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SUMMARY

Three-dlmensional unsteady viscous effects can significantly influence the

performance of fixed and rotary wing aircraft. These effects are important in

both flows about helicopter rotors in forward flight and flows about three-

dimensional (swept and tapered) supercrltlcal wings. A computational procedure

for calculating such flow field is developed, and therefore would be of great

value in the design process as well as in understanding the corresponding flow

phenomena.
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INTRODUCTION

In recent years there has been increased attention given to three-dimensional

unsteady aerodynamics. Such flows manifest themselves over fixed wing and rotary

wing aircraft. In regard to rotary wing aircraft, the helicopter operates in an

unsteady environment. The flow about a helicopter rotor in forward flight is

periodic as the blade passes through the rotor disc and the flow is characterized

by its unsteady three-dimenslonal nature. Further, unsteady effects result from
the wake vortex interaction due to the shed vortex of the preceding blade passing

in the vicinity of the subject blade. In regard to fixed wing aircraft they are

designed to be nominally steady, unsteady effects are introduced through either
control surface motions or induced external oscillations. For both wing types

these phenomenaare observed throughout the Machnumberregime; subsonic,

transonic, and supersonic. The unsteady effects will influence loss levels as

well as llft and momentcoefficients which in turn influence the aeroelastic wing

loading. For both type of wings the near wing flow may contain transonic shock

wave boundary layer interactions as well as significant regions of reversed flow
in the streamwise and spanwise directions. Obviously, a viscous analysis capable

of treating unsteady, three-dlmensional flows which maycontain shock wave

boundary layer interactions as well as regions of spanwlse and streamwlse reversed

flow would be a significant aid to both the design and research engineer.

Concurrent with these needs there has been an increased effort to better

understand these phenomena by conducting three-dimensional unsteady wing

experimental programs (cf. Refs. i, 2) and applying inviscld computational

procedures to these programs (e.g. Refs. 3, 4). The results of the numerical

calculations in conjunction with the experimental data indicate that the observed

phenomena are strongly influenced by viscous effects near the body surface which

are not accounted for by the inviscid predictions. These viscous effects are

concentrated within a region that is predominantly thin except for localized

regions of reverse flow in the streamwise and/or spanwise directions. Hence,

there is clearly a need to compute these viscous effects in an efficient and

economical manner.

There are several possible approaches available for computing

three-dimenslonal viscous flows, ranging from empirical models to sophisticated

treatments based on the solution of the three-dlmenslonal time-dependent

Navier-Stokes equations. Due to the complex structure of the flow the empirical
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approach is too restrictive. At the other end of the spectrum is the

three-dimensional time-dependent Navier-Stokes analysis. Even though such

procedures have been developed at SRA and have been applied successfully to a

variety of problems (e.g. Ref. 5), such a technique is not required for many of

the viscous layer type problems occurring on wings in which the static pressure is

sensibly constant across the viscous layer. Therefore, an approach is sought

which allows the static pressure to be imposed at the boundary layer edge, but

which can be used in three-dlmensional flows having streamwise and/or crossflow

separation.

A new computational procedure specifically designed to compute flow fields in

which streamwise and/or spanwise separation is present, but in which the pressure

is sensibly constant across the boundary layer has recently been developed

(Ref. 6). This bridges the gap between the inviscid/boundary layer and

Navier-Stokes approaches in that it is of sufficient generality to compute regions

of reverse flow yet due to the imposition of pressure is considerably more

economical than a full three-dlmenslonal Navler-Stokes procedure. This technique

was adopted to treat three-dimenslonal unsteady turbulent flows (Ref. 6). The

results of this study are now described briefly.

Ref. 6 describes and demonstrates the implementation of a computer code for

the efficient solution of three-dimenslonal tlme-dependent viscous flows on fixed

and rotary wing aircraft. The numerical technique used is the Linearlzed Block

Implicit (LBI) technique of Briley and McDonald (Refs. 7) in conjunction with QR

operator technique (Refs. 8 and 9). This combination numerically solves the

present approximate form of the turbulent Navier-Stokes equations which are

derived for nonorthogonal coordinates in generalized tensor form. The rationale

for the choice of this approach is discussed in detail in Refs. 6, 8 and 9.

The basic assumption made in the derivation of the governing equations is that

the pressure does not vary normal to the shear layer, and is obtained from an

inviscld analysis. Inherent in this assumption is that the shear layer is thin.

Generally speaking, the boundary layer remains thin unless catastrophic flow

separation occurs or the flow at the wing or rotor tip is considered. However,

the analysis would apply to most of the wing or rotor under a range of operating

conditions and thus represents an important tool.

It is also assumed at present that the stagnation temperature, To, is

constant. This assumption is a good approximation for the flow fields considered

as discussed in Ref. 5, and is included here only for purposes of computer run
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economy. The full energy equation could equally well have been used in the

analysis with consequent increase in computer run time. Whenthe total

temperature is assumedconstant, the equation of state relates the density p to

the velocity components u and w by an algebraic equation. The resulting

formulation involves only the three velocity components, u, w and v and three

equations, the streamwise and spanwise momentum equations and the continuity

equation. Hence, a block-three system is considered. If T o were calculated via

the energy equation, a block-four system would result due to the inclusion of the

temperature as an additional unknown and thus would result in an increase in

computer run time.

For turbulent flows, a two-layer mixing length model is employed and its

formulation in generalized tensor notation is given. A novel method is employed

for solving the continuity equation in conjunction with the momentum equations.

In Ref. 6, a complete description of the computational procedure is given,

including coordinate systems, governing equations, turbulence model, and numerical

technique, i.e. QR operator and Linearized Block Implicit schemes. The general

outline of the computer code is also described.

The computational procedure has been validated by conducting computations with

the numerical method referred to above and comparing it to the experimental data

of Karlsson (Ref. I0), i.e. two-dimensional unsteady oscillating turbulent flow

over a flat plate. Two-dimensional calculations were performed and the results

agree both qualitatively and quantitatively with the data. Thereafter, the

analogous three-dimensional case was considered which was obtained by a coordinate

rotation to yield the flow over a plate skewed at 45 ° to the freestream direction.

The results of this computation also agree well with both the two-dimensional

results and Karlsson's data, hence validating the computational procedure in three

dimensions. In addition, new inflow boundary conditions were developed and an

explanation was proposed to resolve the controversy concerning other previously

reported predictions of the skin friction phase lead angle as a function of

reduced frequency. These results are described in detail in Ref. 6.

In this report, a description is given of the extension of the methodology to

treat two-dimensional airfoils and three-dimensional wings. In order to achieve

these applications a generalized three-dimenslonal nonorthogonal geometry

formulation was developed. Also, the procedure was modified to calculate the flow

through the wake. Examples of calculations conducted are presented.
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DISCUSSION

To date, a computational procedure for three-dimensional unsteady viscous

flows has been validated for three-dlmenslonal unsteady oscillatory flow over a

planar surface. The method was shown to be efficient and gave both qualitative

and quantitative agreement with the experimental data. The major goal of the

current effort was to extend this procedure so that it may be used routinely as an

aid in the design of realistic fixed and rotary wlng aircraft. This entailed in

part the validation and extension of options in the computer code that were not

exercised as yet and also required the incorporation of additional capabilities

that would allow one to consider a more general class of flow phenomena consistent

with current interests to both NASA and industry.

A major task required to complete the long term goal was to extend the

geometrical capability of the computer code. The items considered were validation

of the existing generalized nonorthogonal geometry option, extension of the

geometrical capability to treat fully three-dimensional wings (with taper and

sweep), and allow for transformations to account for boundary layer growth.

Further, a method was developed to describe the wing surface, and to distribute

the grid points throughout the domain to allow for the accurate solution of the

governing equations. In the following section the governing equations and

computational procedure are described. Thereafter a discussion is presented of

the new methodology and the calculations that were conducted.

