

Document starts on next page

TITLE: Technical Guidance Manual for Performing Wasteload Allocations, Book VII: Permit Averaging Periods

EPA DOCUMENT NUMBER: EPA-440/4-87.002

DATE: September 1984

ABSTRACT

As part of ongoing efforts to keep EPA's technical guidance readily accessible to water quality practitioners, selected publications on Water Quality Modeling and TMDL Guidance available at http://www.epa.gov/waterscience/pc/watqual.html have been enhanced for easier access.

This document is part of a series of manuals that provides technical information related to the preparation of technically sound wasteload allocations (WLAs) that ensure that acceptable water quality conditions are achieved to support designated beneficial uses. The document presents a rational method for selecting the level of treatment required based on water quality considerations, and for incorporation of the water quality-based treatment requirements as permit limits. Conventional procedures for establishing a point source's effluent limits using a WLA analysis do not quantify the degree to which a given limit protects against exceedances of acute toxicity water quality criteria. Also, the permit averaging period can have a substantial influence on the degree and cost of treatment required and on receiving water quality.

The method presented in this document uses a probabilistic dilution model to evaluate the extent and frequency of acute criteria violations in the receiving water as computed with effluent concentrations based on daily, weekly, and monthly average permits. The model incorporates stream variability to develop probability distributions of daily stream concentrations for each permit limit, which can then be compared to water quality goals also expressed in terms of daily concentration frequencies.

In addition to a detailed description of the methodology, the document presents an annotated example of the method performed first as a hand calculation and then using a computer program included in the manual. Several representatives applications are provided along with a discussion of suggested uses of the model. Appendices provide a review of log-normal distributions, a discussion of technical issues and assumptions, a listing of typical low flow characteristics for U.S. streams, and computer code for the model.

KEYWORDS: Wasteload Allocations, Averaging Periods, Permit Limits, Lakes, Reservoirs, Water Quality Criteria, Water Quality Modeling

Technical Guidance Manual for Performing Waste Load Allocations

Book VII: Permit Averaging Periods

September 1984 Final report

for

Office of Water Regulations and Standards Monitoring and Data Support Division, Monitoring Branch U.S. Environmental Protection Agency 401 M Street, S.W. Washington, D.C. 20460

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D C 20460

MEMORANDUM

SUBJECT:Technical Guidance Manual for Performing Waste Load
Allocations Book VII, Permit Averaging PeriodTO:Regional Water Management Division Directors
Regional Environmental Services Division Directors
Regional wasteload Allocation Coordinators

Attached, for national use, is the final version of the Technical Guidance Manual for Performing Waste Load Allocations, Book VII, Permit Averaging Periods. We are sending extra copies of this manual to the Regional Wasteload Allocation Coordinators for distribution to the States to use in conducting waste load allocations.

Modifications to the February 1984 draft include:

- o The method to calculate the Reductions Factor in Chapter 2 has been elaborated to include the use of 95% cut-offs for frequency of permit violations.
- o The example calculation in Chapter 3 has been expanded. Step 7 has been added to the step-procedure to show how permit limits can be specified using 95% cut-offs for frequency of permit violations.
- o The document recommends that advanced treatment facilities should be built to meet the long-term average and the selected effluent variability.
- o A flow diagram and an IBM PC-compatible program have been added to Appendix D.

If you have any questions or comments or desire additional information please contact Tim S. Stuart, Chief, Monitoring Branch, Monitoring and Data Support Division (WH-553) on (FTS) 382-7074.

Edwin L. Johnson, Director Office of Water Regulations and Standards (WH-551)

Attachment

TECHNICAL GUIDANCE MANUAL FOR PERFORMING WASTE LOAD ALLOCATIONS

Book VII

Permit Averaging Periods

Contract Number 58-03-3131-WA9

Project Officer

Hiranmay Biswas

Office of Water Regulations and Standards Monitoring and Data Support Division Monitoring Branch

U.S. Environmental Protection Agency 401 M Street, S.W. Washington, D.C. 20460

September 1984

FOREWORD

This guidance document is a product of several years of research on many complex water quality issues. Although much progress has been made, some issues still remain. User participation will be needed to develop answers to these unresolved issues and will be key to future revisions of this document.

Selection of permit averaging periods, as presented in this manual, is based on an assumed exceedance frequency of an acute violation in the stream no more than 1 day in 10 years. The EPA is currently considering the issue of allowable duration and frequency of exposure to acute as well as chronic toxicity. Based on this study, the choice of duration and frequency used in this document as examples may have to be changed.

CONTENTS

Chaj	pter	Page
FORI	EWORD	i
LIST	I OF TABLES	iv
LIST	I OF FIGURES	v
LIST	I OF ABBREVIATIONS AND SYMBOLS	vii
ACKI	NOWLEDGMENTS	ix
EXE	CUTIVE SUMMARY	1
1	INTRODUCTION	1-1
	<pre>1.1 Background 1.2 Objectives 1.3 Approach 1.4 Organization</pre>	1-1 1-2 1-3 1-5
2	METHODOLOGY	2-1
	<pre>2.1 Description of Probabilistic Dilution Model 2.2 Choice of the Permit Averaging Period</pre>	····· 2-1 ···· 2-9
3	EXAMPLE COMPUTATION	3-1
	<pre>3.1 Hypothetical Site-Specific Conditions</pre>	3-2 3-8 3-28
4	RANGE OF EXPECTED VALUES FOR STREAMS IN U.S	4-1
	 4.1 Analysis for Conservative Substances	4-1 4-10 4-12 ed 4-23
5	USES AND LIMITATIONS	5-1
6	REFERENCES	6-1

CONTENTS (Continued)

Appendix	Page
APPENDIX A	STATISTICAL PROPERTIES OF LOG-NORMAL DISTRIBUTIONS A-1
A-1. Ge A-2. Pr A-3. Re A.4. Pr A-5. St A-6. Re	eneral Considerations
APPENDIX B ASSUMPTIONS	FIELD VALIDATION OF LOG-NORMAL DISTRIBUTION AND RELATED SB-1
B-1. US B-2. Ve B-3. Ap B-4. Re	se of the Log-Normal DistributionB-1 erification of the Probabilistic Dilution ModelB-3 ppropriateness of AssumptionsB-8 eferencesB-11
APPENDIX C	CHARACTERISTIC VALUES FOR INPUT PARAMETERS
C-1. Tr C-2. Tr C-3. St C.4. Re	reatment Plant Effluent Flows
APPENDIX D SOURCE (PDN	COMPUTER PROGRAM FOR THE PROBABILISTIC DILUTION MODEL - POINT M-PS)
D-1. Fo D-2. De	ormulation and NormalizationD-1 escription of Program UseD-5

LIST OF TABLES

<u>Table</u> Pa	ge
2-1 Reduction factors for various coefficients of variation	. 2-13
4-1 Averaging period selection matrix for conservative substances: effluent dilution ratio - 7Q10/ \overline{QE} = 50	4-5
4-2 Averaging period selection for conservative substances: effluer dilution ratio - 7Q10/ \overline{QE} = b	nt 4-6
4-3 Averaging period selection matrix for conservative substances: effluent dilution ratio - 7Q10/ \overline{QE} = 3	4-7
4-4 Averaging period selection matrix for conservative substances: effluent dilution ratio - 7Q10/ \overline{QE} = 1	4-9
4-5 Conditional moments for the low flow subpopulation ($_a = 16.75$).	. 4-17
4-6 Permit averaging period selection matrix for MOD/DO: of fluent dilution ratio - 7Q10/OE = 5	. 4-20
4-7 Permit averaging period selection matrix for BOD/DO: effluent dilution ratio - 7Q10/ \overline{QE} = 3	. 4-21
4-8 Permit averaging period selection matrix for BOD/DO: effluent dilution ratio - 7Q10/ \overline{QE} = 1	. 4-22
4-9 Averaging period selection matrix for a fluent-dominated streams	. 4-26
A-1 Probabilities for the standard normal distribution	. A-11
B-1 Comparison of observed and computed downstream concentrations(²)	в-6
B-2 Approximate overestimation of 10 year return period stream concentration by ignoring serial correlation	. в-10
C-1 - Coefficient of variation of daily effluent flows, $\nu_{\text{QE}} \dots \dots$	C-2
C-2 - Summary of secondary treatment plant performance - median coefficients of variation, ν_{CE} (from reference 1)	C-4
C-3 - Effluent concentration variability for trickling filters (from reference 4)	n C-6
C-4 - Summary of stream flow characteristics	C-9

LIST OF FIGURES

Figure	Page
1-1 Schematic outline of probabilistic method	
2-1 Simple dilution model	2-2
2-2 Illustration of analysis results: stream concentration ve period for three permit averaging periods	ersus return 2-16
3-1 Step procedure to select optimal permit averaging period	3-1
3-2 Sample stream concentration versus probability plot for 3 averaging period	0-day 3-15
3-3 Sample stream concentration versus mean recurrence interv day averaging period	al for 30-
3-4 Concentration versus probability plot for 1-, 7-, and 30- averaging periods	day 3-19
3-5 Concentration versus mean recurrence interval plot for 1- 30-day averaging periods	, 7-, and 3-19
3-6 Concentration versus probability for PDM-PS computation.	3-33
3-7 Concentration versus mean recurrence Interval for POM PS computation	3-33
4-1 Effect of permit averaging period on stream concentration conservative substances: general analysis	s for 4-4
4-2 Effect of permit averaging period on stream, concentratio	ons for 4-19
4-3 Effect of permit averaging period on stream concentration conservative substances in effluent-dominated stream	s for 4-25
A-1 Probability distribution	A-5
A-2 Effect of coefficient of variation on frequency distribut	.ion A-7
A-3 Pertinent relationships for log-normal distributor	A-8
A-4 Cumulative log-normal distribution	A-9
B-1: Evaluations of log-normal distribution for stream flows	в-2

LIST OF FIGURES (continued)

Figure	age
B-2 Probability distribution of treatment plant effluent concentrat conventional pollutants	ions - B-4
B-3 Probability distribution of treatment plant effluent concentra - heavy metals	tions B-5
C-1 - Typical low flow characteristics of U.S. streams	C-8
D-1 CRT - displays	D-9
D-2 - Example of printed output	D-10
D-3 - Flow chart for PDM-PS program	D-11
D-4 - PDM-PS program listing - HP-85 compatible	D-12
D-5 - PDM-PS program listing - IBM-PC and MS-DOS compatible	D-15

LIST OF ABBREVIATIONS AND SYMBOLS

- BASIC Computer language
- BOD Biochemical oxygen demand
- BOD₅ The amount of dissolved oxygen consumed in five days by biological oxidation of organic matter
- CE Treatment plant effluent concentration
- CFS Cubic feet per second, unit of flow
- CL Concentration equal to a water quality standard
- CO Downstream concentration, after complete mixing
- CRT Cathode ray tube
- C_{sat} Saturation concentration of dissolved oxygen
- CS Stream concentration upstream of discharge
- D Flow ratio, equal to QS/QE
- D_c Critical (or maximum) dissolved oxygen deficit
- DO Dissolved oxygen
- EL Effluent limit. A maximum effluent concentration determined from a waste load allocation analysis, and specified by an NPDES permit
- FAV Final acute value
- FCV Final chronic value
- K Stream purification factor
- K_a Stream reaeration rate constant
- K_d BOD oxidation rate constant
- MRI Mean recurrence interval, expressed in years
- NPDES National pollutant discharge elimination system

P Pollutant

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

PDM-PS Probabilistic dilution model: point source

POTW Publicly-owned treatment works

Pr Probability

- 7Q10 The lowest 7-day average stream flow with a recurrence interval of 10 years
- QE Treatment plant effluent flow
- QS Stream flow
- QT Total downstream flow, equal to QS + QE
- R Reduction factor, equal to the ratio of the mean CE for which a treatment plant is designed to the EL
- TSS Total suspended solids
- WLA Waste load allocation
- WQ Water quality
- α Exceedence probability
- β Dimensionless unit of concentration equal to CO/CL
- μ_x Mean value of x
- σ Dilution factor
- σ_{x} Standard deviation of x
- v_x Coefficient of variation of x
- Z_a Value of statistical parameter Z for a probability of _a

ACKNOWLEDGMENTS

The contents of this section have been removed to comply with current EPA practice.

EXECUTIVE SUMMARY

Background

The conventional approach to developing Waste Load Allocations (WLAs) is based on a steady state analysis of stream conditions, using a design stream flow (usually the 7Q10) and a receiving water concentration (usually a water quality standard based on chronic criteria) for the pollutant to be allocated. An effluent concentration limit is computed for these conditions, and is used to establish the NPDES permit conditions.

The water quality based permit conditions apply, in addition to technology based requirements (e.g., BAT, BCT, and secondary treatment). This effluent requirement may be incorporated into the permit as the daily maximum limit, the average limit over a week (for POTWs) or the average limit over a month (for industrial as well as municipal source)¹. Typical practice for toxic pollutants is to incorporate the wasteload allocation result as the daily maximum permit limit. This document provides an innovative approach to determining which types of permit limits (daily maximum, weekly, or monthly average) should be specified for the steady-state model output based on the frequency of acute criteria violations.

Approach

The method used to evaluate the effect of permit averaging periods is based on a probabilistic dilution model (PDM) in which it is assumed that the stream flows, effluent flows and concentration are log-normally distributed

¹ See 40 C&R 122.45 (d)

and uncorrelated. The log-normal distribution is known to be representative of effluent behavior and to almost always underestimate the lowest stream flows somewhat. Thus, the analysis is generally conservative (overprotective) to some extent. However, a verification of the probabilistic dilution model indicates that, for the cases tested, it correctly estimates observed downstream concentration probability distributions to within the confidence limits of the data.

The method applied in using this model to evaluate permit averaging period choices is based on the following observation. If chronic criteria and 7-day, 10-year low flow, or any other statespecified low flow, are used on the WLA analysis to develop the maximum effluent concentration, the use of monthly or weeklypermit limits for specifying this effluent requirement presents the possibility that simultaneous occurrences of high effluent concentrations and low stream flows may result in stream concentrations which exceed the acute criteria for a pollutant without violating maximum average discharge permit conditions.

The analysis consists of computing the level of treatment required for the three averaging period options for specifying the WLA results as permit limits. The analysis computes the frequency at which acute stream criteria concentrations are violated under each of the permit averaging period options, taking into account the likely range of stream and effluent variability. Computation result are normalized so that summary results can be applied to a variety of pollutants based on their ratio of acute-to-chronic criteria concentrations.

Uses

The primary use of this methodology will be specifying the required level of treatment and deriving permit limits based on water quality requirements. Care must be taken in the assumptions related to the permit limits and assumptions used in the methodology. For example, throughout this document, reference is made to 7-day and 30-day averages. These averages are equivalent to weekly and monthly permit limits where the assumption can be made that the monitoring data is adequate (i.e., that the data collected in a month adequately reflects the 30-day average). Where this requirement is not valid, alternative limits may be calculated which incorporate monitoring frequency, or monitoring frequency may be adjusted so that these conditions are met.

In addition to the usefulness of this method for permit writers in selecting the averaging period for discharge permits, the method has been used to calculate suitable averaging periods for the range of stream and effluent conditions typified in the U.S. The results have been summarized in convenient graphic and tabular displays, and can be used as a "screening tool" that provides a guide for water quality decisions. These summaries show, for instance, that for toxic pollutants with acute-tochronic ratios of 10 or greater, 30-day permit averages will virtually always meet the criteria that have been adopted; that is, that acute criteria violations in the stream will recur with a frequency that averages less than 1 day in 10 years¹.

¹The EPA is presently considering the issue of allowable duration and frequency of exposure to toxicity. Based upon this work, duration and frequencies used as the decision criteria may change. This guidance does not recommend any particular minimum acceptable duration or frequency.

For pollutants with acute-to-chronic ratios of between 5 and 10, monthly permit averages will be appropriate in most cases, although there will be some site-specific conditions that would call for the use of weekly averages. For pollutants with acute-tochronic ratios of less than 5, site specific conditions must be considered, and no general rule is possible. In these cases, sitespecific analyses of the effects of different permit averaging periods can be performed using the methods outlined in the text.

Limitations

Several technical refinements to the probabilistic model would be required to more accurately reflect the deviation of lowest stream flow from log-normality, and to account for serial and cross-correlation of stream flows and effluent loads. For coupled reactions, such as BOD/00, the procedures would have to be extended to provider seasonal approach and results should be verified against field data. The analysis method would have to be extended to incorporate the variability of secondary water quality parameters such as pH, hardness and temperature, since these affect the toxicity of a number of pollutants. Finally, the chronic exposure event, as defined by the state design flow conditions, was used throughout the document to estimate the maximum effluent concentration. Further analyses to determine the possible underprotection or overprotection of chronic criteria based on the state design flow¹ were not done.

¹ The EPA is considering studying the Impact of uncertainties Involving the low flow estimating techniques on the selection of stream design flow.

CHAPTER 1

INTRODUCTION

1.1 Background

The conventional procedure for establishing a point source effluent limit using a waste load allocation (WLA) analysis begins by specifying a target concentration of the pollutant in the stream, such as a state water Quality standard based on chronic criteria. This stream concentration is converted to a maximum effluent concentration using a mass balance calculation for conservative substances) or a steady-state analysis (for reactive substances). The inputs to these analyses are a design stream flow (representing low stream-flow conditions)¹ and a measure of the effluent flow, typically the mean effluent flow. Although this technique is presumed to provide adequate protection for receiving water quality, it fails to account for random and other fluctuations in the flow rate and concentration that naturally occur in both the stream and effluent. Thus, the degree to which a given limit protects against exceedances of acutely toxic concentrations is not quantified.

Effluent permit limitations are currently specified as maximum concentrations for one day or averaged over a week or month. The number of observations from which the average is computed depends on the frequency of

¹ The design stream flow most commonly used is the 7Q10 flow, which represents the low-flow condition with a recurrence interval of 10 years based on a 7-day averaging period. Other flows, such as the 30Q10 or 30Q5 are occasionally used as the design stream flow. Wherever the use of stream design flow is called for, these or other stream design flows can be substituted throughout this document

monitoring. Although there is no generally accepted rational basis for selecting permit averaging periods, the effluent requirement derived from a WLA is typically expressed as a monthly average for conventional pollutants and as the daily maximum for toxic pollutants. A set of conversion factors is then used to convert these concentrations to other averaging periods. In this document the maximum daily, weekly, and monthly permit limits are referred to as 1-day, 7-day, and 30-day permit levels, respectively.

The permit limit used to incorporate a WLA effluent requirement can have a substantial influence on the degree (and cost) of treatment required and on the quality of the receiving water. It is clear that a permit limit imposed as a daily maximum requirement is more restrictive than when the same permit limit is used as a 30-day average requirement, since in the latter case the effluent concentration can fluctuate above the effluent limit for days at a time and still meet the 30-day average requirement. Such fluctuations may or may not be significant in terms of receiving water quality. The appropriate choice of the averaging period, then, is one which ensures acceptable receiving water quality without imposing unnecessarily restrictive treatment requirements.

1.2 Objectives

This guidance document is Intended to achieve the following:

- Present a rational method for selecting the level of treatment required based on considerations of water quality;
- (2) Present a rational method to incorporate the water quality based treatment requirements as permit limits;

- (3) Provide specific information, including detailed examples, so that the method can be applied to site-specific cases;
- (4) Use the method to provide an overall analysis of a broad range of conditions likely to be encountered, so as to provide a screening tool for the rapid assessment of a wide variety of cases;
- (5) Discuss the uses and limitations of the method.

1.3 Approach

The basis of the method is an evaluation of the extent and frequency of acute criteria violations to be expected in the stream receiving the Discharge as a result of imposing the effluent concentration, computed from a steady state wasteload allocation, as a daily, weekly, or monthly average permit. A probabilistic framework is adopted to account for the inherent variability of flows and concentrations. Acute criteria violations are assumed to be associated with random simultaneous occurrences of high effluent loadings and low stream flows.¹ The analysis is based on an examination of the probability distributions involved and how they combine to influence the concentration downstream. The probabilistic dilution model provides the analysis framework.

The probabilistic dilution model is summarized in Figure 1-1. The inputs to the model include the flow and concentration histories (or projections) of both the effluent and the receiving stream. Each of these is

¹While it is apparent that effluent loadings and stream flows experience both random and nonrandom (e.g., seasonal) variations, the problem is analyzed here in purely random terms to limit the complexity of the analysis.

Figure 1.1 - Schematic outline of probabilistic method

expressed as a probability distribution; that is, in terms of the probability that a given value is exceeded. Next, the effluent and stream flows are combined to yield the probability distribution of the dilution factor; then the dilution factor and concentrations are combined to provide the probability distribution for the resulting stream concentration. The stream concentration probability distribution is then converted to a plot showing the recurrence interval to be associated with each stream concentration so that the frequency of occurrence of a given (high) stream concentration can be compared to water quality objectives.

The probabilistic dilution model is used to guide the choice of the permit averaging period as follows. Given an effluent requirement from a WLA analysis, the mean effluent required to meet that WLA requirement is calculated for each of the three averaging periods, based on an assumed allowable frequency of effluent limit violation. This provides three levels of treatment for the plant in question. Each mean effluent concentration is then used, together with the parameters that characterize the stream variability, in the probabilistic dilution model. The result is a probability distribution of resulting stream concentration for each of the three treatment plant options, which can be compared to daily concentration/frequency water quality goals. The use of daily concentration frequencies allows the use of acute criteria in establishing water quality goals.

1.4 Organization

This document is organized as follows. Chapter 2 provides a detailed description of the methodology for finding an optimum averaging

period based on a probabilistic dilution method. Chapter 3 presents an annotated example of the method performed first as a hand calculation and then using the computer program provided in Appendix D. Chapter 4 uses the model in several representative applications, and Chapter 5 discusses the uses of the method. Several appendices to this document provide detailed additional material, including a review of relationships for log-normal distributions (Appendix A) and a discussion of technical issues and assumptions employed in the analysis (Appendix B).

CHAPTER 2 METHOD OF ANALYSIS

This chapter lays the theoretical groundwork for the application of the probabilistic dilution model to the problem of permit averaging period selection. This discussion is presented in two parts. Section 2.1 describes the probabilistic dilution model. Section 2.2 develops the method whereby the probabilistic dilution model is employed to predict the water quality effects of the selection of different averaging periods.

2.1 Description of the Probabilistic Dilution Model

The probabilistic dilution model is based on a simple stream dilution calculation. The complexity of the model arises from the probabilistic framework that is superimposed upon the dilution equation. This section is intended to provide a description of the derivation of the model, and to reduce it to a manageable set of equations. While a strict mathematical derivation of the model is available [I], a rigorous treatment is considered beyond the scope of this manual.

Figure 2-1 illustrates a treatment plant discharge entering a stream. The effluent discharge flow (QE), having a concentration (CE) of the pollutant of interest, mixes with the stream flow (QS), which may have a background concentration (CS). The receiving water concentration (CO) is the concentration that results after complete mixing of the effluent and stream flows. It is the cross-sectional average concentration downstream of the discharge, and is given by:

Figure 2-1 - Simple dilution model

$$CO = (QE \cdot CE) + (QS \cdot CS)$$

$$QE + QS$$
(2-1)

If the dilution factor, ϕ , is defined as:

$$\varphi = \underline{QE} = \frac{1}{1 + D}$$
(2-2)

The calculated value of CO for a given day could be compared to a water quality standard (CL) or to any other stream concentration which relates water quality to water use. This procedure could be repeated for a large number of days and the resulting set of values for CO could be subjected to standard statistical analysis procedures to obtain its probability distribution. If this were done, the total percentage of days on which the downstream concentration CO exceeded CL could be determined.

The ability to perform this direct computation depends upon the availability of long time series of upstream and treatment plant flows and concentrations of each pollutant of interest. Such long data records are usually only available for stream flow, but estimates based on more limited data sets may be available for the other elements. An important objective of any modeling framework is to cast the problem into a manageable form while at the same time preserving its essential features. Therefore, it is necessary to characterize the fluctuating behavior of the upstream and effluent flows and concentrations in a concise and realistic fashion.

The probabilistic dilution calculation procedure used in this report permits the probability distribution of downstream concentrations (CO) to be computed directly from the probability distributions of the flows and concentrations.

The first step in the use of the probabilistic dilution model is to develop the statistics of the concentration and flow of both the stream and effluent.¹ These statistics include both the arithmetic and logarithmic forms of the mean (μ), standard deviation (σ), and coefficient of variation (ν). The analysis is simplified here by specifying an upstream concentration of zero (CS = 0) so that the results reflect only those effects on the receiving water due to the effluent discharge, thus highlighting the comparative differences resulting from choice of permit averaging period.

The amount of dilution at any time is a variable quantity and the dilution ratio (D=QS/QE) has a log-normal distribution when both stream flow (QS) and effluent flow (QE) are log-normal. The log standard deviation of the flow ratio QS/QE is designated as $\sigma_{\rm lnD}$. This can be calculated from the log standard deviations of stream flow and effluent flow, assuming no cross-correlation between stream and effluent flows.

$$\sigma_{\rm lnD} = \sqrt{\sigma^2 \ln QS} + \sigma^2 \ln QE \qquad (2-4)$$

¹Standard statistical procedures are used to compute the mean and standard deviation using the log transforms of the basic data. Conversion to the other statistical expressions used in the analysis is described in Appendix A.

The probability distribution of the dilution factor, $\varphi = 1/(1+D)$ is not truly log-normal, even with log-normal runoff and stream flows. It has an upper bound of 1 and a lower bound of 0, and where it approaches these values asymptotically, it deviates appreciably from a log-normal approximation. Deviations at values of approaching 0 are of no practical significance to the calculations being performed since they occur at high dilutions.

For smaller streams relative to the size of the discharge, deviations from a log-normal approximation can be appreciable. They are large enough to introduce significant error into the calculated recurrence interval of higher stream concentrations. The error introduced is almost always conservative; that is, it projects high concentrations to recur more frequently than they actually would. The appropriateness of this assumption is discussed in detail in Appendix B.

A procedure is provided in this report for accurately calculating the probability distribution of the dilution factor (φ) and stream concentration (CO). This numerical method uses quadratures and would be prohibitively tedious to perform manually. It has, therefore, been provided in the form of a computer program which can be utilized on a microcomputer (Appendix D).

For purposes of presenting the approach in a form which can be solved manually, and thereby better Illustrate the basic procedure employed, the methodology description which follows in this section develops a log-normal approximation for the dilution function φ and then proceeds with the calculations for stream concentration. Whether the log-normal approximation or the quadrature calculation is used, the subsequent steps in determining the appropriate averaging period are the same. The manual procedure (moments method) estimates the mean and standard deviation of a log-normal approximation of dilution by first calculating, and then interpolating, between the 5% and 95% probability values. The value of the dilution factor (φ) for any probability percentile (_a) is given by:

$$\varphi_{a} = \underbrace{Q\widetilde{E}}_{(\widetilde{Q}E + \widetilde{Q}S) \exp (Z_{a}\sigma_{lnD})}$$
(2-5)

- .

where the value of ${\rm Z}_{\alpha}$ is taken from a standard normal probability table for the corresponding value of $_{\rm a}$ (see Appendix A).

