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Abstract

A detailed numerical study of two-dimensional flow past a circular cylinder at

moderately low Reynolds numbers has been conducted using three different numerical

algorithms for solving the time-dependent compressible Navier-Stokes equations. It

was found that if the algorithm and associated boundary conditions were consistent

and stable, then the maj or features of the unsteady wake were well-predicted. However,

it was also found that even stable and consistent boundary conditions could introduce

additional periodic phenomena reminiscent of the type seen in previous wind-tunnel

experiments. However, these additional frequencies were eliminated by formulating

the boundary conditions in terms of the characteristic variables. An analysis based on

a simplified model provides an explanation for this behavior.
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Nos. NASI-18107 and NAS1-18605 while the first three authors were in residence at the Institute for

Computer Applications in Science and Engineering {ICASE), NASA Langley Research Center, Hampton,
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1. Introduction

Historically, the unsteady wake generated by a circular cylinder in low-speed flow has

been of great interest to computational fluid dynamicists as well as to theoretical and

experimental aerodynamicists. The Reynolds-number range between 40 and 1000 has

been of particular interest because it spans the transition from steady flow to unsteady

wake flow dominated by the periodic shedding of vortices from the cylinder. The shedding

frequency of these vortices increases with Reynolds number over this range, asymptotically

approaching a constant value. However, Sreenivasan (1985) measured more than one

disthnct frequency in the shedding regime at low Reynolds numbers. In addition to the

vortex-shedding frequency, he found clearly discernible, lower frequencies in the frequency

spectrum for the streamwise velocity measured in the wake. These additional frequencies

were not subharmonics of the primary shedding frequency. He concluded that this was a

feature of the initial stages of transition to turbulence in agreement with the route to chaos

described by Ruelle and Takens (1971). Sirovich (1985) suggested that these additional

modes of oscillation could be described theoretically in terms of the classical yon Karman

vortex street. On the other hand, based on measurements of vibrating and nonvibrating

cylinders, van Atta and Gharib (1987) concluded that the additional frequencies found by

Sreenivasan were due to the aeroelastic coupling of the vortex wake with cylinder vibration

modes. For a nonvibrating cylinder, they found no spectral peaks other than the primary

Strouhal shedding frequency. Recently, however, Sreenivasan (1989) determined that the

cylinders did not vibrate in his previous experiments.

Conflicting results have also come from the numerical studies of this flow. Karniadakis

and Triantafyllou (1989) found no secondary frequency in their computation of the incom-

pressible flow past a circular cylinder using the spectral-element method. Moreover, they

were able to excite a secondary mode by introducing an external forcing function into the

momentum equations. Townsend et al. (1987) did find a secondary frequency in their

finite-difference computation of low-speed compressible flow past a circular cylinder. This

low frequency was found in the frequency spectrum of the pressure at various points in

the wake. However, the frequency was dependent upon the size of the solution domain,

suggesting that it might have been a numerical effect.

The present paper describes the results of further numerical studies which demonstrate

that the secondary frequency found in the compressible-flow calculations was produced by



the far-field boundary conditions. Three different numerical methods were used to solve

the time-dependent compressible Navier-Stokes equations. The first of these was the finite-

difference technique used by Townsend et al. (1987), the second method was a fully-spectral

method (Don 1989), while the third was a mixed spectral-finite-difference method (Don

1989) which was a combination of the other two methods. Computations were made with

the finite-difference code with two sets of far-field boundary conditions. These calculations,

which were made for flow conditions in both the vortex-shedding regime and the steady-

wake regime, demonstrate the effect of the boundary conditions on the frequency spectrum

of the pressure in the wake. With the proper choice of far-field boundary conditions,

no frequencies other than the primary shedding frequency and multiples of the primary

frequency were found at a Reynolds number of 80. In addition, when the "improper"

boundary conditions were used to compute the flow at a Reynolds number of 20, where the

flow is known to be steady, then indeed no shedding frequency was predicted although the

secondary frequency did appear in the solution. These findings were further substantiated

by calculations with the highly-accurate spectral method.