Computational Procedure

In describing the overall computational procedure, consideration is given to

the governing equations: the turbulence model and the numerical algorithm. These

topics are now briefly discussed.

Governing Equat%ons

In the following, the governing equations are nondimensionalized as follows,

xi with respect to the characteristic length L, the velocity with respect to U_,

density, pressure and temperature with respect to p_, p_U 2 and U_2/Cp,

respectively and time with respect to L/U_. The viscosity is nondimensionalized

with respect to _.
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Continuity Equation

ap 1 [Jpuk] = 0 (I)

where J is the Jacoblan, p the density, and u k is the k th contravariant velocity

component.

Momentum Equations

The i th momentum equation in the e i direction is

P [a t = _gik 2
(2)

+ gmk[_ =_Im]_ ÷ gmi[_e uklm] Ik

where ',k' denotes a partial derivative, 'Ik' denotes a covariant derivative and

gik is a component of the metric tensor.

In Ref. 12 it was pointed out that the QR Operator scheme requires that the

governing equations be in quasi-llnear form and that the spatial operator in a

given direction operate on only one variable. For the momentum equation this

requirement prevents the implicit treatment of certain diffusion terms that arise

due to the curvature effects. In the usual boundary layer approximations these

explicitly treated terms would not appear in the equation since they are of order

0 (Re I/2) or smaller, and should, therefore be of little consequence.

Since mixed partial derivatives are commonly treated explicitly in orthogonal

coordinate systems, this same approach is used in generalized nonorthogonal

coordinates and this concept is extended to include mixed second covariant

derivatives. All other second covarlant derivatives are retained as implicit.

Since the pressure is specified and impressed upon the viscous layer, its

specification replaces the normal momentum equation. Thus, the streamwise and

spanwise momentum equations are the only two retained. A more detailed discussion

of the derivation of these equations is given in Ref. 12.
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Energy Equation

For the energy equation, constant stagnation temperature is assumed.

Neglecting the square of the normal velocity with respect to the squares of the

other velocity components

112 2] g12 UpWpT O = T + _ Up + Wp + hlh2
(3)

where Up and Wp are the physical velocity components. These assumptions are

employed here only for simplification purposes. If warranted, they can be removed

and the full energy equation can be considered.

Equation of State

The equation of state assumes a perfect gas and is given by

-i

p = 7-----pT (4)
7

Linearlzations

The following analyses assume a set of linear partial differential equations.

However, the convective part of the momentum equation and the continuity equation

are nonlinear, containing terms that involve the product of density and velocity

components. In order to overcome this difficulty, the procedure described in Ref.

12 is employed to linearize the aforementioned terms by Taylor series expansion

about the known time level solution.

It is important to note that in the governing equations the contravariant

velocity components are used. However, as noted in Ref. 12, it is advantageous to

solve for the physical velocity components. Therefore, when the governing

equations are subsequently cast into a form amenable to the application of the LBI

scheme, they are transformed so that the physical velocity components appear.
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Turbulence Model

In turbulent flow cases, the three-dlmensional ensemble-averaged turbulent

flow equations are considered. The approach taken here assumes an isotropic

turbulent viscosity, _T, relating the Reynolds' stress tensor to mean flow

gradients. Using Favre averaging (Ref. 15) the governing equations then are

identical to the laminar equations with velocity and density being taken as mean

variables and viscosity being taken as the sum of the molecular viscosity, _, and

the turbulent viscosity, _T"

At this point additional closure assumptions for the Reynolds stresses are

required, i.e., the evaluation of _T" There are a variety of approaches

available, from the simpler mixing length models to the more complicated one and

two-equatlon models. Since the method is being applied to wall bounded cases, the

mixing length model which has worked well in the past for similar flow

environments (Ref. 16) was chosen. The extension to more complex models could be

undertaken at a later time if warranted. At that time, the LBI procedure that is

used for the solution of the momentum equation could be applied to the k and

equations.

Employing the Prandtl mixing length concept, the turbulent viscosity is given

as

_T = p_2

where _ is the mixing length and $ is the dissipation function, which in

generalized tensor notation is given by

(s)

1 ei j
= _ eij (6)

As in the Cartesian formulation, _ does not automatically reduce to the dominant

term for standard boundary layers, i.e., 8u/ay in two dimensions and [(au/ay) 2 +

(aw/ay)2]I/2 in three dimensions. Hence, provisions are made in the computer code

that on option retain only the dominant components of the strain which would

conserve computer time.

The mixing length formulation is based on McDonald's model (Ref. 17), and is

given by
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= _tanh fv][_jD (v)

where _ is the outer layer length scale, and

D = i -- exp(--y+/A +) (8)

where y+ takes on its usual meaning. The constants appearing in Eqs. 7 and 8, _,

and A + are .4, .09 and 26.0, respectively, and 6 is the local boundary layer

thickness defined as .995 U e. Note that in the limit as y--0, Eq. 7 reduces to

_i = kyD

while for y, large Eq. 7 reduces to

_o = _

the standard two layer values.

Numerical Procedure

The numerical procedure used to solve the governing equations is a

consistently split llnearlzed block implicit (LBI) scheme originally developed by

Briley and McDonald (Ref. 15). The procedure is discussed in detail in Ref. 7.

The method can be briefly outlined as follows: the governing equations are

replaced by an implicit time difference approximation, optionally a backward

difference or Crank-Nicolson scheme. Terms involving nonlinearities at the

implicit time level are linearlzed by Taylor expansion in time about the solution

at the known time level, and spatial difference approximations are introduced.

The result is a system of multl-dlmenslonal coupled (but linear) difference

equations for the dependent variables at the unknown or implicit time level. To

solve these difference equations, the Douglas-Gunn (Ref. ii) procedure for

generating alternatlng-dlrectlon implicit (ADI) schemes as perturbations of

fundamental implicit difference schemes is introduced in its natural extension to

systems of partial differential equations. This technique leads to systems of

coupled linear difference equations having narrow block-banded matrix structures

which can be solved efficiently by standard block-ellmlnatlon methods.
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The method centers around the use of a formal linearization technique adapted

for the integration of initial-value problems. The linearization technique, which

requires an implicit solution procedure, permits the solution of coupled nonlinear

equations in one space dimension (to the requisite degree of accuracy) by a

one-step noniterative scheme. Since no iteration is required to compute the

solution for a single time step, and since only moderate effort is required for

solution of the implicit difference equations, the method is computationally

efficient; this efficiency is retained for multi-dlmensional problems by using

what might be termed block ADl techniques. The method is also economical in terms

of computer storage, in its present form requiring only two tlme-levels of storage

for each dependent variable. Furthermore, the block ADI technique reduces multi-

dimensional problems to sequences of calculations which are one-dimenslonal in the

sense that easily-solved narrow block-banded matrices associated with

one-dimensional rows of grid points are produced. A more detailed discussion of

the solution procedure is discussed by Welnberg and McDonald (Ref. 12) and is

given in Appendix B. In Appendix A the QR operator scheme is described which is

used to obtain the spatial approximations. Further details can be found in Ref.

8.

Tasks Considered

The tasks considered in this contract are now described.

Geometric Modifications

This task pertained to the extension of the geometric capability of the

computer code. In the existing computer code the metric tensor had a special form

due to the fact that one coordinate is normal to the surface of the body and

independent of the surface coordinates. Thus, the components gi3 = g31, for i _ 3

are identically zero. This assumption restricted the ability to efficiently

resolve boundary layers which have a significant variation of boundary layer

thickness over the region of interest. If one wished to efficiently redistribute

grid points normal to the wing by incorporating coordinate transformations that

account for boundary layer growth, i.e. a y/6 transformation, where 6, the

boundary layer thickness, is in general a function of the surface coordinates,

then the metric tensor would become full. Since the new normal coordinate will be
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a function of the streamwise and spanwise directions, g13 and g23 will be nonzero.

Furthermore, the variation of the normal coordinate along the surface of the body

will lead to corresponding nonzero Chrlstofel symbols.

