NASA
Technical
Paper
2974

1990

Low-Energy Gamma Ray Attenuation Characteristics of Aviation Fuels

Jag J. Singh
Langley Research Center
Hampton, Virginia
Chih.Ping Shen
Old Dominion University
Norfolk, Virginia
Danny R. Sprinkle
Langley Research Center
Hampton, Virginia

Summary

Attenuation characteristics of Am^{241} (59.5 keV) gamma rays were investigated in 270 aviation fuel samples (Jet A and Jet A-1) from 76 airports around the world as part of a world-wide study to measure the variability of aviation fuel properties as a function of season and geographical origin. The study began in August 1988 and ended in August 1989. All measurements were made at room temperature, which varied from $20^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$. Fuel density ρ was measured concurrently with the linear attenuation coefficient μ to provide a measure of mass attenuation coefficient μ / ρ for each test sample. In 43 fuel samples, ρ and μ were measured at more than one room temperature. This provided μ / ρ values for them at several temperatures. The results were found to be independent of the temperature at which μ and ρ were measured. Although individual values of μ and ρ vary considerably from airport to airport as well as from season to season, μ / ρ for all samples is constant at $0.1843 \pm 0.0013 \mathrm{~cm}^{2} / \mathrm{g}$. This constancy of μ / ρ for aviation fuels is significant since it indicates that a fuel quantity gauging system based on low-energy gamma ray attenuation will be viable throughout the world.

Introduction

One of the outstanding problems in the aviation industry relates to the fuel quantity gauging (FQG) systems aboard aircraft. All current aircraft FQG systems are based on the old capacitance gauges which reportedly suffer from frequent fouling and electrical noise problems. We recently demonstrated the feasibility of a nuclear gauge for fuel-quantity measurement aboard the aircraft (ref. 1). The proposed nuclear fuel gauge is based on the attenuation of low-energy gamma rays in the fuel column between a collimated radiation source and a collimated colinear detector. Our modeling studies with weak Am ${ }^{241}$ (59.5 keV) radiation sources indicated that it is possible to continuously monitor the fuel quantity in the aircraft tanks to an accuracy of better than 1 percent.

The Airlines Electronic Engineering Committee (AEEC) took our proposal under advisement and suggested that we participate in a study to measure Am ${ }^{241}$ (59.5 keV) gamma ray attenuation coefficients in commercial aviation fuel samples collected from all the major airports in the world over a period of 1 year (refs. 2 to 4). This study would show how fuel mass attenuation characteristics vary as a function of the season and the geographical origin of the samples. If the nuclear fuel gauge is to function reliably, the mass attenuation coefficient values for all
fuels must remain essentially constant for all seasons. This paper reports the final results of that study.

Symbols

$B_{n} \quad$ height of wing fuel compartment, $n=1$ to 14

SL source-detector separation
T room temperature
$\mu \quad$ linear attenuation coefficient
$\rho \quad$ density

Experimental Procedure

The monitoring system for measuring fuel attenuation characteristics is made up of a highly collimated $10-\mu \mathrm{Ci} \mathrm{Am}^{241}$ gamma ray source and a $5.1-\mathrm{cm}-$ diameter by $5.1-\mathrm{cm}$-thick $\mathrm{NaI}(\mathrm{Tl})$ crystal mounted on a high-gain photomultiplier. We selected Am^{241} as the radiation source because of its long half-life (458 years) and low energy (59.5 keV). The source and the detector assembly are separated by a $5.1-$ cm -diameter by $10.2-\mathrm{cm}$-long glass test cell. Figure 1 shows the schematic diagram of the experimental system. The number of photons arriving at the detector I_{x} depends on the composition of the fuel in the test cell:

$$
\begin{equation*}
I_{x}=I_{o} e^{-\mu x} \tag{1}
\end{equation*}
$$

where I_{o} is the number of photons incident on the fuel column of length x and linear attenuation coefficient μ. By using a well-known medium in the test cell-such as air or distilled water--we can determine the value of I_{o} from the measured value of I_{x}. Once I_{o} is determined for a fixed source-detector assembly, I_{x} becomes the critical measurable parameter in the fuel-quantity study. An independent measurement of the density ρ of the test fuel, coupled with μ determined from equation (1), then permits a direct computation of the mass attenuation coefficient μ / ρ of the sample. This value is expected to be independent of temperature for a given test sample. Further details of the experimental procedure and analysis techniques can be found in reference 5 .

The gain stability tests of the spectroscopic measurement system were conducted by monitoring the "air" spectra every day before and after the test sample attenuation measurements. The channel numbers of the centroids of the before and after air spectra were always found to agree within ± 0.5 throughout the course of this study. If the average channel number of these air spectrum centroids differed from the initial value by more than ± 1.0, the
photomultiplier bias was adjusted to bring it back to the initial channel number of 331.5 . Figure 2 shows the location of air centroid during the entire course of this study. The photomultiplier voltage had to be adjusted only four times during the entire study. The voltage changes required were less than $\pm 0.5 \mathrm{~V}$. The original bias on the photomultiplier was 990.0 V .

Experimental Results and Discussion

The AEEC arranged to provide fuel samples from international airports all over the world over a period of 12 months starting in August 1988. All fuel samples were designated Jet A (or Jet A-1) by the participating airlines. Figure 3 shows the global distribution of the airports sampled. Samples were received from various airports according to the following schedule:

Season	Shipping schedule
Summer 1988	Before August 31, 1988
Fall 1988	Before November 30, 1988
Winter 1988/1989	Before February 28, 1989
Spring 1989	Before May 31, 1989

For convenience of data interpretation and management, the world has been divided into three regions: region I (North America), region II (Europe), and region III (all other areas). Tables I(a), I(b), and $\mathrm{I}(\mathrm{c})$ list international airports sampled in the three regions. Tables II(a), II(b), and II(c) list airlines that supplied samples from these airports.

A total of 270 aviation fuel samples were received during this study. The density ρ and linear attenuation coefficient μ for $\mathrm{Am}^{241}(59.5 \mathrm{keV})$ gamma rays were measured for each sample at room temperature T to assess the fuel composition variability and its impact on the proposed nuclear fuel gauge. Measurements were made twice for each sample and the average values of ρ, μ, and μ / ρ were calculated. If the individual values differed by more than 1 percent, the measurements were repeated at least twice to give a final set of average values for that sample. Average values of ρ, μ, and μ / ρ for all samples are summarized in table III. Since room temperature ranged from $20^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$, it was necessary that the density values be normalized to a standard temperature for comparison purposes. We have selected $24^{\circ} \mathrm{C}$ as the standard temperature since the largest number of density and linear attenuation coefficient measurements (75 out of 270) were made at this temperature.

Normalized density ρ_{24} was calculated as follows:

$$
\begin{equation*}
\rho_{24}=\rho_{T}+\frac{\bar{d} \rho}{d T} \Delta T \tag{2}
\end{equation*}
$$

where

$T \quad$ room temperature

$$
\begin{array}{ll}
\frac{\overline{d \rho}}{d T} & \text { average value of } \frac{d \rho}{d T} \text { measured for } \\
& 43 \text { fuel samples }(\text { its value is } \\
& -0.0014 \pm 0.0003 \mathrm{gm} / \mathrm{cm}^{3} \text { per } \\
& \left.1^{\circ} \mathrm{C}\right)^{(1)} \\
\Delta T & =T-24^{\circ} \mathrm{C}
\end{array}
$$

The corresponding normalized linear attenuation coefficient μ_{24} was calculated as follows:

$$
\left.\begin{array}{rl}
\frac{\mu_{24}}{\rho_{24}} & =\frac{\mu_{T}}{\rho_{T}}=(\mu / \rho)_{T} \tag{3}\\
& =\frac{\mu}{\rho}(2) \\
\mu_{24} & =\frac{\mu}{\rho} \rho_{24}
\end{array}\right\}
$$

Figures 6 and 7 show ρ_{24} and μ / ρ for the three regions for different seasons. In some cases more than one sample was received from an airport in the same season. These samples have been treated as independent samples, with their own fuel ID numbers. Also, it should be noted that the sample numbers on the X -axes in these figures are not the fuel ID numbers. The correlation between these sample numbers and their fuel ID numbers is summarized in table V. Since there is no observed trend in ρ or μ / ρ as a function of season or geographical origin, the sample numbers are of interest for bookkeeping purposes only. Figures $8(\mathrm{a})$ and $8(\mathrm{~b})$ show values of ρ_{24} and μ / ρ for all samples (i.e., regardless of the season). It is obvious from the data summarized in table III and illustrated in figures 6 to 8 that there is considerable variation in ρ_{24} and μ_{24}. However, μ / ρ for all fuel samples is essentially constant at $0.1843 \pm 0.0013 \mathrm{~cm}^{2} / \mathrm{g}$, regardless of the season and geographical origin. This result confirms our original proposition that a nuclear

[^0]fuel gauge of the type discussed in reference 1 is a viable means for measuring fuel quantity onboard all civil aircraft throughout the world.

Figure 9 shows a conceptual nuclear gauge distribution pattern in a Boeing 737 wing tank in flight. A measurement of μ at any counting station when the tank is full should permit a direct determination of fucl mass with full tank. This follows from the experimentally observed fact that $\mu / \rho=0.1843 \pm 0.0013 \mathrm{~cm}^{2} / \mathrm{g}$ and the fuel tank volume is known. Similarly, a subsequent measurement of residual fuel volume (see ref. 1 for procedural and computational details) should enable a direct determination of fuel mass onboard the aircraft at any time. The proposed fuel quantity gauging system design can be quite robust and stable, requiring minimal attention for extended periods.

Conclusions

We have computed mass attenuation coefficient for Am^{241} (59.5 keV) gamma rays for 270 aviation fuel samples collected from 76 airports around the world. All measurements were made at room temperature, which ranged from $20^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$. The density ρ and linear attenuation coefficient μ for a test sample were measured concurrently at the same temperature, thereby giving the mass attenuation coefficient μ / ρ at that temperature. As expected, μ / ρ has been found to be independent of the temperature even though ρ and μ are both temperature-dependent parameters. Despite vari-
ations in fuel density and linear attenuation coefficient, the mass attenuation coefficient has been found to be constant at $0.1843 \pm 0.0013 \mathrm{~cm}^{2} / \mathrm{g}$, regardless of season and geographical origin. This constancy of mass attenuation coefficient for all fuel samples attests to the suitability of a fuel quantity gauge based on attenuation of Am ${ }^{241}$ gamma rays for all civil aircraft.

NASA Langley Research Center
Hampton, VA 23665-5225
January 22, 1990

References

1. Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.; and Chegini, Hoshang: Feasibility of a Nuclear Gauge for Fuel Quantity Measurement Aboard Aircraft. NASA TM-87706, 1986.
2. Featherstone, D. H.: Douglas Initiates Jet Fuel Properties Study. AEEC Lett. 87-042/FQS-07, Aeronautical Radio, Inc., Mar. 26, 1987.
3. Featherstone, D. H.: Airlines Requested to Sample Fuel. AEEC Lett. 88-010/FQS-11, Aeronautical Radio, Inc., Jan. 12, 1988.
4. Featherstone, D. H.: Circulation of Procedural Information for Participants Involved in Industry Fuel Study. AEEC Lett. 88-103/FQS-12, Aeronautical Radio, Inc., July 7, 1988.
5. Sprinkle, Danny R.; and Shen, Chih-Ping: A Method for Monitoring the Variability in Nuclear Absorption Characteristics of Aviation Fuels. NASA TM-4077, 1988.

