
©

©

©

)

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY

COLLEGE OF ENGINEERING AND TECHNOLOGY •

NORFOLK, VIRGINIA 23529

STRATEGIES FOR CONCURRENT PROCESSING OF COMPLEX

ALGORITHMS IN DATA DRIVEN ARCHITECTURES

;/v

By

John W. Stoughton, Principal Investigator

Roland R. Mielke, Co-Principal Investigator

and

Sukhamony Som, Research Assistant Professor

Final Report

For the period ended August 15, 1989

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-I-683

Paul J. Hayes, Technical Monitor

ISD-Information Processing Technology Branch

April 1990

¢

I!<> .'

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY

COLLEGE OF ENGINEERING AND TECHNOLOGY

NORFOLK, VIRGINIA 23529

STRATEGIES FOR CONCURRENT PROCESSING OF COMPLEX

AIC, ORITHMS IN DATA DRIVEN ARCHITECTURES

By

John W. Stoughton, Principal Investigator

Roland R. Mielke, Co-Principal Investigator

and

Sukhamony Som, Research Assistant Professor

Final Report

For the period ended August 15, 1989

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-I-683

Paul J. Hayes, Technical Monitor

ISD-Information Processing Technology Branch

O

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

April 1990

STRATEGIESFORCON(X/RRENT PROCESSING OF

ALGORITHMS IN DATA ERIVEN _

John W. Stoughton I, Roland R. Mielke 2, and Sukhamoy Scm 3

ABSTRACT

This rssearc_h report is concerned with performance modeling and

performance enhancement for periodic execution of large-grain,

decision-free algorithms in data flow architectures. Applications

incl_e real-time implementation of control and signal processing

algorithms where performance is required to be highly predictable.

The mapping of algorithms onto the specified class of data flow

architectures is realized by a marked graph model called

(Algorit_ To Architecture _Mapping Model). Performance measures and

bounds are established. Algorithm transformation techniques are

identified for performance enhanoement and reduction of rsscurce

(ccmputing element) req_ts. A systematic design procedure is

described for generating operating conditions for predictable

performance both with and without resource constraints. An

simulator is used to test and validate the performance prediction by

the design procedure. Exper_ts on a three resource testbed provide

verification of the _ model and the design procedure.

iAssociate Professor, 2professor, 3Researc/h Assistant Professor

Department of Electrical and Computer Engineering, Old Dcminion

University, Norfolk, Virginia 23529

TABLEOFCONTENTS

ABSTRACT

PAGE

i

LIST OF TABLES .. iv

LIST OF FIGURES .. V

LIST OF SYMBOLS .. ix

PREFACE .. xii

_9_TER

1. INTRODUCTION .. 1

i. 0 Preface .. 1

1.1 Baci

1.2 Problem Representation by the ATAMM model 5

1.3 Objectives and Organization of Dissertation 13

2. PERFORMANCE MDDEL 17

2.0 Introduction 17

2.1 Perfo_ M_astlres 17

2.2 Marked Graph Characteristics 20

2.3 Graph Theoretic Perfo_ Bounds 30

2.4 IRe__ 36

2.5 S_ .. 53

3. AIEORITHM TRANSFOI_4ATION 55

3.0 Introduction 55

3.1 Algorithm Transformation Guidelines 55

3.2 Perfo_ Improvements by Transformation 62

ii

Q

3.3 Implementation of Periodicity by Transformation..

3.4 Structural C_es in AlgorithmbyTransformation

.5 _ OeaOeOOOlOO.OeOeOOOOOOO,eI_OO.OOIO,IOIO,e

ATAMM OPERATING POINT DESIGN

4.0

4.1

4.2

4.3

4.4

CONCLUSION ..

Introduction

(_%aracteristics of Operating Point

Operating Point Design

72

8O

93

95

95

95

i01

Test Results iii

S_ .. 146

5. 147

LIST OFREFERENCES .. 153

APPENDIX ... 156

iii

TABLE

4.1

4.2

LIST OF TABLES

Cumparison of Results for Test 1

PAGE

119

Cnmparison of Results for Test 2 127

iv

FIGURE

i.I

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.I0

3.1

3.2

LIST OF FIGURES

Algorithm marked graph for discrete

system equation

node marked graph model

oumputational marked graph
model for discrete system equation

ATR_ model cumpmmmts

An algorithm for flight simulation plan

Example algorithm marked graph

Example of node and process circuits

Computational marked graph for the AMG

Example of recursion and parallel

path circuits

Modified algorithm marked graph

for Figure I.1.................................

Algorithm marked graph for
illustration of GPST AND REST

GPST and REST

Total graph play and total

envelc_e for THO = 2...........................

Resource envelcpe for a single task input

and total resource envelope for TBO = 3

Transformed algorithm marked graph

in Application 1...............................

C_tional marked graph
for the transformed AMG

AMG for illustration of Application 2..........

REST and TRE for TBO = 2

PAGE

9

12

14

15

21

23

26

28

29

32

42

43

5O

52

6O

61

68

69

v

3.7

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

4.1

4.2(a)

4.2 (b)

4.5

4.6

4.7

Transformed AMG for Figure 3.3 70

For the AMG transformed by oontrol place

i, REST and TRE for TBO = 2 71

For the transformed AMG with all oontrol

places, REST and TRE for TBO = 2 73

Injection control by Application 3 75

Example AMS for illustration of

Application 4 78

GPST and TGP for TBO = 2 79

Transformed AMG and total graph play
for TBO = 3 81

AMG A 1 and transformed AMG _ 83

Algorithm I, Algorithm 2, and Algorithms 1

and 2 are combined by dtmm_ transitions 84

AMG for the linear time invariant system 85

Transformed AMG for the linear

time invariant system 88

An AMG with a large transition T and T is

dec_ in N parallel transitions 91

AMG before decomposition of B and B is

d_ 94

operating point characteristics 98

AOP characteristics under

specific _formations 102

The strategies for AOP design under

resource constraints 106

GPST and TGP for TBO = 2 107

TRE for TBO = 3 in Step 4 and

TRE for TBO = 4 in Step 6 109

GPST and TGP for TBO = 2 Ii0

Transformed AMG for Steps 5 and 6 112

ATAMM operating points for

the example algorithm marked graph 113

vi

4 •i0

4.11

4 •12

4 •13

4.14

4 •15

4.16

4.17

4.18

4 •19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

The testbed ATAMM data flow architecture

AMG for Test 1 and transformed

for Test 1

simulation results for the AMG in Test 1

simulation results for the

transformed AMG in Test 1

Experimental results for the AMG in Test 1

Experimental results for the

transformed AMG in Test 1

AMG for Test 2 and transformed AMG

for Test 2

sia_lation results for the AMG in Test 2

simulation results for

the transformed AMG in Test 2

Experimental results for
theAMG inTest 2

Experimental results for the
transformed AMG in Test 2

For Test 3, AMG and REST

Simulation results for AOP of

Step 3 in Test 3

simulation results for AOP of

StrategyA in Test 3

AMS for Test 4 and REST for the

AMG of Test 4

For the transformed AMS, REST and GPST

TGP for transformed AMG

si_/lation results for AOP of

Step 3 in Test 4

Simulation results for AOP of

Strategy A in Test 4

simulation results for AOP of

Step 3 in Test 5

115

117

120

121

122

123

125

128

129

130

131

132

134

135

136

138

139

140

141

142

vii

4.28

4.29

4.30

Sia_Llation results for AOP of

Strategy A in Test 5

Simulation results for AOP of

strategy B in Test 5

simulation results for _JDP of

strategy c in T_st 5

143

144

145

viii

SYMBOL

AOP

AMG

b

ci

_4G

CC

CE

ER

FJN

G

GC

Gl:b_

IF

M(C i)

NMG

LIST OF SYMBOLS

DESCRIPI_ON

Operating Point

Algorithm Marked Graph

_Algorithm To Architecture [4apping _Model

Section number of GPST and data packet number

ith directed circuit

Cc_tional Marked Graph

Computing Capacity

O_puting Effort

_ R_

Functional unit

An algorithm marked graph

A ccmputational marked graph

Modified algorithm marked graph for G

Global Memory

Graph Play for a Single Task Input

Graph Manager

Lnput Buffer E_ty

Input Buffer Full

Modified Algorithm Marked Graph

Number of tokens in circuit i

Node Marked Graph

ix

OE

OF

Pi

PC

T (Ci)

T (Pi)

TBI

TBOq:_

THOAI.B

TBIO

TBIOAI B

TBIO_

Output Buffer Empty

Output Buffer Full

Place j

Process Complete

Process Ready

Resource Envelope for a Single Task Input

Utilization

Transition j

Total transition times in Ci

Total transition times in Pi

Input data injection interval

Ti=e Between Outputs

TBO at the operating point

Absolute lower bound for TBO

Lower bcLu-d for TBO

Time Between Input and Output

Absolute lower bound for TBIO

bound for TBIO

Total Gra[_h Play

Total Resource Envelope

Total Ba_ Ccmputation

Total Omputation

Total Ccmputing Effort

Total Forward Computation

Total Forward _ting Effort

Task Time

x

TTALB

TILB

Absolute lower bound for lIT

Lower bound for lIT

xi

PREFACE

The _ of this report is to document research to develop

strategies for concurrent processing of ccmplex algorithms in data

driven architectures performed under Grant NA_-I-683 during the period

May 16, 1988 to May 15, 1989. In this overview, the problem domain is

described, the motivation for this researv/% is explained, and a

of research activities are presented. The detailed

description of the investigation is taken frum the doctoral

dissertation by Dr. Sukhamoy Sam entitled "Performance Modeling and

lhancement for the ATAN Data Flow _tecture".

During earlier grant periods, a ocmputational model called the

Algorithm To Architecture Mapping Model (_) was formulated for

mapping large-grain, decision-free algorithms to a n_iticcmputer data

flow architecture. Major applications are expected to be real-time

implementation of control and signal processing algorithms where

performaiK_ is required to be highly predictable and fault tolerant.

Of /nterest is the periodic execution of algorithms. For cur

purposes, an algorithm is expressed as a directed graph where vertices

(nodes) represent algorithm operations and edges represent data sets

or signals. Large-grain refers to the assumption that the time

required to perform algorithm operations is large campared to the time

to move data frum one node to another. Decision-free refers

to the absence of data dependent paths in the algorithm graph

xii

representation. The architecture is asstuned to oonsist of twD to

twenty functional units or resources each having a capability of

processing, ccmm/nication, and memory. The resources share a cc_mon

global memory which is centralized or distributed. The coordination

of _ in relation to data and control flow is directed by a

graph manager. The graph manager also is centralized or distributed.

Assignment of a functional unit to a specific algorithm node is made

by the graph manager aooording to ATAMM rules and a priority ordering

of algorithm nodes. All assignments are non-preemptive for minimum

cc_mmication cost. In a specific hardware setting, the graph

manager, glQbal memory, and functional unit activities together form

the ATAMM Multiccmputer Operating System or AMDS.

The ATAMM model is important because it specifies a criteria for

a multiccmputer operating system to achieve predictable and highly

fault tolerant performance, and it creates a platform for

investigating different algorithm d_itions and implementation

strategies in a hardware independent context. In earlier reports, the

use of the ATAMM model is described for determining analytically

performance bounds and developing an operating strategy for optimum

time perfo_. In addition, the construction of an _ defined

data flow architecture and development of simulation and analysis

tools are reported. During the present grant period, research is

carried out for performance modeling and performance enhancement for

the ATAMM data flow arc2Litecture. In order to have a predictable

performance, it is necessary that assignment of algorithm nodes to

functional units be as _ priority independent as possible. This is

done to avoid the priority inversion problem. Even for small run-time

xiii

variations of crmm_/nication delays and execution time variations, a

low priority algorithm node may be enabled before a high priority

algorithm node. As the assignment is non-preemptive, this may

cc_pletely change the graph execution pattern and resource

requirsments. In order to ov_ this problem, it is suggested that

the operating system (AMOS) transform the algorit_ graph and control

input data injection interval so that a functional unit always is

available for every enabled algorithm node. In other words, even if

priority inversion changes the order of execution of algorithm nodes,

graph execution patterns and resource requirements will not be changed

drastically. Two performance measures, TBIO and TBO, are defined for

periodic processing of algorithms. TBIO is an indicator of computing

speed for an algorithm. TBO is a measure of the time interval between

algorithm outputs, and the inverse of TBO indicates _. The

time performance (TBIO, TBO) and the number of required resources

define an operating point for AMDS. If enough functional units are

available, optimum TBIO and TBO can be achieved. However, if a

limited number of resources is available, one must _ either TBO

or TBIO, or a ccmbination of both. Two key methods for shifting the

operating point are control of the input injection interval and

transformation of the algorithm graph. Transformation of the

algorithm grapg is achieved by adding du_m] nodes (transitions) and

control edges (plaoes) as described below. A dungy node is an

algorithm node which implements an identity operation and requires

zero time. It is used as a buffer to provide additional storage space

for the output of an algorithm node. A dtmm_ node is a pure msmory

operation and does not require a resource. A control edge is an

xiv

algorithm edge which imposes a precedence relation amongtwo algorithm

nodes but does not imply data dependency. Tnis type of edge is used

to delay the execution of a node. Thus, predictable performance is

achievable even if the number of functional units decreases to i. An

simulator and experiments on a three _ testbed provide

verification of performance modeling and graph transformation methods.

xv

_%PTERONE

INIRO_JCTIC_

I. 0 Preface

_Algorithm _ Z_rchitecture _Mapping_ (ATAMM)is a new graph

theoretic model from which tb_ rules for data and control flow in a

homogeneous, multic_, data flow ardlitectures may be defined

[I, 2]. The subject of this d/ssertation is the investigation of

co_t processing in such an ATAMM defined architecture for

large-grain, decision-free algorithms. Performance modeling,

performaIK_ _t, and the development of c__vating strategies

for periodic execution of such algorithms are the key

objectives. Chapter One is an introduction of A_t_M and a discussion

of the motivation behind the research. Back_ for the _ model

and this researv/% is presented in Section i.i. The crmputational

problem representation by the _ model is presented in Section

1.2. The objectives and organization of this d/ssartation are

described in Section I. 3.

1.1

The principles of computer ardlitecture design historically have

been based upon vcn Neumann organization [3]. These principles have

lead to _tectures consisting of a single oumputer in which low

level math/me language instructions perform simple operations on

elementary operands, and centralized, sequential control of

oumputation is employed. Despite the fact that electrc¢_c ou_Donents

are becoming Lncreasingly faster, the desired computer performance has

always been mu_h more than that which is obtainable with yon Neumann

organization. Advances in the solid state technology alone are not

expected to be enough to produce computers to meet the cumputational

needs of the future. There is a growing _ that the next

(fifth) genez-aticn of c_ will be based upon _ Neumann

structures.

Recently, a number of new computer ard__ have been

proposed from which a number of crmputer systems have been built [3].

A few examples are Texas _ Distr_ Data Processor CubA),

Cellular Tree Machine of the University of North Carolina-Chapel Hill

(USA), and _ Data Flow cummt_ (England) [3]. This work has

been motivated mainly by three objectives. First, there is the desire

to _ ou_ar performance through the use of ccncurr_cy.

Second, there is the desire to more fully exploit very large scale

integration (VLSI) in the design of computers. Third, there is

interest in new progr-_mming methods which facilitate the mapping of

algorithms onto ammhitectures. These ideas suggest a decentralized

_tecture in which a number of _ computers are

to work together. _bese inde___ent computers, each having a

capability for processing, cclmmlnication, and memory, can be as large

as a geographically distributed mainframe computer or as small as

micrcc_ on a single VLSI chip. Unfortunately, strategies for

int_-c_'m_cting and p_ such ard-/t_ures based upon yen

Neumann principles have not evolved. It appears that vcn Neumann

organization principles are not adequate to address the complex

of scheduling, coordination, and cc_mun/catic_.

Strategies for control of computations on decentralized computer

_tectures can be classified broadly as ocrfcrol flow, demand

driven, and data driven. In control flow cumputers, explicit flows of

control cause the execution of instructions. In demand driven

architectures, the execution of operations are triggered by the

of outputs or results. In data driven _tectures

(also known as data flow cumputers), the availability of c_

trigger the execution of operations. Data flow _tectures are the

primary interest of this research because of their suitability for

ccrcurrent processing of complex algorithms.

A useful mathematical tool for modeling execution of complex

algorithms on a data flow decentralized _tecture is the Petri

net. Petri nets were first developed in 1962 by Carl Petri [4], and

later were identified as a useful analysis tool in the work of Holt

and Omm_ner [5]. A comprehensive treatment of Petri nets is

presented in [6]. One problem with the Petri net model is that it

tends to be too complicated to analyze. An important subclass of

Petri net is the marked graph where each place has exactly one

_ and _e _t_oing arc. Marked _ can be used to m_-I the

processing of decision-free algorithms [7]. Properties such as

liveness, safeness, and teachability can be ad%ieved for marked graph

models [6]. Procedures also exist for expanding and reducing marked

graphs while preserving these properties [8]. _hese graph features

are suitable for modeling the _ion of single events such as data

and status conditicns. In this dissertation, the marked graph is used

as a modeling tool for data driven cumputations.

The data flow concept has already attracted the attention of a

great many researchers. Starting with the work on data flow at MIT by

Jack Dennis, a number of data flow cc_ have been k_ilt [9]. The

best strategy for executing an algorithm in these data flow camputers

is roach/he dependent. Howt_er, only a f_ _ have tried to

develop a theoretical model for evaluating c_ticn in a data

driven ard_itecture [i0]. These models do not appear to be adequate

to address the cumplex issues of scheduling, coordination, and

ccm_unication.

There is a need for a simple, but effective, model for data

driven ccmputaticms in order to investigate the relative merits of

different algorithm c_iticms and implementation strategies in a

hardware irdependent context. Ongoing research effort at Old Daminion

University has lead to the development of a new marked gra_ model for

describing data and control flow associated with the execution of

algorithms in data flow architectures [2]. The model is identified by

the acrunym _ which represents 81gorithm _o l_hitecture _apping

_Model [ii]. Specifications derived frcm the model lead directly to

the description of a data flow architecture and will be called the

ATAMM data flow _tecture henceforth. The availability of the

model is important for at least three reasons. First, it

provides a context in which to inve_igate algorithm deaumpcsition

strategies without the need to specify a specific ATAMM data flow

arc2Litecture. Seccrd, the model identifies the data flow and control

dialogue r_p/red of any AT3%MM data flow architecture which implements

the algorithm. Third, the model pruvides a basis for analytically

calculating performance bc_xls and developing a methodology for

improv_nt in performanoe.

The problem damain addressed by the ATAMM data flow _tecture

and this research ocmsists of decision-free, laz_-qra/n, oumplex

algorithms which are assumed to be _ periodically in a

multioumputer envY. The algorithms are assumsd to r_gLire

large computations which would include such cumputaticns as matrix

addition, multiplication, etc. The anticipated multic_

env_ is assumed to o_sist of two to twenty identical

or functional units each having a capability of processing,

oc_mmication and rotatory. The primary reason for such assumpticrm is

the objective of implementing control and signal processing algorithms

in fifth generation multiccmputer architectures for real time

applications on board the proposed Space Station. The granularity

level of the algorithm decomposition is ke_t high to avoid

oammunicaticn bottlenecks as observed in many fine-grain data flew

ard%itectures [12]. The range of functional units is suggested due to

the large-grained aspect of the algorithm decumPceiticn. Of interest

is the definition of a performance model so that the performance of

the algorithms can be evaluated and improved. Also an operating

procedure is needed for obtaining predictable perfo_ with respect

to available computing elements.

i. 2 Problem Representation by the ATAMM Model

The ATAMM model consists of a set of Petri net marked graphs

which incorporate general specifications of cummunicaticn and

processing associated with eaah oumputaticnal event in a data flc_

architecture. In this section, the c_ticmal problem is

represented by the ATAMM model. First of all a detailed description

of the problem context is stated. This is followed by the definition

of the ATAMM mode/ ccmsisting of the algorithm marked graph, the node

marked graph, and the oamputational marked graph. Same familiarity

with Petri nets [6] add marked gra_ [13] is _.

A problem description normally results in the definition of a

function given by the triple (X, Y, F), where X represents the set of

admissible inputs, Y the set of admissible outputs, and F: X -> Y the

rule of corre_ which unambiguously assigns exactly one element

from Y to each element of X. Associated with a oumputaticr_l problem

is one or more algorithms. An algorithm is an explicit mathematical

statement, expressed as an ordered set of primitive operatiuns, which

explains how to implement the rule of co_ F. A primitive

operation is a complex cumputation. Matrix multiplication and

additicm are examples of primitive cperaticr_. In general, a given

problem can be _ by several diff_ primitive operator

sets. Also, for a given primitive uperator set, there are often

different ordering of primitive c_eraticms which can be specified to

carry cut the problem. Of special interest are algorithm

decumpositions in which two or more primitive operations can be

performed ccux_rr_cly. For such decampositions, the potential exists

for decreasing the computational time required to solve the problem by

increasing the cumputational resources whiQh implement the primitive

operations.