To achieve this enhanced generality and efficiency of the computer code the

geometry arrays were expanded to include the additional nonzero entries and to

accommodate the three-dimenslonal variation of the geometric coefficients. With

regard to the computer code, several terms in the governing equations which were

excluded previously were added to account for the new geometry.

Several computations were performed to validate the extended geometric

capability. At this stage, the two-dlmenslonal case considered in the Phase I

effort, i.e., Karlsson's experimental data were recomputed using a y/6

transformation. The y/6 calculation considered is again the flat plate turbulent

boundary layer, but now the outer boundary is permitted to grow at a prescribed

rate. This allows for greater resolution near the upstream boundary by packing

more points within the viscous layer.

Wake Wing Calculations

In the previous version of the computer code only one surface was treated, and

that surface was a plane. For real wings, the surfaces are curved and both upper

and lower surfaces must be treated as well as the wake. Hence, efforts were

undertaken to modify the code and allow for the consideration of realistic

geometries.

The first step undertaken was to define the airfoil shape. This involved the

specification of a wing cross-sectlon surface, i.e. thickness versus chord or

distance from the leading edge. Afterwards the arc length was computed and grid

points were distributed along the surface as desired from accuracy considerations.

Several different types of airfoils are allowed, including the NACA OOXX series

and the ONERA type sections. The code is sufficiently general to permit others,

as well, for which either a formula is prescribed or y vs. x data is given. This

procedure is employed for the upper and lower surfaces.

Of comparable importance is the viscous flow in the wake. The wake is

obtained as an extension of the wing surface. That is, the centerllne of the wake

begins at the trailing edge and extends downstream several chord lengths, which in

the cases considered, is somewhat further than three chord lengths. The outer

edge of the computational domain is also prescribed at a fixed distance above the
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surface, following the shape of the airfoil and for the wake region staying

parallel to the centerline.

Two special features of the procedure are of note. First, the trailing edge

region must be handled carefully. Since the geometric coefficients required by

the calculation contain derivatives of the metric tensor, the metric tensor must

remain smooth everywhere in the computational domain. For the trailing edge

region this means that sharp angles are not permitted. Hence, the trailing

edge was smoothed and a cusped region (zero slope) was added. Furthermore, the

local radius of curvature was chosen such that the normal lines eminating from the

concave surface would not intersect within the computational domain. Second, with

regard to the wake centerline, in reality it is a double llne consisting of the

extensions of upper and lower surfaces. Special attention was given as is

described subsequently.

Figure i shows a typical wing/wake coordinate system. The streamwise velocity

is considered positive in the downstream direction from the leading edge for both

the upper and lower surfaces. The normal velocity is considered positive directed

away from the wall. Hence, the normal velocity on the upper surface is positive

pointing up, while on the lower surface it is positive pointing down.

The solution procedure is described now. As noted previously, an Alternate

Direction Linearlzed Block Implicit method is employed in the solution of the

equation. In the first sweep, in the streamwlse direction, the streamwise

momentum equation is solved. For three-dlmensional flow the spanwise momentum

equation is also solved concurrently. First, the equations along these streamwise

coordinate lines are solved for the upper surface and thereafter for the lower

surface. The streamwise lines in these two regions extend from the leading

boundary to the outflow or downstream boundary at the termination of the wake.

This leaves only the wake "double line", which must be solved. The line extends

from the trailing edge to the outflow boundary. Only one of these lines is

computed, and the values are set on the other llne. This completes the first

sweep.

In the second sweep the equations are solved on the normal lines to the

surface (cf. Figure 2). First the top surface and then the lower surface regions

are computed until the onset of the wake region. In the wake additional

manipulation of the equations are now performed since the entire region as a whole

must be solved from the bottom to the top. This manipulation involves ordering

the equations appropriately and accounting for the double llne on the centerline
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of the wake. At the boundary layer edges, above and below the airfoil, the

streamwise velocity is specified as the boundary condition. On the wing
surface no slip is specified, i.e. zero velocity. For three-dimensional flows,

the spanwise edge velocity conditions are also specified similarly to the

strea_wise conditions at the boundary layer edge.

Different forms of boundary conditions are specified for the continuity

equation. Since the continuity equation is discretized as a two point trapezoidal

integral form, no boundary conditions as such are specified at the boundary layer

edge but rather, the governing equation is solved there. However, at the

centerline an additional condition is required. Since the velocity is not known

there, a priori, it obviously cannot be specified. Instead, a smoothness

condition is enforced, i.e., the second derivative of the normal velocity is set

to zero. Note that for the momentum equation the governing equation itself is

solved at the centerline.

Once the two sweeps are completed the velocity components are transformed into

their physical normal to the wall and streamwise components.

Two-Dimensional Steady Turbulent Flow for NACA 0012 Airfoil

The case performed is the turbulent flow over a NACA 0012, symmetric airfoil

o

at a 4.86 angle of attack. The freestream chord Reynolds number was .48E+07

and the mean freestream Math number 0.599. The freestream temperature was assumed
O

to be 300 K. The computational domain was chosen with inflow boundary located at

x = .i ft (.i chord) and the outflow boundary located at x = 4.6 ft, while the

outer edge was set to a constant value of .25 ft in the direction normal to

airfoil surface for all x (the airfoil leading edge corresponds to x = 0 and

trailing edge corresponds to x = I). The grid distribution in the normal

direction is based upon a hyperbolic tangent function. In the streamwise

direction, a distribution based on series of error functions was used (Ref. 14).

There were 49 mesh points distributed in the normal direction and 118 mesh

distributed in the streamwise direction around the airfoil (62 grid points in the

body region and 56 grid point in the wake region). From the pressure

coefficients, the freestream velocity was calculated using isentropic

relationships.

At x = .I, the inflow boundary, the displacement thickness of the upper and

lower surfaces are assumed to be the same as that obtained from the integral
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method, which are .60207E-03 ft and .33634E-03 ft, respectively.

The displacement thicknesses Reynolds numbers, Re6*, at the above locations

are therefore, 2800 and 2000, respectively, which can then be used to calculate

the corresponding Cf via the Clauser formula

2/Cf = 5.6 log Re6* + 4.3

The Cole's law velocity profile, i.e.:

u--=-- in + C +

Ur _ L v J

y+ = u +

2_(x) sin2 [_ yl

12 sJ
Wall-Wake Law

I Viscous Sublayer

(9)

where

y+ YLLr U+ U= , = __ , Ur = _rw/P
v u T

and z(x)/K is evaluated from the condition that u = u_ at y/6 = i; furthermore,

constants _ and C are set at .41 and 5.0, respectively.

As described in Ref. 15, the relationship among Re6*, 6, Cf, H(x) is

(Re6 * -65)

6Ur/v
= i + n(x) (10)

Eliminating H(x) from Eq. (9) and Eq. (I0) yields

V/___= _i in _ + 2 [ * -65] 2Ur _ _- Re6
(II)

where

= 6Ur/V

The 6 value, therefore, can be obtained from Eq. (Ii) by a Newton Ralphson

iteration procedure which, together with Cf determines the required velocity

profile. Once the streamwlse velocity profiles are obtained the normal velocity
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can be determined by assuming constant density for the purpose of setting upstream

normal componentsand then integrating the continuity equation.

In the streamwise direction, the boundary layer option was employed, that is

the streamwise diffusion terms were ignored and a backward difference

approximation was used for the streamwise convective terms. The boundary

conditions stipulated on the _ody surface were no-sllp and zero normal velocity.