Table I. International Airports Providing Samples
(a) Region I (North America)

Location	Airport	Airport code	Airline code ${ }^{a}$
Anchorage, Alaska, U.S.A.	Anchorage International	ANC	AS
Bermuda	Kindley	BDA	BA
Dallas-Fort Worth, Texas, U.S.A.	Dallas-Fort Worth	DFW	AA
Halifax, Nova Scotia, Canada	Halifax International	YHZ	AC
Kansas City, Missouri, U.S.A.	Kansas City International	MCI	TWA
Los Angeles, California, U.S.A.	Los Angeles International	LAX	FT
Memphis, Tennessee, U.S.A.	Memphis International	MEM	FM
Miami, Florida, U.S.A.	Miami International	MIA	BA
Montreal, Quebec, Canada	Dorval	YUL	AC
Montreal, Quebec, Canada	Mirabel	YMX	AC
Nashville, Tennessee, U.S.A.	Nashville Metropolitan	BNA	AA
New York, New York, U.S.A.	John F. Kennedy International	JFK	TWA
New York, New York, U.S.A.	La Guardia	LGA	TWA
Phoenix, Arizona, U.S.A.	Sky Harbor International	PHX	AA
San Francisco, California, U.S.A.	San Francisco International	SFO	BA
San Juan, Puerto Rico	Puerto Rico International	SJU	AA
Seattle, Washington, U.S.A.	Seattle-Tacoma International	SEA	AS
St. Louis, Missouri, U.S.A.	Lambert-St. Louis International	STL	TWA
Toronto, Ontario, Canada	Toronto International	YYZ	AC
Washington, DC, U.S.A.	Dulles International	IAD	AA
Washington, DC, U.S.A.	National	DCA	TWA

[^1]Table I. Continued
(b) Region II (Europe)

Location		Airport code	Airline code ${ }^{a}$
Amsterdam, Netherlands	Schiphol	AMS	KLM
Athens, Greece	Hellinikon	ATH	AF
West Berlin, West Germany	Tegel	TXL	AF
Brussels, Belgium	National	BRU	FT
Copenhagen, Denmark	Copenhagen	CPH	BA
Dublin, Ireland	Dublin	DUB	BA
Dusseldorf, West Germany	Dusseldorf	DUS	BA
Geneva, Switzerland	Geneva	GVA	SR
Hamburg, West Germany	Hamburg	HAM	BA
Helsinki, Finland	Helsinki-Vantaa	HEL	BA
Lisbon, Portugal	Lisbon	LIS	AF
London, England	Gatwick	LGW	BA
London, England	Heathrow	LHR	BA
Madrid, Spain	Barajas	MAD	AF
Milan, Italy	Linate	AF	AF
Moscow, USSR	Sheremetyevo	AF	
Munich, West Germany	Riem	MUC	BA
Nice, France	Cote D'Azur	NCE	AF
Oslo, Norway	Fornebu	FBU	BA
Paris, France	Charles de Gaulle	CDG	BA
Paris, France	Orly	ORY	AF
Rome, Italy	Leonardo da Vinci International	FCO	AF
Stockholm, Sweden	Arlanda	ARN	BA
Toulouse, France	Blagnac	TLS	AF
Vienna, Austria	Vienna (Schwechat)	ZRH	BA
Zurich, Switzerland	Zurich	SR	

${ }^{a}$ Airlines sampled were as follows: AA--American Airlines; AC-Air Canada; AF---Air France; AS-- Alaska Airlines; BA--British Airways; FM-Federal Express; FT—Flying Tigers; KLM-Royal Dutch Airlines; QF-Dantas Airways; SA South African Airways; SR-Swissair; SV-Saudi Arabian Airlines; TWA Trans World Airlines.

Table I. Concluded
(c) Region III (All other areas)

Location	Airport	Airport code	Airline code ${ }^{a}$
Adelaide, Australia	Adelaide	ADL	QF
Auckland, New Zealand	Auckland International	AKL	BA
Bangkok, Thailand	Bangkok International	BKK	BA
Beijing, China	Capital	PEK	AF
Bombay, India	Bombay	BOM	BA
Brisbane, Australia	Brisbane International	BNE	QF
Buenos Aires, Argentina	Ministro Pistarini-eze	BUE	AF
Cairo, Egypt	Cairo International	CAI	AF
Caracas, Venezuela	Simon Bolivar International	CCS	AF
Cayenne, French Guiana	Rochambeau	CAY	AF
Dhahran, Saudi Arabia	Dhahran International	DAH	SV
Delhi, India	Indira Gandhi International	DEL	BA
Istanbul, Turkey	Istanbul	IST	BA
Jeddah, Saudi Arabia	King Abdulaziz International	JED	SV
Johannesburg, South Africa	Jan Smuts	JNB	SA
Karachi, Pakistan	Karachi	KHI	BA
Kowloon, Hong Kong	Hong Kong	HKG	BA
Kuala Lampur, Malaysia	Kuala Lampur International	KUL	BA
Melbourne, Australia	Melbourne	MEL	QF
Mexico City, Mexico	Benito Juárez International	MEX	AF
Mombasa, Kenya	MOI International	MBA	SR
Nairobi, Kenya	Jomo Kenyatta International	NBO	BA
Osaka, Japan	Osaka International	OSA	AF
Perth, Australia	Perth	PER	QF
Rio de Janeiro, Brazil	Rio de Janeiro International	GIG	AF
Riyadh, Saudi Arabia	King Khalid	RUH	SV
Sydney, Australia	Kingsford Smith	SYD	QF
Tel Aviv, Israel	Ben Gurion	TLV	BA
Tokyo, Japan	Narita	NRT	AF

[^2]Table II. Participating Airlines
[Numbers indicate the number of 2-liter samples taken during year]
(a) Region I (North America)

Location	Airport code	Air Canada	Alaska Airlines	Flying Tigers	TWA	Federal Express	British Airways	American Airlines
Anchorage	ANC		2					
Bermuda	BDA						4	
Dallas	DFW							1
Halifax	YHZ	3						
Kansas City	MCI				4			
Los Angeles	LAX			2				
Memphis	MEM					3		
Miami	MIA						4	
Montreal	YMX	3						
Montreal	YUL	3						
Nashville	BNA							4
New York	JFK							
New York	LGA				4			
Phoenix	PHX							4
San Francisco	SFO						3	
San Juan	S.JU							4
Seattle	SEA		3					
St. Louis	STL				4			
Toronto	YYZ	3						
Washington	IAD							3
Washington	DCA				4			

Table II. Continued
(b) Region II (Europe)

Location	Airport code	British Airways	Air France	KLM	Swissair	Flying Tigers
Amsterdam, Netherlands	AMS			4		Fring Tigers
Athens, Greece	ATH		4			
West Berlin, West Germany	TXL		4			
Brussels, Belgium	BRU					2
Copenhagen, Denmark	CPH	4				
Dublin, Ireland	DUB	4				
Dusseldorf, West Germany	DUS	4				
Geneva, Switzerland	GVA				3	
Hamburg, West Germany	HAM	8				
Helsinki, Finland	HEL	4				
Lisbon, Portugal	LIS		4			
London, England	LGW	4				
London, England	LHR	3				
Madrid, Spain	MAD		4			
Milan, Italy	LIN		4			
Moscow, USSR	SVO		4			
Munich, West Germany	MUC	4				
Nice, France	NCE		4			
Oslo, Norway	FBU	4				
Paris, France	CDG	4				
Paris, France	ORY		4			
Rome, Italy	FCO		4			
Stockholm, Sweden	ARN	4				
Toulouse, France	TLS		4			
Vienna, Austria	VIE	4				
Zurich, Switzerland	ZRH				3	

Table II. Concluded
(c) Region III (All other areas)

Location	Airport code	British Airways	Qantas Airways	Saudi Arabian Airlines	Air France	South African Airways	Flying Tigers	Swissair
Adelaide, Australia	ADL		3					
Auckland, New Zealand	AKL	4						
Bangkok, Thailand	BKK	3						
Beijing, China	PEK				4			
Bombay, India	BOM	4						
Brisbane, Australia	BNE		3					
Buenos Aires, Argentina	BUE				4			
Cairo, Egypt	CAI				4			
Caracas, Venezuela	CCS				4			
Cayenne, French Guiana	CAY				4			
Dhahran, Saudi Arabia	DAH			2				
Delhi, India	DEL	2						
Istanbul, Turkey	IST	4						
Jeddah, Saudi Arabia	JED			2				
Johannesburg, South Africa	JNB					4		
Karachi, Pakistan	KHI	4						
Kowloon, Hong Kong	HKG	3						
Kuala Lampur, Malaysia	KUL	4						
Melbourne, Australia	MEL		3					
Mexico City, Mexico	MEX				4			4
Mombasa, Kenya	MBA							
Nairobi, Kenya	NBO	1						
Osaka, Japan	OSA				4			
Perth, Australia	PER		3					
Rio de Janeiro, Brazil	GIG				4			
Riyadh, Saudi Arabia	RUH			2				
Sydney, Australia	SYD		3					
Tel Aviv, Israel	TLV	4						
Tokyo, Japan	NRT				4			

Table III. Summary of Results of All Fuel Samples

Fuel ID number 1	Airline (airport)	$\begin{gathered} \rho \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \end{aligned}$
1	TWA (MCI)	$\begin{aligned} & \hline 0.8022 \\ & (25.0) \end{aligned}$	$\begin{gathered} 0.1475 \pm 0.0016 \\ (25.0) \end{gathered}$	0.1833 ± 0.0015	0.8036	0.1473 ± 0.0012
2	SR (ZRH)	$\begin{array}{r} .7880 \\ (25.0) \end{array}$	$\begin{gathered} .1460 \pm .0015 \\ (25.0) \end{gathered}$	$.1852 \pm .0014$	7896	. $1462 \pm .0011$
3	SR (GVA)	$\begin{array}{r} .7871 \\ (25.0) \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (25.0) \end{gathered}$	$.1851 \pm .0015$	7885	$.1460 \pm .0012$
4	SR (MBA)	$\begin{array}{r} .7798 \\ (25.0) \end{array}$	$\begin{gathered} .1439 \pm .0015 \\ (25.0) \end{gathered}$	$.1852 \pm .0024$	7776	$1440 \pm .0019$
5	AC (YHZ)	$\begin{array}{r} .7913 \\ (25.0) \end{array}$	$1450 \pm .0015$ (25.0)	$.1831 \pm .0013$.7931	$.1452 \pm .0010$
6	TWA (JFK)	$\begin{array}{r} .8094 \\ (23.5) \end{array}$	$\begin{gathered} .1485 \pm .0016 \\ (23.5) \end{gathered}$	$.1830 \pm .0018$. 8091	$.1481 \pm .0015$
7	AA (BNA)	$\begin{array}{r} .8057 \\ (24.0) \end{array}$	$\begin{gathered} .1483 \pm .0016 \\ (24.0) \end{gathered}$	$.1849 \pm .0017$. 8056	$.1490 \pm .0014$
8	AA (PHX)	$\begin{array}{r} .8158 \\ (25.0) \end{array}$	$\begin{gathered} .1507 \pm .0016 \\ (25.0) \end{gathered}$	$.1842 \pm .0015$	8169	$.1505 \pm .0012$
9	AC (YMX)	$\begin{array}{r} .7928 \\ (25.0) \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (25.0) \end{gathered}$	$.1838 \pm .0014$. 7943	$.1460 \pm .0011$
10	AC (YUL)	$\begin{array}{r} .7896 \\ (25.0) \end{array}$	$\begin{gathered} .1463 \pm .0015 \\ (25.0) \end{gathered}$	$.1843 \pm .0017$	7910	$.1458 \pm .0013$
11	AC (YYZ)	$\begin{array}{r} .8006 \\ (25.0) \end{array}$	$\begin{gathered} .1471 \pm .0015 \\ (25.0) \end{gathered}$	$.1832 \pm .0015$. 8019	$.1469 \pm .0012$
12	KLM (AMS)	$\begin{array}{r} .7901 \\ (25.0) \end{array}$	$\begin{gathered} .1448 \pm .0015 \\ (25.0) \end{gathered}$	$.1842 \pm .0017$. 7911	$.1457 \pm .0013$
13	TWA (LGA)	$\begin{array}{r} .8059 \\ (25.0) \end{array}$	$\begin{gathered} .1478 \pm .0016 \\ (25.0) \end{gathered}$	$.1840 \pm .0015$	8074	$.1486 \pm .0012$
14	AA (SJU)	$\begin{array}{r} .7949 \\ (25.0) \end{array}$	$\begin{gathered} .1475 \pm .0016 \\ (25.0) \end{gathered}$	$.1846 \pm .0023$	7962	$.1470 \pm .0018$
15	AA (IAD)	$\begin{array}{r} .8072 \\ (25.0) \end{array}$	$\begin{gathered} .1493 \pm .0016 \\ (25.0) \end{gathered}$	$.1843 \pm .0015$. 8086	$.1490 \pm .0012$
16	FT (LAX)	$\begin{array}{r} .8103 \\ (24.0) \end{array}$	$\begin{gathered} .1506 \pm .0016 \\ (24.0) \end{gathered}$	$.1855 \pm .0014$	8104	$.1503 \pm .0011$
17	TWA (DCA)	$\begin{array}{r} .8053 \\ (24.0) \end{array}$	$\begin{gathered} .1489 \pm .0016 \\ (24.0) \end{gathered}$	$.1842 \pm .0015$. 8052	$.1483 \pm .0012$
18	TWA (STL)	$\begin{array}{r} .8047 \\ (24.0) \end{array}$	$\begin{gathered} .1487 \pm .0016 \\ (24.0) \end{gathered}$	$.1843 \pm .0014$. 8048	$.1483 \pm .0011$
19	FM (MEM)	$\begin{array}{r} .8090 \\ (24.5) \end{array}$	$\begin{gathered} .1485 \pm .0015 \\ (24.5) \end{gathered}$	$.1830 \pm .0016$	8084	$1479 \pm .0013$
20	AS (SEA)	$\begin{array}{r} .8175 \\ (22.5) \end{array}$	$\begin{gathered} .1502 \pm .0016 \\ (22.5) \end{gathered}$	$.1833 \pm .0015$. 8154	. $1495 \pm .0012$
21	FT (BRU)	$\begin{array}{r} .7896 \\ (25.0) \end{array}$	$\begin{gathered} .1463 \pm .0015 \\ (25.0) \end{gathered}$	$.1854 \pm .0017$. 7918	$.1468 \pm .0013$
22	BA (MIA)	$\begin{array}{r} .8050 \\ (25.0) \end{array}$	$\begin{gathered} .1479 \pm .0016 \\ (25.0) \end{gathered}$	$.1831 \pm .0015$	8065	$.1477 \pm .0012$
23	AS (ANC)	$\begin{array}{r} .8042 \\ (25.0) \end{array}$	$\begin{gathered} .1492 \pm .0016 \\ (25.0) \end{gathered}$	$.1852 \pm .0014$. 8058	. $1492 \pm .0011$
24	BA (CPH)	$\begin{array}{r} .7846 \\ (25.0) \end{array}$	$\begin{gathered} .1447 \pm .0015 \\ (25.0) \end{gathered}$	$.1844 \pm .0014$. 7858	$.1449 \pm .0011$
25	BA (TLV)	$\begin{array}{r} .7913 \\ (25.0) \\ \hline \end{array}$	$\begin{gathered} .1464 \pm .0015 \\ (25.0) \\ \hline \end{gathered}$	$.1850 \pm .0014$. 7923	$.1466 \pm .0011$