For example, where $a = 95\%; Z_{95} = 1.65$ $a = 5\%; Z_5 = -1.65$ $a = 50\%; Z_{50} = 0$ $a = 84.13\%; Z_{84} = 1.0$

The log mean dilution factor is estimated by interpolating between the 5% and 95% values, calculated above.

$$\mu_{\ln\phi} = \frac{1}{2} \left[\ln (\phi_{95}) + \ln (\phi_5) \right]$$
 (2-6a)

The log standard deviation is determined by tine following formula which, in effect, determines the slope of the straight line on the log-probability plot:

$$\bullet_{ln\bullet} = \frac{[ln (\bullet_{5}) - ln (\bullet_{95})]}{2}$$
(2-6b)

From the log mean and log standard deviation of the dilution factor ($\varphi\,)$, the arithmetic statistics are computed using

$$\mu_{\varphi} = \exp \left(\mu_{\ln\varphi} + \frac{1}{2} \sigma^{2} n\varphi\right)$$

$$\sigma_{\varphi} = \mu_{\varphi} \left[\exp\left(\sigma^{2} n\varphi\right) - 1\right]^{\frac{1}{2}}$$
(2-7)

The arithmetic mean of the receiving water contaminant concentration (CO) downstream of the discharge after complete mixing, then, can be found by:

$$\mu_{\rm CO} = [\mu_{\rm CE} \ (\mu_{\phi})] + [\mu_{\rm CS} \ (1 - \mu_{\phi})]$$
(2-8)

The arithmetic standard deviation of stream concentration is: $\sigma_{CO} = \sqrt{\sigma_{\phi}^{2} (\mu_{CE} - \mu_{CS})^{2} + \sigma_{CE}^{2} (\sigma_{\phi}^{2} + \mu_{\phi}^{2}) + \sigma_{CS}^{2} (\sigma_{\phi}^{2} + [1 - \mu_{\phi}]^{2})} \quad (2-9)$ The coefficient of variation of stream concentration (CO) is: $\nu = \sigma_{CO}/\mu_{CO} \quad (2-10)$

The arithmetic statistics used-to derive the log statistics will be used to develop the desired probability of exceedence.

log standard deviation =
$$\sigma_{lnCO} = \sqrt{ln(1+v_{CO}^2)}$$
 (2-11)

log mean =
$$\mu_{lnCO} = \left(\frac{\ln \mu_{CO}}{\sqrt{1 + \nu_{CO}^2}} \right)$$
 (2-12)

The probability (or expected frequency) at which a value of CO will occur is determined by constructing a probability distribution plot on log-probability paper. This is accomplished by computing the 50th percentile and 84th percentile concentrations and connecting them with a straight line:

50% concentration = CO = exp (
$$\mu_{lnCO}$$
)
84% concentration = exp (μ_{lnCO} + σ_{lnCO})

Using this procedure, any concentration of interest can be identified and its probability of occurrence scaled directly from the plot.

Alternatively, the concentration that will <u>not be exceeded</u> at some specific frequency (or probability) can be calculated from:

$$CO_a = \exp (\mu_{lnCO} + (Z_a \sigma_{lnCO}))$$
 (2-13)

where

 Z_a = the value of Z from a standard normal table which corresponds to the selected percentile $_a$.

To determine the probability of exceedence, $(1 = _a)$ is substituted in Equation 13.

One can also work in the reverse direction; that is, given some target stream concentration (CL), the probability of CO exceeding that level can be determined by:

$$Z = \frac{\ln(CL) - \mu_{\ln CO}}{\sigma_{\ln CO}}$$
(2-14)

A standard normal table will provide the probability for the calculated value of Z.

Because of the way the standard normal table 1n Appendix A is organized, the probabilities calculated using this approach represent the fraction of time the target concentration (CL) is not exceeded. The probability that the concentration wil<u>l</u> be exceeded is obtained by subtracting the value obtained from 1.0.

2.2 Choice of the Permit Averaging Period

In order to examine the comparative effects of different choices of permit averaging periods on water quality, it is necessary to define the relationships between the established effluent limit (EL) from the steady state WLA, the permit averaging period, the treatment plant performance that results, in particular the mean effluent (\overline{CE}), the downstream concentration (CO), and a stream target concentration (CL).

The objective of this section is to examine the relationships among these parameters in order to be able to predict the probability of an (adverse) water quality outcome based on known or estimated stream and effluent characteristics and the choice of permit averaging period. The approach is based on the assumption that the EL will be violated with a particular frequency. The mean effluent required to meet this level of compliance with EL is then calculated for each of the three permit averaging periods, and the probabilistic dilution model is then used to develop a probability distribution of the downstream concentration (CO) for the three cases. A level of acceptable adverse water quality (a decision expressed in terms of the probability or frequency of experiencing a selected high value of CO, such as the acute criteria concentration) is then compared with the probability distributions to determine the longest permit averaging period that meets the water quality goals.

The first step in this sequence is to establish the relationship between the mean effluent (\overline{CE}), the effluent limit (EL), and the permit averaging period. In fact, what is required is the relationship between the treatment plant <u>performance</u> necessary to meet the effluent limit as either a daily, weekly, or monthly maximum permit. The reason for this is that the daily variation of stream quality is governed, not by the effluent limit which is a regulatory upper limit, but by the probability distribution of the daily effluent concentrations which results from the design of the treatment plant consistent with the effluent limit and the permit averaging period. For log-normally distributed random variables, this distribution is specified by the mean effluent concentration, \overline{CE} , and its coefficient of variation, v_{CE} .

A particular effluent limit (say 30mg/l) established by permit as a maximum daily value would require a higher level of plant performance (a lower mean effluent concentration) to avoid permit violations than would the same limit specified as a maximum monthly average. In the latter case, excursions solve the effluent limit could be tolerated on individual days, without causing a violation of permit conditions. The reason for this is that a monthly average of 30 Individual dally effluent concentrations is less variable than the daily concentrations themselves. Occasional high daily concentrations are averaged together with lower concentrations to produce a less variable monthly average. Hence, treatment plant performance is directly related to the averaging period specified in the permit.

In order to proceed with the analysis a quantification of this relationship is required. Daily treatment plant effluent concentration variations

are well described by a log-normal distribution parameterized by a long term average concentration, \overline{CE} , and a coefficient of variation, v_{CE} . Thus, a relationship between these parameters and the permit effluent limit and averaging period is required.

A method to be employed is based upon an interpretation of what is meant, in practice, by specifying permit effluent limits as maximum values which may never be exceeded for the specified averaging period without causing a violation. As Haugh, et al. [2] observe, fixed upper limits, which are never to be exceeded are conceptually inconsistent with the stochastic nature of wastewater treatment processes and the effluent concentrations they produce. Realistically, some exceedence frequency must be acknowledged, regardless of the averaging period assigned. For the present analysis, it will be assumed that the effluent limit specified by a permit is not to be exceeded more frequently than 5 percent or 1 percent of the time. Of course, any other choice is possible.

Once a specific choice is made, say 1 percent, then the probability of compliance is $_a$ = 99 percent and that establishes the fact that EL is the $_a$ -percentile effluent concentration: CE $_a$. This procedure, then, gives a specific probabilistic interpretation to the effluent limit. It is the effluent concentration that 1s exceeded with no greater frequency than $(1-_a)$ percent of the time. If the permit is specified as a daily maximum value, then EL is the $_a$ -percentile of dally effluent concentrations. If the permit is specified as a weekly (or monthly) maximum value, then EL is the $_a$ -percentile of 7-day (or 30-day) average effluent concentrations.

In order to compute the long term average effluent concentration, \overline{CE} , that would insure that $CE_a = EL$ as a daily, weekly, or monthly permit the coefficients of variation are required for 1-day and 7-day or 30-day averages of effluent concentrations. Table C-2 presents representative values.

Thus, the requirement that:

$$CE_a = EL$$
 (2-15)

and for a coefficient of variation $v_{\text{CE}},$ the average effluent concentration $\overline{\textit{CE}}$ can be computed from

$$\overline{CE} = R_a * EL$$
 (2-16)

where the reduction factor relating ${\rm CE}_{\rm a}$ = EL to $\overline{\it CE}$, that is, ${\rm R}_{\rm a}$ = $\overline{\it CE}\,/{\rm CE}_{\rm a}$, is

$$R_{a} = \sqrt{1} + v_{CE}^{2} \exp \left[-Z_{a} \sqrt{\ln (1 + v_{CE}^{2})}\right] \qquad (2-17)$$

the ratio of the arithmetic average to the $_a$ -percentile of a lognormal random variable with coefficient of variation, v_{CE} . Table 2-1 gives the values of R_a for various coefficients of variation.

The derivation of this formula follows from the expression for the $_{\rm a}\mbox{-}{\rm percentile}$ of a log-normal random variable:

$$CE_a = \exp \left(\mu_{lnCE} + Z_a \sigma_{lnCE}\right)$$
(2-18)

and the arithmetic average of a log-normal random variable:

Coefficient of	Reduction Factor	
Variación V _{CE}	a = 95%	a = 99%
0.1	0.853	0.797
0.2	0.736	0.643
0.3	0.644	0.527
0.4	0.571	0.439
0.5	0.514	0.372
0.6	0.468	0.321
0.7	0.432	0.281
0.8	0.403	0.249
0.9	0.379	0.224
1.0	0.360	0.204
1.1	0.344	0.187
1.2	0.330	0.173
1.3	0.319	0.162
1.4	0.310	0.152
1.5	0.302	0.144
$$CE = \exp (\mu_{lnCE} + \frac{1}{2} \sigma^2_{lnCE})$$
 (2-19)

Thus:
$$R_a = \overline{CE}/CE_a = \exp(\frac{1}{2}\sigma_{lnCE}^2 - Z_a\sigma_{lnCE})$$
 (2-20)

and since exp ($\frac{1}{2} \sigma_{lnCE}^2$) = $\sqrt{1+\nu_{CE}^2}$ and $\sigma_{lnCE} = \sqrt{ln} (1+\nu_{CE}^2)$ (appendix A, page A-8) equation (2-17) follows.

At this point the effect of the choice of permit averaging period on treatment plant design can be illustrated. If the permit averaging period is 1-day, and the daily effluent coefficient of variation is $v_{CE}=0.7$ (for example, extended aeration activated sludges, Table C-2), then for a 1 percent violation frequency a=99 percent, $R_a = 0.281$, which indicates that the long term average effluent concentration must be 28.1 percent of the daily maximum permit limit.

However, if the permit averaging period is 7 days, then the coefficient of variation of 7-day averages is $v_{CE} = 0.6$ and $R_a = 0.321$. Now the treatment plant can be designed to produce a long term average effluent concentration of 32.1 percent of the weekly permit limit. For a 30-day average permit limit $v_{CE} = 0.45$ and $R_a = 0.404$. Hence, if EL = 10 mg/l, the treatment plant average effluent concentration must be 2.81, 3.21, or 4.04 mg/l for a daily, weekly, or monthly permit specification, respectively.

Hence the selection of the permit averaging period is related to the \overline{CE} required for each of the three averaging periods in order to

avoid exceeding the EL more often than the selected frequency. These average values are then used in the probabilistic dilution model (with other input parameters such as \overline{QS} and \overline{QE}) to develop the probability distribution of CO for each of the three permit averaging periods.

The value of CO in the probability distribution can be normalized in terms of a stream target concentration (such as the chronic criteria concentration, CL) so that the calculation can be used for a wide variety of pollutants. Stream concentration is therefore expressed in terms of $\beta = CO/CI$, β being a dimensionless unit of concentration.

A convenient presentation of the resulting probability distribution makes use of the concept of return period. For daily stream concentrations the 1 percent exceedence value has an average recurrence rate of one day every 100 days so that its average return period is 100 days. Thus the return period for daily values is defined as:

Return Period (days) = 1/Probability of Exceedence (2-28)

The basic assumption in the use of return period as defined above is that the event whose probability is being examined has a characteristic time associated with it, in this case, one day for daily concentrations. Thus, it is assumed that daily stream concentrations are of concern, and each event corresponds to one day.

Figure 2-2 illustrates how the results of such an analysis can be expressed in a plot of concentration versus return period.

Figure 2-2 - Illustration of analysis results: stream concentration versus return period for three permit averaging periods

The stream target concentration (CL) for a typical WLA is the chronic criteria concentration of the pollutant under consideration. The use of the chrome criteria as the stream target concentration is convenient for the comparison of permit averaging periods because it represents a specific and frequently used procedure. The analysis that follows does not attempt to quantify the frequency with which chronic criteria concentrations are met by either the conventional ULA procedure or the guidance provided for selecting permit averaging period. Instead, the analysis is designed to relate the choice of the permit averaging period to the frequency with which severe, short term water quality impacts are expected as a result of an effluent limit. These snort-term impacts are perhaps most effectively evaluated with respect to acute criteria concentrations. If the stream concentration exceeds the acute criteria as a result of ah occasional high daily effluent loading, the result is presumed to be an undesirable impact. Hence, there is a direct connection between the permit averaging period and the probability of acute criteria violations. Specifying that the WLA requirement be met as a daily maximum permit limit significantly reduces the possibility of acute criteria violation since the effluent limit is specified using the chronic criteria, which is always a smaller concentration.

The frequency with which daily stream concentrations are allowed to exceed acute criteria is a regulatory decision¹. The analyses presented herein employ a frequency that corresponds to a 1-day in 10-year recurrence, on average. The choice of 10 years is, of course, used for example purpose only but it is consistent with the 10 year return period that is conventionally used for the design stream flow.

The results of the permit averaging period analysis are presented in terms of CO/CL which is exceeded with a particular frequency, such as once in 10 years. This ratio can then be compared to the acute-to-chronic criteria concentration ratio for the pollutant of concern. For pollutants with large acute-tochronic ratios, occasional large daily fluctuations can be tolerated; and a 30-day permit averaging period provides protection from acute criteria violations. Conversely, pollutants with small acute-to-chronic ratios are more likely to require shorter day permit averaging periods. Site specific

¹This is currently under EPA study

considerations, primarily the ratio of effluent to stream flow and stream flow variability, become significant in these cases.

The final translation of the selected averaging period option to permit limits requires consideration of the monitoring frequency. The method assumes either daily monitoring or other monitoring adequate to describe the performance of the plant on a monthly basis. If such conditions are not met, alternate limits may be calculated which Incorporate monitoring frequency, or monitoring frequency may be adjusted so that these conditions are met.

CHAPTER 3

EXAMPLE COMPUTATION

This chapter presents an example problem, showing step by step computations using the methodology described in the previous chapter. A set of hypothetical conditions that apply to a sitespecific situation is assumed, and an analysis is performed to determine the effect on receiving water quality-resulting from the assignment of different permit averaging periods to the steadystate model output. The steps used to conduct this analysis are summarized below in Figure 3-1. The format used in this chapter presents data and computations on the left-hand page, and pertinent commentary and supporting discussion on the facing page immediately opposite those computations. The manual computation using the moments approximation is described first, followed by an analysis using the computer program (PDM-PS) in Appendix D. Both examples use the same set of hypothetical site-specific conditions.

Figure 3-1 - Step procedure to select optimal permit averaging period

3.1 HYPOTHETICAL SITE-SPECIFIC CONDITIONS

This section provides an example of the type and amount of information required to perform the analysis. It also establishes the basis for the example computations and assumes that pertinent site-specific conditions are as follows:

A. Site-Specific Waste Load Allocation (WLA) Results

The pollutant (P) to be allocated has a chronic toxicity concentration (CL) of 2.5, and an acute toxicity concentration of 6.25.

WLA policy for the agency performing the analysis is to use 7Q10 as stream assign flow, to use the design capacity of the treatment plant as the effluent flow, and to compute (e.g., using a water quality model) the effluent concentration of pollutant (P) that will result in a stream concentration after dilution less than or equal to the chronic value (2.5 = the stream target concentration, CL). For this example, it was assumed that:

Design Effluent Flow (QE) = 5 MGD = 7.77 cfsDesign Stream Flow (7Q10) = 23.3 cfs

The stream target concentration (CL = 2.5) will be met under these design flow conditions, when the effluent concentration 1s CE = 10. Therefore based on the WLA analysis, the effluent limit (EL) for pollutant (P) is specified by the permit as:

$$EL = 10$$

--- from EPA Criteria

State water quality standards do not usually specify both values; they are usually based on chronic values.

(Any concentration units may be assigned; stream concentrations will nave to be in the same units.)

- --- 77Q10 (the lowest 7-day average stream flow with a recurrence interval of 10 years) is the most common "design stream flow". Some states use other values (e.g., 30Q5). This analysis uses the numerical value of the "design flow". However, although the. example terminology uses "7Q10", it should be interpreted as "design stream flow" and the appropriate value substituted, regardless of the averaging period or the recurrence interval on which it is based. (For example, if design flow in a state were 30Q5, assume that 30Q5 = 23.3 cfs).
 - NOTE: The only exception to this is in Figure C-1, in which the ratio of 7Q10 to average stream flow is used to estimate the variability of daily flows in the absence of a specific local analysis. The use of this figure is not requisite to either the analysis methodology or the computations.

$$CL = \frac{(QE * CE) + (QS * CS)}{QE + QS}$$

$$2.5 = \frac{(7.77 * CE) + (23.2 * 0)}{7.77 + 23.3}$$

$$CE = 10 = EL$$

HYPOTHETICAL SITE-SPECIFIC CONDITIONS (continued)

3. <u>Site-Specific Conditions</u>

Stream Flow		Mean	Flow	QS =	467	cfs
	Coefficient	of Varia	tion	(v_{QS})	= 1	.5

Upstream Concentration	Mean (\overline{CS}) = 0
Coefficient of Variation	$(v_{CS}) = 0$

Effluent	Flow			Mean	(\overline{QE})	= 7.	77	cfs	
		Coefficient	of	Varia	tion	(v_{QE})	=	0.20	

--- Stream flow data are obtained from analysis of flow gaging records for the stream in question; where the stream reach is engaged, it is obtained by extrapolation from an appropriate record.

At present, records are not normally analyzed for the coefficient of variation, although the computation is straight forward and can be readily incorporated into a routine statistical analysis of daily stream flows. In the absence of specific analysis results, the coefficient of variation of daily stream flows can be estimated using the material presented in Figure C-1.

--- Upstream concentration can be assumed to be zero if the stream concentration of the pollutant is very low compared to the discharge, or if the effect of the discharge only is to be examined. Site-specific values for upstream concentration statistics would be obtained from analysis of an appropriate STORET station, or from local monitoring records. If upstream concentrations are assigned, enter data here and in the equations when called for.

--- The design effluent flow is assumed to be the mean effluent flow. The variability of daily effluent flows for a new facility must be estimated on the basis of available data for existing treatment facilities (such as Table C-1). For an existing facility being expanded, or simply re-permitted, variability could be based on an analysis of past plant records. For many industrial dischargers, this data will be available in Book VI (<u>Design Conditions</u>) of the waste load allocation technical guidance document series (specifically, in Chapter 4: Effluent Design Conditions). HYPOTHETICAL SITE-SPECIFIC CONDITIONS (continued)

Effluent Concentration Mean $(\overline{CE}) = (*)$

Coefficient of Variation (v_{CE}) = .7

The mean concentration is a function of the permit averaging period and is that concentration required to avoid exceeding the effluent limit concentration (EL) more often than the compliance probability.

The coefficient of variation for the hypothetical treatment plant is not known because the plant has yet to be constructed. Assuming that the plant will produce an effluent with a variability similar to the values given in Table C-2, the following values are used:

Permit Averaging	Coeff. of Var.
Period	(v_{CE})
Daily	0.70
7-Day	0.40
30-Day	0.20

Equation 2-17 is then used to determine the mean effluent concentration of (P) which is required to avoid a violation of EL more often than the compliance probability. For this example, assume that the exceedence probability is 1 percent. For $_{a} = 0.99$ percent, $Z_{a} = 2.327$. For $v_{CE} = 0.70$, $R_{a} = \overline{CE}$ /EL is:

 $R_{a} = \sqrt{1} + v_{CE}^{2} \exp \left[-Z_{a} \sqrt{\ln(1+v_{CE}^{2})}\right]$ = $\sqrt{1+0.49} \exp \left[-2.327 \sqrt{\ln(1+0.49)}\right]$ = 1.221 exp [-2.327 * 0.6315] =0.281

The reduction factor for 7-day and 30-day averages are computed similarly with ν_{CE} (7-day) = 0.40 and ν_{CE} (30-day) = 0.20. The results are:

Permit Averaging Period	Coeff. Of Var. of Averaged Effluent Concentrations (v_{CE})	Reduction_Factor R _a = CE/EL	Required Mean Effluent Conc. (CE = R _a EL)
Daily	0.70	0.281	0.281 * 10 = 2.81
7-Day	0.40	0.439	$0.439 \times 10 = 4.39$
30-Day	0.20	0.643	$0.643 \times 10 = 6.43$

--- The mean effluent concentration that a treatment facility is <u>capable</u> of producing is influenced significantly by process selection. For this example, it will be assumed that process selection will be made following the issuance of a permit, and influenced by its provisions.

The mean effluent concentration that a facility is <u>required</u> to produce is influenced by the permit averaging period and the variability of effluent concentrations of the pollutant in question.

The analysis employed here, which bases permit averaging period selection on receiving water impacts, is based on exceedance of the acute criteria on a daily basis. Therefore, all subsequent stream impact computations (Step 4) are based on the coefficient of variation of daily effluent concentrations, or 0.7, as shown.

The mean concentration is shown by (*), because a different value is used for each permit averaging period.

- --- The recommended exceedence probability for the effluent limit is either 5 percent or 1 percent. For 5 percent, Z_a would be Z_{95} = 1.645.
- --- Longer averaging periods reduce the variability of effluent concentrations, and-allow permit exceedance limits to be mot with higher effluent means. Computation of the required mean (CE) uses the values of v_{CE} for the corresponding permit averaging period.

3.2 EXAMPLE COMPUTATION - HAND CALCULATION

This section illustrates the hand computation using the moments approximation to evaluate the stream concentration probability distribution.

- <u>STEP 1</u>: Compute statistical parameters (arithmetic and logarithmic) of inputs using relationships for log-normal distributions (see notes on page 3-9 or Appendix A for equations).
 - o For the mean effluent concentration (CE) for a 30day permit averaging period with X = CE, that is for the variable CE:

ARITHMETIC

Mean	$(\mu_x) = (page 3-6) =$	6.43
Coef. Var.	$(v_x) = (page 3-6) =$	0.70
Std. Dev.	$(\sigma_x) = \mu_x * \nu_x = (6.43) * (0.70)$	= 4.50
Median	$(\tilde{x}) = \mu_x / \sqrt{1 + \nu_x^2} = 6.43 / \sqrt{1 + (0.7)^2}$	= 5.27

LOGARTHMIC

Log	Mean		(μ_{lnx})	=	ln	(\widetilde{x})	=	ln	(5.	27)			=	1.662
Log	Std.	Dev.	(σ_{lnx})	=	√ln	(1	+	v_x^2)	=	√ln	(1 +	$(0.7)^2)$	=	0.6315

• These computations are repeated for each of the other input parameters. The results are tabulated below.

		Ari	Logar	ithmic		
	Mean	Median	Std Dev	Coef Var	Mean	Std Dev
х	μ _x	ĩ	σ _x	$\nu_{\rm X}$	μ_{lnx}	σ_{lnx}
Stream						
Flow: QS	467	259	701	1.50	5.5570	1.0857
Effluent						
Flow: QE	7.77	7.62	1.55	0.20	2.0307	0.1980
Upstream Concentration: CS	0	0	0	0	0	0
Effluent Concentration: CE	6.43	5.27	4.50	0.70	1.662	0.6315

			Arith		Logarithmic			
Input Parameter		Median	Mean	Std. Dev.	Coef. Var.	-	Log Mean	Log S.D.
		ĩ	μ_{x}	$\sigma_{\rm X}$	$\nu_{\rm X}$		<u>µln x</u>	<u> </u>
Stream Flow	QS	Qĩs	μ _{QS}	σ _{QS}	ν_{QS}		μ_{lnQS}	σ_{lnQS}
Stream Conc.	CS	ĈS	μ_{CS}	$\sigma_{\rm CS}$	ν_{CS}		μ_{lnCS}	σ_{lnCS}
Effluent Flow	QE	QĔ	μ_{QE}	σ_{QE}	ν_{QE}		μ_{lnQE}	σ_{lnQE}
Effluent Conc.	CE	ĈĔ	μ_{CE}	σ_{CE}	ν_{CE}		μ_{lnCE}	σ_{lnCE}

The following parameters are used subsequently:

The following definitions and equations summarize the relationships among the statistical parameters of log-normal random variables.

Arithmetic	Terms	Logarithmic
X	Random Variable	ln x
$\mu_{\rm X}$	Mean	μ_{ln} x
σ^2_x	Variance	$\sigma^2_{ln} x$
$\sigma_{\rm X}$	Standard Deviation	σ_{ln} x
$\nu_{\rm X}$	Coefficient of Variation	(not used)
ĩ	Median	(not used)

$$\mu_{x} = \exp \left[\mu_{\ln x} + \frac{1}{2} \sigma_{\ln x}^{2}\right] \qquad \qquad \mu_{\ln x} = \ln \left(\frac{\mu_{x}}{\sqrt{1 + \nu_{x}^{2}}}\right)$$

 $\widetilde{x} = \exp [\mu_{lnx}]$ $\nu_x = \sqrt{\exp (\sigma_{lnx}^2) - 1} \qquad \sigma_{lnx} = \sqrt{\ln (1 - \nu_x^2)}$

 $\sigma_x = \mu_x v_x$

EXAMPLE COMPUTATION - HAND CALCULATION

(continued)

<u>STEP 2:</u> (a) Compute the log standard deviation of the flow ratio QS/QE = 0.

$$\sigma_{lnD} = \sqrt{\sigma_{lnQS}^2 + \sigma_{lnQE}^2 + 2p} \cdot \sigma_{lnQS} \cdot \sigma_{lnQE}$$

The first two terms are taken from the table in Step 1 (and squared). Since, for this example, flows are not correlated (p=0), the third term drops out. Therefore,

$$\sigma_{lnD} = \sqrt{(1.0857)^2 + (0.1980)^2} = 1.1036$$

(b) Compute the 5th and 95th percentiles of the actual distribution of the dilution factor (φ).

$$\varphi_{a} = \underline{QE}$$

$$(\widetilde{QE} + \widetilde{QS}) \cdot \exp(Z_{a}\sigma_{lnD})$$

where:

QE, QS = median values for effluent and stream flows (from table in Step 1)

 Z_a = the standard normal Z score for selected percentiles(_a)

$$Z_5 = 1.645; Z_{95} = 1.645$$

 σ_{lnD} = 1.1036 (computed in Step 2 (a))

Substituting the appropriate values gives:

 φ 95 = 0.004766 φ 5 = 0.1531

(c) Compute the log mean and log standard deviation of the log-normal approximation of the distribution of the dilution factor (φ).

Log mean
$$\mu_{\ln\varphi} = \frac{1}{2} [\ln (\varphi_{95}) + \ln(\varphi_5)] = -3.6115$$

Log std dev $\sigma_{\ln\varphi} = \frac{1}{1.645} \cdot \frac{(\ln (\varphi_5) - \ln (\varphi_{95}))}{2} = 1.0546$

- --- This equation accounts for any correlation that may exist between stream flow and effluent flow; e.g., where higher effluent flows tend to occur during periods of high stream flow.
- --- Ordinarily, there is no reason to expect any such correlation; therefore ρ = 0, and the computation in step (a) is simplified as shown.

$$--- \qquad \varphi 95 = \underbrace{\tilde{QE}}_{(\tilde{QE} + \tilde{QS}) \exp (Z_a \sigma_{lnD})} \\ = \underbrace{7.62}_{(7.62 + 259) \exp [(1.645)(1.1036)]} \\ = \underbrace{7.62}_{7.62 + 1591} \\ = 0.004766$$

(d) Compute arithmetic statistical parameters (using equations on Page 3-9 and tabulate for convenience.

