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STRATEGIES FOR CONCURRENT PROCESSING OF COMPLEX
AIGORTTHMS IN DATA DRIVEN ARCHITECTURES
By
John W. Stoughtonl, Roland R. Mielke?, and Sukhamoy Sam>

ABSTRACT

This research report is concerned with performance modeling and
performance enhancement for periodic execution of large—grain,
decision-free algorithms in data flow architectures. Appr—]“.vications
include real-time implementation of control and signal processing
algorithms where performance is required to be highly predictable.
The mapping of algorithms onto the specified class of data flow
architectures is realized by a marked graph model called ATAMM
(Algorithm To Architecture Mapping Model). Performance measures and
bounds are established. Algorithm transformation techniques are
identified for performance enhancement and reduction of resource
(camputing element) requirements. A systematic design procedure is
described for generating operating conditions for predictable
performance both with and without rescurce constraints. An ATAMM
similator is used to test and validate the performance prediction by
the design procedure. Experiments on a three rescurce testbed provide

verification of the ATAMM model and the design procedure.

lassociate Professor, 2Professor, 3Research Assistant Professor
Department of Electrical and Computer Engineering, Old Daminion
University, Norfolk, Virginia 23529
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PREFACE

The purpose of this report is to document research to develop
strategies for concurrent processing of camplex algorithms in data
driven architectures performed under Grant NAG~1-683 during the period
May 16, 1988 to May 15, 1989. In this overview, the problem damain is
described, the motivation for this research is explained, ard a
summary of research activities are presented. The detailed
description of the investigation is taken from the doctoral
dissertation by Dr. Sukhamoy Som entitled "Performance Modeling and
Enhancement for the ATAMM Data Flow Architecture'.

During earlier grant periods, a computational model called the
Algorithm To Architecture Mapping Model (ATAMM) was formulated for
mapping large—grain, decision-free algorithms to a multicamputer data
flow architecture. Major applications are expected to be real-time
implementation of control and signal processing algorithms where
performance is required to be highly predictable and fault tolerant.
Of interest is the periodic execution of algorithms. For our
purposes, an algorithm is expressed as a directed graph where vertices
(nodes) represent algorithm operations and edges represent data sets
or signals. large-grain refers to the assumption that the time
required to perform algorithm operations is large compared to the time
required to move data from one node to ancther. Decision-free refers

to the absence of data dependent paths in the algorithm graph



representation. The architecture is assumed to consist of two to
twenty functional units or resources each having a capability of
processing, communication, and memory. The resources share a common
glabal memory which is centralized or distributed. The coordination
of resources in relation to data and control flow is directed by a
graph manager. The graph manager also is centralized or distributed.
Assigrmment of a functional unit to a specific algorithm node is made
by the graph manager according to ATAMM rules and a priority ordering
of algorithm nodes. All assigrments are non-preemptive for minimum
cammnication cost. In a specific hardware setting, the graph
manager, global memory, and functional unit activities together form
the ATAMM Multicamputer Operating System or AMOS.

The ATAMM model is important because it specifies a criteria for
a multicomputer operating system to achieve predictable and highly
fault tolerant performance, and it creates a platform for
investigating different algorithm decampositions and implementation
strategies in a hardware independent context. In earlier reports, the
use of the ATAMM model is described for determining analytically
performance bounds and developing an operating strategy for optimum
time performance. In addition, the construction of an ATAMM defined
data flow architecture and development of simulation and analysis
tools are reported. During the present grant period, research is
carried out for performance modeling and performance enhancement for
the ATAMM data flow architecture. In order to have a predictable
performance, it is necessary that assigmment of algorithm nodes to
functional units be as much priority independent as possible. This is

done to avoid the priority inversion problem. Even for small run-time
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variations of cammunication delays and execution time variations, a
low priority algorithm node may be enabled before a high priority
algorithm node. As the assigrment is non-preemptive, this may
campletely change the graph execution pattern and resource
requirements. In order to overcome this problem, it is suggested that
the operating system (AMOS) transform the algorithm graph and control
input data injection interval so that a functional unit always is
available for every enabled algorithm node. In other words, even if
priority inversion changes the order of execution of algorithm nodes,
graph execution patterns and resource requirements will not be changed
drastically. Two performance measures, TBIO and TBO, are defined for
periodic processing of algorithms. TBIO is an indicator of camputing
speed for an algorithm. TBO is a measure of the time interval between
algorithm outputs, and the inverse of TBO indicates throughput. The
time performance (TBIO, TBO) and the mumber of required resources
define an operating point for AMOS. If encugh functional units are
available, optimum TBIO and TBO can be achieved. However, if a
limited number of resources is available, one must increase either TBO
or TBIO, or a cambination of both. Two key methods for shifting the
operating point are control of the input injection interval and
transformation of the algorithm graph. Transformation of the
algorithm grapg is achieved by adding dummy nodes (transitions) and
control edges (places) as described below. A dummy node is an
algorithm node which implements an identity operation and requires
zero time. It is used as a buffer to provide additional storage space
for the output of an algorithm node. A dummy node is a pure memory

operation and does not require a resource. A control edge is an



algorithm edge which imposes a precedence relation among two algorithm
nodes but does not imply data dependency. This type of edge is used
to delay the execution of a node. Thus, predictable performance is
achievable even if the number of functional units decreases to 1. An
ATAMM similator and experiments on a three resource testbed provide

verification of performance modeling and graph transformation methods.



CHAPTER ONE

INTRODUCTTON
1.0 Preface

Algorithm TJo Architecture Mapping Model (ATAMM) is a new graph

theoretic model from which the rules for data and control flow in a
hamogeneous, multicomputer, data flow architectures may be defined
[1, 2]. The subject of this dissertation is the investigation of
concurrent processing in such an ATAMM defined architecture for
large—grain, decision-free algorithms. Performance modeling,
performance enhancement, and the development of operating strategies
for periodic execution of such algorithms are the key research
objectives. Chapter One is an introduction of ATAMM ard a discussion
of the motivation behind the research. Background for the ATAMM model
ard this research is presented in Section 1.1. The camputational
problem representation by the ATAMM model is presented in Section
1.2. The cbjectives and organization of this dissertation are

described in Section 1.3.

1.1 Background

The principles of camputer architecture design historically have
been based upon von Neumann organization {3]. These principles have
lead to architectures consisting of a single computer in which low
level machine language instructions perform simple operations on

elementary operands, and centralized, sequential control of



camputation is employed. Despite the fact that electronic camponents
are becaming increasingly faster, the desired camputer performance has
always been much more than that which is obtainable with von Neumann
organization. Advances in the solid state technology alone are not
e:q:ectedtobee:nx;htopmduoecaxp.rterstometthecmpmatioral
needs of the future. There is a growing agreement that the next
(fifth) generation of camputers will be based upon non-von Neumann
structures.

Recently, a mumber of new camputer architectures have been
proposed fram which a mmber of camputer systems have been built [3].
A few examples are Texas Instruments Distributed Data Processor (USA),
Cellular Tree Machine of the University of North Carolina-Chapel Hill
(USA), and Manchester Data Flow Camputer (England) [3]. This work has
been motivated mainly by three cbjectives. First, there is the desire
to increase camputer performance through the use of concurrency.
Second, there is the desire to more fully exploit very large scale
integration (VLSI) in the design of camputers. Third, there is
interest in new programming methods which facilitate the mapping of
algorithms onto architectures. These ideas suggest a decentralized
cmputerarduitecmminhmidlammberofirdepaﬂentcarprtersare
to work together. These independent camputers, each having a
capability for processing, cammnication, and memory, can be as large
as a geographically distributed mainframe camputer or as small as
microcamputers on a single VISI chip. Unfortunately, strategies for
interconnecting and programming such architectures based upon von
Neumann principles have not evolved. It appears that van Neumann
organization principles are not adequate to address the camplex issues

of scheduling, coordination, and cammunication.



Strategies for control of camputations on decentralized camputer
architectures can be classified broadly as control flow, demand
driven, and data driven. In control flow camputers, explicit flows of
control cause the execution of instructions. In demand driven
architectures, the execution of operations are triggered by the
requirements of outputs or results. In data driven architectures
(also known as data flow camputers), the availability of operands
trigger the execution of operatiaons. Data flow architectures are the
primary interest of this research because of their suitability for
concurrent processing of camplex algorithms.

A useful mathematical tool for modeling execution of complex
algorithms on a data flow decentralized architecture is the Petri
net. Petri nets were first developed in 1962 by Carl Petri [4], and
later were identified as a useful analysis tool in the work of Holt
and Commoner [5]. A camprehensive treatment of Petri nets is
presented in [6]. One prublem with the Petri net model is that it
tends to be too camplicated to analyze. An important subclass of
Petri net is the marked graph where each place has exactly one
processing of decision-free algorithms [7]. Properties such as
liveness, safeness, and reachability can be achieved for marked graph
models [6]. Procedures also exist for expanding and reducing marked
graphs while preserving these properties (8]. These graph features
are suitable for modeling the succession of single events such as data
and status conditions. In this dissertation, the marked graph is used
as a modeling tool for data driven camputations.

The data flow concept has already attracted the attention of a

great many researchers. Starting with the work on data flow at MIT by



Jack Dennis, a mmber of data flow camputers have been built [9]. The
pest strategy for executing an algorithm in these data flow camputers
is machine dependent. However, only a few researchers have tried to
develop a thecretical model for evaluating camputation in a data
driven architecture [10]. These models do not appear to be adequate
to address the camplex issues of scheduling, coordination, and
camunication.

There is a need for a simple, but effective, model for data
driven computations in order to investigate the relative merits of
different algorithm decampositions and implementation strategies in a
hardware independent context. Ongoing research effort at Old Daminion
University has lead to the development of a new marked graph model for
describing data and control flow associated with the execution of
algorithms in data flow architectures [2]. The model is identified by
the acronym ATAMM which represents Algoritim Jo Architecture Mapping
Model (11]. Specifications derived fram the model lead directly to
the description of a data flow architecture and will be called the
ATAMM data flow architecture henceforth. The availability of the
ATAMM model is important for at least three reasons. First, it
provides a context in which to investigate algorithm decamposition
strategies without the need to specify a specific ATAMM data flow
architecture. Secord, the model identifies the data flow and control
dialogue required of any ATAMM data flow architecture which implements
the algorithm. Third, the model provides a basis for analytically
calculating performance bounds and developing a methodology for

improvement in performance.



‘Itxeproblendanainaddrssedbymemmaata flow architecture
and this research consists of decision-free, large-grain, camplex
algorithms which are assumed to be executed periodically in a
multicamputer envirorment. The algorithms are assumed to require
large camputations which would include such camputations as matrix
addition, multiplication, etc. The anticipated multicamputer
ernvirorment is assumed to consist of two to twenty identical camputers
or functional units each having a capability of processing,
camunication and memory. The primary reasan for such assumptions is
the abjective of implementing control and signal processing algorithms
in fifth generation multicamputer architectures for real time
applications on board the proposed Space Station. The grarmularity
level of the algorithm decamposition is kept high to avoid
camumnication bottlenecks as cbserved in many fine—grain data flow
architectures [12]. The range of functional units is suggested due to
the large—grained aspect of the algorithm decamposition. Of interest
is the definition of a performance model so that the performance of
the algorithms can be evaluated and improved. Also an operating
procedure is needed for cbtaining predictable performance with respect

to available camputing elements.

1.2 Problem Representation by the ATAMM Model

The ATAMM model consists of a set of Petri net marked graphs
which incorporate general specifications of camunication and
processing associated with each camputational event in a data flow
architecture. In this section, the camputational problem is

represented by the ATAMM model. First of all a detailed description



of the problem context is stated. This is followed by the definition
of the ATAMM model consisting of the algorithm marked graph, the node
marked graph, and the camputational marked graph. Same familiarity
with Petri nets [6] and marked graphs [13] is assumed.

A problem description normally results in the definition of a
function given by the triple (X, Y, F), where X represents the set of
admissible inputs, Y the set of admissible outputs, and F: X => Y the
rule of correspondence which unambiguously assigns exactly one element
from Y to each element of X. Associated with a camputational problem
is one or more algorithms. An algorithm is an explicit mathematical
statement, expressed as an ordered set of primitive operations, which
explains how to implement the rule of correspordence F. A primitive
operation is a complex computation. Matrix multiplication and
addition are examples of primitive operations. In general, a given
problem can be decamposed by several different primitive operator
sets. Also, for a given primitive operator set, there are often
different ordering of primitive operations which can be specified to
carry out the problem. Of special interest are algorithm
decanpositions in which two or more primitive operations can be
performed concurrently. For such decampositions, the potential exists
for decreasing the camputational time required to solve the problem by
increasing the camputational resources which implement the primitive
operations.

The hardware enviromment for executing the decamposed algorithms
isassnredtocomistofRidentimlcaxpxtersorﬁm:tionalmits
(FUN's), where R has a value in the range of two to twenty. These

canputersorfurx:tionalunitsarealsodenotedbyﬂxetents



"computing element" or "resource". Each functional unit is a
processor having local memory for program storage and temporary input
and output data containers. Each functional unit can execute any
algorithm primitive operation. The functional units share a common
global memory (GIM), which may be either centralized or distributed.
The coordination of functional units in relation to data and control
flow is directed by the graph manager (GM). The graph manager also
may be centralized or distributed. Output created by the campletion
of a primitive operation is placed into glabal memory only after the
output data containers have been emptied. That is, outputs must be
consumed as inputs to successor primitive operations before allowing
new data to fill the output locations. Assigrment of a functional
unit to a specific algorithm primitive operation is made by the graph
manager only when all inputs required by the operation are available
in global memory and a functicnal unit is available.

An algorithm marked graph (AMG) is a marked graph which
represents a specific algorithm decamposition. Transitions and places
are represented as vertices and directed edges respectively. Vertices
of the algorithm marked graph are in a one-to-one correspondence with
each occurrence of a primitive operation. The transition times
represent the camputation times of the respective primitive
operations. The algorithm marked graph contains an edge (i, J)
directed from vertex i to vertex j if the output of vertex i is an
input for vertex j. Edge (i, 3J) is marked with a token if an output
from vertex i is available as an input to vertex j. By the rules of
the marked graph, thecarp.:tationofaverbexcancnlybedcnem

all the incaming edges have a token on them. when constructing an



algorithm marked graph, vertices (transitions) are displayed as
circles, and edges (places) are displayed as directed line segments
connecting appropriate vertices. The presence of a token on an edge
is indicated by a solid dot placed on the edge. Source transitions
and sink transitions for input amd output signals are represented as
squares. Sources for constants are not usually included in the
algorithm marked graph; however, triangles are used for this purpose
when necessary.

To illustrate the construction of an algorithm marked graph,
consider the problem of computing the output of a discrete linear,
time invariant system given a sequence of inputs to the system. Let
the system be described by the state equation

x(k) = Ax(k-1) + Bu(k)

and the output equation

y(k) = x(k),

where x is a p-vector, u is an m-vector, and y is an r-vector. The
primitive operations are defined as matrix multiplication and vector
addition, and the natural algorithm decamposition resulting fram the
state equation description is selected. The algorithm marked graph
for this decamposed algorithm is shown in Figure 1.1. The initial
marking indicates that initial condition data are available.

The algorithm marked graph is a useful tool for representing
decamposed algorithms and for displaying data flow within an
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algoritim. However, the algoritim marked graph does not display
procedursthataoatp:tingstnmlremstmnifeﬁtinorderto
perform the camputing task. In addition, the issues of control, time
performance, a:ﬂresan'cemanagexrentaremtapparentintm_sgram.
Ihaseimportantaspectsofoormnentprocessingarej:chﬁedinthe
ATAMM model through the definition of two additional graphs. The node
marked graph (NMG) is defined to model the execution of a primitive
operation. The camputational marked graph (OMG) ' obtained from the
Abnarﬂmemnbyasetofconstmctionmles, integrates both the
algorithm requirements and the camputing environment requirements into
a camprehensive graph model. These additional marked graphs are
defined below.

The node marked graph (NMG) is a Petri net representation of the
performance of a primitive operation by a functional unit. Three
primary activities: reading of input data from global memory,
processing of input data to campute output data, and writing of output
data to global memory, are represented as transitions (vertices) in
the NMG. Data and control flow paths are represented as places
(edges), and the presence of signals is notated by tokens marking
appropriate edges. The conditions for firing the process and write
transitions of the NMG are as defined for a general Petri net, while
the read transition has one additional condition for firing. In
addition to having a token present on each incoming signal edge, a
functional unit must be available for assigmment to the primitive
operation before the read node can fire. Once assigned, the
functional unit is used to implement the read, process, and write

operations before being returned to a queue of available functional

10
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units. The initial marking for an NMG consists of a single token in
the Process Ready place. The NMG model in shown in Figure 1.2.

A camputational marked graph (CMG) is constructed fram the AMG
and the NMG by the following rules:

1) Source and sink nodes in the algoritim marked graph are

reprwtedbyswxceandsinkmdesinthecx;.

2) Nodes correspording to primitive operations in the algorithm
markedgrapharerepxwtedbymc'sinﬂmecc.

3) Edges inthealgoritmnmarkedgrapharereprwerrtedbyed;e
pairs, one forward directed for data flow and one backward
directed for control flow, in the OMG.