The hardware env_ for executing the c_rmiDosed algorithms

is assumed to consist of R identical cc_ or functional units

(PUN's), where R has a value in the range of two to twenty. These

camputers or functional units are also denoted by the ten_

,,computing element" or "resource". Eaah functional unit is a

processor having local marry for program storage and temporary input

and output data o_ntainers. Each functional unit can execute any

algorithm primitive operation. The functional units share a common

glctal m_nory (GLM), wh/ch may be either oentralized or d/str_.

Tne coordination of functional units in relaticm to data and oontrol

flow is directad by the graph manager (GM). _e graph manager also

may be centralized or d/str_. Output created by the completion

of a primitive cgeraticn is placed into global memory only after the

_ta _mtainers have been _ied. _t is, m_uts must be

corsumed as inputs to successor primitive operaticr_ before allowing

new data to fill the output locations. Assignment of a ft_cticrk%l

unit to a specific algorithm primitive operation is made by the graph

manager only when all inputs required by the operation are available

in global memory and a functional unit is available.

An algorithm marked graph (AMG) is a marked graph whic_

represents a specific algorithm decomposition. Transitions and places

are represented as vertices and directed edges respectively. Vertices

of the algorithm marked _ are in a cne-_ co_ with

each occurrance of a primitive operation. The transition times

represent the oomputation times of the respective primitive

operatior_. The algorithm marked graph contains an edge (i, j)

directed from vertex i to vertex j if the output of vertex i is an

input for vertex j. Edge (i, j) is marked with a token if an output

from vertex i is available as an input to vertex j. By the rules of

the marked graph, the cc_putation of a vertex can only be done when

all the _ edges have a token on them. When _ing an

algorithm marked graph, vertices (transitions) are displayed as

circles, and edges (places) are displayed as d/rscted life segments

ocrmectir_ appropriate vertices. The presence of a token on an edge

is indicated by a solid dot placed on the edge. _ transitions

and sink transitions for input and output signals are represented as

squares. Sources for constants are not usually included in the

algorithm marked graph; huwever, triangles are used for this purpose

when necessary.

To illustrate the construction of an algorithm marked _,

consider the prablem of oumputing the output of a discrete linear,

time invariant system given a sequence of inputs to the systan. Let

the system be described by the state equation

x(k) = Ax(k-l) + Bu(k)

and tb_ output equation

y(k) = Cx(k),

where x is a p-vector, u is an m-vector, and y is an r-vector. The

primitive operaticms are defined as matrix multiplication and vector

addition, and the natural algorithm deocmlposition resulting fram the

state equaticn description is selected. The algorithm marked graph

for this deccm_xMN_ algorithm is shown in Figure i.i. _he initial

marking indicates that initial condition data are available.

The algorithm marked graph is a useful tool for representing

dec_ algorithms and for displaying data flow within an

X

X

A

÷
A

A

._._o
,4_

00
E=

II
I.
-j
OI

I,--

i0

algorithm. _, the algorithm marked gr_ does not display

procedures that a cumputing structure must manifest in order to

perform the cc_ing task. In addition, the issues of control, time

performance, and resource management are not apparent in this g_.

These important aspects of concurrent processing are included in the

model thr_ the definition of twD additiunal gra_. The node

marked graph (5_G) is defined to mode/ the execution of a primitive

operation. The cQmputaticr_l marked graph (C_G), obtained _ the

AMG and the _ by a set of construction rules, integrates both the

algorithm requiremm_ts and the cumputing env_ requirGmm2_:s

a comprehensive graph model. These additional marked graphs are

defined below.

Tne node marked graph (NMG) is a Petri net representation of the

performance of a primitive operation by a functional unit. Three

primary activities: reading of input data fr_n glc_l memory,

pr_m_i_ of input _ to o=_m_ _ _, a_ writing o_ _ut

data to global memory, are represented as transiticms (vertices) in

the NM_. Data and control flc_ paths are represented as places

(edges), and the presence of signals is notated by tokens marking

apprupriate edges. The conditions for firing the prooess and write

transiticms of the NMG are as defined for a general Petri net, while

the read transition has one additional ccr_liticn for firing. In

addition to having a token present on each incuming signal edge, a

functional unit must be available for assigrmmu_ to the primitive

operation before the read node can fire. Once assigned, the

functional unit is used to implement the read, process, and write

operations before being returned to a queue of available functional

II

units. The initial marking for an NMG consists of a single token in

the Process Ready place. The NMG model in shown in Figure i.2.

A ccmputational marked graph (CMS) is ccnst_vucted frum the AMS

and the NMG by the following rules:

i) Source and sink nodes in the algorithm marked graph ar_

represented by _ and sink nodes in the CMS.

2) Nodes corresponding to primitive operations in the algorithm

_sd _ are _presen_d by _G's in the Ov[;.

3) Edges in the algorithm marked graph are represented by edge

pairs, one forward directed for data flow and one backward

for control flow, in the _S.

The forward directed edge goes frum predecessor write transition

to successor read or sink transition. This forward edge is also shown

as part of the NMS where it is the OF and IF edge of the predecessor

and successor respectively. The backward _ edge goes frum

successor read transition to pr_J_ce_or read or source transition.

Tnis ba_ edge is also shmwn as part of the _ where it is OE and

IE edge of predecessor and successor respectively. The initial

marking for the edge pair consists of a single token in the forward

directed place if data are available, or a single token in the

bacScward d/rected place if data are not available.

The play of the CMS proceeds aocording to the following graph

rules:

i) A node is enabled when all incuming edges are marked with a

token. An enabled node fires by encumbering one token from

each incuming edge, delaying for sume specified transition

time, and then depositing one token on each outgoing edge.

12

DR

OE

PC

IE PR

NMG EDGE LABELS

IF
IE

DR
PC
PR
OE
OF

Input Buffer Full
Input Buffer Empty
Data Read
Process Complete
Proceee Ready

Output Buffer Empty
Output Buffer Full

Figure I .2. ATAMM node marked graph model.

13

2) A source node and a sink node fire when enabled without

regard for the availability of a functional unit.

3) A primitive operation is initiated when the read node of an

NMG is enabled and a functional unit is available for

assignment to the NMS. A functional unit remains assigned to

an NMG until completion of the firing of the write node of

the b_G.

In order to illustrate the constructicm of a computational marked

graph, the _ co_rding to the algorithm marked graph of Figure

i. 1 is shown in Figure i. 3. The oumputational marked graph is useful

because it clearly displays the data and control flow which must occur

in any hardware implementation of the algorithm, and because it

provides a hardware indeperdent oontext in which to evaluate algorithm

performanc_.

The complete ATAMM model consists of the algorithm marked _,

the node marked graph, and the computational marked graph. A

pictorial display of th/s medal is shown in Figure i. 4. ATAMM model

characteristics are described in detail in the. Appendix.

1.3 Objectives and Organization of Dissertation.

The behavior and performance for periodic execution of complex

algorithms in the _ data flow architecture is investigated in this

dissertation. The problem domain consists of lazge-grain,

decision-free algorithms. The major research objectives are

threefold. First, a performance model is established. Second, rules

for transformation of algorithms for performaIK_ enhancement and

reduction of cumputing element _ are identified. Third,

14

4-

o

15

Algorithm pde m

marked graph

puta

marked graph

Figure 1.4. ATAMM model components.

16

operating strategies are developed for optimum time performance and

for sub-optimum time performance tinder limited availability of

el .

The dissertation is organized in five chapters and an appendix.

In the Appendix _ model characteristics, same of which are used in

this dissertation, are described in detail. Definitions of the

cc_ing env_t, performance measures, and evaluation of

performance bounds and resource requirmmnts are presented in Chapter

Two. In Chapter Three, algorithm transformaticr_ for improving

performance, and methods for enforcing desired resource envelope and

inducing structural changes in algorithm marked graph are described.

Definition, characteristics, and design p_ of operating point

along with simulation and experimental results are presented in

Chapter Four. Finally concl_sions fram this researtmh and future

research topics are presented in Chapter Five.

_m/TER T_D

_M_ZL

2.0 Introduction

A performance model for the ATAMM (61gorithm _ _hitecture

_Ma_ing _) data flow anmi_c_re is _crib_ in this _ar.

The Qbjective is to determine cumputing speed, thr_ capacity and

resource (computing element) need for implementing decision-free

large-grain algorithms on the ATAM_ data flow _tecture. The

ocmputing env_t and performance measures are defined in Section

2. i. In Section 2.2, characteristics of marked graphs, whiah are

needed to establish the perfo_ model, are described. Gra_

theoretic lower bcttnds for the time performance of algorithm marked

gra_hs operated in the _ data flow architecture are established in

Section 2.3. Resctlroe needs are predi_ and perfo_ botEKi_ in

the presence of _ limitations are evaluated in Section 2.4. A

mmmaz_ of the chapter is presented in Section 2.5.

2.1 Perfo_ Measures

The importance of tb_ _ model is that it provides a hardware

independent context in which to investigate the performance of

dec_ algorithms as long as the azv/litecture obeys the rules of

CM3. It is assumed that a d_ algorithm is implemented in a

data flow arc2Litecture containing R identical resources or

17

18

functional units. Each functional unit is capable of performing any

of the primitive operations whose sequence defines the c_ition.

The tokens on the C24G indicate the data and control flaw that must

occur in any hardware impl__ntaticm of the algorithm. A task is a

sequence of crmputations as described by the AMG. The oumputational

task is applied on all input data fmum the source node. Task output

occurs when a corresponding output data token is deposited at the

output sink node. A task is oumpleted when all ccmputing associated

with the task is ccmpleted. It should be noted that task output and

task completion do not always coincide. In many iterative signal

processing algorithms, oumputing to genez-ate irdtial ccnciitions for

the next iteration often occurs after the output has been calculated.

Task oumpletion is usually indicated in the AMG or the _ by the

return of the graph to same steady state initial marking. To use the

output of an algorithm for control and signal processing applications,

it is assumed that the task is repeated periodically with new input

data sets (data packets). New data sets are injected as input tokens

frcm the input source node at a finite interval of time so that

computing time and resource needs are identical for all data sets.

Included in this problem class are itea-ative algorithms where the

present task r_pires input data frum previous task calculations.

Oumputational co_ c<xm/r_ in two ways. First, several

transitions of the task on individual data set may be performed

simultaneously. We have referred to this type of co_ as

parallel co_ because it is the result of inherent parallelism

in the algorithm. Parallel ooncuzTercy has a direct effect on task

cumputing speed. It is limited by the number of transitions that can

19

be performed simultaneously for the given task and by the number of

functional units available to perform the transitions. SeDcr_,

transiticms of the task belonging to different data sets can be

performed sin_itaneously in the cc_ syst_n. Th/s type of

co_ is referred to by us as pipeline oo_c_rTe_ncy because the

task is repeated for successive data sets, like a pipeline. Tnis type

of co_ has a direct effect on _ capacity. It is

limited by the capacity of the graph to a_te additional data

sets and by the number of functional units available to implement the

algorithm periodically.

Three performance m_u_s, TBIO, Tr, and TBO, are now defined

for concurrent processing of oumplex algorithms in ATAMM data flaw

arch/tectures. TBIO and Tr are indicators of oumputing speed for a

task and thus reflect the degree of parallel o0nc%irre2_"y. TB0 is a

measure of time interval between task outputs. The inverse of TBO

indicates _, and thus reflects the degree of pipeline

co_.

Definition 2. l: TBIQ. The performance measure TBIO (time between

i_ ana _) is _e _ap_a o=_uti_ tim. _ a _sk

and the oorresponding task output.

Definition _._: TT. The performance measure Tr (task time) is the

elapsed camputing time between a task input and the campletion of all

camputation associated with that task input.

Definition 2.3: TBO. The performance measure TBO (time

outputs) is the elapsed camputing time between successive task outputs

when the graph is operating periodically at steady state.

To illustrate, an algorithm marked graph for an aircraft flight

simulation is shown in Figure 2.i. SI is the input source

20

representing flight plan data. SO is the output sink representing

moving map and flight instruments data. Transitions of the graph

represent activities. Places represent data d_ or precedence

relation. Tokens cn places are initial tokens representing initial

condition data. As an example, transition 3 represents inertial

navigation cumputation and requires ten time units for processing.

Time units associated with transitions are relative and are measured

with respect to a reference. Transition 7 (zero prooessing time) is

used to ccmbine outputs of the coordinate transform oumputation

(moving map) and the auto-pilot cumputation (control for flight

instruments). TBIO is the time to produce the outputs in SO for a

flight plan data. TT is the time to fin/sh all processing for a task

input. TBIO and _T need not be the same for all problems although

they are related. TB0 is the time between arrival of successive

output tokens in the output data sink when the algorithm is executed

periodically at steady state.

2.2 Marked Graph Characteristics

Marked graphs, a class of Petri nets, are used as a devioe for

expressing the ATAMM. A marked graph is viewed as a d/rected graph

where the vertices are the transitions and the edges are d/rected

places. In this section, concept of path and circu/t for the marked

graph is develc_ed. Only directed paths and circttits are of interest

to this dissertation. If not mentioned, a path or a circttit of a

marked gl-aph should always be und_ to be a d/rected path or a

directed circuit respectively. Sume proxies of the marked graph

21

E

22

which are needed to establish a performance model are stated. Also,

cixcuits of the CMG are classified. Let ti and Pi denote

transition i and place i respectively.

Definition 2.4: Directed Path. A _ path in a marked graph is

a finite alternating sequence of distinct transitions and dist_

d/rected places with the following property. The sequence begins and

ends with transitions and every place originates fzr_ the immediate

predecessor transition and ends on the immediate successor transition

in that sequence.

To illustrate, the sequence SI, Pl, tl, P2, t2, P3, t3, P4, and SO

is a d/rected path in Figure I.I. But the sequence tl, P2, t2, P6,

t4' P5' t2, P3' and t_ is not a directed path in Figure i.I as

transition 2 is repeated twice in that sequence.

Definition 2.5: D_ Circuit. A d/rected circuit in a marked

graph is the same as a d/rected path except that beginning and end

transitions are the same in a directed circuit.

To illustrate, the sequence t2, P6, t4, P5 and t2 is a

circuit in Figure i.i.

Definition 2.6: Parallel Paths. Parallel paths are _ paths

which have identical beginning and ending transitions; however, all

other transitions and places on all directed paths are distinct.

In Figure 2.2, the sequenoe tl, P2, t2, P3, t3, P4, t4, PS, and

t5 and the sequence tl, P6, t6, P8, and t5 are parallel paths.

Definition 2.7: Group Of Paths. Group of paths are a firdte number

of directed paths fram a marked graph.

To illustrate, the sequences t_, P7, t7, Pg, t4 and tl, P6, t6,

PS, t5 form a group of paths in Figure 2.2.

23

24

Definition 2.8: p_th ienqth. The length of a directed path in a

marked graph is defined to be the slmm_tion of all the times for

transitions in that directed path.

Definition 2.9: Circuit Lenuth. The length of a directed circuit in

a marked gr_ is defined to be the summation of all the times for

transitions in that directed circuit.

Definition 2.10: Critical Path. Tne critical path among a group of

paths is the one _h/c_ has the highest path length.

This definition of critical path is identical to the one used in

task scheduling [14, 15] and project management [16, 17].

To illustrate, let T(i) stand for the time of the ith

transition. In Figure i.i, let T(1) = 4, T(2) = I, T(3) = 5 and T(4)

= 6, T(SI) = 0 and T(So) = O. Then, the directed circtzit t2,

P6, t4, P5, and t2 has length 7. The directed path used to illustrate

Definition 2.4 has length I0. The directed path SI, Pl, tl, P2, t2,

P6, and t 4 has length Ii. These two _ paths form a group of

paths. In that group of paths, the _ path from SI to t4 is

the critical path. It is to be noted that there can be more than one

critical path in a group of paths.

Property 2. I. The critical path length of a group of paths is the

lowest possible time to move tokens from the input of the beginning

transition to the output of the end transition on all directed paths

of that group.

This is a property of the critical path known from critical-path

scheduling [14] and project management [17]. In the context of a

marked graI_h , as the token has to move through all the transitions of

the directed path in order to reac_ the output of the end _ition

25

f_x_ the ir_out of the beginning transition, the _ time recD_

is the length of the directed path. Considering all the directed

paths of the group, the lowest possible time to move tokens on all

paths from the input of the beginning transition to the

output of the end transition is the critical path length.

2.2. With unlimited resources, tokens always take time equal

to critical path length to cumplete the move from the input of the

beginning transition to the output of the end transition on all

directed paths of the gruup.

This is another pr_ of the critical path knawn fmum task

scheduling [14] and project management [17]. In the context of the

marked graph, with unlimited resources, a transition can always be

fired as soon as it is enabled by input data. Therefore, the lowest

possible time can actually be achieved. Hence, the critical path

length is the time to move all tokens from the ir_ of the beginning

transition to the output of the end transition.

D_ circuits are created in the computational marked gra[_h

in four different ways. They are node, prooess, recursion and

parallel path circuits. Formal definitions of eac_ kind of directed

circu/t are presented below along with examples.

Definition 2.11: Node Cir_t. This is a d/rected circuit in the C5S3

which is the only internal d/rected circuit of an _.

To illustrate, the sequence tR, PER, tp, PPC, tw, PPR, and tR is

a node cixrxtit in the ATAW_ node marked graph model of Figure 1.2.

One such node circuit in the CM3 of Figure i. 3 is shown in Figure

2.3 (a). This is the node circuit of transition 1 in the AMG of Figure

i.I. Node circuits always have one token, as described in the

26

NMG of transition 1

N?a,.
clrcult

Ca)

Transition 2 Transition 3

(b)

Figure 2.3. Example of node and process
circuits.

27

Definition 2.12: Process Circuit. This is a _ circuit in the

OMS wh/oh is formed eaoh time an _ or source is linked to another

or sink. The ba_ directed plaoe from _r read or sink

transition to predecessor read or so/roe transition, along with

forward directed places from predecessor to mlccessor create the

process circuit.

A process circuit of Figure i. 3 is shown in Figure 2.3 (b). This

process circu/t is formed when node marked graphs of transition 2 and

3 are linked. Prooess circu/ts always have one token as described in

the_.

Definition 2.13: Parallel Path Circuit. This is a directed circuit

in the C_S which is created by any two parallel paths in the AMG. The

circuit is formed by the forward directed places through the bMS'S of

one directed path and backward d/rected places from the successor read

to the predecessor read transition fram the NMS's of the other

path.

To illustrate, the C24S of Figure 2.2 is shown in Figure 2.4. The

parallel paths of the AMG form parallel path circuits in the _. One

such parallel path circuit is shown in Figure 2.5(a). This circuit is

created by two parallel paths in the Figure 2.2 between transition 1

and transition 5.

Definition 2.14: Rect%rsion Circuit. %_1is is a circu/t in the C_G

which is created due to a directed circuit in the algorithm marked

graph.

To illustrate, the recursion circuit of Figure 1.3 is shown in

Figure 2.5(b). The directed cixcuit t2, P6, t4' PS, and t2 in Figure

I. 1 translates itself into a recursion circuit in the CMG of

28

'blO

Ic

o
n_

d

ID

L_
O

J_
Q.

Lo
01

llm

8

Q
im
..t
01

29

8 _
O e,lm

a_
tp

3O

Figure i. 3. D_ circu/ts are created in the AMS mainly due to a

recursion in oumputation and hence the corr_ circuits in the

fM3 are called recursion circuits.

2.3 Graph Tneoretic Performance Bounds

The process of algorithm _ition imposes bounds on the

amount of parallel co_ and pipeline ccncurrency possible in a

given problem. If sufficient c_ing resources are available,

operation at these bounds can be achieved. In this section, gr_

theoretic l_er bounds on three performance measures are established

for _ algorithms to be uperated in ATAMM data flow

architectures. These lower bounds are only a function of the

algorithm marked graph and the node marked graph. Therefore,

performance cannot be improved beyond these bo_xls by _ing the

of resouroes. The remainder of this section is devoted to

developing lower bounds for these performance measures.