			Ari	Logar	ithmic		
		Mean	Median	Std Dev	Coef Var	Mean	Std Dev
Dilution Factor	(φ)	0.0471	0.0270	0.0673	1.43	-3.6115	1.0546

<u>STEP 3</u>: Compute the statistical parameters of the resulting instream concentration (CO).

(a) Compute the arithmetic mean concentration using previously tabulated values, using Equation 2-8.

 $\mu_{CO} = [\mu_{CE} \cdot \mu_{\phi}] + [\mu_{CS} \cdot (1-\mu_{\phi})]$ $= [5.43 \cdot 0.0471] + [0] = 0.303$

(b) Compute the standard deviation, using Equation 2-9.

$\sigma_{\rm CO} = /\sigma^2 \cdot (\mu_{\rm CE} - \mu_{\rm CS})^2$	$(0.0673)^2 \cdot (6.43-0)^2$	0.187
$/ + \sigma^2_{CE} \cdot (\sigma_{\varphi}^2 + \mu_{\varphi}^2) = /$	$(4.50)^2 (0.0673^2) = /$	/+ 0.137
$\sqrt{1 + \sigma_{CS}^2} \cdot (\sigma_{\phi}^2 + (1 - \mu_{\phi})^2) \sqrt{1 + \sigma_{CS}^2}$	+ 0.0471)	+ 0
$\sigma_{\rm CO} = \sqrt{0.324} = 0.569$		

(c) Compute and tabulate for use in subsequent graphical or other summaries, the other statistical parameters of stream concentration.

		Arithmetic			Logarithmic		
		Mean	Median	Std Dev	Coef Var	Mean	Std Dev
Stream Concentration	(CO)	0.303	0.142	0.569	1.88	-1.95	1.23

--- The equations are as follows:

$$\mu_{\phi} = \exp \left[\mu_{\ln\phi} + \frac{1}{2}\sigma^{2}_{\ln\phi}\right]$$

$$= \exp \left[-3.6115 + \frac{1}{2}\left(1.0546\right)^{2}\right]$$

$$= 0.0471$$

$$\nu_{\phi} = \sqrt{\exp \left(\sigma^{2}_{\ln\phi}\right) - 1}$$

$$= \sqrt{\exp \left[(1.0546)^{2}\right] - 1}$$

$$= 1.429$$

$$\sigma_{\phi} = \mu_{\phi}\nu_{\phi}$$

$$= (0.0471)(1.429)$$

$$= 0.06729$$

- --- When the manual ("moments" approximation) analysis presented here is used, the stream concentrations computed are assumed to be log-normally distributed. That is, the log-normal distribution computed is an approximate representation of the actual distribution that results. The degree of approximation is examined subsequently.
- --- The equations are:

$$v_{co} = a_{co}/\mu_{co} = 0.569/0.303$$

= 1.88

$$\mu_{lnCO} = ln \quad (\mu_{CO}) \\ \hline (\sqrt{1} + \nu_{CO}^2) \\ = ln \quad (0.303) \\ \hline \sqrt{(1 + (1.88)^2)^2} \\ = -1.95$$

$$\sigma_{lnCO} = \sqrt{ln} (1 + v_{CO}^2)$$
$$= \sqrt{ln} [1 + (1.88)^2]$$
$$= 1.23$$

EXAMPLE COMPUTATION - HAND CALCULATION (continued)

- <u>STEP 4</u>: use the statistical parameters of stream concentration computed in the previous step to construct graphical OP tabular displays summarizing the frequency distribution.
 - (a) To construct a probability plot using logprobability graph paper:
 - The median concentration is plotted at the 50th percentile position.

 $C\widetilde{O} = CO_{50\%}$ =exp (µ_{lnCO}) = exp (-1.95) =0.142

- Any other plotting position is determined as follows:
- (1) From Table A-1, select a probability $(_a)$ and determine the corresponding value of Z_a . For example,

Probability = 0.841 (84%) $Z_{84.1\%}$ =1.00 Probability = 0.159 (16%) $Z_{15.9\%}$ = -1.00

(2) Compute the concentration at probability (σ) from the log mean and log standard deviation of stream concentration (CO).

 $Co_{a} = \exp (\mu_{lnCO} + Z_{a} \cdot \sigma_{lnCO})$ 84% plotting position $CO_{84\%} = \exp(-1.95 + 1.00 \cdot 1.23) = 0.487$ 16% plotting position $CO_{16\%} = \exp(-1.95 - 1.00 \cdot 1.23) = 0.0416$

(3) Plot these concentrations on log-normal probability paper and connect with a straight line.

Figure 3-2 - Sample stream concentration versus probability plot for 30-day averaging period

The probability plot indicates, for example, that the stream concentration of pollutant (P) will exceed a concentration of 1.0, at a frequency (probability) of about 5%. Since the analysis is based on daily values, this is interpreted as: 55 of all days will have stream concentrations greater than 1.

EXAMPLE COMPUTATION - HAND CALCULATION (continued)

STEP 4 (continued)

(b) To construct a recurrence interval (return period) plot using log-log graph paper:

```
o the formula used in the previous Step

Co_{a} = EXP (\mu_{lnCO} + Z_{a} \cdot \sigma_{lnCO})
can be rearranged:

Z_{a} = \frac{\ln(CO_{a}) - \mu_{lnCO}}{\sigma_{lnCO}}
```

The log mean and log standard deviation were determined in Step 3:

$$\sigma_{lnCO} = 1.23$$

- o Plotting positions are determined as follows:
 - (1) Select a series of values for stream concentration (CO) covering a range of interest, take the natural log (ln) and compute the value of 2.
 - (2) From Table A-1 identify the probability (Pr) associated with each 2.
 - (3) Compute the mean recurrence Interval (MRI) for each of the selected concentrations:

MRI (years) =
$$\frac{1}{Pr}$$
 · $\frac{1}{365 \text{ day/yr}}$

For example:

Stream		Probability	Mean Recurrence
Concentration CO	Z	Greater Than	Interval (years)
15	3.787	7.626×10^{-5}	35.9
10	3.457	2.732×10^{-4}	10.0
5	2.894	1.902×10^{-3}	1.44
1	1.585	5.648×10^{-2}	0.0485

Plot results. If necessary, compute additional values to assist in drawing a smooth curve.

--- Probability results can be misleading for the water quality issues being considered here, unless interpreted very carefully. For example, a 1% probability of exceeding a significant stream concentration means that this occurs nearly 4, times in 1 year, and for more than a month of individual days over a 10 year period. Expressing results as recurrence intervals is believed to provide a more useful expression of analysis results.

MEAN RECURRENCE INTERVAL - YEARS

Figure 3-3 Sample stream concentration versus mean recurrence interval for 30-day averaging period

Note that the acute concentration assumed for the pollutant (6.25) is exceeded an average of once every 2.6 years. If the exceedance criteria to be met 1s an average of 1 acute toxicity exceedance every 10 years, then the assignment of a 30-day permit averaging period is insufficient; shorter averaging periods must be examined.

However, if the pollutant had an acute concentration of 12.5 (or an acute-to-chronic ratio of 5), the recurrence interval of 20 years would be sufficiently protective for acute events.

EXAMPLE COMPUTATION - HAND CALCULATION (continued)

<u>STEP 5</u>: Compute the receiving water quality impact that would result from assigning other permit averaging periods.

Repeat Steps 1-4 using the values for CE that have been calculated for weekly and daily permit assignment.

7-day permit average \overline{CE} = 4.39 Daily maximum permit average..... \overline{CE} = 2.81

All other inputs remain unchanged.

When the computations are repeated using these values, the statistical parameters for stream concentration (Step 3) that are developed are as follows:

Permit Averaging	Mean	Median	Std. Dev.	Coef. Var.	Mean	Std. Dev.
Period	μ _{CO}	ĉo	σ _{CO}	ν _{co}	µ _{lnCO}	σ _{lnCO}
30-Day	0.303	0.142	0.570	1.88	-1.95	1.23
7-Day	0.207	0.0971	0.389	1.88	-2.33	1.23
1-Day	0.132	0.0622	0.248	1.88	-2.78	1.23

STREAM CONCENTRATION (CO) STATISTICS

Probability and recurrence Interval plots are then constructed as described in Step 4 to provide a graphical comparison of the influence of alternative choices for averaging period on the frequency of exceeding acutely toxic concentrations of pollutant (P) in the receiving system.

Figure 3-4 - Concentration versus probability plot for 1-, 7-, and 30-day averaging periods

Figure 3-5 - Concentration versus mean recurrence interval plot for 1-, 7-, and 30-day averaging periods

EXAMPLE COMPUTATION - HAND CALCULATION (continued)

STEP 6: Select the appropriate permit averaging period.

The appropriate permit averaging period is chosen to provide an acceptable level of receiving water quality. The decision is based on the assumption that an unacceptable exceedence of the acute criteria in the receiving stream is more than once every 10 years, on average.

Therefore, the permit averaging period selected is the highest one that does not result in a mean recurrence interval for acute criteria violations that 1s less than 10 years. For this example, recurrence intervals for a stream concentration of 6.25 are approximately

30-day Avg. Period = 2.6 years 7-Day Avg. Period = 7.7 years 1-Day Avg. Period = 31 years

For the site specific conditions assumed for this example, a 1-day permit averaging period could be assigned to the effluent limit of 10. However, as shown below using more exact calculations, a 7-day permit averaging period Is sufficiently protective for acute events. Thus a 7-day permit averaging period is assigned to the effluent limit of 10.

- --- For marginal cases, it should be recognized that the projections made using the moments approximation tend to be conservative. As shown below the more exact recurrence intervals are 6.4, 32, and 280 years".
- --- The acceptable frequency of acute criteria violation is, of course, a policy decision. Alternate levels are evaluated directly from Figures 3-3 and 3-4.
- --- The moments approximation used for the foregoing computations (because it approximates the distribution of dilution factor (φ) with a log-normal distribution) provides an approximation of the probability distribution and recurrence interval of the stream concentrations.

An exact computation that avoids the necessity of this approximation, is provided by use of the computer program detailed in the next section and in Appendix D. In this case, its use is warranted since a 7-day permit averaging period is sufficiently protective.

Based on the selection of the 7-day permit averaging period, the maximum 7-day average permit limits = EL = 10 mg/l. This permit limit is equivalent to a long-term average effluent concentration \overline{CE} = R_a EL = (0.439)(10) = 4.39, with coefficient of variation daily effluent concentration (v_{CE}) = 0.7. Thus, the design of the treatment facility and the selection of treatment process should be made to meet these specifications of \overline{CE} = 4.39 mg/l with coefficient of variation of daily effluent concentrations v_{CE} = 0.7.

EXAMPLE COMPUTATION - HAND CALCULATION

(continued)

<u>STEP 7</u>: Compute permit limits for other averaging periods (daily maximum and monthly) and exceedence percentiles (1 percent and 5 percent) that are consistent with the treatment performance level established in Step 6.

At this point in the analysis, it has been determined that assigning the effluent limit of EL = 10 as a weekly permit, applicable to 7 day averages of the daily concentrations, is sufficiently protective. This choice is based upon an effluent limit violation frequency of one percent. The mean effluent concentration for these choices is $\overline{CE} = 4.39$.

If it is assumed that the same violation frequencies apply to the other permit concentrations, then they can be computed directly:

Permit Limit = CE / R_a

Since $R_a = CE/CE_a$ and the permit limits are assumed to be the a-percentile concentrations for each averaging period.

If other violation frequencies are desired, for example, 5 percent, then permit limits of this frequency can also be calculated using the appropriate R_a for $1-_a = 5$ percent. The table below presents the results for the example considered above.

Permit	Coeff. of Var. of Avg.'ed Effluent	Reduction Factors ^b R _a		Permit Limits	
Averaging Period	v _{CE}	1%	5%	1%	5%
1-day 7-day 30-day	0.70 0.40 0.20	0.281 0.439 0.643	0.432 0.571 0.736	15.6 10.0 6.83	10.2 7.69 5.96

It should be pointed out that any or all of these permits are equivalent in the sense that a treatment plant meeting any of these requirements will also meet the desired water quality goal. Of course, this 1s true only 1f the actual coefficients of variation for daily values and 7 and 30 day average plant effluent concentrations are as specified.

^aThese are assumed to be representative of the treatment plant effluent behavior.

^bTable 2-1, equation 2-17.

^cPermit limit = CE/R_a ; CE=4.39.

Permit Limits	Daily Maximum	Weekly	Monthly
Reduction factors (see p. 3-6)	0.281	0.439	0.643
Choice of averaging period (from step 6)	no	yes	no
Value for the selected averaging period (from step 6 - steady state model output)	-	10	-
Permit limits using reduction factors, Ra	$\frac{10(0.439)}{0.281} = 15.6$	10.0	$\frac{10(0.439)}{0.643} = 6.8$
Long-term average effluent concentration, CE (see p. 3-6)	4.39	4.39	4.39
Coefficient of variation of daily, weekly, and monthly permit limits (see p. 3-6)	0.7	0.4	0.2

The long term average effluent concentration for the required level of treatment is equal to 4.39 mg/l with the coefficient of variation of daily effluent concentrations equal to 0.7. To meet the water quality standard at the state specified design flow and to meet the acute criteria at all times except for 1 day once in 10 years, the treatment facilities need to be built to meet the long term average concentration of 4.39 mg/l with coefficient of variation of daily effluent concentration $v_{CE} = 0.7$. The permit limits derived above are based on daily, weekly, and monthly reporting procedures. If less than adequate monitoring is required, the appropriate permit limits must be derived using the long term average and equivalent coefficient of variation.

EXAMPLE COMPUTATION - HAND CALCULATION (continued)

Recapitulation

In order to aid in the understanding of the suggested procedure, the sequence is reviewed below in outline form.

1. Establish streamflow characteristics.

 \overline{QS} v_{QS}

2. Establish effluent flow characteristics.

 \overline{QE} v_{QE}

3. Establish effluent concentration variability characteristics (ν_{CE}) daily values and 7 and 30 day averages.

Coefficient of Variation
$v_{ ext{CE}}$
0.7
0.4
0.2

4. Establish effluent limit from steady state wasteload allocation.

EL = 10

5. Establish violation frequency of EL.

1-a = 1% a = 99%

and assume $CE_a = EL$

- 1. These should be site specific since the computation is usually sensitive to the values.
- 2. Mean effluent flow is important, but the coefficient of variation, since it is usually small, is usually not significant if $v_{\text{OE}} = v_{\text{OS}}$
- 3. These coefficients of variations specify the behavior of the daily values and temporal averages of effluent concentrations. More detailed evaluations for industry specific or pollutant specific situations are required to be more definitive. The values used are not suggested as universal.
- 4. The analysis presented in this manual does not evaluate the degree of protection afforded by this choice. That is, the probability of violation of the chronic criteria is not calculated. It is assumed to be sufficiently protective.
- 5. The choice of violation frequency is necessary in order to give a specific probabilistic meaning to EL. Reasonable values appear to be one or five percent. However, a problem may arise if too frequent a violation frequency is chosen. It may turn put that even specifying the permit as a daily maximum does not insure that acute criteria violations are sufficiently rare. In this case, a lower probability of violation must be specified.

EXAMPLE COMPUTATION - HAND CALCULATION (continued)

6. For a (step 5) and coefficients of variation (step 3) compute ratio of mean effluent to effluent limit, $R_a = \overline{CE} / CE_a$ and the resulting mean effluent concentration \overline{CE} for each averaging period.

	Reduction Factor			
Averaging Period	Mean Effluent Concentration			
	R _a	CE		
1-day	0.281	2.81		
7-day	0.439	4.39		
30-day	0.643	6.43		

7. Evaluate each mean effluent concentration using POM to compute me return period of acute criteria violation. Choose the appropriate averaging period.

		Return Period	(years) for	
		CO = 6.25		
Averaging		Moments	Quadrature	
Period	CE	Approximation	Method	
1-day	2.81	31	281	
7-day	4.39	7.7	31.8	> 10 years
30-day	6.43	2.6	6.44	

8. Establish appropriate permit limits for other averaging periods. \overline{CE} = 4.39, 1-a = 1%.

Averaging Period	ν_{CE}	Ra	Permit Limit ^a
1-day	0.70	0.281	15.6
7-day	0.40	0.439	10.0
30-day	0.20	0.643	6.83

^aPermit Limit = \overline{CE} / R_a ; 1% violation frequency.

- 5. This calculation makes the connection between the effluent limit and the mean effluent concentration required to meet the effluent limit if it is assigned to daily values or 7 or 30 day averages. A treatment plant designed to produce \overline{CE} and whose variability is as specified in (3) will meet the effluent limit with one percent violation frequency.
- 7. The three treatment plant designs (the three mean effluent concentrations) and the <u>daily</u> effluent variability are used in PDM to compute the return period of an acute criteria violation. The moments approximation is sufficient if the return periods are significantly less than or greater than the 10 year criteria violation frequency being examined. In this case, the 7-day averaging period result is close to 10 years and the more accurate computer method is used to improve the accuracy of the calculation. The calculation indicates that a mean effluent concentration of $\overline{CE} = 4.39$ and a daily $v_{CE} = 0.7$ is sufficiently protective for acute criteria violations. This, then, is the basis for the treatment plant design.
- 8. The permit limits for the other averaging periods are now calculated to be consistent with the treatment plant design. That is, these permit limits are consistent with effluent mean and coefficients of variation as indicated, and specify the same performance. Thus, they are equivalent requirements.

3.3 EXAMPLE COMPUTATION - COMPUTER PROGRAM

This section illustrates the use of the POM-PS computer program (included and described in Appendix D) to the solution of the example presented in the previous section. The site-specific conditions used to define input values in the previous section are used in this section as well.

The PDM-PS is structured to accept inputs in the form of statistical parameters and ratios, determined readily from the data. The following ratios are entered for this example computation:

Stream Flow Ratio $7Q10/\overline{QS} = 23.3/467 = 0.05$ Effluent Dilution Ratio $7Q10/\overline{QE} = 23.3/7.77 = 3.0$

Effluent Concentration \overline{CE} /EL = (*) Reduction Factor

(*) Reduction factor assigned depends on permit averaging period. As determined earlier.

30 Day - - - R = 0.643 $\overline{CE} / \text{EL} \qquad 7 \text{ Day} - - - R = 0.439$ $1 \qquad \text{Day} - - R = 0.281$

The only other inputs called for are the coefficients of variation of stream flow, effluent flow, and effluent concentration, which have already been determined.

The facing page illustrates the Input prompts that are displayed when the program is run, and the values entered in response to the prompts, in this case for evaluating the 30-day permit averaging period.

DISPLAY AND PROMPTS

when

RESPONSE ENTRIES

POINT SOURCE - RECEIVING WATER CONCENTRATION ANALYSIS COEF VAR OF QS, QE, CE INPUTS: RATIO...7Q10/avqQS RATIO...7Q10/avgQE RATIO... avgCE/EL BACKGROUND STREAM CONC (CS) IS ASSUMED TO BE ZERO ENTER COEF VAR OF QS, QE, CE?.....1.5, 0.2, 0.7 ENTER FOLLOWING RATIOS:7Q10/avg QS?..... 0.05avgCE/EL?..... 0.643 ENTER LOWEST, HIGHEST, AND This prompt repeats after the INCREMENT OF MULT OF TARGET FOR selected range of values has WHICH% EXCEED IS DESIRED been computed and displayed. It allows the user to be guided by output In selecting values and ENTER LOWEST, HIGHEST, AND INCREMENT OF MULT OF TARGET FOR ranges for subsequent WHICH% EXCEED IS DESIRED computations. 0.01, 0.06, 0.01 0.08, 0.36, 0.04 0.40, 4.0, 0.2 The manual analysis presented earlier, computed the NOTE: exceedance probability and recurrence interval for specific stream concentration values. The computerized computation generates these results for stream concentrations expressed as multiples of the target concentration (CL) that is explicitly assumed to result

Effluent Concentration	CE = EL (the effluent limit)
Effluent Flow	QE = \overline{QE} (average \overline{QE})
Stream Flow	QS = 7Q10 (the design stream flow)

EXAMPLE COMPUTATION - COMPUTER PROGRAM (continued)

PROGRAM OUTPUT

> COEF VAR....QS = 1.50COEF VAR...QE = 0.20COEF VAR...CE = 0.70

STREAM CONCENTRATION (CO)

MULT OF	PERCENT	RETURN
TARGET	OF TIME	PERIOD
(CO/CL)	EXCEEDED	(YEARS)
0.01	92.699	0.003
0.02	80.916	0.003
0.03	71.039	0.004
0.04	62.788	0.004
0.05	55.862	0.005
0.08	40.808	0.007
0.12	28.659	0.010
0.16	21.170	0.013
0.20	16.201	0.017
0.24	12.728	0.022
0.28	10.206	0.027
0.32	8.320	0.033
0.36	6.875	0.040
0.40	5.746	0.048
0.60	2.650	0.103
0.80	1.399	0.190
1.00	0.804	0.341
1.20	0.490	0.559
1.40	0.312	0.878
1.60	0.206	1.331
1.80	0.140	1.961
2.00	0.097	2.821

--- This output is for a 30-day permit average period ($R_a = 0.643$)

The range of values selected here is broad enough to facilitate construction of probability and recurrence interval plots.

Stream concentrations listed are in terms of a ratio to the target concentration (CL). In this example, the target stream concentration is:

CL = 2.5

Actual stream concentration is this value multiplied by the listed value: e.g., the multiple of Target (CO/CL) = 0.4

Corresponding stream concentration is:

0.4 X 2.5=1.0

Since the acute-to-chronic ratio for pollutant (P) is 6.25/2.50 = 2.5, acute exceedences are reflected by multiple 2.5.

Probability or recurrence interval plots can be constructed, simply by plotting the values listed in the computer printout.

Note that the probability distribution of stream concentrations deviates from-log-normal (a straight line) at the higher exceedance percentiles.
EXAMPLE COMPUTATION - COMPUTER PROGRAM (continued)

PERCENT	RETURN
OF TIME	PERIOD
EXCEEDED	(YEARS)
0.069	3.977
0.050	5.507
0.036	7.509
0.027	10.098
0.020	13.411
0.016	17.612
0.012	22.894
0.009	29.482
0.007	37.640
0.006	47.674
	PERCENT OF TIME EXCEEDED 0.069 0.050 0.036 0.027 0.020 0.016 0.012 0.009 0.007 0.006

STREAM CONCENTRATION (CO) (cont.)

Figure 3-7 - Concentration versus mean recurrence Interval for POM PS computation

EXAMPLE COMPUTATION - COMPUTER PROGRAM (continued)

To examine stream concentration effects for other permit averaging periods, repeat the analysis, substituting the appropriate value for the reduction factor (R = \overline{CE} /EL)

The return period curves provide a useful summary and perspective; however, the evaluation can be performed without constructing the graph. In this case, the range of concentrations specified might (as shown below) simply bracket those of principal interest. In this case, a range of CO/CL from 0.5 to 3 is selected, because the chronic limit (CL= 1), and the acute limit to be exceeded no more than once every 10 years 1s CO/CL = 2.5.

The relevant portions of the output for the three permit averaging periods are shown below:

STREAM CONCENTRATION (CO)

	MULT OF	PERCENT	RETURN
	TARGET	OF TIME	PERIOD
	(CO/CL)	EXCEEDED	(YEARS)
30-Day Average	0.50	3.818	0.072
	1.00	0.804	0.341
CE/EL = 0.643	1.50	0.252	1.085
	2.00	0.097	2.821
	2.50	0.043	6.443
	3.00	0.020	13.411
7-Day Average	0.50	1.717	0.160
	1.00	0.272	1.008
CE/EL = 0.439	1.50	0.069	3.957
	2.00	0.023	12.149
	2.50	0.009	31.819
	3.00	0.004	74.364
1-Day Average	0.50	0.560	0.489
	1.00	0.060	4.601
CE/EL = 0.281	1.50	0.011	23.866
	2.00	0.003	90.571
	2.50	0.001	281.076
	3.00	0.000	756.249

COMMENTARY

In this case a different averaging period would be selected than that based upon the manual computation. Acute criteria exceedences have a mean recurrence interval shorter than 10 years for a 30-day permit average, so it would be rejected in favor of a 7-day average, which meets the guideline.

Note that the exact computation using the computer program indicates a 5.4 year return period for acute violations, compared with a 2.6 year return period estimated by the manual approximation. The manual approximation tends to give conservative projections for the longer return periods that are of interest, though differences vary depending on specific input conditions.

Hence, there will be marginal cases where the approximate computation may reject a 30-day average inappropriately.

On the other hand, wherever the manual approximation accepts a 30day permit average as appropriate, it is safe to assume that the more exact computation will not modify the choice.

For the site specific conditions assumed for the example analysis:

- Any pollutant with an acute-to-chronic ratio of 9.5 or greater would, based on the manual approximation, always be assigned a 30-day permit average.
- The POM-PS computation extends this to pollutants with acute-to-chronic ratios of 3 or more.

<u>NOTE</u>: EPA interprets any return period greater than 25 years as being highly improbable

CHAPTER 4

RANGE OF EXPECTED VALUES FOR STREAMS IN U.S.

As illustrated in Chapter 3, the method can be applied to any site specific evaluation for which the relevant statistical parameters are available or can be estimated. The purpose of this section is to present a concise summary of the results of such computations for the range of site conditions that are likely to be encountered in practice. This chapter provides such a compilation along three lines. Section 4.1 describes the basis for the input values selected to provide a representative range of site conditions, and presents the results of an analysis using these typical ranges in the methodology described previously. The stream flow characteristics were determined from an analysis of 180 streams and rivers; treatment plant effluent characteristics are based on analysis of data from over 400 POTWs. The results in this section apply for conservative (nonreacting) pollutants. Section 4.2 describes how the information provided by such an analysis can be used as a screening tool for selecting permit averaging periods. Section 4.3 presents results of a similar analysis, except that it is specific to oxygen depletion by biochemical oxygen demand (BOO) loadings. Section 4.4 extends the analysis for conservative pollutants to the special case of streams that are highly effluent dominated, including those with significant zero-flow Periods.

4.1 Analysis for Conservative Substances

The review of stream flow and effluent statistics presented in Appendix 8 indicates that the following ranges are reasonable. Effluent concentration variability, (v_{CE}) , is in the range of $v_{CE} = 0.3$ – 1.1. Effluent flow variability, (v_{QE}) , is generally small relative to stream flow variability and, therefore, does not greatly influence the computation. $v_{QE} = 0.2$ is consistently used. Stream flow variability follows from the empirical relationship of v_{QS} and $7Q10/\overline{QS}$. For a specified ratio, the range of v_{QS} , as indicated by the data discussed in Appendix B, is used. The ratio $7Q10/\overline{QS}$ varies considerably. A representative range is $7Q10/\overline{QS} = 0.01$ – 0.25. Finally, the magnitude of the effluent flow relative to the stream flow is specified by the effluent dilution ratio: $7Q10/\overline{QE}$. A range from $7Q10/\overline{QE} = 1 - 50$ is chosen to represent effluent dominated streams and large streams with small discharges. A 10 year return period has been selected as the acute criteria violation frequency.