The forward directed edge goes from predecessor write transition
to successor read or sink transition. This forward edge is also shown
as part of the NMG where it is the OF and IF edge of the predecessor
and successor respectively. The backward directed edge goes fram
successor read transition to predecessor read or source transition.
Ihisbadmarded;eisalsoshownaspartoftheNM:whereitisOEarﬂ
IE edge of predecessor and successor respectively. The initial
markingfortheedgepairconsistsofasingletokenintheforwam
directed place if data are available, or a single token in the
backward directed place if data are not available.

The play of the CMG proceeds according to the following graph
rules:

1) A node is enabled when all incaming edges are marked with a

token. An enabled node fires by encumbering one token from
each incaming edge, delaying for same specified transition

time, and then depositing one token on each outgoing edge.



Ot

1
R DR*@ = OF

PR

IF,

IF  Input Buffer Full

IE Input Buffer Empty
DR Data Read

PC Process Complete
PR Process Ready

OE Output Buffer Empty
OF Output Buffer Full

Figure 1.2. ATAMM node marked graph model.



2) A source node and a sink node fire when enabled without

regard for the availability of a functiocnal unit.

3) A primitive operation is initiated when the read node of an

NMG is enabled and a functional unit is available for
assigrment to the NMG. A functional unit remains assigned to
an NMG until campletion of the firing of the write node of
the NMG.

In order to illustrate the construction of a camputational marked
graph, the (MG corresponding to the algorithm marked graph of Figure
1.1 is shown in Figure 1.3. The camputational marked graph is useful
because it clearly displays the data and control flow which must occur
in any hardware implementation of the algorithm, and because it
provides a hardware independent context in which to evaluate algorithm
performance.

The camplete ATAMM model consists of the algorithm marked graph,
the node marked graph, ard the camputational marked graph. A
pictorial display of this model is shown in Figure 1.4. ATAMM model

characteristics are described in detail in the Appendix.

1.3 Objectives and Organization of Dissertation.

The behavior and performance for periodic execution of camplex
algorithms in the ATAMM data flow architecture is investigated in this
dissertation. The problem damain consists of large-grain,
decision-free algorithms. The major research cbjectives are
threefold. First, a performance model is established. Second, rules
for transformation of algorithms for performance enhancement and

reduction of camputing element requirements are identified. Third,

13
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directed graph
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Algorithm
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marked graph

Figure 1.4. ATAMM model components.
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operating strategies are developed for optimum time performance and
for sub-optimum time performance under limited availability of
camputing elements.

The dissertation is organized in five chapters and an appendix.
IntheApperdixA’I%M&nodeld)axacteristics, same of which are used in
this dissertation, are described in detail. Definitions of the
computing envirorment, performance measures, and evaluation of
pexfomancebanﬂsardrmlrcerequiranentsarepresentedinmaptar
Two. In Chapter Three, algorithm transformations for improving
performance, and methods for enforcing desired resource envelope and
inducing structural changes in algorithm marked graph are. described.
Definitian, characteristics, and design procedure of operating point
along with similation and experimental results are presented in
Chapter Four. Finally conclusions fram this research and future

research topics are presented in Chapter Five.

16



CHAPTER TWO
PERFORMANCE MODEL

2.0 Introduction

A performance model for the ATAMM (Algorithm To Architecture
Mapping Model) data flow architecture is described in this chapter.
The cbjective is to determine camputing speed, throughput capacity and
resource (camputing element) need for implementing decision-free
large-grain algorithms on the ATAMM data flow architecture. The
camputing enviromment and performance measures are defined in section
2.1. In Section 2.2, characteristics of marked graphs, which are
needed to establish the performance model, are described. Graph
theoretic lower bounds for the time performance of algorithm marked
graphs operated in the ATAMM data flow architecture are established in
Section 2.3. Resource needs are predicted and performance bounds in
the presence of resource limitations are evaluated in Section 2.4. A

summary of the chapter is presented in Section 2.5.

2.1 Performance Measures

The importance of the ATAMM model is that it provides a hardware
independent context in which to investigate the performance of
decamposed algorithms as long as the architecture cbeys the rules of
MG. It is assumed that a decamposed algorithm is implemented in a

ATAMM data flow architecture containing R identical resources or

17
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functional units. Each functianal unit is capable of performing any
of the primitive operations whose sequence defines the decamposition.
The tokens on the MG indicate the data and control flow that must
occur in any hardware implementation of the algorithm. A task is a
sequence of camputations as described by the AMG. The camputational
task is applied on all input data from the source node. Task output
occurswhenacorrespordingoutp:tdatatokenisdepositedatme
output sink node. A task is campleted when all camputing associated
with the task is campleted. It should be noted that task output and
task campletion do not always coincide. In many iterative signal
processing algorithms, camputing to generate initial conditions for
the next iteration often occurs after the output has been calculated.
Task campletion is usually indicated in the AMG or the OMG by the
return of the graph to same steady state initial marking. To use the
output of an algorithm for control and signal processing applications,
it is assumed that the task is repeated periocdically with new input
data sets (data packets). New data sets are injected as input tokens
from the input source node at a finite interval of time so that
camputing time and resource needs are identical for all data sets.
Included in this problem class are iterative algorithms where the
present task requires input data from previous task calculations.
Camputational concurrency occurs in two ways. First, several
transitions of the task on individual data set may be performed
similtanecusly. We have referred to this type of concurrency as
parallel concurrency because it is the result of inherent parallelism
in the algorithm. Parallel concurrency has a direct effect on task

camputing speed. It is limited by the number of transitions that can



be performed simultanecusly for the given task and by the number of
functional units available to perform the transitions. Secord,
transitions of the task belonging to different data sets can be
performed similtanecusly in the camputing system. This type of
conalrrencyisreferredtobyusaspipelinecormrrencybecausethe
task is repeated for successive data sets, like a pipeline. This type
of concurrency has a direct effect on throughput capacity. It is
limited by the capacity of the graph to accammodate additional data
sets and by the mmber of functional units available to implement the
algorithm periodically.

Three performance measures, TBIO, TT, and TBO, are now defined
for concurrent processing of camplex algorithms in ATAMM data flow
architectures. TBIO and TT are indicators of camputing speed for a
task and thus reflect the degree of parallel concurrency. TBO is a
measure of time interval between task outputs. The inverse of TBO

indicates throughput, and thus reflects the degree of pipeline

Definjtion 2.1: TBIO. The performance measure TBIO (time between
input and output) is the elapsed computing time between a task input
and the corresponding task output.
Definition 2.2: TT. The performance measure TT (task time) is the
elapsedcatp:tin;tinebetweenataskinpxtarﬂﬁxecatpletionof all
camputation associated with that task input.
Definition 2.3: TBO. The performance measure TBO (time between
outputs) is the elapsed camputing time between successive task outputs
when the graph is operating periodically at steady state.

To illustrate, an algorithm marked graph for an aircraft flight

simulation is shown in Figure 2.1. Sy is the input source

19
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representing flight plan data. Sy is the output sink representing
moving map and flight instruments data. Transitions of the graph
represent activities. Places represent data dependency or precedence
relation. Tokens on places are initial tokens representing initial
condition data. As an example, transition 3 represents inertial
navigation camputation and requires ten time units for processing.
Time units associated with transitions are relative and are measured
with respect to a reference. Transition 7 (zero processing time) is
used to cambine outputs of the coordinate transform camputation
(moving map) and the auto-pilot camputation (control for flight
instruments) . TBIO is the time to produce the outputs in S, for a
flight plan data. TT is the time to finish all processing for a task
input. TBIO and TT need not be the same for all problems although
they are related. TBO is the time between arrival of successive
output tokens in the output data sink when the algorithm is executed

periodically at steady state.

2.2 Marked Graph Characteristics

Marked graphs, a class of Petri nets, are used as a device for
expressing the ATAMM. A marked graph is viewed as a directed graph
where the vertices are the transitions and the edges are directed
places. In this section, concept of path and circuit for the marked
graph is developed. Only directed paths and circuits are of interest
"to this dissertation. If not mentioned, a path or a circuit of a
markedgraphshouldalwaysbeunde.rstoodtobeadirectedpathora

directed circuit respectively. Same properties of the marked graph
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which are needed to establish a performance model are stated. Also,
circuits of the OMG are classified. Let t; and p; dencte

transition i and place i respectively.
Definition 2.4: Directed Path. A directed path in a marked graph is
a finite alternmating sequence of distinct transitions and distinct
directed places with the following property. The sequence begins and
ends with transitions and every place originates from the immediate
predecessor transition and ends on the immediate successor transition
in that sequence.

To illustrate, the sequence Sy, Py, 1, Py t5, P3r T3/ Py and Sy
is a directed path in Figure 1.1. But the sequence t,, Py, ty Pg:
t4, P ty/ P3s and t, is not a directed path in Figure 1.1 as
transition 2 is repeated twice in that sequence.
Definition 2.5: Directed Circujt. A directed circuit in a marked
graphisthesameasadirectedpathexceptthatbeginninganiend
transitions are the same in a directed circuit.

To illustrate, the sequence t,, Pg, t4, Pg and t, is a directed
circuit in Figure 1.1.

Definition 2.6: Parallel Paths. Parallel paths are directed paths
which have identical beginning and ending transitions; however, all
other transitions and places on all directed paths are distinct.

In Figure 2.2, the sequence ty, Py, t3/ P3/ b3,‘p4, t4: Ps, and
tg and the sequence ty, Pg: tgs Pgr and tg are parallel paths.
Definition 2.7: Group Of Paths. Group of paths are a finite mmber
of directed paths from a marked graph.

To illustrate, the sequences t,, py, ty, Pgr 4 and t,, Pg/ tg:

pg, tg form a group of paths in Figure 2.2.

22
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Definition 2.8: Path Iength. The length of a directed path in a
markedqraphisdefinedtobethesmmationofallthetims for
transitions in that directed path.

Definition 2.9: Circuit Length. The length of a directed circuit in

amarkedgraphisdefinedtobethesxmnationofallthetim for
transitions in that directed circuit.

Definition 2.10: Critical Path. The critical path among a group of

paths is the one which has the highest path length.

This definition of critical path is jdentical to the one used in
task scheduling [14, 15] and project management (16, 17].

To illustrate, let T(i) stand for the time of the i
transition. In Figure 1.1, let T(1) = 4, T(2) =1, T(3) =5 ard T(4)
= 6, T(Sy) = 0 and T(Sy) = 0. Then, the directed circuit t,,
Pg, t4s Ps, and t, has length 7. The directed path used to illustrate
Definition 2.4 has length 10. The directed path Sy, Py, ty: P2r %2
Pg+ and t, has length 11. These two directed paths form a group of
paths. In that group of paths, the directed path from Sy to t; is
the critical path. It istobemtedthattherecanbemrethanone
critical path in a group of paths.
Property 2.1. "Ihecritical path length of a group of paths is the
lcwestpossibletimetonovetokens franthei:pxtofthebeginning
transition to the output of the end transition on all directed paths
of that group.

This is a property of the critical path known fram critical-path
scheduling [14] and project management (17]. In the context of a
marked graph, asthetokmhastomvethrou;hallthetransitions of

the directed path in order to reach the output of the end transition



fram the input of the beginning transition, the minimum time required
is the length of the directed path. Considering all the directed
paths of the group, the lowest possible time to move tokens on all
directed paths from the input of the beginning transition to the
output of the end transition is the critical path length.

Property 2.2. With unlimited resources, tokens always take time equal
tocriticalpathlergthtocalpletethenwefrmﬂxeimxtofthe
beginning transition to the output of the end transition on all
directed paths of the group.

'Ihisisamtherpmpertyoftmcriticalpathkrmnfrantask
scheduling [14] and project management ([17]. In the context of the
marked graph, with unlimited resources, a transition can always be
fired as soon as it is enabled by input data. Therefore, the lowest
possible time can actually be achieved. Hence, the critical path
1engthisthetixetomvealltokensfmntheinp1tofthebegiming
transition to the output of the end transition.

Directed circuits are created in the camputational marked graph
in four different ways. They are node, process, recursion and
parallel path circuits. Formal definitions of each kind of directed
circuit are presented below along with examples.

Definitij .11: Node Ci it. This is a directed circuit in the QG
which is the only internal directed circuit of an NMG.

To illustrate, the sequence tp, Prg: tp, Pper ty, Ppre ard tp is
a node circuit in the ATAMM node marked graph model of Figure 1.2.

One such node circuit in the QMG of Figure 1.3 is shown in Figure
2.3(a). This is the node circuit of transition 1 in the AMG of Figure

1.1. Node circuits always have one token, as described in the

Appendix.

25



NMG of transition 1

(RA—(—W)
. E
circuit

(a)

- Process circuit

Transition 2 Transition 3

Figure 2.3. Example of node and process
circuits.
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pefinition 2.12: Process Circuit. This is a directed circuit in the
oG which is formed each time an NMG or source is linked to another
NMG or sink. The backward directed place fram successor read or sink
transition to predecessor read or source transition, along with
forward directed places fram predecessor to successor create the
process circuit.

A process circuit of Figure 1.3 is shown in Figure 2.3(b). This
process circuit is formed when node marked graphs of transition 2 and
3 are linked. Process circuits always have one token as described in
the Appendix.

Definition 2.13: Parallel Path Circuit. This is a directed circuit
in the OMG which is created by any two parallel paths in the AMG. The
circuit is formed by the forward directed places through the NMG'S of
one directed path and backward directed places from the successor read
to the predecessor read transition from the NMG's of the cother
directed path.

To illustrate, the (MG of Figure 2.2 is shown in Figure 2.4. The
parallel paths of the AMG form parallel path circuits in the OMG. One
such parallel path circuit is shown in Figure 2.5(a). This circuit is
created by two parallel paths in the Figure 2.2 between transition 1
and transition 5.

Definition 2.14; Recursion Circuit. This is a circuit in the QG
which is created due to a directed circuit in the algorithm marked
graph.

To illustrate, the recursion circuit of Figure 1.3 is shown in
Figure 2.5(b). The directed circuit t,, Pg, %4/ Ps/ ard t, in Figure

1.1 translates itself into a recursion circuit in the QG of
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Figure 1.3. Directed circuits are created in the AMG mainly due to a
reansioninoarp:tationardheroethecoxraspcnﬁi:gcirmitsinthe

MG are called recursion circuits.

2.3 Graph Theoretic Performance Bounds

The process of algorithm decamposition imposes bounds on the
amount of parallel concurrency and pipeline concurrency possible in a
given problem. If sufficient camputing resources are available,
operation at these bounds can be achieved. In this section, graph
theoretic lower bounds on three performance measures are established
for decamposed algorithms to be cperated in ATAMM data flow
architectures. These lower bounds are only a function of the
algorithm marked graph and the node marked graph. Therefore,
perfomancecamlotbeinprwedbeyonithesebomdsbyincreasingthe
mumber of resources. The remainder of this section is devoted to
developing lower bounds for these performance measures.

IetGdenobeanalgoritknnmarkedgraphrepresentingadecanposed
algorithm. The lower bound for TBIO is the shortest time required for
adatatokenfranthedatainputsmrcetopmpagatethralghthegraph
to the data output sink. Similarly the lower bound for TT is the
shortest time required to complete all camputing activity initiated by
the injection of a data from the input source. These shortest times
are the actual performance times when only a single data set is
present in the graph during any time interval (no pipeline
concurrency) , arxiasmanycmpxtingmwrcsasammquiredare
available (maximum parallel concurrency). Under these operating

conditions, lower bounds for TBIO and TT are calculated by identifying
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certain longest paths in a graph cbtained from the algorithm marked
graph. This new graph, called the modified algorithm marked graph
G isdefinedardthenusedtodetermine lower bounds for TBIO and
TT.
Definition 2.15: ifi ori . let p; bea
place of G, directed from transition t, to transition tg, which
contains a token of the initial marking. The modified algorithm
mrkedgrathMisobtained franthegrathbythefollwirg
construction rules:
1) Place p; is deleted from G.
2) A new place, Pj3r directed fram the data input
source to transition tg, is added to G.
3) A new output sink S; different from all other
output sinks, and a new place p;a/ directed fram
transition t, to Sj, are both added to G.
4) The above rules are repeated for each place of G
containing a token of the initial marking.
Example: The recursion problem of Figure 1.1 is used to generate a
modified algorithm marked graph as shown in Figure 2.6. Only place 5
from transition 4 to 2 has an jnitial token in the algorithm marked
gréph of Figure 1.1. According to rule 1, place 5 is deleted. A new
place 5-1 is inserted from data input source to transition 2 by rule
2. Rule 3 isthenusedtogenerateanewaztprtsi.m( (Sg) and a new
place 5-2 as shown in Figure 2.6. As there are no more places with
initial tokens, this campletes the procedure to generate a modified

algorithm marked graph.
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Transition 2

1 2 3 4
1 2 3 / S
5-1 6 Place 4
SsSs2\4

Figure 2.6. Modified algorithm marked
graph for Figure 1.1.
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Theorem 2.1: Graph Theoretic Lower Bound for TBIO. Let P; be the
iﬂ‘directedpathinGMfrunﬂmedatainputsan'cetothedata
autput sink, and let T(P;) dencte the sum of transition times for

transitions contained in P;. Then,
TBIO;z = Max (T(P;)),

where the maximm is taken over all paths P; between the data input
source and the data output sink in graph Gy.

Proof. T(P;) is the length of path Py’ therefore, Max (T(P;))

is the length of the critical path from the data input source to the
data output sink. From the properties of the critical path (14, 17],
TBIO g = Max {T(P;)}. This campletes the proof.

