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ABSTRACT 

 
 Cu diffusion from a ZnTe:Cu/Ti back contact onto 
CdS/CdTe thin-film solar cells is studied.  We find if Cu 
diffusion is insufficient, the entire CdTe layer is depleted.  
However, if Cu diffusion is excessive, the depletion width 
can become too narrow to provide optimum current 
collection.  This analysis suggests that most contact 
processes used for CdS/CdTe devices are optimized 
(often unknowingly) to result in a depletion width that 
extends just far enough into the CdTe to yield the highest 
possible field in the region where light absorption occurs.  
Analysis of the samples with very high Cu concentration 
also suggests that Cu doping of CdS may affect carrier 
collection from the CdS. 
 

INTRODUCTION 
 

Understanding effects that diffusion of contact 
constituents into CdTe and CdS have on the operation 
and stability of CdS/CdTe thin-film photovoltaic (PV) solar 
cells remains an important area of study.  Previous 
research has shown that a significant amount of Cu enters 
the CdTe layer during the 400°C CdCl2 treatment, followed 
by additional Cu diffusion during either graphite/HgTe:Cu 
paste or ZnTe:Cu contact processes [1,2].  Although it is 
generally believed that too much Cu diffusion from the 
contact is detrimental to device stability, it has also been 
shown that acceptor formation in CdTe, required for high 
performance, is also linked to Cu diffusion. 

Previous studies have shown that the use of a 
ZnTe:Cu contact interface layer can produce not only 
high-performance CdS/CdTe devices, but also allows for 
controlled diffusion of Cu.  In earlier studies, this amount 
of Cu diffusion was increased from very low 
concentrations (consistent with uncontacted devices) to 
concentrations consistent with devices demonstrating 
optimum performance.  These studies showed that device 
performance improved with decreasing depletion (space-
charge) width in the CdTe.  The reduction in depletion 
width is expected from increasing CdTe acceptor 
concentration.   

In this work, we extend the study of Cu diffusion to 
include CdS/CdTe devices expected to have considerably 
more Cu than required for optimum performance.  This is 
accomplished by using a ZnTe:Cu contact layer containing 
more Cu than used previously, by making this layer 
thicker, and depositing it at higher temperatures.  These 
parameters combine to produce higher Cu concentrations 
in both the CdTe and CdS, allowing operational 
characteristics consistent with excessive Cu to be studied. 
 

EXPERIMENTAL 
 

The CdS/CdTe material used in this study was 
produced by vapor-transport deposition (VTD) outside of 
NREL [3].  CdS and CdTe layers were ~0.3 and ~4 µm 
thick, respectively.  The ZnTe:Cu/Ti contact was produced 
at NREL as follows:  Samples were placed into a multi-
source vacuum processing chamber and preheated for 
120 min. to the contact-fabrication temperature (samples 
were maintained at the substrate temperature throughout 
the contacting process).  Substrate temperature was 
controlled using a resistive heater at constant voltages of 
0, 20, 24, 28, 30, 32, 34, or 36 Volts, corresponding to 
temperatures of ~25°, ~200°, ~240°, ~280°, ~300°, ~320°, 
~340°, or ~360°C, respectively.  Substrate temperature 
was calibrated using an Al reference sample with an 
embedded thermocouple.  Prior to ZnTe:Cu deposition, 
ion-beam milling was performed with a 3-cm Kaufman-
type ion gun, operating at a beam energy and current of 
500 eV and 6 mA, respectively, and operated using UHP-
grade Ar at a chamber pressure of 2x10-5 torr.  A 1-µm 
thick ZnTe:Cu layer (~9 at.% Cu, measured with electron 
microprobe) was deposited by r.f. sputter deposition, 
followed by d.c. sputter deposition of ~0.5 µm Ti.  To 
ensure that any parameters linked to Ti diffusion were 
comparable for samples with different ZnTe:Cu deposition 
temperatures, the time interval between completion of 
ZnTe:Cu and Ti deposition was varied to assure that the 
heater temperature at the start of Ti deposition was fixed 
at ~185°C.  Following deposition and sample cooling, a 
pattern of four individual 0.25-cm2 cells were defined 
photolithographically on each sample.  Cell definition was 
by two-step chemical etching, first using TFT Ti Etchant 
(Transene Co. Inc., Rowley, MA) to remove the Ti, 
followed by an aqueous solution containing 39% FeCl3 to 
remove the ZnTe:Cu and CdTe. Following photoresist 
removal, unwanted areas were mechanically removed, 
and a perimeter contact to the SnO2 layer was formed with 
ultrasonically soldered In. 

