v
i B
4
o Y
5 \

SDSMT/IAS/R-91/04 August 1991
A CLOUD, PRECIPITATION AND ELECTRIFICATION
MODELING EFFORT FOR COHMEX

By: Harold D. Orville, John H. Helsdon, and
Richard D. Farley, Principal Investigators

Prepared for:

National Aeronautics and Space Administration

George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

Final Technical Report on Grant No. NAG 8-632
Period Covered: 20 May 1987 < 19 May 1991

Institute of Atmospheric Sciences
South Dakota School of Mines and Technology
501 E., St. Joseph Street
Rapid City, South Dakota 57701-3995

(”A?h—t”—lsqc79) A CLOVD, PRECIPITATION AND N9L1-2T7711
cLECTPICICATION MOUFLING SFFCRT FOR CORMEX

Final Trchnical Report, 20 Mgy 1987 - 19 May

1791 {(South Nakota scnhool of Mines ang Unclas

Techneloyy) 2?26 p CSCL 04P G3/47 0031693






SDSMT/IAS/R-91/04 August 1991

A CLOUD, PRECIPITATION AND ELECTRIFICATION
MODELING EFFORT FOR COHMEX

By: Harold D. Orville, John H. Helsdon, and
Richard D. Farley, Principal Investigators

Prepared for:

National Aeronautics and Space Administration

George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

Final Technical Report on Grant No. NAG 8-632
Period Covered: 20 May 1987 - 19 May 1991

Institute of Atmospheric Sciences
South Dakota School of Mines and Technology
501 E. St. Joseph Street
Rapid City, South Dakota 57701-3995






TABLE OF CONTENTS
Page

1. INTRODUCTION ...O.-..'QQC..OQ..O.....OO....O..O'...O. 1
2- PRINCIPALRESULTS PO . O I R B R R R B B B IR L A S 1

2.1 Forecast Capabilities .........c.cceeenieceeenee 1
2.2 Precipitation Processes .......ccccoccecnccccces 2

2.2.1 OVEIVIEW te.eeevecosssnsnssccconoscasaccne 2

2.2.2 Comparison of Precipitation Development

in Northern High Plains and in the

Southeastern United States .......cc0.00. 3

2.2.3 Comparison of Models of Differing
Microphysical Detail .......ccceccecccene 8

2.2.4 Microbursts ....cccseceecsscccccssscsccces 9

2.3 Atmospheric Electrical Processes ....cccceeceeee 9
REFERENCES ....-....0.0..........I.'..Q........I...' 14

3. PROJECT BIBLIOGRAPHY ...ccccessoccoscsccancccccconsce 14

3.1 Papers in Referred Journals .....ccccecccccccee 14
3.2 Papers in Conference Preprint Volumes ........ . 15
3.3 M.S. ThESES .veeeeeecssccasonossansassssassssss 15
3.4 Project Travel ......ccceeecsscscsscsccvcccacns 15
3.5 Project Personnel ......sceeececccccessccscccnns 16

o i1
ey WORENHONALLY I 43t PRECEDING FAGE BLANK NOT FILMED



LIST OF FIGURES

Number Title Page
1 Rain production for the 20 July COHMEX case......4
2 Graupel/hail production for the 20 July COMHEX

case.................I.......‘........I.....I....s
3 Rain production for the 1 August CCOPE case...... 6
4 Graupel/hail production for the 1 August CCOPE

case'..'...l'..'....0..........D..“. ............ 7
5 Results of the storm electrification model for

the 20 July COHMEX CaS€....ccccertcscccscccs ceeaes13

LIST OF TABLES

Number Title Page
1 Comparison of model resultS.....cvoesesse0se00s0.10

iv



1. INTRODUCTION

The Modeling Group of the Institute of Atmospheric Sciences (TAS) began in
mid-1987 to simulate and analyze cloud runs that had been made during the COHMEX
project and later. Our cloud model had been run nearly every day by Fred Kopp
during the summer 1986 COHMEX project. The Modeling Group was then funded to
analyze the results, make further modeling tests, and help explain the precipitation
processes in the southeastern United States.

