
L_!_' ?" \ _ -P _i_> _
_ _ , _i _

:'_ _" _. _eport 187582

._,r_ Report No. 91-45

ICASE

PERFORMANCE AND FAULT-TOLERANCE OF NEURAL

NETWORKS FOR OPTIMIZATION

Peter W. Protzel

Daniel L. Palumbo

Michael K. Arras

Contract No. NAS1-18605

June 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665-5225

Performance and Fault-Tolerance of

Neural Networks for Optimization*

Peter W. Protzel

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665

Electronic-Mail Address: protzel@icase.edu

Daniel L. Palumbo

System Validation Methods Branch

Mail Stop 130, NASA Langley Research Center, Hampton, VA 23665

Michael K. Arras

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665

Abstract

One of the key benefits of future hardware implementations of certain Artificial Neural

Networks (ANNs) is their apparently "built-in" fault-tolerance, which makes them potential

candidates for critical tasks with high reliability requirements. This paper investigates the

fault-tolerance characteristics of time-continuous, recurrent ANNs that can be used to solve

optimization problems. The performance of these networks is first illustrated by using well-

known model problems like the Traveling Salesman Problem and the Assignment Problem.

The ANNs are then subjected to up to 13 simultaneous "stuck-at-l" or "stuck-at-0" faults

for network sizes of up to 900 "neurons." The effect of these faults on the performance is

demonstrated and the cause for the observed fault-tolerance is discussed. An application is

presented in which a network performs a critical task for a real-time distributed processing

system by generating new task allocations during the reconfiguration of the system. The

performance degradation of the ANN under the presence of faults is investigated by large-

scale simulations and the potential benefits of delegating a critical task to a fault-tolerant

network are discussed.

* This research was supported by the National Aeronautics and Space Administration under NASA Contract

No. NAS1-18605 while the first and third authors were in residence at ICASE, NASA Langley Research

Center, Hampton, VA 23665.

1. Introduction

One of the most intriguing characteristics of biological neural networks is their extreme

robustness with the ability to function even after severe damage. It has been shown that

Artificial Neural Networks (ANNs) also exhibit some degree of "fault-tolerance," but in

most cases the work did not explicitly focus on the fault-tolerance, which was demonstrated

only as a side-effect [1, 20, 9, 13]. Fault-Tolerance is a qualitative, general term defined

as the ability of a system to perform its function according to the specification in spite of

the presence of faults in its subsystems. This definition is very unspecific and a system that

is said to be fault-tolerant does not necessarily tolerate any number of faults of any kind

in any of its subsystems. A specific way to quantify the fault-tolerance is to determine the

performance degradation in the presence of certain faults in certain subsystems, given that

some measure of performance exists.

Only relatively few studies in the literature are specifically concerned with the fault-

tolerance of ANNs. Furthermore, the results are difficult to generalize because of the very

different models and objectives. For example, Hinton and Shallice (1989) [10] "injected"

faults into a backpropagation network trained to perform a particular linguistic task. They

showed that the performance degradation of the network bears a qualitative resemblance

to the degraded ability of neurological patients with a specific brain disorder. Petsche

and Dickinson (1990) [17] used a special network architecture to investigate a self-repair

mechanism that automatically activates spare nodes (neurons) if one of the nodes is "dead,"

i.e. permanently inactive ("stuck-at-0").

In this paper, we will investigate the time-continuous, recurrent ANN that was proposed

by Hopfield in 1984 [11] to solve certain optimization problems. In the following, we will

adopt the term "optimization networks" for these ANNs, which was coined by Tank and

Hopfield [24]. Although optimization networks were initially applied to classical problems

like the Traveling Salesman Problem, we are more interested in potential applications in real-

time processing and control systems. For example, an optimization network implemented

in analog hardware could perform a real-time scheduling or control task as a component

of a hybrid system. If this is a critical task with high reliability requirements, then the

allegedly "built-in" fault-tolerance of the neural network becomes a key factor. With such

applications in mind, we will investigate the fault-tolerance of optimization networks and

quantify the performance degradation in simulated "fault-injection" experiments. A broader

goal is to gain insight into the principal character of the fault-tolerance of these networks

and to explore the underlying cause.

The following two Sections of this paper contain a brief introduction to optimization

networks and explain the principle of operation for two model problems, the Assignment

Problem (AP) and the Traveling Salesman Problem (TSP). Section 4 introduces a perfor-

mance measure that allows a meaningful assessment of how well the network actually solves

the AP andthe TSP.Suchaperformancemeasureis a prerequisitefor quantifyingtheper-
formancedegradationin the presenceof simulatedfaults, which are "injected" into the
network. Section5 presentstheseresultsfor theAP andTSPusedagainasmodelproblems
and discussesthe causeand the effectof the observedfault-tolerance.Finally, Section6
describesan applicationin which an optimizationnetwork is usedfor the real-time task
allocation in a fault-tolerant,distributedprocessingsystem.The networkis a critical com-
ponentin this applicationandits fault-toleranceis anessentialrequirementfor theoperation
of the system.The conclusionin Section7 summarizesthemain resultsanddiscussesthe
prospectsof optimization networksfor different applicationareas.

2. Optimization Networks

Figure 1 shows an optimization network in form of an electrical circuit model [12]

with n interconnected amplifier units ("neurons") as the active circuit elements. The model

allows resistive feedback from any output Vj to any input ui with a resistor value Rij or

a conductance Tij=l/Rij, respectively. The current I i can be used to provide an external

input to the network. The nonlinear, sigmoidal transfer function that determines the relation

between an input ui and an output Vi is given by

u0 1+ exp(-4 (u - us))

1 dT_ lu, u,

(1)

The parameter A denotes the slope of the transfer function at the inflection point ui=Us and

constitutes the maximum gain of the amplifier. The offset us is sometimes explicitly used

as an additional parameter [4], but can be incorporated into the current Ii, which has also

the effect of shifting the transfer function horizontally.

The feedback connections are described by positive and negative values for the weight

Tij of the connection between the output of unit j and the input of i. In an electronic circuit

realization, Tij=l/Rij can only be positive, and negative feedback requires the use of an

additional output -Vi for unit i ranging from 0 to -1. The intrinsic delay exhibited by

any physical amplifier is modeled by an input resistance ri and capacitance Ci. These are

drawn as external components in Figure 1, so that the actual amplifier can be described as

an ideal component with no delay. 1 A circuit analysis of the network in Figure 1 yields the

"equations of motion"

I This is, however, an idealized model of a practical amplifier according to Smith and Portmann (1989) [21].

More realistic models might lead to instability of the system. (cp. also Marcus and Westervelt (1989) [15])

I •
n

----_ c

S __

rln

444"--

_n

r.rv" --
%

rrr --
%

T13 T12

-/ F'
T23 T22

1"33 "1"32

/ V
Tn3 Tn2

[
rl, 1,, C 1 u

T'lii >
T_'21 r2 C2 u2

j u

Un "

-----_ V 1

-----_ V 2

-----_ V 3

: oV n

Figure 1. Circuit diagram of an optimization network according to Hopfield (1984) [11]. Note

that negative feedback can be realized by connecting positive conductances

Tij to the negative output -Vi of a unit (not shown in this figure).

dui ui n

Ci dt - Ri + _ TijVj + Ii (2)
j=l

that describe the time-evolution of the dynamical system. Ri represents the parallel combina-

tion of the input resistance ri and all the weights Tij= 1/Rij connected to unit i according to

n

1 1
-- + _ Tij • (3)

Ri ri
j=l

The product of Ri and Ci is often referred to as the time-constant Ti of one particular unit i.

An identical time-constant for each unit i would require Ci=C and Ri=R for all i. The latter

condition might be difficult to achieve in practice if the parallel combination of the weights

in (3) results in different values for each unit i. In this case, each individual value for r i

would have to be chosen in a way that compensates for these variations. It is also important

to note that the time-constant ri describes the convergence of the input voltage ui of unit

i. Because of the potentially very high gain of the transfer function, the output Vi might

saturate very quickly. Thus, even if the input ui is still far from reaching its equilibrium

point, the output Vi might already be saturated, and by observing only Vi it might appear

as if the circuit had converged in merely a fraction of "its" time-constant 7"i.

Hopfield (1984) proved the stability of the nonlinear dynamical system (2) for symmetric

connections (Tij=Tji). By introducing a Liapunov function [11], he showed that i, the high-

3

gain limit (A _ _) the stable states of the system correspond to the local minima of the

quantity

2 . TijViVj - Viii , (4)
s=l j=l i=1

which Hopfield refers to as the "computational energy" of the system. This means that the

dynamical system moves from an initial point in state space in a direction that decreases its

energy (4) and comes to a stop at one of the many local minima of the energy function.

It has been shown [7] that the Liapunov function (4) for the system (2) is a special case

of a more complex Liapunov function introduced by Cohen and Grossberg in 1983 [5], so

that Equation (4) might not be considered as a new result in itself. Nevertheless, this does

not diminish Hopfield and Tank's main contribution, which can be seen as their method of

associating the equilibrium states of the network with the (local) solutions of an abstract

optimization problem like the TSP. This method is briefly reviewed in the next section.