$\begin{gathered} \text { Fuel } \\ \text { ID } \\ \text { number } \\ \hline 51 \end{gathered}$	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24}, \\ \mathrm{~g} / \mathrm{cm}^{3} \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \end{aligned}$
51	AF (CAY)	$\begin{aligned} & 0.8176 \\ & (24.0) \end{aligned}$	$\begin{gathered} 0.1501 \pm 0.0016 \\ (24.0) \end{gathered}$	0.1836 ± 0.0013	0.8178	0.1501 ± 0.0011
52	AF (LIS)	$\begin{array}{r} .7910 \\ (24.0) \end{array}$	$\begin{gathered} .1458 \pm .0015 \\ (24.0) \end{gathered}$	$.1849 \pm .0015$. 7909	$.1462 \pm .0012$
53	AF (LIN)	$\begin{array}{r} .7867 \\ (24.0) \end{array}$	$\begin{gathered} .1458 \pm .0015 \\ (24.0) \end{gathered}$	$.1854 \pm .0018$	7861	$.1457 \pm .0014$
54	AF (BUE)	$\begin{array}{r} .7921 \\ (24.0) \end{array}$	$\begin{gathered} .1473 \pm .0016 \\ (24.0) \end{gathered}$	$1856 \pm .0015$. 7920	$.1470 \pm .0012$
55	AF (SVO)	$\begin{array}{r} .7816 \\ (23.5) \end{array}$	$\begin{gathered} .1447 \pm .0015 \\ (23.5) \end{gathered}$	$.1854 \pm .0019$. 7810	$.1448 \pm .0015$
56	AF (CCS)	$\begin{array}{r} .8058 \\ (24.0) \end{array}$	$\begin{gathered} .1494 \pm .0016 \\ (24.0) \end{gathered}$	$.1848 \pm .0015$. 8059	$.1489 \pm .0012$
57	BA (AKL)	$\begin{array}{r} .7861 \\ (24.0) \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (24.0) \end{gathered}$	$.1853 \pm .0017$. 7852	$.1455 \pm .0013$
58	AC (YHZ)	$\begin{array}{r} .7921 \\ (24.0) \end{array}$	$\begin{gathered} .1468 \pm .0016 \\ (24.0) \end{gathered}$	$.1854 \pm .0010$. 7921	$.1469 \pm .0008$
59	BA (LGW)	$\begin{array}{r} .7943 \\ (23.0) \end{array}$	$\begin{gathered} .1461 \pm .0015 \\ (23.0) \end{gathered}$	$.1837 \pm .0014$. 7933	$.1457 \pm .0011$
60	BA (IHR)	$\begin{array}{r} .7934 \\ (24.0) \end{array}$	$\begin{gathered} .1471 \pm .0016 \\ (24.0) \end{gathered}$	$.1850 \pm .0021$. 7934	$.1468 \pm .0017$
61	AA (BNA)	$\begin{array}{r} .8055 \\ (23.5) \end{array}$	$\begin{gathered} .1494 \pm .0016 \\ (23.5) \end{gathered}$. $1852 \pm .0013$. 8054	$.1492 \pm .0010$
62	AA (BNA)	$\begin{array}{r} .8048 \\ (24.0) \end{array}$	$\begin{gathered} .1489 \pm .0016 \\ (24.0) \end{gathered}$	$.1854 \pm .0019$. 8048	$.1492 \pm .0015$
63	AF (PEK)	$\begin{array}{r} .7941 \\ (24.0) \end{array}$	$\begin{gathered} .1471 \pm .0015 \\ (24.0) \end{gathered}$	$.1855 \pm .0016$. 7940	$.1473 \pm .0013$
64	AF (MAD)	$\begin{array}{r} .7952 \\ (24.0) \end{array}$	$\begin{gathered} .1473 \pm .0016 \\ (24.0) \end{gathered}$	$.1851 \pm .0021$	7951	$.1472 \pm .0017$
65	TWA (LGA)	$\begin{array}{r} .8081 \\ (22.0) \end{array}$	$\begin{gathered} .1497 \pm .0016 \\ (22.0) \end{gathered}$	$.1852 \pm .0019$	8056	$.1492 \pm .0015$
66	TWA (JFK)	$\begin{array}{r} .8072 \\ (23.0) \end{array}$	$\begin{gathered} .1491 \pm .0015 \\ (23.0) \end{gathered}$	$.1852 \pm .0023$. 8061	$.1493 \pm .0019$
67	$\mathrm{BA}(\mathrm{CDG})$	$\begin{array}{r} .7878 \\ (23.0) \end{array}$	$\begin{gathered} 1468 \pm .0015 \\ (23.0) \end{gathered}$	$.1855 \pm .0023$. 7855	$.1457 \pm .0018$
68	BA (HKG)	$\begin{array}{r} .7940 \\ (23.5) \end{array}$	$\begin{gathered} .1471 \pm .0016 \\ (23.5) \end{gathered}$. $1853 \pm .0018$. 7926	$.1469 \pm .0014$
69	BA (ARN)	$\begin{array}{r} .7833 \\ (23.5) \end{array}$	$.1441 \pm .0015$ (23.5)	$.1848 \pm .0018$. 7825	$.1446 \pm .0014$
70	BA (MUC)	$\begin{array}{r} .7893 \\ (24.0) \end{array}$	$\begin{gathered} .1463 \pm .0015 \\ (24.0) \end{gathered}$	$.1848 \pm .0015$. 7893	$.1459 \pm .0012$
71	BA (IST)	$\begin{array}{r} .7807 \\ (21.0) \end{array}$	$\begin{gathered} .1436 \pm .0015 \\ (21.0) \end{gathered}$	$.1839 \pm .0017$. 7795	$.1434 \pm .0013$
72	KLM (AMS)	$\begin{array}{r} .7907 \\ (24.0) \end{array}$	$\begin{gathered} .1450 \pm .0015 \\ (24.0) \end{gathered}$	$.1849 \pm .0020$. 7909	$.1462 \pm .0016$
73	BA (CPH)	$\begin{array}{r} .7811 \\ (24.0) \end{array}$	$\begin{gathered} .1449 \pm .0015 \\ (24.0) \end{gathered}$	$.1849 \pm .0016$. 7814	. $1445 \pm .0013$
74	AA (PHX)	$\begin{array}{r} .8142 \\ (24.0) \end{array}$	$\begin{gathered} .1504 \pm .0016 \\ (24.0) \end{gathered}$	$.1849 \pm .0014$. 8144	. $1506 \pm .0011$
75	BA (TLV)	$\begin{array}{r} .7953 \\ (24.0) \\ \hline \end{array}$	$\begin{gathered} 1472 \pm .0015 \\ (24.0) \end{gathered}$	$.1853 \pm .0013$. 7950	. $1473 \pm .0010$