Let G denote an algorithm marked graph representing a

algorithm. The lower bound for TBIO is the shortest time required for

a data token fram the data input source to propagate through the graph

to the data output sink. Similarly the lower bound for Tr is the

shortest time requirsd to complete all camputing activity initiated by

the injection of a data from the input source. These shortest times

are the actllal performance times when only a single data set is

present in the graph during any time interval (no pipeline

concurrency), _ _ mny ca_uting _ as are required at.

available (maximum parallel ccnctLvrercy). Under these operating

cond/tions, lower bounds for TBIO and TT are calculated by identifying

31

certain longest paths in a graph c_tained from the algorithm marked

graph. This new gr_, called the modified algorithm marked graph

GM, is defined and then used to determine lo_.r bounds for TBIO and

Tr.

Definition 2.15: Modified Aluorithm Marked Gramh. Let Pi be a

place of G, directed frum transition tr to transition ts, which

contains a token of the initial marking. The mcxiified algorithm

marked graph GM is obtained frum the graph G by the following

construction rules-

i) Place Pi is deleted fr<_ G.

2) A ne_ place, Pil' directed from the data ir_

source to transition ts, is added to G.

3) A new output sink S i different from all other

OUtpUt sinks, and a new place Pi2, directed from

transition tr to Si, are both added to G.

4) The above rules are rspeated for each place of G

containing a token of the initial marking.

Example: The recursicn problem of Figure i. 1 is used to generate a

modified algorithm marked graph as shown in Figure 2.6. Only plaoe 5

frum transition 4 to 2 has an initial token in the algorithm marked

graph of Figure I.i. According to rule I, place 5 is deleted. A new

place 5-1 is inserted frum data input souroe to transition 2 by rule

2. Rule 3 is then used to generate a new output sink ($5) and a new

place 5-2 as shown in Figure 2.6. As there are no more places with

initial tokens, this cumpletes the procedure to generate a modified

algorithm marked graph.

32

Transition 2

\

5-_ 6 Place 4

Figure 2.8. Modified algorithm marked

graph for Figure 1.1.

33

Theor_ 2.1: Graph Tneoretic _ B_ for TBIO. let Pi be the

ith d/rected path in GM frcm the data input source to the data

output sink, and let T(Pi) denote the sum of transiticm times for

transitions contained in Pi" Then,

TBIOLB = Max (T(Pi)),

where the maximum is taken aver all paths Pi betwsen the data input

_urce and the data _ sink in graph GM .

Proof. T(Pi) is the length of path Pi; therefore, Max (T(Pi))

is the length of the critical path frcm the data input source to the

data output sink. From the pruperties of the critical path [14, 17],

TBIOLB = Max {T(Pi)). This campletes the proof.

TNeorem _,2: Luwer Bound for Tr. Let Pi be the ith _ path

in GM frum the data input suuroe to any output sink, and let T(Pi)

denote the sum of transition times of transitions ocntained in Pi"

Tnen,

TrLB = Max (T(Pi) },

where the maximum is taken over all paths Pi in gra_ GM.

Proof. By the ccrEtructicn rules for graph GM, a task is initiated

with an _ from the data input source, and is cumpleted when all

output sinks have accepted tokens. Therefore, TT is the time which

elapses frum injection of input tokens to the arrival of a token at

the last fired autpu_ sink. Let T(Pj) = Max {T(Pi)), among all

Pi in GM. Pj is the longest path among all paths frum the

34

dam _ _ s I to any _ sink. Tn_fo_, Pj is the

critical path among all paths from the data ir_ut source to any output

sink. Hence, by the properties of the critical path [14, 17], _TLB

= T(Pj) = Max(T(P i)), where the maximum is over all paths Pi in

GM. This cumpletes the proof.

To illustrate the application of _eorE_ 2.1 and Theorem 2.2,

TBIOLB and TTLB are cumputed for the algorithm marked gra_ shown

in Figure I.i. For this example, the following transition times are

_: T(1) = 4, T(2) = i, T(3) = 5, and T(4) = 6. _he modified

algorithm marked graph corresponding to Figure 1.1 is shown in Figure

2.6. The modified algorithm marked graph contains two paths directed

fram the data input s_a_e SI to the data _ sink So. Path

P1 is__t1' _' _' _' _%withT(P 1) =10. PathP2

is the sequence t2, P3, and t3 with T(P2) = 6. Since T(Pl) > T(P2),

path P1 determ/nes the l_-r bound for TBIO and TBIOLB = i0. The

modified algorithm marked graph contains twD add/ticrm/ directed paths

frcm the data ir_sut source S I to the c_tput sink S 5. Path P3 is the

sequence tl, P2, t_, P6, and t 4 with T(P3) = Ii. Path P4 is the

_, P6, _ t4 with T(P4) = 7. Siam T(P3) is _ hi_st,

path P3 _ the lower bound for TT and TrLB = ii.

Next a icx_r bound for the performance meamlre TBO may be

determined. Let G be an algorithm marked graph representing a

dec_ algorithm. It is assumed that the operating o_xiiticns for

G are set to maximize pipeline ccnct%rre_cy. That is, data tokens are

continuously available at the data input source, and as many ozm_xlting

resources as needed can be called to perform primitive uperaticms.

The graph G is executed periodically and _ is the shortest time

possible between suooessive outputs.

35

Theorem 2.3: Gramh Theoretic _ Bound for TSO. Let GC be a

computational marked graph and let Ci be the ith directed circu/t

in GC. The notation T(Ci) denotes the sum of transition times of

transitions contained in Ci, and M(Ci) denotes the number of

tokens mined in Ci. Then,

TBOLB = Max (T(Ci) / M(Ci)),

where the maximum is taken over all directed chruits in G. _3%e

circuits which determine TBOLB will be called critical circu/ts of

the CM3.

Proof. Without loss of generality, let tf be the output transition

in G C so that an output is produced each time tf cumpletes

firing. TBOIB is then the minimum firing period of transition

tf. By consistency property of the Appendix, G C is consistent so

that all transiticms of G C fire periodically with minimum period

TBOIB. It is shown in [18] (pp. 58-60) that the minimum firing

period of each transition of a marked gr_ is given by Max

{T(Ci)/M(Ci)), where the maximum is taken over all directed

circuits C i in G. _h_refore, the theomm_ follows.

The algorithm marked graph shown in Figure 1.3 is used to

illustrate Theorem 2.3. _ C24S contains many _ circtlits.

Howitzer, the recursicn circuit which oontains all NMS nodes of

transitions 2 and 4 has ctlly one token and maximizes the ratio

T(Ci) / M(Ci). Therefore, the shortest time possible between

suocessive outputs in this graph is TBOLB = 7.

36

2.4

_he performance bounds of the last secticm assume availability of

a resource for each transition to fire when enabled. Therefore, graph

theoretic performance bounds are absolute bounds provided sufficient

resources are available to meet the firing r_/_vm_M_. H_m_ver, for

insufficient resources, performance cannot reach the graph-theoretic

bounds. The number of resources (R) of an ATAMM data flow

architecture imposes bounds on performance of an algorithm marked

graph. In this section, characteristics of _ usage, maximum

resourcs impcs par or ncsbounds are

investigated. Formal definiticms of computation, graph execution, and

resource _ are stated. Definitions and results are

illustrated with examples.

Definition 2.16: _C. Total Cumputation _TC) is the sum of all

transition times of an algorithm marked gra_.

Definition 2.17: TFC. Total Forwaz_ Oumpu_cation (TFC) is the st_ of

all transition times that appear in the forward paths fr_n the data

input source to the data output sink of the modified algorithm marked

graph.

Definition 2.18: TBC. Total Backward Cumputation (TBC) is the sum of

all tz-ansition times that do not appear in the forward paths from the

data input source to the data output sink of the modified algorithm

marked _.

2. i. TC is the sum of TFC and TBC of an algorithm marked graph.

Proof. With the notation of Definiticns 2.16, 2.17, and 2.18,

transitions which o_titute TFC and TBC are mutually exclusive and

oollectively exhaustive of all transitions of the algorithm marked

37

graph. Hence, the sumof all transition times of the algorithm marked

graph equals the sum of transition times for both transiticms on the

forward paths and not on the forward paths fram the data ir_ source

to the data output sink of the modified algorithm marked graph.

Therefore, TC equals the sum of TFC and TBC. This cumpletes the

proof.

Definition 2.19: Oamm2ter Time. A unit of Oamputer Time is defined

to indicate one functional unit available over one unit of time.

To illustrate, if two functional units are used for three units

of time, six units of c_ time are used.

_efinition 2.20: Cumm2tinu Capacity (T). Cumputing Capacity (OC) is

the total available units of c_ time over an interval of time T.

To illustrate, for a time interval of T, the cc_ing capacity

of an ATAMM data flow arc2_tecture with R functional unite is given by

R * T. Thus CC (T) = R * T.

Definition 2.21: Ccm_utinu Effort (T). Cumputing Effort (CE) is the

total used units of _ time over an interval of time T.

To illustrate, for a time interval of T and R functicr_l units,

let T i be the _ of time units the ith functional unit is

used. Then T i * 1 = T i units of cumputer time is the camputing

effort due to the ith resource in interval T. Thus the camputing

effort due to R resources is given by

R

CE (T) = Z (Ti)
i=l

units of oamputer time.

38

Lerama 2.2. For any ntm_er of _ic_al t_lits and any L-fcer%rdlof

time, cumputing effort is always less than, or equal to, computing

capacity.

Proof. With the notation of definitions 2.20 and 2.21,

CC (T) = R*T

R

CE (T) = Z (Ti),
i=l

where Ti is the number of time units the ith functional unit was

used in time interval T. So Ti cannot be more than T [15]. Hence,

CE(T) < CC(T). _ completes the proof.

Definition 2.22: Resource Utilization (T). _he Resource Utilization

(RU) of functional units over a time interval T is given by the ratio

of computing effort to computing capacity over that time interval.

Thus,

_J (T) = CE (T) / OC (T).

Le_ma 213.

greater than, or equal to, zero but less than, or equal to, 1.

Proof. By definition, resource utilization is a ratio of computing

effort to capacity. With the notation of Definiticms 2.20 and 2.21,

Ti > 0 , T > 0. So CE(T) > 0. CC(T) = R * T > 0 as the AT_MM data

flow _tectures must have at least one functional unit. So I_J(T)

0. Also as CE (T) _< CC (T), _J (T) < i. This completes the proof.

Resoulr_ Utilization (l_J)over a time interval T is always

>

39

Definition 2.23: Total Ccmm_inu Effort (TCE). TCE is defined to be

the cc_ing effort required to execute once all traI_iticns of an

algorithm marked graft.

Le_na 2.4. TCE equals TC units of ccmputer time.

Proof. With the notation of Definitions 2.16, 2.21, and 2.23,

R

TCE = CE(T) = Z (Ti)
i=l

-- TC

units of cumputer time as total cumputaticn to execut_ all transitions

of the AMG once is TC. This cumpletes the proof.

Definition 2.24: Total Forward Oummutinu Effort (TFCE). TFCE is

defined to be the cumputing effort required to e_xfce once all

transitions cn forward paths from the data input source to the data

output sink of the modified algorithm marked graph.

Lemma 2.5. TFCE equals TFC units of computer time.

Proof. The proof is similar to that of Lemma 2.4.

With the above definiticms and lemmas _ cumputaticn of a

task, it is n_ intended to establish resource imposed bounds cn the

computing time of a task. The folluwing two theorlms state the

rain/mum possible value of TT and TBIO for an ATAMM data flaw

ard_tecture of R resources.

_eo_m 2.4: Minimt_n Tr for R Resources. The minimum value of Tr for

an algorithm marked graph c_erated with R resources is always greater

than, or equal to, TCE / R.

Proof. TT is the cumputing time to oumplete all oumputation

associated with a task in_. For a time interval of Tr, the

4O

capacity of R _ is R * Tr. The total cumputaticn

for any task input is the execution of all trar_iticns of the

algorithm marked graph once and hence, equals TC. The co_

cc_ing effort is TCE. By Lemma 2.2, R * TT > TCE, or Tr > TCE / R

[19]. This completes the proof.

Theorem _ 5: M/nimum TBIO for R Resources. _he minimum value of TBIO

for an algorithm marked graph operated with R resources is always

greater than, or equal to, TFCE / R.

Proof. TBIO is the _ time to generate data output for a

task. For a time interval of TBIO, the oumputing capacity of R

resources is given by R * TBIO. In order to generate data output, all -

transitions on all the forward paths fran the data ir_ut suurce to the

data output sink in the modified algorithm marked graph must be

once. The computation involved is TFC and the co_

cc_miting effort is TFCE. By Lemma 2.2, R * TBIO > TFC_ [19], or

TBIO > TFCE / R. This cumpletes the proof.

Two graph execution features (GPST and TGP) and two hardware

usage measures (REST and TRE) are _ defined for predicting resource

r_/ir_mm_. GPST describes the execution of transitions of the

algorithm marked graph for a single data packet. REST is the

description of the resource usage to process ane data packet. TGP and

TRE are the graph exmcution description and resource usage envelope

when the algorithm marked graph is executed repeatedly and

periodically.

Definitio_ _._5: GPST. GPST (graph play for a single task input) is

a drawing depicting beginning, duration, and end of execution for each

transition of the task when operated for a single data packet.

41

Definition 2.26: _P. TGP (total _ play) is a drawing depicting

beginning, duraticm, and end of execution for each transition of each

task input at steady state when the AMS is _ periodically with

an input data injection intarval of TBO.

Definition 2.27: REST. REST (resource envelope for a single task

input) is an envelope of _ usage by a single data packet

between the time of task input and the completion of all ccm%m/tation

associated with that task.

Definition 2.28: TRE. TRE (total resource envelope) is an envelope

of resouroe usage to execute the graph at steady state with input

period TBO.

Definition 2.29: Construction o_ GPST and REST. GPST and REST are

generated by firing every transition in the algorithm marked graph at

the earliest possible moment assuming unlimited resources and a single

task input. Graph play is generated by depicting execution of all

transitions in every time interval. Symbols (<, >) are used to show

the begi_ and the end of execution for a transition respectively.

The rescur_ usage envelope is obtained by ommting the number of

computing resources used during each time interval.

Example. Consider the algorithm marked graph df Figure 2.7.

Transitions I, 2, and 4 have duration of one time unit. Transitions

3, 5, and 6 have duration of two time units. The graph is played

according to Definition 2.29 and the GPST is shown in Figure 2.8(a).

_he need for _ is the same as the rLm_er of active transitic_s

in each time interval. _he REST is computed by cour_ing the number of

res_Jrces used in each time interval and is shown in Figure 2.8 (b).

42

Time for _ I ..Transition 2
transition 2

5

I 2 2 2

I ace 7

Figure 2.7. Algorithm marked graph for illustration

of GPST and REST.

43

I
1 31 5 I

I 4 I

o.... 2 4
I ,

8 I
I

I
I

,/(b) -.-> 0 I] I II 2

Section (data packet) number

d

I

I
16
I
I
I 3

(a)

0

e

0

S.°.oniC,,,,topo,_.t:)number
0 I 1 I

I !

I
I

2 1 3

0 1 2 3 4. 5 6 7

Time ---->

(b)

Rgure 2.8. (o) GPST. (b) REST.

44

Now suppose the algorithm is executed periodically. Assume that

the input data injection interval is long enough so that every data

packet executes the graph as the GPST and needs res_nr_s over the

task time as given by the REST. As a result, the algorithm is

executed with a input period equ_ to output period T_. The total

envelo_ (_) is to be _ then by _ the

resource needs of the ccrKm/XT_cly processed data packets. The total

graph play (TGP) is generated by drawing the exscution of transitions

frcm all the concurrently processed data packets. It is shown in the

following two theorems that TRE and TGP are periodic with period TBO.

If REST and GPST are divided from the beginning in secticr_ of TBO

time units, these sections are shown to be the ccntributicr_ fr_n the

ccr_ecutive c_urrent data packets towards a period of TRE and _P.

As an example, GPST and REST of Figure 2.8, are divided in secticms of

TBO = 2 time units. Section as well as data packet mm_m_s are

represented by the integer variable b. To illustrate, data packet 2

has been injected two time units before data packet I. M_reover,

transition 3, 2 for data packet 0, transition 5, 4 for data packet 2

and transition 6 for data packet 3 are executed _tly at steady

state requiring a total of five _.

9/. When the algorithm marked graph is _-ated periodically

for input period TBO with all data packets requiring resource

envelopes identical to REST, the tc_al resource envelope at steady

state is periodic with period TBO and one period of _RE is generated

by the mam_ticn of sections of _ of width TBO as follows.

Let REST (x) represent the _ envelope for a single task

input where REST (x) = 0 for x > _T. Let the origin of time axis (t)

45

at steady state be the injection of a data packet.

value of total res_iroe _ at time t.

ccrKmlrl_tly processed data packets at time t.

then given by

Let (t) be

let b _ the

A period of TRE(t) is

_qE (t) = Z REST (t + b * TBO),

b

where

0<t<TBO

0 < b < [TT / TBO].

Proof. By the rules of operaticm, data packets are injected and

outputs are genez-ated at the interval of TBO at steady state.

Consider three consecutive data packets P, Q, and R injected at

t = K * TB0, (K+I) * TBO and (K+2) * TB0 respectively, where K is a

positive 'integer. Let d be a time unit in whirl% the total resouroe

requirtm_J_ is desired. Let s denote the t/Ee between d and time for

the last data packet injection. Suppose d is a time between the

injecticm of data packets P and Q. Thus K * TBO < t < (K+I) * TBO,

and s _ t - (K * TBO). TRE(t) in this interval is made of REST's due

to data packet P and previous data packets whose ommputaticms are

completed after P has started. As all data packets have resource

envelope identical to REST of duration _T, any data packet which is

injected Tr or more time before P has no effect an TRE in this

interval. C_y, the total number of ccrK_LvrmTtly processed

data sets creating TRE(t) in this interval is given by [TT / TBO].

46

Hence, let the range of b be 0 < b < [TT / TBO] ; b is an

integer. _E(t) for time interval between P and Q is then the

rumination of the resouroe _ts for these cc_currently

processed data packets, let b = 0 identify task ir_ P whose

contribution to _ (t) is REST (s). _ data packet which has

started TBO time units before P will ocrfcribute REST (s + TBO) and is

identified by b = i. In general, a data packet whiah is injected

b * TBO time units before P is identified by the data packet number b

and contributes REST (s + b * TBO) to _RE (t). Therefore,

REST (s + b * TBO) over the entire range of b for the c_ncurrent/y

processed data packets will give the correspondin_ _RE (t). The data

packet co_ to the largest b may ocntribute to _RE(t) for

only a partial interval. As REST (x) = 0 for x > Tr,

REST (s + b * TBO) properly represents the contribution due to the

data packet co_ to the largest b. Therefore, TRE (t) at d

between P and Q is given by the following equation,

where

TRE (t) = Z REST (s + b * TBO)

b

= Z REST (t - K * TBO + .b * TBO) (2.4.1)
b

K*TBO< t < (K+I) * TBO

0 < b < [TT/TBO].

Now let d be a time unit t + TBO from the origin. As d now is a time

unit between data packet injection Q and R, s = (t+TBO) - (K+I)_0.

47

By similarargments as before,

TRE (t + = Z REST (s + b * TBO)

b

= Z REST ((t+TBO) - (K+I)*TBO + b

b

--Z REST (t - K*TBO + b*TBO)

b

= TRE (t),

* TBO)

frum equation (2.4.1). Thus, TRE(t) is periodic with period TBO.

Hence, it is sufficient to specify _E (t) for one period unly; let s

= t, or K = 0. Mcdifying equation (2.4.1) we get,

where

TRE(t) --Z REST (t + b * TBO)
b

0< t<TBO
m

0 < b < [TT/TBO].

Thus, one period of _qE(t) is generated by the summation of the

sections of REST (x) of width TBO, starting fr_n x = O. The sections

are identified by the correspcrding value of b. This cumpletes the

proof.

Tneo_ 2.7. _ the algorithm marked gra_ is operated periodically

for ir_ period TBO with all data packets executing the AMG as GPST,

total gra_ play at steady state is periodic with period TBO and one

48

period of TGP is generated by the overlapping of sections of GPST of

width TBO as follows.

Let GPST (x) represent the _ play for a single task input

where 0 < x < Tr. Let the origin of time axis (t) at steady state be

the injection of a data packet. Let TGP (t) be the total graph play

at time t. Let b represent the ocncurr_Ttly prooessed data packets at

time t. A period of TGP (t) is then given by,

9GP(t) = Z GPST (t + b * TBO)

b

where

0<t<TBO

0 < b < [TT / TBO].

Proof. The proof is similar to Theorem 2.6 with one exDepticn.

Unlike REST, secticms of GPST of width TBO represent porticr_ of graph

play for successive data packets which overlap to form TGP at steady

state. Hence, instead of adding sectior_ of GPST, one period of _P

should be ccr_tructed by overlapping sections of GPST with each

section being identified separately by the value of b. If two values

of b are i and i+l, it means data packet i+l is injected TBO time

units before data packet i. _ cumpletes the proof.