Electrical analysis included light and dark current-
voltage (LIV/DIV) measurements using an XT-10 solar 
simulator adjusted to approximate Global AM1.5 current 
from a CdS/CdTe reference cell.  Capacitance-voltage (C-
V) measurements were performed using an HP 4274 LCR 
meter at a frequency of 100 kHz.  Voltage-dependent 
quantum efficiency (QE[V]) measurements were 
performed at a chopping frequency of 159 Hz, for both 
white-light bias (tungsten lamp set to produce a device 
current of ~1-sun) and dark bias configurations.  Bias 
voltages used were  –0.5, 0, 0.2,0.4, and 0.6 volts.   
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The same devices used for the above electrical 
analyses were also used for compositional analysis 
(secondary ion mass spectrometry, SIMS) following 
chemical removal of the Ti layer with the TFT etchant.  
SIMS was performed from the contacted side of the 
devices using a Cameca IMS-3F instrument tuned for a 
mass resolution (M/∆M) of ~4000 to allow for separation of 
63Cu+ from 126Te2+ species.   

Near-field scanning optical microscopy (NSOM) 
measurements incorporated an atomic-force microscope 
(AFM) using a probe tip that emits 635-nm light within a 
50-100-nm spot [4].  For NSOM studies, the thickness of 
the ZnTe:Cu was reduced to 50-200 nm, and the Ti layer 
was selectively patterned using photolithography [4]. 

 
RESULTS AND DISCUSSION 

 
Figure 1 shows SIMS depth profiles of Cu for devices 

contacted at various heater voltages.  As observed 
previously [5], higher contact temperature leads to increased 
Cu incorporation into the CdS layer.  This study also reveals 
a systematic increase in Cu concentration in the CdTe layer 
with heater voltage.  This trend may have been present in 
the earlier work, but is here more obvious due to thicker 
ZnTe:Cu layers and/or higher contact temperatures.  Figure 
1 also indicates the devices produced at 30 and 32 volts 
(near optimum conditions) have very similar compositional 
profiles, whereas devices contacted at 24 volts have lower 
Cu concentrations, and devices contacted at 34-36 volts 
have noticeably higher Cu concentrations.  
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Figure 1.  Quantified, high-resolution SIMS depth profiles of Cu 
concentration in CdTe/CdS devices contacted at various heater 
voltages.  Figure shows approximate location of layer interfaces.  
Analysis is preformed from the CdTe side of device. 
 
LIV/DIV measurements indicate that optimum device 
performance (shown on Figure 2) results for heater 
voltages of ~30-32 Volts.  Further, because losses in 
voltage, fill factor and current are similar for devices 
contacted at lower (Fig. 2a) or higher (Fig. 2b) 
temperatures, LIV/DIV alone is a poor indicator of Cu 
concentration.  Also, because increased Cu concentration 
with contact temperature is observed in both the CdTe and 
CdS layers, this analysis does not indicate if Cu in one or 
the other layer dominates performance changes.  
Nevertheless, Figure 1 together with Figure 2 clearly 
indicate that devices with either insufficient or excessive 
Cu concentration produce non-optimum performance. 
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Figure 2.  LIV/DIV of devices produced for this study that are 
expected to contain (a) insufficient or (b) excessive Cu.  Optimum 
LIV values were measured at NREL using the X25 Simulator.  
Arrows show change in Voc with increasing heater temperature. 
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Figure 3.  C-V analysis of CdS/CdTe devices contacted at various 
temperatures.  Arrows indicate location of depletion width at zero 
bias for devices contacted at stated heater voltages. 