Table III. Continued

Fuel ID number	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mu \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \end{aligned}$
76	BA (FBU)	0.7893 (23.5)	$\begin{gathered} 0.1464 \pm 0.0015 \\ (23.5) \end{gathered}$	0.1851 ± 0.0014	0.7890	0.1460 ± 0.0011
77	BA (HEL)	$\begin{array}{r} .7870 \\ (24.0) \end{array}$	$\begin{gathered} .1453 \pm .0015 \\ (24.0) \end{gathered}$	1848 土.0015	7873	. $1455 \pm .0012$
78	BA (IST)	$\begin{array}{r} .7796 \\ (24.0) \end{array}$	$\begin{gathered} .1452 \pm .0015 \\ (24.0) \end{gathered}$	$.1849 \pm .0029$. 7796	$.1441 \pm .0023$
79	BA (BOM)	$\begin{array}{r} .7816 \\ (23.5) \end{array}$	$\begin{gathered} .1447 \pm .0015 \\ (23.5) \end{gathered}$	$.1853 \pm .0011$. 7810	$.1447 \pm .0009$
80	BA (VIE)	$\begin{array}{r} .7973 \\ (24.0) \end{array}$	$\begin{gathered} .1479 \pm .0016 \\ (24.0) \end{gathered}$	$.1849 \pm .0015$. 7973	$.1474 \pm .0012$
81	BA (DUS)	$\begin{array}{r} .8023 \\ (24.0) \end{array}$	$\begin{gathered} .1479 \pm .0015 \\ (24.0) \end{gathered}$	$.1849 \pm .0016$	8023	$.1483 \pm .0013$
82	BA (MIA)	$\begin{array}{r} .7863 \\ (24.0) \end{array}$	$\begin{gathered} .1461 \pm .0015 \\ (24.0) \end{gathered}$	$.1856 \pm .0014$. 7864	. $1460 \pm .0011$
83	BA (HKG)	$\begin{array}{r} .7906 \\ (24.0) \end{array}$	$\begin{gathered} .1457 \pm .0015 \\ (24.0) \end{gathered}$	$.1847 \pm .0023$. 7906	$.1460 \pm .0018$
84	AA (SJU)	$\begin{array}{r} .8131 \\ (24.0) \end{array}$	$\begin{gathered} .1508 \pm .0016 \\ (24.0) \end{gathered}$. $1852 \pm .0014$. 8132	. $1506 \pm .0011$
85	BA (BDA)	$\begin{array}{r} .8151 \\ (25.0) \end{array}$	$\begin{gathered} .1501 \pm .0016 \\ (25.0) \end{gathered}$	$.1841 \pm .0015$. 8161	$.1502 \pm .0012$
86	BA (KHI)	$\begin{array}{r} .7806 \\ (27.0) \end{array}$	$\begin{gathered} .1439 \pm .0015 \\ (27.0) \end{gathered}$	$.1845 \pm .0019$. 7828	$.1444 \pm .0015$
87	BA (DEL)	$\begin{array}{r} .7807 \\ (25.0) \end{array}$	$\begin{gathered} .1444 \pm .0015 \\ (25.0) \end{gathered}$	$.1848 \pm .0016$. 7813	$.1444 \pm .0013$
88	AC (YUL)	$\begin{array}{r} .7917 \\ (23.5) \end{array}$	$\begin{gathered} .1461 \pm .0015 \\ (23.5) \end{gathered}$	$.1850 \pm .0012$	7913	$.1464 \pm .0009$
89	AC (YMX)	$\begin{array}{r} .8017 \\ (22.0) \end{array}$	$\begin{gathered} .1477 \pm .0016 \\ (22.0) \end{gathered}$	$.1842 \pm .0011$. 8000	$.1474 \pm .0009$
90	BA (DUB)	$\begin{array}{r} .7909 \\ (23.5) \end{array}$	$\begin{gathered} .1458 \pm .0015 \\ (23.5) \end{gathered}$. $1852 \pm .0016$. 7901	$.1463 \pm .0013$
91	AC (YYZ)	$\begin{array}{r} .8017 \\ (23.5) \end{array}$	$\begin{gathered} .1471 \pm .0016 \\ (23.5) \end{gathered}$	$.1842 \pm .0020$. 8006	$.1475 \pm .0016$
92	BA (BDA)	$\begin{array}{r} .8167 \\ (23.0) \end{array}$	$\begin{gathered} .1500 \pm .0015 \\ (23.0) \end{gathered}$	$.1838 \pm .0015$. 8148	$.1498 \pm .0012$
93	FM (MEM)	$\begin{array}{r} 8050 \\ (23.0) \end{array}$	$\begin{gathered} 1477 \pm .0016 \\ (23.0) \end{gathered}$	$.1835 \pm .0012$	8043	$.1476 \pm .0010$
94	TWA (MCI)	$\begin{array}{r} .8048 \\ (23.5) \end{array}$	$\begin{gathered} .1471 \pm .0015 \\ (23.5) \end{gathered}$	$.1831 \pm .0018$. 8054	$.1475 \pm .0014$
95	TWA (DCA)	$\begin{array}{r} .7980 \\ (24.0) \end{array}$	$\begin{gathered} .1477 \pm .0016 \\ (24.0) \end{gathered}$	$.1848 \pm .0014$. 7979	$.1475 \pm .0011$
96	TWA (STL)	$\begin{array}{r} .8025 \\ (23.5) \end{array}$	$.1471 \pm .0016$ (23.5)	$.1831 \pm .0015$. 8024	$.1469 \pm .0012$
97	BA (HAM)	$\begin{array}{r} .7874 \\ (23.5) \end{array}$	$\begin{gathered} .1446 \pm .0015 \\ (23.5) \end{gathered}$	$.1834 \pm .0012$. 7854	$.1440 \pm .0009$
98	BA (HAM)	$\begin{array}{r} .7843 \\ (24.0) \end{array}$	$\begin{gathered} .1437 \pm .0015 \\ (24.0) \end{gathered}$	$.1831 \pm .0013$.7846	. $437 \pm .0010$
99	BA (HAM)	$\begin{array}{r} .7851 \\ (24.0) \end{array}$	$\begin{gathered} .1436 \pm .0015 \\ (24.0) \end{gathered}$	$1832 \pm .0018$	7850	$.1438 \pm .0014$
100	BA (BKK)	$\begin{array}{r} .7944 \\ (23.0) \end{array}$	$\begin{gathered} .1465 \pm .0015 \\ (23.0) \\ \hline \end{gathered}$	$.1835 \pm .0024$. 7932	$.1456 \pm .0019$

Fuel ID number	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mu, \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \\ & \hline \end{aligned}$
101	BA (BOM)	$\begin{aligned} & \hline 0.7847 \\ & (24.0) \end{aligned}$	$\begin{gathered} 0.1441 \pm 0.0015 \\ (24.0) \end{gathered}$	0.1833 ± 0.0017	0.7848	0.1439 ± 0.0013
102	SR (MBA)	$\begin{array}{r} .7798 \\ (24.0) \end{array}$	$\begin{gathered} .1432 \pm .0015 \\ (24.0) \end{gathered}$	$.1831 \pm .0019$	7797	$.1428 \pm .0015$
103	SR (ZRH)	$\begin{array}{r} .7891 \\ (23.0) \end{array}$	$\begin{gathered} .1446 \pm .0015 \\ (23.0) \end{gathered}$	$.1831 \pm .0014$. 7879	$.1443 \pm .0011$
104	SR (GVA)	$\begin{array}{r} .7894 \\ (23.0) \end{array}$	$\begin{gathered} .1450 \pm .0015 \\ (23.0) \end{gathered}$	$.1832 \pm .0016$. 7891	$.1446 \pm .0013$
105	AA (IAD)	$\begin{array}{r} .8051 \\ (23.0) \end{array}$	$\begin{gathered} 1475 \pm .0016 \\ (23.0) \end{gathered}$	$.1832 \pm .0011$. 8039	$.1473 \pm .0009$
106	AS (ANC)	$\begin{array}{r} .8050 \\ (24.0) \end{array}$	$\begin{gathered} .1472 \pm .0016 \\ (24.0) \end{gathered}$	$.1831 \pm .0013$	8051	$.1474 \pm .0010$
107	AF (PEK)	$\begin{array}{r} .7771 \\ (23.0) \end{array}$	$\begin{gathered} .1440 \pm .0015 \\ (23.0) \end{gathered}$	$.1840 \pm .0019$.7758	$.1427 \pm .0015$
108	AF (SVO)	$\begin{array}{r} .9106 \\ (23.0) \end{array}$	$.1666 \pm .0017$ (23.0)	$.1832 \pm .0013$. 9087	$.1665 \pm .0012$
109	AF (LIN)	$\begin{array}{r} .7882 \\ (23.0) \end{array}$	$\begin{gathered} .1443 \pm .0015 \\ (23.0) \end{gathered}$	$.1833 \pm .0014$. 7869	$.1442 \pm .0011$
110	AF (NRT)	$\begin{array}{r} .7813 \\ (24.0) \end{array}$	$\begin{gathered} .1434 \pm .0015 \\ (24.0) \end{gathered}$	$.1832 \pm .0013$. 7815	$.1432 \pm .0010$
111	AF (GIG)	$\begin{array}{r} .7891 \\ (24.0) \end{array}$	$\begin{gathered} .1444 \pm .0015 \\ (24.0) \end{gathered}$	$.1835 \pm .0020$	7891	$.1448 \pm .0016$
112	AF (ATH)	$\begin{array}{r} .7916 \\ (23.0) \end{array}$	$\begin{gathered} .1461 \pm .0015 \\ (23.0) \end{gathered}$	$.1838 \pm .0016$. 7903	$.1453 \pm .0013$
113	AF (MAD)	$\begin{array}{r} .7937 \\ (23.5) \end{array}$	$\begin{gathered} .1459 \pm .0015 \\ (23.5) \end{gathered}$	$.1836 \pm .0021$. 7928	$1456 \pm .0017$
114	AF (TXL)	$\begin{array}{r} .7862 \\ (23.0) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (23.0) \end{gathered}$	$.1846 \pm .0020$. 7851	$.1449 \pm .0016$
115	AF (CAI)	$\begin{array}{r} .7878 \\ (23.0) \end{array}$	$\begin{gathered} .1443 \pm .0015 \\ (23.0) \end{gathered}$	$.1831 \pm .0013$. 7865	$.1440 \pm .0010$
116	AF (CAY)	$\begin{array}{r} 8171 \\ (24.0) \end{array}$	$\begin{gathered} .1498 \pm .0016 \\ (24.0) \end{gathered}$	$.1830 \pm .0015$	8171	$.1495 \pm .0012$
117	AF (TLS)	$\begin{array}{r} .7823 \\ (23.0) \end{array}$	$\begin{gathered} .1435 \pm .0015 \\ (23.0) \end{gathered}$	$.1835 \pm .0014$. 7811	$1433 \pm .0011$
118	AF (LIS)	$\begin{array}{r} .7899 \\ (23.0) \end{array}$	$\begin{gathered} .1453 \pm .0015 \\ (23.0) \end{gathered}$	$.1840 \pm .0013$. 7885	$.1451 \pm .0010$
119	AF (OSA)	$\begin{array}{r} .7883 \\ (23.0) \end{array}$	$\begin{gathered} 1439 \pm .0015 \\ (23.0) \end{gathered}$	$.1831 \pm .0015$. 7871	$.1441 \pm .0012$
120	AF (ORY)	$\begin{array}{r} .7882 \\ (23.0) \end{array}$	$\begin{gathered} .1464 \pm .0015 \\ (23.0) \end{gathered}$	$.1856 \pm .0012$	7868	. $1460 \pm .0009$
121	AF (NCE)	$\begin{array}{r} .7872 \\ (23.0) \end{array}$	$\begin{gathered} 1437 \pm .0015 \\ (23.0) \end{gathered}$	$.1830 \pm .0015$. 7858	. $1438 \pm .0012$
122	AF (FCO)	$\begin{array}{r} .7866 \\ (23.5) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (23.5) \end{gathered}$	$.1829 \pm .0019$. 7859	. $1437 \pm .0015$
123	AF (BUE)	$\begin{array}{r} .7892 \\ (23.0) \end{array}$	$\begin{gathered} .1462 \pm .0016 \\ (23.0) \end{gathered}$	$.1849 \pm .0015$. 7878	$.1457 \pm .0012$
124	AF (MEX)	$\begin{array}{r} .7870 \\ (23.0) \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (23.0) \end{gathered}$	$.1851 \pm .0015$. 7858	. $1455 \pm .0012$
125	AF (CCS)	$\begin{array}{r} .7926 \\ (23.0) \\ \hline \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (23.0) \\ \hline \end{gathered}$	$.1846 \pm .0018$. 7912	$.1461 \pm .0014$