Example. One period of TGP and TRE is ocr_tructad for the AMG of

Figure 2.7 according to Theorem 2.6 and 2.7 with an input period TBO

of two time units. GPST and REST of Figure 2.8 are divided in

sections of width two time units as shown in Figure 2.8 by the dotted

49

lines. Figure 2.9 showsthe _'P and TREfor input period TBOof 2.

Time t is any time when a new data packet is injected at steady

state. In the TGP, the superscript of transitions indicate the value

of b (data packet number). Data packet 1 is injected TBO time units

before data packet 0. 1 (0) and 5 (1) _ the execution of

transition 1 and 5 for the data packet 0 and 1 respectively in Figure

2.9(a). The TGP indicates that 5 (1) begins after the completicm of

1 (°). As in G_T, (<, >) arr_ _is indicate the beginning and

end for execution of a transition respectively. In Figure 2.9(a),

transiticms 3 (0) , 5 (1) , and 6 (2) have started in this period but

did not end. Similarly 3 (1) , 5 (2) , and 6 (3) have been completed

in th/s period but did not start in it. The resource usage in the

four sections of REST in order of increasing b are (i, 2), (i, 2),

(i, i), and (i, 0). One period of TRE is calculated by adding the

four sections of REST. The total resource need in one period of TRE

is (4, 5) as shown in Figure 2.9(b). It is to be noted that _qE could

also have been calculated from TGP by counting the number of active

transiticms in eaoh time interval.

Lemma 2.6. Computing effort in c_e period of TRE is TCE at steady

state when the algorithm marked graph is operated periodically with an

input period of TBO.

Proof. As the algorithm marked graph is operated periodically,

computing effort in every period is the same. C_ing effort in a

period TBO of TRE will equal TCE as one task output is generated in

every TBO time units. _ completes the proof.

iemma 2.7. Resource Utilization (_J) in ore period (TBO) of TRE is

given by (TCE / (R * TBO)).

50

"rime tl

1(0) 3 (0) I

I 3111>

4.- iI 5(,1 61=1

f

(a)

I
I t+TBO

0

m
n_

4

3

t
Time

(b)

I
i

I
I
I
I
I
J

t_+TeO

Figure 2.9. For TBO-2, (a) Total graph play.
(b) Total resource envelope.

51

Proof. By Less_ 2.6, oc_ing effort in one period (TBO) of TRE is

TCE. Computing capacity in the TBO time _ is R * TBO. By

definition then, resource utilization is {TCE /(R * TBO)).

cumpletes the proof.

Example. Consider the REST as shown in Figure 2.10(a) with Tr = 7, TC

= 15 (ignore the dotted lines). The peak of REST is 4 which indicates

that the _ data flow architecture requires at least four

functional units to process the task according to the REST in seven

time units, let TBO = 3. Tasks are initiated and outputs are

generated at the interval of three time units with all having

identical REST at steady state. TRE is calcttlated frc_ _eor_n 2.6.

Dividing REST from the beginning in secticr_ of width TBO, as in

Figure 2.10(a), with the dotted lines, (I, i, 2), (4, 3, 3), and

(I, 0, O) are the ccntributicms of three averlapping task inputs to a

period of TRE. Adding three sections of REST, a period of TRE is

given by (6, 4, 5) and is _ in Figure 2.10(b). The cc_ing

effort in three time units of TRE is 15 as claimed by _ 2.6.

Since the peak of TRE is 6, a minimum of six functional units is

to operate an algorithm marked graph with REST of Figure

2.10(a) and TBO = 3. By Lemma 2.7, resource utilization (_J) for six

functional units is given by {15 / (6 * 3)) = .833.

With the help of above lemmas, the resource imposed bound on TBO

is established in the following theorem.

Theorem 2.8: Minimum TBO for R Resources. _he minimum value of TBO

for an algorithm marked graph aperated periodically with R resources

is always greater than, or equal to, TCE / R.

Proof. By T_or_n 2.6, the total resource envelope is periodic. BY

iemma 2.6, the computing effort needed in period TBO is TCE. The

52

Data pock_ (section)

= 2-
0
M
0

O0 I

i

I

Time

number
1 2

(o)

m8
0
u

M
@
a: 4-

t
!

t÷3
Time

(b)

!

t+6
)

Figure 2. I0. (a) Resource envelope for a single
task input. (b) Total resource
envelope for 1130=3.

53

computing capacity for time interval of TBO is R * TBO. By Lemma 2.2,

R * TBO _> TCE. Hence, TBO > TCE / R. This completes the proof.

Corollary 2.8. i. The _ value of resource _ (R) for a

desired TBO is _ by [TCE / TBO] when the graph is

operating periodically at steady state.

Proof. As TBO > TCE / R, it follows that R> TCE / TBO. Since R is

an integer, R > [TCE / TBO]. This completes the proof.

Example. Consider the algorithm marked graph of Figure I. 1 and the

co_ modified algorithm marked graph of Figure 2.6. let T(1)

= 4, T(2) = i, T(3) = 5, and T(4) = 6. _he s_n of all transition

times are 16. Hence, TC = 16. T_C and TBC are calculated fr_n the

modified algorithm marked graph. Transitions 1, 2, and 3 appear in

the forward paths from SI to S0. Therefore, TFC = T(1) + T(2) +

T(3) = i0. As only transition 4 does not appear in any of the forward

paths from data input sot_-_e to data cl/tput sink, TBC = T(4) = 6.

Also, TFC and TBC add up to TC. If only two functional units are

available, the minimJm values of Tr, TBIO, and TBO are 8, 5, and 8

respectively. For a TBO of 7, the minimum R is [TCE / TBO] = 3.

2.5 Summary

The computing env_ and performance _ in tha

data flow architecture are established. Graph time performanoe is

expressed by time between input and output (TBIO), task time (T_), and

time bet-w_en outputs (TBO). The modified algorithm marked graph is

defined to compute lower bounds for T_ and TBIO. Lower bounds for the

performance measures are calculated analytically from the modified

algorithm marked graph and the computational marked graph with the

54

assumpticm that a functional unit is available for every enabled

transition to fire. _he availability of a limited number of

functional units is then considered. The modified algorithm marked

graph is used to distinguish _ forward cumputaticn (TFC) and

backward camputation (TBC) and to establish their relation to total

crmputation (TC). Oumputing capacity, ccm_muting effort, and resource

utilization are defined. The range of values for performance measures

are established assuming that the ATAMM data flow ard%itecture has

only R functional units. Tne algorithm marked graph execution for a

single task _ or data packets periodically are defined in terms of

GPST and TGP. _be requir_m_ts of functional units to process a

single task input or data packets periodically are expressed by REST

and TRE. Rescuroe utilization is defined; oanstructicm rule for GPST

and REST are defined; and properties of TRE are described.

Methodologies for generating TRE and TGP are established. All

definitions and results are illustrated with examples.

CH_fER THREE

TRANS_CN

3.0 In--ion

The lower bounds for performance measures of an algorithm n_rked

g_ph are develq_d in _aptar Two. One of the two

important problems concerning performance measures is considered in

chapter Three. Of interest is the potential of transforming an

algorithm marked graph, with or without _iticn, in order to

decrease lower bounds for performance. Investigation is also carried

out to use transformations to reduce resouroe rQq%liz1_i_, enforce

periodicity in execution, and provide structural d%_nges in the

algorithm marked _. All required transformation techniques,

including an investigation of their usefulness and limitations, are

described in this chapter. Algorithm transformation techniques are

defined and elaborated in Section 3.1. Applications of algorithm

transformatior_ for perfo_ impruvements and reduction of resource

requirm_nts are d/scussed in Section 3.2. A steady state periodic

execution of algorithm marked gral_hs is realized in Secticm 3.3.

Structural d_uz_s of algorithm marked _ are ccr_idered in

Section 3.4. A summary of the chapter is p_ in Section 3.5.

3.1 Algorithm Transformation Gu/delines

The aim of this section is to define algorithm transformation

techniques and illustrate their significance. Algorithm

55

56

transformation is defined to be a process to change some featllres of

an algorithm marked graph while preserving its equivalence in

ccmputaticms. In other w_rds, algorithm transformaticms produce a new

AMS which is equivalent to the original AMS but better in same

respect. T_ primary objectives are to impruve time performance and

lower resuurce recg/irm__nts thr_ algorithm transformation.

Therefore, algorithm transformation techniques which can l_4er

critical path length, lower time per token for the critical circuit of

the CMS, lower resctur_ re_ts, and enforce periodicity in the

execution of the AMG are of great interest. A formal definition of

equivalency of two algorithm marked gra_hs and algorithm

transformation ted%niques are stated and explained below.

_finition _. i: Euuivalencv Of TWo Aluorithm Marked _. TWo

algorithm _rked gra_hs are equivalent if they map any set of input

variables into the same set of output variables and produce an

identical output sequence for an input sequence.

Definition 3.1 specifies the allowable trar_formaticns. An

algorithm marked graph can be transformed as long as the new AMS is

input-output equivalent with the old one. It is to be noted that if

the cumputaticr_ of transitions and data depen_ among the

transitions of the original AMG are not altered, the transformed AMG

will remain ir_-output equivalent with the original AMS.

Definitions 3.2 th_ 3.5 describe four transformation techniques

which are based on this observation.

Definit_0D 3.2: Ccrfcro_ P_ace. A control place is any place in the

algorithm marked graph whose deletion generates an equivalent

algorithm marked graph.

57

A control place is an artificial place in the sense it is not

recessary for the oo_ of an algorithm. A ocntrDl place

imposes a precedence relation among twD transiticr_. The ocntrol

place needs to be initialized by an initial token if it creates a

circuit in the algorithm marked graph. Tne designer inserts a ccmtrpl

place in the algorithm marked graph to delay the firing of a

transiticn. All places in the AMS other than control places will be

called active places henceforth. If broadcasting is used to transmit

data between transitions, insertions of ccntrol places are nut going

to change read and write times of transiticms. Also, o_K/ol places

need not transmit data vectors; therefore they can be implemented at

very law cummunicaticn cost. Thus for analyses purposes, insertion of

ccrfcrol places in an AMG will be assumed not to _ read and

write times of transitions.

Definition 3.3: Dummy Tr%ns_C_. A dummy transition is any

transition in the algorithm marked graph which is not _ for

executing a primitive operation.

A dummy transition is a redundant transition in the sense that it

is not required for cumputation. _, it can be used to control

operation or _ performance. All transitions other than dummy

transitions will be called active trar_iticns henceforth. A dummy

transition can act as a buffer to provide storage for the output of

any transition. Such buffers will be shown to be needed at times when

the algorithm marked graph is operated periodically. A dummy

transition can be used to cumbine input or output data vectors in

order to create single ir_ or uutput vectors respectively. Another

application of a dummy transition is as a delay cpez-ator for holding

58

firing of one, or a group of, transitior_. Read and write time for

the NMG of a dummy transition depend on implementation and data

length, but should be less, or equal to, read or write times of an

active transition of equal data length r_ively. A

transition has zero process time when it is used as a buffer; it has a

very small process time when it is used for combining data vectors. A

dungy transition as a delay c%serator has a process time co_

to the amount of delay needed. As operations are restricted to large-

grain algorithms, read and write times are expected to be

significantly smaller than the process time of an active transition.

Thus for analyses purposes, a dummy transition will be assumed to have

zero time when it is used as a buffer or for combining data vectors.

Also, it will be assumed that a dummy transition for applications

other than a delay operator does not require a resource because a

resource is required to implement such a dummy tx-dnsition for a very

short time. A dummy transition for delay application has not been

explored in detail in this d/ssertation, but poses an interesting

topic for future researv/%.

Definition 3.4: Predefined Token. A predefined token is any initial

token on a place of the algorithm marked graph.

A predefined token indicates the presence of a prec_pu_d

initial data or initial ccntrDl. A pr_defined token is necessary at

times for execution of the task and for forward flow of data.

Definition 3.5: _ition of a Transition. Deoumposition of a

transition in the AMG is to replace the transition by an equivalent

marked graI_h of a group of transitions.

The transition decomposition of Definition 3.5 is to distr_

the ccmputation of a transition among a group of transiticms in order

59

to reduce the original transition time. This is important because

large transition times are major contributors to critical path length

and time per token of critical circuits. It should also be noted that

the deoumpositicr_ of transitions are not always reasonable or

possible due to added oummunication cost, higher rescuroe

requir_mxm_ts, and transition characteristics. Serial, or a

combination of serial and parallel, decumpositians of a transition

tends to decrease TBOLB significantly while TBIOLB does nut

improve _ and can even increase due to added serial cammunication

time. In those cases, a proper decumposition is dependent upon the

relative importance of TBO and TBIO. Pure parallel _ition of

transitions decrease both T_LB and TBIOLB.

sections of this chapter will develop a theoretical

basis for the applications of control places, dummy transiticr_,

initial token and decamposition. A software program, called Ttime

[20], will be used for determining lower bounds for TBO, Tr, and

TBIO. _ program _ the _ fram the specified AMG to

determine TBOLB. Two examples are presented to illustrate the

transformation of an AMS thr_ the use of control places and dummy

transiti_s.

Example. Ccr_ider the algorithm marked graph of Figure 2.2. The

co_ _ is shown in Figure 2.4. A transformed AMS and

co_ CM3 are shown in Figures 3.1 and 3.2 respectively. A

dummy transition of zero time is used as buffer between transition 1

and 6. The AMG's of Figures 2.2 and 3.1 are equivalent as they

produce the same output sequence for identical input sequences. The

dummy transition provides an additional storage space for the output

6O

•.-d ""

E

,2

C
0

em

0
U

OI

<

E

m

0

E
L
0

I0
C
0
L C

,4
m
L

61

,bQD

Lo
G.

.4_

qi

L.-
Q.

Lo

oE

,e

62

of transition i, which is to be used as an input of transition 6.

Without this dummy transition, transition 1 can fire only once before

transition 6 fires; however, with the dummy transition, transition 1

can fire again before transition 6 fires. Application of this

transformation will be described later.

An exan_le of transformation by control places is shown in

Figures 3.3 and 3.5. Control places delay firing of selective

transitions and therefore modify REST and _RE. _he dummy transition

is used again as a buffer. Imp_ due to this transformation

will be described later.

3.2 PerformaIK_ Improv_ by Transformation

Applications of dungy transitions and control places for

improving tim p_or_nce and rem_-tion of resource _ are

discussed in this section. New resttlts are stated in Application 1

and 2. Application I describes how dummy transitions can reduce

TBOLB of an AMS to the largest time/token among the process and

reoorsion ciro/its. Application 2 describes how the REST of an AMG

can be modified to give a lower peak TRE _ the use of control

places.

_. _ is an application where a dummy transiticm is

used as a buffer. A dummy transition can provide storage space for

the output of a transition. This can _ the firing rate of

trar_iticns as _ does not allow firing of an active transition

unless its uutputs are read by successor transitiuns. In terms of the

C_4G, a dummy transition can _ the number of tokens in the

circu/ts of an C_ created by parallel paths in the AM_. This is the

basis for Theore_ 3. i.

63

Theorem 3.I: Reduction of T_ to the Ta_uest T[m_ Per Toke_ Amonu

the Rrocess and Recu/sion circuits bv Dum_v Transition. Any AMG can

be transformed by using dummy transitions as buffers so that

TBOLB = Max (T(Ci)/M(Ci)) (3.2.1)

where T(Ci) and M(Ci) denote the sum of transition times and the

number of tokens contained in Ci of the CMS respectively. Circuit

Ci is a process or recursion circu/t.

Proof. There are four kinds of circtLits in a CMG, as mentioned in

Section 2.2. They are node circuits, prooess circu/ts, rec_Irsion

circuits, and parallel path circuits. Theorem 2.3 has proved equation

(3.2.1) when Ci is any directed cirtm/it of the C24G. From ATAMM

model characteristics, as described in the Appendix, both node and

process ci/cuits always have only one token. Also the sum of

transition times for process circu/ts are always greater than, or

equal to, that of their co_ node circuits as process

circu/ts include the successor read transition. Ccr_y, the

largest time/toke_ ratio of process circu/ts is always gre_ter than,

or equal to, the largest time/token ratio of node circuits. The

remaining task is to show that the time/token ratio for circuits in a

CMG due to parallel paths in the AMS can be reduced sufficiently to

them L"_sig_ficant in _ TBOLB. (_ider any two

paz-allel paths Pi and Pj of the AMG whic_ begin and end at

transitions S and E respectively. Consider the parallel path circuit

in the (_43 created by forward _ places (for data flow) frcm NMG

64

trar_iticr_ of path Pi and ba_ directed places (for control

flow) from _G's of path Pj. Each of these backward directed places

has a token in the initial marking. The number of such backward

d/rected places are one more than the number of transitions cn path

Pj, excluding transitions S and E. Inserting a dummy transition of

zero time on path Pj will _ the number of tokens in this

circuit by one. As this dummy transition does not have any time, it

cannot increase the T(Ci) of this circuit or any other. Hence, the

time/_ ratio of this circuit will decrease while not increasing

the time/token ratio of any other circuit. By inserting more dummy

transitions on path Pj, the time/token ratio for this circuit can be

arbitrarily reduced. If the time/tmken ratio for this circuit is

greater than the largest time/token ratio frum prooess or recursion

ciro/its, dummy transitions can be used to reduce the time/_ ratio

to a value l__r than, or equal to, the largest time/token ratio among

process or recursion circuits withcut increasing the time/token ratio

of any other circuit. Following this procedure, sufficient dummy

transitiQns my be added so that the time/_ ratio for any parallel

path circuit in the CMS is smaller than, or equal to, the largest

time/token ratio among process or recursion circuits. The procedux_

is _%ranteed to terminate as dummy transitions, when used as buffers,

never increase the time/token ratio of any circuit. This completes

the proof.

Example. Consider again the AMS of Figure 2.2. The oo_ f_G

is drawn in Figure 2.4 assuming zero time for read and write

transitions. Therefore, T_LB is 3. There is no recursion circuit

in the AMS. The largest time/token ratio among all prDcess circuits

65

is 2 and the largest time/token ratio amcr_ node circuits is 2.

Hc_=ver, the largest time/token ratio among all directed circttits is 3

due to two parallel path circuits as shown in Figure 2.4. For both of

these circuits, parallel paths in the AMG start and end in transitions

1 and 5 respectively. Let t i denote transition i and _ denote

place j. Path Pj for both circuits is the forward path tl, P6,

t6, PS, and t5. Path Pi for the two parallel path circuits are tl, P2,

and t 5 respectively. Both of these circu/ts have two tokens frum

backward cl_ places frum the _ _iticns of path Pj, as

shown in the _n. Now the AMS is transformed by inserting a dummy

transition on path Pj as shown in Figure 3.1. The corresponding

is shown in Figure 3.2. The number of tokens on the parallel circuits

are now 3 and therefore the time/token ratio is 2. Time/token ratio

for any other circuit does not increase as the dummy transition has

zero time. The largest time/token ratio over all directed c/xcuits is

now 2. However, TBOLB for the AM_ of Figure 3.1 is 2, and

transformation by a dummy t_r-ansition has improved

perforx_arK_e.

_. This is an application to demonstrate a procedure for

reducing resouroe re_. Control places and dummy transitions

are the two trar_formation te_ques which ar_ used. Suppoee that

all the data sets of an AMG require resource envelope, as given by

REST, and data sets are injected at the interval of TBO time units.

The total resource envelope will then be given by TRE and the peak

value of TRE will be the required number of functional units. Frum

Chapter Two, TRE is periodic and one period of TRE is made by

66

additions of sections of RESTof width TBO. This immediately leads to

the possibility that the peak value of TRE might be lowersd by

adjusting the shape of REST if the peak value of TRE is more than the

minimum _ [TCE/TBO]. REST can be modified by

delaying active transitions selectively with the help of control

places. This may or may not lead to an increase in TrLB (thereby

duration of REST) or TBIOLB depending cn the "float" of delayed

active transitions. Float is the amount of time an active transition

can be delayed without _ing TBIOLB and T_LB.

A desired result is to modify REST without increasing TBIOLB

and TrLB to achieve TBOLB with a minimum number of resources.

Unfortunately, this problem is equivalent to a class of scheduling

problems which is knuwn to be NP ccmplete [12]. Thus, REST must be

modified heuristically by control places. Judicious insertion of

control places may reduce the rescuroe _ for the same

TBOLB , but perhaps at the expense of TBIOLB. A control plaoe is

useful if it can reduce resource _ by delaying transitions

with float or by sacrificing parallel ocr_ttvre_cy to scDe extent.

Lastly, insertion of ccrfcrol places in the AMG can create duminant

parallel path cinmits in the co_ C_ which are made

insignificant following the prooedure of Application i.