3. Solving Optimization Problems: Principle of Operation

The basic idea behind the operation of optimization networks can be stated as follows:

If it is possible to associate the solutions of a particular optimization problem with the local

minima of the energy function (4), then the network "solves" the problem automatically by

converging from an initial state to a local minimum, which in turn corresponds to a (local)

solution of the problem. This association requires a suitable problem representation, that is,

an encoding of the problem by using the state variables Vi of the network. For example,

the output Vi of a unit ranging from 0 to 1 can be used to represent a certain hypothesis

that is true for Vi=l and false for Vi---'0. Different hypotheses can be encoded by different

units and the hypotheses might have to satisfy certain constraints. If the final state of the

network is supposed to represent a particular solution, it is usually required that the outputs

Vi eventually converge to either 0 or 1 in order to obtain a decision. In this sense, the process

of convergence with intermediate values 0<Vi<l could be interpreted as the simultaneous

consideration of multiple, competing hypotheses by the network before it settles into a final

state [23]. In the following, we will demonstrate the principle of operation for two model

problems, the Assignment Problem (AP) and the Traveling Salesman Problem (TSP).

3.1 The Assignment Problem

The AP used for this example is a simple version, sometimes also called list matching

problem, with the following specification. Given two lists of elements and a cost value for

the pairing of any two elements from these lists, the problem is to find the particular one-

to-one assignment or match between the elements of the two lists that results in an overall

minimum cost. In order to distinguish clearly between the two lists, we use capital letters to

X

B

C

D

E

F

G

i -._1_

1 2 3 4 5 6 7

'686893385283:216 53 67 1 38 7

68 59 93 84 53 10 65
42 70 91 76 26 5 73

33 63 75 99 37 25 98

72 75 65 8 63 88 27

44 76 48 24 28 36 17

Cost-Matrix Optimization Network

X

B

D

E

F

G

1 23456 7

'0000001t
1000000

0000010

0000100

0100000

0001000

0010000

Output-Matrix

Figure 2. Exemplary cost-matrix for a 7x7 Assignment Problem and corresponding output

matrix generated by the neural network. Here, the solution encoded by the

output-matrix is optimal with an overall cost of c=165.

describe the elements of one list (i.e. X=A, B, C, etc.) and enumerate the elements of the

other list (i.e. i=l, 2, 3, etc.). Additionally, we assume that the two lists contain the same

number of elements n. A one-to-one assignment means that each element of X has to be

assigned to exactly one element of i. The cost Pxi for every possible assignment or pairing

between X and i is given for each problem instance. This generic problem description has

many practical applications, for example, the assignment of jobs i to processors X in a

multiprocessor system by minimizing the cost of the communication overhead.

The AP as specified above can be represented by a two-dimensional, quadratic matrix of

units, whose outputs are denoted by Vxi. Thus, we can define Vxi as a "decision"-variable,

with Vxi=l meaning that the element X should be assigned to the element i, and Vxi=0

meaning that the pairing between X and i should not be made. This way, a solution to

the AP can be uniquely encoded by the two-dimensional matrix of the outputs Vxi after

all units converge to 0 or 1. Note that n 2 units are required to represent an AP with n

elements per list. The constraints of the one-to-one assignment require that only one unit

in each row and column converges to 1 and that all other units converge to 0. Thus, the

outputs of the network after convergence should produce a permutation matrix with exactly

one unit "on" in each row and column. Figure 2 illustrates this problem representation by

showing the cost-matrix as the input for a particular problem instance and the output of the

network after convergence. In this example, the output-matrix determines the assignment

of elements A to 7, B to 1, C to 6, etc.

For the mapping onto the optimization network, the problem has to be expressed in the

form of a quadratic function with minima representing the solutions. The "energy"-function

EAp =-_ _X Yxi - 1 -t- "_ . Yxi - 1

C

X i X i

(5)

5

external current Ixi=A+B-C/2-DPx i

J lateral
feedback inhibitory

from a unit connections

to itself within a

Txi,x i=-A-B+C column
Txi,Y i=-B

lateral inhibitory connections within a row Txi,x j=-A

Figure 3. Schematic architecture of a two-dimensional neural network with the

connectivity required to solve the Assignment Problem.

used by Brandt et al. (1988) [4] is such a function. The first two terms in (5) have minima

if the sum over all outputs equals 1 for each row and each column, respectively. The third

term has minima if all Vxi are either 0 or 1 and, together with the first two terms, it enforces

the constraints. The fourth term in (5) is simply the overall cost of a particular solution given

the constraints are met. Furthermore, it is common to use constant factors A, B, C, and D as

additional parameters in (5). These parameters have the effect of "weighting" the constraints

and the cost-function and allow a fine-tuning of the performance as will be seen later.

The next step in mapping Equation (5) onto an optimization network is the derivation of

the values for the connections and the external inputs. First, we have to extend the notation

of the Liapunov function (4) to two dimensions:

1

X i Y j X i

(6)

By comparing Equations (6) and (5) it follows after some algebraic transformations that

E=EAp if

Txi,Yj = -A6xy - B_ij + C6xY6ij

C
Ixi = A + B- -- - Dpxi

2

(7)

Figure 3 sketches the resulting two-dimensional network architecture as a directed graph.

With the specific values from Equation (7), the equations of motion for the AP become

dux_ uXi

A - B + CVx,
Cxi dt - Rxi j y

C
+ A + B - -- - Dpxi

2

(8)

3.2 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) was the first example chosen by Hopfield and

Tank (1985) [12] to demonstrate how a neural network could be used to solve optimization

problems. The task of the traveling salesman is to visit n cities, once each, in a closed tour

in such a way that the overall length of the tour is minimal. The TSP is a classical, NP-

complete optimization problem [6], for which no algorithm exists that could find a (global)

solution in polynomial time. Hopfield and Tank's TSP example achieved such prominence

because it was one of the first examples of a neural network "solving" a problem that is

intractable for conventional computers. However, as we will discuss later, the TSP was

meant and should be regarded as an example only, and does not suggest that a general

method has been discovered that solves NP-complete optimization problems.

The problem representation for the TSP is similar to the AP and requires a two-

dimensional network with outputs Vxi. The deference is that the first index (X) now

denotes a city, and the second index (i) describes the order in which a city is visited along

the tour. The representation of a problem with n cities requires a quadratic matrix of n 2

units whose outputs Vxi should converge to binary values. We define Vxi=l as the decision

that city X should be on the ith position of the tour. Conversely, Vxi=0 determines that

city X should not be on the ith position. The requirement of the TSP that each city has to

be visited exactly once can be rephrased such that each city can be in only one position of

the tour and each position can be occupied by only one city. Thus, the constraints are met

if the outputs of the network converge to a permutation matrix with only one "1" in each

row and column. This means that the mathematical expression of the constraints in form of

a quadratic function is identical to the one derived for the Assignment Problem. However,

the problem representation has a 2n-fold degeneracy because there exist n matrices for each

of the two directions of traversal that encode the same tour.

Except for a different cost-function, the energy-function for the TSP is identical to the

AP and can be written as [4]

+'2 _i Vxi-1

C
+ (1-

x i

D

+ T _ _ _'_YVx' (v_,,+,+ v_,,_,) (9)
X Y i

The fourth term in (9) represents the cost function, which is simply the length of the overall

tour scaled by the parameter D. The mapping of (9) onto the Liapunov function of the

network results in the following network parameters

Txi,Yj = -A6xy - BSij + C6xy 5ij - Ddxy (Sj,i+1 + 5j,i-1)

c (10)
Ixi =A+B---

2

The principal difference between the TSP connectivity in (10) and the AP connectivity in

(7) is that the TSP cost-function is encoded by the connections and not by the external

current. The architecture of the TSP network is identical to the AP network as illustrated

in Figure 3, except that the TSP network has a constant Ixi and the additional connections

Txi,Yj=-Ddxy (6j,i+l +¢5j,i-1).

The equations of motion that describe the dynamics of the TSP network are

duxi uxi
A_Vxj - B _Vyi + CVxiCxi dt - Rxi

j Y
C (11)

- o _ d_ (v_,.i + vy,,__)+A + B -
Y

Originally, Hopfield and Tank proposed a different energy-function for the TSP, which

uses an alternative formulation to enforce the constraints. Their original TSP energy-function

[12] is

X i j#i i X Y#X "

D

+ "2 E E E dxyVxi (gy, i+l + Vy, i-1)
x Y i

The mapping of (12) onto the Liapunov function (6) results in the values

TXi,Y j ---- --A_xy -- B_ij + (A + B) 6Xy 5ij - C - Ddxy ((_j,i+l + _j,i-1)

Ix, = nC

and in the corresponding equations of motion

j#i Y#X Y j

- z)_ _x_(v_,,+l+ vy,,_,)+ c,_
Y

2

(12)

(13)

(14)

The main differencebetweenHopfield and Tank's original formulation (12-14) and the
modification (9-11) is the "global inhibition" term -C in Hopfield and Tank's equation
(13) as well as an externalcurrent term that dependson the problem sizen. Although
both approachesseemto be equivalentin the sensethat bothenforcethe convergenceto
a permutationmatrix while usingan identicalcost-function,their performanceturnsout to
beconsiderablydifferent. In trying to recreateHopfield andTank's original results,many
peoplehavereportedpoor results,that is, either thenetworkfailed completelyto converge
to a valid tour (permutationmatrix) or the solutionwasclearly far from the globaloptimum
[26, 25, 8]. Theseproblemsdo not occur whenthe ahemativeformulationof the energy
function (9) is used[4]. However,theperformancestill dependsstronglyon the parameter
values,on theinitial values,andon thecost-functionof theunderlyingcity-distribution.

