(j) is a non-queueing

site we take Wi,4j ) = oo. Os(j) q- Wj,s(j) will replace the actual Nj(wn). Let Zj, s(j) be an

independent exponential having the distribution of the stochastic portion of S_(j)'s duration

time. Zj,4j ) will replace Rj(w,O; note that the residual of an S4j ) duration time is always as

large as the residual of the duration time's stochastic portion.

The event gj(w,) gives us information that Kj(wn) is probabilistically larger than it

would be if its components-had their original distri-bu{ions. Therefore, intuition suggests

that the following inequality is true

_ min {Dk+Xj,_}}}].llm E[_5(w,)-w,_] > lim E[ min {Zj,s(j)+min{Ds(j)+l_Vj,.(j), sk 6u, o)n_oo n---*oo Aj 6 A(w.)

(a)
Note that the expectations involved in this assumption are not conditioned on A(w, 0 = V,

and that we only require the inequality to hold in the limit of n ---} ec. It seems exceedingly

difficult to formally establish this bound. Our analysis therefore proceeds by assuming its

validity.

Assumption 4.1 Inequality (3) is true.

12



We continue the analysis by placing stochastic lower bounds on variables comprising the

conditional (on A(w,_) = V) expectation

min {Dk + Xj,k}}}]. (4)
E[ min {Zj,s(j) 4. min{D4j ) + Wj, s(j), sk elg,(j)

A 3 EV

As a first step we note that

min {Dk + X.i,k} >_ min {Xj,k} + D_n. (5)
sk E u,O) sk E b¢_(,)

Next we put a stochastic lower bound on min{Xj,k]Sk E U,(j)}. This random variable is

complicated by the fact that Ue(j) is a random set. For any given set L/s(,) = Bi, the

minimum of IBi[ exponentials is itself an exponential, with rate As, = _]S, ES, Ak. Conse-

quently min{Xj,klSk E Us(j)} is a probabilistic mixture of exponentials--with probability

p(Bi,s(j)) it is an exponential with rate As,. Without loss of generality we may enumerate

all subsets Bi C Reach(S,(,)) in such a way that As, <_ As, whenever i < j. Given this or-

dering, Lemma A.1 establishes that an exponential Tj,s(j) whose rate is the "expected" rate

¢,(j) = _s, P(B,, s(j))AB (see expression (1)) is stochastically smaller than the minimum:

min {X/,k} >-st Tj,s(j).
sk E U,(j)

Applying inequalities (5) and (11) we determine that

min{ De(j) + Wi.4j ), min {Dk + XS,k } }

> min{D4j ) 4. Wj,e(j) , min {Xj,k} 4- Pmln}
-- Sk E/gs(j)

>_s, min{Pmln + Wj.s(j), Tj,4j ) 4- D_n}

= min{Wj,_(j),Tj,4j)} + Dmin. (6)

Since Wj,4j ) and Tj,4j ) are both exponential, their minimum is also exponential and has rate

_(j)As(j) 4- I/)s(j) (recall that %(j) = 0 and Wj,e(j) = oc if Se(j) is a non-queueing site). Let

Uj,4j ) be an exponential with rate %(j)A4j ) + es(j). Inequality (6) holds for every Aj C V;

furthermore, the lookahead random variable constructed for each Aj is independent of all

others. Since the addition and min operators are increasing it follows from (11) that the

expectation in (4) is bounded from below:

E[ min {Zj,s(j) 4- min{ De(j) 4- Wj.s(j), min {Ok + Xj, k} } }]
A 3 EV Sk El_so)

>_ E[ min {Zj,,(j) + Uj,4j )}] 4- Dimn. (7)
A, EV

We remove the conditioning on V by taking the expectation with respect to M(wn),

rain { nk + Xj,k } } }]
E[ rain {ZJ'4i) 4- min{D4J) 4- Wj'4J)' sk e u,(j)

>_ E[ min { Zj,e(j) + Uj,4y )}] + D_n.
a_ E A(_,,,)
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If A has the limiting distribution of A(wn) as n _ c_ (supposing it exists), then

min { Dk + Xj,k } }}]lim E[ min {ZJ'4J) + min{D4J) + Wj'4J)' sk • u,o)n-.-*oo AS E A(wn)

_> E[ min {Zj.4j ) + Uj,,(S)}] + Dmi.. (8)
A i •A

Our next task is to deal with the randomness of the set A.