In order to compute the ratio of the mean effluent concentration to the effluent limit $R_a = \overline{CE}$ /EL, it is assumed that the permit violation frequency is one percent. The final specification required is the relationship of 7 and 30 day average effluent concentrations to the daily effluent concentration coefficient of variation, v_{CE} . Based upon the data presented in Table C-2, it appears reasonable to expect that the 7-day averages have a coefficient of variation that 1s 0.8 of the dally values, and that 30 day averages have a coefficient of variation factors used are:

Coefficient of Variation of Daily Values	Reduction Factor, R _a a = 99 percent							
v_{CE}	1-day	7-day	30-day					
0.3	0.527	0.593	0.671					
0.7	0.281	0.340	0.425					
1.1	0.187	0.229	0.296					

The results of these computations are summarized in Figure 4-1 and given in detail in Tables 4-1 to 4-4. The three choices for permit average are shown. Each group of bars represents the range in effluent concentration variability, $v_{\rm CE}$. Each individual bar represents a particular effluent dilution, $7Q10/\overline{QE}$. Finally, the length of each bar represents the range that results from the range of stream flow variability ($7Q10/\overline{QS} = 0.01 - 0.25$) and the associated coefficient of variation, $v_{\rm QS}$. The ordinate is the downstream concentration (in multiples of the chronic criteria) which has a 10 year return period.

A number of features are immediately apparent. For pollutants with an acute to chronic ratio of greater than 10, no acute criteria violations are projected over the ranges Investigated, and 30-day average permit specifications appear to be sufficiently protective. For acute-to-chronic ratios of less than 10, site specific considerations are important.

The results are most sensitive to the stream flow parameter $7Q10/\overline{QS}$, as can be seen from the range covered by each bar. For example, the last bar in the figure, 30-day permit averaging period, $7Q10/\overline{QE} = 50$, $v_{\rm CE}=1.1$, covers the range from $\beta=$ 0.9 to 4.6, corresponding to $7Q10/\overline{QS} = 0.01$ and $v_{\rm OS} = 2-4$.

Following, in order of decreasing sensitivity, is the effluent dilution ratio: 7Q10/ \overline{QE} . A significant distinction can be found between

¹The EPA is presently considering the issue of allowable duration and frequency of exposure to toxicity. Based upon this word, duration and frequencies used as the decision criteria may change. This guidance does not recommend any particular minimum acceptable duration or frequency.

*INDICATES THE STREAM CONCENTRATION (CO) WHICH WILL BE EXCEEDED WITH A FREQUENCY OF ONCE IN TEN YEARS, EXPRESSED AS A MULTIPLE OF THE CHRONIC CRITERIA (CL)

Figure 4-1 - Effect of permit averaging period on stream concentrations for conservative substances: general analysis

Est	imate	Eff	luent v _{CE} :	= 0.3	Eff	luent v_{CE}	= 0.7	Eff	luent v_{CE}	= 1.1
	of	30-	7-	1-	30-	7-	1-	30-	7-	1-
Varia	ability	Day	Day	Daily	Day	Day	Daily	Day	Day	Daily
Ran	ge v_{QS}	Avg.	Avg.	Max.	Avg.	Avg.	Max.	Avg.	Avg.	Max.
LO	2.00	1.0	0.9	0.8	0.9	0.7	0.6	0.9	0.7	0.5
PROB	3.00	3.0	2.7	2.4	2.5	2.0	1.7	2.3	1.8	1.5
ΗI	4.00	6.1	5.4	4.8	4.9	3.9	3.2	4.4	3.4	2.8
то	1 00	0 0	0 0	0 7	0 0	0 7	0	1 0	0 7	0 0
TO	1.00	0.9	0.0	0.7	0.9	0.7	0.0	1.0	0.7	0.0
PROB	1.50	2.3	2.0	1.8	2.2	1./	1.4	2.2	1./	1.4
HI	2.00	4.7	4.2	3.7	4.2	3.4	2.8	4.1	3.2	2.6
LO	0.75	1.0	0.9	0.8	1.1	0.8	0.7	1.2	0.9	0.8
PROB	1.00	1.7	1.5	1.4	1.8	1.4	1.2	1.9	1.5	1.2
HI	1.50	4.4	3.9	3.4	4.2	3.3	2.7	4.2	3.2	2.7
τO	0 00	1 0	0 0	0 0	1 0	0 0	0 0	1 /	1 0	0 0
ТО	0.60	1.0	0.9	0.8	1.2	0.9	0.8	1.4	1.0	0.9
PROB	0.90	2.0	1.8	1.6	2.2	1.7	1.4	2.4	1.8	1.5
ΗI	1.25	4.1	3.7	3.3	4.1	3.3	2.7	4.3	3.3	2.7
LO	0.50	1.3	1.1	1.0	1.6	1.3	1.0	1.9	1.5	1.2
PROB	0 75	2 4	2 1	1 0	2 6	2 1	1 7	2 9	23	1 9
HT	1 00	2·4 4 1	36	±•• 3 2	4 2	3 4	28	4 6	35	29
	Est Varia Rand LO PROB HI LO PROB HI LO PROB HI LO PROB HI	Estimate of Variability Range v _{QS} LO 2.00 PROB 3.00 HI 4.00 LO 1.00 PROB 1.50 HI 2.00 LO 0.75 PROB 1.00 HI 1.50 LO 0.60 PROB 0.90 HI 1.25 LO 0.50 PROB 0.75 HI 1.00	Estimate Eff: of 30- Variability Day Range vQS Avg. LO 2.00 1.0 PROB 3.00 3.0 HI 4.00 6.1 LO 1.00 0.9 PROB 1.50 2.3 HI 2.00 4.7 LO 0.75 1.0 PROB 1.00 1.7 HI 1.50 4.4 LO 0.60 1.0 PROB 0.90 2.0 HI 1.25 4.1 LO 0.50 1.3 PROB 0.75 2.4 HI 1.00 4.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EstimateEffluent $v_{CE} = 0.3$ of $30-$ $7 1-$ $1-$ VariabilityRange v_{QS} Avg.Avg.Max.LO2.001.00.90.8PROB3.003.02.72.4HI4.006.15.44.8LO1.000.90.80.7PROB1.502.32.01.8HI2.004.74.23.7LO0.751.00.90.8PROB1.001.71.51.4HI1.504.43.93.4LO0.601.00.90.8PROB0.902.01.81.6HI1.254.13.73.3LO0.501.31.11.0PROB0.752.42.11.0HI1.004.13.63.2	EstimateEffluent $v_{CE} = 0.3$ Eff ofof $30 7 1 30-$ VariabilityDayDayDailyDayRange v_{QS} Avg.Avg.Max.Avg.LO 2.00 1.0 0.9 0.8 0.9 PROB 3.00 3.0 2.7 2.4 2.5 HI 4.00 6.1 5.4 4.8 4.9 LO 1.00 0.9 0.8 0.7 0.9 PROB 1.50 2.3 2.0 1.8 2.2 HI 2.00 4.7 4.2 3.7 4.2 LO 0.75 1.0 0.9 0.8 1.1 PROB 1.00 1.7 1.5 1.4 1.8 HI 1.50 4.4 3.9 3.4 4.2 LO 0.60 1.0 0.9 0.8 1.2 PROB 0.90 2.0 1.8 1.6 2.2 HI 1.25 4.1 3.7 3.3 4.1 LO 0.50 1.3 1.1 1.0 1.6 PROB 0.75 2.4 2.1 1.0 2.6 HI 1.00 4.1 3.6 3.2 4.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 4-1 - Averaging period selection matrix for conservative substances: effluent dilution ratio - 7010/ \overline{QE} = 50

Stream	Estimate		Eff.	luent v _{CE} :	= 0.3	Eff	luent v_{CE}	= 0.7	Eff	luent v_{CE}	= 1.1
Flow		of	30-	7-	1-	30-	7-	1-	30-	7-	1-
7Q10/	Varia	ability	Day	Day	Daily	Day	Day	Daily	Day	Day	Daily
Avg. Q	Ran	ge v_{QS}	Avg.	Avg.	Max.	Avg.	Avg.	Max.	Avg.	Avg.	Max.
	LO	2.00	1.0	0.9	0.8	0.9	0.7	0.6	0.9	0.7	0.6
0.01	PROB	3.00	2.2	1.9	1.7	2.0	1.6	1.3	2.0	1.5	1.3
	HI	4.00	3.1	2.8	2.5	3.1	2.5	2.1	3.1	2.4	2.0
	LO	1.00	0.9	0.8	0.7	0.9	0.8	0.6	1.0	0.8	0.7
0.05	PROB	1.50	1.9	1.7	1.5	1.9	1.5	1.3	2.0	1.6	1.3
	HI	2.00	2.9	2.6	2.3	3.0	2.4	2.0	3.2	2.5	2.0
	τo	0.75	1.0	0.9	0.8	1.1	0.9	0.7	1.3	1.0	0.8
0.10	PROB	1.00	1.5	1.4	1.2	1.7	1.4	1.1	1.9	1.5	1.2
	HI	1.50	2.8	2.5	2.2	3.1	2.5	2.1	3.4	2.6	2.2
	T.O	0 60	1 0	0 9	0.8	1 2	1 0	08	15	1 1	09
0 15	PROB	0.00	1 8	1 6	1 4	2 0	1 6	1 3	23	1 8	1 5
0.10	HI	1.25	2.8	2.5	2.2	3.2	2.5	2.1	3.5	2.7	2.2
	LO	0.50	1.3	1.1	1.0	1.6	1.3	1.1	2.0	1.5	1.3
0.25	PROB	0.75	2.0	1.8	1.6	2.4	1.9	1.6	2.8	2.2	1.8
	ΗI	1.00	2.8	2.5	2.2	3.4	2.7	2.2	3.9	3.0	2.4

TABLE 4-2 - Averaging period selection for conservative substances: effluent dilution ratio - 7Q10/ \overline{QE} = b

Stream	Estimate		Eff	luent v _{CE} =	= 0.3	Eff	luent v_{CE}	= 0.7	Eff	luent v_{CE}	= 1.1
Flow		of	30-	7-	1-	30-	7-	1-	30-	7-	1-
7Q10/	Varia	ability	Day	Day	Daily	Day	Day	Daily	Day	Day	Daily
Avg. Q	Ran	ge v_{QS}	Avg.	Avg.	Max.	Avg.	Avg.	Max.	Avg.	Avg.	Max.
	LO	2.00	1.0	0.9	0.8	0.9	0.7	0.6	0.9	0.7	0.6
0.01	PROB	3.00	1.9	1.7	1.5	1.9	1.5	1.2	1.9	1.5	1.2
	ΗI	4.00	2.6	2.3	2.0	2.7	2.2	1.8	2.8	2.2	1.8
	то	1 00	0 9	0.8	0 7	1 0	0.8	0 6	1 1	0.8	0 7
0 05	DBUB	1 50	1 7	1 5	1 3	1 8	1 5	1 2	2 0	1 5	13
0.05	IT FROB	2.00	1.7	1.0	1.0	1.0	1.5	1 0	2.0	1.5	1.0
	пт	2.00	2.5	2.2	1.9	2.1	2.2	1.0	5.0	2.5	1.9
	LO	0.75	1.0	0.9	0.8	1.2	0.9	0.8	1.3	1.0	0.9
0.10	PROB	1.00	1.5	1.3	1.2	1.7	1.3	1.1	1.9	1.5	1.2
	ΗI	1.50	2.4	2.2	1.9	2.8	2.3	1.9	3.2	2.5	2.0
	τO	0 60	1 0	ΛQ	0.8	1 3	1 0	0.8	1 5	1 2	1 0
0 15		0.00	1 7	1 5	13	2 0	1.0	1 3	23	1 8	1 5
0.15	PROB	1.25	1.7	1.0	1.0	2.0	1.0	1.5	2.3	1.0	1.J
	Η⊥	1.25	2.4	2.2	1.9	2.9	2.3	1.9	3.3	2.0	2.1
	LO	0.50	1.3	1.1	1.0	1.6	1.3	1.1	2.1	1.6	1.3
0.25	PROB	0.75	1.9	1.6	1.5	2.3	1.9	1.5	2.8	2.2	1.8
	HI	1.00	2.5	2.2	1.9	3.1	2.5	2.0	3.7	2.8	2.3

TABLE 4-3 - Averaging period selection matrix for conservative substances: effluent dilution ratio - 7Q10/ \overline{QE} = 3

TABLE 4-4 - Averaging period selection matrix for conservative substances: effluent dilution ratio - 7Q10/ \overline{QE} = 1

Stream	Est	imate	Eff	luent v _{CE} =	= 0.3	Eff	luent v_{CE}	= 0.7	Eff	luent v_{CE}	= 1.1
Flow		of	30-	7-	1-	30-	7-	1-	30-	7-	1-
7Q10/	Varia	ability	Day	Day	Daily	Day	Day	Daily	Day	Day	Daily
Avg. Q	Ran	ge v _{QS}	Avg.	Avg.	Max.	Avg.	Avg.	Max.	Avg.	Avg.	Max.
	LO	2.00	1.0	0.8	0.8	1.0	0.8	0.7	1.1	0.8	0.7
0.01	PROB	3.00	1.5	1.3	1.2	1.7	1.3	1.1	1.8	1.4	1.1
	HI	4.00	1.8	1.6	1.4	2.1	1.7	1.4	2.4	1.8	1.5
	LO	1.00	0.9	0.8	0.7	1.1	0.9	0.7	1.3	1.0	0.8
0.05	PROB	1.50	1.4	1.3	1.1	1.7	1.4	1.2	2.0	1.6	1.3
	HI	2.00	1.8	1.6	1.4	2.2	1.8	1.5	2.6	2.0	1.7
	LO	0.75	1.0	0.9	0.8	1.3	1.0	0.9	1.6	1.2	1.0
0.10	PROB	1.00	1.3	1.2	1.1	1.7	1.4	1.1	2.0	1.6	1.3
	HI	1.50	1.8	1.6	1.4	2.4	1.9	1.6	2.9	2.2	1.8
	τo	0.60	1.1	1.0	0.8	1.4	1.2	1.0	1.8	1.4	1.2
0.15	PROB	0.90	1.5	1.3	1.2	1.9	1.6	1.3	2.4	1.9	1.5
	HI	1.25	1.8	1.6	1.4	2.5	2.0	1.6	3.0	2.3	1.9
	τo	0 50	13	1 1	1 0	18	14	1 2	23	18	15
0 25	PROB	0.75	1 6	1 4	1 3	2 2	1 8	1 5	2.9	2 2	1 8
0.20	HI	1.00	1.9	1.7	1.5	2.6	2.1	1.7	3.3	2.6	2.1

the effluent nominated streams, 7Q10/QE < 5, and the large stream case, \overline{QE} = 50 for the latter cases, the stream flow variability is a more important determinant of the normalized downstream concentration. Finally, the effluent variability, v_{CE} = affects the results by approximately a factor of 2, all other things being equal.

4.2 Use As a Screening Tool

It is suggested that Figure 4-1 may be used as a screening tool to separate the cases which can be dealt with immediately from those for which more site specific information is required. For the latter cases, the flow ratios, $7Q10/\overline{QE}$ and $7Q10/\overline{QS}$ can usually be found quite easily so that a more specific answer can be found in Tables 4-1 to 4-4. The final determinant, v_{QS} , requires a log-normal analysis of the stream flow record. Since this is reasonably straightforward, a more refined analysis is not excessively burdensome and would serve to reduce the range of possible values of β , from which the permit averaging decision can be made.

As an example of such a screening analysis, consider the hypothetical case of a state establishing permit averaging periods for phenol. Phenol has an acute-to-chronic ratio of 4, so that stream concentrations which exceed a multiple of 4 times the chronic concentration will not be accepted (assuming that the acute criteria is not to be exceeded on a daily basis more often than once every 10 years).

Comparing the bars on Figure 4-1 with the multiple of β = 4, the following conclusions relative to the permit averaging period can be

drawn. For situations with an effluent dilution ratio of 5 or less $(7Q10/\overline{QE} \leq 5)$:

- a. A 30-day permit averaging period will be selected whenever the $v_{\mbox{\tiny CE}}$ is 0.7 or less.
- b. Where v_{CE} =1.1 a 7-day permit averaging period will meet requirements under all reasonable possibilities of stream flow variability (v_{QS}). (The upper ends of the bars correspond to high values of v_{OS} .)
- c. Even for effluent variability as high as $v_{CE} = 1.1$, there will be many streams where it would be appropriate to select a 30day permit average, since only the upper end of the bars exceeds a multiple of 4.

For an effluent dilution ratio 7Q10/QE = 5, the third column from the right ($v_{CE} = 1.1$; 30-day permit average) in Table 4-2 indicates that only the highly variable stream flows approach violations using a 30-day permit average. State records could be examined to determine if the set of streams under consideration (or a representative set from Appendix C) experiences v_{QS} in this range.

A conservative decision, then, would be to select a 7-day permit averaging period, although a site-specific assessment of stream flow variability or a restriction of vQS values could be expected (in most cases) to support selection of a 30-day permit averaging period.

4.3 Preliminary Analysis for Dissolved Oxygen

The choice, of permit averaging periods for effluent limits of oxygen-consuming pollutants, such as BOD or ammonia, is a more complex problem than that addressed in the previous sections. The variations of the minimum or critical DO are caused not only by effluent concentration and dilution fluctuations, which are addressed by the probabilistic dilution model, but also by fluctuations in reaction rates and other sources and sinks of DO, such as algal production, respiration, and sediment oxygen demand. Stream flow and temperature variations affect these parameters, the latter also determining the DO saturation. A comprehensive probabilistic analysis that would include these effects as well is beyond the scope of this report.

It is desirable, however, to provide at least a preliminary analysis for suitably restricted cases that are amenable to analysis using the probabilistic dilution model. The method to be employed makes use of the similarity of the formula for critical DO deficit for those streams for which the simple Streeter-Phelps formulation is adequate, and the dilution equation. The principal assumptions are (1) a single point source of BOD is the only DO sink; (2) the stream flow, geometry and reaction rates are spatially constant; and (3) the reaction rates are temporally constant. For this restrictive situation, the critical or maximum dissolved oxygen deficit (D_c) is a function of the reaeration rate (K_a), the BOD oxidation rate (K_d) and the ultimate-to-5-day BOD ratio. The Streeter-Phelps equation can be solved for the critical or dissolved oxygen deficit (D_c) :

$$D_{c} = CE \cdot F \cdot \Phi \cdot P \tag{4-1}$$

where:

 $CE = treatment plant effluent BOD_5 concentration.$

F = ratio of ultimate/5-day BOD. Stream calculations are based on ultimate BOD; effluent criteria on 5-day BOD.

 φ = stream dilution factor QE/(QS = QE).

P = stream purification factor; for a BOD oxidation rate (K_a) and stream reaeration rate (K_a)

$$P = (A)^{1-A}; \text{ where } A = K_a/K_a^*$$

(Note that if the purification factor were constant then Equation 4-1 would be formally equivalent to the dilution equation analyzed previously.) One remaining difficulty is that it is not the critical DO deficit (D_c) that is of concern but rather the critical dissolved oxygen (DOc) itself:

$$DO_c = C_{sat} - D_c$$
 (4-2)

which is a function of stream temperature through the DO saturation concentration, C_{sat} . Hence, the applicability of probabilistic dilution to the dissolved oxygen problem requires that the analysis be restricted to periods for which temperatures are essentially constant and fluctuations in the purification factor (P) are small.

An evaluation of this latter effect can be made as follows. A relationship between P and stream depth, H, which follows from K_a and K < j versus depth relationships is [3]:

and for many streams, depth is proportional to total stream flow, QT, to a power $H = Q_{T}^{m}$ with m = 0.4 - 0.6. Thus,

$$P = Q_T^n$$
 n = 0.3 - 0.5 (4-4)

Consider Equation 4-1 for critical deficit. Taking natural logs and applying the formula for the variance of a sum of independent random variables yields:

$$\frac{2}{\sigma \ln DC} = \frac{2}{\sigma \ln CE} + \frac{2}{\sigma \ln \Phi} + \frac{2}{\sigma \ln QT}$$
(4-5)

wehere QT = QS + QE. This equation, of course, ignores the fact that and QT are correlated, but the point is that $n^2 = 0.09 - 0.25$ so that if the log variance of QT is comparable to the effluent concentration log variance, then the n^2 term is not a major contribution to critical deficit log variance; hence, it can be neglected. The fact that dilution (φ) and total stream flow are negatively correlated would further reduce the effect.

Hence, the key observation is that 1f it were possible to restrict consideration to those flows for which $v_{\text{QS}} = v_{\text{CE}}$, then purification factor fluctuations would not be very significant and probabilistic dilution can be applied. If these flows also correspond to periods of

approximately constant temperature, then the two requirements for applying probabilistic dilution to critical dissolved oxygen have been met. For a site-specific analysis, the obvious solution is to seasonally analyze the stream flow and temperature data and apply probabilistic dilution, making any necessary corrections for purification factor variations. However, for the general case considered here, an alternate approach is required.

Consider, instead, restricting consideration to that period of the year during, which flows are low. This period corresponds, presumably, to the period of time during which 7Q10 occurs, and includes the conditions for which the WLA was performed. Considering this period alone significantly reduces the variability of the stream flows to be considered. If, in addition, it can be argued that these low flows tend to occur during the same season each year, then the temperature variation is less than the annual variability and will be less significant as well. Hence, for these low flow periods, the assumption of constant P is much more realistic.

The technical problem to be solved is to compute the reduction in the average stream flow and coefficient of variation when flows are restricted to the low values for this restricted period. We restrict consideration to the lowest one-sixth of the total population. This corresponds to an average of 2 out of 12 months in each year, and the presumption is that this period recurs during the same months each year so that the temperaturevariation during this restricted period is small. This simplification also assumes that the lower one-sixth of the daily stream flows occur only in the two month period when temperature and reaction rates are assumed to be approximately constant. As indicated earlier, a statistical analysis of actual stream data, stratified by month or critical season, could be performed to provide actual results and avoid the need for this type of estimate. However, data of this type are not presently available. The estimation described There is performed in order to allow a preliminary analysis for BOO/DO to be made.

The computation of the required statistical parameters, the stream flow average and coefficient of variation for flows restricted to the lower a-quantil e of the total population, is straightforward! For log-normal random variables, it can be shown that these conditional moments, denoted by primes, are:

$$\frac{\nabla S}{QS} = Q(\sigma_{lnQS} + Z_a)/Q(Z_a)$$

$$\nu^2_{QS} = \exp(\sigma^2_{lnQS}) Q(2\sigma^2_{lnQS} + Z_a) Q(Z_a) - 1$$

$$\frac{Q^2(\sigma_{lnQS} + Z_a)}{Q^2(\sigma_{lnQS} + Z_a)}$$
(4-6)

where Q(Z*) = Pr Z > Z* for Z, a standard normal random variable, and Z_a are the Z scores for the _a-quantile which is the upper bound for the flows being considered. For _a = 1/6, Z_a = 0.967. Table 4-5 presents the results. These corrections, when applied to 7Q10/ \overline{QS} and v_{QS} in the first two columns of Tables 4-1 to 4-4 adjust these parameters to represent the low flow periods. For highly variable streams, v_{QS} and therefore σ_{lnQS} are large and the corrections are quite substantial.

Reduction factors for the mean range from 0.45 to 0.024 for the highly variable streams. The range in coefficient of variation is sharply

Coefficient of Variation for Entire Record v _{QS}	Reduction in <u>Mean</u> QS'/QS	Reduced Coefficient of Variation v _{QS} ,
0.50	0.450	0.188
0.60	0.384	0.216
0.75	0.306	0.254
0.90	0.247	0.287
1.00	0.216	0.306
1.25	0.158	0.348
1.50	0.120	0.381
2.00	0.0761	0.431
3.00	0.0389	0.500
4.00	0.0241	0.547

TABLE 4-5 - Conditional moments for the low flow subpopulation ($_{\rm a}$ = 16.75)

This table provides a basis for a preliminary estimate of the average stream flow and flow variability during critical low flow periods, relative to overall long-term characteristics. For site-specific cases, the actual values can be determined readily from a statistical analysis of stream flows during the selected critical period of the year.

compressed from v_{QS} = 0.5 - 4.0 to v_{QS} = 0.19 - 0.55, so that the sub-population of low flows fluctuates much less violently than the entire population, which includes the annual cyclical variation as well.

A 10 year return period was selected for consistency with the general analysis, but since only one-sixth of the flow population is being considered, and we assume that no DO acute criteria violations occur during the remaining higher flows, the exceedence probability to be applied in the probabilistic dilution calculation is a 10/6 = 1.67 year return period. Figure 4-2 and Tables 4-6 to 4-8 present the results.

In order to properly evaluate the computations, it is necessary to realize that they apply to 10 year return period critical deficit ratios. To convert critical DO concentrations to the deficit ratio (p) shown by the tables, the DO standard (CL) the DO saturation (C_{sat}) used in the WLA, and the DO concentration taken to represent an acute criteria value are required. For most reasonable combinations of these values, the ratio will be between approximately 2.0 and 2.5. For example, if CS = 3, CL = 5, and acute DO = 2, then β =2.0. Alternatively, if these concentrations are CS = 9.0, CL = 6.0, acute DO = 1.5, then (the acute-to-chronic deficit ratio) β =2.5.

Appropriate permit averaging periods are seen in Tables 4-6 to 4-8 to be strongly influenced by local conditions of effluent load and stream flow variability. Because of this, a general statement on permit averaging period for effluent BOD/DO is not possible; it must be selected on the basis of site conditions.

*INDICATES THE STREAK CONCENTRATION (co) WHICH WILL IE EXCEEDED WITH A FREQUENCY OF ONCE IN TEN YEARS, EXPRESSED AS A MULTIPLE OF THE CHRONIC CRITERIA (CL).