The details of the solution procedures, including boundary conditions, are described in

§2 of the paper. All of the computed results are presented in §3. In §4, a mathematical

analysis of boundary conditions for a model system is presented which shows how additional

frequencies can be produced by the boundary conditions. Finally, a summary of the study

and some concluding remarks are given in §5.

2. Problem formulation and numerical methods

2.1 Governing equations

For the present compressible-flow calculations, the governing equations are those which

describe the conservation of mass, momentum, and energy of an ideal fluid in the absence

of external forces. The nondimensional form of these equations in a general curvilinear

coordinate system is

where

'-_'- +_+ at/ -Re,,.,, \t?¢ + Or/ ]
(2.1)
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and

an av au---- + - + . (2.6)Oy Oz

The nondimensional equation of state is

p = ('7- 1)pT, (2.7)

and the viscosity was given by the Sutherland law

C1T} (2.8)
It-- C2+ T

where C1 and C2 are constants. The ratio of specific heats '7 was 1.4, and the Prandtl num-

ber Pr was 0.72. These equations were nondimensionalized using the following reference

quantities: U,, I = Uoo, P,el = Poo, P_I = p_U_, and T_eI = U_/c, where U_o and P_o are

the free-stream velocity and density, respectively, and c_ is the specific heat at constant

volume. Therefore, the reference Reynolds number is defined as Re_! = U_lD/vref where

D is the diameter of the cylinder and vrel is the kinematic viscosity based on the reference

temperature. However, it shou]d be noted that the Reynolds number used in subsequent

sections of the paper to characterize the flow conditions for which calculations were made

is based upon free-stream quantities, i.e., Reoo,D = UooD/voo.

2.2 Grid

A polar grid was used in the calculations. The grid was generated in the physical (x,y)

plane and mapped numerically onto the computational ([,r/) plane. The _ coordinate

corresponded to the circumferential direction and the r/coordinate to the radial direction.

The grid was stretched in both directions so that grid points were clustered toward the

cylinder in the radial direction and toward the wake region in the circumferential direction.

For the finite-difference calculations, the basic grid had 122 points in the circumferential

direction and 151 points normal to the body. The outer boundary of the grid was located 25

diameters from the cylinder surface. For the computations with the spectral method, the

grid had 64 and 48 points in the angular and radial directions, respectively. Calculations

were made with the outer boundary at both 20 and 22.5 diameters away from the cylinder.

For computations with the mixed spectral-finite-difference method, the grid had 70 and
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J is the Jacobian of the transformation from Cartesian coordinates (x,y) to the general

curvilinear coordinates (_', rt),

o_0_
j-

Ox Oy

and the specific internal energy, E, is defined by

a_ a,7

i)y Ox
(2.2)

[ 1 )]E=p T+_(u 2+v 2 . (2.3)

The elements of the stress tensor are

(2.4)

r_ v =/* aeau --_ + +-- (2.5)
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100 points in the circumferential and radial directions, respectively. For this case, the far-

field boundary was located 22.5 diameters from the cylinder surface. In the experiments

of Sreenivasan (1985), the wind-tunnel walls were located 30 diameters above and below

the cylinder 1.

2.3 Numerical methods

The finite-difference method used in the present study was the original unsplit tech-

nique of MacCormack (1969), which has second-order accuracy in both space and time.

The method is an explicit, conditionally-stable, predictor-corrector scheme. Forward dif-

ferences were used to approximate the derivatives of the fluxes in equation (2.1) in the

predictor step, and backward differences were used in the corrector step. The first deriva-

tives appearing in the viscous flux terms, F_ and G_, were approximated with backward

differences if the flux derivative was being approximated with a forward difference, and

vice-versa.

The spectral algorithm used both the Fourier and Chebyshev collocation methods.

Because of the polar grid, the flow could be treated as being periodic at the boundaries

of the solution domain in the circumferential direction. Thus, the Fourier collocation

(pseudospectral) method was the natural choice for the circumferential direction. Since

the flow in the radial direction was not periodic, the Chebyshev collocation method was

used in that direction. Both of these methods were employed in the form of the matrix

vector multiplication method instead of the more commonly used Fast Fourier Transform

method. To improve the stability of the algorithm, a fourth-order exponential filter (Don

1989) was applied to the differentiation and solution matrices. The solution was advanced

in time using a second-order Runge-Kutta method.

