
Final Report, NASA Contract No. NAG-I-812

Study of Gortler Vortices by Compact Schemes

Monitor: Thomas B. Gatski

NASA-Langley Research Center

Hampton, VA 23665

Part 1:

/tJ-

Compact Scheme for Systems of Equations Applied to Fundamental

Problems of Mechanics of Continua

by 3erzy Z. Klimkowski

Department of Mechanical Engieneering

North Carolina A &=T State University

Greensboro, NC 27411

tel: (919) 334-7620

Abstract. Compact scheme formulation was used in the treatment of bound-

ary conditions for a system of coupled diffusion and poisson equations. Models

and practical solutions of specific engineering problems arising in solid mechanics,

chemical engineering, heat transfer and fluid mechanics are described and analysed
_'_--if _:_£ _'_ _.

for efficiency and accuracy. Eis report is limited tb two-dimensional cases_ ai_d _

intended to present a new method of numerical treatment of boundary conditions

common in the fundamental problems of mechanics of continua. _""_ iTM v _ _ <__-_

r
_., 5 _ :

(NA_A-CR-I_849_) COMPACT SCHEME FOR SY_TFMS

OF [&UATI_N_ APPLIED TO FUNnAMENTAL PRL]P_LEMS

OF ._LCiiA,_ICS OF CONTINUA _inal Report

(North Carolina A_ricultural 3nd Technical
.State univ.) 58 p C£CL 20#

N90-Z129Z

Uncl .is

631 .{6. 0272_45



Chapter 1

Introduction

Among various types of domain decomposition methods, the work of M.E.

Ro_e et al. on initial-boundary value problems by finite volume methods is gaining

well-deserved attention. This approach offers a fresh look at century-old problems

arising in the mechanics of continua. As can be seen from the literature review at

the end of this report, the growing body of that effort is not yet available to wider

readership. Cited work is primarily theoretical, whereas here some two-dimensional

problems arising in solid and fluid dynamics are solved in conjuncture with Rose's

formulation and the presentation of the method itself is reduced to the necessary

minimum.

All the presented applications involve the numerical treatment of harmonic and

bi-harmonic operators. Therefore, some simple facts about the Poisson equation

have to be reviewed first.

For a plethora of problems, the following equation is created:

gradw._ = F (1.1)

It is customary to apply divergence the theorem and rewrite Eq. 1.1 in the form:

f V2w dg= F (1.2)
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For two-dimensional rectangular grids this procedure leads to a standard five-point

stencil representation:

_z(Wi-l,j -- 2wi,j + Wi+l,j) + _;y(wi,j-1 -- 2wi,j + wi,j+l) = fi,j (1.3)

1 and my 1where Jcx -- zxx.zx-"-_ - zxv.zxy"

The right-hand side term fi,j is usually interpretted as a source (per unit volume

or area) and is given at the center of each cell.

However, this entire procedure can be easily modified for a new, specific defini-

tion of the normal derivative.

For reasons to be explained shortly, consider another function ¢ = ¢(x, y). It is

assumed that the computational domain D is divided into I * J non-overlapping,

rectangular cells and the symbol bid refers to the value of the function ¢ at the

center of (i j) -th cell. Whenever this argument of the function is displaced by half-

width of cell 'left' ( 'right' ) the same function will be referred to as ui-,j (ui+,j).

Similar notation is used when 'upward' or 'downward' displacement is considered.

A simple diagram for the above notation is presented in Fig.1..

ui,j+

ui-d ¢i,j ui+,j

Ui,j-

Fig.1. _)ij cell.

Half-step normal derivatives are given by:

2

v+ij - Ax (Ui+'J - ¢ij) (1.4)

2

v;i - Ax(¢,i - u,-,i) (1.5)
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+ Ay(uo+ - (1.6)Vy ij --

2

v;-/i - Ay(¢ i - uo-) (1.7)

It is assumed that cells 79/j form a non-overlapping cover of the entire compu-

tational domain 79 and it will be hereon required that functions u and derivatives

v be continuous across centers of faces of neighboring cells. It was shown in [1]

that values ¢ij play only auxiliary role, whereas the requirement of the continu-

ity of normal derivatives furnishes additional equations necessary to complete the

formulation. This requirement can be written in the form:

1)ti j : V'_i+l,j (1.8)

+
vyii = Vyi, j+ ] (1.9)

Substituting u for w, and yet unspecified, function -W for F, the entire analysis

is repeated for half-step derivatives 1.4-1.7, for each cell 79ii. This time however,

direct summation replaces the use of the divergence theorem. As a result the

following system of equations is obtained:

7x(ui-,j -- 2¢i1 "b ui+,j) "-k 7y(Ui,j- -- 2¢ij q- ui,j+) -F wij ---- O, (1.10)

where: % = 2_, and 7v = 2_v"

This should be complemented by equations stemming from the continuity of

normal derivatives.

The scheme introduced above is an example of a new, weak compact scheme,

in terminology introduced by Rose , [1]. 'New' refers to an improved modeling of

normal derivatives; the half-step formulas that were absent from [4], whereas 'weak'

refers to the fact that only derivatives normal to faces of cells are involved. No com-

prehensive study of the practical applications was presented to date. Some pilot

results are given in [6]. Numerous problems arise when applying compact scheme

in higher dimensions and/or systems of equations. Among them, the difficulty of

matching this 'stingy' formulation with an equally efficient numerical procedure. In



the context of standard engineering problems of continuum mechanics, three differ-

ent types of solutions were attempted. The first one, based on Paceman-Rachford

alternative direction implicit (ADI) scheme [2], revealed serious stability problem.

Second attempt involved the application of Kaczmarz algorithm [3] for the entire

system of equations (including the ADI) and was hampered by slow covergence and

low accuracy, although several potential advantages became apparent. Finally, a

compromized approach based on the Gauss algorithm was tested and proved to be

a viable alternative.