Theorem 2.2: Lower Bound for TT. Let P; be the i" directed path

inGMfranthedatairp:tsmrcetoanyartputsink,ardletT(Pi)

dencte the sum of transition times of transitions contained in Pj.

Then,
TT g = Max {T(P;)},

where the maximm is taken over all paths P; in graph Gy.

Proof. Bytheconstructimrulesforgzaphcwataskisinitiated
withanirpxtfrmthedatainprtswroe,arﬂisompletedwxenall
output sinks have accepted tokens. Therefore, TT is the time which
elapses from injection of input tokens to the arrival of a token at
the last fired output sink. IetT(Pj)=MaX{T(Pi)),anDngall

P; in Gy. Pjisﬂmelongestpathanbrgallpathsfmthe



datairpxtsaxcesltoanymtp.ltsirﬂ{. Therefore, Pj is the
criticalpathamongallpathsfrmﬂxedatainpltsmmetoanywtput
sink. Hence, by the properties of the critical path [14, 17], TTig
= T(P3) = Max(T(Pj)}, where the maximm is over all paths P; in
Gy This campletes the proof.

To illustrate the application of Theorem 2.1 and Theorem 2.2,
TBIOLBarﬂTTI_Barecarprtedforthealgoriﬂnnmarkedgraphslm
in Figure 1.1. For this example, the following transition times are
assumed: T(1) = 4, T(2) =1, T(3) =5, and T(4) = 6. The modified
algorithm marked graph correspording to Figure 1.1 is shown in Figure
5.6. The modified algorithm marked graph contains two paths directed
fruntlwdatai:prtsmrcesltothedatao\rtputsinkso. Path
P, is the sequence ty, Pys t2r Py and t, with T(P,) = 10. Path P,
is the sequence t,, P3/ ard t, with T(Py) = 6. Since T(P;) > T(P3) ,
pathPldetermirmthe lower bound for TBIO and TBIOpg = 10. The
modified algoritim marked graph contains two additional directed paths
frunthedatairp:tsourceSItotheartputsinkSs. Path P, is the
sequence tq, Py, %3/ Pgr and t, with T(P3) = 1ll. Path P, is the
sequence t,, pg, and ty with T(Py) = 7. Since T(P3) is the highest,
path%deterﬁinesthelowerbaxﬂforTI‘ardTrm=n.

NextalmermﬂfortheperfommemasumMn\aybe
determined. Iet G be an algorithm marked graph representing a
decamposed algorithm. It is assumed that the operating conditions for
G are set to maximize pipeline concurrency. That is, data tokens are
contimously available at the data input source, and as many camputing
resources as needed can be called to perform primitive operations.
ThegrathisexeaItedperiodicallyardTmIBistneshortesttim

possible between successive outputs.

34



35

.3 eoreti (o) . let Gobe a
camputational marked graph and let Cj be the ith directed circuit
in Go. The notation T(Cj) denotes the sum of transition times of
transitions contained in C;, and M(Cj) denctes the rumber of

tokens contained in Cy-. Then,
TBO[ g = Max (T(C;) / M(C ),

wherethemxinlmistakencveralldirectedcixmitsinG. The
circuits which determine TBOjg will be called critical circuits of
the OMG.

Proof. Without loss of generality, let t¢ be the output transition
inGcsothatancutputisproduoedeachtinetfcmiplets

firing. TBOg is then the minimum firing period of transition

te. Bycm'xsistencypmpertyoftheAppe:ﬂix, Gcisccmsistentso
that all transitions of Go fire periodically with minimm period
TBO; . It is shown in (18] (PP 58-60) that the minimm firing
period of each transition of a marked graph is given by Max
{(T(C{)/M(C4) )}, where the maximm is taken over all directed
circuits Cy in G. Therefore, the theorem follows.

The algorithm marked graph shown in Figure 1.3 is used to
illustrate Theorem 2.3. The MG contains many directed circuits.
However, the recursion circuit which contains all NMG nodes of
transitions 2 and4hasm1yonetokenarrlmaximizestheratio
T(Cy)/ M(Cy) - Therefore, the shortest time possible between

succeﬁsiveo.xtputsinﬂﬁsgraphismm=7.
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2.4 Resource Requirements
The performance bounds of the last section assume availability of

a resource for each transition to fire when enabled. Therefore, graph
theoretic performance bourds are absolute bounds provided sufficient
resources are available to meet the firing requirements. However, for
insufficient resources, performance cannot reach the graph-theoretic
bourds. The rumber of resources (R) of an ATAMM data flow
architecture imposes bourds on performance of an algoriﬂm marked
graph. In this section, characteristics of resource usage, maximm
resource requirement, and resource imposed performance bourds are
investigated. Formal definitions of camputation, graph execution, and
resource requirements are stated. Definitions and results are
illustrated with examples.

Definition 2.16: TC. Total Camputation (TC) is the sum of all
transition times of an algorithm marked graph.

Definition 2.17: TFC. Total Forward Computation (TFC) is the sum of
all transition times that appear in the forward paths fram the data
input source to the data output sink of the modified algorithm marked
graph.

Definition 2.18: TBC. Total Backward Computation (TBC) is the sum of
all transition times that do not appear in the forward paths from the
data input source to the data output sink of the modified algorithm
marked graph.

Lemma 2.1. TC is the sum of TFC and TBC of an algorithm marked graph.
Proof. With the notation of Definitions 2.16, 2.17, and 2.18,
transitions which constitute TFC and TBC are mutually exclusive and

collectively exhaustive of all transitions of the algorithm marked



graph. Hence, the sum of all transition times of the algorithm marked
graph equals the sum of transition times for both transitions on the
forward paths ard not on the forward paths from the data input source
to the data output sink of the modified algorithm marked graph.
'Iherefom,'l‘(:equalsthésmnof'I’ECardTBC. This campletes the
proof.
Definition 2.19: Computer Time. A unit of Computer Time is defined
to indicate one functional unit available over one unit of time.

To illustrate, if two functional units are used for three units
of time, six units of camputer time are used.
Definjtion 2.20: Computing Capacity (T). Camputing Capacity (CC) is
the total available units of camputer time over an interval of time T.

To illustrate, for a time interval of T, the camputing capacity
of an ATAMM data flow architecture with R functional units is given by
R*T. Thus CC (T) =R * T.
Definition 2.21: camputing Effort (T). Camputing Effort (CE) is the
total used units of camputer time over an interval of time T.

To illustrate, for a time interval of T and R functional units,
let T; be the mumber of time units the i™M functional unit is
used. 'n'1enTi*1=Timxitsofcatp.1tertimeisthecarp.xting
effort due to the i'! resource in interval T. Thus the computing

effort due to R resources is given by

R
CE (T) = I (Tj)
i=1

units of camputer time.
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Lemma 2.2. For any number of functional units and any interval of
time, camputing effort is always less than, or equal to, camputing
capacity.

Proof. With the notation of definitions 2.20 and 2.21,

cCc(T)= R*T
R

CE (T) = 'E (Ti)'
i=1

mere'riismemmberoftimmitstmiﬂ‘ functional unit was
used in time interval T. SoTicanrthbemrethanT (15]. Hence,
CE(T) < OC(T). This campletes the proof.

Definition 2.22: Resource Utilization (T). The Resource Utiljzation
(RU) of functional units over a time interval T is given by the ratio
of camputing effort to camputing capacity over that time interval.

Thus,
RU (T) = CE (T) / cC (T).

Lemma 2.3. Resource Utilization (RU) over a time interval T is always
greater than, or equal to, zero but less than, or equal to, 1.

Proof. By definition, resource utilization is a ratio of camputing
effort to capacity. With the notation of Definitions 2.20 and 2.21,
7,20, T>0. SoCE(T) 20. CC(T) = R * T > 0 as the ATAMM data
flow architectures must have at least one functional unit. So RU(T) 2

0. Also as CE (T) < &C (T), RU (T) < 1. This campletes the proof.



Definition 2.23: Total Computing Effort (TCE). TCE is defined to be
the camputing effort required to execute ance all transitions of an
algorithm marked graph.

Lemma 2.4. TCE equals TC units of camputer time.

Proof. With the notation of Definitions 2.16, 2.21, and 2.23,

R
E (Ty)
i=

TCE = CE(T)

= TC

units of camputer time as total camputation to execute all transitions

of the AMG once is TC. This campletes the proof.

definedtobethecatprtingeffortrequiredtoeimlteonceall

transitions on forward paths from the data input source to the data
output sink of the modified algorithm marked graph.
Iemma 2.5. TFCE equals TFC units of camputer time.
Proof. The proof is similar to that of Lemma 2.4.

With the above definitions and lemmas regarding camputation of a
task, it is now intended to establish resource imposed bounds on the
camputing time of a task. The following two theorems state the
minimm possible value of TT and TBIO for an ATAMM data flow
architecture of R resources.

Theorem 2.4: Minimum TT for R Resources. The minimm value of TT for
an algorithm marked graph operated with R resources is always greater
than, or equal to, TCE / R.

Proof. TT is the camputing time to camplete all camputation
associated with a task input. For a time interval of TT, the
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omp.xtingcapacityofRzmmisR*Tr. The total camputation
foranytaskirprtisﬂmeexeartionof all transitions of the
algoritmnmrkedgramomeardherce, equals TC. The corresponding
ocnp.ltirgeffortisTCE. BylmZ.Z,R*TI‘z'ICE,orTI‘z'ICE/R
[(19]. This campletes the proof.

Theorem 2.5: Minimm TBIO for R Resources. The minimm value of TBIO
for an algorithm marked graph operated with R resources is always
greater than, or equal to, TFCE / R.

Proof. TBIOistheocantJ'J\gtimetogermtedatawtputfora
task. For a time interval of TBIO, the camputing capacity of R
resources is given by R * TBIO. In order to generate data output, all .
tmnsitionsonalltheforwardpathsfrmthedataimxtswrcetothe
dataa:tputsinkinthemdifiedalgoritmnmarkedgrammstbe
executed once. 'n\eoatpxtatimirwolvedis'rf!:ardmecorrespading
computing effort is TFCE. By lemma 2.2, R * TBIO > TFCE [19), or
TBIO > TFCE / R. This campletes the proof.

Two graph execution features (GPSI'and'IGP)arﬂtmhardware
usage measures (REST and TRE) are now defined for predicting resource
requirements. GPSTdescribestheexeaxtionoftransitionsofthe
algorithm marked graph for a single data packet. REST is the
dnscriptimoftheresmrceusagetoprooassonedatapadcet. TGP ard
IREarethegraphememtimdacriptionarﬂrsmrceusageerwelope
menthealgoriﬂnnmarkedgraphisexeartedrepeatedlyarﬂ
periodically.
pefinition 2.25: GPST. GPST (graph play for a single task input) is
a drawing depicting beginning, duration, and end of execution for each

transition of the task when operated for a single data packet.
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Definitjon 2.26: TGP. TGP (total graph play) is a drawing depicting
beginning, duration, and end of execution for each transition of each
task input at steady state when the AMG is executed periodically with
an input data injection interval of TEO.

Definjtion 2.27: REST. REST (resource envelope for a single task
input) is an envelope of resource usage by a single data packet
between the time of task input and the campletion of all camputation
associated with that task.

Definition 2.28: TRE. TRE (total resource envelope) is an envelope
of resource usage to execute the graph at steady state with input
period TBO.

generated by firing every transition in the algorithm marked graph at
the earliest possible moment assuming unlimited resources ard a single
task input. Graph play is generated by depicting execution of all
transitions in every time interval. Symbols (<, >) are used to show
the beginning and the end of execution for a transition respectively.
The resource usage envelope is abtained by counting the mmber of
camputing resources used during each time interval.

Bample. Consider the algorithm marked graph of Figure 2.7.
Transitions 1, 2, and 4 have duration of cne time unit. Transitions
3, 5, and 6 have duration of two time units. The graph is played
according to Definition 2.29 and the GPST is shown in Figure 2.8(a).
The need for resources is the same as the mumber of active transitions
in each time interval. The REST is camputed by counting the number of

resources used in each time interval and is shown in Figure 2.8(b).
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Figure 2.7. Algorithm marked graph for illustration
of GPST and REST.
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Figure 2.8. (a) GPST. (b) REST.



Now suppose the algorithm is executed periodically. Assume that
the input data injection interval is long enough so that every data
padcetexeartsthegra;hastheGPsrandneedsmcverthe
task time as given by the REST. As a result, the algorithm is
executed with a input period equal to output period TBO. The total
resource ervelope (TRE) is to be determined then by adding the
r&saxroemedsoftmccwmrreJKlyprwseddatapackets. The total
graph play (TGP) is generated by drawing the execution of transitions
fram all the concurrently processed data packets. It is shown in the
following two theorems that TRE and TGP are periodic with period TBO.
If REST and GPST are divided from the beginning in sections of TBO
time units, these sections are shown to be the contributions fram the
consecutive concurrent data packets towards a period of TRE and TGP.
As an example, GPST and REST of Figure 2.8, are divided in sections of
TRO = 2 time units. Section as well as data packet mumbers are
represented by the integer variable b. To illustrate, data packet 2
has been injected two time units before data packet 1. Moreover,
transition 3, 2 for data packet 0, transition 5, 4 for data packet 2
and transition 6 for data packet 3 are executed concurrently at steady
state requiring a total of five resources.

Theorem 2.6. When the algorithm marked graph is operated periocdically
for input period TBO with all data packets requiring resource
envelopes identical to REST, the total resource ervelope at steady
stateisperiodicwithperiod'l‘&)arﬂoneperiodofm is generated
by the summation of sections of REST of width TBO as follows.

let REST (x) represent the resource ervelope for a single task

input where REST (x) = 0 for x > TT. Iet the origin of time axis (t)
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at steady state be the injection of a data packet. Let TRE (t) be the
value of total resource requirement at time t. Let b represent the
concurrently processed data packets at time t. A period of TRE(t) is

then given by

TRE (t) = REST (t + b * TBO),

0<t<TBO

o
A

<b < [TT / TBO].

Proof. By the rules of operation, data packets are injected and
outputs are generated at the interval of TBO at steady state.
Cansider three consecutive data packets P, Q, and R injected at

t = K * TBO, (K+1)*T&arxi(K+2)*TB)r§pGCtively,whereKisa
positive integer. Let d be a time unit in which the total resocurce
requirement is desired. let s denote the time between d and time for
the last data packet injection. Suppose d is a time between the
injection of data packets P and Q. Thus K * TBO < t < (K+l) * TEO,
ard s = t - (K * TBO). 'IRE(t)inthisintervalismadeofRBI"sdue
todatapacketpardprevicusdatapadcetswhosecaqntationsam
campleted after P has started. As all data packets have resource
envelope identical to REST of duration TT, any data packet which is
injectedTI'ormmtimebeforePhasmeffectm'mEinthis
interval. Consequently, the total mmber of concurrently processed

data sets creating TRE(t) in this interval is given by [TT / TBO] .
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Hence, let the range of bbe 0 < b < [TT / TBO]: b is an
integer. TRE(Yt) for time interval between P and Q is then the
sumation of the resource requirements for these concurrently
processed data packets. Iet b = 0 identify task input P whose
contribution to TRE (t) is REST (s). The data packet which has
startedTH)timemitsbefomeillcmtrih:teREST(s+T&)andis
identified by b = 1. In general, a data packet which is injected
b*TmtineunitsbefonePisidentifiedbyt‘hedatapacketmmerb
and contributes REST (s + b * TBO) to TRE (t). Therefore, summing
REST(s+b*TK))cvermeentirerangeofbforthecamrrerrtly
processed data packets will give the corresponding TRE (t). The data
packet correspanding to the largest b may contribute to TRE(t) for
only a partial interval. As REST (x) = 0 for x > TT,
RES'I'(s+b*T&)properlyrepr$entsthecmtrih1tionduetothe
data packet corresponding to the largest b. Therefore, TRE (t) at d

between P and Q is given by the following equation,

TRE (t) == REST (s + b * TBO)
b

=% REST (t - K * TBO + b * TBO) (2.4.1)
b

K* TBO < t < (K +1) * TBO

0 < b < [TT/TBO].

Now let d be a time unit t + TBO from the origin. As d now is a time

unit between data packet injection Q amd R, s = (t+TBO) = (K+1)*TEO.
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By similar arguments as before,

TRE (t + TBO) = £ REST (s + b * TBO)
b
=¥ REST {(t+TBO) -~ (K+1)*TBO + b * TBO}
b
=3 REST (t - K*TBO + b*TBO)

b

= TRE (t),

from equation (2.4.1). Thus, TRE(t) is periodic with period TBO.
Hence, it is sufficient to specify TRE (t) for ane period only; let s

=+t, or K= 0. Modifying equation (2.4.1) we get,

TRE(t) = £ REST (t + b * TBO)
b

0<t<TBO

0 < b < [TT/TBO].

Thus, one period of TRE(t) is generated by the sumation of the
sections of REST (x) of width TBO, starting from x = 0. The sections
are identified by the correspording value of b. This campletes the
proof.

Theorem 2.7. When the algorithm marked graph is operated periodically
for input period TBO with all data packets executing the AMG as GPST,

total graph play at steady state is periodic with period TBO and cne



period of TGP is generated by the overlapping of sections of GPST of
width TBO as follows.