A third approach which combined these two methods was also used. In this case, the

Fourier method was used in the circumferential direction and the finite-difference method

in the radial direction.

2.4 Boundary conditions

A sketch of the solution domain in the physical plane is shown in figure 1. Periodic

boundary conditions for the dependent variables were applied along the cut line in the

1Private communication.
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wake for both the finite-difference and spectral methods. Standard solid-wall boundary

conditions for viscous flow were applied at the cylinder surface. A no-slip condition was

applied so that the velocity components, u and v, were specified to be zero at the surface.

The wall temperature was held fixed at the value of the free-stream temperature' In

the finite-difference code, the density at the wall was obtained from an extrapolation of

interior-point values of pressure in the direction normal to the wall. In the spectral code,

the density at the wall was computed as a part of the solution.

The outer boundary is an arbitrarily-chosen boundary, introduced only to restrict the

computational domain to a finite size. Since this is a boundary across which fluid passes

either into or out of the computational region and since disturbances can propagate up-

stream as well as downstream in a subsonic flow, careful consideration must be given to

the specification of boundary conditions on this outer boundary. If this outer boundary is

located sufficiently far from the cylinder surface, viscous effects axe negligible in the flow

crossing the boundaries except in the narrow region where the cylinder wake is located.

As a result, the proper choice of boundary conditions can be found from an analysis of the

inviscid form of the governing equations.

For a subsonic inflow boundary, this analysis shows that there are three characteristics

coming into the solution domain and one outgoing characteristic. Thus, there must be

three quantities specified at an inflow boundary. Since there are four governing equations,

the numerical method requires a fourth boundary condition in addition to the three re-

quired for proper specification of the boundary conditions in a mathematical sense. In the

finite-difference code, calculations were made with two different sets of inflow boundary

conditions. The first set, which was used in the previous solutions reported by Townsend

et al. (1987), was formulated in terms of the primitive variables u,v,p, and T. At the

inflow boundary, free-stream values of the two velocity components and the temperature

were specified, i.e.,

= (2.9)

vinllow = voo (2.10)

(2.11)

The density was obtained from a zeroth-order extrapolation of pressure from the interior

of the solution domain and the use of equation (2.7). In preliminary calculations in whic h
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only the primary shedding frequency was of interest, this boundary condition gave results

which were not significantly different from those obtained using an extrapolation of the

outgoing characteristic to obtain pressure.

At the outflow boundary, only one analytic boundary condition is needed since there is

only one incoming characteristic. A typical choice is the specification of the static pressure.

However, as demonstrated numerically by Rudy and Strikwerda (1980), this can cause

waves to be reflected from the outflow boundary back into the solution domain, adversely

affecting the solution in the interior of the domain. A nonreflecting boundary condition

based on the work of Engquist and Majda (1977) was used in the present study. Thus, the

pressure at the outflow boundary was found from a finite-difference approximation to the

equation

o-y-pc -_-[- u_ =o

where c is the nondimensional speed of sound given by

c= 1)r

(2.12)

(2.13)

This boundary condition was applied along the outflow boundary where the viscous wake

crossed the boundary as well as the region immediately above and below the wake. Along

the remainder of the outflow boundary, where the flow was essentially inviscid, the pressure

was specified to be the free-stream pressure. The variables u, v, and T along the entire

outflow boundary were obtained from zeroth-order extrapolation, and the density was then

obtained from equation (2.7) using the boundary value of p and the extrapolated value of

T.