Chapter 2

Coupled Systems of Equations

For the square domain E), we will consider a coupled system of time-dependent

equations given by:

0

cg-_kI, : V29 - f (2.1)

v_e = __. (2.2)

We will impose the boundary conditions in the form:

¢(x, O) = ¢I,(x, 1)= 0(0, y) = ¢(1,y) = 0 (2.3)

and

_o(x,0_-_o(x,l__-_o_0,__-_o/1,_:0 (_4_
Initial conditions are given only for the e-function by:

• (O,x,y) = _0(x,y) (2.5)

It is important here, that the boundary conditions are imposed only on the

function ¢I,, therefore the method of solution considered further in this report, has

6
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to take into the accountthe transfer of theseboundary conditions. Considerations

basedon Green's theorem lead to a simple resolution of this problem.

Combining Eq's 2.1 and 2.2 with

i(&sV2tIs _ _V2O)dV = j_(OVtIs - _VO) • ndS

I"

the following relation is obtained:

(KSV_ - ¢2V_) * ndS

Furthermore, introducing the notation:

v= V¢2

u = V_

vn = V_ * n and

u,, = V_ * n , respectively, and applying another form of the Green's theorem:

(2.6)

(2.7)

one arrives at:

IVO, VFdV+ i{V2FdV = /{VF,ndS (2.8)

1 d iu2d V +/(tiff+ _IIf)dV = (2.9)2 dt

O u unCP]dS.+ .)-57

This relation, Eq. 2.9 above, constitutes the energy principle for the entire sys-

tem. For the type of boundary conditions expressed by Eq. 2.3-2.4, the uniqueness

of a solution for a steady case can be easily proven.

Consider the forcing function, f, to be equal to zero everywhere in the com-

putational domain, :D. Then the function • becomes a solution to the Laplace
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equation. Moreover, the boundary conditions are uniformly equal zero and, as a

result • = 0, everywhere in :D. For the time-dependent problem, the analysis of

Eq. 2.9 leads to the conclusion that the system has a contracting property, that is,

solution converges asymptoticaly to zero, everywhere in 7?.

It is worth mentioning that the boundary conditions used here are related to

the dissipative boundary conditions in the sense of Kreiss [8]. In fact, the left-hand

side of Eq 2.9 needs to be non-positive for the assertion about the uniqueness of

the solution to hold, just like in Kreiss conditions, except that his statements were

applied to a single function relations. This observation will be very useful for some

practical applications considered further in this work.

Discrete Energy Principle

In the context of compact schemes, the discrete equivalent of the energy prin-

ciple was first proven for the diffusion equation by Rose [9] and [10]. Derivation,

below, constitutes its extensions necessary for cases including coupled systems of

diffusion and Poisson equations.

The notation introduced for gradients will be used in rewriting the system of

Eq's 2.1-2.2. in the form:

w = u (2.10)

vv = ,, (2.11)

V.u+_ = 0 (2.12)

0
-x:._ = V.v-f. (2.13)
Ut

It is easier to follow the derivation when u and v are interpreted through their

respective components, namely, u = (p, q) and v = (r, s).

It will be assumed that the Cartesian grid is uniform with steps Ax, and/Xy in x-



and y-directions respectively. In the sameway, /kt is a step in time.

Following [1], half-step formulas for derivatives are introduced, capitalized Greek

letters refer to values of functions at centers of elements:

2

p+ - Ex(¢,+_,j - _,i) (2.14)
2

P_ -- _x(_i'J - ¢i-_,j) (2.15)

2

q+ - Ay (¢i'J+½ - (IN,j) (2.16)

2

_ Ax(_i,i-¢i,j_½) (2.17)q_

2

,'+ - £d(¢_+½j- _,,i) (2.1s)

ri-i - 2_x (q2i,j - ¢i_½,j) (2.19)

2

s + - Ey(¢i,j+½ - 9i,j) (2.20)

2

s_-;.- Ax (_'_ - ¢',J-½) (2.21)

Standard differencing and averaging operators ( in time and in space ) will be

used extensively:

1

#_7 = _(7i+½ +'h-}) (2.22)

5_'7 = (7i+i-'h_½). (2.23)

Similarily, for y-direction and time operations. In order to make the notation

more transparent, "tilde" ( like in _ ) and "t" subscript ( like in ")'t ) will be used

for time averaging and time differencing, alternatively.

Applying the # and 6 operators to the half-step formulas, Eq 2.14-2.21, as it

was done in [1], important relations for finite difference operators are obtained:

Ax#xp = 6_¢ (2.24)
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Ay#_q = 6¢ (2.25)

Axpxr = 5x¢ (2.26)

/kypys = 5y¢ (2.27)

Ax 5
#z¢ - T zP (2.28)

= #y¢- -_-byq (2.29)

Az5 r
= '_¢- T x (2.30)

q2 = #y¢--_-bys. (2.31)

Indices were ignored in the above formulas. The very nature of differencing and

averaging, presented here, produces additional identities, regardless which of the

variables, x, y or t is involved:

= + (2.32)

= + (2.33)

The first of the identities, Eq. 2.32, constitutes the fulcrum of the proofs con-

tained in [10], because of the simple fact that ½5t(72) = #t(7)bt(7). This was

followed by a suitable defintions for both terms on the right-hand side.

As it was already mentioned before, the continuity of normal derivatives will be

required for any two adjacent cells, e.g. pi,+. = P,+I,j. This fact is essential in the

formulation of boundary conditions corresponding to Eq. 2.4, but it also manifests

itself in rather non-intuitive spatial relations, specific to the compact scheme. We

will re-interpret the model system, Eqs. 2.1 and 2.2, using the discretization al-

ready introduced.

Equations:

1 1

Ax _xPiJ + -_ybyqO = - ff2ij (2.34)

_t_tff2ij = #t( _-----_xrij -t- _-_ysij) - #tfij (2.35)
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areconsistent with the system 2.10-2.13.In fact, the introduction of Eqs. 2.34and

2.35 defines the way in which spatial and time relations will be handled. More-

over, theseequations,Eq's 2.24-2.31,assumptionsabout the continuity of normal

derivatives and relations 2.32-2.33aresufficient to prove the discreteenergyprinci-

ple. Only a sketchof this proof will be presentedhere,becausenecessaryalgebraic

manipulations are tediousbut fairly elementary.

Consider the expression " ll, zt¢_tq2 ". Using the identities 2.24-2.31 in Eq.