4. Performance Assessment

The performance assessment would not be an issue if the network simply found the

global solution all the time. In fact, this would imply a solution to the NP-completeness

problem. However, the network usually converges to local minima and produces good but

"suboptimal" solutions. Then the question becomes "how good is good?" and the need

for a performance measure arises. One obvious measure of performance is, of course, the

resulting cost-value after convergence, given that the network converged to a valid solution.

For the TSP, this is simply the distance of the tour, and the smaller the distance the better the

network performs. Unfortunately, the performance of a given network varies considerably

for different problem instances (data sets), for different problem sizes, for different network

parameters, and in the case of the TSP, also for different initializations of the network.

This variation impedes a meaningful, general performance assessment if only one or two

example problems are considered, because it is always possible to "fine-tune" the network

parameters for a particular problem instance.

Therefore, it is necessary to generate a representative number of examples that allows a

statistically meaningful statement to be made about the average performance. Furthermore,

some reference frame is needed for the comparison of the network results, because just

the average over the cost-values is generally not sufficient. The simplest reference for a

comparison is the average cost-value of a "random guess," that is, the average or expected

value of the distribution of all possible answers for a particular problem instance. A

performance assessment based on the estimated distribution has led to statements in the

literature that, for example, a solution is approximately among the 10 s best out of 4.4× 1030

possible solutions (Hopfield and Tank, 1985 [12]), or that 92% of the solutions are among

the best 0.01% of all solutions (Tagliarini and Page, 1987 [23]). While this gives some

impression of the performance, it can hardly be considered a practical meast,_-ement.

9

solution

frequency .__
given

Cop t C _ Cave

T
I I I

1.0 q 0.0

Figure 4. Definition of a solution quality q by mapping the absolute values c,

Col,t, and Caw onto a normalized scale.

cost

quality

What is needed is a performance measure that can give an answer to the following

questions:

• What is the effect of a parameter variation or a modification of the energy

function on the performance?

• How good is the solution with respect to the global optimum or the best known

answer?

• How does the performance change with problem size?

• With respect to fault-tolerance, how does the performance degrade under the

presence of (simulated) faults?

• What is the performance difference of two networks solving two different

problems, that is, are there problems that are "easier" for the network to solve?

Our approach to the performance assessment is based on the fact that the distribution of

all possible answers for every instance of an optimization problem can be characterized by

two values, the global optimum (minimum cost) copt and the average cost value Cave. With

c denoting the cost value of a given result derived by the network, the relation between c,

Copt, and Cave can be used as a performance measure. By mapping those absolute values

onto a normalized scale as illustrated in Figure 4, we define the solution quality q as

Cav e -- C
q - (15)

Cave -- Copt

Thus, the solution quality has a value q=l if C=Copt and q--0 if C=Cave, with 0<q<l for

Cave>C>Copt •

10

Traveling Salesman :

Different Approaches

1.) Original Method of
Hopfield and Tank

2.) Modified Method of
Brandt et al. (1988)

3.) Brandt et al. (1988),
different parameters

10

0.905
(0.15)

0.829

(1.00)

0.936
(O.98)

Problem Size n (Number of Cities)

0.903
(0.11)

0.816

(1.oo)

0.926
(0.97)

30

0.851
(0.02)

0.830

(1.00)

0.923
(O.84)

50

(o.oo)

0.852

(I.00)

0.913
(0.58)

100

-/-

0.902
(I.00)

0.927
(0.18)

Table 1. TSP solution quality q and proportion of valid solutions (in parentheses)

for different problem sizes and solution methods.

Obviously, the calculation of q requires the knowledge of the two reference values Copt

and Cave for each problem instance (e.g. for each city distribution of the TSP). Obtaining

values for Cave is usually no problem since it only requires a sufficient number of random

trials. In case of the TSP, for example, a random but valid tour is generated repeatedly and

the resulting tour lengths are averaged to obtain Cave. The fact that we have to know the

global optimum Copt appears to be a paradox at first glance and one might ask why we would

use an ANN to solve a problem for which the best possible solution is already known. The

answer is, of course, that we want to test the network by using well-known model problems

and for such a test it is reasonable to compare the results of a new method (i.e. ANNs)

to the results of the best existing method. In fact, in almost all cases, where ANNs have

been applied to optimization problems, there are conventional algorithms readily available

to provide values for Copt. For NP-complete optimization problems like the TSP, for which

the global optimum is generally unknown, the best available heuristic method like the Lin-

Kernigham algorithm [14] can be used as a reference. If Copt is not the global optimum

and should it happen that the network generates a better answer, then the event C<Copt is

reflected by a solution quality q>l. Conversely, the value for q becomes negative if the

solution of the network is worse than the random average (C>Cave). Thus, the normalized

solution quality is independent of a particular problem instance and of the problem size.

In the following, we will demonstrate the use of the defined solution quality to assess

and compare the performance for the two model problems, the TSP and the AP. In order to

get statistically relevant results for the TSP, we generated a test-set containing 10 different

city distributions for each problem size (n=10, 20, and 30) and 5 different distributions

for n=50 and 100. Each city distribution was generated by placing the cities randomly

on a unit square according to a uniform probability distribution. The values for cave were

obtained by averaging over 105 random trials for each city distribution. The Lin-Kernigham

algorithm [14] was used to generate 5 answers for each city-distribution and th,. best result

11

was chosen as Copt. Since the network performance varies considerably for different random

initializations, 10 different initializations were used for each city distribution of size 10 to

50, and 5 initializations for n=100. Thus, a single sweep through the test-set requires 375

simulation runs and the value for q was calculated after each run. The average values for q

are shown in Table 1 for different approaches and problem sizes.

There is also the possibility that the network will not converge at all to a valid solution

because it has gotten stuck in a local minimum ("spurious attractor") that does not correspond

to a permutation matrix. Since this event is not reflected by the solution quality, we also

show in Table 1 the proportion of runs with valid solutions. The average value for q

includes only runs that produced valid solutions. In an attempt to recreate Hopfield and

Tank's original results, we performed a run of the test set using their original equations

(12-14) with the parameters A=B=500, C=200, D=500,)_=25, and Us=0 as described in

[12]. Furthermore, Hopfield and Tank used an additional constant term for the external

current according to Ixi=C(n+5)=200n+1000, which effectively shifts the transfer function.

They also used the initialization Vxi(t---0)=l/n+6 where _ is a small random number [12].

The equations of motion (14) were solved by Euler's method with time-steps At between

10 -5 and 10-6. A larger At can cause numerical errors and results that do not reflect the actual

behavior of the system. The first row in Table 1 shows the results of our simulation that

confirm the reported difficulties [26, 8, 4] in using Hopfield and Tank's original equations.

Even for n=10 cities only 15% of the runs converged to a valid solution and since none of the

50-city cases produced a valid answer we did not even attempt to solve a 100-city problem.

Although we experimented extensively with parameter variations, we did not find a

set of parameters that improves the performance significantly. However, it is possible to

"fine-tune" the parameters for one particular city-distribution to obtain quite impressive

results. Unfortunately, the same parameters usually produce invalid or poor results for

other city-distributions. This characteristic has led to some confusion in the literature with

performance claims based on specific examples that were difficult to reproduce and did not

hold in general [26]. This also demonstrates the importance of an average performance

assessment over many examples. Since Hopfield and Tank's original equations (12-14)

are not the only way to express the problem, we tried different modifications [19, 18] and

obtained the best results with the approach published by Brand et al. (1988) [4] that is

described in Section 3.3. By using Brandt's energy equation (9) and his original parameters

A=B=2, C=4, D=I, A=2.5, and us--0.5, we obtained the results shown in the second row

of Table 1. An additional difference of Brandt's approach is an initialization in the center

of the hypercube with Vxi(t=0)=0.5+_ and a random variable 6 uniformly distributed in the

range -10-6<6<10 -6. Because of the lower gain and smaller values of the parameters, we

could use the value At=0.1 to solve the equations of motion (11).

As shown in the second row of Table 1, this modified energy function produced

consistently valid tours across the full range of problem sizes. However, the average solution

12

quality was lower than the valid casesof Hopfield and Tank's results. We tried different
parametersfor Brandt's energyequationsto improve the quality. The results for A=B=5,
C=2, are D=3 are listed in the third row of Table 1. The parametersfor the transfer
function andthe initialization are the sameasin the previouscase,exceptthat we useda
At--5 × 10 -3. We can see that the average quality has indeed been improved, but at the price

of occasional invalid answers whose frequency increases with the problem size. There is a

fundamental tradeoff between obtaining consistently valid (but sometimes poor) answers for

a large number of different problem instances and very good answers for a small number

of instances. One obvious and extreme case of this tradeoff is setting D=0, which cancels

the cost-function and reduces the problem to pure constraint satisfaction. Then we would

always expect valid answers, but with an average quality of q=0. The underlying problem

with the TSP is the quadratic cost-function that maps the problem-specific distance values

multiplied by the parameter D onto the connections, where they are added to the values that

enforce the constraints as in (10) or (I3). Qualitatively speaking, large distance values in

an extreme problem case or a large factor D might "override" the connectivity values that

enforce the constraints and thus interfere with the convergence to a valid solution.