The second set of boundary conditions, which was also used in the spectral calculations,

was based entirely on the characteristic variables. An analysis of the inviscid form of

equation (2.1), linearized around the free-stream conditions, shows (Gottlieb, Lustman,

and Streett 1984) that the characteristic variables, with corresponding eigenvalues al =

a2 =/-_-/V, as = U'/V - c, and a4 = U'/_r + c, are

' 1 (1_ )
C_

= Oy_ + E
= (m_ - pu_)q, - (too- p,,_)q_

R1 (2.14)

R2 (2.15)

"7- 1 1 -. E)(_pUoo ._=  Ooo) + ) - + (2.16)
/

R4 = (l_l- pU'_) . .5]'-+- _ -_pUoo . Uc_ -._I. Uc_ ÷ E (2.17)



whereUoo = (u¢¢, v_)is the free-stream velocity, M = (m,_,m,,) = (pu, pv) is the local mo-

mentum, c¢¢ is the free-stream speed of sound, and/V = (_, r_) = (_-_, a--_/-//a---n_2a_,/V,a_, +(a-'_"'_2,at_,

is the unit outward normal vector. At the subsonic inflow boundary, the characteristic vari-

ables corresponding to the three incoming characteristics were specified using free-stream

values. These boundary values then became

F_ -- P_(p_,l_oo,E¢o), i-- 1,2,3 (2.18)

Furthermore, the required numerical boundary condition is

['4 = R4(p,_u,_,-,_--l,_,._,E.,,,_) (2.19)

where values in/'4 are obtained by extrapolation from the interior of the domain in the

finite-difference code and are obtained as a part of the solution in the spectral method.

Similarly, at the outflow boundary, the characteristic variable corresponding to the incom-

ing characteristic was specified, i.e.,

F3 = R3(poo,lVIco,E_) (2.20)

and the values for the other three characteristic variables were found numerically as at the

inflow boundary, so that

F_ : Ri (p.um , lVl.,.n , E.,_,_ ) , i: 1,2,4. (2.21)

At each boundary, the conserved variables were then computed from the appropriate sys-

tem of equations, giving

"y-1
p - (El + ¢1) (2.22)

c_

mu = (¢2r/x + Carlu) + puz¢ (2.23)

m_ = (¢2_v - ¢3r_) + pvc¢ (2.24)

= ¢1 - lPYo_" Uoo + m,u_ + m,_v,_ (2.25)E
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(F3+ F,)

_-1 2

1

= 5(F4- F3), (_3 = F2 ,



3. Results and discussion

Computations were made with all three methods for Mach 0.4 flow at a Reynolds

number of 80. The initial flow field was specified to be free-stream flow everywhere except

at the cylinder surface. Figure 2(a) shows pressure contours (isobars) from the finite-

difference solution using the primitive-variable far-field boundary conditions at a point in

time after the periodic vortex shedding had been fully established. The pressure field for

finite-difference solution using the characteristic far-field boundary conditions is shown in

figure 2(b). The corresponding solution for the fully-spectral code is given in figure 3.

As the computations were made, the values of the pressure were saved at ten selected

grid points in the flow field. At least four of these grid points were located in the wake

region and the others were upstream of the cylinder. For the finite-difference code, the

computed pressure data were saved every twenty time steps, and for the fully-spectral

and mixed spectral-finite-difference codes, because of the larger time step used in these

methods, the data were saved after every time step.

The set of pressure data at each point was analyzed for its frequency spectrum using

a discrete Fast Fourier Transform (FFT) technique. First, the time-averaged pressure was

subtracted from the pressure data to form a time sequence pj of N points, where N = 2 m

for some positive integer m. Second, the Fourier coefficients Fk of the transformation

N-1
_.f L__.k_

F,=A_pje ',,,,, for k=0,1,...,N-1 (3.1)
1=0

were obtained using a pre-coded FFT subroutine. A = 1 in the subroutine used to analyze

the finite-difference results and A = 1/N in the subroutine used to analyze the results

from the fully-spectral and mixed-method codes. The power spectral density dk for wave

number k was found then simply as

dk = BIFI, I_ where k = 0,1,...,N- 1. (3.2)

B = 2IN for the finite-difference results and B = 1 for the others. The Strouhal number

(nondimensional frequency) corresponding to the vortex-shedding frequency was

SQ=kl/(NAt), (3.3)

where At was the time step and kl was the value of k such that

dkl ----max d_ .



Similarly, St2 is the Strouhal number corresponding to the secondary frequency.

Note that, because the power density was found only for discrete frequencies, there

was an inherent discretization error in determining the dominant frequencies in the flow.