2.35 it can be proven that:

1 = (2.36)At

There is, however, an additional relation obtained through the time-differencing

of Eq. 2.34. Applying similar algebraic manipulations to this relation, one obtains:

/_t#t_Stff 2 _ _xSZ(¢)pt) - _-_--_Sy(¢qt)- #_[_(p2)t] - #y[_(q2)t ] (2.37)

Both relations, Eq 2.36 and Eq. 2.37, are valid for each cell in 79. In order

to finish the proof, terms #_(15Y) and #y(_g) have to be eliminated. This can be

accomplished by a formal manipulation of Eq. 2.34. First the relation:

1 1

Ax,5_(¢p)--_ySy(¢q) = -9 2 + #_(pr) + gy(qs) (2.38)

is obtained, and a simple observation can be made. In spite of Eq. 3.33, Eq. 2.38

can be rewritten for time-averaged quantities, because it was originally based on

linear, spacial relations, that could have been time-averaged beforehand.

Recombining Eq. 2.36 and Eq. 2.37 with Eq. 2.38 ( for time-averaged quanti-

ties ), the formal equivalent of the energy principle per cell is obtained:
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#x[(Ip2)t] + py[(lq2)t] + _2+ _]_ ___xSZ(_) + _5y(¢_) (2.39)

In order to produce a more transparent form, Eq. 2.39 has to be written for

each cell of the domain and then the summation can be be performed. Some of the

terms on the right-hand side cancel due to the requirement of continuity of normal

derivatives, as well as the continuities of functions themselves, which is enforced

implicitly through the notation already introduced. In the most consise form and

neglecting the forcing function, the final result is given by:

2Lt,Stll_ll2+ 11_11z

_i=1.....l,j=J[_(_ -_-pt) - _)pl/k,y-

_i=l,...,I,j=l[_(_-_-pt) - _)pl/_y-_-

_=_,_=i,...,J[_(_+ q,) - _]Ax -

_]i=l,j=l.....J[¢(r-l-qt) -- _)q]/_x.

(2.40)

The analogy with the Eq. 2.9 is complete in the sense that integral norms

are replaced by the discrete-summation ones. Moreover, the homogenous bound-

ary conditions for the function • and its normal derivatives are enforceable in a

straightforward way. Therefore, the discrete solution is bound by the boundary

and initial conditions and should converge well. In fact, second order accuracy

is expected for the ¢I, function, its derivatives and its Laplacian. The generalized

dissipative boundary condition_ expressed in Eq. 2.9 and Eq. 2.40, need not to be

exactly homogenous. The proper statement should be limited to the requirement

of non-positivness of the right-hand sides of these equations. This fact is particu-

larily tempting, because the Eq. 2.1 is a diffusion equation by itself, whereas the
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result of Eq. 2.40holds regardlessof what kind of boundary conditions are imposed

on function 9. This is true, regardlesswhether the specific implementation of a

numerical scheme,at somesolution step doesor doesnot impose someadditional

numerical boundary conditions on this function. Furthermore, there should be a

plethora of caseswhere the diffusion equation, by itself, should have a unique and

well-behavednumerical solution for someregionsin 79,thus forcing the uniqueness

of the other, coupledfunction (I,.

In relaxation of the requirementsstated in Eq. 2.4, two points of view needto

be taken into the account:

• First, as it was proven earlier by Rose [ 9 ],[10], for the diffusion equation,

similar discrete energy principle can be derived. Therefore, the additional

boundary conditions on • in some region, say :D_0, is correct, provided that

on the circumference of this domain 0:D_0, the dissipative conditions for the

diffusion equation are met. Moreover, for a coupled system of equations, the

dissipative nature of the boundary conditions for a system may be a result

of a coupling and a particular shape of the boundary.

• Second, for a number of important engineering problems, dissipative nature

of the boundary conditions may sometimes be proven using fairly elementary

physical arguments.

Example 1. Static load on a rectangular plate.

In Chapter 4, Eqs. 2.1 and 2.4 are used to describe deflection of a thin, square,

homogenous plate under a static load f. The function • is interpretted as a

displacement. Homogenous boundary conditions represent the solid support, and

the zeroing of normal derivatives is usually referred to as "clamping".

If no "clamp" is required on one of plate's edges, say y = 0 or the "bottom"

edge, then in the vicinity,

0_O
--q2 -- (2.41)

Oy 2
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and

u, = N (2.42)

have the same sign, except for some very complicated distributions of the load. This

is due to the fact that the Un term represents the slope while the other term, -_

describes the attenuation of this slope away from the edge. Since the displacement

of all edges is still assumed to be zero, boundary conditions for the entire system

are dissipative. In this case, the imposition of "unclamped" boundary condition for

a specific edge is necessary, because the term -_un is senstitve to the orientation

of the normal vector.

Example 2. Driven cavity flow.

In Chapter 5, modified Eq 2.1 and 2.3 are used to describe a flow in a square

cavity. Functions q2 and • represent vorticity and stream function, respectively.

Homogenous boundary conditions imposed on the stream function correspond to

no-penetration requirement appropriate for solid boundaries and/or streamlines,

whereas normal derivatives of the same function, represent components of velocity,

tangent to the boundaries, which are zero, due to the no-slip requirement. It is as-

sumed that three of the walls are stationary and the motion of the fluid is imposed

by a steady movement of the third "wall" in its own plane. In agreement with the

formulas:

and

0O (2.43)
vx- Oy

0O (2.44)
Vy -- OX '

value of Un represents the velocity of the "plate" driving the motion. At the same

time, • is the vorticity at a center of a cell adjacent to the moving boundary. It
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is a matter of a simple verification to realize that un and • have always the same

sign. Since homogenous boundary conditions for • are still required, boundary

conditions are dissipative.

Example 4. Mixing motion driven by an agitator.

Another example of fluid motion is of concern here, because it represents yet an-

other way of imposing of boundary conditions on the system discussed in this

report. It is assumed that on a circumference of a square domain T), no-slip and

no-penetration boundary conditions are imposed. At the center of the domain, at

centers of some centrally-located cells, a sinusoidal variation of vorticity is required.

This emulates a motion of a "square" agitator/impeller of a mixer.

