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AN IMPROVED ALGORITHM FOR THE MODELING OF VAPOR FLOW IN HEAT PIPES

Leonard K. Tower and Donald C. Hainley

Sverdrup Technology, Inc.
NASA Lewis Research Center Group

Cleveland, Ohio 44135

INTRODUCTION

The NASA Lewis Research Center has developed a steady state heat pipe
code for use In heat pipe design and analysls of laboratory data, suita-
ble for microcomputers as well as larger machlnes, l It has become appar-

ent that the vapor flow algorithms in this and similar codes 2,3 are not

very satlsfactory at conditions where compressibility is important. Heat
pipes having axially varying heat input, sequential evaporators, or oper-

ating near the sonic limit, are not handled well in these codes. Typical
of the problems in some codes is the prediction of a negative absolute

pressure wlthln an evaporator with large heat Input, because of improper

treatment of compresslbility effects. The ability to handle compressl-
bility and variable heat input is desired for the NASA Lewis code. There-

fore, an accurate vapor flow algorithm concise enough to operate on a
microcomputer at a reasonable speed and incorporating these features was

sought. Finite difference techniques which have been used effectively
in fundamental studies of heat pipe vapor dynamics 4,5 were precluded by

code size. Among sources consulted in an attack on this problem was the
book by Ivanovskii et al. 6 which reviews several studies leading to one-

dimensional algorithms for compressible vapor flow in heat pipes.

For the present work, Busse's 7 paper on pressure drop In the vapor phase

was used as a starting point. His equations for Incompressible flow were

readlly rederived to include change In density. In addition, the usual
assumption of a saturatlon temperature across each section of the pipe,

determined by the local static pressure, was eliminated. In vlew of the
studies of DeMIchele, 4 a mean vapor temperature differing from the wall

temperature was found from a boundary-layer-type energy equation. The

resulting equations were derived so as to be sultable for liquid metal
working fluids having two vapor specles as well as for fluids with a

single vapor specles. The algorithm is intended only for the evaporator
and adiabatic sections of the heat plpe, because vapor flow In the con-

denser Is complicated by the onset of turbulence and reverse Flow.
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In the analysis to follow, the appropriate features of Busse's 7 method
will be introduced, and the development will proceed from there. In

addition, some major assumptions for the heat pipe sections being consid-
ered should be Indicated at the outset: Flow is laminar. The ideal gas

law applies to components of the vapor. The equations allow for local

chemical equilibrium among species in the vapor. Phase equilibrium

occurs only at the wall, so llquid droplets are absent in the vapor.
Following Busse, 7 no tangentlal veloclty component exists at the wa]! in
mass addition or remora], the radial pressure gradient may be neglected,

and the velocity components are zero at the closed ends of the heat pipe.

Also, his method of imposlng a negllgible radial pressure gradient by

equating the mean axial pressure gradient over the cross section to the
axial pressure gradient along the center line was used.

Busse 7 began with the axial axisymmetric Wavier-Stokes equat!on

_= _+ v _ - r a_ r _- _
(1)

where p is pressure, r is radial distance, u Is radial velocity,

v is axial velocity, z is axial distance, n Is dynamic viscosity, and

p is denslty. Busse integrated the mass conservation equation with
respect to u so that this term can be eliminated. This is also done _n
the present analysis except that density is variable in z and r:

r

u _-_pp (pv)r' dr'

0

(2)

When equation (2) Is combined with equation (I) the following results:

[Csi r I]8D 1 8V @V r' 8o 8v n a 8v
8_--_- _ _-_ p _ dr' + v _-r' dr' - pv _-_ + _-_-_ r 8-7

0

(3)

Here, the axial variation of u has been neglected In the viscous term.