The actual peak frequency would be within half of the discretization, or ±I/(2NAt), of

that given by the FFT. In some of the present cases, the resulting error in the Strouhal

number could be as large as 0.003. In an effort to get a somewhat better estimate, for each

dominant wave number a peak in the frequency spectrum was estimated using a three-

point parabolic interpolation. These values were used in table 1, which summarizes the

results found in the present study.

Method Re_.D ]

FD 80

FD 80

FD 80

FD 80

S 80

S 80

M 80

M 80

M_ I Domain

O.4 51D

O.2 51D

0.1 51D

0.4 51D

0.4 46D

0.4 41D

0.4 46D

O.4 46D

Inflow BC Outflow BC

Primitive

Primitive

Primitive

Characteristic

Characteristic

Characteristic

Primitive

Characteristic

Primitive

Primitive

Primitive

Characteristic

Characteristic

Characteristic

Primitive

Characteristic

I st, I st=
.1515 .0165

.1504 .0347

.1564 .0721

.1518 --

.1574 --

.1565 --

.1589 .0225

.1558 --

Table 1: Shedding frequencies computed with finite-difference code (FD), mixed fi-

nite-difference-spectral code (M), and fully-spectral code iS).

These frequencies were based on the computed pressure at a point in the wake 10 di-

ameters downstream of the cylinder and one diameter above the wake centerline. This

location corresponds to the principle one used in the experiments of Sreenivasan (1985). It

should be noted that the frequencies for the finite-difference solution with primitive vari-

ables at Mach 0.4 differ slightly from those given by Townsend et al. (1987), in which the

results were incorrect due to a misinterpretation of the output from the FFT subroutine.

Experimental measurements of the primary shedding frequency in the wake of a circular

cylinder at low Reynolds numbers were reported by Roshko (1953). An approximation to
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the data was given by the equation

21.2 _ (3.4)Stl = 0.212 1 Reoo.D ) "

For a Reynolds number of 80, this equation yields St1=0.1558. As shown in table 1, the

computed values of St1 are very close to the experimental value in all cases. The largest

deviation is 3.47% and most of the values are within 2% of the experimental frequency.

Therefore, the primary vortex-shedding frequency in the wake is well-predicted with either

set of boundary conditions.

Plots of the time history of the pressure and the resulting frequency spectrum at the

selected point in the wake flow from the finite-difference calculations are shown in figure 4

for both sets of boundary conditions. The corresponding plots for the fully-spectral calcu-

lations with characteristic boundary conditions are shown in figure 5. As shown in figure 4,

the solution with primitive-variable boundary conditions produces a low frequency which

is not seen in the spectrum from the calculations with the characteristic boundary condi-

tions. This frequency is not a subharmonic of the primary shedding frequency and was

not found in any of the solutions using any of the three codes when characteristic bound-

ary conditions were employed. Furthermore, the amplitude of the secondary frequency

remained relatively constant at all locations for which the spectrum was computed, in-

cluding a location 10 diameters upstream of the cylinder. At this point, the amplitude

of the primary shedding frequency was significantly lower than in the wake so that the

secondary frequency was the dominant frequency in the signal. These factors suggest that

the secondary frequency is a spurious numerical artifact.

Calculations were also made with the finite-difference code using the primitive-variable

boundary conditions to determine the effect of Mach number on the computed frequencies.

Computations were made at Mach numbers of 0.2 and 0.1 for a Reynolds number of 80.

As shown in table 1, there was only a small effect on St1 as Mach number was lowered.

However, as Mach number was decreased by a factor of 2, St2 increased by a factor of

approximately 2.

To further establish that the secondary frequency is a numerical artifact, calculations

were made for Math 0.4 flow at a Reynolds number of 20. Under these conditions, the flow

in the wake should be steady, consisting of two symmetric counterrotating vortices just

behind the cylinder. Calculations with the finite-difference code produced the expected

11



steady wake with both sets of boundary conditions. However, when the primitive-variable

boundary conditions were used, a secondary frequency appeared in the frequency spectrum

of the pressure in the wake with a value of St2--0.0158. This spurious secondary frequency

did not appear when characteristic boundary conditions were used.