At the outer edge of the viscous layer the magnitude of the streamwise velocity

componentwas also prescribed. The value of the normal velocity component is not
set, but rather computedas part of the numerical solution, as is the practice in

standard boundary layer procedures. At the inflow boundaries, velocity profiles

are fixed. Furthermore, the intermediate boundary conditions employed on the

first sweepare the physical ones. For steady problems, the imposition of

physical intermediate boundary conditions did not impair the quality of the

solutions obtained. These results are in keeping with the analysis of McDonald

and Briley (Ref. 15) for second order spatial scheme. A comparison between

results obtained from VISTA 3-D and an integral method provided by NASALARC

personnel is shownin Figs. 3 and 4. Fig. 3 shows the displacement thickness as a

function of distance along the airfoil. As can be seen, the agreement of

predicted value between VISTA 3-D and the integral method for pressure side of the

airfoil (lower surface) is excellent. For the suction side of the airfoil (upper

surface), these two results were not in as close agreement, especially when x is

large.

Similar curves for momentum thickness are shown in Fig. 4. Again, for the

lower surface, the agreement is excellent; however, for the upper surface there

was some disagreement between the two solution procedures, with the integral

method overpredicting the values relative to the VISTA3D code.

Two-Dimensional Unsteady Turbulent Flow for NACA 0012 Airfoil

For the unsteady calculation the sample problem provided by NASA LARC

personnel was a NACA 0012 symmetric airfoil which performs a sinusoidal pitching
o

oscillation at the frequency of 4.789 Hz with amplitude of i The freestream

chord Reynolds number was .48E+07 and the mean freestream Mach number was .599.

The procedure for obtaining unsteady flows is similar to the steady solution

procedure. In the steady state case, the inflow and outer edge boundary

conditions are prescribed to be invarlant in time. For the unsteady case,
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however, the velocities at these boundaries are allowed to change in time. At any

instance the outer edge velocity is determined via the given pressure coefficient

obtained from an inviscld calculation. In specifying the upstream velocity

profile the present procedure adopts the same approach as does the steady state

case. That is, the upstream profile is still given by the Cole's wall-wake

velocity profile, but now Cf and 6* are allowed to be periodic functions of time;

i.e.,

Cf = Cfo(l + ACfl cos(wt + @Cf))
(12)

where Cfo and 6"o are the mean (time averaged) skin function and displacement

thickness, Cfl and 61 are their respective amplitudes of oscillation and _cf and

_6- their respective phase shifts. This procedure introduces additional unknowns.

For the mean quantities Cf and 6", the steady state values are used. While the
o o

other four quantities are determined by the characteristics of the current

problem. For this problem the oscillatory frequency, _, is 4.789 Hz, the chord is

1 ft and the freestream velocity is 694 ft/s. Hence, the corresponding reduced

frequency, based on chord, is .0433. This low reduced frequency implies that the

quasl-steady flow is a valid assumption; physically this means that oscillatory

changes are much slower than convection changes. For this reason, the phase angle

_cf and _T_6, in Eq. (9) would be insignificantly small and therefore is set to

zero in the current study. Due to the quasl-steady characteristic, given the edge

velocity in Cole's velocity profile the instantaneous Cf and 6 would then be

determined via the Newton-Ralphson iteration. In this study, however, a reasonable

oscillatory amplitude would be given to Cf and 6" to investigate the unsteady

phenomena.

However, the low reduced frequency nature of the unsteady problem presents

some constraints for the computations. First, the temporal discretizatlons are

determined by the smallest time scale of the problem, i.e., the convective

characteristics of the flow field. In general this means that for each time step

that a particle in the freestream should not travel more than 10%-20% of the chord

length. Based upon this criterion, approximately 1500 time steps are required in

order to achieve temporal accuracy, significantly more time steps than were needed

in the calculation of Ref. 6. As noted previously, 118 points were used in the

streamwlse direction. In order not to use an extensive amount of points in the

trailing edge region, the invlscld pressure distribution was slightly modified to
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diminish the large gradient there. This permitted the use of a coarser grid.

Physically, one expects the inviscid pressure distribution to be higher than the

viscous distribution, so that the aforementioned modification is not unreasonable.

Thereafter, several test runs were performed to determine the optimum time

increment that would not compromise the computational efficiency and numerical

stability. The final selection of At is .00029 sec, which corresponds to

nondlmenslonal time steps of .208 (i.e. for each time increment a freestream

particle would travel about 20% of the chord length) and 720 time steps per cycle.

It is noteworthy that in the Karlsson calculations (Ref. 6), due to the low

freestream Mach number, the reduced frequency based on chord length was in the

order of i to I0. For this reason, the time step could be determined from the

external oscillatory frequency and therefore, 36 steps per cycle in most cases

would produce satisfactory results. For a typical helicopter blade, the reduced

frequency under normal operating condition is usually very low, hence the above-

mentioned computational concerns would also be encountered. For comparison

purposes a turbine blade, has a reduced frequency in the order of i, and thus the

aforementioned problems would not appear at all.

In presenting the results, the skin friction, Cf, the displacement thickness,

$* and the streamwlse velocity profile at the measuring station were Fourier

decomposed into their harmonic components.

co

f(_) = _-- + _ an
n=l

cos_nt + bnwnt }

where

tl+T
w

ao = _ I f(_)coswn_d_

tl

tl+T
w

an = _ I f(_)cos_n_d_

t I

tl+T
w

b n = _ f f(@)sinmn_d_

tl
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and where t I is the time at the start of the integration, and the period T = 2_/_.

Although the code allows for the determination of any number of harmonics,

only the first two were obtained. Therefore, the Fourier series representation

mean velocity is ao/2, the in-phase component of the first harmonic is a I and the

out-of-phase component of the first harmonic is -b I. For the evaluation of the

Fourier coefficients Simpson's integration scheme was used and all data points for

the second cycle were sampled.

Table i is the result of the skin friction coefficient. It is seen from this

table that the symmetry conditions (in the periodic sense) of the upper and lower

airfoil is maintained, which is a necessary condition for the validity of the

results. It is also seen that the mean skin friction coefficient is about fifty

to one hundred times larger than the first harmonic oscillatory amplitude and the

first harmonic amplitude is an order of magnitude larger than the second harmonic

amplitude, which implies that for this particular problem the zero oscillatory

amplitude of the friction coefficient for the upstream velocity profile is a valid

assumption. Another interesting point is that the phase angle changes along the

airfoil stations, which indicates that care must be taken to determine the

upstream profile for a more general problem.

Table 2 and Table 3 present the Fourier analysis of the displacement thickness

and momentum thickness, respectively. The general observations are similar to

those of the skin friction coefficient, i.e.: i) the symmetry conditions are

satisfied; 2) the mean value is much larger than the oscillatory amplitude and the

second harmonic oscillation is negligible; and 3) the phase angle is a function of

location along the airfoil.

Table 4 shows the Fourier analysis of the streamwise velocity component at

various stations along the normal direction at x = .8 (chord). It can be seen

from this table that the mean value is the most important Fourier coefficient and

therefore there is a significant phase shift from the wall to the outer edge.

The Fourier analysis of the pressure coefficient obtained from an inviscid

analysis is shown in Table 5. As can be seen in this table the mean value and

first harmonic amplitude of the pressure coefficient at the corresponding stations

on the upper and lower surfaces are practically the same and the oscillatory

angles are nearly 180 degrees out of phase. Furthermore, the amplitude of the

first harmonic oscillation is about fifteen to twenty times larger than the second

harmonic oscillation, indicating the first harmonic dominancy of this particular

problem due to the small pitch oscillation.
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y/6 Calculation

In order to test the nonorthogonal capability in two-dlmensional and

three-dimensional flows, several demonstration calculations were conducted. For

the two-dimensional case, a y/6 calculation was undertaken for the incompressible

turbulent flat plate flow. In previous calculations a cartesian coordinate system

was employed, consisting of streamline and wall-normal coordinates. Since the

boundary layer grows rather rapidly from leading to trailing edge; near the

upstream boundary there would be very few points contained within the boundary

layer. In order to cluster more points into the boundary layer, the outer edge

was set at twice the local boundary layer thickness and allowed to grow at a x_

rate. Thus, the 'streamwise' coordinate lines were no longer parallel to the wall

but were curved, while the normal to the wall coordinates remained unchanged.