Figure 4-2 - Effect of permit averaging period on stream, concentrations for BOD/DO

haracte	eristics		Efflue	nt v_{CE} =	0.3	.3 Effluent $v_{CE} = 0.7$ Effluent $v_{CE} = 1$.					
ods v _{QS}	Low Flow 7010/Qs'	Periods v _{QS} ,	30- Day Avg.	7- Day Avg.	l- Day Avg.	30- Day Avg.	7- Day Avg.	l- Day Avg.	30-Day Avg.	7- Day Avg.	l- Day Avg.
2.00	0.13	0.43	0.5	0.4	0.4	0.5	0.4	0.4	0.6	0.5	0.4
3.00	0.26	0.50	1.0	0.9	0.8	1.1	0.9	0.7	1.2	1.0	0.8
4.00	0.41	0.55	1.6	1.4	1.3	1.8	1.4	1.2	1.9	1.5	1.2
1.00	0.23	0.31	0.6	0.6	0.5	0.8	0.6	0.5	0.9	0.7	0.6
1.50	0.42	0.38	1.2	1.1	1.0	1.4	1.2	1.0	1.6	1.3	1.0
2.00	0.66	0.43	1.9	1.7	1.5	2.2	1.8	1.5	2.5	1.9	1.6
0.75	0.33	0.25	0.8	0.7	0.6	1.0	0.8	0.7	1.2	0.9	0.7
1.00	0.46	0.31	1.2	1.0	0.9	1.4	1.2	1.0	1.7	1.3	1.0
1.50	0.83	0.38	2.0	1.8	1.6	2.5	2.0	1.7	2.9	2.2	1.8
0.60	0.39	0.22	0.9	0.8	0.7	1.1	0.9	0.8	1.3	1.0	0.8
0.90	0.61	0.29	1.4	1.3	1.1	1.8	1.4	1.2	2.1	1.6	1.3
1.25	0.95	0.35	2.2	1.9	1.7	2.7	2.2	1.8	3.1	2.4	2.0
0.50	0.55	0.19	1.2	1.0	0.9	1.5	1.2	1.0	1.8	1.4	1.1
0.75	0.82	0.25	1.7	1.5	1.3	2.2	1.8	1.5	2.6	2.0	1.6
1.00	1.16	0.31	2.4	2.1	1.9	3.0	2.4	2.0	3.5	2.7	2.2
	haracte ods v _{QS} 2.00 3.00 4.00 1.00 1.50 2.00 0.75 1.00 1.50 0.60 0.90 1.25 0.50 0.75 1.00	haracteristicsodsLow Flow v_{QS} $7Q10/QS'$ 2.000.133.000.264.000.411.000.231.500.422.000.660.750.331.000.461.500.830.600.390.900.611.250.950.500.550.750.821.001.16	haracteristicsodsLow Flow Periods v_{QS} $7Q10/QS'$ $v_{QS'}$ 2.000.130.433.000.260.504.000.410.551.000.230.311.500.420.382.000.660.430.750.330.251.000.460.311.500.830.380.600.390.220.900.610.291.250.950.350.500.550.190.750.820.251.001.160.31	haracteristicsEfflue:odsLow Flow Periods $30-$ Day Avg. v_{QS} $7Q10/QS'$, $v_{QS'}$ $v_{QS'}$ 2.000.130.430.53.000.260.501.04.000.410.551.61.000.230.310.61.500.420.381.22.000.660.431.90.750.330.250.81.000.460.311.21.500.830.382.00.600.390.220.90.900.610.291.41.250.950.352.20.500.550.191.20.750.820.251.71.001.160.312.4	haracteristicsEffluent $v_{CE} =$ odsLow Flow Periods $30 - 7 - Day$ Day Avg. v_{QS} $7Q10/QS'$ $v_{QS'}$ $v_{QS'}$ 2.000.130.430.50.000.260.501.04.000.410.551.61.500.420.381.22.000.660.431.91.000.230.311.61.500.420.381.21.000.660.431.91.500.830.250.80.750.330.250.80.600.390.220.90.800.900.610.291.41.31.250.950.352.20.500.550.191.20.750.820.251.71.001.160.312.4	haracteristicsEffluent $v_{CE} = 0.3$ odsLow Flow Periods $30 - 7 - 1 - Day$ Day Avg.Day Avg. v_{QS} $7Q10/QS'$, $v_{QS'}$ v_{QS} v_{QS} 2.000.130.430.50.43.000.260.501.00.94.000.410.551.61.41.000.230.310.60.61.500.420.381.21.11.000.420.381.21.11.500.460.311.21.00.750.330.250.80.70.600.390.220.90.80.600.390.220.90.80.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.500.550.191.21.00.510.312.4 <t< td=""><td>haracteristicsEffluent $v_{CE} = 0.3$EffluentodsLow Flow Periods$30 - 7 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7$</td><td>haracteristicsEffluent $v_{CE} = 0.3$Effluent $v_{CE} = 0.3$Effluent $v_{CE} = 0.3$odsLow Flow Periods30^{-} Day7^{-} Day1^{-} Day30^{-} Day7^{-} Day$v_{QS}$$7Q10/QS'$ $v_{QS'}$$v_{QS'}$$v_{QS'}$$Avg.$$Avg.$$Avg.$$Avg.$$2.00$$0.13$$0.43$$0.5$$0.4$$0.4$$0.5$$0.4$$3.00$$0.26$$0.50$$1.0$$0.9$$0.8$$1.1$$0.9$$4.00$$0.41$$0.55$$1.6$$1.4$$1.3$$1.8$$1.4$$1.00$$0.23$$0.31$$0.6$$0.6$$0.5$$0.8$$0.6$$1.50$$0.42$$0.38$$1.2$$1.1$$1.0$$1.4$$1.2$$2.00$$0.66$$0.43$$1.9$$1.7$$1.5$$2.2$$1.8$$0.75$$0.33$$0.25$$0.8$$0.7$$0.6$$1.0$$0.8$$1.00$$0.46$$0.31$$1.2$$1.0$$0.9$$1.4$$1.2$$0.60$$0.39$$0.22$$0.9$$0.8$$0.7$$1.1$$0.9$$0.90$$0.61$$0.29$$1.4$$1.3$$1.1$$1.8$$1.4$$1.25$$0.95$$0.35$$2.2$$1.9$$1.7$$2.7$$2.2$$0.50$$0.55$$0.19$$1.2$$1.0$$0.9$$1.5$$1.2$$0.50$$0.55$$0.19$$1.2$$1.0$$0.9$$1.$</td><td>haracteristicsEffluent $v_{CE} = 0.3$Effluent $v_{CE} = 0.7$odsLow Flow Periods30^{-} Day Avg.7^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Day Avg.1^{-} Day Avg.$v_{Qs}$$7Q10/Qs'$ $v_{Qs'}$$v_{Qs'}$$7^{-}$ Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Day Avg.1^{-} Day Avg.$2.00$$0.13$ $0.26$$0.43$$0.5$ $1.0$$0.4$$0.5$ $0.9$$0.4$$0.5$ $0.4$$0.4$$1.00$ $0.23$$0.31$ $0.42$$0.6$ $0.6$$0.6$$0.5$ $0.8$$0.6$ $0.5$$0.5$$1.50$ $0.42$$0.38$ $1.2$$1.1$ $1.1$$1.4$ $1.2$$1.2$$1.0$ $1.4$$1.00$ $0.66$$0.43$$1.9$ $1.7$$1.7$ $1.5$$2.2$$1.8$ $1.5$$0.75$ 0.33 $0.25$$0.8$ $0.7$$0.7$ $1.8$$1.6$ $2.5$$2.0$$1.7$$0.60$ $0.39$$0.22$ $0.38$$0.9$ $0.8$$0.7$ $1.1$$1.1$ $0.9$$0.8$ $0.7$$0.60$ $0.39$$0.22$ $0.35$$0.8$ $2.2$$0.7$ $1.9$$1.1$ $0.9$$0.8$ $0.7$$0.60$ $0.39$$0.22$ $0.35$$0.9$ $2.2$$0.9$ $1.8$$1.1$ $1.8$$1.4$ $1.2$$1.25$ $0.95$$0.35$ $2.2$$1.9$ $1.7$$1.7$ $2.7$$2.2$$1.8$ $1.8$$0.50$ 0.55 $0.19$$1.2$ 1.7<t< td=""><td>haracteristicsEffluent $v_{CE} = 0.3$Effluent $v_{CE} = 0.7$EffluentrdsLow Flow Periods$30 - 7 - 1 - Day Day Day Avg.$$30 - Day Day Day Avg.$$30 - Day Day Avg.$$Avg.$</td></t<><td>haracteristicsEffluent $v_{CE} = 0.3$Effluent $v_{CE} = 0.7$Effluent $v_{CE} = 1$dsLow Flow Periods30^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Da</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td></td></t<>	haracteristicsEffluent $v_{CE} = 0.3$ EffluentodsLow Flow Periods $30 - 7 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7$	haracteristicsEffluent $v_{CE} = 0.3$ Effluent $v_{CE} = 0.3$ Effluent $v_{CE} = 0.3$ odsLow Flow Periods 30^{-} Day 7^{-} Day 1^{-} Day 30^{-} Day 7^{-} Day v_{QS} $7Q10/QS'$ $v_{QS'}$ $v_{QS'}$ $v_{QS'}$ $Avg.$ $Avg.$ $Avg.$ $Avg.$ 2.00 0.13 0.43 0.5 0.4 0.4 0.5 0.4 3.00 0.26 0.50 1.0 0.9 0.8 1.1 0.9 4.00 0.41 0.55 1.6 1.4 1.3 1.8 1.4 1.00 0.23 0.31 0.6 0.6 0.5 0.8 0.6 1.50 0.42 0.38 1.2 1.1 1.0 1.4 1.2 2.00 0.66 0.43 1.9 1.7 1.5 2.2 1.8 0.75 0.33 0.25 0.8 0.7 0.6 1.0 0.8 1.00 0.46 0.31 1.2 1.0 0.9 1.4 1.2 0.60 0.39 0.22 0.9 0.8 0.7 1.1 0.9 0.90 0.61 0.29 1.4 1.3 1.1 1.8 1.4 1.25 0.95 0.35 2.2 1.9 1.7 2.7 2.2 0.50 0.55 0.19 1.2 1.0 0.9 1.5 1.2 0.50 0.55 0.19 1.2 1.0 0.9 $1.$	haracteristicsEffluent $v_{CE} = 0.3$ Effluent $v_{CE} = 0.7$ odsLow Flow Periods 30^{-} Day Avg. 7^{-} Day Avg. 1^{-} Day Avg. 30^{-} Day Avg. 7^{-} Day Avg. 1^{-} Day Avg. v_{Qs} $7Q10/Qs'$ $v_{Qs'}$ $v_{Qs'}$ 7^{-} Day Avg. 1^{-} Day Avg. 30^{-} Day Avg. 7^{-} Day Avg. 1^{-} Day Avg. 2.00 0.13 0.26 0.43 0.5 1.0 0.4 0.5 0.9 0.4 0.5 0.4 0.4 1.00 0.23 0.31 0.42 0.6 0.6 0.6 0.5 0.8 0.6 0.5 0.5 1.50 0.42 0.38 1.2 1.1 1.1 1.4 1.2 1.2 1.0 1.4 1.00 0.66 0.43 1.9 1.7 1.7 1.5 2.2 1.8 1.5 0.75 0.33 0.25 0.8 0.7 0.7 1.8 1.6 2.5 2.0 1.7 0.60 0.39 0.22 0.38 0.9 0.8 0.7 1.1 1.1 0.9 0.8 0.7 0.60 0.39 0.22 0.35 0.8 2.2 0.7 1.9 1.1 0.9 0.8 0.7 0.60 0.39 0.22 0.35 0.9 2.2 0.9 1.8 1.1 1.8 1.4 1.2 1.25 0.95 0.35 2.2 1.9 1.7 1.7 2.7 2.2 1.8 1.8 0.50 0.55 0.19 1.2 1.7 <t< td=""><td>haracteristicsEffluent $v_{CE} = 0.3$Effluent $v_{CE} = 0.7$EffluentrdsLow Flow Periods$30 - 7 - 1 - Day Day Day Avg.$$30 - Day Day Day Avg.$$30 - Day Day Avg.$$Avg.$</td></t<> <td>haracteristicsEffluent $v_{CE} = 0.3$Effluent $v_{CE} = 0.7$Effluent $v_{CE} = 1$dsLow Flow Periods30^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Day Avg.1^{-} Day Avg.30^{-} Day Avg.7^{-} Da</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td>	haracteristicsEffluent $v_{CE} = 0.3$ Effluent $v_{CE} = 0.7$ EffluentrdsLow Flow Periods $30 - 7 - 1 - Day Day Day Avg.$ $30 - Day Day Day Avg.$ $30 - Day Day Avg.$ $Avg.$	haracteristicsEffluent $v_{CE} = 0.3$ Effluent $v_{CE} = 0.7$ Effluent $v_{CE} = 1$ dsLow Flow Periods 30^{-} Day Avg. 1^{-} Day

TABLE	4-6	_	Permit	averaging	period	selection	matrix	for	MOD/DO:	of	fluent	dilution	ratio	_
						7Q10/OE	= 5							

Critical DO deficit exceeded one day In 10 years as a multiple target deficit used in WLA.

Stream Flow (Characte	eristics		Efflue	nt v_{CE} =	0.3	Effluer	it $v_{CE} = 0$	0.7	Effluent $v_{CE} = 1.1$			
All Peri 7010/QS	ods v _{QS}	Low Flow 7Q10/QS'	Periods v _{QS} ,	30- Day Avg.	7- Day Avg.	1- Day Avg.	30- Day Avg.	7- Day Avg.	1- Day Avg.	30-Day Avg.	7- Day Avg.	1- Day Avg.	
	2.00	0.13	0.43	0.5	0.4	0.4	0.6	0.5	0.4	0.6	0.5	0.4	
0.01	3.00	0.26	0.50	1.0	0.9	0.8	1.2	0.9	0.8	1.3	1.0	0.8	
	4.00	0.41	0.55	1.5	1.3	1.2	1.7	1.4	1.2	1.9	1.5	1.2	
	1.00	0.23	0.31	0.7	0.6	0.5	0.8	0.7	0.5	0.9	0.7	0.6	
0.05	1.50	0.42	0.38	1.2	1.1	1.0	1.5	1.2	1.0	1.7	1.3	1.1	
	2.00	0.66	0.43	1.8	1.5	1.4	2.2	1.7	1.4	2.5	1.9	1.6	
	0.75	0.33	0.25	0.8	0.7	0.7	1.0	0.8	0.7	1.2	1.0	0.8	
0.10	1.00	0.46	0.31	1.2	1.0	0.9	1.5	1.2	1.0	1.7	1.3	1.1	
	1.50	0.83	0.38	1.9	1.7	1.5	2.4	1.9	1.6	2.8	2.2	1.8	
	0.60	0.39	0.22	0.9	0.8	0.7	1.2	0.9	0.8	1.4	1.1	0.9	
0.15	0.90	0.61	0.29	1.4	1.2	1.1	1.8	1.4	1.2	2.1	1.6	1.3	
	1.25	0.95	0.35	2.0	1.8	1.6	2.6	2.1	1.7	3.0	2.3	1.9	
	0.50	0.55	0.19	1.2	1.0	0.9	1.5	1.2	1.0	1.8	1.4	1.2	
0.25	0.75	0.82	0.25	1.7	1.5	1.3	2.2	1.7	1.4	2.6	2.0	1.6	
	1.00	1.16	0.31	2.2	1.9	1.7	2.9	2.3	1.9	3.4	2.6	2.1	

TABLE 4-7 - Permit averaging period selection matrix for BOD/DO: effluent dilution ratio - 7Q10/ \overline{QE} = 3

Critical DO deficit exceeded one day In 10 years as a Multiple target deficit used in WLA.

Stream Flow (Characte	eristics		Efflue	nt v_{CE} =	0.3	Effluer	nt v_{CE} =	0.7	Effluent $v_{CE} = 1.1$			
All Peri 7010/QS	ods v _{QS}	Low Flow 7Q10/QS'	Periods v _{QS} ,	30- Day Avg.	7- Day Avg.	1- Day Avg.	30- Day Avg.	7- Day Avg.	l- Day Avg.	30-Day Avg.	7- Day Avg.	l- Day Avg.	
	2.00	0.13	0.43	0.6	0.5	0.5	0.7	0.6	0.5	0.8	0.6	0.5	
0.01	3.00	0.26	0.50	1.0	0.9	0.8	1.3	1.0	0.8	1.5	1.1	0.9	
	4.00	0.41	0.55	1.4	1.2	1.1	1.7	1.4	1.1	2.0	1.5	1.3	
	1.00	0.23	0.31	0.8	0.7	0.6	1.0	0.8	0.7	1.2	0.9	0.7	
0.05	1.50	0.42	0.38	1.2	1.1	1.0	1.6	1.3	1.0	1.8	1.4	1.2	
	2.00	0.66	0.43	1.5	1.4	1.2	2.1	1.6	1.4	2.4	1.9	1.5	
	0.75	0.33	0.25	0.9	0.8	0.7	1.2	1.0	0.8	1.5	1.1	0.9	
0.10	1.00	0.46	0.31	1.2	1.1	0.9	1.6	1.3	1.0	1.9	1.5	1.2	
	1.50	0.83	0.38	1.6	1.5	1.3	2.2	1.8	1.5	2.7	2.1	1.7	
	0.60	0.39	0.22	1.0	0.9	0.8	1.4	1.1	0.9	1.6	1.3	1.0	
0.15	0.90	0.61	0.29	1.4	1.2	1.1	1.8	1.5	1.2	2.2	1.7	1.4	
	1.25	0.95	0.35	1.7	1.5	1.3	2.3	1.9	1.5	2.8	2.2	1.8	
	0.50	0.55	0.19	1.2	1.1	1.0	1.7	1.3	1.1	2.0	1.6	1.3	
0.25	0.75	0.82	0.25	1.5	1.4	1.2	2.1	1.7	1.4	2.6	2.0	1.6	
	1.00	1.16	0.31	1.8	1.6	1.4	2.5	2.0	1.7	3.0	2.4	1.9	

TABLE 4-8 - Permit averaging period selection matrix for BOD/DO: effluent dilution ratio - 7Q10/ \overline{QE} = 1

Critical DO deficit exceeded one day in 10 years as a multiple target deficit used in WLA.

A table for the effluent dilution ratio (7Q10/QE) equal to 50 has not been prepared for BOD/DO. For small discharges entering larger streams, it is likely that an effluent BOD limit determined from a steady -state WLA analysis would be greater than the technology-based limit which would be used in the permit. The use of the standard matrix table* which would show a higher pattern of violations, would tend to be misleading, since the computations and the tables assume that the allowable effluent concentration determined from a WLA becomes the effluent limit (EL) specified by the permit.

It should be emphasized at this point that the dissolved oxygen analysis presented in this section is meant only as a preliminary application. There are, as yet, no verification examples that support the applicability of a probabilistic dilution/critical deficit analysis, It has not been shown that actual stream 00 data conform to the probabilistic assumptions and simplifications used in this preliminary analysis. Further, it is well known that the DO distribution in streams cannot always be described by the simplest (Streeter-Phelps) model. Upstream sources of BOO and deficit are common, as are nitrification, algal effects, and sediment oxygen demand. A more comprehensive analysis would be required to Incorporate these effects into a calculation of the effect of selecting a permit averaging period.

4.4 Analysis for Conservative Substances 1n Effluent-Dominated Streams

An effluent -dominated stream 1s defined, for the purpose of this analysis, as one in which the effluent flow exceeds the design stream flow

(e.g., the 7Q10). There are then two bounds to this analysis. The upper sound is the effluent dilution ratio 7Q10/avg QE = 1, which was the lowest dilution ratio examined in Section 4.1. The lower bound is provided by the case where the design stream flow is zero (7Q10 = 0).

It should be recognized that as the degree of dilution decreases, a WLA-based EL becomes increasingly restrictive. When the design stream flow is zero, the effluent limit must equal the stream target concentration (CL).

While the degree of effluent domination has a subsequent influence on the magnitude of an EL assigned in a permit, the screening analysis results presented below suggest that in most situations, a 30-day permit averaging period will be adequate for effluent dominated streams.

The results of a broad hypothetical analysis of affluent dominated streams are summarized in Figure 4-3 and Table 4-9, using the format used earlier to illustrate the influence of permit averaging period, effluent variability and dilution ratio.

o The bars on the provide the upper bound; i.e., the condition where 7Q10/avg QE = 1 (these results were also shown in Figure 4-1).

o The bars on the left represent an effluent dilution ratio of 7Q10/avg QE = 0.1, that is, where effluent How is ten times greater than design stream flow. High variability of daily flow is expected for such streams, together with a very small ratio of stream design flow to average stream flow. The screening analysis assumes that the coefficient of variation ranges between v_{os} =

 \star INDICATES THE STREAM CONCENTRATION (co) WHICH WILL BE EXCEEDED WITH A FREQUENCY OF ONCE IN TEN YEARS, EXPRESSED AS A MULTIPLE OF THE CHRONIC CRITERIA (CL).

Figure 4-3 - Effect of permit averaging period on stream concentrations for conservative substances in effluent-dominated stream

Stream	Estimate of Variability Range ν _{QS}		Effluent $v_{CE} = 0.3$			Effluent $v_{CE} = 0.7$			Effluent $v_{CE} = 1.1$		
Flow			30-	7-	1-	30-	7-	1-	30-	7-	1-
7Q10/			Day	Day	Daily	Day	Day	Daily	Day	Day	Daily
Avg. Q			Avg.	Avg.	Max.	Avg.	Avg.	Max.	Avg.	Avg.	Max.
1.0	LO	2.00	0.6	0.6	0.5	0.6	0.5	0.4	0.6	0.5	0.4
	PROB	4.00	1.1	1.0	0.9	1.2	0.9	0.8	1.2	0.9	0.8
	HI	5.00	1.5	1.3	1.2	1.6	1.3	1.1	1.7	1.3	1.1
0.5	LO	2.00	0.7	0.6	0.6	0.8	0.6	0.5	0.8	0.6	0.5
	PROB	4.00	1.1	1.0	0.9	1.2	1.0	0.8	1.3	1.0	0.9
	ΗI	5.00	1.3	1.2	1.1	1.6	1.3	1.0	1.8	1.4	1.1
0.2	LO	2.00	0.9	0.8	0.7	1.0	0.8	0.7	1.1	0.9	0.7
	PROB	4.00	1.1	1.0	0.9	1.4	1.1	0.9	1.6	1.3	1.0
	ΗI	5.00	1.3	1.1	1.0	1.7	1.3	1.1	2.0	1.5	1.3
0.1	LO	2.00	1.0	0.9	0.8	1.2	1.0	0.8	1.4	1.1	0.9
	PROB	4.00	1.2	1.1	0.9	1.6	1.3	1.1	1.9	1.5	1.2
	HI	5.00	1.3	1.2	1.0	1.8	1.5	1.2	2.2	1.7	1.4

TABLE 4-9 - Averaging period selection matrix for a fluent-dominated streams

2 and $v_{\rm QS}$ = 5, and estimates a stream flow ratio 7Q10/avg QS = 0.005, for this condition near the lower bound for effluent-dominated streams.

The conditions under which the design stream flow is greater than zero are listed in more detail in Table 4-9. Results for several additional intermediate effluent dilution ratios $(7Q10/\overline{QE} = 0.2 \text{ and } 0.5)$ are also presented. A comparison of results for an effluent ratio of 1.0 presented here as an upper bound, and previously (Table 4-4 and Figure 4-1) as a lower bound will indicate that results are similar but not exactly the same. The differences are due to different assumed values for 7Q10/QS and the range of coefficients of variations used as inputs for the POM-PS model.

For the case where-the design stream flow is zero, 7Q10 is zero and there appears to be a problem since $7Q10/\overline{QS}$ and $7Q10/\overline{QE}$ are both zero. what actually matters is QS and \overline{QE} Thus, in order to evaluate these cases, the use of the actual QS, \overline{QE} and a small 7Q10 suffices since the computation depends only on QS/ \overline{QE} and 7Q10 cancels out (Equation D-14). Finally, the use of a small 7Q10/ \overline{QE} correctly indicates that the WLA is done with QS = 0 (Equation D-15). Thus, no problems arise.

Screening analysis results Indicate that 1n the case of effluent-dominated streams, a 30=day permit averaging period provides adequate protection for pollutants with the acuteto-chronic ratios summarized below:

Acute-to-Chronic Ratio	When 30-Day Permit Average Is Adequate for Acute Protection
3 or more	Always
2 to 3	Effluent variability is relatively high, but less than $v_{CE} = 1.1$

CHAPTER 5

USES AND LIMITATIONS

The probabilistic dilution model has been demonstrated to be useful in selecting the appropriate averaging period for discharge permits. The method is easily adaptable to situations which vary widely in terms of stream and effluent characteristics, data availability, and policy-level assumptions used in the analysis. Although the example in Chapter 3 of how to use the method is based on the typical WLA assumptions of 7Q10 as the design flow and chronic criteria as the effluent limit, the method is easily adjusted to accommodate other assumptions.

The method is intended to apply to pollutants for which the regulatory concern is at the point of complete mixing and for which the toxicity can be evaluated in terms of the total pollutant concentration. The method has been applied to a range of stream and effluent characteristics which typify the characteristics of streams and effluents in the United States. The results of this application are useful as a screening tool, by which the appropriate averaging period for many field situations can be readily; identified. However, pollutants whose toxicity is a function of pH, temperature, and harness require site-specific evaluations incorporating these parameters.

There are also several limitations on the use of the method. One of the technical limitations is that the level of chronic protection is based on state-specified design flow, e.g., 7Q10, 7Q2, etc., which may be overprotective or underprotective for many site-specific conditions. The EPA is presently considering the issue of allowable duration and frequency of exposure to acute as well as chronic toxicity. Users of this manual are advised to refer to Part A, Stream Design Flow, of Book VI, Selecting Design Conditions, when considering the choice of an appropriate chronic exposure event. Book VI is currently under peer review and will be issued by the Office of water Regulations and Standards once the peer review process is completed.

Modifications are required to compute the probability distribution of 30-day average concentrations, as required for chronic criteria compliance; these would have to be investigated and verified in the field.

The major shortcoming of the log-normal probabilistic dilution model is its misrepresentation of the lowest stream flows, thus tending to overestimate the probability of high stream concentrations. The use of a seasonally segmented approach could be investigated.

The effect of serial correlation on the return period specification would also need to be investigated, particularly with regard to the duration . of criteria violations. For example, a knowledge of the return period for n-day successive violations could be compared to the time scales of the criteria themselves. This would provide a direct link to the toxicity data. At a less sophisticated level of analysis, the tendency of criteria violations to cluster on successive days could be investigated to provide a basis for modifications to the method.

For pollutants whose toxicity is a function of such secondary variables as pH, temperature and hardness, probabilistic methods are essential in that it is not possible to rationally choose "critical" or "sufficiently protective" values for these variables. Arbitrary choices cannot be defended in terms of the probability of criteria violations. Methods for analyzing these situations could be developed, following the logic of probabilistic dilution and incorporating the additional random variations of the variable.

The application of this method to dissolved oxygen has indicated that the probabilistic method provides a useful approach to the problem of DO deficit. However this work has only been a first" step. Probabilistic methods can be further developed to assess the effects of DO fluctuations on resources and to provide a more rational approach to advanced waste treatment decisions.

CHAPTER 6

REFERENCES

1. DiToro, D. M., <u>Probability Model of Stream Quality Due to</u> <u>Runoff</u>. J. Environmental Engineering, American Society of Chemical Engineers, Vol. 110, No. 3, June 1984, p. 607-628.

2. DiToro, O. M. and Fitzpatriclc, J. J., <u>Verification Analysis of</u> <u>the Probabilistic Dilution Model</u>, report prepared for EPA Contract No. 68-01-6275, U. S. Environmental Protection Agency, Washington, D.C., 1982.

3. Driscoll & Associates, <u>Combined Sewer Overflow Analysis</u> <u>Handbook for Use in 201 Facility Planning</u>, report prepared for EPA Contract No. 68-01-6148, U. S. Environmental Protection Agency, Washington, D.C. (1981)

4. Hazen and Sawyer, <u>Review of Performance of Secondary Municipal</u> <u>Treatment Works</u>, Draft Final Report for Contract 68-01-6275, Work Assignment No. 5, U. S. Environmental Protection Agency, Washington, O.C., December 1982.

5. Niku, Shroeder, and Samaniego, <u>Performance of Activated Sludge</u> <u>Process and Reliability Related Design</u>. JWPCF, Vol. 51, No. 12, December 1979.

6. Niku, et al., <u>Performance of Activated Sludge Processes;</u> <u>Reliability, Stability and Variability</u>. EPA 600/52-81-227, December 1981.
7. Haugn, et al., <u>Performance of Trickling Filter Plants:</u> <u>Reliability Stability and Variability</u>. EPA 600/52-81-228, December 1981.

8. Hydroscience, Inc., <u>Simplified Mathematical Modeling of Water</u> <u>Quality</u>, for u. S. Environmental Protection Agency, March 1971.