The assumption is made that the radlal variation of density is much less
than the radial variation of the axial veloclty since the latter vanishes

at the wall. On the basis of this assumption, a presently undefined mean

density Pm and its axial derlvative are extracted from the integrals,

yielding

8___o 1 8v r By r' dr' + vr' dr' - pv _-_ + _-_-_ r 8_
az'7 _ Pm o _ aT o

(4)

The crux of Busse's attack on the incompresslble case is the assumption

of an approxlmate velocity profile whlch satisfies all the boundary con-
ditlons. It incorporates a parameter A(z) which may be constant or may

vary with position, depending on mass influx boundary conditions. The
same profile will be employed In this analysis:

r2 1
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Here, vm is the mean axial velocity and R is the vapor space diam-
eter. When A(z) : O, equation (5) reduces to the Poiseuille profile.

Integration of equation (4) over the cross section of the pipe and

manipulation give

dz "-] 1 - .T -JLmp,j - R *--
(5)

The mean density is assumed to be related to the pressure and a mean tem-

perature Tm by the ideal gas law, which yields upon differentiation

d Zn T
dPm : (GRP) d Zn p _ (GRP) m
dz dz dz

(7)

where

@ Zn R B Zn R

and GRT = I + a Zn TGRP = l @ Zn p m

and where RQ, the gas constant, may depend on pressure and temperature
if chemical Feactions are considered.

Continuity requires that the vapor mass flux m(z) at any cross section

equals the product of mean density Pm, the vapor cross-sectional area

Av, and the mean axial velocity Vm(Z). From this relationship and

equation (7) the axial derivative of vm is found to be:

d Zn Vm d Zn m d Zn Av (GRP) d Zn o + (GRT) d Zn Tm. -- (8)
dz dz dz dz dz

Equations (6) to (8) are combined and the indicated integrations are per-
formed. Dropping the distinction between the mean cross section pressure

and the local pressure by Busse's approximation gives

4p v 2
m m dA
_-- (HB) --dz

2

8nVm (1 ÷ _A), 8PmVm Id Zn m..... dzR2p 3p (GB) d dzZnAv I
(9)

where

I A 2A2_GB: I -_+4T )
and

The variation of Av with z is understood to be small.

The mean temperature Tm Is evaluated by means of an energy integral.
Figure 1 shows the control volume through which energy is transported.
The energy flows into the boundary are equated with the energy flows out,
internal energy and pressure are eliminated by using enthalpy, and the
limit 6z ÷ 0 is taken, to give
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Figure 1, - Control volume for the integral energy equation.

pv h + r dr = @r dr + qR R- pRu R

0 0
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where h is the enthalpy of the mixture per unlt mass, qR Is the energy

flux entering from the wall of the pipe, and ¢ Is the vlscous dissipa-
tlon per unit volume. The relation for uR, the wall radial velocity, is

given by the mass conservation equatlon in the form

R

uR -- (pv)r dr
= _ RpR

0

(11)

The energy influx qR is specified as -PRUR(eR + u_/2), where eR is

internal energy. The result of combining equations (lO) and (ll) is

IR Ih v2+ 2-"-HR) _z (pv)

0

rdr+ I Idh dv
pv _-_ r dr + pv2 _-_ r dr = @r dr

0 0 0

(12)

The mean value of both the enthalpy and the density can be separately

extracted from the Integrals If the assumption Is again made that the
variation of both variables with radius is much less than that of axial

velocity. When these mean va]ues have been extracted, and terms common
to all expressions cancelled, the energy equation becomes

Cr01°°"
R

dhm Pm I dv3+ dT r dr
+ PmVm _ R2 0

= ¢r drgo (13)

where

2
uR

HR = hR + _--

V
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If chemical equilibrlum In the vapor must be considered, enthaloy hm
becomes a function of both Tm and p. When its derivative is insertad
into equation (13) with equations (7) and (9), and the Integrations are
performed, the result is