ILet GPST (x) represent the graph play for a single task input
where 0 < x < TT. let the origin of time axis (t) at steady state be
the injection of a data packet. Let TGP (t) be the total graph play
at time t. Let b represent the concurrently processed data packets at
time t. A period of TGP (t) is then given by,

TGP(t) = £ GPST (t + b * TBO)

o™

0<t<TBO

o
A

<b < [TT / TBO].

Proof. The proof is similar to Theorem 2.6 with one exception.
Unlike REST, sections of GPST of width TBO represent portions of graph
play for successive data packets which overlap to form TGP at steady
state. Hence, instead of adding sections of GPST, one periocd of TGP
should be constructed by overlapping sections of GPST with each
section being identified separately by the value of b. If two values
of b are i and i+1, it means data packet i+l is injected TBO time
units before data packet i. This campletes the proof.

Example. One periocd of TGP and TRE is constructed for the AMG of
Figure 2.7 according to Theorem 2.6 and 2.7 with an input period TBO
of two time units. GPST and REST of Figure 2.8 are divided in

sections of width two time units as shown in Figure 2.8 by the dotted
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lines. Figure 2.9 shows the TGP and TRE for input period TBO of 2.
Timetisanytimevmenanewdatapacketisinjecbedatsteady
state. In the TGP, the superscript of transitions indicate the value
of b (data packet rumber). Data packet 1 is injected TBO time units
pefore data packet 0. 1(0) and 5(1) represent the execution of
transition 1 and 5 for the data packet 0 amd 1 respectively in Figure
2.9(a). The TGP indicates that 5(1) begins after the campletion of
1(0) . As in GBST, (<, >) arrow symbols indicate the beginning and
end for execution of a transition respectively. In Figure 2.9(a),
transitions 3(9), 5(1), and 6(2) have started in this period but

aid not end. Similarly 3(1), 5(2), and 6(3) have been campleted

in this period but did not start in it. The resource usage in the
four sections of REST in order of increasing b are (1, 2), (1, 2),
(1, 1), and (1, 0). One period of TRE is calculated by adding the
four sections of REST. The total resource need in one period of TRE
is (4, 5) as shown in Figure 2.9(b). It is to be noted that TRE could
alsc have been calculated fram TGP by counting the mmber of active
transitions in each time interval.

Lemma 2.6. catp.rtirgeffortinoneperiodofmis'mEatsteady
state when the algorithm marked graph is operated periodically with an
input period of TBO.

Proof. As the algorithm marked graph is operated periodically,
camputing effort in every period is the same. Camputing effort in a
periodTHJofTREwillequal'ICEasonetaskcutputisgeneratedin
every TBO time units. This campletes the proof.

Lemma 2.7. Resource Utilization (RU) in one period (TBO) of TRE is

given by (TCE / (R * TEO)).
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Proof. By lemma 2.6, camputing effort in one period (TBO) of TRE is
TCE. catpltingcapacityinthe‘I’BDtimeintenralisR*Tm. By
definition then, resource utilization is (TCE /(R * TEO)}. This
campletes the proof.
Example. Consider the REST as shown in Figure 2.10(a) with TT = 7, TC
= 15 (ignore the dotted lines). The peak of REST is 4 which indicates
that the ATAMM data flow architecture requires at least four
fmctionalunitstopmoessthetaskaccordingtotheRESTinseven
time units. Let TBO = 3. Tasks are initiated and outputs are
generated at the interval of three time units with all having
identical REST at steady state. TRE is calculated from Theorem 2.6.
Dividing REST from the beginning in sections of width TBO, as in
Figure 2.10(a), with the dotted lines, (1, 1, 2), (4, 3, 3), ad
(1, 0, 0) are the contributions of three overlapping task inputs to a
period of TRE. Adding three sections of REST, a period of TRE is
given by (6, 4, 5) and is shown in Figure 2.10(b). The camputing
effort in three time units of TRE is 15 as claimed by Lemma 2.6.
Since the peak of TRE is 6, a minimm of six functional units is
required to operate an algoritim marked graph with REST of Figure
2.10(a) and TBO = 3. By Lemma 2.7, resource utilization (RU) for six
functional units is given by (15 / (6 * 3)} = .833.

With the help of above lemmas, the resource imposed bound on TBO

is established in the following theorem.

is always greater than, or equal to, TCE / R.
Proof. By Theorem 2.6, the total resource envelope is periodic. By

Lemma 2.6, the camputing effort needed in period TBO is TCE. The
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camputing capacity for time interval of TBO is R * TBO. By Lemma 2.2,
R * TBO > TCE. Hence, TBO > TCE / R. This campletes the proof.
Corollary 2.8.1. The minimum value of resource requirements (R) for a
desired TBO is bounded by [TCE / TBO| when the graph is
operating periodically at steady state.

Proof. As TBO > TCE / R, it follows that R > TCE / TBO. Since R is
an integer, R > [TCE / TBO]. This completes the proof.
Example. Consider the algorithm marked graph of Figure 1.1 and the
corresponding modified algorithm marked graph of Figure 2.6. Let T(1)
=4, T(2) =1, T(3) =5, ard T(4) = 6. The sum of all transition
times are 16. Hence, TC = 16. ‘I'I-’CaniTBCaxeca.lmlatgd fram the
modified algorithm marked graph. Transitions 1, 2, and 3 appear in
the forward paths from Sy to Sg. Therefore, TFC = T(1) + T(2) +

T(3) = 10. Asonlytransition4doesmtamearinanyoftheforward
paths frundatai:prtsamcetodatamtpmsink, TBC = T(4) = 6.
Also, TFC and TBC add up to TC. If only two functional units are
available, the minimm values of TT, TRIO, and TBO are 8, 5, ad 8

respectively. For a TBO of 7, the minimm R is [TCE / TBO] = 3.

2.5 Summary

'Iheccnpltingemirormentardperfomameneasm in the ATAMM
data flow architecture are established. Graph time performance is
expressed by time between input and output (TBIO), task time (TT), and
time between outputs (TBO). The modified algorithm marked graph is
defined to campute lower bounds for TT and TBIO. Lower bourds for the
performance measures are calculated analytically from the modified

algorithm marked graph and the camputational marked graph with the



assumption that a functional unit is available for every enabled
transition to fire. The availability of a limited mmber of
functional units is then considered. The modified algorithm marked
graph is used to distinguish between forward camputation (TFC) and
backward camputation (TBC) and to establish their relation to total
camputation (TC) . Camputing capacity, camputing effort, and resource
utilization are defined. The range of values for performance measures
areestablishedassmningmattheAMdata flow architecture has
only R functional units. The algorithm marked graph execution for a
single task input or data packets periodically are defined in terms of
GPST and TGP. The requirements of functional units to process a
single task input or data packets periodically are expressed by REST
and TRE. Resource utilization is defined; construction rule for GPST
and REST are defined; and properties of TRE are described.
Methodologies for generating TRE and TGP are established. All

definitions and results are illustrated with examples.
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CHAPTER THREE
AIGORITHM TRANSFORMATION

3.0 Introduction

The lower bounds for performance measures of an algorithm marked
graph are developed in Chapter Two. One of the two remaining
important problems cancerning performance measures is considered in
Chapter Three. Of interest is the potential of transforming an
algorithm marked graph, with or without decamposition, in order to
decrease lower bounds for performance. Investigation is also carried
out to use transformations to reduce resource requirements, enforce
periodicity in execution, and provide structural changes in the
algorithm marked graph. All required transformation techniques,
including an investigation of their usefulness and limitations, are
described in this chapter. Algorithm transformation techniques are
defined and elaborated in Section 3.1. Applications of algorithm
transformations for performance improvements and reduction of resource
requirements are discussed in Section 3.2. A steady state periodic
execution of algorithm marked graphs is realized in Section 3.3.
Structural changes of algorithm marked graphs are considered in

Section 3.4. A summary of the chapter is presented in Section 3.5.
3.1 Algorithm Transformation Guidelines
The aim of this section is to define algorithm transformation

techniques and illustrate their significance. Algorithm
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transformation is defined to be a process to change same features of
an algorithm marked graph while preserving its equivalence in
camputations. In other words, algorithm transformatians produce a new
Ammidiisequivalmttotheoriginalmmtbetterinsate
respect. The primary objectives are to improve time performance and
lower resource requirements through algorithm transformation.
Therefore, algorithm transformation techniques which can lower
critical path length, lower time per token for the critical circuit of
the OMG, lower resource requirements, and enforce periodicity in the
execution of the AMG are of great interest. A formal definition of
equivalency of two algorithm marked graphs and algorithm
transformation techniques are stated and explained below.

212 i 0 Algori . Two
algorithm marked graphs are equivalent if they map any set of input
variables into the same set of output variables and produce an
identical output sequence for an input sequence.

pDefinition 3.1 specifies the allowable transformations. An
algoritlnnmarkedgraphcanbetransfomedas long as the new AMG is
input-output equivalent with the old cne. It is to be noted that if
the camputations of transitions and data dependency among the
transitions of the original AMG are not altered, the transformed AMG
will remain input-output equivalent with the original AMG.
Definitions 3.2 through 3.5 describe four transformation techniques
which are based on this abservation.
Definition 3.2: Control Place. A control place is any place in the
algorithm marked graph whose deletion generates an equivalent

algorithm marked graph.
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A cantrol place is an artificial place in the sense it is not
necessary for the correctness of an algoritlm. A control place
imposes a precedence relation among two transitions. The control
place needs to be jnitialized by an initial token if it creates a
circuit in the algoritim marked graph. The designer inserts a control
place in the algorithm marked graph to delay the firing of a
transition. All places in the AMG other than control places will be
called active places henceforth. 1f broadcasting is used to transmit
data between transitians, insertions of control places are not going
to change read and write times of transitions. Also, cantrol places
need not transmit data vectors: therefore they can be implemented at
very low camunication cost. Thus for analyses purposes, insertion of
controlplacesinan%willbeassmedmttojncreasereadarﬂ
write times of transitions.
pefinition 3.3: Dumw Transition. A dummy transition is any
transition in the algorithm marked graph which is not required for
executing a primitive operation.

Adtmmytransitionisaredmﬂanttransitiminmesensethat it
is not required for camputation. However, it can be used to control
operation or improve performance. All transitions other than dummy
transitions will be called active transitions henceforth. A dumy
transition can act as a buffer to provide storage for the output of
any transition. Such puffers will be shown to be needed at times when
the algorithm marked graph is operated periodically. A Gumy
transitioncanbeusedtocanbinejnpltoroutpxtdatavecbozs in
order to create single inmput or output vectors respectively. Another

application of a dummy transition is as a delay operator for holding
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firing of one, or a group of, transitions. Read ard write time for
the NMG of a dummy transition deperd on implementation and data
length, but should be less, or equal to, read or write times of an
active transition of equal data length respectively. A dummy
transition has zero process time when it is used as a buffer; it has a
very small process time when it is used for cambining data vectors. A
dummy transition as a delay operator has a process time corresponding
to the amount of delay needed. As operations are restricted to large-
grain algorithms, read and write times are expected to be
significantly smaller than the process time of an active transition.
Thus for analyses purposes, a dummy transition will be assumed to have
zero time when it is used as a buffer or for cambining data vectors.
Also, it will be assumed that a dummy transition for applications
other than a delay operator does not require a resource because a
resource is required to implement such a dummy transition for a very
short time. A dummy transition for delay application has not been
explored in detail in this dissertation, but poses an interesting
topic for future research.

Definitjon 3.4: Predefined Token. A predefined token is any initial
token on a place of the algorithm marked graph.

A predefined token indicates the presence of a precamputed
initial data or initial control. A predefined token is necessary at
times for execution of the task and for forward flow of data.
Definition 3.5: Decomposition of a Transition. Decamposition of a
transition in the AMG is to replace the transition by an equivalent
marked graph of a group of transitions.

The transition decamposition of Definition 3.5 is to distribute

the camputation of a transition among a group of transitions in order
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to reduce the original transition time. This is important because
large transition times are major contributors to critical path length
and time per token of critical circuits. It should also be noted that
the decampositions of transitions are not always reasonable or
possible due to added cammnication cost, higher resource
requirements, and transition characteristics. Serial, or a
cambination of serial and parallel, decampositions of a transition
tends to decrease TBO;g significantly while TBIOjg does not

improve much and can even increase due to added serial communication
time. In those cases, a proper decamposition is dependent upon the
relative importance of TBO and TBIO. Pure parallel decamposition of
transitions decrease both TBOyg and TBIOg.

Subsequent sections of this chapter will develop a theoretical
basis for the applications of control places, dumny transitions,
initial token and decamposition. A software program, called Ttime
[20], will be used for determining lower bourds for TBO, TT, and
TBIO. This program constructs the OMG from the specified AMG to
determine TBOjz. Two examples are presented to illustrate the
transformation of an AMG through the use of control places and dummy
transitions. |
Example. Consider the algorithm marked graph of Figure 2.2. The
corresponding (MG is shown in Figure 2.4. A transformed AMG and
corresponding (MG are shown in Figures 3.1 and 3.2 respectively. A
dummy transition of zero time is used as buffer between transition 1
and 6. The AMG's of Figures 2.2 and 3.1 are equivalent as they
produce the same output sequence for identical input sequences. The
dummy transition provides an additional storage space for the output
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of transition 1, which is to be used as an input of transition 6.
Without this dummy transition, transition 1 can fire only once before
transition 6 fires; however, with the dummy transition, transition 1
can fire again before transition 6 fires. Application of this
transformation will be described later.

An example of transformaticn by cantrol places is shown in
Figures 3.3 and 3.5. Control places delay firing of selective
transitions and therefore modify REST and TRE. The dumny transition
is used again as a buffer. Improvement due to this transformation

will be described later.

3.2 Performance Improvements by Transformation

Applications of dummy transitions and control places for
inpmvi:gtizneperfomancearﬂreductionofmmerequiratentsw
discussed in this section. New results are stated in Application 1
and 2. Application 1 describes how dummy transitions can reduce
Tmmofathothelaxgasttim/tokenamgthepmcssard
recursion circuits. Application 2 describes how the REST of an AMG
canbenndifiedtogivealmverpeakmEﬂu'oughmeuseofcontml
places.
Application 1. This is an application where a dummy transition is
used as a buffer. A dumy transition can provide storage space for
the output of a transition. 'miscnnirx:reasethefirirgrateof
transitions as ATAMM does not allow firing of an active transition
unless itsa.xtwtsaremadbyswcessortra:sitims. In terms of the
oG, admunytransitioncxnincreasethemmberoftokensinthe
cirwitsofancﬁcreatedbyparallelpathsinﬂaem. This is the

basis for Theorem 3.1.



Theorem 3.1: Reductjon of to the

be transformed by using dummy transitions as buffers so that

TBO[ g = Max {T(C;)/M(Cj)) (3.2.1)

where T(C;) and M(C;) dencte the sum of transition times and the
number of tokens contained in C; of the OMG respectively. Circuit
C; is a process or recursion circuit.

Proof. There are four kinds of circuits in a (MG, as mentioned in

Section 2.2. They are node circuits, process circuits, recursion

circuits, and parallel path circuits. Theorem 2.3 has proved equation

(3.2.1) when C; is any directed circuit of the (MG. From ATAMM
model characteristics, as described in the Appendix, both node and
process circuits always have anly one token. Also the sum of
transition times for process circuits are always greater than, or
equal to, that of their corresponding node circuits as process
circuits include the successor read transition. Consequently, the
largest time/token ratio of process circuits is always greater than,
or equal to, the largest time/token ratio of node circuits. The
remaining task is to show that the time/token ratio for circuits in a
QMG due to parallel paths in the AMG can be reduced sufficiently to
make them insignificant in determining TBO;p. Consider any two
parallel paths P; and Pj of the AMG which begin and end at
transitions S and E respectively. Consider the parallel path circuit
in the OMG created by forward directed places (for data flow) fram NMG

€3
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transitions of path P; and packward directed places (for control

flow) from NMG's of path Pj. Each of these backward directed places
hasatokenintheinitialmarking. The rumber of such backward
directedplaoasareonen'orethanthemmberoftransitiorsmpam
Pj, excluding transitions S and E. Inserting a dummy transition of
zero time on path P willim:reasethem.mberoftokensinthis
circuit by one. Asthisdmmytransitimdo&snothaveanytime, it
cannot increase the T(C;) of this circuit or any other. Hence, the
time/tcken ratio of this circuit will decrease while not increasing
the time/token ratio of any other circuit. By inserting more dummy
transitions on path P;, the time/token ratio for this circuit can be
arbitrarily reduced. If the time/token ratio for this circuit is
greater than the largest time/token ratio fram process or recursion
circuits, dummy transitions can be used to reduce the time/token ratio
to a value lower than, or equal to, the largest time/tcken ratio among
process or recursion circuits without increasing the time/token ratio
of any other circuit. Following this procedure, sufficient cummy
transitions may be added so that the time/token ratio for any parallel
pathcirmitinthedﬁissmallerthan, or equal to, the largest
time/token ratio among process or recursion circuits. The procedure
isguaranteedtoterminateasdmmytransitions, when used as buffers,
never increase the time/token ratio of any circuit. This completes
the proof.