Let the collection of site servers in the domain be enumerated as V1, V2,..., and define

v(j) to be the index of Vj's site. For each i = 1,2,...,S and j = 1,2,... let

wi -li[n-E[number of site S, aCtivitieS Occurring at time w,_], =

pj = lirnc¢ Pr{at time wn an activity is occurring at Vj},

and observe that

Wi = E PJ'

V_,v(j)=i

assuming that the expectations and limits exist. It is not obvious that wi should be identical

to the equilibrium expected number of activities occurring at Si; intuitively one expects it

to be close, because the number of windows in which a given activity is found occurring is

roughly proportional to the duration of the activity.

The expectation on the right-hand-side of (8) is taken with respect to a distribution of

random sets of activities found occurring at a window edge. One can equivalently view it as

an expectation taken with respect to a random set of servers found busy at a window edge.

Inequality (7) suggests we associate two exponentials with each server Vj: Zj and Uj (here

binding j to the server rather than to the activity). There is a one-to-one correspondence

between a random subset of servers, and a random subset H C_ {(Z1, U1), (Z2, U2),..., }.

Lemma A.2 was developed to deal with the situation at hand. Following its statement
we define

___,Pr{(Zj, Uj) e H}A.(i)(%(i)Av(j)+ g,.(j))
j=l

0¢9

j=l

S

i=l

The lemma's conclusion is that

E[ man + uj}] >(z_, us) • H

(9)

The left-hand-side of this inequality is identical to the right-hand-side of (8), except for the

inclusion 0f D_,. Assuming the validity of assumption 4.1 we may conclude that

(lo)lirn E[(_(w,_) - wn] _> Dn_n + 2_"

r
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In order to determine the averagenumber of eventsprocessedper window we needto
considerthe rate at which eventsaregeneratedby the simulation. Let o5i be the equilibrium

mean number of activities occurring at Si. There are two events associated with each activity

at a non-queueing site, begin and complete . Adding enable , there are three events

associated with an activity at a queueing site. We therefore define the variable ei to be 2 or

3 depending on whether Si is non-queueing or queueing, respectively.

An activity's duration at Si has mean ,kld) = 1/(D_ + _), so that the equilibrium event

creation rate is Asu, = _,isl ei&iA! a). By flow balance this is also the equilibrium event

completion rate. We can therefore multiply this rate times the lower bound on the mean

window width to bound the mean number of events processed in a window.

Theorem 4.2 Let
S

As , = ei ;A! d)
i=1

be the system event creation rate, and let

S

A = +
i----I

Then if assumption 4.1 is valid, the average number of events processed per window is at

least

[]

This theorem demonstrates how an existing minimal service time accelerates performance.

Given constant D_n > 0, the bound increases at least linearly as the total simulation event

rate increases. However, good performance is also possible when D_, = 0, as we will see.

The value of A is defined in terms of wl. We have no immediate cause for believing that

wi = a)i; nor is it clear that the two quantities should be widely different. It seems reasonable

then to take wi _ aSi as a first approximation. Doing so permits us to analytically estimate

A in some simple cases, and quantify the bound given by Theorem 4.2.

As pointed out by Wagner and Lazowska [30], interconnection topology plays an impor-

tant role in determining the performance one achieves with a queueing system. Network

bottlenecks limit the volume of simulation activity. This is reflected in Theorem 4.2. For

example, in a network where each site has one server, wl is approximately the server uti-

lization. A bottleneck site will have a very high utilization while those at other sites are

comparatively low. After a point, adding jobs to the network does not appreciably increase

the sum of server utilizations, hence the overall event rate does not appreciably increase. For

the same reason simulated queueing systems are constrained even if the throughput at each

site is equal. The overall system event rate is maximized when all site utilizations are one.

After a point, to increase simulation activity one needs to increase the size of the network.
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We can approximate the bound in Theorem 4.2 in some simple cases. Consider a model

where objects move throughout the domain. An object resides at a site for a fixed time Drain

plus an exponential time with mean l/A, and then moves to any other site, chosen uniformly

at random. Equilibrium flow balance equations are easily solved in this situation. Working

the details with K objects and D_n = 0, one discovers that at least _/_-I(-/2through events

are processed per window, on average. A relevant point is that the inter-site communication

topology is that of a fully connected graph. Such topologies are generally taken to be

extremely taxing on conservative synchronization methods, because the "next" event at a

site can come from anywhere. Nevertheless, a significant amount of work is performed each

window, at least when K is large. Figure 2 plots the analytically bounded and empirically

measured average number of events processed per window, as a function of log 2 K. The

empirical measurements represent the sample mean of ten long simulation runs. There was

very little variance between these runs. Figure 2 shows that if thousands of objects are in the

model, hundreds of events are processed each window. Since parallel processing techniques

are used primarily when serial processing times are too slow (or memories are too small),

we see that this result applies directly to situations of practical interest--large simulation

models on medium scale parallel architectures.