This problem does not occur with the Assignment Problem because the energy function

for the AP (5) maps the problem-dependent cost values to the external current (7) and not

to the connection values. This is actually the only difference between the AP- and the

TSP-network, as far as the architecture is concerned, and makes a performance comparison

between the problems especially interesting. As before, we generated a test-set of 10 problem

instances for each size of 10, 20, 30, 50, and 100 elements. The cost values were randomly

generated with a uniform distribution between 0 and 1. The AP as defined here is not an NP-

complete problem and there exist relatively simple and fast algorithms that find the global

solution. We used such a textbook algorithm [22] to obtain values for Copt and generated the

average values Cave from 105 random solutions for each problem instance. The first row of

Table 2 shows the simulation results for the parameters originally used by Brandt et al. [4]

with the additional values A=2.5, us--0.5, At--0.05, and the initialization uxi(t=0)=0. The

other two rows show the effect of parameter modifications and here the values 2=25, us=0,

At=5 x 10-5 were used with the same initialization. In contrast to the TSP, no random bias in

the initial values is required for the AP; in fact, the network converges to the same solution

despite some small random noise. This simplifies the performance assessment considerably,

because we now need only one simulation run for each problem instance.

A comparison between Table 1 and 2 reveals a striking difference between the TSP-

and the AP-results. For the AP, none of the runs failed to converge to a valid solution and,

moreover, the solution quality is excellent. For the parameter sets 2.) and 3.) in Table

2, the network actually found the global optimum in most cases or generated an answer

extremely close to it. We can conclude that the "non-interference" of the cost-values with

the connection-values that enforce the constraints is the cause for the enormous performance

13

Assignment Problem:

Different Parameters

1.) A=B=2, C=2, D=I

2.) A=B=200, C=20, D=50

3.) A=B=200, C=3, D=50

10

0.988

(1.0)

1.0
(1.0)

1.0
(1.0)

Problem Size n (Number of Elements)

0.960

(1.0)

0.999
(1.0)

0.999
(1.0)

30

0.975

(1.0)

0.999

(1.0)

1.0
(1.0)

0.978
(1.0)

0.998
(1.0)

1.0
(1.0)

100

0.987
(1.0)

0.998
(1.0)

0.999
(I .0)

Table 2. AP solution quality q and proportion of valid solutions (in parentheses)

for different problem sizes and parameters.

difference. Thus, the distinction between a quadratic and a linear cost function becomes

an important classification which helps to identify problems that are more suitable to an

ANN-implementation. The demonstrated ability to compare the results of two different

optimization problems proves the versatility of the solution quality as a performance index

and justifies the additional effort needed to obtain values for Copt and Cave.

There is another aspect to the comparison between optimization networks and conven-

tional algorithms, which is the time it takes to solve a problem of a particular size. For

example, it takes more than one day of CPU time on a VAX 780 to simulate the neu-

ral network solving a single 100-city problem. This is actually not surprising because the

simulation involves the numerical solution of 104 ODEs for several thousand iterations.

However, the Lin-Kemigham algorithm provides a (usually much better) answer in about 3

minutes. Furthermore, 100 cities are not even considered an "interesting" problem size for

the TSP. Although an analog hardware implementation of the neural network might solve the

same problem in milliseconds, the need for a VLSI chip with 104 Operational Amplifiers to

solve a 100-city TSP is truly questionable. Thus, we do not think that large-scale, classical

or NP-complete optimization problems are suitable applications for optimization networks

other than as examples or model problems. However, there are certain small-scale, special

purpose, real-time control problems that could benefit from the key characteristics of an

ANN hardware implementation: speed, low weight and power consumption, and "built-in"

fault-tolerance. Therefore, our actual objective is not to compete with conventional methods

in solving classical optimization problems, but to investigate the fault-tolerance of the net-

work for special purpose applications. The above performance assessment is a prerequisite

for this investigation.

5. Fault-Tolerance

It is possible to distinguish between two different characteristics, which we might call

14

static fault-tolerance and dynamic fault-tolerance. A system with static fault-tolerance does

not react in any special way to compensate for the effect of internal failures, whereas

a dynamically fault-tolerant system reorganizes its resources to counteract the fault-effects

actively. An example for the latter case is adaptation or retraining after internal faults [1, 20]

or the self-repair mechanism proposed by Petsche and Dickinson (1990) [17]. Generally, it

is more difficult to achieve the same degree of robustness with static fault-tolerance because

no repair or reconfiguration is possible. Since optimization networks are "hard-wired" and

do not adapt or learn, they can exhibit only static fault-tolerance. Thus, we will "inject"

simulated faults into the network and observe the performance degradation by using the

defined solution quality for the TSP and the AP. A study that is related to our approach

was performed by Belfore and Johnson (1989) [3] who also investigated the effect of faults

in an optimization network that solves the TSP. However, they used only a single 6-city

distribution with single node faults in their simulations, which is insufficient to draw any

statistically meaningful conclusions as we will show below.

According to Figure 1, there are only two different components in a hardware imple-

mentation of an optimization network, the "neuron" or active element in the form of an

operational amplifier and passive interconnections in the form of resistors. In the following,

we will first consider two types of faults of the active elements that correspond to the high-

est failure rate. These are commonly called "stuck-at-l" or "stuck-at-0" faults and occur

if the output of a unit (amplifier) is permanently pulled to the highest potential or to the

lowest (ground) potential, respectively. The fault-locations are randomly selected with one

important exception: we do not allow two stuck-at-1 faults to occur within the same row or

column. The reason is that such an event would automatically preclude a valid solution,

since the permutation matrix allows only one "1" in each row and column. In simulating

multiple faults, we study a succession of either stuck-at-1 or stuck-at-0 faults, but not a mix-

ture of both types. We use the same locations for stuck-at-1 and stuck-at-0 faults, in order

to compare the effect of a different fault type. Otherwise it would not be possible to tell

whether different results are caused by the different locations or by the different fault types.

This means that the above exception is also valid for stuck-at-0 faults although two or more

stuck-at-0 faults in the same row or column do not necessarily interfere with a valid solution.

Before we present the results of our large-scale simulations, we want to illustrate the

impact of stuck-at-1 faults for two examples. Figure 5 demonstrates the effect of 4 stuck-at-1

faults simultaneously present in a network solving a 10-city TSP. The network parameters

are those that produced the results in the second row of Table 1 and are listed in the previous

Section. For comparison, Figure 5a shows a good but suboptimal solution of length 3.08 for

a fault-free network. The locations of the 4 injected faults are visible after the initialization

in Figure 5b. In Figure 5c it can be seen that the network still converges to a solution;

however, the resulting tour of length 3.77 is clearly worse than in the fault-free case. In

order to understand these results, it is necessary to recall the "meaning" of a fault in this

15

1 2 3 4 5 6 7 8 £ 18

A m

13 m

c m

0::: :m: :m:
F m •

G m °°°°°°°

H m

i m

J m •

a G

12345678918

A mmmmmmmmmm

B mmmmmmmmmm
c mmmmmmmmmm
D mmmmmmmmmm
E mmm mmmmmmm
F mmmmmmmmmm
G mmmmmmmmmm

H mmmmmmmmmm

_ mmmmmmmmmm
j mmmmmmmmmm

b 6.

1
H, F,

Al

J'i

12345678918

A m

..... m

c m

D m •

E m

mm
H m •

I m,,m°°lo

J m

Figure 5. Solution of a lO-¢ity problem by a network without any faults (a), new initialization of the
network now with 4 stuck-at-1 faults Co), and solution under the presence of faults (c). Note that

the two faults in adjacent columns predetermine a link between the cities B and D.