Fuel ID number	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu, \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \\ & \hline \end{aligned}$
126	BA (KUL)	$\begin{gathered} 0.7903 \\ (23.0) \end{gathered}$	$\begin{gathered} 0.1450 \pm 0.0015 \\ (23.0) \end{gathered}$	0.1841 ± 0.0015	0.7889	0.1452 ± 0.0012
127	BA (LGW)	$\begin{array}{r} .7940 \\ (23.0) \end{array}$	$.1454 \pm .0015$ (23.0)	$.1836 \pm .0014$. 7926	$1455 \pm .0011$
128	AA (DFW)	$\begin{array}{r} .8115 \\ (23.0) \end{array}$	$\begin{gathered} 1479 \pm .0016 \\ (23.0) \end{gathered}$	$.1839 \pm .0021$	8102	$.1490 \pm .0017$
129	QF (SYD)	$\begin{array}{r} .7964 \\ (23.0) \end{array}$	$\begin{gathered} .1455 \pm .0015 \\ (23.0) \end{gathered}$	$.1831 \pm .0014$	7951	. $1456 \pm .0011$
130	QF (MEL)	$\begin{aligned} & .7854 \\ & (22.5) \end{aligned}$	$\begin{gathered} .1436 \pm .0015 \\ (22.5) \end{gathered}$	$.1831 \pm .0013$. 7866	$1440 \pm .0010$
131	QF (BNE)	$\begin{array}{r} .7870 \\ (23.0) \end{array}$	$\begin{gathered} .1436 \pm .0015 \\ (23.0) \end{gathered}$	$.1838 \pm .0020$	7858	$.1444 \pm .0016$
132	QF (PER)	$\begin{gathered} .7893 \\ (23.0) \end{gathered}$	$\begin{gathered} .1454 \pm .0015 \\ (23.0) \end{gathered}$	$.1840 \pm .0014$. 7880	$.1450 \pm .0011$
133	QF (ADL)	$\begin{array}{r} .7806 \\ (23.5) \end{array}$	$\begin{gathered} .1440 \pm .0015 \\ (23.5) \end{gathered}$	$.1839 \pm .0017$	7797	$.1434 \pm .0013$
134	FT (BRU)	$\begin{array}{r} .7886 \\ (24.0) \end{array}$	$\begin{gathered} .1453 \pm .0015 \\ (24.0) \end{gathered}$	$.1838 \pm .0016$. 7887	$.1450 \pm .0013$
135	BA (LHR)	$\begin{array}{r} .7935 \\ (23.0) \end{array}$	$\begin{gathered} .1455 \pm .0015 \\ (23.0) \end{gathered}$	$.1840 \pm .0015$	7919	$.1457 \pm .0012$
136	AA (BNA)	$\begin{array}{r} .8057 \\ (23.0) \end{array}$	$\begin{gathered} .1483 \pm .0016 \\ (23.0) \end{gathered}$	$.1835 \pm .0024$	8036	$.1475 \pm .0019$
137	BA (FBU)	$\begin{array}{r} .7911 \\ (23.0) \end{array}$	$\begin{gathered} .1450 \pm .0015 \\ (23.0) \end{gathered}$	$.1834 \pm .0013$	7897	$.1448 \pm .0010$
138	BA (TLV)	$\begin{array}{r} .7962 \\ (23.0) \end{array}$	$\begin{gathered} .1457 \pm .0015 \\ (23.0) \end{gathered}$	$.1836 \pm .0014$	7948	$.1459 \pm .0011$
139	BA (IST)	$\begin{gathered} .7782 \\ (23.0) \end{gathered}$	$\begin{gathered} 1431 \pm .0015 \\ (23.0) \end{gathered}$	$.1836 \pm .0014$. 7772	$.1427 \pm .0011$
140	$\mathrm{BA}(\mathrm{CPH})$	$\begin{array}{r} .7940 \\ (21.5) \end{array}$	$\begin{gathered} .1455 \pm .0015 \\ (21.5) \end{gathered}$	$.1832 \pm .0013$.7906	$.1448 \pm .0010$
141	FT (LAX)	$\begin{array}{r} .8204 \\ (24.0) \end{array}$	$\begin{gathered} 1505 \pm .0015 \\ (24.0) \end{gathered}$	$.1833 \pm .0014$. 8203	$.1504 \pm .0011$
142	BA (SFO)	$\begin{array}{r} .8173 \\ (23.5) \end{array}$	$.1515 \pm .0015$ (23.5)	$.1845 \pm .0018$	8167	$.1507 \pm .0015$
143	BA (SFO)	$\begin{array}{r} .7807 \\ (21.0) \end{array}$	$\begin{gathered} .1439 \pm .0015 \\ (21.0) \end{gathered}$	$.1842 \pm .0014$. 7768	$.1431 \pm .0011$
144	TWA (MCI)	$\begin{array}{r} .8078 \\ (22.0) \end{array}$	$\begin{gathered} 1481 \pm .0016 \\ (22.0) \end{gathered}$	$.1837 \pm .0012$. 8042	$.1477 \pm .0010$
145	TWA (LGA)	$\begin{array}{r} .8053 \\ (23.0) \end{array}$	$\begin{gathered} .1489 \pm .0016 \\ (23.0) \end{gathered}$	$.1835 \pm .0019$. 8040	$.1475 \pm .0015$
146	BA (CDG)	$\begin{array}{r} .7847 \\ (22.0) \end{array}$	$\begin{gathered} .1438 \pm .0015 \\ (22.0) \end{gathered}$	$.1833 \pm .0014$.7818	$.1433 \pm .0011$
147	BA (MIA)	$\begin{array}{r} .7991 \\ (22.0) \end{array}$	$\begin{gathered} .1465 \pm .0016 \\ (22.0) \end{gathered}$	$.1830 \pm .0014$.7966	. $1458 \pm .0011$
148	TWA (STL)	$\begin{array}{r} .8023 \\ (23.5) \end{array}$	$\begin{gathered} .1468 \pm .0015 \\ (23.5) \end{gathered}$	$.1832 \pm .0011$. 8019	$.1469 \pm .0009$
149	TWA (DCA)	$\begin{array}{r} .8016 \\ (23.5) \end{array}$	$\begin{gathered} .1467 \pm .0016 \\ (23.5) \end{gathered}$	$.1830 \pm .0015$	8010	$1466 \pm .0012$
150	TWA (JFK)	$\begin{array}{r} .8048 \\ (23.5) \end{array}$	$\begin{gathered} .1478 \pm .0016 \\ (23.5) \\ \hline \end{gathered}$	$.1834 \pm .0019$. 8043	$.1475 \pm .0015$

Fuel ID number	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu, \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \end{aligned}$
151	BA (HAM)	$\begin{aligned} & 0.7878 \\ & (22.0) \end{aligned}$	$\begin{gathered} 0.1439 \pm 0.0015 \\ (22.0) \end{gathered}$	0.1832 ± 0.0015	0.7849	0.1438 ± 0.0012
152	BA (KHI)	$\begin{array}{r} .7805 \\ (21.5) \end{array}$	$\begin{gathered} .1422 \pm .0015 \\ (21.5) \end{gathered}$	$.1834 \pm .0019$. 7773	$.1426 \pm .0015$
153	BA (HEL)	$\begin{array}{r} .7873 \\ (23.5) \end{array}$	$\begin{gathered} .1455 \pm .0015 \\ (23.5) \end{gathered}$	$.1839 \pm .0019$. 7868	$.1447 \pm .0015$
154	BA (HAM)	$\begin{array}{r} .7900 \\ (20.0) \end{array}$	$\begin{gathered} .1445 \pm .0015 \\ (20.0) \end{gathered}$	$.1830 \pm .0013$. 7845	. $1436 \pm .0010$
155	BA (AKL)	$\begin{array}{r} .7875 \\ (23.5) \end{array}$	$\begin{gathered} .1443 \pm .0015 \\ (23.5) \end{gathered}$	$.1835 \pm .0014$. 7870	$.1444 \pm .0011$
156	BA (HKG)	$\begin{array}{r} .7830 \\ (24.0) \end{array}$	$\begin{gathered} .1448 \pm .0015 \\ (24.0) \end{gathered}$	$.1844 \pm .0012$. 7829	$.1444 \pm .0009$
157	BA (MUC)	$\begin{array}{r} .7838 \\ (24.0) \end{array}$	$.1441 \pm .0015$ (24.0)	$.1834 \pm .0013$. 7839	$.1438 \pm .0010$
158	SR (MBA)	$\begin{array}{r} .7827 \\ (20.0) \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (20.0) \end{gathered}$	$.1849 \pm .0017$	7775	$.1438 \pm .0013$
159	KLM (AMS)	$\begin{array}{r} .7902 \\ (23.0) \end{array}$	$\begin{gathered} .1455 \pm .0015 \\ (23.0) \end{gathered}$	$.1842 \pm .0022$.7891	$.1454 \pm .0017$
160	AA (SJU)	$\begin{array}{r} .7933 \\ (21.0) \end{array}$	$\begin{gathered} .1464 \pm .0015 \\ (21.0) \end{gathered}$	$.1845 \pm .0014$. 7890	. $1456 \pm .0011$
161	AA (IAD)	$\begin{array}{r} .8054 \\ (23.5) \end{array}$	$\begin{gathered} .1475 \pm .0016 \\ (23.5) \end{gathered}$	$.1830 \pm .0012$. 8047	$.1473 \pm .0010$
162	BA (KUL)	$\begin{array}{r} .7927 \\ (22.0) \end{array}$	$\begin{gathered} .1459 \pm .0015 \\ (22.0) \end{gathered}$	$.1847 \pm .0015$. 7899	$.1459 \pm .0012$
163	FM (MEM)	$\begin{array}{r} .8065 \\ (22.0) \end{array}$	$\begin{gathered} .1476 \pm .0016 \\ (22.0) \end{gathered}$. $1835 \pm .0017$. 8042	. $1476 \pm .0014$
164	BA (DUS)	$\begin{array}{r} .8008 \\ (23.5) \end{array}$	$\begin{gathered} .1474 \pm .0015 \\ (23.5) \end{gathered}$	$.1843 \pm .0018$. 8005	. $1475 \pm .0014$
165	BA (BOM)	$\begin{array}{r} .7894 \\ (22.0) \end{array}$	$\begin{gathered} .1456 \pm .0015 \\ (22.0) \end{gathered}$	$.1847 \pm .0014$. 7866	$.1453 \pm .0011$
166	BA (BDA)	$\begin{array}{r} .8091 \\ (22.0) \end{array}$	$\begin{gathered} .1496 \pm .0016 \\ (22.0) \end{gathered}$	$.1847 \pm .0014$. 8064	$.1489 \pm .0011$
167	SA (JNB)	$\begin{array}{r} .7809 \\ (24.0) \end{array}$	$\begin{gathered} .1426 \pm .0015 \\ (24.0) \end{gathered}$	$.1833 \pm .0019$. 7808	$.1431 \pm .0015$
168	BA (DUB)	$\begin{array}{r} .7933 \\ (22.0) \end{array}$	$\begin{gathered} .1459 \pm .0015 \\ (22.0) \end{gathered}$	$.1839 \pm .0013$. 7903	. $1453 \pm .0010$
169	BA (VIE)	$\begin{array}{r} .7934 \\ (22.0) \end{array}$	$\begin{gathered} .1470 \pm .0015 \\ (22.0) \end{gathered}$	$.1845 \pm .0016$. 7906	$.1459 \pm .0013$
170	QF (MEL)	$\begin{array}{r} .8015 \\ (24.0) \end{array}$	$\begin{gathered} .1473 \pm .0015 \\ (24.0) \end{gathered}$. $1840 \pm .0014$. 8017	. $1475 \pm .0011$
171	QF (PER)	$\begin{array}{r} .7848 \\ (24.0) \end{array}$	$\begin{gathered} .1457 \pm .0015 \\ (24.0) \end{gathered}$	$.1854 \pm .0014$. 7847	. $1455 \pm .0011$
172	QF (SYD)	$\begin{array}{r} .7837 \\ (24.0) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (24.0) \end{gathered}$	$.1832 \pm .0015$. 7837	$.1436 \pm .0012$
173	QF (ADL)	$\begin{array}{r} .7792 \\ (24.0) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (24.0) \end{gathered}$	$.1847 \pm .0014$. 7791	$.1439 \pm .0011$
174	QF (BNE)	$\begin{array}{r} .7776 \\ (24.0) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (24.0) \end{gathered}$	$.1847 \pm .0016$. 7774	. $1436 \pm .0012$
175	BA (LHR)	$\begin{array}{r} .7863 \\ (24.0) \\ \hline \end{array}$	$\begin{gathered} .1445 \pm .0015 \\ (24.0) \\ \hline \end{gathered}$	$.1843 \pm .0016$. 7861	$.1449 \pm .0013$