Hence, the intersection of these two coordinates led to a full nonorthogonal

coordinate system in which all geometries terms would be tested. It should be

noted that in order to apply the method to generalized coordinates not only must

one obtain the appropriate geometric coefficients, but one must compute the

applicable velocity components. Since the governing equations are solved along

coordinate lines, the physical velocity components must be transformed correctly

to account for the curvature of the lines. Further, the pressure gradient term

which is imposed on the boundary layer, at the outer edge was also accounted for

to assure that one of the principal assumptions that the pressure remain constant

through the layer (normal to wall) be enforced.

The results of the calculations for the nonorthogonal cases were compared to

the cartesian case, with regard to velocity profile, skin friction coefficient

displacement thickness and momentum thickness. These comparisons indicated that

the results were well-behaved and given indistinguishable values, verifying the

procedure. These modifications were then employed to compute the flow over a

NACA 0012 airfoil.

Three Dimensional Unsteady Flow over a Skewed Nonorthogonal Coordinate System

For the three-dlmenslonal calculation, the other aspect of the nonorthogonal

coordinate system was investigated. In this case the nonorthogonality was limited

to the surface, in the streamwise and spanwise directions instead of the

normal/streamwise direction considered previously. The case undertaken was the
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three-dimensional flow over a flat plate in which the streamwise flow is skewedto

the leading edge at 45° . Fig. 5 shows the orthogonal case, which was studied in

Ref. 6. In figure 6 is shownthe case considered in the present study in which
O

the streamwlse coordinate lines are skewed at a 45 angle to the spanwise lines,

and the normal lines to the surface remain normal. In this coordinate system all

lines remain straight. The resulting spanwise velocity components in the new

nonorthogonal system should remain zero. This indeed was the case for the

calculation. The calculation was run in the steady and unsteady modes and the

results compared well with the cartesian calculation.

Three-Dimenslonal Win_ Studies

The first step in treating the flow over actual three-dlmensional wings is to

specify the geometry. This entails, as with the two-dimensional airfoils, the

description of the wing cross-sectional shape, the specification of inflow and

outflow boundaries and the boundary layer edge. A similar procedure to that which

was used for the two-dlmensional case was considered here for three-dlmenslons

for specifying the surface and distributing the grid points. Please refer to that

section for details. The one important difference for the three-dlmenslonal case

is that now, in addition to the streamwlse and normal coordinate distribution, a

spanwise distribution is required. Such a distribution is obtained by considering

the wing consisting of a sequence of spanwise 2-D sections. The number is chosen

from a consideration of the variation of spanwise shape; i.e., taper and sweep and

the requirement of smooth geometric coefficients. Hence, the three-dimensional

flow field is built up from a series of two-dlmenslonal sections. An example of

such a coordinate system is given in figures 7 to 13, in which an ONERA wing is

shown.

Figures 7 and 8 are 2-D sections of the wing.

Figures 9, i0 and Ii are 3-D perspectives with spanwise coordinates on the

wing and streamwise normal coordinates at the tip and root sections.

Figures 12 and 13 show the spanwlse coordinates on the wing's surface. Note

that the wing terminates at a fixed streamwise location.

Note that at the coordinate system begins .i chord downstream of the leading

edge where the inflow boundary conditions are specified.

The solution procedure is similar to the two-dlmenslonal calculation with the

exception that the spanwise momentum equation must be solved. This leads to a
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three sweep method (see Appendix) with an increase in matrix block size.

As can be realized, the inclusion of a third dimension increases the

complexity of the geometric specification since first and second variations of the

metric need to be considered in three dimensions. For the skewed boundary layer

described previously, although the streamwise and spanwlse coordinate system was

nonorthogonal, there was no curvature. This reduced the number of nonzero

geometric terms. However, in the current cases where there is curvature of the

coordinate lines, additional terms now present themselves. The entire geometry

array was thus carefully checked for accuracy and smoothness. In order to verify

the solution procedure a test case was constructed in which the entire

three-dlmenslonal flow code would be exercised, but in which the flow remains

essentially two-dimensional. In this case the wing consisted of 5 identical

spanwise planes (2-D airfoil sections), as shown in figures 10-13. First, the

two-dlmenslonal counterpart was solved in the steady state. This solution was

used as the inflow boundary condition. At the other spanwise boundary (plane 5)

an outflow boundary condition was set so that the first derivative velocity

components was equal to zero. This boundary condition transforms the flow field

to one which does not vary in the spanwlse direction, thereby retaining a

two-dimensional character. Calculations were conducted for this test case.

Although the flow field appeared to be two-dlmenslonal through most of the

flow field, there were regions where anomalous velocities appeared. Efforts were

undertaken to discover the source of this problem. Unfortunately these efforts

were not totally successful. Areas in the code were identified which could

contribute to the observed results. In particular the computation of the source

terms which arise from the evaluation of terms at the lagged time step were

identified as the prime source. However, further work could not be conducted

under the present contract. The results obtained to date are very encouraging and

indicate that calculations of the type considered are realistic and attainable.

CONCLUSIONS

In this report, a method for solving unsteady flows over two- and

three-dlmenslonal wings was described. The initial computer code was extended to

treat three-dlmenslonal geometries in a nonorthogonal coordinate system containing

coordinate lines with curvature terms. The entire wing is solved as a whole,
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including the upper and lower surfaces and wake. The method was tested in two

dimensions for the unsteady flow over a NACA0012 airfoil. In three dimensions,

the coordinate system, geometry and governing equations were extended to treat

realistic wings. Although complete three-dimensional solutions were not obtained,

this effort has laid the groundwork for the computation of such flow fields of

interest.
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APPENDIX A

SPATIAL DIFFERENCE APPROXIMATIONS

QR Operator Nor.ation

In I:his section, implicit tridiagonal finite difference approximations

to the first and second derivatives and to the spariaI differential operator

are considered. The QR operator procedure for generating a variety of

spatial discretizations is also introduced. As special cases, standard

second-order finite differences, first-order upwind differences, fourth-order

operator compact /mpliciC (OCI), fourth-order generalized OCI and exponential

type methods are obtained. Since all these schemes are of the same form

(cf. below), a slng'le subroutine _ich defines the difference weights is all

that is required to identify the method, _ile leaving the basic structure of

the program unaltered. The rationale for the use of the QR approach in the

present problem is discussed in detail £n Ref. 8.

The QR formulation allows for ADI methods and permits the treatment of

systems of coupled equations, _.e., LBI method_. Although Variable mesh

schemes can be employed within the QR framework, it L$ believed preferable to

use analytld transformations to obtain a uniform computational mesh, hence

attention is restricted to uniform mesh formulations.

The general concepts and notation _ill be introduced for two-point

boundary value problems and then the methodology w£11 be exrended to more

general linear and nonlinear parabolic part/a! differential equations i6 one

dimension. The application of QR operator method co multidimensional

problems is discussed in the section pertaining co the LBI scheme.

Consider the two-point boundary value problem

L(U) " o(×)Uxx + b(x)u x + C(X)U ": f(x) (A-l)

with boundary values u(O) and u(l) prescribed. Derivative boundary

conditions, although not discussed here, can easily be incorporated into the

framework of the QR operator notation_ Let the domain be discretized so Chat

xj = (j-l)h, j= I, 2, , J + I, and Uj-_-u(xj), F_-_

Ux(Xj) , S_uxx(X j) and h = I/J is the mesh wldCh. The numbering

convention was chosen here to be compatible with FORTRAN coding.
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Without loss in generality for a(x) * O. Eq. (A-I) can be divided by

a(x) so that we may treat instead the following equation

where

L(u) - uxx + b(x)u x + c(x)u - f(x) (A-Z)

bfx) - b'(x)/o'(x), c(x) - _'(x)/_'(x) ond f(x) - f(x)/o'(x)

Substituting the ££nlte difference approxlmaCions to the first and

second derlvat _ves

D° Uj " --Uj+I-Uj-I
"2h 2h

D+D Uj. t - 2Uj +Uj.+I

---6--_-ui = hZ = sl

into Eq. (A-2) and rearranging, we obt:a:Ln I

= Fj " Ux(X j) + O(h 2)

= Uxx(X j) + O(h z)

(A-3)

(A-4)

[+ 1 +b-÷J°,+[ '=+ J°,-,', '"'
or

Rcj

[I :? ]Uj_! +[,+=]2 Uj+= - hZfj

(A-5)

where Rcj = hbj is the cell Reynolds number.