Performance is greatly enhanced when Dmln > 0. Figure 3 plots measurements of the

number of events per window for small models, having only 256 and 1024 objects. The same

measurement methodology as was described for Figure 2 is used here. The analytic bound is

not displayed, being indistinguishable from the measured performance when plotted on the

graph. Dmln is varied between 0 and/t = l/A, so that Dmln/l_ varies between 0 and 1. We

see that if a model has minimal duration times we can expect many more events per window

than if not. Note that the protocol does not need to know D_n, as it is already part of the

pre-sampled duration times. Dramatic performance improvement as one's ability to "look

ahead" increases has also been observed by Fujimoto [6].

Our confidence in the conclusions of Theorem 4.2 is increased by the fact that the approx-

imated lower bound did uniformly fall below measured performance. Similar results havc

been observed when comparing the measured and bounded performance on less homogeneous

simulation models.

5 The Cost of Conservative Synchronization

Next we consider the overheads involved in implementing this conservative protocol. First

we identify conditions under which the average number of events processed per window

will grow without bound as the system event creation rate grows without bound. Then

we show that as the number of events processed per window grows, our method's per-

event overhead due to synchronization, processor idle time, loo "l_head calculation, and evcnt

list manipulation becomes within a constant factor of average the per-event overhead of

performing the simulation serially.

L

_.n

16 z



Avg Events/Window
500-

45O

400

35O
o

3OO
o

25O

2O0
=

150
=

100

5o

o-"

7 9 o 1 12

Iog2(Number of Objects)

measured average

3 14

• analytic bound

Figure 2: Average events per window, as function of number of objects. Dml, = 0; durations

are homogeneous exponentials; no queueing; routing is uniformly random.

One way of increasing the system event creation rate Asu8 is to increase the "size" of the

model. For example, we increase the size of the moving objects simulation described earlier

by increasing the number of objects in the domain. We may also increase the number of

sites, although in this case it is not necessary. Theorem 4.2 shows how the average number

of events processed each window may increase as Asy, increases. Clearly, if D_n > 0 then

at least Asu_D_, events are processed each window on average. It is also possible for the

average number of events to increase without bound as Asus increases even when Dmin = 0.

For example, suppose there is a value a such that as the size of the simulation model is

increased the following bound is true for all sites Si:

_i_la) -

This condition is a formal statement that as the model size grows _bi can't get too large

relative to ,_i, and that any difference between wi and _i doesn't get too large. The first

condition will be satisfied if there exists )_m_x and R,n_x such that as the model size grows,

)q _< _m_ and IReach(Si)l <_ Rmax, for all i. The second condition ought to be satisfied
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Figure 3: Average events per window when Dml, > 0. Performance plotted as function of

D,_,,/lt, for 256 and 1024 objects.

if our intuition that wi _ _5i is correct. If the bound above holds, then as the model size

grows the inequality A _< aAsy+ will always hold. It follows that at least @rAsu+/(2_) events

are processed each window on average, a number that grows without bound as Asus grows
without bound.

As a point of comparison, we assume that a serial implementation uses the best known

event list management algorithm. If there are T total events in the system on average, we let

f(T) be the average complexity of an optimized serial event list algorithm. For example, there

is some evidence that a "calendar-queue" implementation has an average O(1) complexity

(i.e., f(T) = 1) on the hold model [3]. A number of other event list algorithms exhibiting

f_(log T) average complexity are also commonly used [8]. We assume that the serial event

list algorithm permits the deletion of a non-minimal element without affecting the overall

average complexity. This assumption is satisfied by the calendar queue implementation.

We make the reasonable assumption that as the simulation model size is increased, T
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grows at least as rapidly as S, i.e., T = fl(S).

Now consider a parallel simulation that uses our protocol. The requirement that comple-

tion notices be pre-sent may increase the average total number of events in event lists at a

time. This represents a factor of two increase, at most. In the complexity analysis to follow

we need not explicitly concern ourselves with this constant factor increase.