In summary, the calculations presented in this section demonstrate that a secondary

frequency can be introduced into the solution by the far-field boundary conditions. By

coincidence, the value of this frequency was very close to that found experimentally by

Sreenivasan (1985). This frequency was not found when the boundary conditions are

properly formulated in terms of characteristic variables.

4. Analysis

As shown in §3, the secondary frequency disappeared when boundary conditions based

on the characteristic variables were used at the outer boundary, demonstrating that the

secondary frequency computed with the primitive'variable boundary conditions was, in

fact, of numerical origin. In this section, a theoretical explanation is given for these results

using a modal analysis of the effect of inflow boundary conditions on the stability of small

perturbations to the flow. It is shown that the use of boundary conditions based on

noncharacteristic variables causes a temporally-periodic perturbation. Furthermore, it is

demonstrated that the use of characteristic variables eliminates this periodic disturbance.

The theoretical study is based upon a one-dimensional treatment of the Euler equations.

The use of the inviscid form of the governing equations is justified at distances far from

the cylinder since the Reynolds numbers under consideration place the flow well outside

the limits of the Stokes and Oseen regions. The assumption of one-dimensionality is more

problematical. However, it is a reasonably good representation for the calculations in which

a finite-difference method was used in the radial direction and the Fourier collocation _

method was used in the circumferential direction. In fact, it will be shown that the

the0retica]=p-rediCtionsof the secondary, frequency are in good agreement (within 15%)

with the computed values for this case. The agreement with the computed results from

the fully finite-difference code is not as good' although the trend with Mach number is

well-predicted.

The analysis considers a region of flow along the x axis sufficiently far upstream from

the cylinder. The one-dimensional form of equation (2.1), under the assumption of inviscid

12



J

flow then becomes

where

au OF (4.1)
a--f+ a--7= o,

P

U- m ,

E

and m = pu.

F

m

_2

7+P

u(E + p)

In terms of the dependent variables in U, the equation of state, equation

1 .m2.1p=("/-1) E-_(T) j

Equation (4.1) can be rewritten in nonconservation form as

OU OU

--Or + A(U)-_ = O,

(4.2)

(4.3)

where A(U) aF is the Jacobian of the flux with respect to the solution vector U.= _-ff

Linearizing about the steady free-stream conditions, this equation becomes

O (6U) + A(UOO) O (aU) = 0, (4.4)

where 6U U Uoo is the perturbation vector. The matrix A(Uoo) - [0 _1 1 has
= -- [ SU J U=U,,_

three eigenvalues al = uoo - coo, a2 = u_ + c_, and as - uoo. The corresponding

eigenvectors in terms of the conserved-variable perturbations are

and

]R1 = -(6m- uoo6p) + -- u_6p- uoo6m + 6E ,
Coo

R2 = (6m - uoo_p) + -- u_6p - uoo_m + 6E ,
C_

= u_6p - Uoo6m + bE . (4.7)
Coo
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Furthermore, using a linearized version of the equation of state, i.e.,

equations (4.5)-(4.7) may also be written in terms of the primitive-variable perturbations

(6p, 6u, 6p), giving,

and

R1 = -poo6u + 1,5p, (4.9)
Coo

R2 = poo_u + 1--_-_Sp, (4.10)
Coo

]
R3 = coo_p- - 6p. (4.11)

Coo

Any perturbation imposed on the free-stream solution will evolve as a combination of these

eigenvectors. This evolution can be studied locally near the outer computational boundary

by employing the modal analysis developed by Gustafsson, Kreiss, and SundstrSm (1972)

and Osher (1969) to study the stability of numerical approximations to initial-boundary-

value problems.