16

a) no faults c=165

68 68 93 38 52 83@

53 67 1 38 7 42

68 59 93 84 53 @)65

42 70 91 76(_) 5 73

33(_) 75 99 37 25 98

6@ 88 27

72 75 63

44 76 24 28 36 17

b) 1 stuck-at-1 c = 185

68 68 93 38 52 83(4)
6 53 67 1 38

68(_93 84 53 10 65

42 70 91 76 (26") 5 73

(_)63 75 99 37 25 98

72 _ ('ff)63 88 2775 65

44 76 4_2"4 28 36 17

c) 2 stuck-at-1 c = 243

68 68 93 38 52 83_4)
6 53 67 1 38

[] 84 53 10 6568 5_9
42(_)91 76 26 5 73

(_)63 75 99 37 25 98

72 75 65 (8-)63 88 27

44 76 48 2"42_36 17

d) 3 stuck-at-1 c = 310

68(_93 38 52 83 4

6 53 67 1 38[]42

68 59[]84 53 10 65

42 70 91 76 26 5 []

63 75 99 37 25 98
72 75 65("ff)63 88 27

44 76 48 2"_2_36 17

e) 4 stuck-at-1 c = 361

68(_93 38 52 83 4

6 53 67 1 38[]42

68 59[]84 53 10 65

42 70 91 76 26 5

(_)63 75 99 37 25 98
72 75 65 8 []88 27

44 76 48(_)28 36 17

f) 5 stuck-at-1 c = 381

68 68 93(_)52 83 4

6 53 67 1 38[]42

68 59[]84 53 10 65

42 70 91 76 26 5 []

33(_)75 99 37 25 98
72 75 65 8 []88 27

[]76 48 24 28 36 17

Figure 6. Effect of up to 5 multiple stuck-at-1 faults on a network solving an Assigrtment

Problem of size n=7. Shown is the cost-matrix with the circled elements

indicating the network solutions (neurons that converged to "1") and the

shaded squares indicating the fault locations. Note that b)-f) are still optimal

solutions under the additional constraints imposed by the faults.

context. Since we interpret the neuron output as a decision about the position of a city

on a tour, a stuck-at-1 fault represents such a decision and thereby predetermines a part of

the overall tour. Because of the degeneracy of the TSP problem representation, a single

stuck-at-1 fault does not constrain the network at all since the absolute position of a city

does not matter. The effect of two simultaneous faults is immediately obvious if the two

faults occur in adjacent columns. As shown in Figure 5b, such an event predetermines a

link between two cities because the cities are in successive positions on the tour. Figure 5c

shows how this imposed "link" affects the overall tour.

Surprisingly, this predetermination of parts of a tour by the injected faults does not

necessarily lead to a performance degradation. Since the network usually finds a suboptimal

solution in the fault-free case, it is conceivable that a "lucky" combination of fault-locations

leads to a tour that is actually better than one without any faults. While these events

are rare, we could observe occasional improvements under the presence of multiple faults.

Stuck-at-0 faults play a less prominent role because they only preclude a city from being

in a certain position instead of predetermining it. Thus, the network has even more ways

to "work around" those faults and we would expect a minimal impact even for multiple

stuck-at-0 faults.

17

Figure 6 shows the effect of injected stuck-at-1 faults on a network solving the Assign-

ment Problem. The parameters used for this example are those listed in the second row of

Table 2. The solution shown in Figure 6a represents the global optimum. Thus, if the best

answer is derived under fault-free conditions, any fault can only decrease the performance.

Because the AP problem representation does not have the degeneracy like the TSP, even a

single stuck-at-1 fault precludes a convergence to the global solution. Figure 6b-f illustrates

how the multiple fault-locations marked by the shaded squares become part of the solutions

and how the network converges to accommodate these constraints.

We analyzed the network solutions in Figure 6b-f by using our conventional algorithm

and by taking the faults into account as additional constraints to the problem. Interestingly,

the network arrived at the same results, which means that it still found the new "global"

optimum under these fault-conditions. Thus, we could define a conditional performance

measure by viewing the faults as constraints to the problem and assessing the network

performance accordingly. Although we can see the obviously unavoidable performance

degradation in absolute terms, the conditional performance of the AP network is still optimal.

As with the TSP, stuck-at-0 faults preclude a particular solution and have no effect at all

on the AP unless the fault location coincides with an active unit that is part of the solution.

In this case, we have observed the same phenomenon that the network treats the fault as an

additional constraint and converges to the "best possible" solution.

Although the above examples provide some (qualitative) insight into the fault-tolerance

characteristics, it is still necessary to substantiate this impression by large-scale simulations

in order to obtain more rigorous results. We used the test-set of problem instances as

defined in the previous section and the same parameters that correspond to the results in

the second row of Tables 1 and 2. Only these parameter values were used for the TSP

because we regard the consistent convergence to a valid solution in the fault-free case as

a prerequisite for any fault-injection experiments. Figure 7 shows the results for different

problem sizes. The results confirm our conjecture that stuck-at-0 faults have no effect

for the AP and practically no effect for the TSP. In case of the TSP, the injected faults

"override" the random initialization and the network converges without or independent of

any initial bias to the same solution. Stuck-at-1 faults result in an almost linear performance

degradation for the AP, while the redundancy of the TSP problem representation is reflected

in a relatively slower performance decrease as the number of faults increases. When the

number of stuck-at-1 faults approaches the number of cities or elements, the performance for

both the TSP and the AP approaches zero as in Figure 7a, which corresponds to the random

average. This is because the randomly selected fault locations eventually predetermine a

random tour. Most importantly, none of our simulations failed to converge to a valid tour

because of one or more injected faults.

In another experiment, we studied the effect of connection faults on the performance of

an optimization network. Although the failure rate of a simple resistive connection is orders

18

a) Problem Size n=10 Cities or Elements

1.0 z_ _ _ A t, _ ._ r_

0.8 ""

O 0.6 "---_. "'--..._

0.4 TSP: • AP: A __ "-'_

0.2 stuck-at-,0,, faults --. "-.stuck-at- 1 faults "'',_

0.0 ' ' i , J t i ,
0 1 2 3 4 5 6 7

No. of injected Faults

b) Problem Size n=20 Cities or Elements

1.0
ET

>'0.8-.i--
,_

o

c] 0.6

E
o 0.4

o 0.2
(/3

0.0

A_ ,6/t _ A A A A A A.
A. A _ /X

TSP: • AP: z_

stuck-at-"0" faults
stuck-at-"1" faults

I I I I

%

I I

0 2 4 6 8 10

No. of Injected Faults

c) Problem Size n=50 Cities or Elements

1.0
1:7-

_0.8
o

_ 0.6

r"
o 0.4

o 0.2

0.0

TSP: • AP: z_

stuck-at-"0" faults
stuck-at-"1" faults

I I I } I I I

0 2 4 6 8 10 12

No. of Injected Faults

Figure 7. Performance degradation of an ANN solving the Traveling Salesman Problem (TSP)
and the Assignment Problem (AP) after injections of stuck-faults for different problem
sizes. The values are averages over 10 different problem instances for each size with
additionally l0 different random initializations each for the TSP.

19

a) Problem Size n=lO, D=50

1.0
O"

 0.8
0

_ 0.6

r
o 0.4

o_

3

o 0.2
tO

0.0

"-'-_-" Worst_ _ #

I I I I I I

0 10 20 30 40 50

Number of Connection Faults

b) Problem Size n=lO, D:120

1.0
a-

>'0.8.e-
°_

0

o 0.6

C
o 0.4

0 0.2
I/)

0.0

_ "_ Worst''_- : : : : \ A AA ,-"

I I I I I I

0 10 20 30 40 50

Number of Connection Faults

c) Percentage of Valid Solutions for a and b

.9_
0

>

"6

0

EL

100

80

60

40

20

0

D = 50,,I'"-'-

\ k
\ \ /'_\

\
\

I I I I I

0 10 20 30 40

Number of Connection Faults

\
\

\
\

I

50

Figure 8. Performance degradation of an ANN solving the Assignment Problem (A_P)after multiple
connection failures (open connections). The values in a) and b) arc the best, worst,
and average performance of 50 different problem instances and the values inc) indicate
how many out of the 50 runs for each fault-scenario converged to a valid solution.

2O

of magnitude less than that of an operational amplifier, the large number of connections

(e.g. 2n3-2n 2 connections for an n-element AP compared to n 2 neurons) increases the

overall probability of such a fault. The failure of a connection with the resistance R leads

either to a short circuit (R=0) or to an open connection (R = _). Because the failure rate

of a connection short circuit is far less than the rate of an open connection, we simulated

only the latter fault-type. In order to limit the number of required simulations we only

used a network solving the AP for this experiment, because this network exhibited the best

performance and greatest fault-tolerance in our previous studies.

Figure 8 shows the resulting performance degradation of an ANN solving a 10-element

AP for up to 50 simultaneous open connections. The parameters for the AP-network are

the same as in the previous fault-injection runs. The locations for the connection faults

were randomly selected. For each fault-scenario we ran 50 different problem instances and

Figure 8a-b shows the average as well as the worst and the best performance for the two

different values of the parameter D=50 and D=120. The parameter D is a factor multiplied

by the cost values according to Equation (7) and a large value for D enforces solutions with

better quality. This is reflected by Figure 8b which shows a better average quality as well

as a lower variation in the quality of the best and the worst solution compared to Figure

8a. This high variation in Figure 8a is again a reminder how much the results depend on

the chosen problem instance and that the study of a single instance as in [3] can lead to

grave misinterpretations.

Although the performance results suggest that a higher value for D would be desirable,

there is a tradeoff shown in Figure 8c. Surprisingly, while none of the "stuck-at" faults

led to an invalid solution, we do observe invalid solutions for some problem instances after

a certain number of open connections. Figure 8c shows the percentage of valid solutions

and it can be seen that a lower value for D tolerates more faults before the first case of an

invalid solution occurs. We have already seen this tradeoff between consistently valid and

high quality solutions in the fault-free cases of Section 4 and it is very interesting to observe

that the same effect plays an important role with respect to the fault-tolerance. Because an

invalid solution is the worst case and equivalent to a total system failure, a small value for

D is obviously preferable, especially since it does not affect the fault-free performance at

least for the cases shown in Figure 8a and b. However, for a value D>120 we could also

observe some invalid results in the fault-free case. This shows that the "quality-validity

tradeoff" is a general phenomenon and that connection faults only increase the likelihood

of invalid solutions.