The main science objectives of COHMEX were:

1) To observe the pre-storm environment and understand the physical
mechanisms leading to the formation of small convective systems
and processes controlling the production of precipitation.

2) To describe the structure of small convective systems producing
precipitation including the large and small scale events in the
environment surrounding the developing and mature convective
system.

3) To understand the interrelationships between electrical activity
within the convective system and the process of precipitation.

4) To develop and test numerical models describing the boundary
layer, tropospheric and cloud scale thermodynamics and dynamics
associated with small convective systems.

The latter three of these objectives were addressed by the modeling activities
of the IAS. We used a series of cloud models to simulate the clouds that formed during
the operational project. The primary models used to date on the project have been a
two-dimensional (2D), bulk water model, a two-dimensional electrical model, and to a
lesser extent, a two-dimensional, detailed microphysical cloud model. Unfortunately,
no three-dimensional runs have been made during the time period of this grant. All of
the models are based on fully interacting microphysics, dynamics, thermodynamics,
and electrical equations.

Only the 20 July 1986 case has been analyzed in detail, although all of the cases
run during the summer have been analyzed as to how well they did in predicting the
characteristics of the convection for the day. Even though the funding support for the
study is over, the model results are still being analyzed and papers will still be
published, with partial credit being given to the NASA grant.

2. PRINCIPAL RESULTS

The results can be categorized as to 1) forecasting capabilities of the models;
2) studies of the precipitation processes in these small convective systems; and
3) studies of the primary electrical processes operating in the clouds in the
southeastern region of the United States.

2.1 Forecast Capabilities

A two-dimensional, time-dependent cloud model was run in the morning before
operations began using the rawinsonde data from Huntsville, Alabama. In addition, a



one-dimensional (1D), steady-state model was run on many of the soundings available
from the project. Results were published in a thesis by James Jung and indicated that
four conditions were necessary for these cloud models to be accurate as forecast tools.

1) The sounding must be representative of the forecast area.

2) The sounding must remain representative throughout the forecast
time frame.

3) There can be no large scale forcing for the one-dimensional model
tested here.

4) Water vapor and temperature advection changes should be small.

In addition, to forecast the occurrence of precipitation accurately at Huntsville,
the cloud models must have cloud bases at or below 2.5 km and cloud tops higher than
6 km. Under these conditions, the 2D model was accurate in all of the 21 days on
which it was run; and the 1D model, 85% of the 46 days it was run on. More data
would be needed to confirm these results.

These models have often been used to predict cloud top height. In this case,
they did not do so well. The 2D model had a correlation coetficient of 0.72 for
convective days; the 1D model only 0.50. However, the maximum temperature
prediction of the 2D model was quite good, being within 2.5°C of the observed
maximum for 70% of the days (Kopp et al., 1990). A more complete manuscript
reporting on the forecast capabilities of the 2D time-dependent cloud model has
been submitted for publication (Kopp and Orville, 1991).

2.2 Precipitation Processes

2.2.1 OQverview

The primary study illustrating the important precipitation processes in these
warm base clouds 1s the one by Tuttle et al. (1989), published in the Journal of the
Atmospheric Sciences. The 20 July 1986 case provided the data for the analysis by
both multiparameter radar and by numerical modeling efforts. This was the first case
that we know of in which a multidimensional, time-dependent cloud model was run in
advance of the actual convection of the day. The early clouds on this day topped out
between 6 and 8 km and contained little ice. The primary precipitation process was
rain formed by coalescence. After about 45 minutes of this preliminary cloud and
precipitation development, strong convection appeared. A rapidly growing cell broke
through the moderate size cells, carried large drops into supercooled regions where
freezing occurred, and stimulated further growth.

An analysis of the production terms (as shown in Figs. 1 and 2) for these types
of storms reveals that the coalescence term initiates the precipitation and then accretion
takes over to produce most of the rain. However, the melting of graupel is a close
second, although occurring nearly 15 minutes later in the active large cell. The
initiation of graupel occurred through the probabilistic freezing of rain. This is the
only process which can initiate graupel/hail until snow and cloud ice are available.
The snow melt and shedding terms also produced a small amount of rain.