The dissipative nature of boundary conditions is probably a result of the separa-

tion of energy principles for the vorticity and stream functions along some unspeci-

fied flow line. This can also be discussed using straightforward physical arguments.

Consider the tem:

eu, = ¢(-vyn, + v,ny). (2.45)

In agreement with already introduced formulas, we will sum this term along the

circumference of a square region T), surrounding all the cells representing the ag-

itator. When vorticity q has a positive value, then there will always be a region

in which vorticity has a postitive value, due to imposed continuity of all functions.

This holds, for grids which are fine enough and provided that it is the agitator that

drives the fluid motion. Summation corresponding to the term :

/  (-vynx + (2.46)

reveals that it is always negative . The other part of the integral depends on the

proximity of the solid walls and the strength of the mixer. That is, in some specific

cases, its absolute value may be smaller than the other part. This itself suggests

that under some circumstances, the solution to the flow "inside" the agitator may
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be unique. As a result, the function ¢I,which is the stream function has a unique

solution in the region :De, where no additional conditions were ever imposed on this

function.

In order to prove the existence of the solution in the domain :DE = 79 - 79E, we

will consider a streamline, surrounding the agitating cells, but still internal to the

region :Ds. Since no mass addition is allowed, such a streamline exists, therefore

boundary conditions are dissipative along this line. Moreover, they are such along

the outer circumference of the domain :Dr..



Chapter 3

Note on Crank-Nicholson and ADI schemes

As it was pointed in [1] and in [9], the compact scheme for the diffusion equa-

tion in Cartesian elements can be reduced to a Crank-Nicholson or ADI method

involving only the center-cell values.

Using the earlier-required continuities of normal derivatives, which apply only at

the inner boundaries between elements, the potential forma are obtained.

Consider the following condition:

r_q,j = r_-,o (3.1)

which in conjunction with Eq. 2.18 and Eq. 2.19 implies:

1

_bi+½, j = _(k_i+l, j q- ff2i,j). (3.2)

This procedure may be applied to any of the variables involved in the system, as

well as to the derivatives, c.f. Eq's 2.14-2.21. For example:

1

r+ - Ax (_i+"J- _i,j) (3.3)

1

ri-j - Ax (qli,j - _i-1,/) (3.4)

For a coupled system of equations, Eqs. 2.1-2.2, boundary conditions are imposed

on the function ,I_, therefore for the Poisson subsystem the original formulation is

17
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kept. However,the diffusion subsystemmay becast in a lot simpler form. Referring

specificalyto the Eq. 2.35,it will benoted that the time-stepping operation involves

only center-cell valuesof function 9, provided that the right-hand side could be

rewritten in a similar fashion. This is accomplishedusing identities 3.3 and 3.4.

Further, wewill prove that the entire analysis following the Eq 2.40still holds.

• First, wewill state that:
1 1

/_x.(_zrij --1---_SySij =
(3.5)

1 1

/k:r2(q2i+l,j -- 2q2i,j, + tlJi_l,j) -t- _--_2 (tI/i,j+l -- 2@i,j, + tI/i,j-1)

holds for any "inner" ij-th Cartesian element. This relation has the form

of the Crank-Nicholson scheme, except that it requires the imposition of

boundary conditions at centers of cells, adjacent to the boundary of the com-

putational domain. For the coupled system of equations, however, this issue

may be resolved by an inspection of Eq. 2.34. It will be noted, that for

the Laplace subsystem, all normal derivatives were retained, therefore for all

boundary cells, conditions 2.3 and 2.4 are enforceable. That way, conditions

needed for the values of q at the centers of these cells are obtained.

Second, except for the boundary cells, relations 2.39 hold, together with the

continuity of functions and normal derivatives. Therefore, Eq. 2.40 is valid,

provided that the original formulation is retained for all cells adjacent to the

boundary.

Let's, accept such a scenario; that is, assume that Eqs. 2.33 and 2.34 are

valid there. Now, the off-boundary values of normal derivatives can be re-

placed using the formulas similar to Eqs. 3.3 and 3.4, while the off-boundary

values of • can be replaced using Eqs. 3.1 and 3.2. Furthermore, as it was

already noted before, for each of the boundary cells an equation describing

the center-cell value was already obtained, therefore by subtraction, addi-

tional equations for values of normal derivatives at all boundaries would be

produced. However, using the half-step formulas Eqs. 2.18-2.21 and obtained
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center-cell valuesof q2, "edge" values of this function would be immediately

produced. Finally, except for the corner cells, where some caution has to

be exerted, relations for the boundary values of function k_ and its normal

derivatives could be solved a posteriori , permitting one to handle the diffu-

sion subsystem as a Crank-Nicholson scheme.

For corner cells, the conditions stated by Eq's 2.3 and 2.4 will be strictly

enforced. This allows for a straightforward analysis of edge values of function

tI,.

As it was indicated in [2] the alternative direction implicit method [ ADI ] of-

fers a very interesting alternative to the Crank-Nicholson scheme. It has been

applied to Stokes-type flows before, in [2] and [7]. In [6] the scheme was proven

to be adaptable to the compact scheme formulation. For a two-dimensional

formulation, ADI may be best described as a half-time-step method with x-

and y- differentiations frozen alternatively, resulting in equations being tridi-

agonal.

Unfortunately, for coupled systems of equations, this scheme reveals high sen-

sitivity to boundary conditions. In fact, a very complicated backtracking is

usually necessary in order to assure the numerical stability. It would be very

hard to review how this numerical instability is offset by different numerical

gadgets. We will limit ourselves to only one general statement. Refering to

Eq. 2.39, it is safe to say that in handling x- and y- differentiation at differ-

ent time levels, there is simply no method to guarantee that the boundary

conditions remain dissipative at the same time level.



Chapter 4

Applications in Solid Mechanics

Numerical solutions of two systems of equations were analyzed for efficiency

and accuracy. The first system, Eq's 4.1-4.2 below, describes a steady deflec-

tion of a thin, square, clamped plate, under a distributed load. The second

system, Eq's 4.6-4.7, is an extension of the former one, where additional

time dependence is included. In a rigorous sense, the second system does

not describe the time evolution of the solution to a thin plate problem, it

however serves as a model for other problems in continuum mechanics, like

fluid dynamics, chemical flows and heat transfer. It is particularily suited for

two-dimensional Stokes flows. Some examples of practical interest in fluid

dynamics will be considered in the next Chapter.