In summary, we have demonstrated that optimization networks exhibit a surprising de-

gree of fault-tolerance, which is achieved without the explicit use of redundant components.

Because the fault-tolerance characteristics are inseparable from the functional characteristics,

we can say that the fault-tolerance of the ANN is "built-in" or inherent. However, when we

make a statement about the fault-tolerance, we implicitly assume a failure condition or fail-

21

ure criterion of the system, which is the threshold below which it can no longer perform its

function according to the specification. For example, consider the AP-network that always

generates the global optimum under fault-free conditions. If we specify this as the only

acceptable performance level, than any stuck-at-1 fault that causes the network to generate

a good but suboptimal answer is not acceptable and, with respect to this fault-type, the

network is not fault-tolerant at all. On the other hand, if we specify a solution quality of 0.8

as the acceptable performance threshold, then an AP-network of size n=30 can tolerate (on

the average) 5 stuck-at-1 faults and an even larger number of stuck-at-0 or connection faults.

Thus, the degree of fault-tolerance depends on our definition of acceptable performance.

The main reason that optimization networks are interesting from a fault-tolerance

perspective is that they exhibit a gracefulperformance degradation and that they do not have

a critical component. Most conventional systems are either fully operational or break down

completely if a single fault occurs in a critical component or subsystem. Furthermore, most

neural networks have critical components and are therefore not truly fault-tolerant. Consider,

for example, a feedforward (backpropagation) network that is trained as an autopilot to

control the altitude of an aircraft and has a single neuron in its output layer whose analog

value represents the control variable. While this network might tolerate multiple connection

faults or faults of its hidden units, a single stuck-at-0 or stuck-at-1 fault at the output neuron

would lead to a total system failure. Because of the critical component, such a network is,

at least in the strong sense of the definition, not fault-tolerant at all.

The above discussion suggests an application domain for optimization networks, where

it is not necessarily important to generate the best possible solution to an optimization

problem, but where a "reasonably" good answer has to be obtained fast and reliably. In the

next section we present an example of such an application with the network performing a

critical real-time task as a component of a fault-tolerant multiprocessor system.

6. Application of an ANN for the Task Allocation
in a Distributed Processing System

In the following we will investigate the application of an optimization network in the

context of a distributed processing system that operates under hard real-time constraints

and has to meet very high reliability requirements. An example of such a system is the

Software-Implemented Fault-Tolerance (SIFT) computer used by NASA as an experimental

vehicle for fault-tolerant systems research [16]. The SIFT architecture can accommodate up

to eight processors in a fully distributed configuration with a point-to-point communication

link between every pair of processors. It can be used, for example, to execute real-time

flight control tasks as part of an aircraft control system. Because the system operates

in a distributed fashion, each processor executes a certain number of tasks according to a

predetermined task-to-processor allocation table. The architecture achieves an extreme fault-

22

toleranceby its capabilityto detectandto isolatepossiblehardwarefaults. The isolationof
a defectiveprocessorrequiresa reconfigurationof thesystemanda reallocationof all tasks
amongtheremainingprocessors.Thus,it is not theinitial taskallocation,but thereallocation
of tasksafter a processorfailure, that is time-critical andhas to be performedby a highly
reliable mechanism.The useof look-up tablesfor the reallocationhas the disadvantage
that the numberof combinationsof tasksandprocessorsis very largefor evenmoderately
sized systems[2] and grows exponentiallyafter multiple processorfailures. Although it
is possibleto useconventionalalgorithmsto solve the problem, thesemethodsare often
computationallytoo expensivebecauseof the hard real-time constraintsand require an
undesirableoverheadbecausethealgorithmshaveto beexecutedin adistributedenvironment
without any hierarchicalcontrol.

Sincefinding the bestallocationof tasksamongthe processorscan be formulatedas
a constrainedoptimization problem, we will demonstratehow an optimization network
can be used to solve this problem. The distributedsystemconsideredhere resemblesa
simplifiedversionof theSIFT computerandis basedona modeldescribedin [2], in which
a conventionalheuristicalgorithm is usedto solve this task allocationproblem. We will
laterusethis algorithmasabenchmarkto assesstheANN-performance.The systemhasto
executen tasksandconsistsof m identicalprocessors.Each taskis replicatedinto r clones
thatareexecutedby differentprocessorsandsubmittedto a majority voter in orderto detect
and to maskpossiblehardwarefailures. Assumingperiodic real-timetasks for a typical
flight control system,the numberof instructionsper executionof taskj, the frequencyof
executionand the executionrate of the processordeterminethe load that a certain task
placeson a processor,which is called the utilization zj of taskj. A particularallocation
can be describedby a variable Vij with Vij=l if taskj is scheduledon processori and
Vii=0 otherwise.Then thevariablepi =- _ zjVij represents the overall load or utilization

of processor i under the allocation Vii.

The task allocation has to observe the constraint that each task must be executed by

exactly r different processors in order to allow a majority vote. Additionally, the allocation

should be done in a way that achieves at least an approximate load balancing among the

processors. A load balancing in a distributed processing system is obviously desirable and

Bannister and Trivedi [2] discuss several reasons why an imbalance potentially decreases

the reliability of the system. It can be shown [2] that minimizing the sum of the squared

processor utilizations _p! also minimizes the statistical variance of the Pi, which is a
i

direct measure of the imbalance. We further assume that there are enough processors to

accommodate a (balanced) assignment without capacity or scheduling violations.

The task allocation problem (TAP) is represented by an optimization network consisting

of a two dimensional array of m×n neurons or elements, in which the output Vii of an

element is bounded between 0 and 1 and corresponds to the "hypothesis" that task j is

23

load: [

task utilization

I 11i ;!:!:!_IZ;?I:I:Z?;I:I:?I:I:?I:I

: + +: :+:k +:+:+:+:+:+: :+:<

4_
5_

7[]
8D
91!!:!iiiii!ii:ii!i!iii!iiiiiililiiiiil]

1 0 |iiiiiiiiil;ii:i;;!:iiii!;iiii!:::!:!:ilil

3

2_i:!:_:_:i:_:!:!:?:i:!i:i:i:i:::i:i:11

31E:i:i:i:i:i:i:i:::i:i:i:i:i:i:i:i:i:i:i:!:i:i:i:!:i:]

5_

9_

0.071
0.071 processor

0.094 _ 10.045
0.057 2

0.085 3

0.015
0.058
O.070 5

::::::::::::::::::::::

3 [:!:!:::!i:!:!i: :!:i:i:ii:i:ii:i:i:i:i:i:i:!:i:il

6[::@::::::_@ ;::2_:2:_:_:2:::::1

7D

10[: !:::i :::i,:;::;:!::::i:l

:<::<::+: :+: >:+:+: :+:+: :+:

task
1 2 34 5 6 7 8 910

fl 1 0 1 1 0 1 1 1 01

101 1001 101

1001110111

0110110010

0 1 1 0 0 1 1 0 0 1

Cost-Values Optimization Network Output-Matrix

Figure 9, Example of an allocation of tasks to processors generated by an optimization network.

Note that each task has to be executed by exactly three different processor while an

approximate load balancing of the processors should be achieved.

assigned to processor i. Figure 9 illustrates this problem representation for an example in

which 10 triplicated tasks are allocated to 5 processors. In order to map the task allocation

problem onto the network, it has to be expressed as a function whose minima correspond

to (local) solutions of the problem. With the above definitions, we can define the following

energy function

= Vi -
j=l

B _ D

+-5 7 z:V i
i=1 j=l i=1 1=1

(16)

The first term in (16) has a minimum if the constraint is met (i.e. each task is executed by

exactly r processors), the second term forces the outputs to converge to either 0 or 1, and

the third term represents the cost-function to be minimized. Mapping (16) onto the energy

24

function (6) yields the following valuesvaluesfor the interconnectionsand the external
current

Tij,lk = --A_jk + BcSil_jk -- Dzjzk¢Sil

and the equations of motion

B (17)

Iij = Ar - -_

C duij uij A E Vtj + BVij
ij--_ -- Rij l

B (18)

- Dzj zk k + - y
k

We used the parameter values A=75, B=5, and D=350 as well as A=25 and Us=0 for the

transfer function (I). Although there are only three parameters, we use D as the third

parameter because we have previously associated D with the cost function of the problem.

Our simulations are performed for different data-sets with task utilizations zj randomly

generated from a uniform distribution between 0.01 and 0.1. Because of the quadratic cost

function in (16), the cost values zj are part of the interconnections while the external current

is constant. Thus, this problem is similar to the TSP and requires a random initialization to

overcome the unstable equilibrium point at uij=0. We used the initial values Vij--0.5+_ with

small, uniform noise -10-7<_<I0 -7. The equations of motions (18) were solved by Euler's

method with a stepsize At=2 x 10-5 and required an average of 5000 iterations to converge.