Equation (A-5) can be generalized by introducing operator format, i.e.

4_

"+ . hZ(q; +q;fj +qjfj ) (A-6)r i Uj_ I + r; Uj + rj Uj, I fj-I +1
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where the superscripts (-) minus_ (c) center, and (+) plus indicate the

difference weight that multiplies the variable evaluated at the (j-I), (j)

and (J+l) grid points respectlvely, and where the rj's and qj's for grid

point j are functions of h, bj_ 1, bj, bj+ 1, cj- 1, cj and cj+ 1.

Comparing Eqs. (A-5) and A-6) we can tdentlfy the r.'s and qj's, viZ. •

_]".,-%/2 q; -o

c hZcj crj = "2 qj = I

r; - I + Rcj/2 qj - 0

We now define the ccid£agonal difference operators Q and R

.[oj]-qoj-,+.;oj+,;o,.,
Co[.j]- _;..-.+_,'j +,;.,+.

(A-7)

(A-8)

Roti,g that L(u) = f and substituting Eq. (A-8)into Eq. (A-6), we obtain

(A-9)

Alternatively by employing the inverse operator Q-I an expression for

L(u)j can be obtained

I

L(U)j = --_ 0 -I RUj

(A-].0)
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For standard central finite differences Q = Q-I = I,. the identity

matrix, so the spatial operator can be given explicitly in terms of Uj_I,

Uj and Uj+ 1. However, in general, for higher order methods whereas Q is

tridiagonal Q-I is a £ull matrix, and the spatial operator cannot be given

explicitly in terms of the variables at adjacent grid points. Hence, Eq.

(A-10) provides a method for expressing the spatial operator for a wider class

of difference approximations. The £ormalism in Eq. (A-10) is also applicable

for first and second derivatives appearing alone (cf. Ref. _t8). In Refs. 8

•_nd" :19 a technlque_ue :to Berg@r,-.et al, _""in dem_ibed for construct/rig fourth

order tridiagonal methods which possess a monotonlcity property as the cell

Reynolds number is increased. Rc ÷ ". This type of scheme is an option in

the computer code.

APPENDIX B

LII_.AILYZE1) BLOCK _LICIT SOtEME

Consider a system of nonlinear partial differential equations

where _ is a vector of unknowns and Y is a source term vector which is a

1 2 3
function of x , x , x and t. Extension to .source terms whlch are functions

of _ are discussed in Ref. 15 - _ is a three-dimensional nonlinear

differential operator and the matrix A appearing in the momentma equations is

equal to 0I where O is the density and I the unity matrix.

Equation (B-I) may be centered about the n+8 time level, i.e. t n+B =

(n.+_)At = nAt+SAt = in+sAt, and written

An+/_ [_n÷,__n]/At --_n+/_c_n+/3+ xF n+/3` (B-2)

where 0 < 8 < 1 is a parameter allowing one co center the time step, i.e.,

8 -- 0 corresponds to a forward difference, 8 -- 1/2 to Crank-Nicolson and 8 --

1 to a backard difference.
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After linearizing Eq. (B-2) by Taylor series expansion in time about the

nth time level by the procedure described in Ref. 15 to give a second-order

linearization, we obtain

(B-3)

where _ is the l£nearized differential operator obtained from _.

The difference between the nonlinear operator _ and the llnear

operator _ is defined as Mn = _n _ _n. At the intermediate level

n + B, _n+B is represented as

 n.+p= p (B--4)

Using these relationships and droppir_g the vecLor superbar for convenience a

two-level hybrid implicit-expllcit scheme is obtained

(B-s)

The vector _n+B represents all of the terms in the system of

equations which-are treated explicitly. More about this will be said later,

but for the moment note that _n+B may be approximated to the requisite

order of accuracy by some mult£1evel linear expl£cit relationship, or

approximated by _n with a consequent order reduction in temporal accuracy.

The operator _ is now expressed as a sum of convenient, easily

invertible suboperators _ = _l + _2 + .... _m" In _he usual ADI

framework these suboperators are associated with a specific coordinate

direction. Further, it is supposed that these suboperators can be expressed

in the QR notation introduced earlier. Writing _n+B and Hn_ n as a

single source term Sn+B, Eq. (B-5) is written as

:  o+p+ (B-6)
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To solve this system efficiently it is split into a sequence of easily

invertible operations following a generalization of the procedure of Douglas

and Cunn (Ref. 18) in its natural extension ¢o systems of partial

differential equaclons. The Douglas--Cunn splitting of Eq. (B-6) is vriccen as

the folloviug three-step procedure

"I*'-'1/"' =_4(_>"-.°i +.[.e,+._:+.._:]®"+:+_
_[."_¢]/,,, =_;'[¢ •,:]+ e_t[_>"-_>°]+[._,,,"+..,_+_.,.;]."+_,.,-p

',"[*'"--¢.1/",:e.4[®"-'1 +_2[_'" -*"] +e.L:[." "--.¢]
-t- n n ii+[_,,.f:,+-,',]_+_.+_, <,,_,>

which can be transformed Co the alCernaClve form

(n-.8)

If the intermediate levels are eliminated, the scheme can be wrlCCen in the

so-called factored form

(B-9)

The ADI formulatlon given in Eq. (B-8) is directly applicable for L i

operators represented in Q-IR operator format. Consideration of

intermediate boundary conditions and the removal of the inverse operator

Q-I is given in Ref. 12.

It is worth noting that the operator _ or _ can be split into any

number of components which need not be associated with a particular

coordinate direction. As pointed out by Douglas and Gunn (Ref. ll), the

criterion for _dentifying sub-operators is that the associated matrices by

"easily solved" (i.e., narrow-banded). Thus, mixed derivative_ and
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complicating terms which might inhibit the use of OCI can be treated

implicitly within such a framework, although this would increase the number

of intermediate steps and thereby complicate the solution procedure.

An inspection of Eq. (B-8) reveals that only the ltnearized operators

,_n, _n and _ n appear. Indeed, the computer code employs this feature by
1 2 3

evaluating these three operators before the first sweep, storing them and

accessing them as needed in the subsequent three sweeps. In addition, the

terms arising from the nonlinear terms are immediately absorbed into Sn+B

as they appear, allowing for an efficient evaluation of the terms, in the

differential equations.

The spatiai operators appearing in the differential equations

._ n n .nI' "_2 and "_3 must be identified at least formally in order Co isolate

the coefficients "that are to be used in the construction of the Q and R

operators. These operators can be represented in standard form at each grid

point, i.e.,

=a n _ + an q5 + an a n c_z + nn ,, ,,,, ,z. + ,4

In Eq.(B-IO)the first subscript of _ indicates the veloclty component

(associated with the corresponding direction) and " , " indicates a

n
derivative. The subscripts of the a.. refer to the direction (1) and the

z3

term in the equation (j) respectively. Note chat the equation is in

quasi-linear form, since the coefficients of the derivative operators need to

be identified, for use with the QR operator technique employed here.

Alternate schemes have been proposed by LevenChal (Ref. 20) for equations in

conservation form but are not considered here. In the following section, a

description will be given of how this entire operator is discretized by

employing the QR operator format, and how the discretizaCion is incorporated

into the LBI framework in order Co solve the system of equations (B-8).

The continuity equation is considered first. Since it is a first-order

partial differential equation it does not have the standard form of Eq.