APPENDIX A

Statistical Properties of Log-Normal Distributions

This appendix is intended to present a brief, simplified review of the statistical properties of log-normal distributions which characterize the important variables in the water quality analysis procedures used for this report. It is designed to help the user without a formal background in statistics to appreciate the physical significance of the statistical properties employed. It is not the intent of this appendix to present a theoretical discussion or to provide technical support for developing relationships or equations used in the development of the methods employed.

A-1. General Considerations

The factors which influence the concentration of a pollutant in a receiving water body are subject to a significant degree of variability. This variability results in fluctuations in the resulting stream concentration, which is compared with target concentrations such as criteria or standards, and which provides a basis for decisions on treatment requirements. The approach adopted in this report for examining the effects of different averaging periods on treatment plant discharges uses the concept "how much - how often" as a basis for such decisions. It is, therefore, essential that statistical aspects be Incorporated into the methodology even though they may add complexity.

The standard statistical parameters of a population of values for a random variable which are used as a concise means of describing central tendency and spread are:

Mean: $(\mu x \text{ or } x)$ the arithmetic average. x defines the average of the available (usually limited) data set;

 $\mu_{\rm x}$ denotes the true mean of the total population of variable x. ${\it x}$ will be an increasingly better approximation of $\mu_{\rm x}$ as the size of the sample (the number of data points) Increases.

Variance: (σ_x^2) by definition, the average of the square of the differences between individual values of x and the mean (\bar{x}) . The greater the variation in the data, the higher the variance:

$$\sigma_{x}^{2} = (x_{1}-x)^{2} + (x_{2}-x)^{2} + \dots + (X_{N}-x)^{2}$$
N

Standard

Deviation: $(\sigma_{\rm x})$ another measure of the spread of a population of random variables; by definition, the square root of the variance:

$$\sigma_{\rm x} = \sqrt{\sigma_{\rm x}^2}$$

Coefficient of Variation: (v_x) is defined as the ratio of the standard deviation (σ_x) to the mean (μ_x) :

$$v_x = \sigma_x/\mu_x$$

It is the principal measure of variation used in the analyses described in this report. The coefficient of variation is a dimensionless quantity and 1s thus freed from any dependence on the specific dimensions used to describe the variable (e.g., flow rate, concentrations, etc.). High coefficients of variation reflect greater variability in the random variable x.

- Median: (x) This is the value in a data set for which half the values are greater and half are lesser.
- Mode: The "most probable value" -- more of the individual data points are at this value (or are within this interval) than at other values or ranges. On a frequency histogram, this is the highest point on the graph. The mode has no real significance in the calculations in the methodology employed.

Comparing the statistical properties of different data sets provides a convenient, concise way of recognizing similarities and differences. This could not be accomplished simply by "looking at the data" where reasonably large data sets are involved. These statistical properties convey no information concerning frequency, or the probability at which any particular value or range of values in the total population will occur. This essential item of information is provided by a knowledge of the type of distribution, technically, the probability distribution function (PDF).

A-2. Probability Distributions

There are several different patterns which characterize the distribution of individual values in a large population of variable events.

Most analysts are familiar with the normal distribution, in which a histogram of the frequency of occurrence of various values describes the familiar bell-shaped curve (Figure A-1(a)). When the cumulative frequency is plotted on probability paper, a straight line is generated as in Figure A-1(b).

Many variables, particularly those which are important in water quality applications, have been shown by a rapidly accumulating body of data to be represented by or adequately approximated by a log-normal distribution. A log-normal distribution has a skewed frequency histogram (Figure A-1(c)) which indicates an asymmetrical distribution of values about an axis defining the central tendency of the data set. There is a constraining limit to lower values (sometimes zero) and a relatively small number of rather large values but no upper constraint. Point source effluent concentrations [1,2] = and pollutant concentrations in combined sewer overflows and separate storm runoff [3,4], are parameters which are usually well characterized by log-normal distributions. In general, daily stream flows are satisfactorily approximated by log-normal distributions [5,6]. Scattered data from a number of unpublished sources suggest that receiving water concentrations are also lognormally distributed. Stream flows and concentrations are currently being examined from this perspective. A log-normal distribution appears as a straight line on log/probability paper (using cumulative frequency) as shown in Figure A-1(d). In this report natural (base "e") logs are used throughout.

¹Cumulative frequency is the relative frequency (or probability) of values being less than or equal to a specific value.

Figure A-1- Probability distribution

A-3. Relationship Between Distributions

There are circumstances when two different types of distribution can begin to look similar -- so that either one will provide a reasonably good approximation of the probability distribution of a particular data set. For example, as the coefficient of variation becomes smaller and smaller, approaching zero, log-normal distributions begin to look more and more like a normal distribution. Figure A-2 shows a series of histograms for log-normally distributed populations, all having (arithmetic) population means of 100, but with different coefficients of variation (v) as shown. As discussed above, smaller values of v approach a normal distribution.

A.4. Properties of Log-Normal Distributions

Figure A-3 summarizes the pertinent statistical relationships for log-normal probability distributions. The mathematical formulas shown are based on statistical theory, and permit backand-forth conversions between arithmetic properties (in which concentrations, flows, and loads are reported) and the log of the variable (in which probability and frequency characteristics are defined).

Normalized plots of probability versus the magnitude of a variable expressed as a multiple of the mean are presented 1n Figure A-4 for log-normal distributions. These plots present a family of curves reflecting the effect of coefficient of variation on probability of occurrence of events of specific magnitude. These plots can be used directly in the

RANDOM VARIABLE

Figure A-2 - Effect of coefficient of variation on frequency distribution

x is a random variable

Definition of Terms

x	Random Variable	ln x
μ _x	Mean	$\mu_{\text{ln x}}$
σ^2_x	Variance	$\sigma^2_{\text{ln x}}$
σ _x	Standard Deviation	$\sigma_{\text{ln x}}$
ν _x	Coefficient of Variation	(not used)
x	Median	

Relationships Between Statistical Properties In Arithmetic and Log Space $\mu_{x} = \exp \left[\mu_{\ln x} + \frac{1}{2} \sigma_{\ln x}^{2}\right] \qquad \mu_{\ln x} = \ln \frac{(\mu x)}{(\sqrt{1 + \nu x^{2}})}$ $\tilde{x} = \exp \left[\mu_{\ln x}\right]$ $\nu_{x} = \sqrt{\exp (\sigma_{\ln x}^{2})} - 1 \qquad \sigma_{\ln x} = \sqrt{\ln (1 + \nu_{x}^{2})}$ $\sigma_{x} = \mu_{x}\nu_{x}$

Figure A-3 - Pertinent relationships for log-normal distributor

Figure A-4 - Cumulative log-normal distribution

analysis methodology and permit direct determination of frequency for events of any" specified magnitude with a known OP estimated coefficient of variation.

A-5. Standard Normal Tables

FOP normal (or log-normal) distributions, probabilities can be defined in terms of the magnitude of a value, normalized by the standard deviation. This technique is used in the calculations of the probability of exceeding specified receiving water concentrations in this analysis. Standard normal tables can be obtained from any statistics textbook [8,9]. Table A-1 presents the standard normal table to provide a convenient source for the analyses used in this report. Table A-1 lists the probability fop the interval between 0 and the value of Z listed. Thus, it represents the probability that a value will be less than or equal to the selected value of Z.

TABLE A-1 - Probabilities for the standard normal distribution

Each entry in the table Indicates the proportion of the total area under the normal curve to the left of a perpendicular raised at a distance of Z standard deviation units.

Example: 88.69 percent of the area under a normal curve I1e\$ to the left of a point 1.21 standard deviation units to the right of the mean.

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0 5000	0.5040	0 5000	0.5400	0 5400	0.5400	0.5000	0 5070	0.5040	0 5050
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5754
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7258	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7518	0.7549
0.7	0.7580	0.7612	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7996	0.8023	0.8051	0.8079	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
		0.00.45								
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9485	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9865	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9980	0.9980	0.9981
2.9	0.9981	0.9982	0.9983	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	0.0007	0.0007	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	1.0000	1.0000	1.0000
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

A-6. References

1. Niku, et al., "Performance of Activated Sludge Processes and Reliability Based Design." Journal WPCF, Vol. 51, No. 12, (December, 1979).

2. McCarty, et al ., "Reliability of Advanced Wastewater Treatment."

2. EPA Water Planning Division, "Preliminary Results of the Nationwide Uroan Runoff Program," (March 1982).

4. Mancini, J. L., "Methods for Developing Wet Weather Water Quality Criteria." Progress Report, June 1981; EPA ORO Grant No. R8068280H Cincinnati.

5. Chow, V.T. "Handbook of Applied Hydrology." Mc-Graw Hill, New York (1964).

6. Linsley, et al., "Hydrology for Engineers." Mc-Graw Hill, 2nd Edition, (1975).

7. Hydroscience, In., "A Statistical Method for the Assessment of Urban Stormwater." USEPA, EPA 440/3-79-023, (May 1979).

8. Benjamin, J. R. and C. A. Cornell, "Probability, Statistics and Decision for Civil Engineers." McGraw-Hill, New York, (1970).

9. Johnson, R. R., "Elementary Statistics." Duxbury Press, North Scituate, Massachusetts, (1980).

APPENDIX B

Field validation of Log-Normal Distribution and Related Assumptions

This appendix presents a discussion of several technical issues and assumptions which are necessary to the use of the probabilistic dilution model to guide selection of permit averaging periods. This discussion is organized in two sections: the first provides- a justification for the use of the probabilistic dilution model in the method; the second provides a discussion of several key assumptions.

B-1. Use of the Log-Normal Distribution

A relatively simple and straightforward analysis is made possible by the assumption that each of the input variables is log-normally distributed and independent. The appropriateness of these assumptions and their implications are discussed below.

A basic feature of any random time series of numerical values is its probability distribution function, which specifies the distribution of values and their frequency of occurrence. More detailed characterizations which account for seasonal trends and day-to-day correlations are also possible, but at minimum the univariate probability density function is required. An examination of flow data from a number of streams indicates that the data can be reasonably well represented by a log-normal distribution. Figure B-l summarizes an examination of the adequacy of a log-normal distribution for dally flows of 60 streams with long periods of record. The actually observed 10th and 1st percent, ie low flows are compared with the flow estimated by a log-normal distribution. The major important discrepancy occurs at the lowest flows where the predicted distribution is lower than that actually observed. The most likely cause

Figure B-1: Evaluations of log-normal distribution for stream flows

is the presence of a base stream flow which does not vary appreciably. THUS, the log-normal representation is generally a lower bound characterization of this distribution of the very lowest flows, which will tend to provide upper bound estimates of stream concentrations if these misrepresented-low flows are important. For the analysis results in this report, therefore, the calculations may be overprotective in some cases.

Log probability plots of treatment plant effluent flows and concentrations are illustrated in Figure B-2 for conventional pollutants and figure B-3 for heavy metals. Essentially, all data examined to date indicate that a log-normal characterization is representative.

B-2. Verification of the Probabilistic Dilution Model

The probabilistic dilution model itself has been subjected to a number of tests in order to check its validity and realism. Detailed simulation studies using Monte Carlo methods [1] have verified the calculated downstream concentration probability distribution when the upstream and effluent flows and concentrations are exactly log-normal.

In addition, detailed analysis of actual discharges into streams, (11 data sets for 5 streams) has been performed [2]. Observed data were available for upstream and effluent flows and concentrations, as well as for downstream concentrations. The lognormal probability dilution model was used to predict the probability distribution of downstream concentrations. Table 8-1 compares the observed and computed median and 95tn percentiles values for selected water quality parameters. The 95% confidence limits of these observed quantities, computed from the known sampling

concentrations - heavy metals

B-5

Location	Variable	Model Prediction	Observed Quantile	Confidence Limit of Observed Quantile
North Buffalo Creek, NC	BOD (mg/l	.) 9.7	10.0	8.5 - 11.0
	COD (mg/l TSS (mg/l	.) 51.0 .) 16.0	59.0 15.0	47.0 - 66.0 12.0 - 22.0
Jackson River. VA	BOD (ma/l) 6.0	5.3	4.2 - 6.0
	TSS (mg/l	.) 15.8	13.6	10.0 - 17.0
	Color (PCU	J) 110.0	100.0	90.0 - 130.0
Haw River, NC	BOD (mg/]	.) 2.0	1.7	1.5 - 1.7
	COD (mg/]	.) 23.8	22.0	19.0 - 26.0
Pigeon River, NC	BOD (mg/]	.) 3.7	3.8	3.0 - 5.1
	COD (mg/l	.) 85.0	78.0	65.0 - 87.0
Mississippi River, MN	NH ₃ (mg/]	.) 1.0	1.1	1.0 - 1.2
<u>95</u> [±]	<u>h</u> Percentil	e Concentratio	ns	
North Buffalo Creek, NC	BOD (mg/]	.) 31.0	22.0	20.0 - 33.0
	COD (mg/]	.) 120.0	97.0	82.0 - 129.0
	TSS (mg/l	.) 15.8	13.6	10.0 - 17.0
Jackson River, VA	BOD (mg/]	.) 18.1	15.6	13.0 - 20.0
	TSS (mg/]	41.6	32.0	30.0 - 40.0
	Color (PCU	324.0	330.0	300.0 - 410.0
Haw River, NC	BOD (mg/l	4.5	4.7	3.2 - 5.6
	COD (mg/l	43.0	46.0	33.0 - 53.0
Pigeon River, NC	BOD (mg/l	.) 8.7	7.6	6.4 - 9.4
	COD (mg/]	.) 186.0	229.0	188.0 - 233.0
Mississippi River, MN	NH ₃ (mg/]	.) 3.5	43	3.2 - 5.0

TABLE B-1 - Comparison of observed and computed downstream concentrations ($^2)$

Median (50th Percentile) Concentrations

distribution of quantiles, are also listed. In all but one case, the computed quantiles are within the confidence limits.

Thus, there is no statistical evidence, to reject the computed quantiles as not being the true quantiles of the observed concentration distribution. This is strong statistical evidence that indeed the log-normal probabilistic dilution model is representative of actually observed downstream concentration distributions for the 95th percentile at least.

The 11 data sets used in the verification analysis were examined for cress correlations between effluent flows and concentrations. The observed ranges in correlation coefficients have no significant impact on the computation. Correlations between stream flow and effluent load for a point source are not expected. Upstream concentrations are not employee in the comparison of permit averaging period effects, so that any correlation between stream flow and concentration is not relevant to this analysis. Modifications to the probabilistic dilution model computations are available for use in situations where cross correlations must be considered [1].

The influence of. possible deviations from the assumed lognormality of the upstream and effluent flows and concentrations upon more extreme quantiles is unknown at present due to lack of larger data sets that encompass these extreme quantiles. However, the quality of the alternatives to and the simplicity of this model argue strongly for Its use in the present context of describing comparative differences in water quality impacts.

B-3. Appropriateness of Assumptions

We have chosen to ignore the seasonal and day-to-day correlation structure of both stream flow and effluent behavior in order to simplify the characterization of each variable. The consequences of this simplification are discussed below in more detail, but it should be pointed out that trends and correlations do not invalidate the use of the log-normal probability distribution function to characterize the frequency of occurrence of flows and concentrations. Trends and day-to-day correlations affect the time sequences with which certain values occur, but not their long term frequency of occurrence. This is judged to be an acceptable penalty to be endured when compared to the simplification achieved. If a more refined, site specific analysis is required, then a seasonal breakdown of the data, with the appropriate means and standard deviations for each time period, can be generated and the analysis performed as described below.

The consequence of a possible serial correlation can be approximately quantified as follows. If, in fact, the serial correlation is such that 10 consecutive daily violations always occur when one violation occurs, then the proper percentile to consider 1s not 0.0274 (10 years) but rather 0.274 (1 year return period). The degree to which the 10 year return period concentration is overestimated can be estimated by comparing the ratio of the 10 year to the 1 year stream concentrations which are compiled without regard to serial correlation.

The ratio of the 10 year return period concentration to that for $% \left({{{\left[{{T_{{\rm{s}}}} \right]}_{{\rm{s}}}}} \right)$

some other return period can be computed for log-normally distribute random concentrations by:

 $\frac{C_{10 yr}}{C_{x yr}} = EXP [(Z_{10 yr} - Z_{x yr}) \sigma_{lnC}]$

Where

 σ_{lnC} = log standard deviation of stream concentrations (C)

 $\rm Z_{10\ yr},\ C_{10\ yr}$ = Z score and concentration corresponding to a 10 year return period

 $Z_{x\ yr}\text{, }C_{x\ yr}$ = I score and concentration corresponding to an x year return period

Table 3-2 summarizes results for a range of values for coefficient of variation of stream concentrations. Clustering tendencies of 5 and 10 are examined as approximations of the degree of serial correlation which might exist. If clusters of 10 occur, the comparison is between 10 and 1 year return periods as discussed above; for clusters of 5, the comparison is between 10 and 2 year return periods. On the basis of this analysis, the water quality effects presented in Chapter 4 for various permit averaging periods may overstate the 10 year stream concentrations by approximately a factor of 1.5 to 2.0.

Until stream and effluent data can be analyzed to define the serial correlation structure and the methodology modified to incorporate it, the results presented in Table B-2 should be interpreted to indicate with the following possibilities: TABLE B-2 - Approximate overestimation of 10 year return period stream concentration by ignoring serial correlation

Variability Stream Concent	y of tration	Ratio of Stream Concentration At Indicated Average Return Periods					
Coefficient	Log	10 Year	10 Year				
of Variation	Sigma	to 1 Year	to 2 Year				
(v _c)	(σ_{lnc})	(C ₁₀ /C ₁)	(C_{10}/C_2)				
.5	.4724	1.4	1.25				
1.0	.8326	1.8	1.50				
1.5	1.0857	2.1	1.65				
2.0	1.2686	2.4	1.80				

 $C_{10} = EXP[(Z_{10} - Z_{1,2}) \sigma_{lnc}]$

C_{1,2}

 Z_{10} (10 year Return Period) = 3.456 Z_1 (1 year Return Period) = 2.778 Z_1 (2 year Return Period) = 2.778

- o Stream concentrations indicated by the methodology used in the report to recur on average for 1 day every 10 years would, if they actually never occur except in clusters of 5 to 10 days, have return periods of 50 to 100 years.
- o Conversely, for the same clustering assumptions, the stream concentrations that occur at 10-year intervals should be 50 to 70% (1/2 to 1/1.5) of the 10-year concentrations projected by the report methodology.

B-4. References

1. DiToro, D.M., "Probability Model of Stream Quality Due to Runoff." J. Environmental Engr. ASCE, Vol. 110., #3, June 1984 p. 607-628.

2. DiToro, D.M. and Fitzpatrick, J.J., "Verification Analysis of the Probabilistic Dilution Model" Report prepared for EPA Contract No. 68-01-6275, U.S. Environmental Protection Agency, Washington, D.C., (1982). APPENDIX C

Characteristic Values for Input Parameters

The results reported here represent an attempt to develop characteristic values and ranges for stream flow and effluent variability. These values and ranges have been extracted from the results of published analyses, and are used in Chapter 4 to evaluate the influence of the permit averaging period on typical receiving water conditions. These values are provided for effluent flows (Section 1), effluent concentrations (Section 2), and stream flow (Section 3).

C-1. Treatment Plant Effluent Flows

A recent study [1] analyzed several years of performance data from approximately 400 secondary treatment plants in 8 different process categories. Average plant effluent flows ranged from 0.002 to 82 MGD. Table C-1 summarizes the coefficient of variation of treatment plant effluent flows.

C-2. Treatment Plant Effluent Concentrations

Data on the variability of effluent BOD₅ and total suspended solids (TSS) from municipal biological treatment plants are available from several sources. Niku, et al . [2] provide analysis results for 37 activated sludge plants which show the coefficient of variation of effluent 8005 concentrations to range between 0.34 and 1.11 for individual plants. The median of the individual plant- values was 0.635. The EPA research report [3] on which the foregoing was based1 reported a mean coefficient of variation for 43 activated sludge plants using a variety of processes. Daily effluent concentrations were found to be well represented

Process Category	Number of Plants	Range For Individual Plants	Median of All Plants
Trickling Filter Bock	64	0.06 - 0.97	0.27
Trickling Filter Plastic	17	0.16 - 0.88	0.38
Conventional Activated Sludge	66	0.04 - 1.04	0.24
Contact Stabilization Activated Sludge	57	0.06 - 1.35	0.34
Extended Aeration Activated Sludge	28	0.11 - 1.32	0.34
Rotating Biological Contact	27	0.12 - 1.19	0.31
Oxidation Ditch Stabilization Pond	28 37	0.09 - 1.16 0.00 - 0.83	0.31 0.31

TABLE C-1 - Coefficient of variation of daily effluent flows, ν_{QE}

by a log-normal distribution. The mean of all plants analyzed had coefficients of variation of 0.7 for BOD_5 and 0.84 for TSS.

Two recent studies have extended the analysis of effluent concentration variability, and report coefficients of variation of BOD_5 and TSS for 7- and 30-day averages as well as for daily values. Results reported by Hazen and Sawyer [1] provide the basis for the summary presented in Table C-2 as well as the two other sources cited in the table. An analysis of the performance of 11 trickling filter plants by Haugh, et al. [4] produced me results summarized by Table C-3.

Based on available data, a single representative value for coefficient of variation of effluent concentrations cannot be defined. The most appropriate characteristic value will be influenced by process category, effluent concentration averaging period, and the pollutant in question (e.g., BOD, TSS, etc.), as well as individual plant differences. The computations in this report are performed using a range of values estimated to encompass most of the conditions of interest.

C-3. Stream Flow

Figure C-1 provides a basis for estimating the coefficient of variation of daily stream flows on the basis of the ratio of 7Q10 to average (QS) stream flow. These flow values are usually readily available. The relationship shown is derived from a set of flow measurements and statistics which has been developed for a sample of 130 streams in various areas of the country [5] and is summarized in Table C-4, along with additional details on the location of the stream gages used. The ranges

Process Category	Number of Plants	I Mean	Effluent BOD (mg/l) Coefficient of An Variation*				<u>ffluent T</u> Coeffici Variati	<u>luent TSS (mg/l)</u> Coefficient of Variation [*]		
			Daily Values	7-day Avgs.	30-Day Avgs		Daily Values	7-day Avgs.	30-Day Avgs	
Trickling Filter Rock	64	26.0	0.40	0.30	0.25	25.3	0.50	0.30	0.25	
Trickling Filter Plastic	17	19.0	0.50	0.35	0.30	19.4	0.65	0.55	0.40	
Conventional Activated Sludge	66	14.8	0.65	0.55	0.40	14.3	0.85	0.60	0.45	
Contact Stabilization Activated Sludge	57	12.6	0.60	0.50	0.40	13.8	0.70	0.65	0.50	
Extended Aeration Activated Sludge	28	7.2	0.70	0.60	0.45	9.8	0.65	0.45	0.30	
Rotating Biological Contacter	27	17.0	0.60	0.45	0.35	15.2	0.70	0.50	0.35	
Oxidation Ditch Stabilization Pond	28 37	8.4 22.7	0.60 0.50	0.55 0.45	0.40 0.40	12.3 39.5	0.70 0.65	 0.55	0.50 0.45	

TABLE C-2 - Summary of secondary treatment plant performance - median coefficients of variation, v_{CE} (from reference 1)

Values shown are rounded to nearest 0.05 for $^{v}(CE)$

*Basis: v_{CE} = Standard Deviation of Median Plant

Mean of Median Plant

	Chemical Precipitation/Settling ¹
<u>Pollutant</u>	Coefficient of Variation
Cr	.99
Cu	.60
Fe	.57
Mn	.34
Ni	.81
Zn	.84
Tss	.66

Pharmaceutical Industry²

		on		
Plant Number	BOD	(n)	TSS	(n)
12015	1.01	46	.85	195
12072	.97	392	.63	395
12026	.95	44	.49	53
12036	.74	366	1.12	364
12097	1.08	222	1.21	249
12098	1.37	24	1.52	25
12117	.70	39	.81	51
12160	.92	34	1.11	32
12161	.55	249	.99	355
12186	.71	54	.50	54
12187	.21	12	.26	12
12136	1.02	110	1.16	111
12248	.58	50	.55	52
12257	.64	56	.92	56
12294	.93	56	1.25	50
12307	1.55	39	1.34	38

¹From Table 3, page 14 of 10-18-83 memorandum from H. Kahn to E. Hall titled, "Revisions to Data and Analysis of the Combined Metals Data Base."

 $^2{\rm From}$ preliminary descriptive statistics generated on pharmaceutical data by SRI International, 11-12-82.

	BOD ₅	TSS
Mean for 11 plants (mg/l)	29.6	29.3
Coefficient of Variation (median of		
Individual plant values):		
Daily Values	0.39	0.55
7-Day Averages	0.35	0.31
30-Day Averages	0.31	0.26

TABLE C-3 - Effluent concentration variability for trickling filters (from reference 4)

shown reflect the bulk of the data in the sample of stream records which were used. However, a relatively small percentage of streams will have coefficients of variation which fall outside the indicated ranges. The statistical analysis was performed for the entire period of record. Results in some cases may be distorted, if flow regulation works were installed on the stream sometime during the period of record.

C.4. References

1. Hazen and Sawyer, "Review of Performance of Secondary Municipal Treatment Works." Draft Final Report for Contract 68-01-6275, Work Assignment No. 5, U.S. Environmental Protection Agency, Washington, D.C., (December 1982).

2. Niku, Shroeder, and Samaniego, "Performance of Activated Sludge Process and Reliability Related Design." JWPCF, Vol. 51, No. 12, (December 1979).

3. Niku, et al., "Performance of Activated Sludge Processes: Reliability, Stability and Availability." EPA 600/52-81-227, (December 1981).

4. Haugh, et al. "Performance of Trickling Filter Plants: Reliability, Stability and Variability." EPA 600/52-81-228. (December 1981).

5. Driscoll & Associates, "Combined Sewer Overflow Analysis Handbook for Use in 201 Facility Planning." Report prepared for EPA Contract No. 68-01-6148, U.S. Environmental Protection Agency, Washington, D.C. (1981).

Figure C-1 - Typical low flow characteristics of U.S. streams

			Gage Location	Drain	Stream Flow (cfs/MI ²)							
ÙSGS Gage l	GS e No.	State	River	(At or Near)	Area (MI ²)	Q	q	7010	192	νq	<u>7910</u> Q	<u>7410</u> 192
)) 0	1000	ME	Alagash River	Alayash, ME	1250	1.49	0.84	.102	.034	1.46	.068	2.95
0	3 6500	ME	Kenduskeag Stream	Kenduskeag, ME	178	1.72	.62	.011	.008	2.58	.006	1.33
0	2 1500	ME	Machias River	Whitneyville, ME	457	2.00	1.30	.130	.081	1.17	.064	1.59
0	3000	ME	Qyster River	Durham, NH	12	1.49	.66	0	.016	2.02	0	0
0) 1000	NH	S. Br. Piscataquag River	Goffstown, NH	104	1.58	.73	.029	.017	1.91	.018	1.67
0	4500	MA	N. Nashua River	Leominster, MA	. 110	1.75	1.19	.300	.086	1.07	.172	3.47
1	5 2500	MA	Priest Brook	Winchendon, MA	. 19.	1.60	.77	0	.021	1.81	0	0
1	6000	MA	Quaboag River	W. Brimfield, MA	151	1.58	1.01	.093	.060	1.19	.06	1.56
1	1000	MA	W. Br. Westfield River	Huntington, MA	94	1.90	.96	.053	.030	1.70	.03	2.2
1	1500	RI	Branch River	Forestdale, RI	91	1.82	1.14	.132	,061	1.24	.07	-2-1
1	2 4000	CT	Quinebaug River	, CT	156	1.77	1.04	.103	.050	1.37	.06	2.1
<u> </u>	? 7500	CT	Yantic River	, CT	90	1.69	.91	.044	.042	1.56	.03	1.1
3	3 4500	NY	Hoosic River	Eagle Bridge, NY	510	1.75	1.15	.186	.076	1.14	.11	2.4
30	5 1500	NY	Catskill Creek	Oak IIIII, NY	.98	1.27	.35	0	.003	3.51	0	0
3	7000	NJ	Hackensack River	Rivervale, NJ	58	1.55	1.07	121	.079	1.05	.08	1.5
3	8500	NJ	N. Br. Raritan River	Far Hills, NJ	26	1.72	1.20	.076	. 095	1.03	.04	.8
4	2 0500	NY	Beaver Kill	Cook Falls, NY	241	2.26	1.34	.133	.068	1.35	.06	1.9
4	3 5000	NY	Neversink River	Claryville, NY	66	2.68	1.74	.152	.102	1.17	.06	1.5
4	9500	PA	Wild Creek	Hatchery, PA	17	2.02	1.49	.119	.149	0.91	.06	.8
41	9 1500	DE	Brandywine Creek	Wilmington, DE	314	1.38	1.11	.217	.175	0.74	. 16	1.2

TABLE C-4 - Summary of stream flow characteristics

.
TABLE C-4 (Cont.)