Steady Problem

The steady problem, may be solved directly using the transfer of boundary

conditions described already. All the existence and uniqueness conditions

hold just like in the unsteady case. However, the system itself reduces to a

pair of coupled Poisson equations and is not very interesting. Therefore as far

as numerics is concerned, all the steady cases will be treated as asymptotic

(in time) cases of the unsteady formulation.

2O
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Consider three functions u = u(x,y),w(x,y) and fl(x,y) fullfilling the fol-

lowing system of equations:

V2w = fl (4.1)

V2u = -w (4.2)

for0<_x < 1and0<y51

This system is usually rewritten in terms of a single fourth-order equation:

V4u = -fl (4.3)

where typical boundary conditions are:

u(z, 0) = u(x, 1)= _(0,y) = u(1,u) = 0 (4.4)

and

_yU(X,O)= _-_u(x, 1)=_--Tu(O,y)= _-_u(1,y)=O (4.5)

In general, system of Eq 4.1-4.2 with boundary conditions of Eq 4.4-4.5 may

be cast in terms of two eliptic equations with Dirichlet-type boundary con-

ditions. Then, the coupling is accomplished through the forcing term in the

second, and through the boundary conditions for the first equation. Specific

formulation of the boundary conditions depends on the numerical strategy

to be used.

Solution to the steady problem, may be viewed as an asymptotic solution to

the unsteady problem, presented next.
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Unsteady Problem

Time-dependence is introduced ad hoc in the following way:

0

_w = v% - f2 (4.6)
V2u = -w (4.7)

Together with boundary conditions Eq 2.4 and initial condition:

u(0,x,v) = u0(x,v) (4.8)

Boundary conditions for Eq. 4.6 are specific to the strategy and are discussed

as a part of the discretization process. Herein we will only point out to the

discussion following the Eq. 3.5. It was indicated there that the conditions

of the type:

Plj = O (4.9)

are sufficient to produce the boundary relations for Eq. 4.8.

Discretization Process

The square [0, 1] ® [0, 1] is divided into 12 square cells, where indices i,j refer

to cell's centers. Time, t, is indexed with the superscript, n, and the following

notation is used:

tI = 0, (4.10)

t"+½ = t '_+0.5,At,

t N = Trnax

we.,,j = w(t", xi, Yj), (4.11)

¢in,j = u(tn, xi, yj), (4.12)

u_+,j_ = u(tn, xi + 0.5Ax,yj-O.5Ay). (4.13)
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Paceman-Rachford-typealternative direction implicit (ADI) scheme[2] for

Eq. 3.6. takes the form:

wi",+½ - w". . =,,j Ax

+ _y(W_,,j_l -- 2W_,j + W_,j+I) -- 0.5/kt f2ni,+'½

s,J t,3

A twn+l - 2w_, +1 +" n+l _ _y_ i,j-1 _i,j+l] 0"5/ktf_i+,j _

,,+½ _ n+½ n+½,
Wi_l, j -- 2wi, j + Wi+l,j)

(4.14)
.+½ _ n+½ n+½,

wi_l, j -- 2wi, j + Wi+l,j)

(4.15)

where coefficients Ax and Av are given by:

0.5At
Az -- (4.16)

Ax * Ax

0.5At

Av - Ay*Ay (4.17)

Boundary conditions for Eq's 4.14 and 4.15 are not known apriori therefore

they have to be calculated at each step from the solution to the scheme for

Eq. 4.7. As already mentioned, the Poisson problem Eq. 4.7 is cast in terms

of a Compact Finite Volume Method [1]. In the notation used previously,

this scheme can be rewritten in the following way:

wm urn rn m rn rn rn,n + 7z( i-,j -- 2¢i,j + ui+,j) + 7y(Ui,j- -- 2¢i,j + ui,j+) = O, (4.18)

rn _ U m . rn¢i-l,j 2 ,_,j + ¢i,j = 0, (4.19)

¢['}-1- 2u_._ + ¢i,"_ = 0. (4.20)

For square cells, /kx = Ay, it is prudent to take 7_ = 7y = 1 rather than

7z- zxz.ax2 and _[y -- /Xy.Ay'2 This procedure is equivalent to the scaling of

the w function and it improves the conditionning of the entire system. Now

on, this rescaling will be implicitly assumed.
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Boundary conditions for the Eq. 4.18, 4.19 and 4.20 are generated using

Eq.4.4 and this subsystem may be viewed as a Dirichlet problem for the

Poisson equation. In order to account for the boundary conditions expressed

by Eq. 4.5, for cells adjacent to boundary of the computational domain one

would welcome relations of the type:

um = m (4.21)1-,j ¢l,j --_ 0

,, r,, (4.22)uI+,j = ¢I,j = 0

um m (4.23)i,1- = ¢i,1 = 0

u m = ¢i,I = 0 (4.24)i,I+

New boundary conditions for the Eq. 4.14 and Eq.4.15. follow directly from

the Eq. 4.21-4.24. and the definition of the compact scheme. Refering to the

Eq. 4.2. specifically, for the lower ( y = 0 ) boundary, the following relations

are obtained:

U_n m mwrn = --Tx( i-,1 J- Ui+,l) -- "[y(Ui,l+)"i,1
(4.25)

Similar relations hold for all the cells adjacent to the boundaries of the com-

putational domain and need not to be repeated here. Eqs. 4.5, although

similar in form, are not substituted for any of Eqs. 4.18. They, together with

the Eq. 4.14. and Eq. 4.15. constitute a Dirichlet problem for the diffusion

equation. The entire system is now specified for a set of 2I. (2I+ 1) variables,

per each half-time step m = 1, 1 + ½, 2, 2 + ½ ...

ADI Routine

The very first attempt to solve the problem was essentialy based on methods

presented by Peyret and Taylor [2]. Tridiagonal solver for Eq's 4.14-4.15 was
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implemented. Similaxily, Eqs. 4.18-4.20 were cast in time-dependent form and

a specialized tridiagonal solver, accounting for the continuity relations, Eqs.