(B-9). Furthermore, in the l inear izat ion process O has been eliminated in

favor of the u i velocity components so that the continuity equation has

become an equation for the three velocity components, and not density.
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An inspection of the system of equations under consideration _eveals

that substantia! savings can be realized if the equations are partioned

appropriately. Due to the use of a boundary layer coordinate system, the

normal velocity appears only in conjunction with terms associated with the

normal "3" direction in the two momentum equations. Hence, in the first two

sweeps where directions "1" and "2" are implicit one is required to solve

only for the two corresponding velocity components in the streamwise and

spanwlse momentum equation without the need of considering the continuity

equation. However, on the third sweep where all 3 velocity components

appear, one must aolve all 3 equations. This strategy reduces the solution

procedure to the inversion of two 2 × 2 block matrices and one 3 x 3 block

matrix rather than three 3 x 3 block matrices which leads co a substantial

reduction in computation t/me. If the Eull Navier-Stokes equations were

considered (including a normal momentum equation) the aforementioned

partion£ng could not be applied since the normal velocity would appear in all

three sweeps.

The question that arises is how to appropriately split the continuity

equation, since it need only be solved on the third sweep. Here again the

Douglas-Ounn formulation leads to the appropriate choice. The continuity

equations written in conservation form is,

ap I
a-_ - + j 0xr [dpul] = O (B-Z1)

After linearizing and eliminating p, the increment form is obtained

A n Au TM + B n AW n+l +
z t/3' a
j _x_ vnAnAu n+l + vnB n Awn+l+ pnAvn+l ]

AI

J e ,].[ Jpu + AI_ _ Aun+l+ n+i]J dx ]- [ (pn + unAn) (unBn)Aw (B-12)

+
AU3 a

j ax z

1
where a11 the velocity components are the contravariant components u = u ,

2 3
w = u and v = v J is the Jacob ian and
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n

- T"-"-_ g= i u + glz wn

.pn n
8 n = -- [ g22 w "F (J12 Un]

T n

By employing the Douglas-Gunn procedure, Eq. (B-12) is represented as a

third sweep equation, an_ a consistent approximation is obtained co the

continuity equation• i.e.• the x 1 derivative term is evaluated at the * level

and the x 2 derivative term is evaluated at the _rk level. The values of the

intermediate derivative terms are obtained after the solution of the first

cvo sweeps of the tvo momentma equations. Hote that these terms do not

contain the normal velocity. The equation can thus be written in symbolic

form

.,",,u"',+8",,,,,"-'-..-,,,,e" r,,{,,.v.,,..-.v.,,.A,,.,--,-,o..,,,..,}]
• d ax 3 _ (B-13)

Since the only term involving v is in _he x 3 derivative

directly integrate the equation rich respect: Co x 3 "• _L.e

term_ one call

X

o []"
The next section describes how this is done very easily via the QR operator

scheme. The concept oE integrating directly the continuity equation is not

new. Davis (Reg. 21) in his coupled procedure for the solution of

t_to-dgmenslonal steady boundary layer equations used a trapezoidal rule Co

integrate the continuity equation. Weinberg (Refs. 22 and 23) also used a

fourth-order Simpson integration scheme Co solve the compressible boundary

layer equations. Such procedures are,stable and offer a viable alternative

to approximating the derivatives by finite differences. _ote that

conceptually the continuity equation in integrated form is treated on each

sweep of the Douglas-Cunn splitting, although in actuality this can be viewed

as having the same form as each sweep and the integration operator can be

incorporated into the _Za and _ difference operators, and as a result the

stability and consistency of the original splitting is retained.
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X Location (ft) A0 A1 B1 A2 B2

o
o_
1:

u)

t.,

G)
EL
EL

0.10
0.19
0.28

0.37
0.46

0.55
0.64
0.73

0.82
0.91

.38967E-02 .67699E-07 -.22287E-06 .45814E-08 .45872E-08

.42797E-02 -.17854E-05 .10715E-03 .17208E-05 .14361E-05

.37928E-02 .18962E-@4 .58182E-04 .22280E-05 .28273E-05

.33806E-02 .25652E-04 .34367E-04 .16299E-05 .21941E-05

.30506E-02 .31949E-04 .12734E-04 .18953E-05 .28714E-05

.27747E-02 .33389E-04 -.39809E-06 .17504E-05 .28084E-05

.25333E-02 .33425E-04 -.11757E-04 .57673E-06 .10136E-05

.23010E-02 .31304E-04 -.20715E-04 .88873E-06 .16173E-05

.20370E-02 .26728E-04 -.27119E-04 .54921E-06 .11568E-05

.16355E-02 .22326E-04 -.36889E-04 .54578E-06 .13082E-05

o

t_

03
t_

o,

0.10
0.19

0.28
0.37
0.46

0.55
0.64
0.73
0.82

0.91

.38967E-02 -.65485E-07 .22272E-06 .51117E-08 .20698E-08

.42784E-02 .14041E-05 -.10725E-03 .17291E-05 .26166E-05
.37919E-02 -.19271E-04 -.58279E-04 .23958E-05 .34449E-05

.33800E-02 -.26004E-04 -.34382E-04 .18662E-05 .24906E-05

.30502E-02 _32274E+04 -.12727E-04 .21981E-05 .29963E-05
.27745E-02 -.33953E-04 .47986E-06 .20226E-05 .27750E-05

.25332E-02 -.33865E-04 .11873E-04 .83414E-06 .85366E-06
.23010E-02 -.31758E-04 .20835E-04 .11379E-05 .13654E-05
.20372E+02 -.27238E-04 .27251E-04 .75024E+06 .85661E-06

.16360E-02 -.22822E-04 .37076E-04 .70514E-06 .91072E-06

Table i. Fourier coefficients of the skin _rlctlon coefficient,

M = .599, e = 0°, Re = .48 X i0 I, _ = 4.789 Hz, Amplitude = 1°.
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X Location (ft) A0 A1 B1 A2 B2

(J

,=

U)
t_

(D
O.
CL

0.10 .37558E-03 .10251E-05 -.34408E-05 .41487E-07 .37172E-07

0.19 .60572E-03 .90040E-05 -.14388E-04 -.72212E-06 -.77157E-07

0.28 .88322E-03 .16692E-04 -.28909E-04 -.10799E-05 -.24535E-06

0.37 .11733E-02 .23646E-04 -.42388E-04 -.12803E-05 -.29465E-06

0.46 .14753E-02 .31001E-04 -.57202E-04 -.16526E-05 -.62924E-06

0.55 .17918E-02 .37962E-04 -.72360E-04 -.18996E-05 -.84942E-06

0.64 .21279E-02 .44949E-04 -.89561E-04 -.17706E-05 -.53297E-06

0.73 .24990E-02 .51640E-04 -.10957E-03 o.23653E-05 -.11151E-05

0.82 .29499E-02 .58006E-04 -.13420E-03 -.27464E-05 -.13336E-05

0.91 .36501E-02 .68505E-04 °.17760E-03 -.36737E-05 -.21136E-05

¢)
t_
t.,

(/}

t_

o
._!

0.10 .37562E-03 -.10288E-05 .34379E-05 .48457E-07 -.26746E-08

0.19 .60583E-03 -.90139E-05 .14406E-04 -.66228E-06 -.24148E-06

0.28 .88345E-03 -.16711E-04 .28933E-04 -.96239E-06 -.57742E-06

0.37 .11737E-02 -.23660E-04 °42403E-04 -.11091E-05 -°78803E-06

0.46 .14758E-02 -.31013E-04 .57216E-04 -.14187Eo05 -.12807E-05

0.55 .17924E-02 .37951E-04 .72349E-04 -.16251E-05 -.16754E-05

0.64 .21287E-02 -.44881E-04 .89528E-04 -.14518E-05 -.15477E-05

0.73 .25000E-02 -.51517E-04 .10952E-03 -.19970E-05 -.23488E-05

0.82 .29512E-02 -.57755E-04 .13411E-03 -.23460E-05 -.28170E-05

0.91 .36521E-02 -.68062E-04 .17741E-03 -.32136E-05 -.40410E-05

Table 2. Fourier coefficients o 5 the displacement thickness,l_ _ = .599,
= 0 °, Re = .48 x i0 , _ = 4.789 Hz, Amplitude =
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X Location (ft) AO A1 B1 A2 B2

¢D
(3
¢0

03
t..