\a--_JTm - F3(GRP ) d dz (
+ "8_ T-mmJp F3(GRT)

d ZnT
cA

÷ (HAF) --
dz az

: 8n -. - (HVE) v

PmR2 dz dz

(14)

where

 3:8

HAF : - 1 - _ + 63 J

HVE " hm- HR + I_ 1

An additional equation required to find the three dependent variables p,

A, and Tm comes from Busse's 7 approximation that the axial gradient of
the mean pressure equals the center llne pressure gradient. The latter,

from equation (1) for r = 0 uslng equations (4) and (5), is

I 4p v2 ] 4pv£ d Zn T

F
l - --_m m (I - A/3)2(GRP)] d Znpdz + Lp (] - A/3)2(GRT) dz m

m m dA __-Snvm (I - aAl3)- T (l - A/3) _-_= PR2

- (1 -A/3) 2 d Zn m d Zn Av

dz dz j
(15)

The mass flux is related to the heat flux into the plpe by

dqR 1 dm hv 2--_RPRdz - 2_R dz Z + d-z/ ]
(16)

where the kinetic energy of the injected vapor has been incorporated,
and hv! is the heat of evaporation. Equations (9), (14), ano (15),
with equation (16) and appropriate boundary conditions enable a solution

for p, A, and Tm.
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The equations derived here pertain to alkali metal working fluids _f
equilibrium between monomeric and dimerlc species is experienceS. _!th
proper applicatlon, they also apply to worklng fluids of a single _aseous
soecies. If, in the case of the alkali metals, composition remains fixed
from the point of in_ectlon, the equations must be modified. This case
has been considered but the results are much less satisfactory :ban for

equilibrium and are not presented here.

RESULTS AND DISCUSSION

To illustrate the application of the algorithm, several cases were run
Involving alkali liquid metal working fluids. Entropies and enthaloies
of the species referred to a common base that includes chemical energy
were used with polynomials for the _pecific heats to find thermodynamic
propert!es. 8 These data enabled the determination of vapor pressure,
heat of vaporization, ,various first derivatives and compcsition of the
vapor phase. The latter includes both monomers (atoms) and dimer] (mole-
cules) in the case of alkali metals. The assumption is made that the

ideal gas law applles to each of the vapor species. While it would be
desirable to incorporate real gas effects in the form of viria! e_ua-
tions, this would greatly complicate the com0utations.

The three equations Involving the first derlvatlves of p, A, and Tm
were solved by a simple Runge-Kutta routine 9 For the set of simultaneous
equations (9), (14), and (15). No study of the effect of step size on
the precision of results was made. Each computation began with 20 uni-
form steps in the evaporator, but step size was reduced as the slope of
p became increasingly steep In the vIclnity of the sonic limit.

Figure 2 illustrates a simple application of the algorithm which solves
the equation set. The heat input to a sodium-filled heat pipe of 0.0Z m
diameter wlth an evaporator length of O.l m ,was increased until the pi_e

was choked at an evaporator endcap vapor temperature of 900 K and a heat

input of 5870 N. The sonic limit computed from the approximation of
Busse lO was about 5580 W. Figure 2 shows the profiles of ,vapor mean tem-

perature Tm, wall temperature TR, the velocity profile parameter A,
and the pressure ratio P/PO through the evaporator, where subscri_z

0 denotes the vapor condition at z = O, the endca_. Figure 3 shows the

velocity profile v/v m at the downstream end of the evaporator where

choking occurs, wlth a Poiseuille profile for comparison. The maximum
value did not occur at the centerline, as expected. Busse's apbroxima:e

profile Is a three-polnt fit, so the profile shown in Figure 3 must be
regarded as the best representation of a very flat profile available
under the circumstances.