				Gage Location		Drain		Strea (cfs	nm Flow 5/MI ²)		. 1		
USGS Gage No.		State	River	(At or Near)	Area (MI ²)	Q	q q	7010	1Q2	ν _Q	<u>7010</u> Q	<u>7010</u> 102	
			NV	Sucauphanna River	Unadilla. NY	982	1.57	.89	.081	.037	1.45	.05	2.2
01	50	1500		Tionghninga River	Itaska, NY	730	1.66	.78	.077	.018	1.87	.05	4.1
บ ม	21	1200	NT MV	Cohocton River	Camubell. NY	470	.93	.45	.045	.012	1.79	.05	3.8
	52	2000	DA	Driftwood Brook	Sterling, PA	272	1.63	.66	.011	.012	2.26	.01	.9
	55	5500	PA PA	East Mahantango Creek	Dalmatia, PA	162	1.30	.69	.025	.025	1.58	.02	1.0
	69	6000	MD	N. Rr. Patapsco River	Ceda, MD	57	1.04	.82	.124	.106	0.78	.12	1.2
	50	1000	MD	Patuxent River	Unity, MD	35	.98	.75	.086	.086	0.80	.09	1.0
•••	59	7000	MD	Crahtree Creek	Swanton, MD	17	1.68	.75	0	.018	1.98	0	0
)	59	7000		Tuscarora Creek	Martinsburg, WV	11	.80	.63	0	.071	.78	0	. 0
	61	5000	VA	Opequon Creek	Berryville, VA	57	.64	.31	.017	.009	1.82	.03	2.0
	64	5000	MD	Senera Creek	Dawsonville, MD	101	.89	.66	.050	.066	.91	.06	• .7
	66	2000	VÅ	Bull Run	Manassas, VA	148	.88	.23	0	.001	3.67	0	0
	66	3500	VA	Hazel River	Rixeyville, VA	287	1.15	.67	.014	.031	1.40	.01	0.4
03	· 01	25.00	VA	Jackson River	Falling Sprg. VA	411	1.16	.70	.151	.036	1.32	.13	4.1
UZ	01	2000	VA.	Rivanna River	Palmyra, VA	. 664	1.08	.62	.036	.027	- 1.42	03	1.3
	03	2600		Roanoke (Staunton) River	Brookne, VA	2415	1.02	.69	.142	-046	1.10	.14	3.1
	00	2500	NC NC	Ahoskie Creek	Ahoskie, NC	57	1.12	.31	0	.001	3.52	0	0 1
	10	6500	NC NC	Black River	Tomahawk, NC	680	1.10	71	.034	.044	1.19	.03	8
	ΛO	0500		Deen River	Randlenar, NC	124	.96	.45	.048	.010	1.89	.05	4.6
	11	1000		Yadkin River	Patterson, NC	29	1.59	1.33	.276	.231	.64	.17	1.2
	13	1000		linville River	Nebo, NC	67	2.10	1.52	.223	.134	.96	.10	1./
	15	5 2500		First Broad River	Lawndale, NC	198	1.41	1.02	.258	.091	.95	.18	2.8

TABLE C-4 (Cont.)

C.C.A.LLUNG+J

E (-4 (LUIIL +)		Drain		Stream (cfs/	Flow MI ²)			7010	7010
Gage Locatio	D n	Area	Ō	q	7Q10	102	νq	- Q	102
SGS ye No. State River	(At or Near)	(MIC)	. 12	.76	.061	.058	1.06	.05	1.0 5.0
20 7500 GA Yellow River CA Little Ocmulgee River	Covington, GA Towns, GA Lisbon, FL	378 329 648	.80 .45 .89	.20 .20 .17	.006 .154 0	.001 .005 0	2.02 5.17	.34 0	33.0 0
21 6000 FL Haines Creek 23 8000 FL Joshua Creek 29 7100 FL Joshua Creek 20 2500 FL Blackwater Creek	Nocatee, FL Knights, FL	132 110 535	.93	.93 1.29	.018	.458 .011	.36 1.33	.44 .04	1.3
32 6900 FL St. Marks River 33 7000 GA Sweetwater Creek	Newport, FL Austell, GA Haleburg, AL	246 144 474	1.35 1.39 2.27	.81 1.08 2.20	.057 .208 .635 .312	.125 .156 .116	.82 .24 .90	.15 .28 .18	4.1 2.7
34 3300 AL Abbie Creek 36 9000 FL Shoal River 38 3500 GA Coosawattee River	Crestview, it Pine Chapel, GA	856 605	1.70	1.58	.405 .065	.299	.66 1.07	.21 .05 .15	1.4 0.4 1.9
39 2000 GA Etowah River 41 2000 AL Tallapoesa River 2500 AL Mulberry Creek	Heflin, AL Jones, AL Tupelo, MS	444 208 110 92	1.50	.94 .14 .74	.226 0 .123	.003 .020	10.79	0 .08) 0 6.25
42 2500 MS Town Creek 43 4000 MS Town Creek 45 6000 AL Turkey Creek	Morris, AL Meridian, MS	52 92	1.08	.32	0.032	.004 .005 .001	3.26 3.13 5.74	0 .02 .01	6.0 20.0
47 6500 MS Socasnee Creek 48 0500 MS Tuxachanzie Creek 48 4000 MS Yockanookany River	Biloxi, MS Kosciusko, MS Sugar Creek, PA	484	1.25	.80	5 .10 n .007	.03 .05	1.52	.06 .003 .01	2.9 .1 .8
03 02 5000 PA Sugar Creek 05 3500 WV Buckhannon River 06 5000 WV Dry Fork 10 9500 OII L. Beaver Creek	Hall, WV Henricks, WV Liperpool, OH	27 34! 49		3 1.0	5.023 8.04	.03 .01	1.8	5.04	2.1

.

1

C-11

TABLE C-4 (Cont.)

				Gage Location		Drain		Strea (cfs	m Flow /M12)		•	• •	• • •
U Ga	ISGS ige	S No.	State	River	(At or Near)	Area (M1 ²)	Q	õ	7010	1Q2	νq	7 <u>010</u> 0	<u>7010</u> 102
				ticking Diugo	Newark, Oll	537	.99	.50	.07	.01	1.71	.07	4.6
03	14	6500		LICKING RIVER	Enterprise, OH	459	.95	.49	.063	.01	1.69	.07	4.3
	15	/500	UII	NO'KINY KIVEN	Gravsonton, VA	300	1.20	.93	.223	.11	.81	.19	2.0
	17	0000	VA VA	LILLIE KIVEI Hilliame Divoc	Over. WV	128	2.50	1.12	.008	.03	1.95	.003	.3
	18 21	6500 3500	VW VA	Panther Creek	Panther, WV	31	1.17	.36	0.1	.003	3.09	0	0
•	~~	AC 00	011	Watchong Creak	Ashlev, OH	99	.89	.28	Ò	.003	3.04	0	U
	22	4500		Mielslune Greek	Oldtown, Oll	129		.46	.05	.02	1.26	.07	2.1
	24	0000		L. Midmi Kiver	Huntington, IN	263	.84	.25	.01	.003	3.20	.01	4.5
	32	4000	11	LILLIE NIVEI	Millersville, IN	298	.78	.48	.04	.03	1.28	.06	1.0
	35	2500		Big Walnut Creek	Reelsville, IN	326	.98	.41	.01	.008	2.18	.01	1.5
	55	,			McMinnyilla TN	640	1.78	.83	.096	.02-	1.91	.05	4.8
	42	1000	,TN	Collins River	PLATIMVITE, IN	262	1.58	.48	.01	.003	3.13	.01	3.8
	42	7500	TN	E. Fork Stones Kiver	Lascass, In	LUL	1150	· · · · ·			,		2.6
- •	~ ~	- 75.00		White Diver	Ashland, Wi	279	1.04	.85	.47	.13	.69	.45	3.0
04	02	/500	WE ME	Olack Diver	Garnet, MI	28	.93	.75	.21	. 09	.78	.23	2.4
	U4	6000		Dino Divor	Pine R. Pwrolnt, W	528	.79	.61	.13	.07	.85	10	1.0
	00	4500		Fille niver	Cedarbury, WI	- 121	.51	.23	.008	.005	2.01	.02	1./
	- U8 - 11	4500) · WI	Looking Glass River	Eagle, MI	281	.56	.34	.05	.02	1.34	.09	2.0
					Encorail MI	127	1.09	1.05	.67	.43	.30	.61	1.5
	12	2 3000) ML	Big Salle Kiver	Fleesally Mi Midland Mi	390	.69	.51	.08	.05	.93	.12	1.6
÷ 1	19	5 5500) MI	Pine River	FILUTANU, FIL	480	.56	.14	.01	.001	3.90	.02	10.0
	15	5 9500) MI	Black River	Dateoit MI	187	.56	.29	.02	.009	1.63	.04	2.2
	16	5 6500) MI	River Kange	Codecyille IN	270	.85	.42	.07	.011	1.77	.08	6.3
	18	B 000	D IN	Cedar Creek	Leudiville, IN	LIU	100.			•	•	· · ·	

		_		Gage Locati	on	Drain	· -	Strea (cfs	m Flow ;/MI ²)		•		
USGS Gage No		S No.	State	River	(At or Near)	Area (MI ²)	Ţ.	õ	7010	102	νq	<u>7910</u> 9	<u>7010</u> 102
04	19	9000	011	Huron River	Milan, Oli	371	.72	.24	.008	.003	2.79	.01	2.7
	22	7500	NY	Genesee River	Jones Bridge, NY	1417	1.12	-58	.05	.019	1.66	.05	2.1
05	29	3000	MN	Yellow Bank River	Odessa, MN	3 98	.14	.025	0	0	5.45	0	0
	38	5500	MN	S. Fork Root River	Howton, MN	275	.45	.40	.196	.098	0.49	.44	2.0
	41	3500	WL	Grant River	Burton, WI	269 .	.59	.42	138	.035	.99	.23	3.9
	41	7700	18	Bear Creek	Monmouth, IA	61	.64	.34	.03	.011	1.59	.05	2.9
	40	6500	WE .	Black Earth Creek	Black Earth, WI	46	.61	.60	.26	. 330	.19	.43	.8
•	43	2500	WI	Pecatonica River	Darlington, WI	273	.66	.44	.117	.030	1.11	.18	3.9
	.44	4000	IL	Elkhorn Creek	Penrose, IL	146	.56	. 38	.10	.030	1.07	.17	3.4
	45	7000	MN .	Cedar River	Austin, MN	425	.41	.23	.05	.010	1.50	.12	5.1
·	45	5500	IA .	English River	Kalona, IA	573	.57	.16	.003	.001	3.29	.01	2.2
	.48	6000	· 1A	North River	Norwalk, IA	349	.49	.09	0	.006	5.54	0	0
	50	2000	MO	Bear Creek	Hannibal, MO	31	.48	.11	0	.001	4.43	0	0
	51	5000	E N	Kankakee River	North Liberty, IN	174	.81	.76	. 30	.260	.37	. 38	1.2
	52	8000	IL	Des Plaines River	Gurnee, IL	232	.52	.14	0	.001	3.64	0	0
	55	4500	IL	Vermillion River	Pontiac, IL	579	• 58	.15	0	.001	3.80	0	0
	57	8500	IL	Salt Creek	Rowell, IL	335	.64	.24	.006	.003	2.43	.01	1.7
12	33	5000	МТ	Blackfoot River	Helmville, MT	481	.73	.45	.146	.025	1.28	.20	5.7
	37	0000	HT	Swan River	Bigfork, MT	671	1.70	1.21	.380	.109	.98	.22	3.5
	32	1500	1D	Boundary Creek	Porthill, 10	97	1.98	•82	.124	.015	2.19	.06	8.0
	45	5000	WΛ	Wenatchee River	Wentch. L., WA	273	4.82	2.97	.54	.147	1.28	.11	3.7
	17	7500	OR	Stetattle Creek	Newhalen, WA	. 22	8.40	5.82	.82	.445	1.05	.10	1.8

TABLE C-4 (Cont.)

USGS Gage No.				Gage Location		Drain		Stream Flow (cfs/M1 ²)						
		No.	State	River	(At or Near)	Area (MI ²)	Q	õ	7010	102	νq	<u>7010</u> 0	<u>7010</u> 102	
				C. C. al. Churamich Divor	Index WA	355	6.90	4.71	.80	.344	1.07	.12	2.3	
12	13	3000	WA	5. FORK SKYROMISH KIVER	Carnation WA	20	10.00	4.97	.76	.152	1.75	.08	5.0	
	14	8000	WA	5. FOFK INTE KIVEF	Loster WA	96	4.27	2.41	.29	.094	1.46	.07	3.1	
•	10	4500	WA	Gren Klyer Nicqually Divor	National, WA	133	5.92	4.90	1.25	.83	.68	.21	1.5	-1
	08 04	2500 8000	WA WA	Dungeness River	Sequim, WA	156	2.45	1.94	.56	.26	.17	.23	2.2	
	01 02	3500 4000	WA	Willapa River S. Fork Newaukum River	Willapa, WA Onal, WA	130 42	5.04 4.74	2.02 2.88	.138 .49	.038 .142	2.29 1.30	.03	3.6 3.5	,
	Ŭ.	1000			Cuutecol ID	326	2.44	1.87	.80	.205	.83	.33	3.9	
13	04	7500	ID	Falls River	Twin Sociace ID	830	1.41	.87	.25	.048	1.28	.18	5.3	
	18	5000	i ID	HOISE KIVEF	Iwraha AP	622	.80	.49	.10	.024	1.30	.13	4.3	
	29	2000	UK	Imnana Kiver	Yallow Pine ID	213	1.61	.75	.206	.019	1.90	.13	10.7	
	31 35	3000 1000	WA	Palouse River	Hooper, WA	2500	.24	.07	.001	.001	3.03	.01	1.5	
14	01	7000	WA	Tonchet River	Bolles, WA	361	.65	.35	.033	.014	1.55	.05	2.4	
1.1	01 05	7500	OR OR	Fall River	LaPine, OR	45	3.41	3.27 [°]	2.18	1.33	.31	.64	1.0	
	14	5500	i OR	M. Fork Willamette River	above Salt Cr., OR	· 392	2.90	1.97	.45	.14	1.09	•10	J.J 2 1	
	22	2500	WA	E. Fork Lewis River	Heisson, WA	125	6.12	3.08	.30	.09	1.72	.05	3.1	
	22	6500	WA	Cowlitz River	Packwood, WA	287	5.75	4.12	.832	. 38	.97	.14	2.2	. '
	17	1000	OR	Marv's River	Philomath, Or	159	2.97	.86	.03	.006	3.31	.01	5.6	
	19	2500		Little N. Santiam River	Meh, OR	112	~ 6.85	3.18	.18	.08	1.91	.03	2.2	
	20	3500		Tualatin River	Dilley, OR	125	3.18	1.08	.016	.013	2.78	.01	6 1	
	31	2000) OR	S. Umpgua River	Brockway, OR	1670	1.74	0.56	.036	.006	2.90	•UZ* 0.1	U • 1 A · A	
	34	1500) OR	S. Fork Little Butte Cr.	Lakec, OR	-138	0.78	.39	.050	.011	1.70	.07	· • • • •	
	37	2500	D OR	E. Fork Illinois River	Taklima, OR	42	4.38	1.62	.142	.02	2.52	.03	U.U .	

APPENDIX D

Computer Program for the Probabilistic Dilution Model - Point Source (PDM-PS) This appendix describes a computer program (PDM-PS) which performs the computations of the Probabilistic Dilution Model for Point Source discharges using numerical methods based on quadratures. The program is written 1n BASIC for the HP-85 and the IBM-PC, and should be readily applicable to other personal computers with perhaps minor modifications to reflect individual machine characteristics.

The program is structured around slightly different Input format than that used for the manual calculation using the moments approximation. A series of normalizations (ratios) of certain of the input data items is used to provide a computation framework that provides a more generalized perspective

The appendix is organized as follows. Section 1 describes the basis for the formulation and normalization of the input data, as used in program. Section 2 provides an annotated description of the CRT and functions, as well as the nature of the user's response. Figures and D-2 provide the results of running the PDM-PS through the example described in Section 3.2 of this report. Finally, Figure D-3 provides a of the POM-PS program for entry into a personal computer.

D-1. Formulation and Normalization

The analysis can be made more useful in a general way if the normalization described below is applied to reduce certain of the inputs recognized ratios, and to express-results (stream concentration as a multiple or fraction of the target stream concentration (CL).

The explicit assumptions in the normalization scheme that is used are that:

- The stream target concentration (CL) is produced when the discharge flow is the mean effluent flow (\overline{QE}), the discharge pollutant concentration is equal to the permit effluent limit (EL), and the stream flow is equal to the design value (here designated 7Q10 though any other basis may be used for designating the numerical value of stream design flow, e.g., 30Q5, 30Q10, etc.).
- The reduction factor (R = CE/EL) determines the mean effluent concentration of the pollutant being evaluated. It, could be selected arbitrarily; however, as applied in this manual for evaluating the permit averaging period, the value selected will be dictated by the variability of effluent concentrations and the permit averaging period.

In the usual case, where the stream target concentration (CL) is set at the chronic toxicity level, the multiples of the target – in which stream concentrations are expressed (CO/CL) – correspond with the acute toxicity level. The basis for the normalization scheme adopted is as follows.

The downstream concentration, CO, is given by the dilution equation:

$$CO = \underbrace{CE \ QE}_{QS \ + \ QE} = \Phi CE$$
(D-1)

For a chronic criteria concentration, CL, the effluent limit concentration,

EL, is computed using QS * 7Q10 and an average effluent flow, QE :

$$CL = \underline{EL QE} = EL\phi_{STD}$$

$$7Q10 + \overline{QE}$$
(D-2)

where $\varphi_{\rm STD}$ is the effluent dilution factor at the standard conditions, $\varphi_{\rm STD} = \overline{QE} / (7Q10 + \overline{QE})$. Thus:

$$EL = CL/\phi_{STD}$$

However, the choice of permit averaging period forces a reduction of \overline{CE} of magnitude, R, so that permit violations occur only 5 percent of the time. Thus the actual long term average effluent concentration is:

$$CE = R EL = R CL/\phi_{STD}$$
 (D-4)

The problem is to compute the probability that the downstream concentration exceeds a multiple, β , of the chronic concentration, CL. In particular, if the acute criteria concentration is selected, then β is the acute to chronic criteria ratio for the pollutant being regulated. Hence it is necessary to compute:

$$Pr [CO > \beta_{CL}] = PR [CO > \beta \phi_{STD} \overline{CE}/R]$$

$$(D-5)$$

where Equation D-4 has been substituted for CL. Dividing both sides of the inequality by CE provides the first normalization site

$$CO/CE = (CE/CE) \qquad QE \qquad QS + QE$$

and CE/ \overline{CE} is the normalized effluent concentration. The probability distribution of this random variable no longer depends upon the mean effluent concentration, but only on the coefficient of variation, v_{CE} This is easily seen from the following representation of a log-normal random variable:

$$lnCE = lnCE + Z\sigma_{lnCE}$$
(D-7)

where CE is the median, σ_{InCE} is the log standard deviation, and Z is a standard normal random variable with zero mean and unit standard deviation. For log-normal random variables,

$$CE = CE \sqrt{(1 + v_{CE}^2)}$$
 (D-8)

and

$$\sigma^{2}_{lnCE} = ln(1 + v_{CE}^{2})$$
 (D-9)

so that Equation D-7 becomes

$$\ln(CE/CE) = -1/2\sigma_{lnCE}^{2} + Z\sigma_{lnCE}$$
(D-10)

Thus, it is seen that CE/CE is log-normal with log mean = $-1/2\sigma^2_{lnCE}$ and only the coefficient of variation, which specifies σ_{lnCE} through equation 0-9, is required to completely specify the behavior of CE/ \overline{CE} .

The final normalization results from expressing Equation D-6 as

$$\frac{CO/\overline{CE}}{1 + QS/QE} = \frac{CE/\overline{CE}}{1 + QS/QE}$$
(D-11)

Note mat QS/QE is log-normally distributed since both QS and QE are assumed to be log-normal. Thus, only the ratio of the average flows, QS/QE, is required. A convenient normalization using ratios that are more readily available results if the average effluent and stream flows are standardized relative to design stream flow (here designated by 7Q10). Defining

$$F1 = 7Q10/\overline{QS}$$
 (D-12)

$$F2 = 7Q10/\overline{QE}$$

(D-13)

Then

 $\overline{QS}/\overline{QE} = F2/F1$ (D-14)

And

$$\phi_{\text{STD}} = \underbrace{1}_{1 + \text{F2}} \tag{D-15}$$

These ratios, F1 and F2, together with the coefficients of variation, v_{QS} , v_{QE} , and v_{CE} , completely specify the characteristics of the random variables in the normalized dilution Equation D-11. R specifies the effect of permit averaging period and β , the acute to chronic criteria ratio, specifies the toxicity behavior of the substance being considered. This completes the normalization.

D-2. Description of Program Use

The program is easy to use. The values of the input variables are sequentially requested on the CRT. Once the input values are entered, a summary of the input data is printed out, as is a tabular listing of the results of the calculations. The user should be thoroughly familiar with the theoretical and practical bases for the PDM-PS as described in Chapters 2 and 3 before attempting to use the PDM-PS.

- USER: Initiates program execution.
- PRINTER: Writes title.
- CRT: Displays title and general descriptive material shown in Figure D-1.
- CRT: Question #1 is displayed: "Enter coefficient of variation of QS, QE, and CE.
- USER: Enters the values of v_{QS} , v_{QS} and v_{CE} = separated by commas.
- CRT: Question #2 is displayed: "7Q10/avg QS?"
- USER: Enters the ratio of the 7Q10 flow to the average stream flow (QS).
- CRT: Question #3 1s displayed: "7Q10/avg QE?"
- USER: Enters the design dilution ratio, i.e., the ratio of 7Q10 flow rate to the average effluent flow rate (\overline{QE}).
- CRT: Question #4 1s displayed: "avg CE/EL?"
- USER: Enters the ratio of the average effluent concentration which the treatment plant will be designed to produce (avg CE), to the effluent concentration derived from the

WLA analysis (EL). This latter value is that concentration in the effluent which will result in the stream target concentration being met, when the following flow conditions prevail:

Stream flow (QS) is at the 7Q10 flow rate.

Effluent flow (QE) is at the average discharge rate of flow.

- PRINTER: Prints a tabular summary of the input data selected.
- CR: Question #5 is displayed: "Enter lowest, highest and increment of multiple of target for which % exceedence is desired."
- USER: Decides on a range of stream concentrations (expressed as multiples of the <u>target concentration</u>, CL) for which the probability of occurrence and the recurrence interval are desired. The user enters (1) the lowest value, (2) the highest value and (3) the incremental step desired for values between the highest and lowest.
- PRINTER: Prints tabular listing of results. For each multiple of CL, the exceedence frequency and return period are listed. When the printing is completed, a tone sounds and Question 5 is repeated.
- USER: Enters a new set of values for multiples of CL, if

desired. This allows the user to conveniently search out the ranges of interest and select the most appropriate levels of incremental detail. When the desired amount of output has been obtained, the program is interrupted, and begun again at Question #1 to examine another set of conditions. The user can formally "end" the program by entering 0,0,0 in response to Question 5.