One overhead suffered in the parallel simulation is the cost of computing _i(w,_) for each

site Si. This value changes only when an event is inserted or deleted at Si. A queueing site

can recompute this value with O(1) cost whenever its event list changes. A non-queueing site

can organize the completion times of its pending activities in a priority queue using whatever

event list algorithm is employed by the optimized serial implementation. The minimum value

in the priority queue defines _i. The priority queue is modified only when the site's event

list is modified, at cost O(f(T)). A processor can organize the 5i values from each of its sites

into priority queue, enabling it to determine the minimum on-processor 5i value at least as

quickly as the optimized serial implementation finds its minimal element. Maintenance of

this priority queue costs O(f(S)) on average for each processed event. Once each processor

has determined its locally minimum 5i value, all processors may cooperatively compute the

global minimum in Csu,_ch time. Note that our assumption that P is fixed permits us to

ascribe a worst-case constant cost to this operation.

Another overhead is processor idle time. The protocol is punctuated with global synchro-

nizations, between which the processors execute in parallel. A processor with little workload

will spend a long time waiting for more heavily loaded processors to reach the synchro-

nization barrier. Suppose there are W events to process in a window. For the purposes of

analysis, assume that each event may be mapped to any processor, with equal probability 1.

Then the number of events assigned to a processor is a binomial B(W, 1/P) random variable.

The collection of workload random variables are not independent however, as we know they

must sum to W. However, it isn't difficult to construct a coupling[25] argument to show that

the expected maximum workload of this system must be smaller than the expected maxi-

mum workload of a system where each processor has an independent B(I¥, 1/P) workload.

The binomial distribution has an increasing hazard rate function [25](p.280); it is therefore

stochastically less variable than an exponential with the same mean [25](p.273), and hence

the expected maximum of P independent exponential random variables with mean W/P is

at least as large as the expected maxinmm of P independent B(W, l/P) random variables.

The expected maximum of the exponentials is approximately (W/P)ln(W/P). Assuming

each event takes the same amount of time to process, the average fraction of time a processor

is left idle is no greater than

1 (W/P) = 1 1
(W/P) InP InP"

This implies that the average overhead cost per event due to processor idleness is O(1). This

1This can't rigorously be true, since events at the same site are evaluated on the same processor. It is a
reasonable approximation when W is large compared with P.
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analysis is actually quite pessimistic. Much better load balance can be achieved through

use of mapping techniques such as scatter decomposition[22]. Also, the bound above is

insensitive to increasing volume of workload, whereas in practice the proportion of idle time

tends to decrease as the volume of workload increases.

The complexity of the average per-event overhead due to event list manipulation, looks-

head calculations, processor idle time, and global synchronization is

W(O(f(T)) + O(f(S)) + 0(1)) + Csy.ch = O(f(T)).
W

. _ .

Relative to the serial simulation, performance must then be within a constant factor of

optimal, at least if inter-LP communication costs are ignored (we have already accounted

for the communication costs that are specific to the protocol). Inter-LP communication

costs are dependent on the simulation model and its mapping, and are dependent on the

architecture. It is possible for communication costs to overwhelm performance, even if our

protocol finds a great deal of parallel workload. However these costs are inherent to the

model, and would be suffered under any synchronization protocol.

6 Empirical Results

We used the protocol analyzed in this paper in a parallel discrete-event simulation testbed im-

plemented on the Intel iPSC/2 distributed memory multiprocessor[2]. The testbed, YAWNS

(Yet Another Windowing Network Simulator)[21], is designed to permit rapid development

of simulation models, by providing a framework within which all synchronization and inter-

processor communication activity is automated, and hidden from the user. YAWNS uses

a computational paradigm where the simulation model is decomposed into communicating

Logical Processes (LPs). LP's interact by passing messages. A site in our analytic model

plays the role of an LP_

The simulation modeler must provide the testbcd with three routines for each LP (the

LP's may share these routines). One routine processes messages, typically inserting an event

into the LP's event list as a result. This routine is responsible for choosing a duration time

for the enabled activity. Another routine processes events. Messages to other LPs may be

generated as a result of calling this routine; these messages correspond to the completion

messages described in the analytic model. The third routine is called to obtain the lookahead

value required of an LP. YAWNS demands that the simulation modeler know about the

protocol only to the extent that inter-LP messages are pre-sent, and an LP must be able to

determine a lower bound on the time of the next message it sends.