Fuel ID number	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu, \\ 1 / \mathrm{cm} \\ \left(\mathrm{\Gamma},{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \end{gathered}$	$\begin{gathered} \rho_{24}, \\ \mathrm{~g} / \mathrm{cm}^{3} \end{gathered}$	$\mu 24$ $1 / \mathrm{cm}$
176	BA (ARN)	0.7906 (23.0)	$\begin{gathered} 0.1445 \pm 0.0015 \\ (23.0) \end{gathered}$	0.1832 ± 0.0015	0.7891	0.1446 ± 0.0
177	AA (PHX)	$\begin{array}{r} .8187 \\ (23.0) \end{array}$	$.1504 \pm .0016$ (23.0)	$.1834 \pm .0014$. 8173	$.1499 \pm .0011$ $.1461 \pm .0011$
178	BA (ARN)	$\begin{array}{r} .7940 \\ (23.0) \end{array}$	$\begin{gathered} .1466 \pm .0015 \\ (23.0) \end{gathered}$	$.1843 \pm .0014$. 7928	$1461 \pm .0011$
179	SV (RUH)	$\begin{gathered} .7810 \\ (23.0) \end{gathered}$	$\begin{gathered} .1437 \pm .0015 \\ (23.0) \end{gathered}$	$.1843 \pm .0015$. 7796	437
180	SV (DAH)	$\begin{array}{r} .7795 \\ (23.0) \end{array}$	$\begin{gathered} .1440 \pm .0015 \\ (23.0) \end{gathered}$	$.1838 \pm .0017$	7781	$1430 \pm .0013$ $.1440 \pm .0012$
181	SV (JED)	$\begin{gathered} .7791 \\ (23.0) \end{gathered}$	$\begin{gathered} .1440 \pm .0015 \\ (23.0) \end{gathered}$	$.1852 \pm .0015$. 7776	$.1440 \pm .0012$
182	AF (NRT)	$\begin{array}{r} .7974 \\ (22.5) \end{array}$	$\begin{gathered} .1465 \pm .0016 \\ (22.5) \end{gathered}$	$.1841 \pm .0014$	7955	$465 \pm .00$
183	AF (TLS)	$\begin{array}{r} .7897 \\ (22.5) \end{array}$	$\begin{gathered} .1465 \pm .0015 \\ (22.5) \end{gathered}$	$1852 \pm .0014$	7878	$459 \pm .00$
184	AF (GIG)	$\begin{array}{r} 7883 \\ (22.5) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (22.5) \end{gathered}$	$.1836 \pm .0016$. 7862	$.1443 \pm .0013$
185	AF (NCE)	$\begin{gathered} .7839 \\ (22.5) \end{gathered}$	$\begin{gathered} .1436 \pm .0015 \\ (22.5) \end{gathered}$	$.1841 \pm .0017$. 7818	$1439 \pm .0013$
186	AF (FCO)	$\begin{array}{r} .7834 \\ (24.0) \end{array}$	$\begin{gathered} .1443 \pm .0015 \\ (24.0) \end{gathered}$	1837 $\pm .0020$. 7834	$.1439 \pm .0016$
187	AF (LIN)	$\begin{array}{r} .7875 \\ (23.0) \end{array}$	$\begin{gathered} .1458 \pm .0015 \\ (23.0) \end{gathered}$	$.1851 \pm .0018$	7864	$.1456 \pm .0014$
188	AF (TXL)	$\begin{array}{r} .7843 \\ (23.0) \end{array}$	$\begin{gathered} .1448 \pm .0015 \\ (23.0) \end{gathered}$	$.1854 \pm .0016$	7830	$.1452 \pm .0013$
189	AF (BUE)	$\begin{array}{r} .7870 \\ (23.0) \end{array}$	$.1435 \pm .0015$ (23.0)	. $1842 \pm .0023$	7858	$.1447 \pm .0018$
190	AF (ATH)	$\begin{array}{r} .7902 \\ (22.5) \end{array}$	$.1447 \pm .0015$ (22.5)	$.1838 \pm .0015$. 7881	$449 \pm .0012$
191	AF (ORY)	$\begin{array}{r} .7838 \\ (23.0) \end{array}$	$\begin{gathered} .1446 \pm .0015 \\ (23.0) \end{gathered}$	$.1841 \pm .0015$	7826	$.1441 \pm .0012$
192	AF (LIS)	$\begin{array}{r} 7965 \\ (23.0) \end{array}$	$.1475 \pm .0016$ (23.0)	$.1851 \pm .0013$. 7952	$.1472 \pm .0010$
193	AF (CAI)	$\begin{array}{r} .7878 \\ (23.0) \end{array}$	$\begin{gathered} .1459 \pm .0015 \\ (23.0) \end{gathered}$	$.1842 \pm .0017$. 7865	$1449 \pm .0013$
194	AF (MAD)	$\begin{array}{r} .8036 \\ (23.0) \end{array}$	$\begin{gathered} .1473 \pm .0015 \\ (23.0) \end{gathered}$	$.1839 \pm .0015$. 8022	$.1475 \pm .0012$
195	AF (CAY)	$\begin{array}{r} .8092 \\ (22.5) \end{array}$	$\begin{gathered} .1488 \pm .0016 \\ (22.5) \end{gathered}$	$.1845 \pm .0015$. 8074	$.1490 \pm .0012$
196	AF (OSA)	$\begin{array}{r} .7846 \\ (24.0) \end{array}$	$\begin{gathered} .1448 \pm .0015 \\ (24.0) \end{gathered}$	$.1847 \pm .0016$. 7847	$.1449 \pm .0013$
197	AF (MEX)	$\begin{gathered} .7891 \\ (23.0) \end{gathered}$	$\begin{gathered} .1468 \pm .0015 \\ (23.0) \end{gathered}$	$.1849 \pm .0018$. 7879	$.1457 \pm .0014$
198	AF (CCS)	$\begin{array}{r} .7925 \\ (23.0) \end{array}$	$\begin{gathered} .1462 \pm .0015 \\ (23.0) \end{gathered}$	$.1853 \pm .0016$	7912	$.1466 \pm .0013$
199	AF (PEK)	$\begin{array}{r} .7818 \\ (23.0) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (23.0) \end{gathered}$	$.1847 \pm .0015$	7806	$.1442 \pm .0012$
200	AF (SVO)	$\begin{array}{r} .7826 \\ (23.0) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (23.0) \\ \hline \end{gathered}$	$.1849 \pm .0016$. 7812	$.1444 \pm .0012$

Table III. Continued

Fuel ID number	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	μ, $1 / \mathrm{cm}$ $\left(\mathrm{T},{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \end{aligned}$
201	BA (LGW)	$\begin{aligned} & 0.7927 \\ & (23.5) \end{aligned}$	$\begin{gathered} 0.1473 \pm 0.0015 \\ (23.5) \end{gathered}$	0.1851 ± 0.0016	0.7919	0.1466 ± 0.0013
202	AC (YYZ)	$\begin{array}{r} .7963 \\ (23.5) \end{array}$	$\begin{gathered} .1474 \pm .0015 \\ (23.5) \end{gathered}$	$.1847 \pm .0014$. 7957	$1470 \pm .0011$
203	TWA (MCI)	$\begin{array}{r} .8054 \\ (23.5) \end{array}$	$\begin{gathered} .1472 \pm .0016 \\ (23.5) \end{gathered}$	$.1836 \pm .0024$. 8046	$.1477 \pm .0019$
204	TWA (STL)	$\begin{array}{r} .8034 \\ (23.5) \end{array}$	$\begin{gathered} .1477 \pm .0016 \\ (23.5) \end{gathered}$	$.1840 \pm .0014$	8026	$.1477 \pm .0011$
205	BA (DUS)	$\begin{array}{r} .8020 \\ (23.5) \end{array}$	$\begin{gathered} .1488 \pm .0016 \\ (23.5) \end{gathered}$	$.1845 \pm .0018$. 8011	$.1478 \pm .0014$
206	BA (MIA)	$\begin{array}{r} .7912 \\ (23.0) \end{array}$	$\begin{gathered} .1468 \pm .0015 \\ (23.0) \end{gathered}$	$.1852 \pm .0014$. 7901	$.1463 \pm .0011$
207	BA (TLV)	$\begin{array}{r} .7956 \\ (23.0) \end{array}$	$\begin{gathered} .1476 \pm .0016 \\ (23.0) \end{gathered}$	$.1856 \pm .0014$	7944	$.1474 \pm .0011$
208	BA (CPH)	$\begin{array}{r} .7956 \\ (23.0) \end{array}$	$\begin{gathered} .1462 \pm .0016 \\ (23.0) \end{gathered}$	$.1837 \pm .0014$. 7941	. $1459 \pm .0011$
209	BA (AKL)	$\begin{array}{r} .7891 \\ (24.0) \end{array}$	$\begin{gathered} .1455 \pm .0015 \\ (24.0) \end{gathered}$	$.1842 \pm .0014$. 7892	. $1454 \pm .0011$
210	TWA (JFK)	$\begin{array}{r} 8059 \\ (24.0) \end{array}$	$\begin{gathered} .1490 \pm .0016 \\ (24.0) \end{gathered}$	$.1843 \pm .0015$	8059	$.1485 \pm .0012$
211	TWA (LGA)	$\begin{array}{r} .8063 \\ (24.0) \end{array}$	$\begin{gathered} .1492 \pm .0016 \\ (24.0) \end{gathered}$	$.1836 \pm .0023$. 8063	. $1480 \pm .0019$
212	BA (BDA)	$\begin{array}{r} .8020 \\ (24.0) \end{array}$	$\begin{gathered} .1460 \pm .0015 \\ (24.0) \end{gathered}$	$.1831 \pm .0018$. 8020	$.1468 \pm .0014$
213	AC (YHZ)	$\begin{array}{r} .7836 \\ (23.5) \end{array}$	$\begin{gathered} .1435 \pm .0015 \\ (23.5) \end{gathered}$. $1837 \pm .0015$. 7827	$.1438 \pm .0012$
214	BA (VIE)	$\begin{array}{r} .7853 \\ (23.5) \end{array}$	$.1441 \pm .0015$ (23.5)	$.1832 \pm .0014$. 7846	$.1437 \pm .0011$
215	BA (HEL)	$\begin{array}{r} .7879 \\ (23.5) \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (23.5) \end{gathered}$	$.1839 \pm .0015$. 7871	$.1447 \pm .0012$
216	AA (PHX)	$\begin{array}{r} .8116 \\ (23.5) \end{array}$	$\begin{gathered} .1484 \pm .0016 \\ (23.5) \end{gathered}$	$.1832 \pm .0014$. 8109	. $1486 \pm .0011$
217	BA (IST)	$\begin{array}{r} .7789 \\ (25.0) \end{array}$	$\begin{gathered} .1442 \pm .0015 \\ (25.0) \end{gathered}$. $855 \pm .0017$. 7799	$.1447 \pm .0013$
218	BA (FBU)	$\begin{array}{r} .7974 \\ (23.5) \end{array}$	$.1479 \pm .0016$ (23.5)	. $1855 \pm .0012$. 7966	$.1478 \pm .0010$
219	BA (KHI)	$\begin{array}{r} .7843 \\ (25.0) \end{array}$	$\begin{gathered} .1452 \pm .0015 \\ (25.0) \end{gathered}$	$.1856 \pm .0018$. 7849	$.1457 \pm .0014$
220	BA (MUC)	$\begin{array}{r} .7904 \\ (24.0) \end{array}$	$\begin{gathered} .1466 \pm .0015 \\ (24.0) \end{gathered}$	$.1852 \pm .0014$. 7903	$.1464 \pm .0011$
221	BA (SFO)	$\begin{array}{r} .8132 \\ (24.0) \end{array}$	$\begin{gathered} .1496 \pm .0016 \\ (24.0) \end{gathered}$	$.1833 \pm .0016$. 8133	$.1491 \pm .0013$
222	BA (LGW)	$\begin{array}{r} .7926 \\ (23.5) \end{array}$	$\begin{gathered} .1464 \pm .0015 \\ (23.5) \end{gathered}$	$.1842 \pm .0014$	7919	$.1459 \pm .0011$
223	AA (SJU)	$\begin{array}{r} .8082 \\ (23.5) \end{array}$	$\begin{gathered} 1487 \pm .0016 \\ (23.5) \end{gathered}$	$.1838 \pm .0014$. 8075	$.1484 \pm .0011$
224	AS (SEA)	$\begin{array}{r} .8129 \\ (24.0) \end{array}$	$\begin{gathered} .1482 \pm .0016 \\ (24.0) \end{gathered}$	$.1833 \pm .0017$. 8130	$.1490 \pm .0014$
225	KLM (AMS)	$\begin{array}{r} .7888 \\ (24.0) \end{array}$	$\begin{gathered} .1438 \pm .0015 \\ (24.0) \\ \hline \end{gathered}$. $1845 \pm .0026$. 7888	. $1455 \pm .0021$