The methodology for lowering the resource requirm_mt is now

stated. First, _ REST and TRE for the AMG at specified TBO.

The peak value of TRE is the resource _ for an input data

injecticm interval of TBO. If the peak value of TRE is more than

[TCE/TBO], heuristically modify REST by transforming

the AMG with control places with as small an increase in TBIOLB and

67

TTLB as possible. Make all dcminant parallel path circuits created

by control places insignificant by adding dummy trarmiticr_. An

example is given below to illustrate Application 2.

ExamPle. Consider the algorithm marked graph of Figure 3.3. _ the

AMG,TC = OLB= 2, anaTBIOza- m= 6.

resources to acb/eve TBOLB are FTCE / TBOLB l ,= 6. REST is shown

in Figure 3.4. Adding sections of REST of width TBOLB , a period of

TRE is computed and is shown in Figure 3.4. The peak value of TRE is

9. Hence, nine functional units are _ for implementing this

AMS for optimum time performance. As the minimum _

for TBOLB is 6, Application 2 is ccr_idered. The AMS is transformed

heuristically, as shown in Figure 3.5. The dotted lines are ocr/crol

places 1 through 4. Ignore control places 2, 3, and 4 initially. The

justification of control place 1 is as follows. It is noted that

transiticm 5 is the only transition which has a float in the AMS.

Transition 5 can be delayed up to two time units without delaying the

output. Ccr_idering section i of REST as shown in Figure 3.4,

transition 5 should be delayed one time unit so that the peak value of

TRE is reduced to 8. _ is accumplished by control place i. The

modified REST and TRE are shown in Figure 3.6. UrlfortiE_tely, OOr_izDl

place 1 creates a parallel path circuit among transitic_m 1, 4, and 5

whose time/token ratio is more than 2. The time/token ratio of this

circuit is made less than 2 by inserting a dummy transition on the

place between trar_ition 1 and 5. Now consider section 2 of REST as

shcwn in Figure 3.6. It contr_ (4, i) to a period of _RE. In

order to reduce the peak value of TRE, a more equal distribution of

transitions amcr_ the time intervals (t, t+l) and (t+l, t+2) of TRE

68

e.
o

Om

0
U

Om
m

a.
Q.

10B
0

C
0

Om
.OBP
0
Ii.

0_

m
i
olm

L

0

C_

qD
L

O_

69

m 3-
e
(3
L_

= 2,
0
m
m
o: 1

Data packet (mectlon) number
*_ 0 0 1" 2 I

4,.

o

0 0

Time

(o)

M
m
0::3.

0
t I+2 ' t+4

Time
(b)

't+8)

Figure 3.4. For Figure 3.3, (a) REST.

(b) TRE for TBO-2.

"7O

/

E
0

M
C
0

I--

E

71

Data packet (section) number
I

0 I 1" 2

Time

(a)

i

8

2
t

Rgure 3.8.

_+2

Time
(b)

' t+4 ' t+8)

For the AMG transformed by control

place 1, (a) REST. (b) TRE for TBO,,2.

72

is needed. Cuntrol places 2, 3, and 4 do this job at the expense of

increasing TBIOLB and _TLB by one time unit. The REST and _RE of

the fully transformed AMG of Figure 3.5 are shown in Figure 3.7. Now

only six functional units are required, which is the minimum for a

TBOLB of 2. It is to be noted that the maximum utilization of

r_ may not be achievable by use of control places in all cases

unless the AMG is turned into a complete d%ain.

3.3 Implementation Of Periodicity By Transformation

This section describes a procedure for enforcing periodicity in

the execution of an algorithm marked graph for successive data sets.

It is desired that performance and resource needs be identical for all

data sets for two reasons. First, ir_ data should not experience a

waiting time on the critical path of a task so that TBIOLB is

achieved for all data sets. SeDor_, the resource envelopes for all

data sets should be identical so that the total resource need can be

predicted. It will be shown in Application 3 and 4 of this section

that by controlling ir_ data injection and transform/ng the AMG by

dummy transitions, periodicity can be realized in the execution of the

AMG. The need and methodology for injection control of _ data is

explained in Application 3. Application 4 describes the conditions

for operating an AMS periodically with each data packet having

identical resource envelopes.

AmDlication 3. When presented with ccnt_ly available input data

sets, the natural behavior of a data flow _tecture results in

operation where n_ data sets are acoepted as rapidly as the available

resources and the in_ transition of the AMG permits. From Chapter

?3

4.

u
= 2.
0
M
@

rv 1

Section
I

• 0 I

°0 '1

number
1" 2

Time

(a)

8.
=
_e
o

2
t

Figure 3.7.

't+2 't+4 ' t+6

Time

(b)

For the

places, (a)

transformed AMG with all

REST.

control

(b) TRE for TBO-2.

74

TWO, the output of the AMS cannot be generated at a higher rate than

I/TBOLB or R/TCE. Therefore, if the data sets are ccnt_ly

available, they experience a waiting time inside the architecture

which _ TBIO frum TBIOLB. That is, the _tacture will

naturally operate at high levels of pipeline ccr_/rr_y with the

possible loss of capability for ad%ieving high levels of parallel

concurrency. This will result in performance_racterized by high

thr_ rates, 'but relatively poor task cmmputing speed. In many

oontrol and signal prooessing applications, it is important to ac_hieve

b_h a high _ rate a_ high t_k _mputing _s.

Therefore, it is necessary to control injection rate of data sets so

that input data never waits on the critical path. _he input data

injection interval must always be greater than, or equal to, T_LB

and it should be such that all task inputs always have a resource

available to fire transitions on tb_ critical path to the data output

sink. Tn/s can be accumplished by either adjusting the time for the

source transition or as shown in Figure 3.8. It is not always easy to

adjt_-t the source transition time as this will be the sampling

interval of sensors in a real system. All that is _ is to

limit the rate at whiah new ir%m/t data are presented to the CMS. This

is dc_e in Figure 3.8 by _ a dummy transition in a directed

circuit with the data ir_ut source. The predefined token on the

directed circuit is for initialization. The dummy transition imposes

a _ delay of D time units between inputs. D is chosen to be the

designer specified TBO.

AuDlication 4. It is r_cessary that all data sets have the same

resource envelope so that the total resource _ can be

75

"oblem CblG

Controller

Dummy transition
of time D

Rgure 3.8. Injection control by Application 3.

76

predicted. Also at steady state, it is desirable that all data sets

require resource envelc_es identical to REST as REST can be modified

to luw_r the peak value of TRE as described in Application 2. In

order to achieve suc_h a resource envelope, all transitions of the AMG

should fire as soon as there is a token on every input place. The

first step is to control the data injection interval as __ ,_e_ in

Application 3. If this cordition is satisfied, then it can be

guaranteed that a data token never waits an the critical path from the

data _ source to the data output sink for all data sets. Hence,

TBIOLB is achieved for all data sets. Secondly, the resource

envelope for a data set of an AM[; at steady state may not be identical

to the REST even th_ injection is controlled for the following

reason. Whenever there are parallel paths in the algorithm marked

graph, the traz_itions on non-critical paths of the algorithm marked

graph will have a float associated with them. The float of a

transition is the time by which a transition can be delayed without

increasing TBIOLB and TrLB. If there is not enough storage space

for previous data, transitions in the AMS with float may not fire even

though all the ir_ places have token. The reason is that one or

mmre output places of the transition contain previous data. This will

change the steady state resource envelope frcm the REST. One way to

prevent this fr_ happening is to use control places to eliminate all

floats fr_ the AMS. Huwever, this my not be always possible as any

control place has to be generated frum the cumPletion of execution for

a transition. Also, use of control plaoes may require dummy

transitions to prevent TBOLB frcm _ing, whic_ will make the

AMG more cumplex. A better way of enforcing REST for all data sets

77

is to use dummy transitions as buffers in the output of transitions

with float which need more stoz-age space for previous data. _e

position and number of dummy transitions can be determined frcm TGP

based on GPST. As the input injection interval is greater than, or

equal to, TBSIB , _ should be enforoed for the injection interval

of TBOLB. _ will also guarantee REST for all data sets with any

higher injection interval. The reason is that transiticms are

executed at a lo__r rate for a higher injection interval and need for

storage space at the output of floating transiticms will be lower.

The detailed procedure is now stated below.

Construct the TGP based on REST for TBO = T_LB. Locate all

transitions with float and identify their co_ task input

number. By inspection of TGP, check whether all the _rs of a

floating transition for the previous task ir_ have fired before the

floating ta-ansition fires. If not, the floating transition needs

dummy transitions as buffers at its output. Tne number of requirsd

ckmTmZ tz-ar_iticos equals the number of previous task inputs for which

at least one of the sucoessor transition has not fired at the time of

firing of the floating transition.

Example. Ccr_ider the algorithm marked graph of Figure 3.9. _ the

AMG, TBOiB = 2 and TBIOLB = TrLB = 5. Only transition 5 has a

float of two time units. GPST and _P for TBO = T_AB = 2 are shown

in Figure 3. i0. Task input 1 has started TBOLB before task input 0,

and task input 2 has started another TS>LS before task input 1. 'me

successor of floating transition 5 is transition 4.

predecessor of transition 4 is transition 3. Notice from the TGP that

4 (2) has started before 5(0); 3 (1) begins with 5 (0) . As 4 (1) is

78

1 iTraneition
time

Figure 3.9. Example AUG for illustration of
Application 4.

79

7<

.. 5

Section number

for TBO=2 _-->

Fo

I

21
I
I

I
ol

I
I

><

(o)

3
I

JJ

I
I

i
I
I
I

f

2

Time

I

I

r_
I

I
I
I

I @)

_tl
I

I

1(°) 2 (o) 1

5(o)1

2(I) 3(1) /
>< --t

I
I
I
it+_o

(b)

Figure ;5.10. (o) GPST. (b) TGP for TBO-2.

80

executed after 3(1) in the GPST, 4(1) has not started before

5 (0) . Hence, one dummy transition is needed at the output of

transition 5 to store 4 (1) so that 5(0) can fire according to the

GPST. Otherwise, the firing of 5 (0) will be delayed as the

model of a transition does not allow the firing of a transition unless

the output buffer is empty. _be transformed AMS is shown in Figure

3.ll(a). The TGP for TBO = 3 is shown in Figure 3. ll(b). Transition

5 no longer needs a dummy transition in the output for enforcing

REST. Hence, the transformed AMS of Figure 3.11(a) enforces REST for

TBO equal to both 2 and3.

3.4 S_ Changes In Algorithm by Transformation

The transformations ocr_idered so far try to _ the

original structure of an algorithm marked graph. In certain

conditions that my not be possible, or desirable. For example, it is

possible to improve T_LB of linear time invariant systems by

modifying the state equations. In this section, three kinds of

structural changes of algorithms are c_sidered in Application 5

7. Application 5 explains how multiple input-output

algorithm or a group of algorithms can be oambined into a single

input-output algorithm. _ is necessary because the analysis tools

developed in this dissertation are based an single in_-_

algorithms. Improvement of _ by modifying the state

equations of linear time-invariant s_ is _ted in

Application 6. Application 7 considers the parallel decumpositicn of

transitions as a way of improving performarK_.

81

I Transition
1 bme

/_ Dummy trans!tlon
/ of zero time

Ca)

(b)

Rgure 3.11. (a) Transformed AIdG.

graph play for TBO=3.

(b) Total

82

____. _he performance model of Chapter Two ccr_iders only

single input and single c_cput algorithms. _he additicn of dummy

transiticms provides a way of converting multiple _-output

algorithms or a number of algorithms into ane single input-uutput

algorithm. A dummy transiticm is used to cambine input data vectors

or output data vectors. All the _ are s_zed and fed to

the dummy transition at the same rate. Performance is evaluated from

the ccmbined algorithm which represents the total task. Two examples

are shown in Figures 3.12 and 3.13. In Figure 3.12, AM_ A1 has two

inputs and two outputs. It is transformed into a single input-output

algorithm A2 by dummy transitions. Figure 3.13 sha._ b_w

transitions can be used to combine two algorithms into one algorithm.

_R_7_=i___. _ds is an application of increasing _ of

linear ti_ invariant systems by increasing the number of tokens in

the circuit. Linear time invariant systems are described by the state

equations as stated below.

x(k) = Ax(k-l) + Bu(k)

y(k) = Cx(k) + Du(k) (3.4.1)

where x is the state vector, y is the _ vector, and u is the

ir_ vector. A, B, C, and D are time-invariant systan matrices. Tne

co_ algorithm marked graph is shown in Figure 3.14.

Usually, Ax(k-1) is the most time consuming oumputation in the AMS.

In such a re]stem, the recursion circuit determines the TBDIB. It is

shown that it is possible to reduce the time/token ratio of this

recursion circuit by doubling the number of tokens so that TB31B is

83

(a)

Dum.my transition for combining inputs/outputs

(b)

Figure 3.1 2. (o) AMGA,. (b)
AMG A 2 •

Transformed

84

0

85

V

V

V

m

V

>=

om

6
0
a)
C

em
mum

m
r-

6

0

<

m
6

86

improved to the largest time/_ ratio of the process circuits in

the CMS. _ is useful if decumpositicn is not desirable and

needs to be reduced approximately to the largest transiticm time of

the AMG. The methodology for reducing the time/token ratio of the

recursion circuit is expressed below by the statement and proof of

_neorem 3.2 with the assumption that Ax(k-l) is the largest transition

in the AMG representing the state equation.

Tneorem 3.2. It is possible to improve T_LB to the largest

time/token ratio of the _ circuits of a linear time invariant

system by reducing the time/_ ratio of the recursion circuit by

doubling tb_ number of tokens in the recursicn circuit.

Proof. Theor_n is proved by ounstructicn. Assuming Ax(k-l)

(transition 4) to be the largest transiticm of Figure 3.14, TBOLB is

determined from the recursion circuit. Application 1 has shc_n that

any AMG can be transfo_ so that TBOiB is determined by only

process circuits and recursion circuits. Thus, the statemmu_ of

Theorem 3.2 will be proved if the AMG for the state equation can be

transformQd so that the time/_ ratio of the recursicn circu/t is

smaller than that of the largest process circuit. Let the state

equation represent a l-ir_, m-_, and n-element state vector

system. The dimensions of A, B, C, and D are then (n, n), (n, i),

(m, n), and (m, i) respectively. Now

x(k) = Ax(k-l) + Bu(k) ;

x(k-1) = Ax(k-2) + _(k-1) ;

x(k) = A{Ax(k-2) + Bu(k-l)) + Bu(k).

87

It follows from the linearity of the system that

x(k) = (A * A)x(k-2) + (A * B)u(k-l) + Bu(k).

Let A* A= E andA* B= F. Then,

x(k) = Ex(k-2) + Fu(k-1) + Bu(k). (3.4.2)

Notice that the dimension of E and A and F and B are the same.

Tnerefore, the amount of ccmputation of Ax(k-1) and Ex(k-2) and

Fu(k-l) and B/(k) are the same. However, if equation (3.4.2) is used

instead of equation (3.4.1) for representing a linear time-invariant

system, the recursion circu/t has twD initial tokens as x(k) is

generated frum x(k-2). _he new AMS based cn equation (3.4.2), and the

original output equation, is shown in Figure 3.15. The dummy

transiticns are inserted to act as buffers so that transitions are not

blocked from firing because c_cput buffers are never Empty. TI,

T2, and T 3 are predefined tokens. T 1 = F * u(k-l), T2 = E * x(k-2),

and T 3 = x(k-l). Let k = i, 2, 3... and the initial state vector be

x(0). Therefore, the first input and _ are u(1) and y(1)

respectively. _hat is, u(s) = 0 for s equal to zero or negative.

Therefore, the initial values of TI, T2, and T 3 corr_ to k

= i. Hence, the initial values of T 1 and T 3 are T 1 = F * u(0) =

0 and T 3 = x(0). Frum (3.4.2),

T 2 = EX(k-2) = x(k) - Fu(k-l) - Bu(k).

88

m

U

Q
k

89

Tnerefore, the initial value of T 2 is given by x(1) - Fu(0) -

Bu(1). As u(0) = 0, the initial value of T 2 = x(1) - Bu(1). Hence,

it follows fram the equation (3.4.1) that the initial value of T 2 =

Ax(0) + Bu(1) - Bu(1) = Ax(0). Therefore, all the initial values of

the predef_ tokens can be calculated frum the initial state

vector. The recursion circuit n_ ocnsists of transitions 2 and 4 and

there are two tokens in that circuit. _e cumputaticm level of

transition 4 has hot char_ed, al_ that of transition 2 has

doubled. Thus, the new time/_ ratio of the _icn circuit is

T(4)/2 + T(2), where T(4) and T(2) are the times for transition 4 and

2 of the original algorithm marked graph. Assuming T(4) is

greater than T(2), the TBOLB of the new algorithm marked graph of

Figure 3.15 is given by the process circuit of transition 4 whose

time/token ratio is the same as in Figure 3.14.

APplication 7. This applicaticm establishes a method for finding the

max/mum level of parallel decumposition of a transition in an AMS for

the best computing speed of the transition. Decumpcsition reduces

process times of transitions; unfortunately, it also _ the

oc_m/nication cost due to an increase in number of transitions and

places in the graph. Therefore, oumputing speed is improved with

deoampositicr_ up to a certain level. For the luwest process time,

transiticr_ are _ uniformly. _%e maximum level of

_ition of the transition is determined from the ccrdition for

the fastest ccmpletion of the computation represented by the original

transition.

Let T be the camputation time of a transition which can be

dec_ in parallel arbitrarily without changing T. Let this

9O

transition be _cumpcsed into N equal parallel transiticms as shown in

Figure 3.16. Eac_ Ti is T/N. The time to oumplete the total

oumputaticn (A) for T in the worst case is then given by

A=R+T_ + C0 +W. (3.4.3)

R and W are the read and write times to oumplete reading and writing

of data for all Ti transitions. When this set of N trar_iticrus is

oumputing T, same other transitions of the AMG may be c_y

processed, co is the time required by each functianal unit to

receive data from the transitions of the rest of the AM_ chlring the

cm_puting ofT. CO is assumedto be irdepenc_E_ of N and i. Any

data are assumsd to be broadcast to all functianal units by a

transmission medium. It is assumed that one data packet can be

broadcasted at a time to all functional units. It is also assumed

that total t_ion time for output data for all N transitions

together does not c_ange with N. The worst case value of read and

write time for all N transitions together can then be expressed by the

following equatian:

R + W = C1 + N*L*_ + C_, (3.4.4)

where C1 is the time that the transmission medium has to be used to

serve the rest of the AMG during the read and write operations for N

transitions of T. C1 is assumed to be independent of N. C2 is

the average aocess time for the transmission medium and L is the

number of times a functicna/ unit has to aocess the transmission

91

(b)

Rgure 3.1 6. (a) An AUG with a large transition T.

(b) T i= decomposed in N parallel
transitlone.

92

medium for cumputir_ a transitic_. C3 is the time to transmit

output data over the transmission medium for all N transiticrs

together and is assumed to be independent of N. Therefore, fz_ 3.4.3

and 3.4.4,

A = T/N + CO + C1 + N*L*C 2 + C3.

For minimizing A, dA/dN = 0; d2A/dN 2 = positive. Now

dA/dN = (-T/N 2) + (L'C2);

d2A/dN 2 = 2 * (T/N3).

As T and N are always positive, d2A/dN 2 is positive.

dA/dN = 0,

0 = (-T/N 2) + (L'C2);

N = [{T / (L*C2))'5]

As N has to be an integer and higher N will mean higher oummunicaticm

cost,

N= [[(T / (L*C 2))'5]].

Also as N > 2 for any decomposition,

(3.4.5)

T_> 4 * L * C2. (3.4.6)

93

C2, whi is an ar i c =.

m/nimum value of T for _ition can be evaluated from (3.4.6).

Equation (3.4.5) provides the maximum level of decomposition.

Example. Let T be the prDcessing time for transiticn B in an AMG as

shown in Figure 3.17. Suppose B can be arbitrarily decomposed in

parallel. Let T = i0, C2 = 0.25 and L = 2. As T > (4*2*.25 = 2), B

can be _ to impruve performance. Let B be dec_Ex_ in N

transitions in parallel. Hence, N > L[(I0/(2..25) }.5]j = 4.

In order to maintain process time for computation T reasonably higher

than cummunication time for large granularity, a level of

decomposition, less than or equal to, half the maximum level is

assumed to be appropriate in the followir_ example. _s N is chosen

to be 2. The deccmpcsed transition B is shown in Figure 3.17.

3.5 Summary

Applications of algorithm transformation are discussed in this

chapter and transformation techniques are defined. _ements of

TBOLB are achieved by dummy transitions. _ r_ may

be 1_ by ccntrD1 places and dummy transitions. Input data

injection is controlled by predefined token and dummy transition.