4.19-4.20, was developed. Boundary conditions for the system were produced

at each time half-step. Moreover, since Eq. 3.25 does not contain relaxation

parameter, various methods of such inclusion were tested. The system was,

nevertheless persistently unstable.

Compact scheme does not benefit from explicit Taylor expansions, there-

fore higher-order boundary conditions become rather convoluted. Except for

methods of Forouk and Fusegi [7], one is still faced with the necessity of back-

tracking in time in order to correct the mid-step boundary values. Rather

than using these complicated methods of obtaining proper boundary condi-

tions, a global approach based on successive overrelaxation routine (SOR)

was tested.

Kaczmarz Routine

The system of algebraic equation, Eqs. 4.14-4.15 and Eqs. 4.18-4.20 together

with the suitable boundary and initial conditions was solved using Kaczmarz

Successive Overrelaxation Scheme [3]. A similar approach was used for an

earlier version of a Compact Scheme by Gatski, Grosch and Rose ( GGR

code, [4]). As noted in [4], Kaczmarz algorithm is very easy to implement,

because equations may be programmed in groups and, therefore amenable to

the out-of-core computations one might add. For a particular system consid-

ered herein, the .A matrix is not only sparse but it has almost cellular form.

It is quite easy to pivot just few rows in order to obtain a system which

can be vectorized and synchronized (parallelism) to a very large extent. The

most simple, although somewhat redundant example of such a procedure can

be given by the following. By subtracting Eq. 4.25 from a suitably indexed

Eq. 4.18, and using the fact that function u has zero values on the bound-

ary, and carrying similar procedures for all cells adjacent to the boundary
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of the computational domain, complicated boundary conditions expressedby

equations similar to Eq. 4.25may be replacedby ¢ij = 0. A dearth of similar

strategies is possible, provided that available computer has at least four pro-

cessors and a typically slow convergence of SOR algorithm does not hamper

the computational process too much. Results presented in this subsection

and parts of the next one were obtained on a 64-bit Convex C120 computer

working in a sequential mode.

For each half-time step, all dependent variables can be renumerated and

absorbed into vector X, with J = 2I * (2I + 1) entries. System can be

symbolically written as:

Ai * X = bi (4.26)

where .Ai is a row-vector corresponding to an i-th equation of the algebraic

system. We will assume that the L 2 norm of .Ai is always 1.

Define the residue to be: resi = Mi * X - bi

and introduce X ° as the initial guess for the vector of unknowns, then the

Kaczmarz procedure consists of the following:

Step 1. Xi_+l = X_' - a.Aires'_; for : i = 1,... J- 1,n = 0, 1,2,...

Step 2. X_+I= Xy

The procedure is repeated until the absolute value of residue rea achieves

required minimum. The value of the relaxation parameter a should vary

between 1 and 2.

Results I

For all the testing some analytic functions had to be selected. They were

constructed in the following way: The x- and y-dependence as well as time-

dependence were introduced through X = x 2 * (1 - x)2, y = y2. (1 - y)2 and
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T - 0.5 * (1 - t) • (2 - t) and the function u was introduced by u = T • X, Y.

Functions w and fl ( f_ ), needed for calculations and error norm evaluations,

were obtained analytically by substitutions into Eq. 4.2 and Eq. 4.1 ( or

Eq.4.6), respectively. Shapes of functions u, w and/1 are drawn in Fig.2.

f function

forcing function /
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w function

"]'u n ctiorl u'
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u function

displacement u
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Fig.2 Functions u, w and fj .
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Steady Problem

The solution process of the steady problem involves the ADI scheme, therefore

the ' t ' variable had to be interpreted as 'ficticious' time and T = 1. In this

case, the actual solution becomes an asymptotic (in time) solution to the

unsteady problem and the initial guess becomes merely the initial condition.

For all runs with 'ficticious' time, u0 = 0 was selected, however in order to

speed up the process a simple tridiagonal solver for Eqs. 4.14. and 4.15. was

introduced ahead of the Kaczmarz routine. This solver was used only once

for the very first half-time step.

In order to establish the second-order accuracy of the method, maximum

error and 12 error norms for u and (unsealed) w functions were computed

for various grid coarsness. Using the values of functions u and w obtMned

analitically following the norms were computed:

[] u Hmaz = max l Uanal- Ucomp I

IIw I1._ = ma_ I w°._l- WcompI

Jlu 112 1-- 2i.(2i+1)(_-]_ (Ui-+,j-+anal -- Ui_÷,j_+comp)2) ½

1

IIw 112= _(E (w_,i..at- w,,jcomp)2)2

I Table 1.a Error norms for u and w functions ]

I maximum residue = 10 -5 I

no.ofcells IIu IIm_ IIu 112 IIw IIm_ IIW 112
32 0.00160326 0.00171 0.02515275 0.01977

62 0.00036485 0.00060 0.01268210 0.00610

122 0.00010021 0.00021 0.00489993 0.00152
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[ Table 1.b Error norms for u and w functions

[ maximum residue = 10 -7

no.ofcell.s IIu IIu 112 IIw IIw 112
32 0.00160131 0.00171 0.02518925 0.01979

62 0.00036470 0.00060 0.01264418 0.00608

122 0.00009965 0.00021 0.00485032 0.00155

As seen from the Table 1, above, the system gives a second-order accurate

solution to the biharmonic equation. The accuracy of the auxiliary function

w is lagging because of rescaling used to improve the conditioning of the

entire system.

The relaxation parameter a should be optimal, in the sense that it should re-

duce to the minimum the number of iterations required to satisfy the residue

criterion Experiments showed that the optimal value of the relaxation param-

eter a varies strongly with the number of cells in the computational domain.

[ Table 2. No of Cells versus optimal a I

32 1.54

52 1.75

62 1.84

102 1.90

122 1.91

202 1.82

Even for an optimal c_, the number of iterations needed to achieve the re-

quired minimum varied strongly with the number of cells and the value of

the threshhold.
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[ Table 3. No of Cells versus the number of iterations ]

Ires1 = 10 -s, res2 = 10 -6, res3 = 10 -s

no.ofcells resl res2 res3

52 62 72 123

102 1016 1201 ...