It is always important to use the best possible event list algorithm for an LP. YAWNS

provides a linearly-linked list algorithm for use when the number of events in an LP's list is

sma]]_ and a:sp|ay-tree algorithm for large lists.

We report on the performance achieved by four diverse applications: the moving objects

simulation described earlier, a logic network, the game of Life, and a timed Petri net model.
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All measurementsreportedare taken fi'om a thirty-two processormachine. Eachsimulation
model was run long enough to generateseveralmillions of events. The execution time was
typically a minute or two, oncethe problemwasloadedand running. Much longer runs were
also performed, but no appreciabledifferencein performancestatistics wereobserved.

The measuredperformancesupports our analysis,and actually becomesquite good on
large problems. The metric we use to gaugeperformance is averageprocessorutilization,
measuredasthe fraction of time a processorspendsdoing work that would be performedin
a serial implementation of the simulation, usingthe sameparadigm. Time spent in comput-
ing lookahead,synchronization, interprocessorcommunication, and idle time are explicitly
counted as overhead,and do not appear in the utilization figure. One can translate such
efflcienciesinto "speedup"figuresby multiplying by the numberof processorsused,provided
the resulting numbersare properly interpreted. The speedupso computed is relative to a
serial version that usesthe sameparadigm (and code)of communicating LPS as is used in

the parallel version. This is not an unreasonable paradigm for a general purpose serial simu-

lation system, but is not likely to be the paradigm of choice for a serial version that is highly

optimized for the given application. In our experience (and depending on the application),

the communicating LP paradigm is a factor of 1.5 to 2 times slower than an optimized serial

version. The usual comparison of serial running time to parallel running time is impossible

to directly obtain, as the largest models we simulate are too large for a single processor's

memory. We will see that on the largest problems the average processor utilization ranges
from 60% - 90%.

6.1 Moving Objects

The sites are connected in a hypercube topology. In each model there are exactly as many

objects as there are sites. Each object resides at a site for a time constructed by adding

0.25 to an exponential with mean 1. We increase the size of the problem by simultaneously

increasing the number of objects and the number of sites. We may therefore describe the

size of the system by the dimension of the underlying hypercube. Pre-sent completion times

and lookahead values are computed exactly as described for non-queueing sites in this paper.

Average processor utilization p as a function of hypercube dimension is given below. Many

simulation runs were performed, the variance in the timing numbers is quite small.

Dim 8 9 10 11 12 13 14

p 21% 28% 34% 46% 54% 60% 62%

6.2 Logic Network

To ensure that we simulated networks with high concurrency we constructed "random" logic

networks having the topology of a butterfly interconnection network. The last stage wraps

around to feed the first. Each gate was randomly assigned to be an AND, OR, or XOR
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function and wasgivena randomly chosengatedelay time of 1,2,or 3 time units. Eachgate
wasmodeled as an LP. The eventual output of a gate whose inputs have changed can be

computed at the time the inputs change, hence gate state changes can be pre-sent. A gate is

like a non-queueing site; its lookahead is computed to be the gate delay plus the minimum

time of the next input change. The size of network can be described by the dimension of a

column of gates. For example, a network of dimension 6 has 6 columns, each composed of

2 6 gates. Observed performance is given below.

Dim 5 6 7 8 9 10 11

p 24% 32% 43% 52% 59% 66% 70%

6.3 Conway's Game of Life

Initial random configurations were chosen so that the probability of a cell being alive is at

step 0 is 0.2. Each cell is modeled as an LP. A cell is evaluated at step n only if one of

its neighbors (or itself) is alive at step n - 1. It is straightforward to pre-send "new state"

messages; lookahead consists of one step time. The problem size is increased by increasing

the size of the board. Again, we can easily describe problem size in terms of dimension. A

2 j x 2 j board will be said to have dimension j.

z

Dim 3 4 5 6 7 8

p 12% 16% 35% 54% 69_ 77_

Larger problems than a 256 x 256 board will often exhaust the available dynamic memory

in some processor, after some period of execution. This points out one of consequences of

internally buffering all messages until the window's workload is completed.

6.4 Timed Petri Nets

Consider a timed Petri net model of a multiprocessor system organized with a mesh commu-

nication topology. The net models a system where a processor iteratively receives a message

from each of its NEWS (North, East, West, South) neighbors, performs a computation, and

sends a result to each NEWS neighbor. The net models a flow control policy that prevents a

processor from sending a message to a neighbor until the last message it sent to that neigh-

bor is consumed. An LP consists of the network for one processor, a network containing

approximately thirty places and ten transitions. Nearly all transitions have a unit time delay

associated with them. Transitions modeling the processor execution time have 200 units of

delay.