At this point, we can simulate the network and successfully "solve" the TAP as shown in

Figure 9 with a performance that is comparable to the TSP-network, but this is not the actual

task in this application. What is required is a reallocation of tasks after a processor failure.

Therefore, the network has to be provided with the information of which processor has

failed. Furthermore, it has to implement this information as an additional constraint before

solving the problem. For example, the unavailability of a processor k can be represented by

enforcing Vkj=0 for all j, that is, no tasks can be assigned to processor k. This additional

constraint could be implemented either by external currents of sufficient strength to "shut

down" all neurons in row k, or by switches connecting the outputs of all neurons in row

k to "0" (ground potential). While the latter method seems to be somewhat crude, it has

actually the advantage that a possible stuck-at-1 hardware fault of a neuron in that row

is "overwritten" by the external switch. Producing this "short circuit" at the outputs is

equivalent to our stuck-at-0 fault-injections in the last Section. There we have shown that

the network indeed treats these "faults" as additional constraints to the optimization problem.

Figure 10 illustrates the process of reallocation after a processor failure by using the same

example shown in Figure 9.

The network is obviously a critical component of the system because a network failure

would prevent the reconfiguration of the system after a processor failure, which leads to a

25

3 {i:i:_:i:i:_:i:i:_:i:i:_:!:i:!:!:!_!:i:!:_:i:!:_:i:!:l

4_
5_

6 Ii:!:iSi:iSi:i:!:!:i:i:i:!:!:!:i:i:i:!:!:!:t

7D

8D

9_

2_

4_
5_
9_

101S!:!:!:!:!:i:i:!:i:!:i:i:!:!:iSi:!l

t 0.47IT:L

1 Fsi:isi:s:!si:isi:i:ii::i:_:a 0.071 processor2f; 0.071 /

3tii_i_;_ii_i...I 0.094 | 1
4_ 0.045
5_ 0.057 2

6f :!:_:_:_:::i::!:::::i:s_17_ 0.0850.013_ I_ 3
8D 0.015 4
9 0.058

lOt:_ _;;_1 0.070 5

2_

3 {iS!:!:i:!:!8::!8::i:!:!::::_:::::::W:::_::J

5_

6t::: :::: !

7D

8D
10 r:is!:i:i::s:isi_!s_i:1

t i

task
1 2 34 5 6 78 910

1 1 0 1 0 1 1 1 1 1\

oo o oo o o oo ott

1 0 1 1 1 1 1 1 1 0/

1 1 1 1 1 0 0 0 1 1 /
0 1 1 0 1 1 1 1 0 1/

Cost-Values Optimization Network Output-Matrix

Figure 10. Example of a reallocation of tasks after a processor failure. The optimization

network generates new allocations by observing the constraints and by

approximately balancing the load of the processors.

total system failure. Thus, the fault-tolerance of the ANN becomes a crucial characteristic.

We tested the fault-tolerance again by simulating stuck-at-0 and stuck-at-1 faults in randomly

selected locations. Figure 11 illustrates the operation and the convergence of the network

for the example of a system with m=7 processors and n=14 tasks where each task has to be

executed by 3 different processors (r=3). Figure 1 la shows the initialization of the (fault-

free) network for a scenario in which processor 4 has failed, which is reflected by an output

value of zero for all neurons in row 4. Figure 1 lb indicates the result after convergence

with task 2, 3, and 6 assigned to processor 1, task 3, 5, and 7 assigned to processor 2, etc.

The load balancing performance of the ANN is also illustrated in Figure 1 lb which lists

the processor ufilizatons resulting from the ANN solution in comparison with a simple,

heuristic reference algorithm [2]. As can be seen from the cost values listed at the bottom,

which are the sum of the squares of the processor utilizations, the ANN is outperformed

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14

llilUillJUliil

U U U U U IliiliU IN

UlOlUlmmUmllii

miillillminill

illllllilllill

nillilllllllll

1 2 3 4 5 6 7 B 9 18 11 12 13 14

mmumnmngimuimn
umiu mimmmHmim
i i I I i U lili i U •

i|m || m mR m m mini

IJi i imi i i m I n i

Ulmlililililil

1 2 3 4 5 6 7 8 9 16 11 12 13 14 ANN

1 INN" ii' N" • o.3311
2 • m. ireNe, mma.3sl_
3 miNN. m.m.m. ..3389
4 8.8886

s • • me • • • miD,.-,,
.•urn.in. mR.
' iN "me " iN. "-_

b) cost., 8.6515

1 2 3 4 5 6 7 8 9 10 11 12 18 14

• me ° 'i" m. • me.
•me. i.m. .m. •
m. .m. .imBeD ° •

• " "in. m. iBm. in
•in •mm. •in,
i. •ii. m. ili. ••

Cost :

Refer

8.3386

8.3386

8.3386

8.8889

8.3273

8.32?3

8,3273

8.6493

ANN Refer

8,3112 8.3386

8.2772 8.3386

8.35988.3386

8,8888 8.8888

8.3887 8.3273

0.2989 8.32?3

8.3467 8.3273

8.6578 8.6493

Figure 11. Illustration of the operation and convergence of a network generating a task

allocation after the failure of processor 4 (m=7, n=14, r=3): a) initialization of

the network (no faults), b) solution after convergence with resulting processor

utilizations in comparison to the reference algorithm, c) initialization (five

stuck-at-1 and three stuck-at-0 faults injected into the network), d) solution

after convergence under the presence of the injected faults.

by the algorithm, although the difference of the values is only of the order of one percent.

However, as we stated earlier, an approximate load balancing is sufficient in this case as

long as the solution can be obtained fast and reliably.

The latter requirement is illustrated in Figure 1 lc. It shows the initialization of the

network for the same scenario, but now with eight faults simultaneously present in the

network. The fault locations of five stuck-at-1 and three stuck-at-0 faults are clearly visible

after the initialization. Figure 1ld shows the results after convergence and we can observe

the same phenomenon that the faults do not impair the convergence, but act as additional

constraints of the problem. According to the cost value in Figure 1 ld, the performance is

only slightly worse than in the fault-free case.

Since the performance of the ANN varies considerably for different random initializa-

tions and different input data, it is necessary to evaluate the average performance over a

sufficient number of problem instances in order to obtain a statistically relevant assessment.

We simulated a system with m=8 processors and n--24 triplicated tasks (r=-3), which requires

a network of 192 neurons. Seven different test-sets of random task utilizations were gener-

ated. The network was simulated with seven different initializations for each test set. The

solution quality q was used to assess the performance where values for Copt were obtained

from the heuristic algorithm in [2]. Figure 12 demonstrates the performance degradation

27

1.00

.-= 0.95
0

o 0.90
E

.9 0.85
-I

0.80

0.75

a) sfuck-af-O fauHs

7 proc.
- / 8 proc.

6 proc.

I I I J I I I I I

0 1 2 3 4 5 6 7 8

No. of Injected Faults

1.00

0.95

0.90

0.85

0.80

0.75

b) stuck-at-1 faults

8 proc.

'_"6 proc. 7 proc.

I I I I I I I I I

0 1 2 3 4 5 6 7 8

No. of Injected Faults

Figure 12. Performance degradation of the ANN allocating n=24 triplicated tasks

(r=-3) to m=8, 7, and 6 processors.

for up to 8 injected stuck-at-0 or stuck-at-1 faults, respectively. The number of processors

refers to the remaining number of available processors in the system. For example, if the

distributed system consists initially of 8 processors, then m=7 refers to the operation of the

network after a failure of one processor with the neurons in the corresponding row switched

to zero. Note that the solution quality in Figure 12 is plotted in the small range from 0.75

to 1.0, which magnifies the variations. As expected, the performance is very similar to the

TSP because both use a quadratic cost function.

The results in Figure 12 confirm the qualitative observation in Figure 11 that the ANN

exhibits an extreme fault-tolerance compared to conventional systems. Since the faults are

randomly located and act as additional constraints of the problem, it is possible that one

or more faults accidently "dictate" a better solution than the network would have found

without faults. This explains the occasional performance increase after fault-injection and

the nonmonotonic characteristic of the performance degradation. Of course, this is only

possible because of the suboptimal performance of the ANN in the fault-free case. It is

also important to note that none of the simulations converged to an invalid solution or to

a solution that violates the capacity constraint pi<l, although the latter was not explicitly

enforced. An event that would lead to an invalid solution can only occur if there are more

than r stuck-at-1 faults in the same column, thus assigning a task to more than r processors

and violating the constraints. If the faults occur at random locations and if the failure rate

of a stuck-at-1 fault is known for a particular hardware implementation, then this scenario

can be used to estimate an upper bound for the reliability of the ANN.