Periodicity in the rescuroe envelope is enforced by dummy

transiticrm. The methodology for transforming algorithms into single

input-uutput algorithm is described. The TBOLB of linear

time-invariant systems is improved by predefined tokens. Lastly,

parallel _ition of transitions are considered to illustrate the

trade-off between decreased granularity and _ communication

cost.

94

'ransition B
\

T=IO
.. J.

Transition time

(a)

Figure 3.1 7.

Transition time

(b)

(a) AMG before decomposition of B.

(b) B is decomposed.

CHAPTER _UR

ATAMM OFERATING POINT _SI_

4.0 Introduction

The _ operating point (AOP) describes the specification of

the input data injection interval (latency), resource r_gairlnmM_ and

the time perfo_ of an algorithm marked gra_ operated on an

data flow _tecture. The design of operating points based on the

number of resources of the ATAMM data flow architecture is

investigated in this chapter. The methodology is demonstrated

examples, simulations, and experiments. Pruperties of the ATAMM

operating point under the allowable transformaticrm and implementation

strategies are diso/ssed in Section 4. i. In Section 4.2, AOP design

methodology is developed. Performance model, transformation

techniques and the AOP design methodology are verified by simulations

and experiments an test algorithms in Section 4.3. A summary of the

chapter is presented in Section 4.4.

4.1 Characteristics of Operating Point

The ATAMM opea-ating point is the parameter set (TBI, R, TBIO, T_,

and TB0) for an algorithm execution where TBI is the input data

injection interval (latency) and R is tb_ m/nimum number of resources

required by the _ data flow architecture. The design problem is

to specify an operating point for executing an AMG in the ATAMM data

flow architecture whic_ achieves cpt_ time performance with a

95

96

minimum number of c_uting _. Unfortunately, this problem is

equivalent to a class of scheduling problems whiah is known to be NP

complete [12]. THUS, there exists no methodology for obtaining an

optimum soluticm which is better than emmm_rating all possible

solutions and then _hoosing the best one. However, it is possible to

develop a procedure for generating sub-optimal solutions. This is the

objective of this chapter. The design objective is to determine an

operating point given the number of resources, and to provide the

guidelines for generating a new operating point should the number of

resources change. Also, the expected time performance for TBIO and Tr

should remain the same with any _put data injecticm interval greater

than that of the aperating point as long as the mm__r of resauroes

are not decreased. The following pr_ies are _ in the

operating point design:

a) Input data frum the s_irce are injected into the ATAMM data

flow architecture at a constant rate, and hence the time

between successive inputs (TBI) is always the same.

b) For all in_ data of the task, TBIO = TBIOLB and _T =

T_LB.

c) Each data set requires a resource usage envelcpe identical to

REST.

All of these properties are realized by the use of Applications 3

and 4 of Section 3.3. These pr_ies are needed for adlieving the

best task camputing speed for all task inputs and to accurately

predict _ rmquirm_ents. As stated in Application 3, the time

between _ive data inputs (TBI) is adjusted to be greater than,

or equal to, TBOLB so that input data never wait on the critical

97

path to the data output sink. _he algorithm marked graph is

transformed as in Application 4 so that the resource envelope for each

task input is REST. The design _ must detexm/ne the allowable

range of TBI so that the ATAMM data flow _tectllre has sufficient

to meet the rescttrce _ of all task ir_. Let

Rmin be the peak value of REST. Therefore, any task _

at least Rmi n resources to meet pruperties b and c. Let Rma x be

the largest peak value of TRE for any TBI > TBOLB. Hence, with

Rmax or more fUrctional units, any ATAMM data flow _tecture can

execute the AMS while achieving TrLB and TBIOLB for any injecticm

interval greater than, or equal to, T_IB. It is to be noted that

TBI and TBO are the same for any AMG at steady state. Finally, let

the number of resources of the ATAMM data flow ardlitecture be

byR.

The operating point for various numbers of resources can be

displayed on a _ of TB0 versus Tr. Every point in the graph is

associated with a value of TBIO and R. Frum Chapter Two, Tr > TCE/R

ardTBO_>TCE/R. AlsoTBI and, hence, TBO need not be _

beyond Tr as Rma x = Rmi ncn the TB0 = T_ line. _berefore, the AOP

is expected to lie in a triangular area of the graph determined by the

number of functic_l units of the ATAMM data flow _tecture. The

characteristics of the operating point are shown in Figure 4. i.

Let the problem be specified by an algorithm markmd graph. Let

the best possible perfo_ under the rules of operating point

design be defined as the absolute ic__r bounds for the time

performance. Formal definitions of the absolute icwar bounds for Tr,

TBIO, and TBO are n_ stated.

98

?

TCE/R_

| /I AOP.lies in the =haded

/ i or°o'or Rr°'°urc°"i area for R resourcG_9"

TCE/R TT--_

Figure 4.1. ATAMM operating polnt characteristics.

99

_finition 4. i: _bsolute Lower Bound for TBIO. The absolute lower

bound for TBIO (TBIOALB) is defined to be the lowest TBIOLB for

the algorithm marked graph with or without any transformaticms.

DefLnition 4.2: Absolute _ Bound for Tr. _he absolute io__r

bound for TT (TrALB) is defined to be the lowest TrLB for the

algorithm marked gra_ with or without any transformaticms.

Definition 4.3: AbsOl_TtQ Lower Bound for TBO. _he absolute ic__r

bound for TBO (TBOAIB) is defined to be the l_aBst TBOLB with or

without any transformations.

Let the transformation be restricted such that only dummy

transitions (of zero time) and ccrfcrol places (with no initial token)

are used for transforming the algorithm marked graph. Theorems are

now described to determine the absolute lower bounds under the above

transformations.

Theorem 4.I. The absolute lower b3ur_ for TBIO is equal to the ic__r

bound without any transformaticms.

Proof. Control places can create ne_ paths in an algorithm marked

graph but do nut alter existing paths in the AMS. Dummy transitions

of zero time increase the number of transitions on a path in the AMS

but do not increase the path length. Therefore, any path in the

original AMG is also a path in the transformed AMS with equal path

length. The critical path from the data input scuroe to the data

output sink in the MAMG of the original algorithm marked graph is also

a path from the data _ source to the data output sink in the MAMG

of the transformed AMS. Hence, TBIOLB of any transformed AM_ under

the stated transformatic_s cannot be Ic_r than that of the original

one. _%erefore, the TBIOAL s of an algorithm marked graph is

100

determined by the TBIOLB of the AMS without any transformati(_ls.

This cumpletes the proof.

Tneo_e_ 4.2. _he absolute lower bound for T9 is equal to the lower

bound without any transformations.

Proof. The proof is similar to that of Tneormm 4. I. However, _TLB

is determined by the critical path among all paths from the data input

source to any output sink in the MAMS. By the _ of Theo_m

4. I, this critical path in the MAMS of the original AMG is also

present with equal path length in the MAMS of the t/-ar_formsd AMG.

Thus, TrLB cannot be reduced by transformatiun with dummy

transiticms (zero time) and ccmtrol places (no initial token). Hence

the TrAL B of an AMS is determined by the TTLB of the AM3 withaut

any transformations. This completes the proof.

eore 4._. The absolute lower bsund for TBO is equal to the largest

time/token ratio among the process and recursicn circuits in the CMG

of the original algorithm marked graph without any transformations.

Proof. Theorem 3.1 has proved that the _ of an algorithm marked

graph can be reduced to the largest time/token ratio of the prooess

and recursiun circuits by transforming with dummy transiticmm of zero

time. Because of the way process and recursicm cizruits are created,

dummy transitians do not alter their time/token ratio. Control

places, cn the other hand, can create new parallel path circuits in

the C_3 but do not change the time/token ratio value of the circu/ts

in the C_G of the original AMG. Therefore, the lowest TBOLB and

TBOAL B is detezmired by the largest time/token ratio among the

process and recursicm circuits in the C_G of the original AM3. This

campletes the proof.

i01

Any operating point will have TBIO, Tr, and TBO values greater

than, or equal to, those specified by the respective absolute lower

bounds. Figure 4.2 (a) displays the c_%aracteristics of the operating

point when designed with only dummy transitions (zero time) and

control places (no initial token). Any operating point resides in the

area m_H. The point B co_ to the operating point which

achieves the absolute l__r bounds for TBIO, Tr, and TBO. Lines BY

and _ represent operating points which ac_%ieve the absolute lower

in task _ing _ (T'_ aria TSIO) _ the _

(TBO) respectively. With the specified transformations, T_IB cannot

be more than TC. Any operating point an line _ has _TLB = TC,

which indicates the absence of any parallel ccnctLvr_cy. Point W is

characterized by TrLB = TBOLB = TC and represents cumplete

sequential operation with no ocr_/rrercy. ATAMM is most apprcpriats

for prablems which require both vertical and horizontal cc_currency.

It is assumed that TBIOLB and TTLB are achieved for any TBI

greater than, or equal to, the data injection interval at the

operating point. Therefore, the _ _ _ at any

operating point is the greatest peak value of TRE for any TBI >

TBO_, where TSOep is the data output interval and the input data

injection interval at the operating point.

4.2 operating Point Design

Let the problem be specified by an algorithm marked graph for

which the ATAMM operating point is to be determined. The only

allowable algorithm transformations are dummy transitions of zero time

and control places. Predefined tokens and decumposition will not be

102

TBO=T[line

TC[----"-----_w AOP resides in the

TBOALB F_"-- --BT TH
V I I)

I"I'ALB TC 1"1"

Rgure 4.2(0). AOP charactedstlcs under specific
transformations.

103

ccnsi_ for operating point design. The AOP design consists of six

steps. These steps are described in the r_inder of this section.

The operating points are determined co_ to different number

of resources for the algorithm marked graph of Figure 3.3 to

illustrate each step as it is presented.

_a__l. Ccnstzuctthe_Sfru_theAMS. Determine lc__r bounds and

absolute lower bounds for TBIO, Tr, and TBO for the AMG. If TBOLB

is greater than TBOALB, transform the AMS with dummy transitions to

achieve TBOAIB, as in Application 1 of Section 3.2. Determine Rma x

and Rmi n. If Rma x > [TCE/TBOALB], heuristically transform

the AMS with control places and dummy transiticr_ to reduce Rma x

without increasing TBIOLB , TTLB, and TBOLB , as in Application 2 of

Section 3.2. Determine new Rma x and Rmi n values. _ bounds of

performance for the resultant AMS are also the absolute ic__r bounds

for Tr, TBIO, and TBO under the specified transformaticms.

Frcm the AMS of Figure 3.3, TBIOLB = 6, TrLB = 6, TBOLB = 2.

Also TBIOAL B = 6, TTAL B = 6, and TBOAL B = 2. REST and _qE

co_ to TBO = 2 are shown in Figure 3.4. Checking all TBI >

2, Rma x = 9. _he AMS of Figure 3.3 is now transformed heuristically

to l_ _x wi_ i_=_i_ _Io_, _, _ T_, as

described in Application 2 of Section 3.2. The transformed AMS is

shown in Figure 3.5 (ignore oontrol places 2, 3, and 4). REST and TRE

corresponding to TBI = TBOLB = 2 are shc_n in Figure 3.6 for the

r_nn_nt AMS. By checai_ all T__> 2, it is __n_at_ x

= 8, Rmin = 4.

104

___. Cbcx_e a convenient transition firing rule. A rule to

determine when an enabled transition in the _ fires must be

specified in the _ manager. The rule usually used is that enabled

transitions fire when oumputing _ are available. If

contention exists, such as when there are more enabled transiticr_

than ccmputing resouroes, firing occurs according to a priority

ordering of the transitions. For the algorithm marked graph of Figure

3.5, the highest to lowest priority ordering of the transiticr_ is

chosen as (ll, 10, 9, 7, 8, 5, 6, 4, 3, 2, 12, and I).

Step 3. If R > Rma x functicr_l units are available, operate at TBI

= TBOAL B. Use Application 3 and 4 of Section 3.3 to adjust TBI to

TBOAL B and to transform the AMS by dunm_ transiticr_ in order to

realize REST as the resource envelope for all task inputs. Eliminate

all m%n_sary dummy transitions. The operating point time

performance is the absolute lower bound values for TBIO, _T, and TBO.

The AMS can also be operated for any TBI > TBOAL B while maintaining

TBIO and TT at absolute ic__r bound values. _hen R < Rmax,

determine the operating point from one of the following strategies:

Strategy A: Strategy A is applicable when Rma x > R > Rmi n-

Preserve TBIO and Tr at their respective absolute

lowmr bounds at the expense of increasing TBI and

TSO above TBOAL B-

Strata/l B: Strategy B is applicable for the following range of

R. Rma x > R _> [TCE/TBOALB]. Preserve TBO

to its absolute ic__r bound at the expense of

_ing one, or both, of TBIOLB and TrLB.

105

Strategy C: Strategy C is applicable when Rma x > R _> i. The

operating point is determined by first following

Stratec/] B so that Rmax >R>Rmin, andthen

_ing TBI above TBOAL B. The strategy tries

to minimize performance _ticn in TBIO, _T, and

TBO fram their respective absolute ic__r bound

values.

These three strategies of the AOP design under z-_=_ource

oonstraints are illustrated in Figure 4.2 (b). Strategy A ma/ntains TT

and TBIO at their r_ive absolute lower b_md values and reduces

pipeline ocr_/rTe2%cy to lower resource r_qttirlm_ts. Strategy B

by ae 'easing

resulting in a higher lower bounds for one or both of TBIO and TT.

Strategy C sacrifioes both pipeline and parallel c_nm/rrency to s(_e

extent for lowering resource requirements.

If the ATAMM data flow architecture has eight or more functional

units, the algorithm marked graph of Figure 3.5 can be operated at

TBIO = Tr = 6 and TBO = 2 by adjusting TBI = 2 using Application 3 of

Sectian 3.3. GPST and TGP co_ to TBI = 2 are shown in

Figure 4.3 which suggest that no ne_ dummy trar_iticms are required to

enforce REST and GPST. Resource utilization over a period TBO is

given by {TCE/(R*TBO)) = I//16 = .75.

SteD 4. Execute this step if strategy A is apprc_riate. Increase TBI

to TBOcp such that TBOop is tb_ luwest time interval between

overlapping REST's for the peak value of TRE to be less than, or equal

to R, for all TBI > TBOqo. TBOop is guaranteed to lie in the

range [TCE/R] < TBOop < TTAL B. Operate at TT = TTALB,

106

Figure 4.2(b). The strategies for AOP design
under resource constraints.

107

SectionqL._ 0
numb,_

I
!

I
I

I 1 ! 2 I

] i i

I !

I

I
• I

t. . K-----> ,

(o)

"nine

! 1(o) I

I (1) (1)'

I I

I

I (2). (:_)

18 (21
I

t,

(b)

!
I

It+TBO
!

Figure 4.3. (o) GPST. (b) TGP for TBO-,2.

108

TBIO ffiTBIOAI B, and TBO = TBI = TBOop using Application 3 of

Section 3.3. TBIOAL B and TrAi B are also achieved for any TBI >

TBOop.

Assume, the _ data flow architecture has five functional

units. As Rmi n -- 4, Strategy A can be applied. Following Strategy

A, it is found that TBOop = 3. Overlapping of REST's for TBI = 3 is

shown in Figure 4.4 (a). The operating point is given by Tr = TBIO = 6

an_ T_ = T_ = 3 an_ _(T_) - {12/(5.3))= .8.

_p__5. Execute this step if Strategy B is appropriate.

Heuristically transform the AMG to reduce Rma x using ocr_/ol places,

as in Application 2 of Section 3.2. Maintain TBOLB at TBOAL B by

using dummy transitions. A good heuristic is to reduoe Rmi n

significantly. There is a guaranteed solution at TELB = TC,

TeZOLB= T_, _d TeOu_ = TeO_u3 by _'a'sformi_ _ _ into a

cumplete chain. Eliminate all unnecessary dummy transiticms. Operate

the transformed AMG for TBI = TBOAL B = TBO, TT - TrLB , and TBIO =

TBIOLB using Applications 3 and 4 of Section 3.3.

Suppose the ATAMM data flow architecture has six resources. TCE

= 12 units of c_ time. As R > [TCE/TBOALB] = 6,

Strategy B can be applied. Rma x is reduced to '6 by control places

2, 3, and 4 as show_ in Figure 3.5. New REST and TRE for TBI ffi2 are

shown in Figure 3.7. _3%e peak value of TRE is 6. TrLB = TBIOLB =

7. By checking all TBI > 2 for this AMS, it is found that Rma x ffi6

and Rmi n ffi3. GPST and _'P for the transformed AMG are shown in

Figure 4.5. Only transition 5 has a float associated with it. The

successor of transition 5 is transition ll. By inspection of the _P,

transition 5 (1) fires before transition ll (2) , which is impossible

109

5_

_4

2

l I

Jt+2

Time

't+4 't+6)

(o)

,T

a_

1
t

Figure 4.4.

_+2 't+4

Time

(b)

' t+6 't+8

in Step 4.TRE for TBO=3

TRE for TBO,,4 In Step 6.

)

ii0

Section.._.._ 0 I 1 I 2 I 3numbe_ I I

p _" , ,

I ,_ ,_-_
I I

(o)

I 1(o) I
erl

(11 (11

i 3(')8(')1
A(1) ;

I

l:Z)l

(21i

IN
Time t _ It+TaO

(b)

Figure 4.5. (a) GPST. (b) TGP for TBO=2.

iii

in an AX_MM unless there is a buffer between trar_iticns 5 and Ii.

Hence one dummy transition is required between transitions 5 and II as

shown in Figure 4.6 to enforce R_BT as tb_ resuurce envelope for all

task inputs. The operating point is given by Tr = TBIO = 7 and TBO =

TBI = 2; _J(TBO) = i.

S_. Execute t_his step if Strategy C is appropriate. Transform

the AMG by Strategy B until Rma x > R > Rmi n and then _ TBI

to determine TBOop , as in Strategy A.

Let R = 4. _he AM[; is trar_formsd by Strategy B as described in

Step 6. NOWRmax = 6 andRmin = 3. As R iswithin the _ of

R n, =n be by

TBI as in Strategy A. Increasing TBI, TBOup - 4. Overlapping of

REST's and _RE for TBI = 4 are shown in Figure 4.4 (b). _he operating

point is given by Tr = TBIO = 7 ar_ TBI = 4. Adjust TBI to 4 for the

AMS of Figure 4.6 to implement the operating point. _J(TBO) = .75.

These operating points for the AMG of Figure 3.5 are shown in

Figure 4.7. Operating point B is the only operating point which

achieves the absolute lower bounds for _T, TBIO, and TBO and is

achieved in Step 3. OPA, OPB, and OP C are the operating points

developed by Strategies A, B, and C respectively.

4.3 Test Results

The performance model, transformation techniques, and the ATAMM

operating point design p_ are tested by simulations and

experiments. Simulations on the test algorithms are done by a

software simulator developed to simulate the execution of an algorithm

in the ATAMM env_t [21]. The input parameters for the sinrtlator

).12

113

5

•mo_....2-
1

0

B
I
I

I

"r'r_.a "l'r

Figure 4.7. ATAMkt operating points for the
example algorithm marked graph.

114

are the algorithm marked graph including all _S transiticm times, the

number of _, and a priority ordering for the transiticr_ of

the AMS. The input data injection interval is controlled by adjusting

the source transition time. The simulator detects and writes all

events associated with the execution of transiticms for each task

input on a _ dlagncstic file. The analyzer is a program developed

to analyze this graph diagnostic file [21]. _be two features of the

analyzer used in this dissertation are the node activity display and

the input/output display. The node activity display shows the

execution of transitions as a function of time. The input/output

display shows TBI, TBO, and TBIO for each task input and also plots

these quantities as a function of time. Detailed information about

the simulator and the analyzer are found in [21]. Another useful

program develuped is called Ttime which dete_ the icwar bounds

for TT, TBIO, and TBO in an algorithm marked graph by constructing the

CMG and MAMG [20].

A test_bed is develc_ to run test algorithms in the ATAMM

env_ [20]. The _ data flow arc/%itecture consists of, at

most, three functional units with a distributed global m_Dry and

graph manager. Figure 4.8 shows the architectttre. Functional units

are realized by I_4 Personal Camputer AT's. Functional units

oammunicate between each other by a _ cummunication bus. In

add/tion, _ IEM PC AT which implements the source and sink

transitions of the AMS is connected on the Ethernet bus. _ I]_ PC

AT is used to begin and end the execution of the test algorithm and to

generate a graph diagnostic file recording all events during the

execution of the AMG. At the present stage, the source transition

time cannot be adjusted to control the injection rate and this rate is

i15

ETHERNET_

GM

FUN

GLM

GM

FUN

GLM

IBM PC AT

GM

FUN

GLM

Figure 4.8. The testbed ATAMM data flow
architecture.