 
C-V analysis (Figure 3) provides additional insight into 

how the contact affects the electrical properties of the 
device.  Key points revealed are: 1) The depletion width 
decreases systematically with increasing contact 
temperature.  This would be consistent with incorporation of 
Cu increasing the net defect concentration (NA-ND) in the 
CdTe.  2) Devices contacted at higher than optimum 
temperatures (34 and 36 volts) show significant increase in 
NA-ND (from 5x1013 cm-3 to ~1x1015 cm-3).  This suggests 
that the considerable increased Cu concentration observed 
in Figure 1 at high contact temperature translates into 
increased net defect concentration in the CdTe.  3) Contact 
deposition at 34 and 36 volts also show a significant 
reduction in depletion width at zero-bias (from ~3 µm to <1 
µm).  This reduction is due partly to increased net defect 
concentration in the CdTe, but may be impacted by the 
requirement of space-charge neutrality following Cu 
compensation of CdS donors (to be discussed below).  The 
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depletion width for these devices is so narrow that photo-
generated carriers may increasingly be created outside the 
space-charge region in forward bias, and voltage-dependent 
collection (JL[V]) should be observed.  4) Although the 
depletion width at zero bias for the optimum device (32 V) is 
relatively wide, it reduces significantly in forward bias so that 
at +0.6 V (about the maximum-power point for this device) 
the depletion width is similar to devices with much more Cu.  
Therefore, this device also could show JL[V]. 

To investigate if effects of JL[V] are limiting device 
performance, QE[V] analysis was performed on three 
devices contacted at heater voltages of 24 V, 32 V, and 36 V 
(i.e.,  insufficient, optimum, and excessive Cu, respectively).   
In all cases, QE[V] results were scaled so that each QE 
curve integrates to the appropriate device current (at the 
stated bias voltage) as measured under standard conditions 
at NREL.  Figure 4 shows a comparison of the devices 
measured without voltage or light bias.  This comparison 
reveals that the device with insufficient Cu demonstrates 
relatively uniform collection across its responsive range, as 
expected from a fully depleted device.  In contrast, the 
device produced with excessive Cu shows reduction 
primarily in its red response, consistent with the depletion 
width being too narrow.  Interestingly, the band edge of this 
device also shows a slight increase.  As suggested from C-V 
analysis, the device produced near optimum conditions also 
shows some reduction in its red response, but not as severe 
as for the device with excessive Cu.  QE response from the 
CdS shows very slightly reduced collection for the sample 
with insufficient Cu.   
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Figure 4.  QE[V] analysis of CdS/CdTe/ZnTe:Cu/Ti devices 
measured with no light bias and 0 volts voltage bias. 
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Figure 5.  QE[V] analysis of CdS/CdTe/ZnTe:Cu/Ti devices 
measured with ~1-sun light bias and 0 Volts voltage bias. 
 

Figure 5 shows the same three devices measured 
without voltage bias, but now adding ~1-sun white-light bias 
during the QE measurement.  Results in the CdTe 
responsive range (500-850 nm) are similar to measurements 

performed without light bias.  However, the CdS region (350-
500 nm) now shows a more pronounced increase in 
response with increasing contact temperature.   
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Figure 6.  QE[V] analysis of CdS/CdTe/ZnTe:Cu/Ti devices 
measured with ~1-sun light bias and +0.4 Volts voltage bias. 
 

Figure 6 compares the same three devices measured 
using both white-light bias and +0.4 volts bias (forward bias).  
Although not shown, the +0.4 volts bias reduces the spectral 
response from the CdTe region for samples containing 
insufficient or excessive Cu.  Both these reductions are 
expected because of insufficient field strength within the 
depletion width (low Cu) and insufficient depletion width 
(high Cu).  The spectral response for the optimum device is 
not altered appreciably by the +0.4 volts bias.  We suggest 
this is because the depletion width remains sufficiently wide 
and the field sufficiently strong as the device enters forward 
bias conditions.  Indeed, we propose this is an underlying 
criterion for many “optimum” contact processes.  An 
important remaining feature of Figure 6 is the apparent 
increase in response from the CdS spectral region for the 
sample with excessive Cu.   
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Figure 7.  QE(V) analysis of CdS/CdTe/ZnTe:Cu/Ti devices with 
measured with ~1-sun light bias and stated voltage bias. 
 

The apparent increased CdS response under forward-, 
light-bias measurement conditions is illustrated more clearly 
in Figure 7, where a full set of voltage-bias conditions (1-Sun 
white-light bias) are shown for the sample containing 
excessive Cu.  The figure shows a systematic decrease in 
response for the CdTe spectral region with forward bias 
voltage.  We suggest this reduction is due to the depletion 
width being too narrow to collect all the current (i.e., forward 
bias reduces already poor collection).  In contrast, the CdS 
region shows a systematic increase in spectral response for 
forward-bias conditions. 