The growth of graupel/hail, after their initiation, occurs primarily by the
accretion of supercooled liquid water, both cloud and rain. The interaction of snow
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and rain to form graupel is an important source for the graupel. If cloud ice were
present at warmer temperatures, such as -5 to -10°C, then this also would cause
graupel and snow formation through the interactions of rain with the cloud ice.

This case has also been run with all of the ice processes turned off. Eleven
percent less precipitation was produced from a cloud cell that did not grow as high as
the cell with ice in it (about 1.4 km difference in height). Additional runs were made.
Different amounts of ice were simulated and the results indicated that there is an
optimum amount of ice development to produce the most precipitation from a cloud,
even though most of the precipitation was formed by coalescence and accretion. These
ice studies also showed the critical influence that the dynamics of the cloud play in the
production of precipitation. This relates to the production of snow or graupel and the
ease with which the updrafts can carry the particles to the anvil. Less efficient
precipitation occurs when more of the particles are spewed out the anvil, which will
occur if the ice particles are mainly snow instead of graupel.

The major difference in the production of precipitation from this maritime
sounding from the southeastern United States region and from the continental soundings
in the Northern Plains is the predominant influence of the warm rain process in the
maritime clouds. Even so, the ice processes play an important role, particularly in the
more vigorous cells. These aspects are clearly illustrated by the following comparison
of precipitation development for the two regions.

2.2.2 Comparison of Precipitation Development in the Northern
igh Plain in_th heastern Uni

Two thoroughly studied cases form the basis for the comparison. One case is
the August 1, 1981 CCOPE case from the Montana region and the other is the 20 July
case from COHMEX. Figures 1 and 2 show the various terms that contribute to the
production of rain and graupel/hail for the southeastern United States case. Figures 3
and 4, taken from Kubesh et al. (1988), show the same information for the High Plains
case. First we will discuss the production of graupel/hail and then rain in the two
cases.

Graupel/hail production terms:

1) Accretional growth and the melting of graupel/hail are the biggest terms --
exceeding 100 kT/km in both cases.

2) Wet growth of the graupel/hail (not shown) is 5 to 15% of accretional
growth in both cases being larger in the COHMEX case. .

3) Graupel accreting snow is an important term in both areas (>50 kT/km).

4) Rain/snow interactions are important in the COHMEX case (a total of
70 kT/km) and of order 30 kT/km in the CCOPE case.

5) Cloud ice/rain interactions are more important in the High Plains
(2.5 KT/km) than in the Southeast (0.1 KT/km).

6) The probabilistic (Bigg) freezing of rain is a significant early source of
graupel/hail in the COHMEX case with high coalescence amounts, but totals less than
0.5 KT/km in both cases.



"W} PAJEDIPUL 3Y) 0} PAJRNINIOE PUR UTBWOP IINUI 3Y) IIA0 pawwns Suiaq S3Jel SNOLBA Y} JO 1|NSAT Y} B SIAIND YL
"1-wy LY are uononpoud jo siun 3y, “puued (3y3u) S| SYI UT UMOYS Ire paly ures ay) ui (ssof)ured e o} Sunnquyuod
595520044 9583 XHWHOD AInf 07 Y1 jo uone|nwis [3pow Y[nq Yy 10j paysi| sassa00d ayy 03 anp uononposd urey T3