In the next example two evaporator sections in sequence were considered,
the first 0.2 m long, the second O.l m long, separated by an adiabatic

se._1on of 0.2 m length. The working fluid was sodium and the evaporator

end cap temperature was lO00 K. Both evaporator sections were receiving
heat at the rate of 71 600 W/m, which resulted in choke at the end of the

second evaporator. Figure 4 shows the profiles of temperature, pressure
ratio, and A. The scale of the figure is too small to show clearly the

decline in the parameter A in the adiabatic section from 0.738 :o
0.704. In incompressible flow, the limit for A in very long adiabatic

sections should aecline toward zero, the Poiseuiile conaiticn. i
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Another example shows the sonic limit heat transport against evaoorator
endcao temperature for a sodium-filled evaporator of 0.02 m di_meter and
0.1 m length. The short evaporator length minimized the viscous pressure
loss, so the results can be compared to those computed from Invisc!d
equations of Busse I0 and Levy. II A simple control structure a_pended to
the vaoor pressure subroutine generated figure 5 in a short t_me.

The most suitable data against which to check the algorithm are those of
Ivanovskil et el. 6 They inserted a temperature microprobe into a sodium

heat plpe havlng an evaporator length of 0.] m, an adiabatic section
length of 0.05 m, a condenser length of 0.55 m, and a diameter of
0.014 m. Temperatures were read at intervals along the axis with the
probe. Llquld-saturated wicking on the probe was to ensure that the tem-
peratures being observed were the same as those at the vapor-liquid
interface. No details were given concerning any effect of the :ressure
field around the probe tip on the measured temoerature. For a_ !npuz of
about 500 N, stated to be accurate to within 5 to lO percent, the data
are shown In figure 5. Also shown are lines of Tm and TR computed
by the algorithm. Equations (9), (14), and (15) were used only in the
evaporator and adiabatic sections. An extension Into the condenser was
made by equating Tm to TR beyond the point where Tm exceeded TR.
The justification is the observation that at scme point in the c3ncenser,
Tm must converge to TR as it did at the beginning of the evaporator.
For this portion of the solution, the equatlons were suitably modified
to yield as dependent variables only p and A. This simple procedure,
enabling the solution to be continued into the condenser, neglected the
known complications of condensatlon shocks and recirculation.

For the same heat pipe at a heat input of I000 W, figure 7 shows experi-
mental data of Ivanovskii and lines of Tm and TR from the algorithm.
Also shown is a curve of TR computed by Chen and Faghri 12 using the
Phoenlcs code. It is in basic agreement with the results computed by
the algorithm presented here. The Phoenics code, a sophisticated f_nite
difference procedure, can handle far more complex situations than the
elementary algorithm herein. These Include evaporators with very _ma11
ratios of length to diameter and heat pipes of complex cross section.
The slze of computer required for the Phoenics code and its cost make it
less suitable for everyday heat pipe analysls. Furthermore, the simple
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Figure 5. - Sonic limit determination.
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equations derived from first principles in the present saper may facl]i-

tate a better physlca] understanding of the governing pnencmena.

_5

CONCLUDING REMARKS

The heat pipe vapor flow algorithm discussed herein has been shown to

model the compressible vapor dynamics in the evaporator and adiabatic
sections of pipes of conventional proportions. The model has introduced

complexities which have usually been ignored. These include chemical

equilibrium in the case of liquid metals, a velocity profile parameter

dependent uDon pressure and temperature, and a mean vapor tempera:ure
differing from the vapor interface temperature. Future work might be

expended profitably on the introduction of a reasonaole temper_tjre pro-

file into the energy equation, and the inclusion of drooler nucleation
rates into the momentum and energy equations. Also, a satisfactory

representation of the vapor effects in the condenser requires that the
transition to turbulence, the treatment of condensation shocks, flow



rec!rculation, and other phenomena be modeled concisely for use in slmple

programs on small computers.

REFERENCES

Baker, K.W., and Tower, L.K., The Lewis Heat Pipe Code wi_h Applica-
tion to SP-IO0 GES Heat Pipes, Trans. 5th SymD. Space Nucl. P_we _

Svst_.,._._._,Albuquerque, NM, Jan. 11-14, pp. 99-I03, 1988.