Example. Consider again the AMG of Figure 2.2. The corresponding QG
is drawn in Figure 2.4 assuming zero time for read and write
transitions. Therefore, TBOg is 3. There is no recursion circuit

in the AMG. The largest time/token ratio among all process circuits



is 2 and the largest time/tcken ratio among node circuits is 2.
However, the largest time/token ratio among all directed circuits is 3
due to two parallel path circuits as shown in Figure 2.4. For both of
these circuits, parallelpathsinﬂme»ﬁstartarﬂeniintransitions
1 and 5 respectively. Let t; denote transition i and Py dencte

place j. Path Pj for both circuits is the forward path t,, Ppg,

tg, Pg, and ts. Path P; for the two parallel path circuits are t,, p,,
t,, Py, t3, Pgr t4 Ps, and ts, and £y, Py, tp, Py Y7/ Por t4s Pss
and tg respectively. Both of these circuits have two tokens fram
packward directed places from the NMG transitions of path Py, as
shown in the OMG. Now the AMG is transformed by inserting a dummy
transition on path Pj as shown in Figure 3.1. The corresponding QMG
is shown in Figure 3.2. The mmber of tokens on the parallel circuits
are now 3 and therefore the time/tcken ratio is 2. Time/token ratio
foranydthercircuitdoesnotim:reaseasthedtmmytransitionhas
zero time. The largest time/token ratio over all directed circuits is
now 2. However, TK)I_BfortheALGofFigure 3.1 is 2, ad
transformation by a dummy transition has improved throughput
performance.

Application 2. This is an application to demonstrate a procedure for
reducing resource requirements. Control places and dummy transitions
are the two transformation techniques which are used. Suppose that
all the data sets of an AMG require resource envelope, as given by
REST, and data sets are injected at the interval'of TBO time units.
The total resource envelope will then be given by TRE and the peak
value of TRE will be the required number of functional units. Fram

ChapterM,TREisperiodicandoneperiodofTREisnadeby
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additions of sections of REST of width TBO. This immediately leads to
the possibility that the peak value of TRE might be lowered by
adjustirgtheshapeofRESTifthepeakvalueof'mEismrethanthe
minimm requirement [TCE/TBO|. REST can be modified by
delaying active transitions selectively with the help of control
places. This may or may not lead to an increase in TTyg (thereby
duration of REST) or TBIOrp depending on the "float" of delayed
active transitions. Float is the amount of time an active transition
can be delayed without increasing TBIOjg ard TTyp-

A desired result is to modify REST without increasing TBIOrg
ard'I‘I‘I_BtoaduieveTBomwiﬂxamininmmmberof resources.
Unfortunately, this problem is equivalent to a class of scheduling
problens which is known to be NP camplete (12]. Thus, REST must be
modified heuristically by control places. Judicious insertion of
control places may reduce the resource requirement for the same
TBOyg, but perhaps at the expense of TBIO;g. A control place is
useful if it can reduce resource requirements by delaying transitions
with float or by sacrificing parallel concurrency to same extent.
lastly, insertion of control places in the AMG can create dominant
parallel path circuits in the corresponding O which are made
insignificant following the procedure of Application 1.

Ihemethodologyforlweringthezeso.xmerequiranentism
stated. First, construct REST and TRE for the AMG at specified TEO.
ThepeakvalueofTREisthechemquirementforanimntdata
injection interval of TEO. If the peak value of TRE is more than
[TCE/TBO], heuristically modify REST by transforming

the AMG with control places with as small an increase in TBIO;p and
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TTr g as possible. Make all daminant parallel path circuits created
by control places insignificant by adding dummy transitions. An
example is given below to illustrate Application 2.

Example. Consider the algorithm marked graph of Figure 3.3. From the
AMG, TCE = 12, TBOpg = 2, and TBIOjg = TIyg = 6. The minimm
resources to achieve TBO;g are [TCE / TBOpgl = 6. REST is shown
in Figure 3.4. Adding sections of REST of width TBOm, a pericd of
‘I‘REiswrpltedandisshwninFigure3.4. The peak value of TRE is
9. Hence, nine functional units are required for implementing this
AMG for optimum time performance. As the minimm resource requirement
for TBO; g is 6, Application 2 is considered. The AMG is transformed
heuristically, as shown in Figure 3.5. The dotted lines are control
places 1 through 4. Ignore control places 2, 3, ard 4 initially. The
justification of control place 1 is as follows. It is noted that
transition 5 is the only transition which has a float in the AMG.
Transition 5 can be delayed up to two time units without delaying the
output. Considering section 1 of REST as shown in Figure 3.4,
transition 5 should be delayed one time unit so that the peak value of
TRE is reduced to 8. This is accamplished by control place 1. The
modified REST and TRE are shown in Figure 3.6. Unfortunately, control
place 1 creates a parallel path circuit among transitions 1, 4, ard 5
whose time/token ratio is more than 2. The time/tcken ratio of this
cirmitisnadelssthanzbyinsertingadl.mmytransitiononthe
place between transition 1 and 5. Now consider section 2 of REST as
shown in Figure 3.6. It contributes (4, 1) to a period of TRE. In
order to reduce the peak value of TRE, a more equal distribution of

transitions among the time intervals (t, t+1) and (t+l, t+2) of TRE
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Figure 3.4. For Figure 3.3, (o) REST.
(b) TRE for TBO=2,
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Figure 3.6. For the AMG transformed by control
place 1, (a) REST. (b) TRE for TBO=2.
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is needed. Control places 2, 3, and 4 do this job at the expense of
increasing TBIO;g and TTpp by one time unit. The REST and TRE of
the fully transformed AMG of Figure 3.5 are shown in Figure 3.7. Now
onlysixfunctionalmitsarerequired,mid\istheminimmfora
TBOyg of 2. It is to be noted that the maximum utilization of
rescurces may not be achievable by use of control places in all cases

unlesstheAmismrnedintoacmpleteduain.

3.3 Implementation Of Periodicity By Transformation

This section describes a procedure for enforcing periodicity in
the execution of an algorithm marked graph for successive data sets.
It is desired that performance and resource needs be identical for all
data sets for two reasons. First, input data should not experience a
waiting time on the critical path of a task so that TBIO;p is
achieved for all data sets. Second, the resource envelopes for all
datasetsshouldbeidenticalsothatthetotalxsourceneedcanbe
predicted. It will be shown in Application 3 and 4 of this section
that by controlling input data injection and transforming the AMG by
dunmy transitions, periodicity can be realized in the execution of the
AMG. The need and methodology for injection control of input data is
explained in Application 3. Application 4 describes the corditions
for operating an AMG periodically with each data packet having
identical resource envelopes.
Application 3. When presented with contiruously available input data
sets, the natural behavior of a data flow architecture results in
operation where new data sets are accepted as rapidly as the available

ma.xrcesarﬂthei:p:ttransitionofthe%pexmits. Fram Chapter
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Figure 3.7. For the transformed AMG with all control
places, (a) REST. (b) TRE for TBO=2.
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Two, thewtpxtoftheAPBca:mtbeqene.ratedatahigherrateman
1/TBOpg or R/TCE. Therefore, if the data sets are contimuously
available, they experience a waiting time inside the architecture
which increases TBIO fram TBIO;g. That is, the architecture will
naturally operate at high levels of pipeline concurrency with the
possible loss of capability for achieving high levels of parallel
concurrency. This will result in performance characterized by high
throughput rates, but relatively poor task camputing speed. In many
control and signal processing applications, it is important to achieve
bothahighttmxghpxtrateardhightaskom;ntimspeeds.

Therefore, it is necessary to control injection rate of data sets so
that input data never waits on the critical path. The input data
injection interval must always be greater than, or equal to, TBOrg
and it should be such that all task inputs always have a resource
available to fire transitions on the critical path to the data output
sink. This can be accamplished by either adjusting the time for the
source transition or as shown in Figure 3.8. It is not always easy to
adjust the source transition time as this will be the sampling
interval of sensors in a real system. All that is required is to
limittherateatwhidlnewinpatdataarepmsentedtothedﬁ. This
isda\einFigure3.8byaddingad1mmytransitiminadirected
circuit with the data input source. The predefined token on the
directed circuit is for initialization. The dummy transition imposes
a minimm delay of D time units between inputs. D is chosen to be the
designer specified TBO.

Application 4. Itisneossarythatalldatasetshavethesane

rasouroeerwelopesothatthetctalmrcerequiranentcanbe
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Figure 3.8. Injection control by Application 3.
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predicted. Also at steady state, it is desirable that all data sets
require resource envelopes identicaltoRESI‘asRESTcanbemdified
to lower the peak value of TRE as described in Application 2. In
order to achieve such a resource envelope, all transitions of the AMG
shmldfireassoonasﬂuereisatokenoneveryirpxtplace. The
firststepistocontrolthedata injectionjntewalasdiswssedin
Application 3. If this condition is satisfied, then it can be
guaranteedthatadatatokenneverwaitsmﬂxecriticnl path from the
datairprtsan'cetothedataqrtputsinkforalldatasets. Hence,
TBIO g is achieved for all data sets. Secondly, the resource
envelope foradatasetofanAMEatsteadystatemaymtbe identical
£o the REST even thouch injection is controlled for the following
reason. Whenever there are parallel paths in the algorithm marked
graph, the transitions on non-critical paths of the algorithm marked
graph will have a float associated with them. The float of a
transition is the time by which a transition can be delayed without
increasing TBIOjg and TTyp- If there is not enough storage space

for previous data, transitions in the AMG with float may not fire even
ma.\ghalltheinp.ttplac&havetoken. The reason is that one or
more output places of the transition contain previous data. This will
dmarqethesteadystatezmnoeemelope from the REST. One way to
prevent this from happening is to use control places to eliminate all
floats from the AMG. However, this may not be always possible as ary
control place has to be generated from the campletion of execution for
a transition. Also, use of control places may require dummy
transitions to prevent TBO;p fram increasing, which will make the

AMG more camplex. A better way of enforcing REST for all data sets
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is to use dummy transitions as buffers in the output of transitions
with float which need more storage space for previous data. The
position and mumber of dummy transitions can be determined from TGP
based on GPST. Astheirputinjectimintexvalisgreaterthan, or
equal to, TBOpp, REST should be enforced for the injection interval
of TBO;g. This will alsoguaranteeRESTfora.lldatasetswiﬂ\any
higher injection interval. The reason is that transitions are
executed at a lower rate for a higher injection interval and need for
storage space at the output of floating transitions will be lower.
The detailed procedure is now stated below.
constnx:tthe'IGPbasedmRESTforTm='Imm. Locate all
transitions with float and identify their corresponding task input
mmber. By inspection of TGP, check whether all the successors of a
floating transition for the previous task inputs have fired before the
floating transition fires. If not, the floating transition needs
dummy transitions as puffers at its output. The mumber of required
dummy transitions equals the rumber of previcus task inputs for which
at least ane of the successor transition has not fired at the time of
firing of the floating transition.
Bxample. Consider the algorithm marked graph of Figure 3.9. From the
AMG, TBOpg = 2 and TBIOjp = TTrg = 5. only transition 5 has a
float of two time units. GPSTard'IGPforTm=TmI_B=2arestmn
in Figure 3.10. Task input 1 has startedTmIBbeforetask input O,
arxitaskirpthhasstartedanotherTmLBbeforetaskirpltl. The
successor of floating transition 5 is transition 4. Ancther
predecessor of transition 4 is transition 3. Notice fram the TGP that

4(2) has started before 5(0); 3(2) begins with 5(0), as 4 s



4 __Transition
time

Transition 3

Figure 3.9. Exampie AMG for illustration of
Application 4.
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Figure 3.10. (a) GPST. (b) TGP for TBO=2.

79



80

oxecuted after 3(1) in the GpsT, 4(1) has not started before

5(0) . Hence, one dummy transition is needed at the output of
transition 5 to store 4(1) so that 5(°) can fire according to the
GPST. Otherwise, the firing of 5(0) will be delayed as the NMG

model of a transition does not allow the firing of a transition unless
the output buffer is empty. The transformed AMG is shown in Figure
3.11(a). The TGP for TBO = 3 is shown in Figure 3.11(b). Transition
Smlon;erneedsadtmnytransitioninthemtputformfomirg
REST. Hence, the transformed AMG of Figure 3.11(a) enforces REST for

TBO equal to both 2 amd 3.

3.4 Structural changes In Algorithm by Transformation

The transformations o&'sidered so far try to preserve the
original structure of an algoritim marked graph. In certain
conditions that may not be possible, or desirable. For example, it is
possible to improve TBOrg of linear time invariant systems by
modifying the state equations. In this section, three kinds of
structural changes of algoritims are considered in Application 5
through 7. Application 5 explains how miltiple input-output
algorithms or a group of algorithms can be cambined into a single
input-output algorithm. This is necessary because the analysis tools
developed in this dissertation are based on single input-output
algorithms. Improvement of throughput by modifying the state
equations of linear time-invariant systems is demonstrated in
Application 6. Application 7 considers the parallel decamposition of

transitions as a way of improving performance.
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Figure 3.11. (a) Transformed AMG. (b) Total
graph play for TBO=J.
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Application S. The performance model of Chapter Two considers anly
single input and single output algoritims. The addition of dummy
transitions provides a way of converting miltiple input-output
algorithms or a mumber of algorithms into one single imput-output
algorithm. A dummy transition is used to combine input data vectors
or output data vectors. All the inputs are synchronized and fed to
the dummy transition at the same rate. Performance is evaluated from
the cambined algorithm which represents the total task. Two examples
are shown in Figures 3.12 and 3.13. In Figure 3.12, AMG A has two
inputs and two outputs. It is transformed into a single input-output
algoritim A, by dummy transitions. Figure 3.13 shows how dummy
transitions can be used to cambine two algorithms into ane algorithm.
Application 6. This is an application of increasing throughput of
lineartjmixwariantsysteusbyincmasmgmemmberofbokensin
the circuit. Linear time invariantsystemsaredescribedbythestate

equations as stated below.

x(k) = Ax(k-1) + Bu(k)

y(k) = cx(k) + Du(k) (3.4.1)

wherexisthestatevector,yistheoutpxtvector,arduistre
input vector. A, B, C,arﬂDaretime-irwariantsystanmtrica. The
cornaspcrdingalgorithmmarkedgramisshodninl“igure 3.14.
Usually, Ax(k-1) isthemsttjmeoonsmningompmationintheam.
Insud'xasystan,thereo.xrsioncimlitdeterminsthe%. It is
shown that it is possible to reduce the time/token ratio of this

recursioncixmitbydwblingthemmberoftokenssothatmmis



(a)

Dummy transition for combining inputs/outputs

1

(b)

Figure 3.12. (a) AMG A,. (b) Transformed
AMG A, .
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improved to the largest time/token ratio of the process circuits in
the MG. This is useful if decamposition is not desirable and TBEOrg
needs to be reduced approximately to the largest transition time of
the AMG. The methodology for reducing the time/token ratio of the
recursion circuit is expressed below by the statement and proof of
Theorem 3.2 with the assumption that Ax(k-1) is the largest transition
in the AMG representing the state equation.

Theorem 3.2. It is possible to improve TBO; 5 to the largest
time/token ratio of the process circuits of a linear time invariant
system by reducing the time/token ratio of the recursion circuit by
doubling the mumber of tokens in the recursion circuit.

Proof. Theorem is proved by construction. Assuming Ax(k-1)
(transition 4) to be the largest transition of Figure 3.14, TBOr 5 is
determined from the recursion circuit. Application 1 has shown that
anyAbﬁcanbetransfomedsoﬂ)atTBOmisdeteminedbyoxﬂy
process circuits and recursion circuits. Thus, the statement of
Theorem 3.2 will be proved if the AMG for the state equation can be
transformed so that the time/token ratio of the recursion circuit is
smaller than that of the largest process circuit. Let the state
equation represent a l-input, m-output, and n-element state vector
system. The dimensions of A, B, Cc, and D are then (n, n), (n, 1),

(m, n), and (m, 1) respectively. Now

x(k) = Ax(k-1) + Ba(k);
x(k-1) = Ax(k-2) + Bu(k-1);

x(k) = A(Ax(k-2) + Bu(k-1)} + Bu(k).



It follows from the linearity of the system that

x(k) = (A * A)x(k=2) + (A * Byu(k-1) + Bu(k).

letA*A=Eand A* B=F. Then,

x(k) = Ex(k-2) + Fu(k-1) + Bu(k). (3.4.2)

NoticethatthedimensimofEandAarﬂFarxiBarethesane.