7. Conclusion

The fault-tolerance of conventional systems is a carefully calculated design goal that

requires some form of hardware- or software-redundancy, which increases the complexity

28

of the system. That is, it is always possible to build a simpler system without the

redundancy, and this system has the same performance under fault-free conditions as the

fault-tolerant system. In contrast, the fault-tolerance of optimization networks is inseparable

from their functional characteristics and is neither planned nor can it be removed. We

have demonstrated this "inherent" fault-tolerance in simulations and we have shown that the

injected faults are treated by the network as additional constraints to the problem. While

conventional systems often break down completely after a single fault, the network exhibits

a graceful performance degradation even after multiple injected faults. This characteristic

can be exploited and a fault-tolerant neural network integrated on a single analog VLSI

chip might perform a critical task that would otherwise require a redundant microprocessor

system with specially tested software.

As an example for a promising application, we used the neural network as a critical

component of a fault-tolerant, distributed processing system. The failure of a processor

requires a reconfiguration of the system and a reallocation of all tasks among the remaining

processors. This task allocation has to observe certain constraints and should at least

approximately balance the load of the processors. We showed how a neural network can

solve this problem and demonstrated the robustness of the network by injecting simulated

faults. Our results indicate that the network can indeed perform this task reliably and that

even multiple faults do not impair the ability of the network to generate an answer with

only slightly degraded performance.

In summary, we think that there exist applications for the type of neural network

described in this paper that can take advantage of the speed, low weight, low power

consumption, and fault-tolerance of future hardware implementations. However, in most

cases, the actual performance of the network does not reach the performance of the best

available, conventional optimization algorithm. Thus, the neural network approach is best

suited to certain real-time applications that do not necessarily require the absolute best

answer, but where it is necessary to generate an approximate answer fast and reliably.

The characteristic of a graceful performance degradation without additional redundancy is

especially interesting for applications such as long-term, unmanned space missions, where

component failures have to be expected but no repair or maintenance can be provided.

29

References

[10]

[11]

[12]

[131

[1] Anderson, J. A. Cognitive and psychological computation with neural models. IEEE

Transactions on Systems, Man, and Cybernetics SMC-13, 5 (Sep-Oct 1983), 799-815.

[2] Bannister, J. A., and Trivedi, K. S. Task allocation in fault-tolerant distributed systems.

In HardReal-Time Systems (Tutorial), J. A. Stankovic and K. Ramamritham, Eds. IEEE

Computer Society Press, 1988, pp. 256-272.

[3] Belfore II, L. A., and Johnson, B. W. The fault-tolerance of neural networks. The

International Journal of Neural Networks - Research and Applications 1, 1 (Jan 1989),

24-41.

[4] Brandt, R. D., Wang, Y., Laub, A. J., and Mitra, S. K. Alternative networks for

solving the traveling salesman problem and the list-matching problem. In Proceedings

of the IEEE International Conference on Neural Networks, San Diego, CA (July 1988),

pp. II-333-340.

[5] Cohen, M. A., and Grossberg, S. Absolute stability of global pattern formation and

parallel memory storage by competitive neural networks. IEEE Transactions on Systems,

Man, and Cybernetics SMC-13, 5 (Sep/Oct 1983), 815-826.

[6] Garey, M. R., and Johnson, D. S. Computers andlntractability. W. H. Freeman, 1979.

[7] Grossberg, S. Nonlinear neural networks: Principles, mechanisms, and architectures.

Neural Networks 1, 1 (1988), 17--61.

[8] Hedge, S., Sweet, J., and Levy, W. Determination of parameters in a Hopfield/Tank

computational network. In Proceedings of the IEEE International Conference on Neural

Networks, San Diego, CA (July 1988), pp. I1-291-298.

[9] Hinton, G. E., and Sejnowski, T. J. Learning and relearning in Boltzmann machines. In

Parallel Distributed Processing, Vol. 1, D. E. Rummelhart and J. L. McCleUand, Eds.

Bradford Books/MIT Press, 1986, ch. 7, pp. 282-317.

Hinton, G. E., and Shallice, T. Lesioning a connectionist network: Investigations

of acquired dyslexia. Technical Report CRG-TR-89-3, Dept. of Computer Science,

University of Toronto, May 1989.

Hopfield, J. J. Neurons with graded response have collective computational properties

like those of two-state neurons. Proc. Natl. Acad. Sci. USA, Biophysics 81 (May 1984),

3088-3092.

Hopfield, J. J., and Tank, D. W. "Neural" computation of decisions in optimization

problems. Biological Cybernetics 52 (1985), 141-152.

Hutchinson, J. M., and Koch, C. Simple analog and hybrid networks for surface

interpolation. In Neural Networks for Computing, J. S. Denker, Ed. American Institute

of Physics, 1986, pp. 235-239.

30

[14] Lin, S., and Kernigham,B. W. An effective heuristic algorithm for the traveling
salesmanproblem.Operations Research 21 (1973), 498-516.

[15] Marcus, C. M., and Westervelt, R. M. Dynamics of analog neural networks with time

delay. In Advances in Neural Information Processing Systems. Morgan Kauffman, 1989.

[16] Palumbo, D. L., and Butler, R. W. A performance evaluation of the software-

implemented fault-tolerance computer. J. Guidance 9, 2 (March-April 1986), 175-180.

[17] Petsche, T., and Dickinson, B. W. Trellis codes, receptive fields, and fault tolerant, self-

repairing neural networks. IEEE Transactions on Neural Networks 1, 2 (June 1990),

154-166.

[18] Protzel, P. W. Comparative performance measure for neural networks solving

optimization problems. In Proceedings of the International Joint Conference on Neural

Networks IJCNN-90, Washington, D.C. (January 1990), pp. 11-523-526.

[19] Protzel, P. W., Palumbo, D. L., and Arras, M. K. Fault-tolerance of a neural network

solving the traveling salesman problem. ICASE Report No. 89-12 / NASA Contractor

Report 181798, ICASE / NASA Langley Research Center, Feb 1989.

[20] Sejnowski, T. J., and Rosenberg, C. R. NETtalk: a parallel network that learns to read

aloud. Technical Report JHU/EECS-86/01, John Hopkins University, 1986.

[21] Smith, M. J., and Portmann, C. L. Practical design and analysis of a simple "neural"

optimization circuit. IEEE Transactions on Circuits and Systems 36, 1 (January 1989),

42-50.

[22] Syslo, M. M., Deo, N., and Kowalik, J. S. Discrete Optimization Algorithms. Prentice

Hall, Inc., Englewood Cliffs, NJ, 1983.

[23] Tagliarini, G. A., and Page, E. W. A neural network solution to the concentrator

assignment problem. In IEEE Conference on "Neural Information Processing Systems

- Natural and Synthetic", Denver, CO (November 1987).

[24] Tank, D. W., and Hopfield, J. J. Simple "neural" optimization networks: An A/D

converter, signal decision circuit, and a linear programming ciruit. IEEE Transactions

on Circuits and Systems CAS-33, 5 (May 1986), 533-541.

[25] Van den Bout, D. E., and Miller, T. K. A traveling salesman objective function that

works. In Proceedings of the IEEE International Conference on Neural Networks, San

Diego, CA (July 1988), pp. II-299-304.

[26] Wilson, G. V., and Pawley, G. S. On the stability of the traveling salesman problem

algorithm of Hopfield and Tank. Biological Cybernetics 58 (1988), 63-70.

31

1. Report No, 2. Government Accessfon No.

NASA CR- 187582

ICASE Report No. 91-45
4. Title and Subtitle

PERFORMANCE AND FAULT-TOLERANCE OF NEURAL NETWORKS

FOR OPTIMIZATION

7. AuthorIs)

Peter W. Protzel

Daniel L. Palumbo

Michael K. Arras

Report Documentation Page

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5 Report Date

June 1991

6. Performing Organization Code

8. Performing Organization Report No.

91-45

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

10. Work Unit No.

505-90-52-01

11. Contract or Grant No.

NASI-18605

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor:
Michael F. Card

Submitted to IEEE Transactions

on Neural Networks

Final Report
16. Abstract

One of the key benefits of future hardware implementations of certain Artificial Neural

Networks (ANNs) is their apparently "built-in" fault-tolerance, which makes them potential

candidates for critical tasks with high reliability requirements. This paper investigates the

fault-tolerance characteristics of time-continuous, recurrent ANNs that can be used to solve

optimization problems. The performance of these networks is first illustrated by using well-

known model problems like the Traveling Salesman Problem and the Assignment Problem.

The ANNs are then subjected to up to 13 simultaneous "stuck-at-l" or "stuck-at-0" faults

for network sizes of up to 900 "neurons." The effect of these faults on the performance is

demonstrated and the cause for the observed fault-tolerance is discussed. An application is

presented in which a network performs a critical task for a real-time distributed processing

system by generating new task allocations during the reconfiguration of the system. The

performance degradation of the ANN under the presence of faults is investigated by large-

scale simulations and the potential benefits of delegating a critical task to a fault-tolerant
network are discussed.

17 Key Words(Suggested byAuthor(s))

Neural Networks, Fault-Tolerance,

Optimization

18. Distribution Statement

62 - Computer Systems

63 - Cybernetics

Unclassified - Unlimited

19. Securi_ Classif (of th=s repot)

Unclassified

20 Security Cla_if (of this page}

Unclassified

21 No. of pages

33

22 Prlce

A03

l

NASA FORM 1626 OCT 86

NASA-Lv.ngley, 1991