2 Woloshun, K. and Merrlgan, M., HTPIPE: A Steady State Heat _na!ysis
Program, Trans. 5th SymD. Space Nucl. Power Svst., Albuquer_ue, NM,
Jan. 11-14, pp. 105-108, 1988.

3 McLennan, G.A., ANL/HTP: A Computer Code for _he Simula=_cn of Hea=
Pipe Operation, Argonne National Laboratory Report ANL-_3-1C8,
Nov. 1983.

DeMichele, D.W., A Numerical Solution to A×ial Symme=ric Ccmores_:-
ble Flow with Mass Injection ano Its Application to Heat Pi_es, ph.
D Thesis, University of Arizona, 1970.

Busse, C.A., and Prenger, F.C., Numerical Analysis of the Vapor Flow
In Cylindrical Heat Pipes, Proc. Sth Int. Heat PiPe Conf. 2art 1,
pp. 214-219, 1984.

6 Ivanovskii, M.N., Sorokin, V.P., and Yagodkin, I.V., The Physical
Principles of Heat Pipes, Clarendon Press, Oxford, 1982.

7. Busse, C.A., Pressure Drop in the Vapor Phase of Long Hea: Pipes,
ProÙ. 1967 Thermlonic Converslon Specialist Conf., Palo AI:o, CA,

pp. 391-398, 1987.

8. McBride, B.J. and Gordon, S., FORTRAN 4 Program for Calculation of

Thermodynamic Data, NASA TN D-a097, Aug. 1967.

9. White, F.M., Viscous Fluid Flow, McGraw-Hill, New York, 197_.

I0. Busse, C.A., Theory of the Ultimate Heat Transfer Limit of Cyllndr_-

cal Heat Pipes, Int. J. Heat Mass Transfer, vol. 16, pp. 169-_86,

1973.

II. Levy, E.K., Effects of Friction on the Sonic Velocity Limit in
Sodium Heat Pipes, AiAA Paper 71-_07, Apr. 1971.

12. Chen, M-M. and Faghri, A., An Analysis of the Vapor Flow ano the
Heat Conduction Through the Liquid-_ick and Pipe Wall in a Heaz Pi_e

with Single or Multiple Heat Sources, ASME Paper 89-HT-12, 1989.

I0



Report Documentation Page
National Aeronauticsand
Space Administration

1. Report No. 2. Government Accession No.

NASA CR- 185179

4. Title and Subtitle

An Improved Algorithm for the Modeling of Vapor Flow in Heat Pipes

7. Author(s)

Leonard K. Tower and Donald C. Hainley

9. Performing Organization Name and Address

Sverdrup Technology, Inc.
NASA Lewis Research Center Group

Cleveland, Ohio 44135

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

3. Recipient's Catalog No.

-=5. Report Date

6. Performing Organization Code

8. Performing Organization Report No.

None (E-5195)

10. Work Unit No.

586-01-21

tl. Contract or Grant No.

NAS3-25266

13. Type of Report and Period Covered

Contractor Report
Final

14. Sponsoring Agency Code

15. Supplementary Notes

Project Manager, James Calogeras, Power Technology Division, NASA Lewis Research Center. Prepared for the
7th International Heat Pipe Conference sponsored by the Luikov Heat and Mass Transfer Institute, Minsk,

U.S.S.R., May 21-25, 1990.

16. Abstract

This paper presents a heat pipe vapor flow algorithm suitable for use in codes on microcomputers. The incom-

pressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse
velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated

vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean

vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the

pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working
fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases

involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence

illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between

curves for the Busse and Levy inviscid sonic limits.

17. Key Words (Suggested by Author(s))

Heat pipe; Heat pipe computer code; Compressibility;
Heat pipe evaporator; Space radiator

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject Category 34

20, Security Classif. (of this page)

Unclassified

21. No. of pages 22. Price*

NASAFORM1626OCT86 *For sale by the National Technical Information Service, Springfield, Virginia 22161