Therefore, the amount of camputation of Ax(k-1) and Ex(k=-2) ad

Fu(k-1) and Bu(k) are the same. However, if equation (3.4.2) is used

instead of equation (3.4.1) for representing a linear time-invariant
system, the recursion circuit has two initial tokens as x(k) is
generated fram x(k-2). The new AMG based on equation (3.4.2), and the
original output equation, is shown in Figure 3.15. The dumy
transitions are inserted to act as buffers so that transitions are not
blocked from firing because output buffers are never empty. Ty,

T,, and T, are predefined tokens. T; =F * u(k-1), Ty = E * x(k-2),
and Ty = x(k-1). ILet k=1, 2, 3... ard the initial state vector be
%x(0). Therefore, the first input and output are u(l) and y(1)
respectively. That is, u(s) = 0 for s equal to zero or negative.
Therefore, the initial values of T, Ty, and T, correspord to k

= 1. Hence, theinitialvaluesof‘rlard'l‘3areT1=F*u(0) =

0 and T, = x(0). From (3.4.2),

T, = Ex(k-2) = x(k) - Fu(k-1) = Bu(k).
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Therefore, the initial value of T, is given by x(1) - Fu(0) -
Bu(l). As u(0) =0, the initial value of T, = x(1) - Bu(l). Hence,
it follows from the equation (3.4.1) that the initial value of T, =
Ax(0) + Bu(l) - Bu(l) = Ax(0). Therefore, all the initial values of
the predefined tokens can be calculated fram the initial state
vector. The recursion circuit now consists of transitions 2 and 4 and
therearetwotokensinthatcixmit. The camputation level of
transition 4 has not changed, although that of transition 2 has
doubled. Thus, the new time/token ratio of the recursion cirauit is
T(4)/2 + T(2), where T(4) and T(2) are the times for transition 4 and
2 of the original algorithm marked graph. Assuming T(4) is mch
greater than T(2), the TBOrg of the new algorithm marked graph of
Figure 3.15 is given by the process circuit of transition 4 whose
time/token ratio is the same as in Figure 3.14.
Application 7. This application establishes a method for finding the
maximm level of parallel decamposition of a transition in an AMG for
the best camputing speed of the transition. Decamposition reduces
process times of transitions; unfortunately, it also increases the
cammicationcostduetoani:x:reaseinmmberoftrarsitionsard
places in the gra;:h Therefore, camputing speed is improved with
decamnpositions up to a certain level. For the lowest process time,
transitions are decomposed uniformly. The maximm level of
decamposition of the transition is determined from the condition for
the fastest campletion of the camputation represented by the original
transition.

let T be the computation time of a transition which can be

decamposed in parallel arbitrarily without changing T. Let this



transition be decamposed into N equal parallel transitions as shown in
Figure 3.16. Each Tj is T/N. The time to canplete the total

camputation (A) for T in the worst case is then given by

A=R+ T/N + Cy + W. (3.4.3)

RarﬂWarethemadarﬂwritetmmtocanpletereadinJandwritirg
of data for all T; transitions. When this set of N transitions is
cmpmirgT,sateoﬂxertransitimsofﬂeMmaybeca-ulrrently
processed. Coist:hetimerequiredbyeamfwctionalmitto
receive data from the transitions of the rest of the AMG during the
camputing of T. Coisassv.medtobeirdeperﬂentofNardi. Any
dataareass:.nnedtobebroadcasttoallfmr:timal\mitsbya
transmission medium. Itisassxnnedthatonedatapad(etcxmbe
broadcasted at a time to all functional units. It is also assumed
that total transmission time for output data for all N transitions
tcgetherdoesmtduangewithN. The worst case value of read and
write time for all N transitions together can then be expressed by the

following equation:

R+ W= Cp + NALAC, + C3, (3.4.4)

vmereclisthetinethatthetrans:niSSionnedimnhastobeusedto
serve the rest of the AMG during the read and write operations for N
transitions of T. ClisassmnedtobeixﬁeperﬁentofN. C, is
theaverageaccesstimeforﬂxetrazmissionneditmarﬂListhe

mmberoftjmesaf\mctionalmithastoacoessthetzansnissmn

90



S |
T
(a)
T1
S | S
P
TN
(b)

Figure 3.16. (a) An AMG with a large tronsition T.
(b) T is decomposed in N parallel
transitions.
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medium for camputing a transition. G5 is the time to transmit
output data over the transmission medium for all N transitions
together and is assumed to be indeperdent of N. Therefore, from 3.4.3

and 3.4.4,
A='I‘/N+CO+C1+N*L*02+C>_3.
For minimizing A, dA/dN = 0; dZA/sz = positive. Now

/AN = (= T/N?) + (IACp):
dPa/and = 2 * (T/N).

As T and N are always positive, dzA/sz is positive. Equating

da/dN = 0,

0= (- T/N) + (LACp);
N=[{T/ (I*C))">)

AsNhastobeanintegeraxﬁhigheerillmeanhigherccnmmication

cost,

N=|[(T / (L*C;)}"1]. (3.4.5)

Also as N > 2 for any decamposition,

T>4*L*C,. (3.4.6)

92



Thus knowing C,, which is an architecture dependent parameter, the
minimm value of T for decamposition can be evaluated from (3.4.6).
Equation (3.4.5) provides the maximm level of decamposition.
Example. Let T be the processing time for transition B in an AMG as
shown in Figure 3.17. Suppose B can be arbitrarily decomposed in
parallel. Let T =10, G = 0.25 and L =2. As T > (4*%2*.25=2), B
can be decamposed to improve performance. Iet B be decamposed in N
transitions in parallel. Hence, N > L{(10/(2%.25)}°]] = 4.

In order to maintain process time for camputation T reasonably higher
than commmication time for large granularity, a level of
decamposition, less than or equal to, half the maximm level is
assumed to be appropriate in the following example. Thus N is chosen

to be 2. The decamposed transition B is shown in Figure 3.17.

3.5 Summary
Applications of algoritim transformation are discussed in this

chapter and transformation techniques are defined. Improvements of
TBO;p are achieved by dummy transitions. Resource requirements may
be lowered by control places and dummy transitions. Input data
injection is controlled by predefined token and dumy transition.
Periodicity in the resource envelope is enforced by dummy

transitions. The methodology for transforming algorithms into single
input-output algorithm is described. The TBOrp of linear
time-invariant systems is improved by predefined tokens. lastly,
parallel decamposition of transitions are considered to illustrate the
trade-off between decreased gramularity and increased cammmication

cost.
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Figure 3.17. (a) AMG before decomposition of B.
(b) B is decomposed.



CHAPTER FOUR
ATAMM OPERATING POINT DESIGN
4.0 Introduction
The ATAMM operating point (AOP) describes the specification of
the irput data injection interval (latency), resource requirements and
the time performance of analgoriﬂmmarkedgmmope.ratedmanmm
data flow architecture. The design of operating points based on the

mmberofmrcﬁoftheATAbﬂdataﬂwardﬁtectureis

examples, simulations, and experiments. Properties of the ATAMM
operating point under the allowable transformations and implementation
strategies are discussed in Section 4.1. In Section 4.2, AOP design
methodology is developed. Performance model, transformation
techniques and the AOP design methodology are verified by similations
and experiments on test algorithms in Section 4.3. A summary of the

chapter is presented in Section 4.4.

4.1 Characteristics of Operating Point

The ATAMM operating point is the parameter set (TBI, R, TBIO, TT,
and TBO) for an algorithm execution where TBI is the input data
injection interval (latency) and R is the minimum mumber of resources
required by the ATAMM data flow architecture. The design problem is
to specify an operating point for executing an AMG in the ATAMM data

flow architecture which achieves optimm time performance with a
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minimm mmber of camputing resources. Unfortunately, this problem is
equivalent to a class of schedulingpmblatswhichis)cmnmbeNP
camplete [12]. Thus, there exists no methodology for cbtaining an
optimm soluticn which is better than emumerating all possible
solutions and then choosing the best one. However, it is possible to
develop a procedure for generating sub-optimal solutions. This is the
objective of this chapter. The design cbjective is to determine an
operating point given the mmber of resources, and to provide the
guidelines for generating a new operating point should the rumber of
resources change. Also, the expected time performance for TBIO ard TT
should remain the same with any input data injection interval greater
thanthatoftheoperatin;poi:taslongasthemmberofmma
are not decreased. The following properties are assumned in the
operating point design:

a) Input data frantheso.lrcear'einjectedintottlem‘ﬂdata
flow architecture at a constant rate, and hence the time
between successive inputs (TBI) is always the same.

b) For all input data of the task, TBIO = TBIOpg and TT =
TT;p-

c) Eadmdatasetrequireﬁaresmrceusageerwelope identical to
REST.

All of these properties are realized by the use of Applications 3
and 4 of Section 3.3. These properties are needed for achieving the
besttaskoarpltingspeedforalltaskjnputsammacwmtely
predict resource requirements. As stated in Application 3, the time
between successive data inputs (TBI) is adjusted to be greater than,

orequalto,'ra)wsothatirp.xtdatamverwaitmmecritical

96



97

pathtothedataoutp.rtsink. 'Ihealgoritlnnmarkedgmphis
transformed as in Application 4 so that the resource ervelope for each
task input is REST. 'medesignprooedm'ewstdeterminetheallmable
ran;eofTBIsothatthedeata flow architecture has sufficient
reswmtoneettheresmrcerequimnentSOfalltaskierts. let
PminbethepeakvalueofREST. Therefore,anytaski:prtrequires
atleasthnresoumestoneetpropertisbandc. Let R,y be
thelargastpeakvalueof'IREforanyTBIz'ImI_B. Hence, with
Rmxormref\m:tionalmits,anyAMdataflwardxitecmmmn
execute the AMG while achieving TTyp and TBIO;p for any injection
intervalgreaterthan,orequalto,'rmm. It is to be noted that
TBIarﬂTmarethesameforanyMGatsteadystate. Finally, let
themmberofmrwsofmemmudataflwardlitecmmbedernted
by R.

The operating point for various munbers of resources can be
displayedonagraphofTB)versus'I‘I‘. EVexypoj.ntinthegramis
associated with a value of TBIO and R. From Chapter Two, TT > TCE/R
and TBO > TCE/R. Also TBI and, hence, TBO need not be increased
beyorﬁTI'asRmx=RminmtheTm=Trlim. Therefore, the AOP
isexpectedtolieinatriargularareaofthegraphdeterminedbyme
mmberoffmrticnalmitsoftheATMdataﬂward\itecmre. The
characteristics oftheoperatingpointaresruminr‘igure 4.1.

Let the problem be specified by an algorithm marked graph. Let
the best possible performance urder the rules of operating point
design be defined as the absolute lower bourds for the time
performance. Formal definitions of the absolute lower bourds for TT,

TBIO,ardTBDaremstated.
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pefinition 4.1: Absolute Lower Bound for TBIO. The absolute lower
bound for TBIO (TBIOprg) is defined to be the lowest TBIOjg for

the algorithm marked graph with or without any transformations.
Definition 4.2: Absolute Lower Bound for TT. The absolute lower
bound for TT (TTp1p) is defined to be the lowest TTyyz for the
algorithm marked graph with or without any transformations.
MM—M- The absolute lower
bound for TBO (TBOp1p) isdefinedtobethelmt%wiﬂmor
without any transformations.

Let the transformation be restricted such that only cummy
transitions (of zero time) and control places (with no initial token)
are used for transforming the algorithm marked graph. Theorems are
mwdescribedtodetermj:ietheabsolutelowerbamdsmﬂertheabove
transformations.

Theorem 4.1. The absolute lower bound for TBIO is equal to the lower
bound without any transformations.

Proof. Control places can create new paths in an algorithm marked
graph but do not alter existing paths in the AMG. Dummy transitions
of zemtimein:reasethemmberoftraxsitionsmapaﬂminthem
it do not increase the path length. Therefore, any path in the
original AMG is also a path in the transformed AMG with equal path
length. ‘Ihecriticalpathfrunthedatairpxtsalrcetothedata
output sink in the MAMG of the original algorithm marked graph is also
apathfrunthedatainprtsmrcetothedataoutputsinkinthemn
of the transformed AMG. Hence, TBIOjp of any transformed AMG under
the stated transformations cannot be lower than that of the original

one. Therefore, the TBIOayp Of an algorithm marked graph is



determined by the TBIOjz of the AMG without any transformations.

This campletes the proof.

Theorem 4.2. The absolute lower bound for TT is equal to the lower
bound without any transformations.

Proof. The proof is similar to that of Theorem 4.1. However, TTip
isdete.rminedbythecriticalpathannngallpaths fram the data input
smmetoanyoutprtsirﬂcinthem. By the arguments of Theorem
4.1, this critical path in the MAMG of the original AMG is also
present with equal path length in the MAMG of the transformed AMG.
Thus, TTig cannot be reduced by transformation with cummy

transitions (zero time) and control places (no initial token). Hence
theTrAI_BofanAM:isdeterminedbytheTTmoftheMWithart

any transformations. This campletes the proof.

Theorem 4.3. The absolute lower bound for TBO is equal to the largest
time/token ratio among the process and recursion circuits in the QG
of the original algorithm marked graph without any transformations.
Proof. Theorem 3.1 has proved that the TBO;g of an algorithm marked
graph can be reduced to the largest time/token ratio of the process
and recursion circuits by transforming with dummy transitions of zero
time. Because of the way process and recursion circuits are created,
qumny transitions do not alter their time/token ratio. Control
places, an the other hand, can create new parallel path circuits in
thecnshztdomtdmangethetine/tokenratiovalueofthecirmits
in the OMG of the original AMG. Therefore, the lowest TBOjp and
TBOpr g 1S determined by the largest time/token ratio among the
process and recursion circuits in the @G of the original aMG. This

campletes the proof.
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Any operating point will have TBIO, TT, and TBO values greater
than, or equal to, those specified by the respective absolute lower
bounds. Figure 4.2(a) displays the characteristics of the operating
point when designed with only dummy transitions (zero time) and
control places (no initial token). Any operating point resides in the
area BVWH. ‘Ihepoi.nthormpontiStotheoperatirgpointwhidl
achieves the absolute lower bounds for TBIO, TT, and TBO. Lines BV
and BH represent operating points which achieve the absolute lower
bounds in task camputing speeds (TT and TBIO) and the output interval
(TBO) respectively. With the specified transformations, TTig cannot
be more than TC. AnyoperatirgpoixtmImeI-MhasTrm='m,
which indicates the absence of any parallel concurrency. Point W is
characterized by TT;g = TBOpg = TC and represents camplete
sequential operation with no concurrency. ATAMM is most appropriate
for problems which require both vertical and horizantal concurrency.
ItisasstmedthatTBIOI_BardTI‘mamadmieved for any TBI
greater than, or equal to, the data injection interval at the
operating point. Therefore, the minimm resource requirement at any
operatirgpointisthegreatstpeakvalueof'IREforanyTaIz
TBO_.., where TBO, is the data output interval and the irput data

op
injection interval at the operating point.

4.2 Operating Point Design

let the problem be specified by an algorithm marked graph for
which the ATAMM operating point is to be determined. The only
allowable algorithm transformations are dummy transitions of zero time

and control places. Predefined tokens and decamposition will not be
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Figure 4.2(a). AOP characteristics under specific

transformations.



considered for operating point design. The AOP design consists of six
steps. 'Itmestepsaredscribedintherenai:ﬁerofmissectim.
Theopetati:gpoirmsaredeterndnedconespcrdin;todifferentmmber
of resources for the algorithm marked graph of Figure 3.3 to
illustrate each step as it is presented.

Step 1. Construct the MG from the AMG. Determine lower bounds and
absolute lower bounds for TBIO, TT, and TBO for the AMG. If TBOrg
is greater than TBOprg, transform the AMG with dummy transitions to
achieve TBOprp, S in Application 1 of Section 3.2. Determine Ry..
and Rpyn- If Rpay > [TCE/TBOa1pl, heuristically transform
the AMG with control places and dummy transitions to reduoe Rpax
without increasing TBIOrg, TTyip, and TBOrg, as in Application 2 of
Section 3.2. Wm%ﬂ%@m Lower bourds of
performance for the resultant AMG are also the absolute lower bourds
for TT, TBIO, and TBO under the specified transformations.

From the AMG of Figure 3.3, TBIOjg = 6, TTyg = 6, TBOrg = 2.
AlsoTBIOAI_B=6, TrAI.B=6' ardTE)AI_B=2. REST and TRE
corraspordirqtoTBO=2aresrmninFigure 3.4. Checking all TBI >
2, Rppy = 9. The AMG of Figure 3.3 is now transformed heuristically
to lower Rp,, without increasing TBIO;g, TTip: ‘and TBO;p, as
described in Application 2 of Section 3.2. The transformed AMG is
shown in Figure 3.5 (ignore control places 2, 3, and 4). REST and TRE
cormpcrﬂingtoTBI=Tmm=2areshmninFigure 3.6 for the

resultant AMG. By checking all TBI > 2, it is determined that Rg..

= 8, Rpjp = 4-
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Step 2. Choose a convenient transition firing rule. A rule to
deteminewhenanenabledtransitionintheanfimmstbe
specified in the graph manager. The rule usually used is that enabled
transitions fire when camputing rescurces are available. If
contention exists, such as when there are more enabled transitions
than camputing resources, firing occurs according to a priority
ordering of the transitions. For the algorithm marked graph of Figure
3.5, the highest to lowest priority ordering of the transitions is
chosen as (11, 10, 9, 7, 8, 5, 6, 4, 3, 2, 12, and 1).
Step 3. If R 2 Rypay functional units are available, operate at TBI
= TBOprp- Use Application 3 and 4 of Section 3.3 to adjust TBI to
TBOMBarxitotransfomtheAbBbyd\mmytransitiorsinorderto
realize REST as the resource ervelope for all task inputs. Eliminate
all urnecessary dummy transitions. The operating point time
performance is the absolute lower bound values for TBIO, TT, and TBO.
The AMG can also be operated foranyTBI>TmAmwhilemintainirq
TBIO and TT at absolute lower bound values. When R < Rpays
determine the operating point fram one of the following strategies:
Strategy A: strategyAisa;plicablewheanax>R2Rmin.
Preserve TBIO and TT at their respective absolute
lower bounds at the expense of increasing TBI and
TBO above TBOx1p-
Strategy B: Strategy B is applicable for the following range of
R. Rpy >R2 [TCE/TBOpypl: Preserve TBO
to its absolute lower bound at the expense of

increasing one, or both, of TBIOrg and TTyg.
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Strategy C: StrategyCisapplicablemeanx>Rz 1. The
operating point is determined by first following
StrategyBsothatR(m>Rszin, and then
increasing TBI above TBOprp- The strategy tries
to minimize performance degradation in TBIO, TT, ard
TBO from their respective absolute lower bound
values.