CL
Q.

0.10

0.19
0.28
0.37
0.46

0.55
0.64
0.73

0.82
0.91

.19396E-03 *.15819E-05 .53122E-05 .67836E-07 .28307E-07

.36255E-03 .45777E-05 -.40789E-05 -.35501E-06 .97161E-07

.54074E-03 .96275E-05 -.12559E-04 -.53417E-06 .91897E-07

.72766E-03 .14538E-04 -.21068E-04 -.66937E-06 .64907E-07

.92427E-03 .19361E-04 -.29917E-04 -.81875E-06 .21795E-07

.11317E-02 .24066E-04 -.39249E*04 -.93101E-06 -.29324E°07

.13532E-02 .28596E-04 -.49537E-04 -.10316E-05 -.12977E-06

.15977E-02 .32907E-04 -.61394E-04 -.12272E-05 -.22583E-06

.18904E-02 .37306E-04 -.76396E-04 -.14735E-05 -.40425E-06

.23236E-02 °43333E-04 -.10003E-03 -.18755E-05 -.71813E-06

(3
t_
b..

,-z
03

t..

CD

0
_J

0.10
0.19

0.28
0.37
0.46

0.55
0.64
0.73

0.82
0.91

.19391E-03 .15932E-05 -.53138E-05 .54570E-07 .87310E-07

.36256E-03 -.45687E-05 .40855E-05 -.32827E-06 .50857E-07

.54082E-03 -.96154E-05 °12566E-04 -.46961E-06 -.53037E-07

.72781E-03 -.14520E-04 .21071E-04 -.56848E-06 -.17724E-06

.92449E-03 -.19332E-04 .29916E-04 *.67790E-06 -.32197E-06

.11320E-02 -.24020E-04 .39238E-04 -.75995E-06 -.47815E-06

.13536E-02 .28516E-04 .49512E°04 -.83094E-06 -.69132E-06

.15983E-02 -.32778E-04 .61346E-04 -.99498E-06 -.91953E-06

.18911E-02 -.37094E-04 .76321E-04 -.12185E-05 -.12506E-05

.23246E-02 -.43001E-04 .99899E-04 -.15864E-05 -.17971E-05

Table 3. Fourier

_: 0 ° '

coefficients of the momentum thickness, M = .599,

Re = .48 x 107 , _ = 4.789 Hz, Amplitude = 1 °.
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Y Location (ft) A0 A1"10E-02 B1°10E-02 A2"10E-09 B2"10E-04

.79905E-05 .04948 .06511 -.02223 .11204 .19723J

.19971E-04 .12440 .16135 -.05247 .27655 .49104

.37933E-04 .22848 .27689 -.07411 .45449 .85434

.64861E-04 .33992 .35805 -.05323 .53970 1.10370

.10523E-03 .43214 .40067 -.01016 .53985 1.20040

.16575E-03 .50287 .42780 .03013 .51757 1.23020!

.25645E-03 .55880 .44991 .06339 .48891 1.22900

.39237E-03 .60619 .47085 .09180 .45228 1.20170

.59630E-03 .64962 . .49201 .11867 .40013 1.14100!

.90094E-03 .69217 .51366 .14719 .32432 1.036701

.13572E-02 .73587 .53623 .17903 .22760 .89435

.20395E-02 .78255 .56236 .21255 .14362 .76938

.30582E-02 .83504 .59775 .24339 .14978 .78787

.45759E-02 .89799 .64677 .27354 .32806 1.0704G

.68298E-02 .97582 .68939 .34904 .64044 1.50270

.10161E-01 1.05930 .60300 .67043 1.07000 2.11460

.15052E-01 1.08810 .30899 1.24970 -.33646 -.10069

.22161E-01 1.08860 .29894 1.26970 -.50781 -.33409

.32340E-01 1.08860 .29850 1.26970 -.50740 -.33452

.46615E-01 1.08860 .29791 1.26960 -.50683 -.33511

.66057E-01 1.08860 .29714 1.26940 -.50608 -.33586

.91504E-01 1.08860 .29622 1.26930 -.50656 -.33494

.12313E+00 1.08860 .29663 1.26910 -.53360 -.29539

Table 4. Fourier coefficients of the streamwise

velocity component at_ 0.64 ft, M = .599, = 1°.
= 0 °, Re = .48 x i0 , _ = 4.789 Hz, Amplitude
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¢D
¢)
CO
'1::

¢0
tm

CL
Q.

X Location (ft) A0 A1 B1 A2 B2

0.00667

0.02
0.10

0.20
0.30
0.40

0.50
0.60

0.70
0.80

0.90
1.00
2.35

4.259

.37359E+00 .53143E-01 -.15568E+00 .65542E-02 .10341E-01
-.16407E+00 .66513E-01 -.19742E+00 .57324E-02 .119531=-01
-.50579E+00 .34666E-01 -.12677E+00 .28572E-02 .66401E-02

-.48913E+00 .15502E-01 -.86272E-01 .12610E-02 .36559E-02
-.42419E+00 .50351E-02 -.62910E-01 .77438E-03 .23653E-02
-.35098E+00 -.10750E-02 -.47713E-01 .55894Eo03 .16619E-0."

'-.27876E+00 -.46788E-02 -.37000E-01 .45516E-03 .12288E-0
-.20939E+00 -.66793E-02 -.28956E-01 .39502E-03 .92628E-0:

-.14071E+00 -.7541BE-02 -.22558E-01 .35348E-03 .69629E-0
-.66016E-01 -.75031E-02 -.17173E-01 .31613E-03 .50170E-0_

.32960E-01 -.67228E-02 -.12298E-01 .27679E-03 .31814E-0:

.13490E+00 -.65013E-02 -.11328E-01 .26991E-03 .27956E-0:

.25901E-01 -.32397E-03 -.69127E-05 .33794E-04 -.58784E-0

.64130E-02 -.39253E-03 -.14794E-03 .36091E-04 -.11784E-0_

O

"t:

o9
t..

(9

O
.-I

0.00667

0.02
0.10
0.20
0.30

0.40
0.50
0.60
0.70

0.80
0.90

1.00
2.35

4.259

.37234E+00 -.52208E-01 .15568E+00 .63076E-02 -.90089E-03

-.16566E+00 -.65501E-01 .19744E+00 .66513E-02 -.23155E-02
-.50644E+00 -.34047E-01 .12677E+00 .31258E-02 -.25283E-02

-.48916E+00 -.15117E-01 .86259E-01 .11151E-02 -.25727E-02
-.42390E+00 -.47297E-02 .62885E-01 .41961E-03 -.21672E-02

-.35051E+00 .13454E-02 .47677E-01 .96358E-04 -.17663E-02
-.27820E+00 .49352E-02 .36959E-01 -.56707E-04 -.14269E-02
-.20880E+00 .69319E-02 .28902E-01 -.12427E-03 -.11465E-02
-.14015E+00 .77983E-02 .22496E-01 -.14360E-03 -.91693E-03

-.65507E-01 .77729E-02 .17100E-01 -.13505E-03 -.72658E-03
.33374E-01 .70029E-02 .12215E-01 -.99902E-04 -.56533E-03

.13529E+00 .67711E+02 .11241E-01 -.89012E-04 -.53487E-03

.25919E-01 .38366E-03 .10067E-03 .20206E-04 -.55207E-04

.64370E-02 .46165E-03 .10643E-03 .18169E-04 -.22176E-04

Table 5. Fourier coefficients of the outer edge

free stream pressure Goefficient, M =
e = 0°, Re = .48 x 101 , _ = 4.789 Hz,

O
Amplitude = 1 .

.599,
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