Fuel ID number	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \end{gathered}$	$\begin{aligned} & \mu_{24}, \\ & 1 / \mathrm{cm} \\ & \hline \end{aligned}$
226	SR (ZRH)	0.7917	0.1468 ± 0.0015	0.1850 ± 0.0015	0.7916	0.1464 ± 0.0012
		(24.0)	(24.0) 1472 ± 0016	. $846 \pm .0031$. 8042	$.1485 \pm .0025$
227	TWA (DCA)	$\begin{array}{r} .8042 \\ (24.0) \end{array}$	$\begin{gathered} .1472 \pm .0016 \\ (24.0) \end{gathered}$	$.1846 \pm .0031$. 8042	$.1485 \pm .0025$
228	BA (NBO)	$\begin{gathered} .7832 \\ (23.0) \end{gathered}$	$\begin{gathered} .1447 \pm .0015 \\ (23.0) \end{gathered}$	$.1842 \pm .0015$. 7819	$.1440 \pm .0012$
229	SR (MBA)	$\begin{gathered} .7829 \\ (23.0) \end{gathered}$	$\begin{gathered} .1437 \pm .0015 \\ (23.0) \end{gathered}$	$.1838 \pm .0014$	7815	$.1436 \pm .0011$
230	SR (GVA)	$.7887$	$\begin{gathered} .1464 \pm .0015 \\ (23.0) \end{gathered}$	$.1838 \pm .0024$. 7873	$1447 \pm .0019$
231	SA (JNB)	$\begin{gathered} .7860 \\ (23.0) \end{gathered}$	$\begin{gathered} .1453 \pm .0015 \\ (23.0) \end{gathered}$	$.1849 \pm .0014$. 7847	$.1451 \pm .0011$
232	SA (JNB)	$\begin{array}{r} 7895 \\ (23.5) \end{array}$	$\begin{gathered} .1446 \pm .0015 \\ (23.5) \end{gathered}$	$.1838 \pm .0015$. 7887	$.1450 \pm .0012$
233	AC (YMX)	$\begin{array}{r} .7987 \\ (23.5) \end{array}$	$\begin{gathered} 1478 \pm .0016 \\ (23.5) \end{gathered}$	$.1847 \pm .0014$. 7980	$.1474 \pm .0011$
234	AS (SEA)	$\begin{array}{r} .8087 \\ (23.5) \end{array}$	$.1482 \pm .0016$ (23.5)	. $834 \pm .0014$	8081	$.1482 \pm .0011$
235	AC (YUL)	$\begin{gathered} .7916 \\ (23.5) \end{gathered}$	$\begin{gathered} .1461 \pm .0015 \\ (23.5) \end{gathered}$	$.1844 \pm .0014$	7910	. $1459 \pm .0011$
236	BA (DUB)	$\begin{array}{r} .7956 \\ (23.0) \end{array}$	$\begin{gathered} .1458 \pm .0015 \\ (23.0) \end{gathered}$	$.1833 \pm .0013$	7944	$.1456 \pm .0010$
237	BA (BKK)	$\begin{array}{r} .7878 \\ (23.5) \end{array}$	$\begin{gathered} 1450 \pm .0015 \\ (23.5) \end{gathered}$	$.1835 \pm .0015$. 7872	$.1445 \pm .0012$
238	BA (HAM)	$\begin{array}{r} .7970 \\ (24.0) \end{array}$	$\begin{gathered} .1465 \pm .0015 \\ (24.0) \end{gathered}$. $1852 \pm .0020$	7973	$.1477 \pm .0016$
239	BA (ARN)	$\begin{array}{r} (24.0) \\ .7955 \\ (24.0) \end{array}$	$\begin{gathered} .1453 \pm .0015 \\ (24.0) \end{gathered}$	$.1842 \pm .0021$.7954	. $1465 \pm .0017$
240	BA (CDG)	$\begin{gathered} .7871 \\ (24.0) \end{gathered}$	$\begin{gathered} .1453 \pm .0015 \\ (24.0) \end{gathered}$	$.1846 \pm .0020$. 7871	$.1453 \pm .0016$
241	SV (JED)	$\begin{array}{r} .7815 \\ (23.5) \end{array}$	$\begin{gathered} .1434 \pm .0015 \\ (23.5) \end{gathered}$	$.1841 \pm .0015$. 7808	$.1437 \pm .0012$
242	SV (DAH)	$\begin{array}{r} .7796 \\ (23.5) \end{array}$	$\begin{gathered} .1447 \pm .0015 \\ (23.5) \end{gathered}$	$.1849 \pm .0016$	7790	$.1440 \pm .0012$
243	SV (RUH)	$\begin{array}{r} .7828 \\ (23.5) \end{array}$	$\begin{gathered} .1452 \pm .0015 \\ (23.5) \end{gathered}$	$.1853 \pm .0013$	7820	$1449 \pm .0010$
244	BA (KUL)	$\begin{array}{r} .7877 \\ (23.5) \end{array}$	$.1455 \pm .0015$ (23.5)	$.1849 \pm .0014$	7869	$.1455 \pm .0011$
245	QF (SYD)	$\begin{array}{r} .7881 \\ (24.0) \end{array}$	$\begin{gathered} .1465 \pm .0015 \\ (24.0) \end{gathered}$	$.1847 \pm .0018$. 7882	. $1456 \pm .0014$
246	QF (ADL)	$\begin{array}{r} .7784 \\ (24.0) \end{array}$	$\begin{gathered} 1440 \pm .0015 \\ (24.0) \end{gathered}$	$.1854 \pm .0014$	7786	$.1444 \pm .0011$
247	QF (BNE)	$\begin{array}{r} .7819 \\ (23.5) \end{array}$	$\begin{gathered} .1447 \pm .0015 \\ (23.5) \end{gathered}$	1853土 . 0014	7821	$.1449 \pm .0011$
248	QF (PER)	$\begin{array}{r} .7831 \\ (24.0) \end{array}$	$\begin{gathered} 1444 \pm .0015 \\ (24.0) \end{gathered}$	$.1840 \pm .0014$	7830	$.1441 \pm .0011$
249	QF (MEL)	$\begin{array}{r} .7861 \\ (24.0) \end{array}$	$\begin{gathered} .1451 \pm .0015 \\ (24.0) \end{gathered}$	$.1849 \pm .0014$. 7860	1453 $\pm .0011$
250	SA (JNB)	$\begin{array}{r} .7897 \\ (23.5) \end{array}$	$\begin{gathered} 1465 \pm .0015 \\ (23.5) \\ \hline \end{gathered}$	$.1855 \pm .0011$. 7891	$.1464 \pm .0009$

Table III. Concluded

$\begin{gathered} \text { Fuel } \\ \text { ID } \\ \text { number } \\ \hline 5.1 \end{gathered}$	Airline (airport)	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu, \\ 1 / \mathrm{cm} \\ \left(\mathrm{~T},{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mu / \rho \\ \mathrm{cm}^{2} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{24} \\ \mathrm{~g} / \mathrm{cm}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & \mu_{24} \\ & 1 / \mathrm{cm} \end{aligned}$
251	BA (BOM)	$\begin{gathered} 0.7843 \\ (23.0) \end{gathered}$	$\begin{gathered} 0.1449 \pm 0.0015 \\ (23.0) \end{gathered}$	0.1847 ± 0.0013	0.7831	0.1446 ± 0.0010
252	AF (SVO)	$\begin{array}{r} .7817 \\ (22.0) \end{array}$	$\begin{gathered} .1442 \pm .0015 \\ (22.0) \end{gathered}$	$.1847 \pm .0014$. 7791	$.1439 \pm .0011$
253	AF (PEK)	$\begin{array}{r} .7828 \\ (21.0) \end{array}$	$\begin{gathered} .1446 \pm .0015 \\ (21.0) \end{gathered}$	$.1846 \pm .0014$. 7788	$.1438 \pm .0011$
254	AF (TXL)	$\begin{array}{r} .7939 \\ (21.0) \end{array}$	$\begin{gathered} .1461 \pm .0015 \\ (21.0) \end{gathered}$	$.1843 \pm .0014$	7900	$.1456 \pm .0011$
255	AF (GIG)	$\begin{array}{r} .7820 \\ (21.0) \end{array}$	$\begin{gathered} .1441 \pm .0015 \\ (21.0) \end{gathered}$	$.1839 \pm .0014$. 7779	$.1431 \pm .0011$
256	AF (MAD)	$\begin{array}{r} .8009 \\ (21.0) \end{array}$	$\begin{gathered} .1470 \pm .0015 \\ (21.0) \end{gathered}$	$.1833 \pm .0014$. 7968	$.1461 \pm .0011$
257	AF (CCS)	$\begin{array}{r} .8099 \\ (21.0) \end{array}$	$\begin{gathered} .1499 \pm .0015 \\ (21.0) \end{gathered}$	$.1853 \pm .0014$. 8058	$.1493 \pm .0011$
258	AF (FCO)	$\begin{array}{r} .7920 \\ (21.0) \end{array}$	$\begin{gathered} .1466 \pm .0015 \\ (21.0) \end{gathered}$	$.1851 \pm .0013$	7878	$.1458 \pm .0010$
259	AF (CAY)	$\begin{array}{r} .8187 \\ (22.0) \end{array}$	$\begin{gathered} .1498 \pm .0015 \\ (22.0) \end{gathered}$	$.1832 \pm .0010$. 8131	$.1490 \pm .0008$
260	AF (NCE)	$\begin{array}{r} .7996 \\ (21.0) \end{array}$	$\begin{gathered} .1469 \pm .0015 \\ (21.0) \end{gathered}$	$.1840 \pm .0014$. 7954	$.1464 \pm .0011$
261	AF (ORY)	$\begin{array}{r} .7856 \\ (21.0) \end{array}$	$\begin{gathered} .1454 \pm .0015 \\ (21.0) \end{gathered}$	$.1839 \pm .0018$. 7814	. $1437 \pm .0014$
262	AF (LIN)	$\begin{array}{r} .7880 \\ (21.0) \end{array}$	$\begin{gathered} .1457 \pm .0015 \\ (21.0) \end{gathered}$	$.1848 \pm .0014$. 7838	$.1448 \pm .0011$
263	AF (MEX)	$\begin{array}{r} .7904 \\ (21.0) \end{array}$	$\begin{gathered} .1464 \pm .0015 \\ (21.0) \end{gathered}$	$.1845 \pm .0015$. 7862	$.1451 \pm .0012$
264	AF (OSA)	$\begin{array}{r} .7822 \\ (21.5) \end{array}$	$\begin{gathered} .1442 \pm .0015 \\ (21.5) \end{gathered}$	$.1838 \pm .0015$. 7789	$.1432 \pm .0012$
265	AF (CAI)	$\begin{array}{r} .7890 \\ (21.5) \end{array}$	$\begin{gathered} .1437 \pm .0015 \\ (21.5) \end{gathered}$	$.1831 \pm .0017$	7855	$.1438 \pm .0013$
266	AF (ATH)	$\begin{array}{r} .7899 \\ (21.5) \end{array}$	$\begin{gathered} .1446 \pm .0015 \\ (21.5) \end{gathered}$	$.1837 \pm .0015$. 7866	$.1445 \pm .0012$
267	AF (NRT)	$\begin{array}{r} .7860 \\ (22.0) \end{array}$	$\begin{gathered} .1449 \pm .0015 \\ (22.0) \end{gathered}$. $1847 \pm .0014$. 7834	$.1447 \pm .0011$
268	AF (LIS)	$\begin{array}{r} .8002 \\ (22.0) \end{array}$	$\begin{gathered} .1482 \pm .0015 \\ (22.0) \end{gathered}$	$.1835 \pm .0022$. 7976	. $1464 \pm .0018$
269	AF (TLS)	$\begin{array}{r} .7850 \\ (22.0) \end{array}$	$\begin{gathered} .1443 \pm .0015 \\ (22.0) \end{gathered}$	$.1837 \pm .0014$. 7822	. $1437 \pm .0011$
270	AF (BUE)	$\begin{array}{r} .7860 \\ (22.0) \\ \hline \end{array}$	$\begin{gathered} .1452 \pm .0015 \\ (22.0) \\ \hline \end{gathered}$	$.1846 \pm .0014$. 7833	$.1446 \pm .0011$