Tlieys/1adnelt wi0j 03 ulea ;O BulZaaay 213181119eQoig=99]8 “A21€M PNOLD JO UOTIBADIE AQ YIMOUB uleH=HIIV
ClIeY/120NRAB BU WD, ‘3D) PNOD 4AQ U4 JO U0} 124D09=yIV]ID "MOUS jO Bulllaw BUJAND BuPPAYS WO U|RH=SHOHS
Cl1ey/ladnead Buiwioy ‘mOus £Q UIRJA JO UD}IDAJDY=HIVSH ‘lrey/iadnesd O BUl 33w BUTIND GUIPPIYS wWol) U] PHz=OHOHS
T1IeY/13dnead AQ UIRJA JO UOT IDAIDYHIVY "LIRy/[3dNE4B JO YIMOAB J3m Bujiand GUIPPIYS W04 UTEN=MAIHS
‘MOUB AQ U)RJL JO UD)IADIY=YIVSS "mOous JO Bull|aw 4Q PawWLOj UIRN=LIWS
*mous DUTWA0 ‘321 PNOLD £AQ UlRL JO UO]ILIDIYzYIWIS rtey/ladnesd jo Gulj|aw 4AQ Pawioy UIRH=1WO
"UjeLs JO U0} IRAOAIRAI=YYNAT *1219M PNOL3 JO UOIS4IAUND0ING AQ PAWLO) URN=LIVY
SWSINVHIIM SSO1 SHSINVHIIM HIMOYS/NOL LVHINID
(o) 3L () 3L
oSt rrl act ZE1 921 oz1 [ AR} [:[v]} oct 144} BEl ZE1 9zt ozt ril a0t
T Ll T T T ¥ NO— T T T 4 T T T T ) uc—
/
- / - o M -
4 Vi
o .\ - - \. — -
B 7 - R S . 4
n / u u \.\ L] ]
E wowio ,/ 3 - prmremeem T ' E
b oo/ 3 E 77 swaks ' 3
-1 —.O— ”.\ ] -1 —O—
’
’,
- -4 - , -
s oS08 e L ’ -1
\\
" F T 1 3
C a C _-"1ns p %
E e 3 L7 e e ]
= wovis b ] . g " 4.0t Muu
N4 \.\.\\ =
8 maans . -~ 1wy o
T ——— . 7 z
- "
8 T .--'o!‘c‘-‘ h
- E - ]
- -1 b -
3 3 4 ®
E 3 1,2
- g .0 ,08
4
’
- e
’
- - wv__ -~ .
- - - L4 - -
o P
- L . s
- - s ’ p
- -4 e 4 -
- - - \\ -
- = uo— - \\\ P «o—
-
\\\
- e cmm=="" - -4
'l [l A 1 1 L 1 1 1 1 1 L A 1 1 [ 1 1 i 1 L A A A A '




"play [rey/jadnead oy Joj 1daoxo ‘1 “3ig ut sy T3

‘uctIeW} QNS AQ | |ey/[3dnesb jO SS071=8NS
SUjeJ4 Wi0y 03 Bujljaw AQ |]@Y/|@dNEL6 JO S607=LW9
SHSINYHIO3W SS01

cp1ey/1adneab AQ ujRJ4 JO UO[3342DV=HIVD

© 1194/ 1@dNeib £Q MOUE O UO|13429¥=SIv9

cj1ey/1adneab JO YIMO4B [RUO| 334300 [RI0L=HIDTIVH
SWSINVHIIW HLIMOYD

Y

Trrryry

L]

AR LMAARA

T‘V‘l' LA

(Liw)  JWIL
rel 8t 2€l 92t 021 ril
1 L L] ¥ Ll ¥ L4) T ¥ L T L]

ligp il

1

1

1

Il

Laass i

[ITES SN

Tljey/[@0nNest wi0y 03 UlRL JO BUIZIILY
*pyey/legnesb 6ujwioy *ad) pnoioa AQ uted
‘]tey/|adnesb Hulwioj ‘moug 4q uled
cl1ey/19dneib Bujwaoy ‘ujes £q mous

2116111Qeqo4d=9918
10 U0 13400v=¥IV19
340 U0} 3134D29=2HIVSI
10 U0} 134329=52vVY9
*mous jo

(uU0]1PPAI667 ) UOISIIAUODOING 4Q Pawioy 1 1ey/ | 3dNRJD= 1(WY
SWSINVHIIW NO11VHIN3D

(ww)  3NIL
ost rel BEL Zel 9zt ozt rit 801
T L] T L) \.v\ﬁ T ¢1 T T T 1 ~.O—
S ]
- VA . T
5 / ' I .
- A ]
” \.\ \\ m. -
E i .
.lt.U‘(.Ml\ 7,nVD - - —.O—
/ i
‘ h
- s ! 1
E
J.0
J.0
1 A1 i 1 1 i

NO1LONAOHd

(uny 1)