This Petri net model does not satisfy exactly the assumptions we've made concerning

simulation model behavior. The main difference is that a token arriving to an LP does not

trigger a single LP activity with a single duration time. The response of the LP is liable

=
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to be much more complex. Nevertheless, the basic synchronization protocol works. Tokens

from an enabled transition are always pre-sent (regardless of whether they are sent to places

within the LP); to compute lookahead, an LP adds the minimum delay among all transitions

that send tokens to other LPs to the least-time token arrival event in the LP's event list.

The grid size for the simulated system can be described in terms of dimension in the

same way as was the Game of Life.

Dim 3 4 5 6

p 35% 62% 84% 94%

The comparatively better performance of this problem can be attributed to its better ratio

of computation costs to LP-message costs.

7 Conclusions

We have analyzed a simple conservative synchronization protocol for parallel discrete-event

simulation. The protocol presumes that one can pre-sample activity duration times (or bound

those times from below), that the immediate effects of simulation model state changes are

very local, and that all queueing disciplines are non-preemptive. The protocol essentially

slides a window across simulation time; the window is defined so that processors can evalu-

ate all their window events in parallel. We construct an approximated lower bound on the

average number of events processed per window. The bound depends on the topology and

activity rates of the heterogeneous simulation domain. The performance analysis shows that

a great deal of workload can be performed in parallel, if there is a great deal of concurrent

activity in the simulation model. Non-zero minimal activity durations are shown to greatly

improve performance. We show that the asymptotic time complexity of the average total

overhead (synchronization, lookahead calculations, processor idle time, event list manipula-

tion) per event is that of of an optimized serial simulation. Assuming that the complexity

of the communication cost per event is no greater than the overhead of an event in a serial

implementation, the protocol's performance is within a constant factor of optimal. The re-

gion of problems where the method does well is precisely the region where parallel processing

is most effectively applied--problems too large to run serially. The method is verified by

implementation on a distributed memory multiprocessor. Good performance is observed on

a variety of problems.

A Appendix

In this appendix we describe the tools used in our analysis, and develop some key results.
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A.1 Stochastic Dominance

Our analysis relies on the theory of stochastic dominance. The definitions and results we

cite are taken from Ross [25], chapter 8.

Random variable X is said to be stochastically larger than random variable Y if for all t

Pr{X > t} _> Pr{Y > t}.

We then write X ->st Y, or Y _<st X. An equivalent definition is that

E[g(X)] >_ E[g(Y)] for all incrcasing functions g.

In particular, E[X] >_ E[Y]. If X,,..., X, are independent random variables and Y_,..., _t_

are independent random variables such that X_ _>st Yi for all i, then for all increasing functions

g,

A.2 Hazard Rate Functions

If X is a nonnegative continuous random variable, it has a hazard rate function, also known

as a failure rate function. Let f(t) be X's density function, and let P(t) = Pr{X > t}. Then
X's hazard rate function is defined to be

A(t) f(t)
=

If X is exponential, then ACt) is identically the exponential's rate parameter.

We rely on the following results concerning hazard rate functions.

• If Ax(t) and Ay(t) are hazard rate functions for X and Y, and Ax(t) < Ay(t) for all t,

then X ->st Y-

• If X1,. • •, X_ are independent random variables with hazard rate functions Ai (t),..., A,_(t),

then the hazard rate function for min{Xl,..., X,,} is simply _i_ Ai(t).

• If X has hazard rate function A(t), then for any t and s, s _< t,

//Pr{X > tiN > s} = exp{- A(u) du}.

This also shows (taking s = 0) that the hazard rate function uniquely defines a distri-
bution.

=
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A.3 Important Bounds

We now establish some important bounds used in this paper.

Random variables constructed by randomly choosing one of a set of random variables are

called mixtures. The following lemma bounds the hazard rate of a certain class of mixtures.

Lemma A.1 Let X1, X2,..., be independent random variables with hazard rate functions

Ax(t),A2(t),... ,, and suppose that these functions are ordered:

A,(t)<_ for all i = 1,2,..., and all t >_ 0.