116

always equal to a small write time. THUS, it is not possible to check

the entire ATAM_ operating point design procedure cn the testbed.

However, twD experiments are carried out to shaw the effect of duum_

transitions in impruving TBglB and the use of control places to

reduce resource requ/r_ments. The analyzer is used to determine the

performance of the test algorithm frum the graph diagnc_cic file.

Detailed information about the testbed can be found in [20].

Five test algorithms are chosen to test the design procedure,

performaiK_ model, and transformation te_miques an algorithms with a

wide range of structural c_-acteristics. Execution of all five

algorithms were simulated but only two algorithms were actually

implemented an the testbed, mainly due to the resource limitaticr6 and

inability to oontrol the ir%m_ data injection interval. _he results

are stated and analyzed for each of the test algorithm ex_muticn in

the following discussion.

Test I. The primary Qbjective of this test is to show the use of a

dungy transition as buffer in reducing the time/taken ratio of a

parallel path c_t. Experimental time performaIK_ is also cumpared

with the theoretical time performance predicted by the performance

model. _he test AMS and a transformed test AMS are shown in Figure

4.9(a) and (b) respectively. The purpose of the dummy transition is

to reduce the time/token ratio of the parallel path circuit for the

parallel paths betwsen transition 1 and 3 in Figure 4.9(a) so that

T_LB is impruved to the time/token ratio of the largest process

circu/t. All the transition times are expressed in seconds. Priority

ordering frum highest to lowest in the test AMG and transformed test

AMG are (3, 2, i) and (4, 3, 2, I) respectively. The dum_y

I17

Transition

I
\

/ Transition time
4s in seconds

8s 3s

(=)

Transition

1

4s / Transition time
in seconds

Dur_my 3s

transition

(b)

Figure 4..9. (a) AMG for Test 1. (b)
AMG for Test 1.

Transformed

i18

transition is implemented as an active transition of zero process

time. Read and write times of the transitions are assumed to be 220

ms and 255 ms for simulation and theoretical performance evaluation

(these ccmm_n/cation times were measured for the testbed in [20] for

two functional units). _ bounds for TBIO and TBO are calculated

for both the test AMG and the transformed test AMS. It is assumed in

simulations and experiments that no resource is needed to implement a

du_,y transition. Both the AMS's are _ and simulated for two

functional units which are the max/man resuurue rQquirlmmnts to

achieve TBOLB and TBIOLB in either case. Alth_ exper_

and simulated time performan_ are expectad to be TBIOLB and

TBOLB , there can be same differences due to the following reascr_s.

The simulated performance measures are always a little higher than the

theoretical expected performance. This is due to lost clock cycles in

assigning transitions to resources and the fact that even a dummy

transition will also require a resource, though only for a small

duration. Experimental time performance values are higher in

cases from the theoretical expected time perfo_ due to one or

more of the foll_ing reasons. First, Ethernet cannot implement more

than one read or write operation at the same time. Seccr_, as the

dummy transition is nunideal, it requires a _. Third, read and

write times for _G transitions were measured with no contention,

which is not true when a number of transitions try to communicate at

the same time. Fourth, there is a slight increase in actual process

times for transitions due to interrupt frum other functional units.

Experimental and simulation results for both AMS's are presented in

Figures 4. I0 through 4.13 and cumparBd with theoretical performance

low_r bounds in Table 4. i. The node activity display sh_ws the

ll9

TABLE 4.1

COMPARISON OF RESULTS FOR TEST 1

NgorRhms

Transformed.

AUG for Teet
1

Experimental
R.ul_ (,)

Av. Av.
TBO TBIO

13.13 16.41

g.23 16.43

Slmulatlon
R,,ul_ (,)
Av. Av.

TBO TBIO

13.28 16.53

g.1 18.53

Theoretical

I.,B'8 (s)

TBOu! TBIOLE

13.17 16.425

8.695 18.425

].20

-'z"+

m

t .E

 !iiii!iiiiiii+_ oooo.<+
.|--'"

m
Im.l

o i.

_m +imlllm

f.m _-__q

f,_ ,_H_ | _T_ _'+_,

|_ 1 -- i

__t'_

m

r',m.m.,m_+.m.mT

P

t ,,

_fft'm'

:: ++++++m+r++'+:L'I._t.

t

f'_ m[,_H [H,.Im|

L"

_ _

Illi-l!ltlll11_lll_lll!ltlI

u.

IM!_lll;lllilliiliiillli

I:ttlltll':ltF_;ll_llll

t_.__

,

t:ilmll'!m',mimm+

_- ii i

[mmlmm]]I1m

l'-!,_,+l_"lililll_llP,!_!

..,.

o'J

=+

-+

',4"

!

Q=.

J

N

m
i=.=.

r

I

|

l . l "_='==_====

!

i --

! .

i
| ,, ,

|,...

I

I ' ''

!

i
!

_=.====
p,,=====__

f

I_

i__ _.

i -

._=

.4..'

0

m

oi

o

E
ol

.@

122

-----oQ

, l!l_l!ll!!lli!illi!_i_!il

L

223

124

execution of transitions with time in the order of transition numbers,

with transition 1 being the lowest. TBI, TBO, and TBIO of the

input/output display are to be divided by I00 for converting all times

to seconds. Frum the input/output display there is a sigrdficant gain

in TBO by the transformaticm. Parformarce varies very little with

task inputs. Frum the table, it can be seen that TBOLB is improved

fram 13.17s to 8.695s by the dum_y trar_ition. It can also be seen

that the experimental and simulated performances are very close to the

theoretical ic__r bounds of performance, exc_ for the TBO of the

transformed test AMG. This is primarily due to the fact that the read

of transition 3 and that of the dummy transition in Figure 4.9(b)

cannot occur at the same time. Also, as there are only two rescumues

with the priority of transition 1 being the law_-t, no new task input

will be aocepted until the operation of the dummy transition is

ccmpleted. All other results are as expected.

Test 2. This test illustrates the use of control place to reduce

resource _ts (peak of TRE) while maintaining TBOIB. Also,

theoretical and exper_ time performances are oampared. The test

AMG and the trmr_formsd AMS are shown in Figures 4.14 (a) ard 4.14 (b)

respectively. The test AMG of Figure 4.14 (a) requir1_ three

to operate at TBIOLB and TBOLB. _he AMG is transformed as shown

in Figure 4.14 (b) whiQh achieves TB3LB with only two resources at

the expense of increasing TBIOLB (assuming that no _ are

recgzired for the dummy _ition). All the transition times are

expressed in seccmds. Priority ordering from highest to lawest for

the AMG of Figures 4.14(a) and 4.14(b) are 4, 2, 3, 1 and

125

/ Transition time

Transition/_ s_ in seconds
\

',_I Is

(a)

2s
Dummy _ _ .. .

transition 7I_ \ 7 ransitl°n time

n..con0.
Transition _ I \

1\

ls

Figure 4.14.

(b)

AMG for Test 2.

Transformed AMG for Test 2.

126

5, 3, 4, 2, i respectively. Read and write times for each

transition were measured in [20] to be 0.275s and 0.31s respectively

for three resources. The test AMG of Figure 4.14 (a) and the

transformed AMG of Figure 4.14 (b) are rt_ on the testbed and simulated

with three and two rmsuurces respectively. Experimental and

simulation results are described in Figures 4.15 _ 4.18 and

cumpared with theoretical Icwar bounds in Table 4.2. In Figures 4.15

through 4.17, TBI, TBIO, and TBO are divided by i00 to get time in

seccrds. The times in the input/_fcput display of Figure 4.18 are

divided by 18.2 to get time in seconds. It can be c_served that the

transformed AMS achieves almost the same TBO as the original AMG;

however, TBIO is increased by nearly the time for transition 3 of

Figure 4.14 (a) in the experiment and simulation. _he differences in

experimental results from theoretical low_r bounds for both the AMS's

are primarily due to nonideal dummy transition and EThernet

cummunication probl_us, as described in Test I. The difference in the

simulation results from the theoretical expected perfo_ is mainly

due to lost clock cycles in assigning transitions to res_rc_ and due

to ncrddeal dummy transitions. _he experimental perfo_ for the

transformed AM3 %_expectedly went thr_ a wide variation initially.

One probable reason is the lack of proper injection control, which my

cause the cummunication software (for implementing Ethernet

cummunicatic_) to be unpredictable. All other results are as

Test 3. Tn/s is a simulation for the execution of a test algorithm

shown in Figur_ 4.19(a) to check the ATAMM operating point desig_

prDoedure. Let T = I000 time units. The read and write times of the

12"7

TABLE 4.2

COMPARISON OF RESULTS FOR TEST 2

Ngorithms

Experimental Simulation Theordl(_l
R,.,u_,(.) b=,,rt. (.) ,.'. (.)

Av. Av. Av. Av.

TBO TBIO TBO "1110 TBOLa TBIOLI

NdG for Test'_ 5.00
2

8.25 4.98 8.36 4.86 8.255

Transformed

AMG for Test

2

5.18 9.81 5.13 9.58 4.70 9.4

_.8

m

g,.,

m._.

N

N

m

J,_s-.,pJ,_,-

____,____
.._............... _. I
N._-_'_'____ I

.... _........... __""""_"_---..-._1

L

-r

I
]

,4.1
g_

e-lm

co
_E

0

m

ol

L_

o

Om

(/1

_g
z_

L_

129

M

I'm

m
II,=..

=

!

I
i

I
I

I

I
i

I
!

I
I

I
I

I
I

1

I

I

::! iii!ii!i!ii!ii!i!i
°olJo BI o_ tt I° .I .° .. _!

..joo.-°''

m

m

m

m

n

m

m

m

R

m

m

m

m

m

m

m

m

m

a_nnunnnmnnm

m

m

imunmanmml

immmfmlmnnmnm

"i

o'I

t,-,,'-

E
I,,,.,
0

e-

I,,..

0

.l.,,0
m

In

G
L

130

a.

°° °° °° _. .° o° °o °.

I

X

_ _ _ _ _ "_.._&
__._....oo.._oOOO

z_

l i.

C

k

_=====

_=,====

e"
el

e-

L
0

L

I

131

w/-/-//j_
ss

?////_

',f2"/'/i,.

.---.-.J.

I

I

1

I

f

I

I

I

I
I
I

I

I

I

I
I
I

I

I
I

_ _:::':_".

i

L

I

I

I

I

I

l

I

I

I

I

I

I

I

I

I

I

I

I

I

E

m

I

.iiIiiIi

I

i

i

i

i

I

i

I

.<

L

0

ffl
c-
O
L

e.

L

0

I

@
U

m

0

*d

x
bd

L

].32

• 2T

Transltlon
6

Transition
2T

time

(a)

0
0
s..

0
m
O

r_

2

0
0

1
'iT 4T' ' 5_

Time

(b)

REST.
Figure 4.19. For Test 3, (a) AMG. (b)

133

NMG transitions are assumed to be zero. Then TBIOLB = 4T, T_LB =

5T, and TBOIB = 3T. No further improvement of _ is possible

as it is determined by the time/token ratio of the recursicn circu/t.

Hence, TBIOAI B = 4T, TrAL B = ST, and TBOAi B = 3T. REST is shown

in Figure 4.19 (b). By chec_ out all TBO _> TBOALB, Rma x = 3,

and Rmi n = 2. Also TC = 8T, TCE = 8T units of oomputer time. As

[TCE/TBOALB] = 3, Rma x cannot be improved any further

and Strategies B and C cannot be applied. So if R > 3, the ATAMM

operating point is det_ by Step 3 as TBI = 3T, TBIO = 4T, _T =

ST, and TB0 = 3T for all task inputs. As there are no floating

transitions, Application 4 is not required. For R = 2, Strategy A of

Step 4 in the ATAMM operating point desigi% _ TBI = 4T, TBIO =

4T, TT = ST, and TBO = 4T for all task ir_. The AMG execution at

the operating points de_ by Steps 3 and 4 are simulated and

results are described in Figures 4.20 and 4.21 respectively. _he

achieved time performance in simulation is very close to the predicted

theoretical time performance of the _ operating point design. In

the simulation of the operating point given by Step 3, TBI = 3.02T is

used instead of 3T because TBOAI B is slightly higher in the

simulation due to lost clock cycles.

Test4. The algorithm of Test 4 is a s_yste_ of a Space

Surveillance System and is described in Figure 4.22(a) (ignore the

dotted line). Let T = 100 time units. The read and write times of

NMS transiticms are assumed to be zero. Then, TBIOLB = _TLB =

TBIOAI B = TTAL B = 1ST and T_ = T_AI.B ,, 10T. REST is shown

in Figure 4.22 (b). By checking cut all TBI _> TBOAL B, Rma x = 4,

andPmin = 3. NowTCE = 25Tunits of ccmputer time. As

134

illl|*lU_

m_.

|

,,,,,+,,,++1

114111111111+__--

IIiiliiiiiii

LIIIIIIIIIII
III Ulllllll

II11111_11

iiMIIIIII+ ,-1111+_+

z _ __=

;+"f++,,"Jl,O_

l-t,,,jl

,"/+'2"_'+'+'+_+

m'm.,m_

Z

mTmm'm

lmmm_

t====

mitt_

E
m

lllllllllll

mm_

mm'm'm_

m

L_

"a

+

o

t,Z

135

u

_ltllttttfl

_.,,..._o.,

.=m

O.=.,

m

Q

_fllllllllll

o..o..,.,,o

I|lllllllll

q_

I

m

m

E

m

mm_m
m

I_lflllllll

m

lltllllllli

_IIIIIHII

lllltlllltl

tttltltllll

w

_llllll|ll

illllllllll

E

i

t

rmn_

fmvv_

mmmnm_

mmnnnmauu

rm_a_

E

J

M

m

w

W

_D
l--

e-
om

.<

_D

g_
I,.,.

fb_

O

O
,<
i_

O

0"I
a

4)
l__

.m

,qpnm

CN

_D
L

i.7.

136

Transition - 2T 4T .

time / _Tra_mtion

lOT

Ca)

3

0
I
Q

I
• m

0

7T Time
18T

Figure 4..22.

(b)

(a) AMG for Test 4.

the AMG of Test 4.

(b) REST for

137

[TCE/TBOALB] = 3, it may be possible to lower Rma x to 3.

A control place is placed from transition 5 to 3 for that purpose, as

shown by the dotted line in Figure 4.22 (a). _%e new REST is shown in

Figure 4.23 (a). It was checked by the Ttime program that TBIOLB ,

, a T_m we_ un_mnged by the _ntrol pla_. By _mcking

all TBI > 10T, Rma x = 3, and Rmi n = 2. Hence, Strategies B and C

of the _ operating point design are not appropriate as Rma x will

always be equal or more than 3. For R > 3, Step 3 of the ATAMM

operating point design _eterminem TBI = loT and TBIO = Tr = 18T for

all task inputs. For R = 2 Strategy A of the ATAMM operating point

design determines TBI = 17T, TBO = 17T, and TRIO = _T = 1ST. _he

graph play for a single task and the total graph play for TB0 = 10T is

shown in Figures 4.23(b) and 4.24 r_-pectively. By inspection of TGP,

no dummy transition is required to enforce GPST and REST. The AMS

exectttion at the operating points, determined by Steps 3 and 4, are

si_/lated and the results are described in Figures 4.25 and 4.26

respectively. The achieved time perfo_ in simulation is very

close to the predicted time performance of the k]3MM cpez'ating point

design.

Test 5. Execution of the algorithm marked gra_ in Figure 3.3 is

simulated for all the operating points developed in Section 4.2. All

the process times for the transitions of the AMG are multiplied by T

(T = I000 time units) in the simulation. The read and write times of

the _G transitions are assumed to be zero. The results of the

simulation for the operating points of Steps 3 through 6 are described

in Figures 4.27 thr_ 4.30 respectively. It is to be noted that the

TBI's used in the simulation for the operating points in Steps 4

138

J

3

"-_ 2T

I

Ca)

Time

0 1T 3"1"

5

71" 8"1" 11T

Time

(b)

6
"1

I
I

18T

Figure 4..23.
For the transformed AMG, (a)

(b) GPST.

REST.

139

I

I-(o) _(o) _(o) (o)

4(0)
I <

I

(I)
6

I
I

I

I
I
I
I

I
I t+TBO
I
I

I

Rgure 4.24. TGP of the tronsformed AUG

for TBO= 10T.

140

m

S
°.,I

I

I
L

I
I

t
I

I
I

I
I

I
1
I
I

!
I

I

_!|||j|ilm_mm
!||||||

liiiiii

,,0:

.=

c

D.

o_

w

E
on

¢/1

,el

w

LT.

141

I|lltlllllll

l_llllll|li

Itlll|llllll

lll|tlllCtll

i

m

limmmmmmmm

.mmmmlmiw

142

em

q)
k.

cn

143

It,

I
°mm
mint

_u

_,

U

m

I _ _ _

I _l_
am

I

.I

II

l

[]

.E

E

m

144

Z:
i

t

I
I

I
I

I

I
I

I
I

1

I
i

I
I

I
I

I
I

I

.. o. o.Joo oo o_ .. o. .. .o o. oo ,$.., q.o .o .. .o

_, _....] {

N

N

,i,,,I
I-,I

lua

oral I

im _z-

Im _,
u
U
W
W

I

[]

m_

[]

[]

!

.=

t=
om

0

q_

145

N

N

N

oM

m

m

m

i

M

m

m

q

m

Q mm

'.._

m_

E_

mm

mm

e--

_m

rm,

z

_mm

um _ _=m mm

m_m

l:m

m:m

m]

_-- mm

,-_ =ml

mmm

,mU

,-, mm

m_

m_

I m

L_
O
q...

=.

_a

om

ca

o
L-

146

thr_ 6 are slightly higher than the value predicted in the

operating point design. The reason is, again, a slight increase in

the transition times of the AMG in the simulation due to the time

needed to assign transitions to resources.

4.4

A new term, the A_%MM operating point (AOP), is defined to

express all the parameters of a_ algorithm execution in the ATAMM data

flow arc_litecture. _he characteristics of an AOP are explored for

finite r_scurces and under specified transformaticms. _be absolute

lower bounds for performance measures are defined. TBIOAL B,

TrALB, and TBOAL B are determined under transformations by ccmtrol

places and dur_y transitions. A p_ is developed for operating

point design given the number of functional units. The performance

model and the use of du_y transitions and control places for

improving time performance and resource r_f/irH_er_s are illustrated

through experiments and simulations. The ATAMM operating point design

methodology is checked by simulations on test algorithms.

_=TER FIVE

_ION

Performance modeling and enhanct_mTc for ccncurrAnt processing in

the ATAMM data flaw architecture have been the primary thrust for this

researuh. Several key results are achieved in that respect. First, a

:"fo_ _ :is deve.l.oped to cle_ pe._o_ of an

algorithm executed periodically in the _ data flow _tecture.

Second, algorithm transformation techniques are identified and their

applications are illustrated in improving time perfo_ and

re_ur_ (o_puting e1_nt) re_/rmmm_. _t_, an A_MM ___ting

point design procedureis developedto specifytime performanceand

input data injecticm ocmtrol for periodic execution of an algorithm on

an A_tMM data flow architecture. Significant results in these three

areas have been discussed. Finally, future research topics are

suggested.

The starting point of this research has been to define the

_/ng env_t and perfo_ measures for the periodic

execution of algorithms in the _ data flow architecture. The

architecture is assumsd to have R identical cumputers, or functional

units, and _ algorithms according to the rules of ATA . Tnese

cumputers, or functional units, are also _ by the terms resource

and ccmputing element. The performance of an algorithm is measun_ by

the time between input and output (TBIO), task time (Tr), and time

between outputs (TBO). Graph theoretic and _ imposed bounds

147

148

are developed for these performance measures. Also, the graph

execution pattern and resctur_ _ts are defined thr_ GPST,

REST, TGP, and TRE. These results establish a new model for

evaluating perfo_ of algorithms in a hardware _ context

as long as the architecture Qbeys the rules of ATAMM. Hence, it is

now possible to compare the relative merits of different algorithm

deoumpositions with respect to performance and resource re_ts

for the ATAMM data flow architecture.