*3580 440D 1ndny | ay) Joj 3daoxd ‘1 Sy uisy I

T11RY/13dNRLB wa0) 03 UIRL JO BUZaa4y 313181 1QeGOLd=9918 ©J210M PNO[D JO UOTIALIIP AQ YIMOLB UiRY=¥IIV
“1104/[90nw4b BulwiOy “@dl PNO[D 4£Q ujes O UC|184Ddw=NIVIY ‘mOus 40 Bujl[aw BujANP OUIPPIYS WOL U|RH=SWOHS
“1iey/|3dneab BUIWID) *MOUS LQ UIPS JO UD] I24IDVHIVSD T1rey/1adnead JO Buji|dw BUTIND DuIPPIYS WL U] PNxOWOHS
“liey/[9dnesd 4Q uled 0O UOTIRADIV=YIWS 119/ |9dNe4B JO YIM04B Jam ?:»o:w oc_vkuou“»“;:hﬂwu:wﬂm
‘MOUS AQ UTRA JO UO| IRIDOVHIVSS *mous O 1R1E ] 4 =
‘MOUS BUIWL0) *BJ1 PNOLD £Q UIR4 JO UOIIFAIDVZUIVIS TlIey/1adneaB 4O BUI|3W 4AQ PIWIO UIRY=LWO
TURL JO U0 IRI0TRAI=gYNA] © 2310 PNOID JO UOISLIIAUDI0INE AQ PaWID) URY=LNwYH
SHSINVHI SSO0 SHS INVHIIM HLIMOND/NO L LVE3INID
(viw}  3ImiL (wiw) 3L
" [ 1] 113 ” [ ] " [ 144 " [ /] 13 » [ ] " » o )
v v LE A v v v -.°P v L] v v v N L v v L ﬁo
o «f b ' -
o - o .N L
8 o L p
5 o L e
5 - L .
o . o 3
2 q0 F .08
o -4 -
- -l -y
o -4 L °
- - -y u
b - - (o]
m m EPN:
- = oo— oop by
=2
4 { @
o e
- b =
- -t -y
p 9 »
3 1.3
.01 EN
[ o p
- 3 m
- .00 Ot
5 - e
o o h
A, A A A Y A A A A A A, A A A A - A A A A A . A A A A




*3580 §40DD 1sndny [ oy Joj 1daoxd ‘7 " uisy § I

*uOTIRW) QNS AQ [1ey/|adnesb O €507=8NS
TUlRPs w40y 0] Bujllaw £Q [ley/tadnelsb 4O S801=LWO
SWSINVHI3W S507

Sl1ey/(3dne4b 4AQ UTP4 JO UD) IF4IIV=YIVY

TR/ |IUNRAB AQ MOUS 4O UO1124209=SIvY

C1I1OY/120NR46 JO YIMO0U6 |RUO] 134230 [RI0L=HLIDTIWVH
SWSINVHIZW HINON9

*1iey/13dne.b wioj O
cp1ey/|3dneat Gujwsoy

1 UTR4 40 BUIZIBAy D118)1]1QeQL.IH=9918
+32) PNO[3 4Q UJR4 JO UO}12400W=HIVID

c11ey/|adne4b Bulwio] ‘mOUS 4Q uied 4O U0 | 313430=PIWSY
*l1ey/|9dne.b Bulwioy ‘ujes £Q mous j0 W01 12422%=5S2vi9

*mous JO

(uo} 196346069 ) UOISI3AUDDOINE AQ pawaoy |jRy/|30NRA9s (WO

SKS INVHIIW NOI LWHINID

(vw) 3L (ww) 3N

) 1] 7] " o v ”» o ”» v

——————prm e ———— T . 0} —.0!
)
. -y
s , i

- [ - -

L ’ ) i

- - -

o - -y

3 3 E
- ’ .04 .0t

’
’
b= ’ - b -
’ 4
- 4 - S -
r'd

- P4 - - -

L , p i p

: .’ i t 3

E -’ 3 = 3
= 7 o 1 QOw = - GO-

- -

- -

d ]
5,0t 4.0t

- -

- -

- -

- -

3 3
q,00 4 00

-4 -

- -

A A A - A A y . s A A e A A A A

NOILONQOUd

(ww i)



7) Sublimation is of the same order in both cases (1 kT/km).
Rain production terms:

1) Melting of graupel/hail is the biggest term in CCOPE (200 kT/km), and
accretion the biggest term in COHMEX (300 kT/km). However, melting approaches
170 kKT/km in COHMEX. Hence, both storms produce similar amounts of rain through
the ice processes. COHMEX produces additional rain via coalescence.