These three strategies of the AOP design under resource

constraints are illustrated in Figure 4.2(b). Strategy A maintains TT

and TBIO at their respective absolute lower bound values and reduces

multin;inahigherlwerbo.mdsforoneorbothofTBIOarﬁTr.
Strategy C sacrifices both pipeline and parallel concurrerncy to same
extent for lowering resource requirements.

If the ATAMM data flow architecture has eight or more functional
units, the algorithm marked graph of Figure 3.5 can be operated at
TBIO='I'1‘=6ardTB)=2byadjustingTBI=2usirgAppliczticm3of
Section 3.3. GPSTard'IGPcorraspordimtoTBI=2areshownin
Figure4.3whidxsuggestthatmmdmmytmrsitionsarerequiredto
enforce REST and GPST. Resource utilization over a period TBO is
given by {TCE/ (R*TBO) } = 12/16 = .75.

Step 4. D:ealtemisstepifstrategyAisa;propriate. Increase TBI
toTBOopsuduthatTmopisthelwesttineintervalbetween
overlapping REST's for the peak value of TRE to be less than, or equal
to R, for all TBI > TBOg,. TBO, isguaranteedtolieinme

op op
range [TCE/R] < TBOg, < TT . oOperate at TT = TT ,
op ALB ALB
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under resource constraints.
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TBIO = TBIOx1 g, and TBO = TBI = Tmop using Application 3 of
Section 3.3. TBIOpyg and TTprp are also achieved for any TBI >
Tmop.

Assume, the ATAMM data flow architecture has five functional
units. As Ry = 4/ Strategy A can be applied. Following Strategy
A, it is found that Tmap = 3. Overlapping of REST's for TBI = 3 is
shown in Figure 4.4(a). The operating point is given by TT = TBIO = 6
and TBI = TBO = 3 and RU(TBO) = {12/(5%3)) = .8.
Step 5. Executethisstepifstrategysisappropriate.
Heuristically transform the AMG to reduce Rp.. using control places,
as in Application 2 of Section 3.2. Maintain TBOjg at TBOxrp by
using dummy transitions. A good heuristic is to reduce Rpin
significantly. There is a guaranteed solution at TTyg = TC,
TBIO 5 = TFC, and TBO;p = TBOprp by transforming the AMG into a
camwplete chain. Eliminate all unnecessary dummy transitions. Operate
ﬁxetrarsforned%forTBI='I’K)m=Tm, TT = TTyp, ard TBIO =
TBIOrg using Applications 3 and 4 of Section 3.3.

Suppose the ATAMM data flow architecture has six resources. TCE

= 12 units of camputer time. As R > [TCE/TBOprgl = 6.
Strategy B m&@liﬁ. Ryay iS reduced to 6 by control places
2, 3, and 4 as shown in Figure 3.5. New REST and TRE for TBI = 2 are
shown in Figure 3.7. The peak value of TRE is 6. TTyg = TBIOIg =
7. By checking all TBI > 2 for this AMG, it is found that Ry, = 6
and Rpiny = 3. GPSI‘arxi'IGPforthetrarsformedMGareslwnin
Figure 4.5. Only transition 5 has a float associated with it. The
successor of transition 5 is transition 11. By inspection of the TGP,

transition 5(1) fires before transition 11(2) , which is impossible
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inanAMmlassthereisahxfferbetweentrarsitionsSaxﬂll.
Henceonedtmvtmnsitionisrequimdbetweentrarsitimssmnas
shwanigum4.6toenforceRmrasmermrceenvelopeforall
task inputs. 'IheoperatingpointisgivenbyTI'=TBIO=7arﬁTm=
TBI = 2; RU(TBO) = 1.

Step 6. Execute this step if Strategy C is appropriate. Transform
theAM:byStrategmertilRmx>R2RminardthenirmeaseTBI

to determine TBOy,, as in Strategy A.

Iet R = 4. 'meAmistransformedbystrategyBasdascribedin
Step 6. Now Ry, = 6 and Rpyip = 3. As R is within the range of
RmaxarﬂRmin,thecperati:gpointcanbedeteminedbyirmeasirg
TBI as in Strategy A. Increasing TBI, TBDop=4. Overlapping of
RES'I"sand'IREfor'I’BI=4arestmninFigum4.4(b). The operating
poi.ntisgivenby'IT=TBIO=7andTBI=4. Adjust TBI to 4 for the
AMG of Figure 4.6 to implement the operating point. RUJ(TBO) = .75.

Ttmeoperatj:gpointsfortheMGOfFigureB.Samskmnin
Figure 4.7. Operating point B is the only operating point which
achieves the absolute lower bounds for TT, TBIO, and TBO ard is
achieved in Step 3. OP,, OPg, and OF; are the operating points

developed by Strategies A, B, and C respectively.

4.3 Test Results

The performance model, transformation techniques, and the ATAMM
operating point design procedures are tested by simulations and
experiments. Simulations on the test algorithms are done by a
software similator developed to simulate the execution of an algorithm

in the ATAMM envirorment [21]. The input parameters for the simulator
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Figure 4.7. ATAMM operating points for the
example algorithm marked graph.



are the algoritim marked graph including all NMG transition times, the
mmber of resources, and a priority ordering for the transitions of
the 2M5. The input data injection interval is controlled by adjusting
the source transition time. The simulator detects and writes all
events associated with the execution of transitions for each task
input on a graph diagnostic file. The analyzer is a program developed
to analyze this graph diagnostic file [21]). The two features of the
analyzer used in this dissertation are the node activity display and
the input/output display. The node activity display shows the
execution of transitions as a function of time. The input/output
display shows TBI, TBO, and TBIO for each task input and also plots
these quantities as a function of time. Detailed information about
the simulator and the analyzer are found in [21]. Another useful
program developed iscalled'I‘timewhidmdetemirmthelowerbarﬁs
for TT, TBIO, and TBO in an algorithm marked graph by constructing the
oMG and MAMG [20].
Atestbedisdevelopedtor\mtestalgorittmsinthemm
enviromment [20]. The ATAMM data flow architecture consists of, at
most, three functicnal units with a distributed glcbal memory and
graph manaqer.' Figure 4.8 shows the architecture. Functional units
are realized by IEM Personal Camputer AT's. Functional units
cammicatebetweeneadxotherbyar:thermtoamnnicatimms. In
addition, ancther IBM PC AT which inplanentsthesmxceardsirﬂ(
transitionsoftheAmiscomsectedonﬂlem:en\etms. This TBM PC
ATisusedtobeginaxﬁerdtheexemtionoftheteﬁtalgoriﬂmardto
generate a graph diagnostic file recording all events during the
execution of the AMG. At the present stage, the source transition

time cannot be adjusted to control the injection rate and this rate is
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always equal to a small write time. Thus, it is not possible to check
the entire ATAMM operating point design procedure on the testbed.
However, two experiments are carried out to show the effect of curmmmy
transitions in improving TBO1g and the use of control places to
reduce resource requirements. 'Iheanalyzerisusedtodetexmi.reme
performance of the test algorithm from the graph diagnostic file.
Detailed information about the testbed can be found in (20].

Five test algorithms are chosen to test the design procedure,
performance model, and transformation techniques on algorithms with a
wide range of structural characteristics. Execution of all five
algorithms were similated but anly two algorithms were actually
implemented on the testbed, mainly due to the resource limitations and
inability to control the input data injection interval. The results
are stated and analyzed for each of the test algorithm execution in
the following discussion.

Test 1. 'IheprimaxyobjectiveofthiStestistosththeuseofa
dummy transition as buffer in reducing the time/token ratio of a
parallel path circuit. Experimental time performance is also campared
with the theoretical time performance predicted by the performance
model. 'meteﬁtMardatransformdtestPM;amslwwninFigure
4.9(a) amd (b) respectively. The purpose of the dummy transition is
to reduce the time/token ratio of the parallel path circuit for the
parallel paths between transition 1 and 3 in Figure 4.9(a) so that
TBOrp is improved to the time/token ratio of the largest process
circuit. All the transition times are expressed in seconds. Priority
orderirgfranhighesttolmtinmetest»ﬁarﬁtransfomedtest

AMG are (3, 2, 1) and (4, 3, 2, 1) respectively. The dummy
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Figure 4.9. (a) AMG for Test 1. (b) Transformed

AMG for Test 1.
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transition is implemented as an active transition of zero process
time. Read and write times of the transitions are assumed to be 220
ms and 255 ms for simulation and theoretical performance evaluatiaon
(these camunication times were measured for the testbed in [20] for
two functional units). Lower bounds for TBIO and TBO are calculated
for both the test AMG and the transformed test AMG. It is assumed in
similations and experiments that no resource is needed to implement a
dumy transition. Both the AMG's are executed and simulated for two
ﬁmtionalunitswhidmarememaximmrmmrcerequiranentsto
achieve TBO;p ard TBIOrg in either case. Although experimental
anisizmlatedtineperfomanceareacpectedtobemomard

TBO; g/ thereanbesanedifferencesmetothefollmrimreasons.
The similated performance measures are always a little higher than the
theoretical expected performance. This is due to lost clock cycles in
assigning transitions to resources and the fact that even a dumny
transition will also require a resource, though only for a small
duration. Experimental time performance values are higher in scame
casesfranthetheoreticalexpectedtimeperformanceduetooneor
more of the following reasons. First, Ethernet cannot implement more
than one read or write operation at the same time. Second, as the
dummy transition is nonideal, it requires a resource. Third, read and
write times for NMG transitions were measured with no contention,
whichisncttruewhenammberoftransitionstrytocmmmicateat
the same time. Fourth, there is a slight increase in actual process
times for transitions due to interrupt from other functional units.
Experimental and simulation results for both AMG's are presented in
Figures 4.10 through 4.13 and campared with theoretical performance
lower bounds in Table 4.1. The node activity display shows the



TABLE 4.1

COMPARISON OF RESULTS FOR TEST 1

Experimental | Simulation Theorstical
Results (s) | Resuits (s) LB's (s)
Algorithms| Av. Av. Av. | Av.
T80 | TBIO | TBO | TBIO TBC)Ln TBIO
AMG for Test|13.13|16.41 {13.28]16.53 13.17 18.425{
1
Transformed.
AMG for Test 9.23| 16.43| 9.1 |16.53 8.38518.425(
1
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Figure 4.13. Experimental results for the transformed AMG in Test 1.
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execution of transitions with time in the order of transition mumbers,
with transition 1 being the lowest. TBI, TBO, and TBIO of the
input/output display are to be divided by 100 for converting all times
to secords. From the input/cutput display there is a significant gain
in TBO by the transformation. Performance varies very little with
task inputs. Fram the table, itcanbeseenﬂmat'rmlaisinpmved
from 13.17s to 8.695s by the dummy transition. It can also be seen
that the experimental and simulated performances are very close to the
theoretical lower bounds of performance, except for the TBO of the
transformed test AMG. This is primarily due to the fact that the read
of transition 3 and that of the dummy transition in Figure 4.9(b)
cannot occur at the same time. Also, as there are only two resources
with the priority of transition 1 being the lowest, no new task input
will be accepted until the operation of the dummy transition is
campleted. All other results are as expected.

Test 2. This test illustrates the use of control place to reduce
resource requirements (peak of TRE) while maintaining TBOjg. Also,
theoretical and experimental time performances are campared. The test
AMG and the transformed AMG are shown in Figures 4.14(a) and 4.14(b)
respectively. The test AMG of Figure 4.14(a) requires three resources
to operate at TBIO;z and TBOjp. The AMG is transformed as shown

in Figure 4.14(b) which achieves TEOrg with only two resources at

the expense of increasing TBIOjg (assuming that no resources are
required for the dummy transition). All the transition times are
expressed in seconds. Priority ordering from highest to lowest for

the AMG of Figures 4.14(a) and 4.14(b) are 4, 2, 3, 1 ad
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Figure 4.14. (a) AMG for Test 2.
(b) Transformed AMG for Test 2.
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5 3,4, 2,1 respectively. Read and write times for each NMG
transition were measured in [20] to be 0.275s and 0.31s respectively
for three resources. The test AMG of Figure 4.14(a) and the
transformed AMG of Figure 4.14(b) are run on the testbed and simulated
with three and two resources respectively. Experimental and
cimilation results are described in Figures 4.15 through 4.18 and
campared with theoretical lower bounds in Table 4.2. In Figures 4.15
throuch 4.17, TBI, TBIO, and TEO are divided by 100 to get time in
seconds. The times in the input/output display of Figure 4.18 are
divided by 18.2 to get time in seconds. It can be cbserved that the
transformed AMG achieves almost the same TBO as the original AMG;
however, TBIO is increased by nearly the time for transition 3 of
Figure 4.14(a) in the experiment and similation. The differences in
experimental results from theoretical lower bounds for both the AMG's
are primarily due to nonideal dummy transition and Ethernet
camumication problems, as described in Test 1. The difference in the
similation results from the theoretical expected performance is mainly
due to lost clock cycles inassignj.ngtransiti’cnstorsmrcesarﬂdue
to nonideal dummy transitions. The experimental performance for the
transformed AMG unexpectedly went through a wide variation initially.
One probable reason is the lack of proper injection control, which may
cause the cammmication software (for implementing Ethernet
camumicaticn) to be unpredictable. All other results are as
expected.

Test 3. This is a similation for the execution of a test algoritim
shown in Figure 4.19(a) to check the ATAMM operating point design

procedure. Let T = 1000 time units. The read and write times of the



COMPARISON OF RESULTS FOR TEST 2

TABLE 4.2

Experimental |Simulation |Theorstical
Results (s) | Resulits (s) LB's (s
Algorithms Av. Av. Av. | Av.
TBO | TBIO | TBO | TBIO |TBO,, mouJ
AMG for Test{5.00 | 8.25 | 4.98 | 8.36 | 4.86 |8.255
2
Transformed
AMG for Test 5.18 | 9.81 5.13| 9.56 | 4.70 |9.4
2
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Figure 4.15. Simulation results for the AMG in Test 2.
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Figure 4.19.
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For Test 3, (a) AMG. (b) REST.
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NMG transitions are assumed to be zero. Then TBIO;g = 4T, TTrg =

5T, and TBO;g = 3T. No further improvement of TBO;p is possible

as it is determined by the time/token ratio of the recursion circuit.
Hence, TBIOy; g = 4T, TTarg = ST, and TBOrp = 3T. REST is shown

in Figure 4.19(b). By checking out all TBO > TBOprps Rpay = 3.

and Ry = 2- Also TC = 8T, TCE = 8T units of camputer time. As
fTCE/TBOALB] = 3, Rpax cannot be improved any further
ardstrategisBarxiCcanmtbeapplied. So if R 2 3, the ATAMM
operating point is determined by Step 3 as TBI = 3T, TBIO = 4T, TT =
5T, and TBO = 3T for all task inputs. As there are no floating
transitions, Application 4 is not required. For R = 2, Strategy A of
Step 4 intheA'I:AM(operatirgpointdsigndeterminesTBI=4T, TBIO =
4T, TT = 5T, ard TBO = 4T for all task inputs. The AMG execution at
ﬂwoperatirgpointsdeterndnedbyStepsBaxﬂAaresimlatedarﬂ
results are described in Figures 4.20 and 4.21 respectively. The
achieved time performance in simulation is very close to the predicted
theoretical time performance of the ATAMM operating point design. In
the simulation of the operating point given by Step 3, TBI = 3.02T7 is
used instead of 3T because TBOprp is slightly higher in the
similation due to lost clock cycles.

Test 4. The algorithm of Test 4 is a subsystem of a Space
Surveillance System and is described in Figure 4.22(a) (ignore the
dotted line). Let T = 100 time units. The read and write times of
NMG transitions are assumed to be zero. Then, TBIOjg = TTrg =

TBIOp g = TTarp = 18T and TBOpg = TBOprp = 10T. REST is shown

in Figure 4.22(b). By checking out all TBI > TBOzrp: Rpay = 4

and Ry; = 3. Now TCE = 25T units of computer time. As
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Figure 4.22. (a) AMG for Test 4. (b) REST for
the AMG of Test 4.



[TCE/TBOALB"I = 3, it may be possible to lower Rp,y, to 3.

A control place is placed fram transition 5 to 3 for that purpose, as
shown by the dotted line in Figure 4.22(a). The new REST is shown in
Figure 4.23(a). It was checked by the Ttime program that TBIOrg,
TI1p: andTBOr_Bwereund\angedby‘mecontml place. By checking

all TBI > 10T, Rmax=3' andRmin=2. Hence, Strategies B and C

of the ATAMM operating point design are not appropriate as Ryay will
alwaysbeequalormrethan3. For R > 3, Step 3 of the ATAMM
cperatirx;pomtdesigndetexmitwsm= 10T and TBIO = TT = 18T for
all task inputs. For R =2 Strategy A of the ATAMM operating point
designdetenni.nesTBI=17T, T80 = 17T, and TBIO = TT = 18T. The
graph play forasingletaskarﬂthetotalgramplay for TBO = 10T is
chown in Figures 4.23(b) and 4.24 respectively. By inspection of TGP,
mdmmmytransitionisrequiredtoenforceGPS'I‘ardRESI‘. The AMG
execution at the operating points, determined by Steps 3 and 4, are
similated and the results are described in Figures 4.25 and 4.26
respectively. The achieved time performance in similation is very
close to the predicted time performance of the ATAMM operating point
design.