Consider an inflow boundary point with subsonic flow crossing the boundary into the

solution domain. At this point, a2 = uoo + coo > 0 and a3 = uoo > 0. Therefore, the

characteristic variables, R2 and R3, corresponding to these two incoming characteristics

must be specified. The third one, R1, corresponds to ax = uoo - coo < 0 and thus exits

the domain. To model the situation near the inflow boundary, consider the governing,

equations in terms of the characteristic variables, viz.,

aR1 . c9R1

a--/- + (uoo - coo) _xx -- O, (4.12)

tg R2 c3R2

at + (uoo + coo)-_x = 0, (4.13)

oqR3 /}R3

c9"-'-'[-+ uoo cgx -- O, (4.14)

or

cgR0 tgR,

a-'-t- + as'_'-x = 0, s : 1,2,3. (4.15)

In the one-dimensional case, the finite-difference algorithm described in §3 is equivalent

to a Lax-Wendr0ff scheme and can be written as

,, a, At _, _l{w"+"-- w °'' _ a2"(At)2 / "'" ,,, ,,, X
W; 'n+l = W;' 2A27 .4-1] + 2(Ax)2 _Wj+, -- 2Wj + Wj_,) , j > 0, (4.16)
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where w_'_

(4.16) is solved with inflow-type boundary conditions imposed at Xbou_darv

which are of the form

and

= w'(jAx,nAt) is the finite-difference approximation to R,(x,t). Equation

= (jA_),_-0

and

(R1 + aR2 + eR3)i=o = (R1 + aRM + eR_)i= 1. (4.19)

Thus, equation (4.19) is a zeroth-order extrapolation on R1.

The modal solution ansatz for this case is

R, = A,_i,z n s = 1,2,3. (4.20)

Substituting this solution into equation (4.16) yields the three modal characteristic equa-

tions given by

(_._- _,)_,_+ 2(1- z- _,_)_,+ (_, + _,) = o, _ = 1,2,3 (4.21)

where A, aL_4t Substituting equation (4.20) into equations (4.17) to (4.19) gives the
= AZ "

modal representation of the boundary conditions,

A2 = aA1, (A1 :/: 0) (4.22)

As = flA1 (4.23)

AI(1 - _;1) + aA2(1 - _2) + cA3(1 - _3) = 0. (4.24)

Since A1 # 0, equation (4.24) may be rewritten as

(1 - _1) + aa(1 - _2) + fiE(1 - _s) = O. (4.25)

It is necessary to find z such that [ z [= 1 and _, (s = 1,2,3) such that [ _, [< 1 which

solve equations (4.21) and (4.25) simultaneously. It should be noted that [ z [= 1, z # 1,

corresponds to a solution that is purely periodic in time. If the search for such solutions fails

15

(R2 - aR1)j=o = 0, (4.17)

(R3 -/_Rl)i=0 = 0, (4.18)



(which it does, as it will be shown, when a =/_ =0, i.e., for characteristic specification),

then the boundary treatment does not introduce any spurious frequency. If, under a given

set of boundary conditions, there is a solution to equations (4.21) to (4.25), then the

phase of z gives the temporal frequency of the numerically-introduced perturbation. Of

course, it is hoped that at least one of the _'s will be nearly 1 in magnitude. Otherwise,

the temporally-periodic perturbation will decay spatially as [iclj. In fact, in all of the

calculations with the model, it is always the case that .995 <l a2 l< 1.

In the actual numerical computations presented in §3, the noncharacteristic boundary

conditions (translated to the present one-dimensional model) consisted of specifying the

velocity and temperature ((_u)i=o = O, (6T)j=o = 0) and performing the extrapolation

(P)i=o = (P)i=1Ti=I (4.26)
Too

This is equivalent to

This is not a

(4.17) and (4.18) leads directly to a = 1 and/_ = "7 - 1.

extrapolation on p, then from the relation

TI-T ( pb:o = ( + T-o:

Poo (_T)i:I. (4.27)= ( +

"pure" extrapolation on the density. Using (6u)j=0 = (6T)j=o = 0 in equations

If equation (4.27) were a pure

2coo6p = R1 + R2 + 2R3 (4.28)

(see equations (4.9) to (4.11)) it would follow that a = 1 and e : 2. However, it should

be noted that while _u does not appear in equation (4.27), and hence a = 1 in (4.19),

e must have a value which depends on the solution inside the domain. Therefore, it is

necessary to seek solutions to the nonlinear system (4.21) and (4.25) for a given )% such

that [ z [= 1, z ¢ 1,] _, I< 1, and aa =1. The solution that satisfies z = e'°(0 _ 0),