2) The time of ice production is similar in the two cases, about 30 minutes,
and some of the quantities are of the same magnitude.

3) Evaporation is greatest in the COHMEX case (90 vs. 50 kT/km).

4) Rain/snow interactions result in approximately 80 kT/km loss of rain to
graupel or snow in COHMEX;; less than 50% of this in the CCOPE case.

5) Shedding during wet growth is low in both cases (3 kT/km). Shedding
during melting of graupel 1s of order 10 in both cases. Shedding from melting snow
is of order 0.1 kT/km.

6) Accretion is the second largest term in CCOPE (50 kT/km); the largest term
in COHMEX.

7) Autoconversion (coalescence) is about 3.5 kT/km in COHMEX, and is
deactivated in CCOPE.

2.2.3 mparison of 1s of Differing Microphysi i

The two-dimensional hail category model, which partitions the precipitating ice
field into 20 logarithmically spaced size categories, has also been run on the 20 July
COHMEX case. This model employs a more detailed and realistic treatment of the
growth and sedimentation of ice in the simulated clouds and facilitates more detailed
studies of the growth of ice. Comparison of the results of the detailed model with
results of the bulk model also allows assessment of the relative adequacy of the bulk
model's treatment of ice in various situations.

For the 20 July COHMEX case, the results of the two models show a high
degree of similarity over the duration of the simulations, especially in terms of large
scale structure, dynamic features, and evolution. Microphysical aspects, whether in
terms of maximum values or domain totals, also display similarities throughout, even
though ice is treated quite differently in the two models. This is due to the dominant
role of the warm rain process (which is treated similarly in the two models) in maritime
situations such as this COHMEX case. Although specific aspects of the production of
precipitating ice, especially the contact freezing of rain, show pronounced differences
for the two models, these aspects usually play a secondary role and exert minor
influence compared to the dominant terms.

The growth of the precipitating ice field tends to be somewhat more continuous
in the detailed model. This results in a single peak in the temporal evolution of the
maximum values of precipitating ice content, whereas the bulk model indicates two
strong peaks or bursts in the growth and development of graupel/hail. The period of
intensive growth of the precipitating ice for the detailed model is preceded and
followed by peaks in maximum rain contents, whereas the two peaks in rain are



correlated with the two graupel/hail peaks for the bulk model. The detailed model
clearly indicates that most of the precipitating ice is in the form of graupel, usually a
factor of two or more greater than the amount of hail.

The most striking difference in the results of the two models is the estimated
radar reflectivity factor with a maximum of just under 73 dBz indicated for the bulk
model versus a maximum of 63 dBz for the detailed model. Another obvious
difference between the two models is the amount of hail at the surface, with the bulk
model indicating a factor of two to three times more hail than the detailed model,
although the vast majority of the surface precipitation is in the form of rain.

Table 1 is a compilation of some of the differences in the predictions of the bulk
and detailed models for this particular COHMEX case. Also included in the table are
the results for another maritime case (Wallops Island) and three continental cases
(Alberta, CCOPE 2 August, and CCOPE 1 August). The two models display more
pronounced differences for the continental cases with precipitation development
being more efficient in the bulk model.

2.2.4 Microbursts

Another aspect of our modeling studies has concentrated on the factors
influencing the formation and strength of the microbursts which are frequently seen
in our simulations. The simulations of the 20 July COHMEX case also produce micro-
bursts, a weak microburst forced solely by rain in the early stages and a period of
intense microburst activity associated with the late mature and dissipating stage of the
major storm cell of the simulations. Close examination of this 15-minute period of
intense microburst activity revealed the presence of two microbursts, with the second
and slightly stronger microburst superimposed on the expanding outflow of the first.
These two microbursts were forced by the fallout of the two disinct precipitation cores
(primarily rain) noted above. The primary forcing mechanism for these microbursts
was the evaporation of rain. The most intense portions of these microbursts were due
to additional forcing from the melting of graupel/hail. Studies of the trajectories of air
parcels that ended up in the outflow revealed that most of the parcels originated at
elevations below 3 kilometers.