Test 5. Execution of the algorithm marked graph in Figure 3.3 is
cimilated for all the operating points developed in Section 4.2. All
the process times for the transitions of the AMG are multiplied by T
(T = 1000 time units) in the similation. The read ard write times of
the NMG transitions are assumed to be zero. The results of the
similation for the operating points of Steps 3 through 6 are described
in Figures 4.27 through 4.30 respectively. It is to be noted that the

TBI's used in the simulation for the operating points in Steps 4
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Figure 4.27. Simulation results for AOP of Step 3 in Test 5.
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thm.\ghsareslightlyhighert:anthevaluepredictedinﬂmemm
operating point design. The reason is, again, a slight increase in
the transition times of the AMG in the similation due to the time

needed to assign transitions to resources.

4.4 Summary

A new term, the ATAMM operating point (AOP), is defined to
express all the parameters of an algoritim execution in the ATAMM data
flow architecture. The characteristics of an AOP are explored for
finite resources and under specified transformations. The absolute
jower bounds for performance measures are defined. TBIOa1R/
TTprp: and TBOprp are determined under transformations by control
places and cummy transitions. A procedure is developed for operating
point design given the number of functional units. The performance
model and the use of dummy transitions and control places for
improving time performance and rescurce requirements are illustrated
through experiments and similations. The ATAMM operating point design

methodology is checked by similations on test algoritims.
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CHAPTER FIVE
OONCIUSION

Performance modeling and enhancement for concurrent processing in
the ATAMM data flow architecture have been the primary thrust for this
research. Several key results are achieved in that respect. First, a
performance model is developed to determine performance of an
algorithm executed periodically in the ATAMM data flow architecture.
Second, algorithm transformation techniques are identified and their
applications are illustrated in improving time performance and
resource (camputing element) requirements. Third, an ATAMM operating
point design procedure is developed to specify time performance and
input data injection control for periodic execution of an algorithm on
an ATAMM data flow architecture. Significant results in these three
areas have been discussed. Finally, future research topics are
suggested.

'Ihestartirx;pointofmisrseardlhasbeentodefinethe
camputing envirorment and performance measures for the periodic
exeaution of algorithms in the ATAMM data flow architecture. The
architecture is assumed to have R identical camputers, or functional
units, and executes algorithms according to the rules of ATAMM. These
camputers, or functional units, are also denoted by the terms resource
and camputing element. The performance of an algorithm is measured by
the time between input and output (TBIO), task time (TT), and time

between outputs (TBO). Graph theoretic and resource imposed bounds
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are developed for these performance measures. Also, the graph
execution pattern and resource requirements are defined through GPST,
REST, TGP, and TRE. These results establish a new model for
evaluating performance of algorithms in a hardware independent context
aslongasmeardlitecmreobeysﬂuerulasofmm. Hence, it is
now possible to campare the relative merits of different algorithm
decampositions with respect to performance and resource requirements
for the ATAMM data flow architecture.
'Iheperfonnarx:emodelemblastheusertoidentifythecauseof
performance limitations. It is cbserved that the critical circuits of
thec'cardthecriticalpathsoftheMANBamthedeteminim factors .
for the graph theoretic lower bourds of time performance. Also, the
total resource requirement (the peak value of TRE) is determined by
the shape of the rescurce envelope (REST) and TBO. Hence, it may be
possibletoemanceperfomameorreducezmmerequimentsby
transforming the algorithm marked graph while maintaining its
equivalency. Algorithm transformation techniques are identified which
can be used to improve time performance or aid resource envelope
modification. Transformation of an AMG may, or may not, involve
decamposition of transitions. This research has concentrated on two
of the transformation techniques, namely dummy transitions and control
places. Concentration on these techniques is due to their wide range
of applications, ease of implementation, and negligible increase in
comumication time by transformation. The most important contribution
of this research is the application of dummy transitions which provide
storage space for output of transitions. Dummy transitions have made

parallel path circuits in the Q%G insignificant for determining
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TBO; g- Thus, it isno«lpossibletousecmtrolplacsarﬂdmny
transitions together to change the REST without increasing TBOpg-
Dummy transitions can improve TBO; g by reducing the time/token ratio
of daminant parallel path circuits. Ancther application of dummy
transition is to enforce the REST as the resource envelope for all
task inputs. Hence, it is now possible to enhance the throughput of
an algorithm execution in the ATAMM data flow architecture. Also, the
algoritlmmarkedgramcanbetxansformedaccordin;tothermzroe
capabilityofuwardiitectureortomaketberammereedfor
periodic operation predictable.

The ATAMM operating point (AOP) design procedure uses the
knowledge of the performance model and algorithm transformation to
specify an operating point for executing an algorithm in the ATAMM
data flow architecture. The only transformations used for the AOP
design are cdummy transitions as buffer and control places. The AOP
design describes the procedure to achieve the absolute lower bound of
time performance under these transformations. It proposes three
strategies corresponding to sacrificing pipeline concurrency, parallel
concurrency, and a combination of both to meet the limited
availability of resources. Pipeline and parallel concurrency can be
reduced by reducing input data injection rate or by transforming the
AMG to modify the shape of REST respectively. Although the design
procedure is partially heuristic because of the NP campleteness of the
problem, it allows the user to make a trade-off between pipeline and
parallel concurrency for limited availability of resources.

Test algorithms are simulated by a PC-based simalator [21] to

validate the ATAMM operating point design procedure. The read and
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write times of transitions are assumed to be zero. Process times of
transitions are in the order of hundreds of clock cycles to keep the
algorithms at a large—grain level. This order of transition times are
appropriate as the simulator takes less than ten clock cycles for
assigning transitions to resources. Dummy transitions and control
places are realized as regular active transitions (of zero process
time) or active places respectively. It is assumed that a cdummy
transition does not require a resource. Simulated performance of
algorithms are always very close to that predicted by the AOP design
(within 2.1% for TBIO and within 5.8% for TBI and TBO). One
significant cbservation is that the proper input data injection
interval in the simulation is slightly higher than that predicted by
the AOP design (within 5.8%). These differences between theoretical
and simulated results are mainly due to a slight increase in
transition times by the unaccounted clock cycles in assigning
transitions to resources.

Test algorithms are executed on a testbed ATAMM data flow
architecture [{20] to verify the performance model and the use of dummy
transitions and control places for transformation of algorithms.

Dummy transitions and control places are implemented as active
transitions of zero process time and active places respectively. Read
and write times for the transitions in the experiments are assumed to
be those measured in [20]. The largest process time among the
transitions of the test algorithm is kept at least ten times higher
than read or write times for maintaining algorithms in the large-grain
level. The performance model is verified as experimental time

perfénnances are close to theoretical time performances (within 4.4%



for TBIO and within 9.8% for TBO). The use of dummy transitions for
making parallel path circuits insignificant is verified in Test 1.
'IheTHDofﬂ'letransformedAminTestlisdeterminedbythe
time/token ratio of the largest process circuit (experimental TBO is
6.15% more). A control place and a dummy transition together in Test
2havereducedmetctalrmmerequirementfran3touwhile
maintaining the change in TBO within 3%. The larger difference
between the experimental and theoretical results campared to the
similation can be attributed mainly to two reasons. First,

implementing a dummy transition as an active transition has a much

greater effect in the testbed. The dummy transition requires read and .

write times in the experiments and hence, requires a resource for a
considerable amount of time contrary to the assumption. Second, as
pointed out in [20], Ethernet cannot implement concurrent read or
write operations. This fact is not taken into account in the
measurement of read and write times. The experimental results suggest
that a better method of implementing a dummy transition and a more
accurate camunication model for read and write times are necessary.
There are several topics that can be the subject of future
research. On the theoretical side, the following problems need
attention. In order to properly decampose an algorithm, a specific
definition of large gramularity is needed correspording to the
commnication time of an ATAMM data flow architecture. The first step
istodevelopageneralandmreaccuratemdel for read and write
times. The use of dummy transitions of finite time, control places
with initial tokens, and predefined tokens in performance improvement

and reduction of resource requirements needs to be explored.
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Experiments and similations have shown that the proper input data
injection interval is slightly higher than the predicted value. This
cbservation and the possibility of slight variation in transition
times suggest that autcmatic injection control may be necessary.
Execution of multiple AMG's or AMG'S with miltiple input and output
transitions provide a camplex, but interesting, topic of future
research. Finally, the performance of algoritims with corditional
data flow need to be analyzed. On the implementation side, realizing
dummy transitions as buffers in the functional unit or graph manager,
a better technique for measuring camunication times, a fully
autcmated ATAMM operating point design procedure, and transformations
of algorithms by dummy transitions and control places in real time are

useful topics for future research.
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APPENDIX

This appendix is an excerpt from [11]. The ATAMM model is
studied analytically to determine important graph operating
characteristics. First, a state description which expresses the next
graphmarkingasafwx:tionofﬂweprsentmarkirqardavector
indicating which transition is to be fired is developed. Then the
marked graph properties of reachability, liveness, and safeness are
considered for the Q. Two excellent papers by Mirata [13, 18] on
properties of marked graphs are the sources for mich of the material
presented in this appendix.

I.etheamarkedgraphcorsistirgofmplacwarﬂn
transitions. The m-vector M denctes the marking vector for G
resulting from the firing of same sequence of k transitions. The
following two definitions are necessary to develop the state
description of the Qf.
pefinition A.1: Camplete Incidence Matrix. The camplete incidence
matrix for a marked graph G is the (n X m) matrix A = [aij] having
rows corresponding to transitions and colums correspending to places

and where

ajy =1 +1 (-1) {if place j is incident at transition i
| and directed aut of (into) the transition)

| O if place j is not incident at transition j.
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Mw . An elementary firing
vector u, is an n-vector having all zero entries except for the
i campanent, whiduisldenotingthattransitimiisthekm
transition to fire in same transition firing sequence.

To gain insight to the state ecquation description, it is helpful
to consider the firing of transition k. If agj = -1 (+1), place i
is an input (output) place to transition k. Therefore, transition k
is enabled if M(i) =1 for each input place. When transition k fires,
onetokenisremovedfranead\i:prtplaceaxﬂmetokenisadiedto
each output place. These cbservations lead to the following next
state description for a marked graph.
mwmw For a marked graph G with
present marking vector M4 and elementary firing vector uy, the

next marking vector is given by

M = My + AT

'Ihenextstatedascriptimcanbeusedtoexpmsthegraph
marking resulting fram the application of sequences of elementary
firing vectors. This is done in the next definition and property.
mwm‘lﬂ&r- Let (v, Uy, ...slg) bea
sequemeofelanentaryfirirgvectoxstakj:qamrkedgramcfman
initial marking M, to a destination marking My. The firing count
vector x3 for this firing sequence is defined by

d

X3 = I ug.
k=
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ng_mgw@ For a marked graph G with
initial marking vector M,, the marking vector resulting from the
application of an elementary firing vector sequence

(uy, u?_,...,ud) is given by

Mg = Mo + Al¥g.

Using the state description of a marked graph as a basis, the
property of reachability is investigated. Necessary and sufficient

conditions for a (MG marking vector to be reachable from an initial

transition firings.
Definition A.4: Reachability. A marking My is reachable from an
mitialmarkirgMoifthexee:dstsasequerneofelementary firing
vectors that transforms My to My.

The following definition is required to state the reachability
corditions for a Q%K.
Wﬂ@ﬂw let T be a tree of a
connected marked graph G. The set of (m-nt+l) ¢ircuits, each uniquely
fonnedbyapperﬂirgonecotreeedgetothetree, is called the set of
fundamental circuits of G for tree T [28]. The fundamental circuit
matrix for G for tree T is the (m-n+l) X (m) matrix Be = [bij]
having rows corresponding to fundamental circuits and colums
corresponding to places, andwherebij is determined by the rules as

described on the next page.
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| +1(-1) if place j is contained in f-circuit i and the
| place and circuit directions agree (disagree)

bij = |
| if place j ismtcmtainedinf-cirmiti.

Property A.3: Reachability in the Qf. In a computational marked
gra;i'xG,amarkingMdisreadxablefmaninitialmarkirgvbif
and only if Bgy .= Bg&o,whererisafmﬂamntalcizmit
matrix for G.

Proof. It is shown in (13] (Theorem 3) thattheprope:tyistruefor
markedgra;hScontainin;mtoken-freedirectedcimits. By the
canstruction rules for the Q1G, directed circuits occur in exactly
four ways. First, each NMG consists of a directed circuit which
cmmai:saninitialmark.irgtokenintheprocsskeadyplaoe. Secord,
adirectedcircuitisfornedeadmtimeanm{;islirﬂcedtoamtlwr
NMG. Sinoeoneofthetmlixﬂdmplacaomtainsaninitialnarking
bokenarﬂboﬂiplacsareoontainedinmecirmit,thiscixmitis
never token free. ‘Ihird,directedcirmitsexistinﬂmeac
corresponding to interconnected feedforward paths in the algoritim
marked graph. ‘liadisud'xcirmitcontainsoneormrebadmard
directedcmtroledgecontainiJQoreinitial marking token. Fourth,
dixectedcirmitseadstinthedncoxmpoxﬂingtodirectedcirmits
in algorithm marked graph. Each such circuit contains exactly cne
forward directed edge containing one initial marking token which
represents initial condition data. Therefore, the oG contains no

token-free directed circuits and the property follows.
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Asadirectoomsequemeoftheread-xabilitypropertyofmecﬁ,
itm&shwnthatﬂmmmberoftokensinanydirectedcizmitis
constant. misdmaracteristicisstatedaspmpertylx.m
MM In a OMG, the mumber of tokens
containedinadirectedcizmitisinvariarrtmdertrarsition firing.
Proof . Consider a directed circuit C of a OMG. The entries in the
rwofacimitmatrichorraspaﬂi:gtoCareﬂinool\mms
reprsenti.nge@sinCardamOottmise. If M is a marking
vector,thecatponentomeorresponﬁrgtoCisequaltotlwmmber
oftokensindirectedcirmitCmarki.qu. Therefore, if My is any
marking reachable from an initial marking My, it follows from
Property A.3 that BYy = BY,. 'matis,themmberoftokemin
directed circuit C under initial marking My is equal to the mmber
oftokensmderarwmarkingmdmachablefmuo. This campletes
the proof.

Next, liveness ard a closely related property called consistency
are considered. Itisshomthatthecﬁislivearﬂcmsistent.
pefinition A.6: Liveness. Anarkedgraphcissaidtobelivefora
marking F if, for all markings reachable from M, it is possible to
fire any transition of G by progressing through same transition firing
sequence.

Property A.5: Livepess in the Qf. The conputational marked graph is
live for all appropriate initial marking vectors.

Proof. It is shown in [18] (Property 2) that a marked graph G is live
for a marking M, if and only if, Goontainsmtoken—freedimcted

circuits in marking M. AsstatedinﬂaepmofofpropertyA.B, for
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allapprtpriateinitialmrkirx;sMo,thedGcm'rtainsmtoken-free
directed circuits. Therefore, the property follows.
Definition A.7: Consistency. A marked graph G is said to be
oorsistentifﬂxereexistsamrkingMa:ﬂatransitimfirirg
sequenceSfruanacktoMsudlthateverytrarsitimocwrsatleast
once in S.

Property A.6: Consistency in the QMG. A comnected computational
marked graph G is consistent. In addition, each transition of G
occ.msanequalmmberoftimsinafiringseq\mcefmanarkirgu
back to M.

Proof. Froam Property A.2, if a MG is consistent then there exists a
narkingMd=Moardafiringoamtvectorxd>oS\mmt
ATxd=o. The converse is also true. The incidence matrix for a
markedgrathisan(nxm)mtrixA. If G is comnected, then it is
krmn[za]thattheramcofAisn—l,arxiﬂ'lusthermllspaceofAT
has dimension one. ItisobservedthateadurmofAThasone(l),
one (-1), and all remaining terms are zero (0). Therefore, if Cj

denotes the jih colum of AT, it follows that

Thus, there exists a vector xg = (K k....k]T, k > 0, which
uniquely satisfies ATxd = 0. This campletes the proof.

The final graph property cansidered in this section is safeness.
'Ihispropertyisfirstdefinedandmenitisshwnthatacﬁis

safe.
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pefinition A.8: Safeness. A marked graph G is said to be safe for
marking M if, for all markings reachable fram M, no place contains
more than one token.

Property A.7: Safeness in the OMG. The camputational marked graph is
safe for all appropriate initial marking vectors.

Proof. ByPrope.rtyA.4,thetokenoamtforead1directedcirmitof
the OMG is invariant under transition firing. Therefore, it is
sufficienttoshowﬂxateadledgeofﬂmeonbelm'qstoat1eastcne
directed circuit containing a single token. By the construction rules
fortheoﬁ,all_dﬁedgescanbeclassiﬁedintotwogmlpsmnedgos
arnd linking edges. mcedgesocwringmxpsofmreeandalwaysfomA
a directed circuit containing one token. Linking edges occur in
paixs,oneforwarddirectedarﬂm'ebadmarddirecbad,arﬂalsofoma
directedcixmitwiththeforwarddjrectededgesofthemc. One of
thelinkirgedges,b.xtmtboth,alwayscontainscnetokenwhilethe
forward directed edges of the NMG contain no tokens. Therefore, each
edgeofthedniscontainedinadirectedciralitwithonetoken,ard

the property follows.