Let px,p2,.., be probabilities such that _i°Z=l Pi = 1, and consider the random variable M

constructed by randomly selecting some Xi, with probability pi. Let )_M(t) be M 's hazard rate

function. Then for all t >_ 0
Oo

 M(t) <
i---1

Proof." 2 Let f_(t) and Fi(t) be the density and cumulative distribution functions for Xi.

Then )q(t) = fdt)/['i(t), and

,_M(t) = EiC_=l piL(t)

Ei°°_l piFi(t)"

The desired conclusion will follow if

_-_ pif i( t) <_ (_ piF'i( t) )(_--_ pi,ki( t) )
i=1 i=1 i=1

for all t. Let Y = i with probability Vi and let h(Y, t) = )_v(t) and g(Y, t) = -['v(t). Then

for every fixed t, h and g are increasing in Y. Application of Proposition 7.1.5 of [25](p.

227) yields

E[h(Y, t)]E[g(Y, t)] < E[h(Y, t)g(Y, t)],

or equivalently,
oo OO OO

_pifi(t) <_ (_piPi(t))(_piAi(t)).
i=1 i=1 i=1

As this holds for every t _> 0, the lemma's conclusion follows.
[]

We now develop a lower bound on the expected minimum of a random number of vari-

ables, each variable being the sum of two exponentials.

_This elegant proof was suggested by an anonymous referee, replacing a far more complicated proof of
our own.
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Lemma A.2 Let S = {(Zx, Ux),(Z2,U2),...,} be a countable set where Zi is exponential

with rate Ai, and Ui is exponential with rate ¢i. Let all these random variables be independent.

Let B1, B2, . . . be the set of finite subsets of S. Let B be a random set constructed by choosing

Bi with probability pi. Let
oo

A=
/----1

Then

E[ min { Zi + Ui}] _>/'_/_-_-.
(Z,Ud • B

Proof: Consider the hazard rate function 71(t) for Zi + Ui. This random variable is the

lifetime of a serial two-stage system where the first stage lasts for time Zi, and the second

lasts for time Ui. 7i(t) is the instantaneous probability density associated with the system

dying at time t, given that it has survived up to time t. Now if Zi > t, the system cannot

fail at t, whence 71(t) = 0. If Zi _< t, then the hazard rate is simply that of Ui: ¢i. Note that

this observation relies on the memoryless property of the exponential. We may therefore

write

_i(t) = (1 - Pr{Zi > t I z, + vi > t})_,

_< (1 - Pr{Zi > t})¢i

= (1 - exp{-tAi})¢i.

One can show that the left-hand-side of this inequality is equivalent to the more usual (and

complicated) derivation of the hazard rate function for the sum of two exponentials [29](p.

126). The function on the right-hand-side is concave in t, and is hence dominated everywhere

by the line tangent to it at t = 0: r_(t) = tAi¢_. A random variable V_ with hazard rate

function ri(t) satisfies Vi -<st Zi + Ui.

Let Bj be any finite subset of S. By (11) and the observations above we may conclude
that

E[ min { Zi + Ui}] _> E[ rain { V,.} 1.
(z,ud • B3 (z,,uJ• Bj

We now focus on the right-hand-side of this inequality. The hazard rate function for My =

min{Vil(Zi, U_)6 Bj} is simply

= t. (
(Z, Ud•Bj

Without loss of generality we may enumerate the finite subsets of S in such a way that if

i < j, then AB.(t) _< ABe(t) for all t. Let M be a mixture of {M,,M2,...}, where Mj is

chosen with probability pi; let AM(t) be M's hazard rate function. By Lemma A.1 we can
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bound AM(t) from above by Av(t), defined by

a.(t)
c_

i=1

= _Pr{(Zi, U,) e B}tAi¢i = )_y(t).
/=1

Let Y be a random variable with hazard rate function Ay(t). Using the correspondence

between hazard rate functions and probability distributions (see §A.2), we have

Pr{ min {17/} > t}
(Zi,Ui) _. B

>_ Pr{Y > t}

/0'= exp{- ,_y(s) ds}

(x?

= exp{-_Pr{(Z.U 0 _ B}t=)_¢_/2}
i=1

= exp{-At2/2}.

Now

E[ min {Z, + Ui}]
(zi,ud _ B

fo (_D= Pr{min{Zi+Uil(Zi, Ui) EB}>t}dt

/?>__ exp{-ht2/2} dt

= (1/v/'A ") fo _ exp{_s2/2} ds by defining s = tv/A

[]
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