Table IV. Rate of Change of Density for Selected Fuel Samples

Number	Fuel ID number	Airline (airport)	$\begin{gathered} d \rho / d T \\ \mathrm{~g} / \mathrm{cm}^{3} \text { per } 1^{\circ} \mathrm{C} \\ \hline \end{gathered}$
1	5	AC (YHZ)	-0.001900
2	6	TWA (JFK)	-. 001400
3	20	AS (SEA)	-. 001300
4	21	FT (BRU)	-. 001800
5	26	BA (FBU)	-. 001067
6	27	BA (HEL)	-. 001400
7	28	BA (MUC)	--. 001133
8	29	BA (CDG)	-. 001067
9	30	BA (AKL)	-. 001200
10	33	BA (BKK)	-. 001467
11	36	BA (DEL)	-. 001067
12	38	BA (HAM)	-. 001467
13	40	AF (ATH)	-. 001600
14	60	BA (LHR)	-. 002000
15	65	TWA (LGA)	-. 001250
16	66	TWA (JFK)	-. 001000
17	69	BA (ARN)	-. 001800
18	78	BA (IST)	-. 001000
19	79	BA (BOM)	-. 001200
20	88	AC (YUL)	-. 001067
21	90	BA (DUB)	-. 001400
22	91	AC (YYZ)	-. 002000
23	92	BA (BDA)	-. 002000
24	93	FM (MEM)	-. 001000
25	96	TWA (STL)	-. 001500
26	98	BA (HAM)	-. 001000
27	105	AA (IAD)	-. 001267
28	110	AF (NRT)	-. 001300
29	113	AF (MAD)	-. 001600
30	122	AF (FCO)	-. 001200
31	133	QF (ADL)	-. 001800
32	137	BA (FBU)	-. 001400
33	144	TWA (MCI)	-. 001850
34	145	TWA (LGA)	-. 001200
35	149	TWA (DCA)	-. 001133
36	153	BA (HEL)	-. 001250
37	156	BA (HKG)	-. 001325
38	157	BA (MUC)	-. 001300
39	159	KLM (AMS)	-. 001200
40	161	AA (IAD)	-. 001200
41	163	FM (MEM)	-. 001200
42	164	BA (DUS)	$-.001133$
43	221	BA (SFO)	-. 001000

Table V. Correlation Between Sample Numbers and Fuel ID Numbers
(a) Region I (North America)

Airline (airport)	Sample number	Fuel ID number(s) for summer (June-Aug.)	Sample number	Fuel ID number(s) for fall (Sept. Nov.)	Sample number	Fuel ID number(s) for winter (Dec. Feb.)	Sample number	Fuel ID number(s) for spring (Mar. May)
AA (BNA)	1	7	22	61, 62	43	136	64	
AA (PHX)	2	8	23	74	44		65	177, 216
AA (SJU)	3	223	24	14	45	84	66	160
AA (IAD)	4		25	15	46	105	67	161
AA (DFW)	5		26		47	128	68	
AC (YHZ)	6	5	27	58	48		69	213
AC (YMX)	7	9, 233	28		49	89	70	
AC (YUL)	8	10, 235	29		50	88	71	
AC (YYZ)	9	11	30		51	91	72	202
AS (SEA)	10	224, 234	31	20	52		73	
AS (ANC)	11		32	23	53	106	74	
BA (MIA)	12		33	22, 82	54	147	75	206
BA (BDA)	13		34		55	85, 92	76	166, 212
BA (SFO)	14	221	35		56	142, 143	77	
FM (MEM)	15		36	19	57	93	78	163
FT (LAX)	16		37	16	58	141	79	
TWA (MCI)	17	1	38		59	94, 144	80	203
TWA (JFK)	18	6	39	66	60	150	81	
TWA (LGA)	19		40	13, 65	61	145	82	211
TWA (DCA)	20	227	41	17	62	95, 149	83	
TWA (STL)	21		42	18	63	96, 148	84	204

Table V. Continued
(b) Region II (Europe)

Airline (airport)	Sample number	Fuel ID number(s) for summer (June-Aug.)	Sample number	Fuel ID number(s) for fall (Sept.-Nov.)	Sample number	Fuel ID number(s) for winter (Dec. - Feb.)	Sample number	Fuel ID number(s) for spring (Mar.-May)
AF (ATH)	1		27	40	53	112, 266	79	190
$\mathrm{AF}(\mathrm{ORY})$	2		28	41	54	120, 261	80	191
AF (ORY)	3		29	45	55	114, 254	81	188
AF (TXL)	3		30	46	56	117, 269	82	183
AF (TLS)	4		3	47	57	122, 258	83	186
AF (FCO)	5		31	47	58	121. 260	84	185
AF (NCE)	6		32	48	58	118,268	85	192
AF (LIS)	7		33	52	59	118, 268		187
AF (LIN)	8		34	53	60	109, 262	86	187
AF (SVO)	9		35	55	61	108, 252	87	200
AF (MAD)	10		36	64	62	113, 256	88	194
BA (CPH)	11		37	24, 73	63	140	89	208
BA (FBU)	12	218	38	26, 76	64	137	90	
	13		39	27, 77	65	153	91	215
BA (HEL)			40	28, 70	66	157	92	
BA (MUC)	14	220		28,	67	146	93	
BA (CDG)	15	240	41	29,67	68	90	94	168
BA (DUB)	16	236	42	31	68		95	164, 205
BA (DUS)	17		43	32, 81	69		96	169, 214
BA (VIE)	18		44	35, 80	70			
BA (HAM)	19	238	45	37, 38	71	$\begin{gathered} 97,98,99 \\ 151,154 \end{gathered}$	97	
		222	46	59	72	127	98	201
BA (LGW)	20	222	46 47	60	73	135	99	175
BA (LHR)	21		47	6	74		100	176, 178
BA (ARN)	22	239	48	69				
FT (BRU)	23		49	21	75	134	101	
KLM (AMS)	24	225	50	12, 72	76		02	159
SR (ZRH)	25	2, 226	51		77	103	103	
SR (GVA)	26	3,230	52		78	104	104	

Table V. Concluded
(c) Region III (All other areas)

Airline (airport)	Sample number	Fuel ID number(s) for summer (June-Aug.)	Sample number	Fuel ID number(s) for fall (Sept.-Nov.)	Sample number	Fuel ID number(s) for winter (Dec.-Feb.)	Sample number	Fuel ID number(s) for spring (Mar. May)
AF (GIG)	1		30	42	59	111, 255	88	184
AF (CAI)	2		31	43	60	115, 265	89	193
AF (MEX)	3		32	44	61	124, 263	90	197
AF (NRT)	4		33	49	62	110, 267	91	182
AF (OSA)	5		34	50	63	119, 264	92	196
AF (CAY)	6		35	51	64	116, 259	93	195
AF (BUE)	7		36	54	65	123, 270	94	189
AF (CCS)	8		37	56	66	125, 257	95	198
AF (PEK)	9		38	63	67	107, 253	96	199
BA (TLV)	10		39	25, 75	68	138	97	207
BA (AKL)	11		40	30, 57	69	155	98	209
BA (BKK)	12	237	41	33	70	100	99	
BA (KHI)	13	219	42	34	71	86, 152	100	
BA (DEL)	14		43	36	72	87	101	
BA (KUL)	15	244	44	39	73	126	102	162
BA (HKG)	16		45	68, 83	74	156	103	
BA (IST)	17		46	71, 78	75	139	104	217
BA (BOM)	18	251	47	79	76	101	105	165
BA (NBO)	19	228	48		77		106	
QF (SYD)	20	245	49		78	129	107	172
QF (MEL)	21	249	50		79	130	108	170
QF (BNE)	22	247	51		80	131	109	174
QF (PER)	23	248	52		81	132	110	17
QF (ADL)	24	246	53		82	133	111	173
SA (JNB)	25	231, 232, 250	54		83		112	167
SR (MBA)	26	4, 229	55		84	102	113	158
SV (RUH)	27	243	56		85		114	179
SV (DAH)	28	242	57		86		115	180
SV (JED)	29	241	58		87		116	181

Figure 1. Source-detector arrangement.

[^3]

(b) Vertical cross section of wing tank in flight.
Reference
Figure 9. Locations of source-detector assemblies in wing tank in flight. Source-detector separation is held constant. Wing lifts up during flight through height with respect to reference level.

Report Documentation Page		
1. Report No NASA TP-2974	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Low-Energy Gamma Ray Attenuation Characteristics of Aviation Fuels		5. Report Date March 1990
		6. Performing Organization Code
7. Author (s) Jag J. Singh, Chih-Ping Shen, and Danny R. Sprinkle		8. Performing Organization Report No. L-16719
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665-5225		10. Work Unit No. $141-20-10-10$
		11. Contract or Gramt No.
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546-0001		13. Type of Report and Period Covered Technical Paper
		14. Sponsoring Agency Code
15. Supplementary Notes Jag. J. Singh and Danny R. Sprinkle: Langley Research Center, Hampton, Virginia. Chih-Ping Shen: Old Dominion University, Norfolk, Virginia.		
16. Abstract Gamma ray attenuation characteristics of AM^{241} were investigated in 270 aviation fuel samples (Jet A and Jet A-1) from 76 airports around the world as part of a year-long study to measure variability of aviation fuel properties as a function of scason and geographical origin. All measurements were made at room temperature $\left(20^{\circ} \mathrm{C}\right.$ to $\left.27^{\circ} \mathrm{C}\right)$. Fuel density was measured concurrently with linear attenuation coefficient to provide a measure of mass attenuation coefficient for the test samples. In 43 fuel samples, density and linear attenuation were measured at more than one room temperature, the result being mass attenuation coefficients at several temperatures. The results were found to be independent of the temperature at which linear attenuation and density were measured. Although individually density and linear attenuation vary considerably from airport to airport as well as from scason to season, mass attenuation for all samples is constant at $0.1843 \pm$ $0.0013 \mathrm{~cm}^{2} / \mathrm{g}$. This constancy of mass attenuation for aviation fuels is significant since it indicates a fuel quantity gauging system based on low-energy gamma ray attenuation is viable throughout the world.		
17. Key Words (Suggested by Authors(s)) Aviation fuels Fuel quantity gauge Radioactive source Gamma ray attenuation Mass attenuation coefficient Fuel density		18. Distribution Statement Unclassified-Unlimited Subject Category 61
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price 39 A 03

[^0]: ${ }^{1}$ A summary of $d \rho / d T$ values for the 43 samples in which density and linear attenuation coefficient were measured at more than one temperature is given in table IV. The $d \rho / d T$ values are illustrated in figure 4.
 ${ }^{2}$ From the data summarized in table III and illustrated in figure 5 , it is evident μ / ρ is independent of temperature (constant for a given fuel sample), i.e., $(\mu / \rho)_{T}=\mu / \rho$.

[^1]: ${ }^{a}$ Airlines sampled were as follows: AA-American Airlines; AC--Air Canada; AF-Air France; AS Alaska Airlines; BA-British Airways; FM-Federal Express; FT-Flying Tigers; KLM- Royal Dutch Airlines; QF-- Qantas Airways; SA South African Airways; SR Swissair; SV—Saudi Arabian Airlines; TWA Trans World Airlines.

[^2]: ${ }^{a}$ Airlines sampled were as follows: AA-American Airlines; AC-Air Canada; AF-Air France; AS-Alaska Airlines; BA-British Airways; FM-Federal Express; FT Flying Tigers; KLM—Royal Dutch Airlines; QF-Qantas Airways; SA-South African Airways; SR--Swissair; SV-Saudi Arabian Airlines; TWA-Trans World Airlines.

[^3]: (a) Region I (North America).