202 35628 ......

Results presented in Table 3. show that the number of necessary iterations

grows rapidly with the number of cells. Moreover, it is inversely proportional to

the degree of tolerance imposed on the residue of the system.

Unsteady Problem

Because of the rescaling of the w -function, solutions to the unsteady problem

become very expensive; extremly low tolerance on residue has to be required in

order to prevent errors from becoming much larger than the actual of values of the

solution. Nevertheless, a steady problem can still be handled using a supercomputer

with an advantage of significantly lower memory rquirements.

Gauss Routine

The idea of pivoting of the .A matrix, introduced previously was brought to a

natural conclusion by replacing the SOR algorithm with a simple Gauss transfor-

mation with pivoting. The simple IBM matinv subroutine was adopted. The

ADI scheme was also abandoned in favor of Crank-Nicholson scheme, for Eq. 3.6.

For completeness it is given below:

w.n.+ 1 _ W .n, =
1,3 11_3

{wn+l _ 2W9.+1 o n+l_x k i-l,j s,3 + u_i+l,j]

[wn+ 1 _ 2wP.+ 1 wn+ 1+ _y _ i,j-1 ,,3 + i,j+l)

w n -- 2w_,j w n+ ,'_x ( i-l,j + i+l,j)

n . _n+_
w n -- 2w_,j + wi,j+ 1) -- /kt_2i,j+ _y ( i,j-1 (4.27)
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Introduction of the Gauss transformation allowed for a more efficient study

of properties of solutions. Results presentedin Table 1. were recalculated using

matinv routine and are presented below:

Table 4. Error norms for u and w functions ]

[ steady case 1

no.ofcdI_ 11u I1_ 11u 112 IIw 11_ 11w 112
32 0.00154321 0.00167 0.02623457 0.02002

62 0.00036470 0.00060 0.01264307 0.00608

122 0.00009965 0.00006 0.00484978 0.00155

The corresponding unsteady results are presented in Table 5. They were ob-

tained using the same Gauss subroutine but on Cray Y-MP supercomputer. The

upper entries correspond to the error values for time, t=l.0 and the lower entries

correspond to the error values at t=2.0, cf. the definition of function T, in this

subparagraph.

[ Table 5. Error norms for u and w functions ]

[ unsteady case ]

no.ofcells IIu I1,_ IIw I1,_ I1w 112
32 0.00000233 0.00016804 0.00006

... 0.00000195 0.00014060 0.00005

62 0.00000138 0.00003912 0.00002

... 0.00000125 0.00003486 0.00002

122 0.00000040 0.00001284 0.000007

... 0.00000036 0.00001206 0.000006

Results presented in Table 5 show the "quality" of the approximation, since in

the considered example values of functions u and w for t=l.0,2.0 are zero.



Chapter 5

Applications in Fluid Dynamics

In [2], the numerical treatment of a stream function - vorticity formulation

for two-dimmensional Stokes flow was described in detail. Equations are usually

written in the form:

0

g/o + •
_ 1 V2 w (5.1)

Re

0 = V2X+aJ (5.2)

a_- 0X (5.3)
Oy

(5.4)
ay -- Ox

In the equations above, w is vorticity, X - stream function, and ax and ay are

components of velocity vector. Re, is the Reynolds number.

Herein, an application of a weak compact scheme for handling of boundary

conditions is considered. In general, whenever vorticity is involved in the problem,

the strong version has to be implemented, because derivatives normal, as well as

tangent to the faces of the cells axe necessary. However, for a test case of wall-

bound, vortical flows and a specific use of the scheme discussed here, it is still

possible to employ only the less complicated, weak scheme and gain considerable

savings in CPU time and memory.

35
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The form of Eq. 5.1-5.2 is essentially the same as Eq. 4.6-4.7. Values of

vorticity w are evaluated at center-cell locations in the customary way. Second-

order formulas for convection terms are given by:

Ox = x,,i+ - x,,j- (5.5)
Ay

Ox Xi+,j - Xi-,j (5.6)(-5-;x) s = A

(OOJ) = _di+l'J--O2i-l'J (5.7)
OX ij 2Ax

= (ss)
Oy _j 2Ay

A standard Newton-Raphson procedure was used to handle the nonlinear terms.

In the final run the matinv subroutine was abandoned in favor of its fully vector-

ized counterpart from Linpack [5]. Computations were carried out on Cray Y-MP

supercomputer at North Carolina Supercomputing Center, Research Triangle Park,

NC.

Special care was taken to vectorize the code in order to make it efficient. Except

for I/O operations and some complicated indexing routines, the code is thoroughly

vectorized. Statistics showed that 60-87 percent of the time was spent in a subrou-

tine rearanging Newton-Raphson iterations.

Note on Upwind Differentiation

In Chapter 3 the method of the transfer of boundary conditions was described in

detail. The important facet of this methods was the elimination of "edge" values of

the function _. The entire procedure may be interpreted as a solution in the sense

of staggered grids. Moreover, as it was shown in [6], such a formulation improves

the accuracy. For fluid dynamics what is even more important, is the fact that

there was no need to even consider values of vorticity at solid wall boundaries. In a

sense, the center-cell value of vorticity is a resultant of mid-face values of velocity,

c.f. Eq 2.34. This statement can, in principle be carried in full for the potential
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form of the compact scheme . There are, however some conceptual obstacles that

need to be addressed before such a programme can be implemented.

We will rewrite the system 5.1-5.4 in a form:

V*u+q

u = v¢ (5.9)

= 0 (5.10)

v = eVq2-_ (5.11)

0
--_ = V.v-/ (5.12)
Ot

ax = uy (5.13)

a_ = -u_ (5.14)

System 5.10-5.15 is equivalent to Eqs. 5.1-5.4, because Eqs. 5.9, 5.13 and 5.14

guarantee that the divergence of the velocity is zero. Moreover, the energy princi-

ple is readily available:

1 d/u2dV-4-e/ffg2dV-4- (5.15)2 dt

/_f_-f_(-d, re)dr =

J[g2( _-_un-4- Vn) - effgun]dS

Comparing the above equation with Eq. 2.9, we note that although there is a slight

difference in the definition of the v vector, both equations have essentially the same

form. There is an additional term in Eq. 5.15. Using Eq. 5.10 and 5.15 it can be

proven that it is equal zero. Now, the entire analysis following the Eq. 2.9 may be

easily repeated for the system 5.9-5.14.