The results of the 20 July COHMEX case have also been used to expand the
number of cases used in developing an index for describing and possibly forecasting
microbursts. This "microburst index" is based on the combined effects of precipitation
loading, melting, and evaporation as quantified by the model results. Evaporation and
melting are, in general, the most dominant effects. Values of a few degrees per minute
cooling occur in the stronger microburst cases. The heights of the melting level and
the cloud base (for the start of evaporation) and the depth of the precipitation shaft are
key factors which enable the microphysical processes to act over longer or shorter time
periods. The microburst index based on these combined effects has been determined
for a number of different cases from various geographic regions which produce a wide
range of microbursts -- some very wet and some nearly dry. Results to date indicate a
correlation coefficient of 0.88 between the microburst index and the maximum
divergence indicated in the model results.

2.3 Atmospheric Electrical Processes
The Storm Electrification Model (SEM) of Helsdon et al. (1984) and Helsdon

and Farley (1987a,b) was used to study the electrical development of the 20 July
COHMEX storm. In previous work, this model has been used to study the
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development of clouds occurring in the High Plains region where the primary
precipitation formation mechanism follows the development of ice in the form of
snow and graupel. In the southeastern United States, it is known that the initial
production of precipitation occurs through a coalescence process which can be
followed by the additional formation of precipitation through the formation of ice
as the cloud grows into regions where the temperature is colder than 0°C. Thus the
storms of COHMEX present a somewhat different environment for the evolution of
their electrical structure than do those of the High Plains. The model had previously
shown some skill in the capacity to predict the electrification of High Plains storms.
The present study provided the opportunity to test the efficacy of the model in a
different microphysical environment.

The 20 July case was simulated because it was the most thoroughly documented
of the storms during the field project. However, the electrical observations on this
storm were rather sparse, consisting of observations of intracloud and cloud-to-ground
lightning and one instrumented balloon launch during the dissipating stage (Goodman et
al., 1988). Because the SEM in its current configuration is only capable of simulating
storm development up to the stage of first lightning (no lightning discharge is
included), the electrical observations provide a very limited basis for electrical com-
parisons. Essentially, they provide a means of determining the stage of development
of the storm at the time of first lightning when used in conjunction with radar data
which, for this storm, gave a detailed history of its dynamic and, to a lesser degree,
microphysical evolution.

The SEM is a hybrid version of the 2D bulk water model described above and
used in the analysis of Tuttle et al. (1989). The 2D model was modified by Helsdon
et al. (1984) to include electrical variables and processes such as the presence of small
ions, the horizontal and vertical electric field components, and the charging of hydro-
meteors by inductive (field dependent) and noninductive (field independent) inter-
actions as well as by ion attachment. The boundary conditions used in the SEM differ
from those used in the nonelectrical simulations, so the resulting cloud development
differed somewhat from that reported by Tuttle et al. (1989). A detailed comparison
between the model simulation and the available observations was carried out by
Addison (1990).

He found that the initial precipitation formation occurred by a coalescence
process, but as the cloud developed vertically past the melting level and entered its
rapid growth phase, accretion-freezing dominated in the formation of precipitation.
This agreed with the inferences drawn by Tuttle et al. (1989) based on their analysis
of the multiparameter radar data. Thus, we concluded that the SEM was forming
precipitation in a manner similar to the actual storm on 20 July, although the model
seemed to produce graupel much earlier than the storm based on the interpretation
of Zpg measurements from the CP-2 radar.