[ _, [< l(s = 1,2,3) with aa=l then yields the value of e/_ : ("7- 1)e. The numerical

solution of equations (4.21) and (4.25) can be sensitive near I_;, I= 1 so double precision

was used in the numerical solutions of these equations. For a wide range of Moo (and hence

A), it was found that e/_ = -1.24 -t- 0.2, giving confidence in the model _. The ,k used in

2In fact, it can be easily shown that the model boundary conditions (4.17)'(4.19), with a = a = 1,

/_ --- _, - 1, and e found from the solution to (4.21} to (4.25), correspond to a primitive-variable boundary
2-I-m _condition of the form(p)j=o=(pi_:; _= + a(Arm_xi where a = O(1) and m :> 0. Thus, the analysis

is performed on a boundary condition w_ich, within the second-order accuracy of the finite-difference code,

cannot be numerically distinguished from the one actually imposed i.e., equation (4.26).
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c_ _the theoretical prediction, _ : (u ÷ j_-_=, was based on the actual time step used in the

Navier-Stokes codes and Ax was taken as the radial cell size (Ar,,_a=) nearest to the inflow

boundary.

The present theoretical model most closely corresponds to the Navier-Stokes code with

the finite-difference method in the radial direction and the Fourier collocation method

in the circumferential direction. A comparison of the theoretical Strouhal number from

the one-dimensional model with the one obtained from this Navier-Stokes code is given

in Table 2. In view of the fact that the analysis is based on a one-dimensional model,

the agreement between the values of St2 predicted by the model and the computed values

is reasonably good. Furthermore, the model predicts the trend of decreasing St2 with

increasing domain size.

N IAr. z Afoot,,I .od,, I Cst2)oo,.
100 .41 .0053 .0452 .0244 .0296

100 .46 .0053 .0403 .0225 .0264

Table 2: Comparison of secondary frequencies predicted by the ana!ysis and computed

using the mixed spectral-finite-difference code. Moo =0.4.

Finally, it is seen that if the characteristic boundary conditions, (i.e., c_ = /3 = 0 in

equations (4.17) to (4.19)) are used, then the only solution to (4.21) through (4.25) is

A2 = As = 0, tel = 1, and z = 1. It can be shown by perturbation analysis that it is not

a generalized eigenvalue. Thus, any perturbation from the boundary, R1 = Al_Z _ -- A1

will remain constant and small.

6. Concluding remarks

A numerical study has been conducted using three different codes to compute the

unsteady flow about a circular cylinder in low-speed flow at low Reynolds numbers. One

of these codes used a finite-difference method to solve the two-dimensional time-dependent

compressible Navier-Stokes equations, the second used spectral techniques, and the third

used a combination of these two methods. With stable and consistent boundary conditions,

all of these methods were able to predict accurately the major features of the flow such

as the vortex-shedding frequency. However, it was found that certain far-field boundary

17



conditions which used extrapolation of the primitive variables introduced an additional

temporal frequency into the solution. By coincidence, the value of this frequency was

very close to that found experimentally by Sreenivasan (1985). The use of characteristic

variables in the far-field boundary conditions eliminated this frequency from the solution.

An explanation of this behavior was provided using an analysis based on a simplified model

for the boundary conditions. These results illustrate the fact that great care must be

taken in interpreting the results from numerical simulations, and that while the secondary

frequencies are spurious in the infinite-domain case, the possibility exists that they may

be found in a confined space such as a wind tunnel. In fact, Sreenivasan 3 found that

the secondary frequency disappeared when the tests were performed in a wind tunnel

where the distance from the cylinder to the upper and lower tunnel walls was 250 cylinder

diameters. This distance is about seven times that used in the original tests. Insight into

the presence of the multiple frequencies in the original experimental results would require

three-dimensional computations which included the wind-tunnel walls.
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FIGURE 4. Effect of boundary conditions on pressure in wake region at location 10
cylinder diameters downstream of cylinder and one diameter above wake centerline. Finite-
difference code. psd -- power spectral density.
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FIGURE 5. Computed pressure in wake region at location 10 cylinder diameters down-
stream of cylinder and one diameter above wake centerline. Fully-spectral code. psd -- power

spectral density.
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