Surprisingly, this additional term which is handled so easily for the differential

equation, causes rather severe problems in finite difference counterparts. This is

due to the fact that for e = -_ >> 1 the system 5.1-5.4 behaves quite like a

hyperbolic one. In terms of numerical analysis, such a problem is resolved using
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the "upwinding" or "upwind differentiation". Methods for sucha treatment were

already developed in [10], but they were limited to a single diffusion equation.

The essenceof that modification consistsof introduction of cell-Reynolds-number-

dependentweights into formulas of the type 2.14-2.21.

For a coupled systemof equations, suchas the one described in this report, "up-

winding" has to beperformedconsistently for the streamfunction and the vorticity.

Otherwise, due to the nature of the extra term in Eq. 5.16, no convergencecould

be guaranteed. In itself sucha procedure is not very complicated. True difficul-

ties arise when the upwind differentiation is employedin the study of wall-bound

vortices. This is a topic for a separatestudy and only the approximate formulas

5.5-5.9will beused. Resulting numerical instabilities are not severe, they are easily

pinpointed by the inspection of motion graphics, developed for the project.

Results II

Three practical problems presented below, have no known analytic solutions,

therefore the analysis has to rely on a careful study of pictures, including the

animations recorded on a video. Only results for 12x12 cell runs are presented. The

choice of flows was not accidental. In order to keep things simple the advantage was

taken from the fact that for the wall-bound vortices the value of stream function

X on the circumference of the computational domain can be taken equal to zero

without the loss of generality.

Captured Wheel Flow.

A two dimensional vortex is initially at a steady state defined by Vo = c • r.

Vorticity has a constant, positive value. Instantaneously, impermeable walls are

impressed upon the flow. Walls form a square concentric with the center of the

vortex. In figures presented below, Reynolds number is defined as Re = 2"c*L2
V

where c is the proportionality constant of the vortex, L the length of the side of

the bounding wall, v is the coefficient of kinematic viscosity. Boundary conditions

used for this flow are standard for viscous flows. In the numerical context, they

become the same as the ones used for the clamped plate, in the previous section.
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Fig.3 Captured Wheel Flow Re=lO000 .

Time step 0

nlrtl2 Captured XVhecl Flow
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Becauseof the continuous decayof the velocity field, no instabilities were de-

tected.

Driven Cavity Flow.

A two-dimensional flow in a rectangular cavity, Fig. 4, is assumed to be viscous

and initially at rest. The walls are impermeable. The velocity U is impressed upon

the topmost layers of the fluid, instantenously. Reynolds number is based on the

length of the gap and the magnitude of the impressed velocity.
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Fig.4 Driven Cavity Flow, velocity field at different times, Re=10000
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As in the previous case,setting the value of stream function )/equal to zero at

the circumference of the computational domain automatically enforces components

of velocity normal to the wall to be zero. Components of velocity tangent to the

boundary are defined as derivatives of X normal to the wall. Except the side open

to the outside flow, all tangent components of velocity are zero. As discussed in the

paragraph on implementations of Kaczmarz algorithm, it is legitimate to impose

conditions on normal derivatives of stream function, by manipulating the value of

this function at centers of cells adjacent to the boundary. The result is written

explicitly:

)_il = -0.5Ay * U_

In this study only uniform values of velocity U are considered , but in general,

any distribution of velocity is allowed.

Corners of the computational domain, adjacent to the open flow, are singular

points of the solution. Typically, various types of shifts are applied there, but

for the presented scheme, experiments showed that almost any set of boundary

conditions works well. It was decided to use the no slip boundary conditions in

these two corners.

Numerical instability is detectable after the influence of the upper plate reaches

the right, bottom corner of the domain.

Oscillatory Flow.

Finally an oscillatory type of flow is presented. Here, a two-dimensional, vis-

cous, unsteady flow is enforced by a periodic variation of the vorticity at the center

of the domain. The intensity of the vorticity at the core is scaled with the frequency

of oscillations f, and only one dimensionless parameter, Re = fL2 , appears in the

equations. Boundary conditions at the wall are identical to the captured wheel

flow. Initial conditions correspond to the stagnant flow. Fig. 5 represents various

stages of the development of the oscillatory flow.
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Fig.5 Oscillatory Flow, velocity field at different time steps.

Re = 10000.
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In Fig. 6 the same flow, but for Re = 1000 is shown. The background, which is

unfortunately given only in shades of gray, represents the intensity of the vorticity

field. These pictures were transcribed from the color, motion graphics. The video

was used to study in-phase, out-of-phase exctitation of the mixing motion.
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Fig.6 Oscillatory Flow, velocity field overlayed on the vorticity field, at differ-

ent time steps.

Re = 1000.
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It was observedthat the numerical instability becomesimportant well into the

chaotic regimeof the mixing fow.

Discussion

The aim of the presented study was to show the practical advantages of the

compact scheme. All cases were limited to two-dimensional phenomena, although

there were no such constraint in the method of solution. The code used to ob-

tain presented results is somewhat limited by the specific formulation of the fluid

dynamic problem. The method is fully explaineded in [1], where , the potential

advantages of the compact scheme are discussed. However, before this poten-

tim can be fully exploited, the computational efficiency has to be improved. The

main issue is the characteristics of the matrix .A of the system. There is a strong

indication, [1], [6] and [10] that the compact scheme might benefit from the sym-

metric, positive-definite matrices, although this avenue was not pursued in this

report. However, the fact that it is now a coupled system of equations, defined on

staggered grids plus some other aspects of the system of algebraic equations offer

significant adavantages, that would have to explored sometime in the future. At

the present time, however, the scheme offers a viable alternative to other, morc

popular methods. Finally, a chaotic flow was obtained using only 144 Cartesian

elements, this best illustrates the potential of the scheme .
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