The dynamic development of the simulated storm did not agree with the
observations as well as the microphysical aspects just noted. The early dynamic
development in the model was more vigorous than that observed. In addition, the
model produced a microburst early in the life cycle of the storm, whereas the obser-
vations reported a microburst at the beginning of the dissipating stage. A rapid growth
period occurred in both the simulation and the observations. In this case, the rapid
growth occurred over an 8-min period for the observed storm while it lasted 15 minutes
in the simulation. The observed storm reached a maximum height of 13.3 km AGL,
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while the simulated storm ascended to 14.6 km. In comparing 71 features between the
storm and the simulation, Addison found that 69% of these features represented fair to
good simulations by the model.

In looking at the electrical evolution, Addison found four parameters that lent
themselves to comparison between the model and the observed storm. Of these, two
agreed well and two did not. The time of the first lightning was 14:09:30 CDT which
compared poorly to an estimated time of 14:20 in the model simulation. Also, the
observations ind);cated that first lightning occurred only 4 minutes after the formation of
significant hail as inferred from the CP-2 data. In the model, breakdown electric fields
(-400 kV/m) occurred some 23 minutes after the appearance of graupel. Although this
comparison appears to be rather weak, it must be remembered that the inference of hail
based on Zpgr measurements may contain significant error, and that the choice of
400 kV/m as a breakdown threshold for lightning is a very rough approximation.

Thus, this comparison is very tenuous at best. On the other hand, the dynamic and
electrical development during the rapid growth phase were found to correlate well,
especially in that the first lightning occurred as the cloud neared its maximum height,
and the strongest fields in the simulation occurred just prior to the time maximum
cloud top height was reached.

Another feature that was revealed by the simulation was that the main charge
centers and the associated electric field were concentrated in the upper portion of the
cloud coincident with the presence of graupel, snow, and cloud ice. In fact, only 1 km
separated the centers of the positive and negative charges at the time of breakdown
field strength (positive charge center at 11.6 km and negative charge center at
10.6 km AGL). This concentration of charge in the upper part of the cloud resulted
in the strong electric field region being concentrated in the upper portion of the cloud.
These aspects are illustrated in Fig. 5. Based on this charge and field structure, we
would infer that the initial breakdown would be of an intracloud nature and that
intracloud lightning would continue to occur until there was significant transport of
charge to lower altitudes in the cloud, either by lightning itself or by the fall of
charged precipitation. The lightning observations for this storm reported by
Goodman et al. (1988) reveal that out of 116 total flashes, 110 were intracloud in
nature and only 6 were cloud-to-ground.

Although the SEM simulation of the 20 July COHMEX storm was disappointing
in some respects, we conclude that the electrification of the storm was a result of the
interaction of graupel with snow and cloud ice in a riming environment. The exact
nature of the charge separation process cannot be determined from the simulation
because of a recently discovered conceptual error in the implementation of the non-
inductive charging process. Despite the inherent differences between the thunderstorms
of the southeast and the High Plains, it seems that the interactive charging of ice par-
ticles is best able to explain thunderstorm electrification in both regions. Futher runs
are necessary to distinguish between the abilities of the inductive versus the non-
inductive charging mechanisms in accounting for the charging of these storms. At
present, we are adjusting the boundary conditions of the SEM to agree with the model
of Tuttle et al. (1989), which produced a better simulation of the storm, including the
time of the microburst. If we can duplicate these results, we can apply the corrected
version of the SEM (noninductive charging fixed) to the case to make a determination
of the efficacy of the two primary charging processes.
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Fig. 5: Results of the storm electrification model for the
20 July COHMEX case just prior to exceeding the discharge
threshold. (a) Depiction of the cloud and precipitation
fields. The cloud outline is indicated by the sold line,
dots and asterisks indicate rain and graupel/hail,
respectively, greater than 1 g kg-1 and snow and cloud ice
greater than 0.5 g kg~!l are indicated by S's and minus signs
respectively. Dashed contours are for the stream function
using a contour interval of 6000 kg m-1 s~1. (b) The total
charge density field; contours range from -6.4 to 2.4 nC m~3

with a contour interval of 0.8 nC m~3. Dashed lines
indicate negative values and solid lines indicate positive
values. (c) The horizontal electric field; contours range

from -150 to 240 kV m-l with a contour interval of 30 kV
m-1l. (d) The vertical electric field; contours range from
-350 to 300 kV m-l with a contour interval of 50 kV m-1,
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