Changes in CdS spectral response under various bias 
conditions have been studied historically in CuxS/CdS 
devices [6,7], and more recently in CdS/CdTe devices [8,9].  
While our results also reveal changes in the apparent 
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response from the CdS region, some interesting differences 
exist.  The most significant difference may be that enhanced 
CdS response is observed for white-light bias at a chopping 
frequency of 159 Hz.  The small increase in CdS response 
shown in Figure 5, and the larger increase shown in Figures. 
6 and 7 implies, for high contact temperatures, Cu may 
compensate donors in CdS, forming a more intrinsic material 
and allowing the formation of a stronger drift field within the 
CdS.  Indeed, using these assumptions, preliminary 
modeling using AMPS-1D suggests that moderate collection 
of carriers from light absorbed in the CdS appears possible 
(i.e., QE of ~20% at 400 nm).  Alternatively, Cu could be 
passivating interface recombination pathways, enhancing 
minority-carrier transport at the CdS/CdTe interface.  

In addition to providing insight into how the junction 
evolves in a CdS/CdTe device during back contacting, the 
previous analysis suggests that, for low Cu concentration, it 
may be possible to collect light incident from the back of the 
device (because the device is completely depleted, a drift 
field will be present near the back contact).  In addition to 
demonstrating device response from backside illumination 
(note the ZnTe:Cu is transparent to light >550 nm), 
depletion-width control has also allowed the use of NSOM to 
spatially map collection near grain boundaries at the back of 
the device. 
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This study has shown that a CdS/CdTe PV device 
undergoes significant changes during formation of a back 
contact that uses a ZnTe:Cu contact interface layer.  
These changes not only involve formation of low-
resistance barriers at the CdTe/ZnTe:Cu and 
ZnTe:Cu/metal interfaces, but also considerable changes 
in the net defect level within the CdTe bulk.  This work 
also shows the CdS layer of a CdTe/CdTe device 
undergoes significant changes when sufficient Cu is 
allowed to diffuse into it at high temperatures.  Specifically, 
changes in the apparent spectral response are revealed 
when the CdS contains sufficient Cu.  Although these 
changes are similar to those reported by others, some 
interesting differences exist.  At this time, we are 
investigating if these observations can be used to benefit 
the overall performance of thin-film CdS/CdTe devices. Figure 8.  Peak NSOM-generated photocurrent from a 

CdS/CdTe/ZnTe:Cu/Ti device, measured as a function of ZnTe:Cu 
thickness. 
 

Figure 8 shows that the highest NSOM photocurrent is 
produced when the ZnTe:Cu layer is only about 50 nm thick.  
This is also consistent with previous EBIC analysis that 
indicated an enhanced field near the back contact for 
devices with 50-nm ZnTe:Cu contact layers [3].  Figure 8 
also shows the NSOM-generated device current decreases 
as the ZnTe:Cu layer thickness increases.  Because the 
ZnTe:Cu layer (Eg = 2.25 eV) is transparent to the NSOM 
illumination source (1.95 eV), the systematic current 
reduction for ZnTe:Cu thickness > 50 nm is not due to 
absorption in the thicker ZnTe:Cu.  Rather, we conclude Cu 
diffusion from the thicker ZnTe:Cu layers produces more 
acceptors in the CdTe, and these cause the outer edge of 
the space-charge layer to move away from the back surface, 
producing a non-depleted region (i.e., higher recombination) 
where the NSOM illumination is generating most of its 
carriers.  Collection could be limited further by a potential 
barrier at the back contact forming a second depletion layer.  
The field of this second depletion layer would be in the 
opposite direction of the main junction field, causing 
electrons to drift away from the main junction. 

NSOM analysis using a 50-nm-thick ZnTe:Cu film (as 
described above) is shown in  Figure 9.  In this figure, a 
comparison of the resulting AFM images (left side) and 

NSOM images (right side) suggests, for this structure, 
collection is enhanced near grain boundaries.  Further 
discussion of this NSOM analysis is presented elsewhere 
[4]. 
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Figure 9.  Left: AFM image of polycrystalline CdTe/CdTe/ZnTe:Cu 
solar cell.  Right : NSOM image of the same region. 

1 µm

 
CONCLUSIONS 
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