The performance model enables the user to identify the cause of

performance limitations. It is observed that the critical circuits of

the C_4S and the critical paths of the MAMG are the determining factors

for the graph theoretic l__r bounds of time performance. Also, the

total resource requirement (the peak value of _RE) is determined by

the shape of the _ envelope (REST) and TBO. Hence, it may be

possible to enhance performance or reduce resource rQql/irGmer_s by

transforming the algorithm marked graph while maintaining its

equivalency. Algorithm transformation _ques are identified which

can be used to impruve time performance or aid resource envelope

modification. Transformation of an AMS my, or my not, involve

decumpositicn of transitions. This research has concentrated on two

of the transformation techniques, namely dummy transitions and control

places. _ticn cn these techniques is due to their wide range

of applicaticr_, ease of im@lementaticm, and negligible increase in

oummalicaticm time by transformation. The most important contributicn

of this researd% is the application of dummy transitions whic_ provide

storage space for output of transitions. Dummy transitions have made

parallel path circu/ts in the C2_G insignificant for determin_

149

TBOLB. 1_us, it is now possible to use ccrCcrol places and dummy

transitions together to change the REST without increasing TBOLB.

Duchy transitions can improve TBOLB by reducing the time/token ratio

of dmminant parallel path circuits. Another application of dummy

transition is to enforce the REST as the _ envelope for all

task inputs. Hence, it is naw possible to enhance the _ of

an algorithm execution in the ATAMM data flow ardlitecture. Also, the

algorithm marked graph can be transformsd according to the res_Ece

capability of the architecture or to make the resource need for

periodic c__ration predictable.

The ATAMM operating point (AOP) design procedure uses the

knowledge of the performance model and algorithm transformation to

specify an c__ratir_ point for executing an algorithm in the ATAMM

data flow _tecture. The only transformations used for the AOP

design are dummy transitions as buffer and control places. The ADP

design describes the procedure to achieve the absolute lower bound of

time performazK_ under these transformations. It p_ three

strategies corresponding to sacrificing pipeline ccr_urrency, parallel

c_currency, and a cumbination of both to meet the limited

availability of resources. Pipeline and parallel ccncurrercy can be

reduced by reducing input data injection rate or by transform/rig the

AMS to modify the shape of REST respectively. Although the design

procedur_ is partially heuristic because of the NP completeness of the

probl_, it allows the user to make a trade-off between pipeline and

parallel om_cuzTency for limited availability of resources.

Test algorithms are simulated by a PC-based si_m/lator [21] to

validate the _ operating point design procedure. The read and

150

write times of transitions are assumed to be zero. Process times of

transitions are in the order of hundreds of clock cycles to keep the

algorithms at a large-grain level. This order of traD_iticn times are

appropriate as the simulator takes less than ten clock cycles for

assigning transitions to resouroes. Dummy transiticr_ and control

places are realized as regular active transiticms (of zero process

time) or active places respectively. It is assumed that a dummy

transition does not require a resource, simulated performance of

algorithms are always very close to that predicted by the AOP design

(within 2.1% for TBIO and within 5.8% for TBI and TBO). One

significant observation is that the proper input data injection

interval in the simulation is slightly higher than that predicted by

the AOP design (within 5.8%). These diff_ between theoretical

and simulated results are mainly due to a slight increase in

transition times by the unaccctmted clock cycles in assigning

transitions to resources.

Test algorithms are e___4 on a testbed ATAMM data flow

tecture [20] to verify the performance model and the use of dtmm

trar_iticns and ccmtrol places for transformation of algorithms.

Dummy transiticms and control places are impl_ as active

transiticr_ of zero process time and active places respectively. Read

and write t/mes for the transiticms in the experiments are assumed to

be those measured in [20]. The largest prooess time amcr_ the

transitions of the test algorithm is kept at least ten times higher

than read or write times for maintaining algorithms in the large-grain

level. The performance model is verified as experimental time

performances are close to theoretical time performances (within 4.4%

151

for TBIO and within 9.8% for TB0). The use of dummy transiticms for

making parallel path circuits insignificant is verified in Test I.

The TBO of the transformed AMG in Test i is _ by the

time/token ratio of the largest process circuit (experimental TBO is

6.15% more). A control place and a dummy transition together in Test

2 have reduced the total resctuvoe re_ira_e_t frtmn 3 to ~ while

maintaining the _hange in TBO within 3%. The larger differerce

between the experimental and theoretical results c_ to the

similaticn can be attrilm/tx_ mainly to two reascr_. First,

implementing a dummy transition as an active transitian has a much

greater effect in the testbed. The _ transition requires read and.

write times in the experiments and hence, _ a resouroe for a

considerable amount of time osntrary to the assumption. Second, as

pointed cut in [20], Ethernet cannot implement c_urr_ read or

write operations. This fact is not taken into account in the

ma__urm_t of read and write times. The experimental results

that a better method of implementing a dunm_ transition and a more

accurate cammunication model for read and write times are necessary.

are several tcpice that can be the subject of future

research. On the theoretical side, the following problems need

attention. In order to properly deDampose an algorithm, a specific

definition of large granularity is needed oo_ to the

cammunication time of an ATAMM data fluw _tecture. The first step

is to develop a general and more accurate model for read and write

times. The use of dummy transitions of finite time, control places

with initial tokens, and predefined tokens in performance imp_t

and reduction of rescuroe requ/rements needs to be explored.

152

Experiments and simulations have shown that the prq_r _ data

injecticn interval is slightly higher than the predicted value.

c_ervaticn and the possibility of slight variaticm in tz-ansiticn

times suc3gest that a_tic injection ccr_rol may be necessary.

Execution of multiple AMS's or AMY's with multiple ir_ and output

transitions pruvide a oumplex, but /nteresting, topic of future

researc/_. Finally, the performance of algorithms with ccrditicnal

data flaw need to be analyzed. On the implementaticm side, realizing

dummy transitions as buffers in the _icr_l unit or graph manager,

a better technique for measuring cummunication times, a fully

autmmated ATAMM operating point design procedure, and trar_formaticns

of algorithms by dummy transitions and cc_Ttz_l places in real time are

useful topics for future research.

i.

.

.

.

.

.

.

.

.

i0.

ii.

12.

LIST OF _CES

J. W. Stoughton and R. R. Mielke, "Pet/i-Net Model for _t

Processing of Complex Algorithms," _ of Government

MicTocixcuit Amolications Conf--, San Diego, CA, November

1986.

R. R. MinUs, J_hn W. S_u_, _ _ _=, '__
Performance Bounds for O:r_tET_t _ing_" PrDosedi/Km of the

8th International ConE_ oD Distr_ Cumuutinu Svstess,

San Jose, CA, June 1988.

J. T_en, New _ Archi_, Academic Press,

Lotion, 1984.

C. Petri, "Kommun/katicn mit Automaten," Ph.D. Dissertation,

University of Bonn, Bonn, West Germany, 1962.

A. Holt and F. _, Ev_Dts and Conditions, Applied Data

Research, NY, 1970.

J. L. Peterscn, petri Net Tneorv and the Modelinu of Svstems,

Engl_ Cliffs, NJ, Prentioe Hall, 1981.

Tadao _ata, "Synthesis of Decision-Free Ccro_rent

for Prescribed Resources and Performance," IEEE Transactions on

Software Engineerinq, pp. 525-530, November 1980.

T. _/rata and J. Koh, 'q%_duction and Expansion of Live and Safe

Marked Gr_," IEEE Transactions on Circuits and _, vol.

CAS-27, pp. 68-70, January 1980.

T. Agerwala and Arvind, "Data Flow Syst_," _, pp. 10-13,

February 1982.

Tadao Murata, 'q_elevance of Network Theory to Models of

Distrib_lel Processing," Journal of Franklin Institute,

pp. 41-49, 1980.

R. R. Mielke,John W. Stoughton,and SukhamoySore,'_o_elingand
Optimum Time Perfo_ for O0mo/rrent Prooessing," NASA

Contractor Report, Grant NAG-I-683, August 1988.

M. Granski, I. Koran, and G. Silberman, '_T_Effect of Operation

_ingonthe Performanc_of a Data Fiow Om,puter," IEEE

Trarbsactions on _, vol. 36, pp. 1019-1029, September

1987.

153

154

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Tadao M_rata, "Circuit Theoretic Analysis and Synthesis of Marked

Graphs," _ T_u_actions on Circuits and Svstems, vol. 24, pp.

400-405, July 1977.

E. G. Coffman, O_mmxter and Job-ShoD Schedulinm Theory, pp.

190-194, John Wiley & Sons, NY, 1976.

E. G. Ooffman, Jr. and P. J. Denning, ODeratinq Svstx_ Theory,

Prentice-Hall, Inc., NJ, 1973.

K. G. iockyer, An _c_ction to critical Path Analysis,

Pitman Publishing Limited, Imndon, 1969.

J. J. Moder and C. R. Philips, Proiect Maz%_rne_t with CPM and

PERT, pp. 62-83, Van Nostrand Reinhold, NY, 1964.

T. Murata, '9_eling and Analysis of Ccncurremt Systems,"

Handbook O_ Software _uineerinu, C. Vick and C. Ramamoorthy

Editors, pp. 39-63, Van Nostrand Reinhold, 1984.

Dennis B. Ganncn and Jc_ Van _e, "On the Impact of

Cummunication Cumplexity cn Design of Parallel NUmerical

Algorithms," IEEE Transactions on ¢cmm/ters, vol. 33, pp.

1180-1191, December 1984.

W. R. Tym_hyshyn, "A_AMM Multicrmputer System Design," Master's

Thesis, Old Dominion University, Norfolk, VA, At_L_t 1988.

R. Cbando, "Software Tools for Performance Evaluation of

Processing," Master's Thesis, Old Duminion

University, Norfolk, VA, August 1987.

R. Aqrawal and H. V. Jagadish, "Partiticrdng Tec_uliques for

Large-Grained Parallelism," IEEE TcaDsactions _m _,

vol. 37, pp. 1627-1634, _ 1988.

S. H. Bokhari, "Partitioning Problems in Parallel, Pipelined, and

Distributed Oumputing," IEEE Transactions on _, vol. 37,

pp. 48-57, Jar0/ary 1988.

Z. Cvetanovic, '_e Effect of Problem Partitioning, Allocation,

and Granularity on the Performance of Multiple-Processor

Systems," _ _ct_ons oD _, vol. 36, pp. 421-432,

April 1987.

R. Johnscnbaugh and T. Murata, "Additional Methods for Reduction

and Expansion of Marked Graphs," IEEE Transactions on Circuits

_, vol. CAS-28, pp. 1009-1014, _ 1981.

Dan I. Mmldovan and Jose A. B. Fortes, "Partitioning and Mapping

Algorithms into Fixed Size Systolic Arz-ays," IEEE _ctions on

_, vol. C-35, pp. 1-12, January 1986.

155

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

C. V. Ramamcorthyand Gary S. Ho, "Performance Evaluation of
Asynchronous Concurrent Systems Using Petri Nets," IEEE

Transactions on Software Enqineerinq, vol. 6, pp. 440-449,

1980.

S. Seshu and M. Reed, Linear Graphs and Electrical Networks,

Addison-Wesley IA1blishing Co., Inc, 1961.

M. Sowa and T. Murata, "A Data Flow Computer Architecture with

Program and Token Memories," IEEE Transactions on Computers, pp.

940-948, November 1986.

V. Srini, "An Architectural _ison of Dataflow Systems,"

_, pp. 68-88, Marc/% 1986.

J. W. Stoughton and R. R. Mielke, "Petri Net Model for Analysis

of Concurrently Processed Complex Algorithms," Prooeedinqs of

Southeastcon Conf--, March 1986.

J. W. Stcughton and R. R. Mielke, "Strategies for Ccncurrent

ing of Oumplex Algorithms," Proc of Worksho p on

Future Directions in Oamputer Architecture and Software, Army

Research Office, May 1986.

M. N. S. Swamy and K. Thulasiraman, Gra_s, Networks, and

Alqorithms, Jahn Wiley & Sons Publication, NY, 1981.

D. F. Vrsalovic, D. P. Siewiorek, Z. Z. Segall, and E. F.

Gehringer, "Performanoe Prediction and Calibration for a Class of

Multiprocessors," IEEE Transactions on Computers, vol. 37, pp.

1353-1365, November 1988.

P. M. Kogge, The A_tecture of Pipelined Cc_, Advanced

Cc_ Science Series, MoSraw-Hill, NY, 1981.

H. Toknda, C. W. Mercer, Y. Ishikaw-a, T. E. Marc/1ok, "Priority

Inversions in Real-Time Oummmication," Procee&inc_ 05 the Real-

Time Systems Symposium, Santa Monica, California, _ 5-7,
1989.

_IX

_his _ is an ex_ fmum [iI]. TheATAMMmcdel is

studi,danmytically to de_.rmi_ i_ortant _ q_,rating

characteristics. First, a state description whic_ _ the next

graph marking as a functicm of the present marking and a vector

indicating which transition is to be fired is developed. Then the

marked graph properties of reac_bility, liveness, and safeness are

considered for the CMG. Two _lent papers by Murata [13, 18] cn

properties of marked graphs are the sources for mu_h of the material

p_ in this app_xUx.

Let G be a marked graph consisting of m plaoes and n

transiti_ls. The m-vector Mk denotes the marking vector for G

resulting from the firing of same sequence of k transitions. The

following two definitions are necessary to develup the state

description of the (1_G.

Definition A. I: Cump let_ Inc_denDe M_t_ix. The cumplete incidence

matrix for a marked graph G is the (n x m) matrix A = [aij] having

rows co_ to transitions and coltmms corre_ to places

and where

aij = I +I (-i)

J

l 0

(if place j is incident at trar_iticn i

and _ out of (into) the transition)

if place j is not incident at transition j.

156

157

Definition A. 2: EI_ Firinu Vector. An elementary firing

vector uk is an n-vector having all zero entries except for the

ith c_, which is 1 denoting that transition i is the kth

transition to fire in same transition firing sequence.

To gain insight to the state equation description, it is helpful

to consider the firing of transition k. If

is an input (output) place to transition k.

is enabled if M(i) = 1 for each input place.

aki =-I (+i), place i

Therefore, transition k

transition k fires,

one token is removed frcm each input place and cr_ token is added to

each output place. These observaticms lead to the folluwing next

state description for a marked graph.

Property A.I: Next State Description. For a marked graph G with

present marking vector Mk_ 1 and ele__ntary firing vector Uk, the

next marking vector is given by

--_-i + AT_ •

The next state description can be used to express the

marking resulting frtn the application of sequences of elementary

firing vectors. This is dcr_ in the next defin/ticn and property.

Definition A. 3: Firinu Count Vector. Let (Ul, u2, ... ,Ud) be a

sequence of elementary firing vectors taking a marked gra_ G from an

initial marking M0 to a destinati_ marking Md. The firing oamt

vector xd for this firing sequence is defined by

158

A.2: State Euuation Description. For a marked graph G with

initial marking vector MO, the marking vector resulting _ the

application of an elementary firing vector sequence

(Ul, u2,... ,Ud) is given by

Using the state description of a marked graph as a basis, the

property of reac_ability is investigated. Necessary and sufficient

conditicms for a _ mark/rig vector to be reachable from an initial

marking are established, and it is shown that the _ of tokens

contained in any directed circuit of the _ is invariant under

transition firirqs.

Definition A.4: Reachability. A marking Md is reachable from an

initial marking M0 if there exists a sequence of elementary firing

vectors that transforms MO to Md.

The following definition is required to state the teachability

conditions for a _.

Definition A.5: _tal Circuit Matrix. Let T be a tree of a

connected marked graph G. _he set of (m-n+l) circuits, each uniquely

formed by appending c_e cotree edge to the tree, is called the set of

_2x_mLntal cirEuits of G for tree T [28]. The _%mer_%l circu/t

matrix for G for _ T is the (m-n+l) x (m) matrix Bf = [bij]

having r_s co_ to fundm_r_l circu/te and oolum_

co_ to places, and where bij is determined by the rules as

described on the next page.

159

bij =

I +1(-1) if place j is contained in f-circuit i and the

I place and c/xcuit directions agree (disagree)

]

I if place j is not ccntadmed in f-circuit i.

A,_: Reachabilitv in the CMG. In a cumputaticnal marked

gra_ G, a marking Md is reachable from an initial marking MO if

and only if BfM d .= BfM O, where Bf is a fuTda_ntal circuit

matrix for G.

Proof. It is _ in [13] (Theorem 3) that the property is true for

marked gr_ cor_a/r/r_ no tnken-free directed circuits. By the

construction rules for the CMS, directed circuits occur in exactly

four ways. First, each NMG consists of a directed circuit which

contains an initial marking token in the _Tocess Ready place. Second,

a _ cimm/it is formed each time an 5RG is linked to another

_. Since one of the two linking places ountains an initial marking

token and both places are contained in the circttit, this circuit is

never token free. Third, _ c_ts exist in the CMS

to _ feedfom_rd paths in the algorithm

marked graph. Eadl such circu/t contains one or more bac3cwar_

direc_ capitol,_, _ntaining one initi_ marking token. F_,

d/xectsd circuits exist in the O_S corr_ to directed circuits

in algorithm marked gral_h. Each such circuit contains exactly one

forward directed edge containing one initial marking token wh/ch

represents initial condition data. Therefore, the _ contains no

token-free directed circuits and the pruperty foll_ws.

160

As a direct oc_seq,/erK_ of the teachability property of the CMG,

it can be shown that the number of tokens in any _ circuit is

constant. This characteristic is stated as Property A.4.

A. 4: Toke_ Count Invariance. In a CMG, the rL_ber of tokens

contained in a directed circu/t is invariant under transition firing.

Proof. Consider a directed circuit C of a C_G. _ entries in the

row of a circuit matrix B co_ to C are +1 in col_ms

representing edges in C and are O otherwise. If M is a marking

vector, the cc_ of HM corresponding to C is equal to the number

of tokens in _ circuit C marking M. Therefore, if M d is any

marking reachable frum an initial marking MO, it follows from

n___yA.3_ats%=_ o. _tis,_n_rofto_in

direct_ c_t C under initial marking Mo is equal to the number

of tokens under any marking Md reachable frcm MO. _ oumpletes

the proof.

Next, liveness and a clceely related _ called ccmsistency

are ccnsi_. It is shown that the _ is live and consistent.

Definition A.6: Liveness. A marked graph G is said to be live for a

marking F if, for all markings reachable from M, it is possible to

fire any transition of G by progressing thr_ same transition firing

sequence.

A.5: Liveness in the CMG. The cumputaticr_l marked graph is

live for all appropriate initial marking vectors.

Proof. It is shown in [18] (Property 2) that a marked gr_ G is live

for a marking M, if and only if, G contains no token-free directed

circuits in marking M. As stated in the proof of Pr_ A. 3, for

161

a11 _.i.ata initJ._ maz-_tn_ Mo, the _ oonta.b_ no t_en-_

directed c_ts. Therefore, the property follows.

Definition A.7: Oonsistencv. A marked graph G is said to be

cormistent if there exists a marking M and a transition firing

sequence S from M beck to M such that every transition occurs at least

once inS.

ProDertv A.6: Consistencw in the (_S. A _xEmcted oumputational

marked gra_ G is ccr_istent. In addition, each transition of G

occurs an equal number of times in a firing sequence frum a marking M

back toM.

Proof. From Property A.2, if a (_G is consistent then thez_ exists a

marking Md = M0 and a firing count vector xd > 0 such that

ATxd= is also The incidence matrix forO. The cc_verse true. a

marked graph G is an (n x m) matrix A. If G is ccrmected, then it is

known [28] that the rank of A is n-l, and thus the null space of AT

has dimension one. It is ck_erved that each r_# of AT has one (i),

one (-I), and all remaining terms are zero (0). Therefore, if

denotes the jih coltmm of AT, it follows that

n

Z Cj = O.
j=l

THUS, there exists a vector xd = [k kk]T, k > 0, which

uniquely satisfies ATxd = 0. This completes the proof.

The final graph prc_ considered in this section is safeness.

This prc_ is first defined and then it is shown that a _ is

safe.

162

Definitic_ A. 8: Safeness. A marked graph G is said to be safe for

marking M if, for all markings read, able _ M, no place

more than ane tc_m.

A. 7: Safeness in the _. The cumputaticmal marked gra_ is

safe for all appropriate initial marking vectors.

Proof. By Pr_ A.4, the token count for each _ circuit of

the CMG is invariant under transition firing. Therefore, it is

sufficient to show that each edge of the _ belongs to at least one

d/rected circuit containing a single token. By the ccr_tructicn rules

for the CMG, all _4G edges can be classified into two gruups _S edges

and linking edges. _S edges occur in _ of three and always form

a directed cinm/t _mtaining _ taken. _ _ _=ur in

pairs, one forward directed and one backwaz_ directed, and also form a

d/rected circuit with the forward directed edges of the _. One of

the linking edges, but not both, always contains une token while the

foz_-ard directed edges of the NMS ocrfcain no tokens. Therefore, eac_

edge of the CMG is contained in a directed circu/t with one token, and

the property follc_a.