POINT SOURCE - RECEIVING WATER CONCENTRATION ANALYSIS **** INPUTS: COEF. VAR OF QS, QE, CE RATIO...7Q10/avgQS GENERAL DESCRIPTIVE MATERIAL RATIO...7Q10/avqQE RATIO...avg CE/EL BACKGROUND STREAM CONC (CS) IS ASSUMED TO BE ZERO **** ENTER COEF VAR OF QS, QE, CE? QUESTION #1 1.6, .2, .7 ENTER FOLLOWING RATIOS: 7Q10avg/ QS ? QUESION #2 .05 7Q10avg/ QE ? QUESTION #3 3 avg CE/ EL ? QUESTION #4 .57 ENTER LOWEST, HIGHEST, AND INCREM- QUESTION #5 (CONTINUES TO ENT OF MULT OF TARGET FOR WHICH REPEAT AS % EXCEED IS DESIRED NEEDED) ? ENTER LOWEST, HIGHEST, AND INCREM-ENT OF MULT OF TARGET FOR WHICH % EXCEED IS DESIRED ? 2.5, 3, .05

Figure D-1 CRT - displays

********* RECEIV PROBAL AND FOR MULT DUE TO	**************************************	***** (CO) TION CONC ADS *****	TITLE
COEF	VARQS =	1.50	
COEF	VARQE =	0.20	
COEF	VARCE =	0.70	
	7Q10/avg QS = 7Q10/avg QE = avg CE/ EL =	0.05 3.00 0.05	SUMMARY OF INPUT DATA
VIOLATION	PERCENT	RETURN	
MULT OF	OF TIME	PERIOD	
TARGET	EXCEEDED	(YEARS)	
1.00	0.894	0.3	
2.00	0.112	2.4	
3.00	0.024	11.3	
4.00	0.007	39.4	
5.00	0.002	114.4	
2.50	0.050	5.5	CALCULATED RESULTS
2.55	0.046	5.9	
2.60	0.043	6.4	
2.65	0.040	6.9	
2.70	0.037	7.4	
2.75	0.034	8.0	
2.80	0.032	8.6	
2.85	0.030	9.2	
2.90	0.028	9.9	
2.95	0.026	10.6	
3.00	0.024	11.3	

Figure D-2 - Example of printed output

Figure D-3 - Flow chart for PDM-PS program

19 1. 460 DISP 470 DISP * BACKROUND STPEAM (ON C (CS) IS ASSUMED TO ***** PUM-PS ++++++ 20 . FRUSABALISTIC 1 DILUTION MODEL - FOR POINT SOURCE DISCHARGE 480 DISP ****** 4.6 ++++++++ 50 1 490 DISP t SOO DISP "ENTER COEF VAR OF OS & DEFINITION - INPUT TERMS 1 E.CET. 510 INPUT V1.V2.V3 520 DISP TENTEP FOLLOWING RATIOS 80 9.0 WS = STREAM FLOW 190 WE = EFFLUENT FLOW 119 CE = EFFLUENT CONCENTR 120 530 DISP -.....7**010/ay**∳ Q9.≛, 540 INPUT FI 550 DISP 1 7010/30405 = RATIO 1 SPECIFIED STREAM FLOWS INPUT F2 149 560 INPUT 570 DISP 150 188 179 1 7010/3440E = DESIGN 1 EFFLUENT GILUTION RATIO 580 INPUT F3 530 PRINT 180 1 % 9 avece/el RATIO OF THE SPECIFIED AVERAGE PLANT EFFLUENT CONCENTR <u>-</u>99 • COEF 🖓 AR US -620 PRINT USING 600 62 QE - V2 210 1 229 -TO THE EFFLUENT T LIMIT COEF ... ELY CONCENTRATION EL 13 THE EFFL CONC THAT PRODUCES THE STPEAM TARGET CONC WHEN-COEF V J É PRINT 10 649 550 PRINT USING 500 / 67404 GS = ",F1 QS=7010 AND DE=avegE **-**₫.... 280 560 PRINT USING 500 8/809 GE = ",F2 670 PRINT USING 500 CE/ EL = ",F3 560 PRINT USING 640 ; 290 . . - : : 360 310 DIM (85(32))[5(32)] DIM (8(8))(58(3)) DIM (8(8))(58(3)) DIM (8(16))(8(16)) 3 S . . . CE EL 720 330 PRINT "XXXXXXXXXXXXXXXXXXXXXX ************ INT . PECEIVING WATEP CO 340 PRINT . ***** NC (CO) Tetribution 700 PRINT PROBABILITY STREAM CONCENTEST. 710 PRINT . TTO PRINT ION (CO) AND RETURN PER 720 PRINT * MULT OF * TAB(13) ** 100" 360 PRINT * FOR MULTIPLES OF THR /30 PEINI = HOLI OF CLINE(1); ERCENT*;TAB(25);*PETURN* 740 PRINT = TARGET: TAB(13);*OF TIME*;TAB(25);*PERIOD* 750 PRINT *(CO/CL) *;TAB(13):*Ex GET CONC. DUE TO POINT SU *********** 380 DISP "POINT SOURCE - RECIEVI NG WATER" CEEDED" ; TAB(25) ; * (YEARS) * 760 PRINT ----399 DISP . CONCENTRATION ANALTS 15 770 H1=SQR(LOG(1+V1^2)) 140 DISP 780 H2=SQR(LOG(1+V2-2)) 790. W3=SQR(LOG(1+V3^2)) 800 W9=SQP(W1-2+W2-2) ******* 420 DISP "INPUTS: COEF VAR OF QS \$18 U9=LOG(F2/F1)+LOG(SQR(1+42-2) JOE CE >/SQR(1+V1^2)) 820 UJ=LOG(FJX(1+F2)/SQR(1+VJ^_) RATIO. . 7010/a v # 9 5 * 830 GOSUB 1230 840 DISP "ENTER LOWEST, HIGHEST -ND INCREM-ENT OF MULT OF TAH GET_FOR WHICH : EXCEED IS D 440 DISP . RATIO. . . 7918/ . veQE" 450 DISP " RATIO... SV4 CE FEL " ESIRED*

Figure D-4 - PDM-PS program listing - HP-85 compatible

1370 RETURN RETURN - SUBROUTINE TO COMPUTE IN VERSE NORMAL TRANSF - POLYNOMIAL AFPROX TO INVE RSE NORMAL TABLE DEF FNC(X) = X-(E1+E2XM+E3X 850 INPUT 61,82,83 860 IF 81+82+8380 THEN 1190 870 I - LOAD QUAD, WGTS, & ROOTS 1389 -1330 SAN GUSUE 1480 SAN 1 - COMPUTE PORTION OF Q(%) ARGUMENT INDER OF CO 900 DIM 29(32) 910 FOP 1=1 TO NO 920 ! - EVALUATE USING INV PROE TRANSFORMATION 1466 x~2)/(1+E4#X+E5#X~2+E6#X~3) \$9=1 1410 IF P9< 5 THEN 1450 P9=1-P9 1420 1436 1440 .39=-: 978 P9=R5(1) P9=SQR(LÓG(1/P9^2)) X9=FNC(P9)X89 1450 210 COSUE 1380 550 IS(1)=LOG(1+EXP(U3-W9*X9))-U 1460 RETURN 1470 -QUADRATURE SUBROUTINE 1488 440 NEXT I STO 1 - CONCENTRATION LOOP COMPUTE ROOTS AND WEIGHTS 1 15 - INTEGRAL 1490 388 FOP CO-BI TO BE STEP BE R5(N0) = N0 R00T9 (+- GA 1500 1 998 I**5=0**. USSIAN ROOTS & NB-2 LAGER R 1000 - -- QUAD LOOP-- EVALUATE QC OOTS) X) = F AND SUM 25(NO) = NO WEIGHTS 1519 1020 X=(L05(C0)+29(1))/W3 1520 LOAD ROOTS AND WEIGHTS FO 1 R 32NG ORDER QUADS FO R 32NG ORDER QUADS I FIRST THE GAUSSIAN AND IS EN THE LAGUERRE TERMS I -QUAD ROOTS & WEIGHTS FOR 10-00000 CAUSSIAN (ATA XA=SGN(X) 1949 KEABS(X) 1548 1050 F=1-XX(01+XX)02+XX(07+XX(04 +XX.05+XX0622212 1558 1060 F=.5*FA-16 1070 IF X0>0 THEN 1090 - 1 16th ORDER GAUSSIAN R1=8 1560 1089 F=1-F R(1)=- 989406935 R(2)=- 944575023 1570 1090 IS=IS+F#25(I) 1589 1100 NEXT I 1110 -- COMPUTE RETURN PERIOD R(3)=- 8656312024 1600 R(4)=- 7554644084 1616 R(5)=- 5178752444 1120 10=1/365/15 1130 15=100#15 1618 1629 R(6)=- 4380167776 R(7)=- 2916035508 R(6)=- 09501250934 1110 PRINT USING 1150 : C0, 15, 10 1150 IMAGE 202 DD, 5%, 202 30, 5%, 3 1630 1640 1650, 58(1)= 02715145942 1660 58(2)= 06225352394 1660 58(3)= 09515851168 0Z 30 NEXT CO PRINT O BEEP 1150 1180 6070 840 \$8(4)= 1246289713 1680 1190 FOR L=1 TO 7 1690 \$8(5)=.1495959888 1200 PRINT \$3(6)= 1691565194 \$3(7)= 1826634154 **.** . 1210 NEXT L 1710 1220 END 1720 \$8(8)= 1894506105 1230 1730 NO=4XP1 AND REVERSE NORMAL COEFFI I CONVERT GAUSSIAN ROOTS & WEIGHTS FOR (0.1) INTEGP 1740 CIENTS 1240 01= 049867347 02= 0211410061 03= 0032776263 NTVL 1250 AND DIVIDE BY TWO FOR COM 1750 I. 1260 POSITE FORMULA D4= 0800380036 1760 FOR K2=1 TO R1 1770 R5(K2)=.5+.5#R(K2) 1780 R5(K2+R1)=.5-.5#R(K2) 1238 D5= 0000488906 1230 D6= 000005383 +++++++++++ 1389 25(K2)=58(K2 //4 - 25(K2-/4)=25(K2) 1790 E1=2 515517 E2= 882853 1319 1289 1320 NEXT K2 1910 1330 E3= 010329 1340 E4=1 432788 1330 E5= 139269 1 -LOAD THE LAGUERRE POOTS AND WEIGHTS, PROPERLY CONVE 1820 RTED 1360 56= 001308

1870	OFDER LAGUERPE	R007
1940	5 G WEIGHIS F(1)=51.7011605895	
1850	P(2)=41 9404526477 E.T)=T4 5977007607	
1879	P(4)=28 5787297429	
1330	P(5)=23.515905694	
1900	P(7)=15,4415273688	
1918	P(8)=12 2142233689	
1938	P(10)=7 07033053505	*
1949	P(11)=5.07901861455	
1569	P(13)=2.1292836451	
1976	P(14)=1,14105777483	
1990	P(16)=8,75494104789E-2	
2000	Q(1)=4.16146237E-22 Q(2)=5.0504777E-19	
2929	4(3/#6.297967003E-15	
2030 2040	U(4)#2.127075633E-12 (U(5)#2.862356747E-10	
2.50	Q(5)=1 881824841E-8	•
2079	9/2/255222319331E=7/2 0/2/21/404458687E=5	
2030	Q(9)=2.042719153E-4	
199	4(11)=1.12999000003E-2	
2110	Q(12)=4 73289286941E-2	
2130	Q(14)= 265795777644	
2140	Q(15)=.331057354951 Q(15)=.205151714952	
2169	FOP 12=1 TO N0/2	
2170	- FID+ K2+NG/2/#EXP(-P(K2)) `25(k2+NG/2)#6(kp)//>	· .
	NEXT K2	
	RE UPN	

VOTYPE E: DILLOD. EAS PDI/-PS C REL 10 REL / PROBABALISTIC 10 REL DILUTION MODEL -C RE: FOR POINT SOURCE DESCHARGE :: 2**:**: AUGUST, 1984 55 . REL . IBH-PC AND MS-DOS COMPATIBLE VERSION .0 RE1. HORIZON SYSTEMS CORPORATION (703) 471-0420 :0 **:=**: 15 REA 96 REL. (CO DIM R5#(32),25#(32) 10 DIM R#(8),S8#(8) 20 DIM P#(16),Q#(16),Z9#(32) ;21 CLS 40 PRINT " RECEIVING WATER CONC (CO) PROBABILITY DISTRIBUTION " AND RETURN PERIOD" 50 PRINT " . FOR MULTIPLES OF TARGET CONC" 60 PRINT " DUE TO POINT SOURCE LOADS" TO PRINT T 90 PRINT "POINT SOURCE - RECEIVING WATER" CC PRINT "CONCENTRATION ANALYSIS" -410 PRINT -20 FRINT "--30 PRINT "INPUT COEF OF VAR OF QS, QE, CE" -20 PRINT " RATIO ... 7 C10/AVGQS" RATIO...7Q10/AVGQE" -50 PRINT " -60 PRINT " RATIO...AVG CE/CL" -TO PRINT " BACKGROUND STREAM CONC (CS) IS ASSULED TO BE ZERO" ****** -90 PRINT SOO PRINT "ENTER COEF OF VAR OF QS, QE, CE" 10 INPUT V1, V2, V3 20 PRINT "ENTER THE FOLLOWING RATIOS:" 30 INPUT "7Q10/AVG QS ";F1 540 INPUT "7010/AVG QE ";F2 550 IMPUT "AVG CE/EL ";F3 360 PRINT 365 CLS STC PRINT " COEF OF VAR.....QS = ";V1 SEO PRINT " COEF OF VAR..... QE = ";V2 381 PRINT " COEF OF VAR..... CE = ";V3 390 PRINT SGC PRINT " 7010/AVG CS' = ";F1 -7010/AVG CE = ";F2 SIG PRINT." AVG CE/EL = ";F3 520 FRINT " 630 PRINT 540 PRINT "++

Figure D-5 - PDM-PS program listing - IBM-PC and MS-DOS compatible

```
20 W1-SQR(LOG(1+V172))
30 W2=SQR(LOG(1+V2<sup>2</sup>))
-G W3=SQR(LOG(1+V3^2))
50 N9=SCR(W112+W212)
10
  U9=LCG(F2/F1)+LCG(SCR(1+V2<sup>2</sup>2)/SQR(1+V1<sup>2</sup>2))
  U3=LCG(F3*(1+F2)/SQR(1+V3<sup>2</sup>))
10 00SUB 1160
30 PRINT "ENTER LOWEST, HIGHEST, AND INCREMENT OF MULT OF TARGET FOR"
35 INPUT "WHICH S EXCEED IS DESIRED"; B1, B2, B3
36 IF E1-E2+33=0 THEN GOTO 1120
37
  CLS
13 PRINT " COEF OF VAR.....QS = ";V1
14 PRINT " COEF OF VAR.....QE = ";V2
15 PRINT " COEF OF VAR..... CE = ":V3
Ξ£
  PRINT
  PRINT
        - 11
                   7010/AVG CS = ";F1
S PRINT "
                   7C10/AVG CE = ";F2
.9 FRINT
                     AVG CE/EL = ";F3
C FRINT
1 PRINT "
2 PEINT
  PRINT #
3
           STREAM CONC (CC)"
- 77123
Ξ
  PRINT " NULT OF"; TAB(13); "PERCENT"; TAB(25); "RETURN"
5. PRINT. " TARGET "; TAB(13); "CF TIME"; TAB(25); "PERIOD"
7 PRINT "(CO/CL) "; TAB(13); "EXCEEDED"; TAB(25); "(YEARS)"
3 PRINT "-----"; TAB( 13); "-----"; TAB( 25); "------
O REM - LOAD QUAD. WOTS & ROOTS
0 GOSUE 1410
-C REN COMPUT PORTION OF Q(X) ARGUMENT INDEP OF CO
J FOR I=1 TO NO
S REM - EVALUATE USING INV PROE TRANSFORMATION
2 P9#=R5#(I)
  GCSUE 1310
  29#(I)=LOC(1+EXP(U9-W9#X9))-U3
C
O NEXT I
C REL - CONC LOOP
O FOR CO=B1 TO E2 STEP B3
3 I5=0
C REG - CUAD LOOP - EVALUATE Q(X) = F AND SUM
C FOR I=1 TO NO
.0 X=(LOG(CO)+Z9#(I))/W3
G XO = SGI(X)
\tilde{U} X=APS(X)
-C F=1+X*(D1+X*(D2+X*(D3+X*(D4+X*(D5+X*D6)))))
00 F = .5 * F^{-}(-16)
10 IF X0>0 THEN GOTO 1030
20 F=1-F
30 I5=I5+F#25#(I)
40 NEXT I
50 REL: COMPUTE RETURN PERIOD
60 IC=1/365/I5
```

```
070 I5=100*I5
1000 PRINT USING "###.### ";CO,I5,IO
090 MEXT CC
100 PFINT CHRC(7)
101 INPUT "ENTER (CR) TO CONTINUE, OR 'STOP' ";A3
102 IF ASK>"STOP" THEN GOTO 560
                  110 REL GOTO 790
126 FCR L=1 TO 7-
 130 FRINT
-C MEXT L
tas KEY ON
                 `.`
150 END
160 REM SUBROUTINE TO LOAD NORMAL AND REVERSE NORMAL COEFFICIENTS
180 D2=.0211410001
>>C D3=.0032776263#
200 D4=3.80036E-05
210 D5=4.88906E-05
220 DE=5.383E-06
240 E1=2.515517
250 E2=.802853
   23=.010328
25.0
 270 24=1.432766
220 25=.189259
290 E6=.001308
200 RETURN
310 REF SUBROUTINE TO COMPUTE INVERSE HORMAL TRANSFORMATION
 320 REN POLYNOMIAL APPROX TO INVERSE TABLE
 30 DEF FNC(X#)= X#=(E1+E2#X#+E3#X#^2)/(1+E4#X#+E5#X#^2+E6#X#^3)
 340 .59=1
 349 IF P9#<1E-18 THEN P9#=1E-18
 350 IF P9#<.5 THEN GOTO 1380
 360 PG#=1-P9#
 270 S9==1
 380 P9#=SQR(LOG(P9#~-2))
 390 X9=FXC(P9#)*S9
                      .
 -00 RETURN
 -10 REN QUADRATURE SUBROUTINE - COMPUTE ROOTS AND WEIGHTS
 420 REN IS=INTEGRAL
 130 REAL R5(NO) = NO ROOTS
 440 REM Z5(NO) = NO WEIGHTS
 450 REM LOAD ROOTS AND WEIGHTS FOR 32ND ORDER QUADS
 460 FEM FIRST THE GAUSSIAN, TEEN THE LAGUERRE TERMS
 470 REN QUAD ROOTS & WEIGHTS FOR 16TH CRDER GAUSSIAN
 480 R1=8
 490 R#(1)=-.989400935#
 500 R#(2) == .944575023#
 510 E#(3)=-.8656312024#
 520 R#(4) == .7554044084#
 530 R#(5)=-.6178762444#
 540 R#(6)=-.4580167776#
 55C R#(7)=-.2816035508#
```

50 R#(8) == .09501250984# TO \$8#(1)=.02715245942# 30 S8#(2)=.06225352394# 90 S8#(3)=.09515851168# C S8#(4)=.1246289713₽ 10 S8#(5)=.1495959858# 20 82#(6)=.1691565194# 30 58#(7)=.1826034154# 40 88#(8)=.1894506105# 50 NO=4#R1 50 REH CONVERT GAUSSIAN ROOTS & WEIGHTS FOR (C, 1) INTEGR. INTERVAL TO REA AND DIVIDE BY THO FOR COMPOSITE FORMULA BC FOR K2=1 TO R1 90 R5#(K2)=.5+.5*R#(K2) DO R5#(K2+R1)=.5+.5*R#(K2) $10 \ Z= \#(K2) = S \otimes \#(K2) / 4$ 20 Z5#(K2+R1)=Z5#(K2) 30 NEXT K2 REM LOAD THE LAGUERRE ROOTS AND MEIGHTS, PROPERLY ÷C CONVEPTER 50 REM 16 TH ORDER LAGUERRE ROOTS AND WEIGHTS 50 2#(1)=51.7011603395# 70 P#(2)=41.9404526477# 10 P#(3)=34.5833987023# 30 - F#(4)=28.5787297429# P#(5)=23.515905694# 90 P#(6)=19.1301568568# IC P#(7)=15.4415272688# 30 P≇(ε)=12.2142233689# 40 P#(9)=9.43831433639# 30 P#(10)=7.07033853505# 30 F#(11)=5.07801861455# °C P#(12)=3.43706663389# 30 P#(13)=2.1292636451₽ PC R#(14)=1.14105777483# 0 P#(15)=.462696328915# - F#(16)=.0876494104789# 20 Q@(1)=4.16146237D-22 30 Q#(2)=5.0504737D-18 4C Q#(3)=6.297967003D-15 50 Q#(4)=2.127079033D-12 50 G#(5)=2.862350243D-10 10 C#(6)=1.881024841D-08 30 Q#(7)=.0000006826319331# 30 Q#(8)=.00001484458687# 10 Q4(9)=.0002042719153# 0 Q\$(10)=.00184907094353# 20 Q#(11)=.0112999000803# 30 .94(12)=.0473289286941# :0 C#(13)=.136296934296# 30 Q#(14)=.265795777644# 0 G∉(15)=.331057854951# 10 Q#(16)=.206151714958#

RECEIVING WATER CONC (CO) PROBABILITY DISTRIBUTION AND RETURN PERIOD FOR MULTIPLES OF TARGET CONC DUE TO POINT SOURCE LOADS POINT SOURCE - RECEIVING WATER CONCENTRATION ANALYSIS INPUT COEF OF VAR OF QS, QE, CE RATIO...7Q10/AVG QS RATIO...7010/AVG QE RATIO...AVG CE/CL BACKGROUND STREAM CONC (CS) IS ASSUMED TO BE ZERO ENTER COEF OF VAR OF QS, QE, CE ? 1.5, .2,.7 ENTER THE FOLLOWING RATIOS:7Q10/AVG QS ? .057Q10/AVG QE ? 3.0AVG CE/EL ? .67 COEF OF VAR....QS 1.5 COEF OF VAR....QE .2 COEF OF VAR.... CE .7 7010/AVG OS = .057010 / AVG QE = 3AVG CE/EL = .67ENTER LOWEST, HIGHEST, AMD INCREMENT OF MULT OF TARGET FOR WHICH % EXCEED IS DESIRES? 1,5,1 COEF OF VAR.....QS 1.5 COEF OF VAR....OE .2 COEF OF VAR....CE .7 7Q10/AVG QS = .057010 / AVG QE = 3AVG CE/EL = .67

SI	REAM CONC (CO)				
MULT OF	PERCENT	RETURN	-		
TARGET	OF TIME	PERIOD			
(CO/CL)	EXCEEDED	(YEARS)	_		
1.000	0.894	0.306			
2.000	0.112	2.443			
3.000	0.024	11.313			
4.000	0.007	39.429 117 356			
ENTER <cr> TO</cr>	CONTINUE, OR	STOP'?	-		
COEF OF VAR. COEF OF VAR. COEF OF VAR.	$QS = 1.5$ $QE = .2$ $CE = .7$				
7Q10 7Q10 AV	/AVG QS = .05 /AVG QE = 3 /G CE/EL = .67				
ENTER LOWEST, % EXCEED IS I	HIGHEST, AJJD DESIRED? 2.5, 3	INCREMENT	OF MJLT OF	TARGET FC	R WHICH
COEF OF VAR COEF OF VAR COEF OF VAP	QS = 1.5 QE = .2 CS = .7				
7Q10/AVG QS = 7Q10/AVG QE = AVG CE/EL =	• .05 • 3 .67				
cr	REAM CONC (CO)				
MULT OF	PERCENT	RETURN	-		
TARGET	OF TIME	PERIOD			
(CO/CL)	EXCEEDED	(YEARS)			
2.500	0.050	5.501	_		
2.600	0.043	6.395			
2.700	0.037	7.410			
2.800	0.032	8.558			
2.900	0.028	9.854			
3.000	11 11 / 4				

ENTER <CR> TO CONTINUE, OR STOP? STOP

DISCLAIMER

We have made efforts to ensure that this electronic document is an accurate reproduction of the original paper document. However, this document does not substitute for EPA regulations; nor is it a regulation itself. Thus, it does not and cannot impose legally binding requirements on EPA, the states, tribes or the regulated community, and may not apply to a particular situation based on the circumstances. If there are any differences between this web document and the statute or regulations related to this document, or the original (paper) document, the statute, regulations, and original document govern. We may change this guidance in the future.

Supplemental material such as this disclaimer, a document abstract and glossary entries may have been added to the electronic document.

NOTE TO THE BROWSER

These original guidance documents - enhanced for easier access in 2006/2007 – still contain much of EPA's current thinking with regards to water quality modeling and TMDLs. However, the reader may discover that some of the referenced tools and materials have been superseded or are no longer in general use. Information on the latest EPA-supported and other models is available at the EPA Center for Exposure Assessment Modeling (CEAM), currently located online at http://www.epa.gov/ceampubl/.

GLOSSARY

Activated sludge - A secondary wastewater treatment process that removes organic matter by mixing air and recycled sludge bacteria with sewage to promote decomposition.

Acute toxicity - A chemical stimulus severe enough to rapidly induce an effect; in aquatic toxicity tests, an effect observed within 96 hours or less is considered acute. When referring to aquatic toxicology or human health, an acute effect is not always measured in terms of lethality.

Advanced waste treatment (AWT) - Wastewater treatment process that includes combinations of physical and chemical operation units designed to remove nutrients, toxic substances, or other pollutants. Advanced, or tertiary, treatment processes treat effluent from secondary treatment facilities using processes such as nutrient removal (nitrification, denitrification), filtration, or carbon adsorption. Tertiary treatment plants typically achieve about 95% removal of solids and BOD in addition to removal of nutrients or other materials.

Ammonia - Inorganic form of nitrogen; product of hydrolysis of organic nitrogen and denitrification. Ammonia is preferentially used by phytoplankton over nitrate for uptake of inorganic nitrogen.

Biochemical oxygen demand (BOD) - The amount of oxygen per unit volume of water required to bacterially or chemically oxidize (stabilize) the oxidizable matter in water. Biochemical oxygen demand measurements are usually conducted over specific time intervals (5,10,20,30 days). The term BOD generally refers to standard 5 day BOD test.

Chronic Toxicity - Toxicity, marked by a long duration, that produces an adverse effect on organisms. The end result of chronic toxicity can be death although the usual effects are sublethal; e.g., inhibits reproduction, reduces growth, etc. These effects are reflected by changes in the productivity and population structure of the community.

Combined sewer overflows (CSOs) - A combined sewer carries both wastewater and stormwater runoff. CSOs discharged to receiving water can result in contamination problems that may prevent the attainment of water quality standards.

Complete mixing - No significant difference in concentration of a pollutant exists across the transect of the waterbody.

Concentration - Amount of a substance or material in a given unit volume of solution. Usually measured in milligrams per liter (mg/l) or parts per million (ppm).

Conservative substance - Substance that does not undergo any chemical or biological transformation or degradation in a given ecosystem.

Conventional pollutants - As specified under the Clean Water Act, conventional contaminants include suspended solids, coliform bacteria, biochemical oxygen demand, pH, and oil and grease.

Design stream flow - The stream flow used to conduct steady state wasteload allocation modeling.

Dilution - Addition of less concentrated liquid (water) that results in a decrease in the original concentration.

Discharge permits (NPDES) - A permit issued by the U.S. EPA or a State regulatory agency that sets specific limits on the type and amount of pollutants that a municipality or industry can discharge to a receiving water; it also includes a compliance schedule for

achieving those limits. It is called the NPDES because the permit process was established under the National Pollutant Discharge Elimination System, under provisions of the Federal Clean Water Act.

Dissolved oxygen (DO) - The amount of oxygen that is dissolved in water. It also refers to a measure of the amount of oxygen available for biochemical activity in water body, and as indicator of the quality of that water.

Effluent - Municipal sewage or industrial liquid waste (untreated, partially treated, or completely treated) that flows out of a treatment plant, septic system, pipe, etc.

Heavy Metals - Metals that can be precipitated by hydrogen sulfide in acid solution, for example, lead, silver, gold, mercury, bismuth, copper.

In situ - In place; in situ measurements consist of measurement of component or processes in a full scale system or a field rather than in a laboratory.

Load allocation (LA) - The portion of a receiving water's total maximum daily load that is attributed either to one of its existing or future nonpoint sources of pollution or to natural background sources.

Low flow (7Q10) - Low flow (7Q10) is the 7 day average low flow occurring once in 10 years; this probability based statistic is used in determining stream design flow conditions and for evaluating the water quality impact of effluent discharge limits.

Mass balance - An equation that accounts for the flux of mass going into a defined area and the flux of mass leaving the defined area. The flux in must equal the flux out.

Mathematical model - A system of mathematical expressions that describe the spatial and temporal distribution of water quality constituents resulting from fluid transport and the one, or more, individual processes and interactions within some prototype aquatic ecosystem. A mathematical water quality model is used as the basis for waste load allocation evaluations.

Modeling - The simulation of some physical or abstract phenomenon or system with another system believed to obey the same physical laws or abstract rules of logic, in order to predict the behavior of the former (main system) by experimenting with latter (analogous system).

Monitoring - Routine observation, sampling and testing of designated locations or parameters to determine efficiency of treatment or compliance with standards or requirements.

Nitrification - The oxidation of ammonium salts to nitrites (via Nitrosomonas bacteria) and the further oxidation of nitrite to nitrate via Nitrobacter bacteria.

Organic - Refers to volatile, combustible, and sometimes biodegradable chemical compounds containing carbon atoms (carbonaceous) bonded together and with other elements. The principal groups of organic substances found in wastewater are proteins, carbohydrates, and fats and oils.

Organic matter - The organic fraction that includes plant and animal residue at various stages of decomposition, cells and tissues of soil organisms, and substance synthesized by the soil population. Commonly determined as the amount of organic material contained in a soil or water sample.

Oxidation - The chemical union of oxygen with metals or organic compounds accompanied by a removal of hydrogen or another atom. It is an important factor for soil formation and permits the release of energy from cellular fuels.

Oxygen Deficit - The difference between observed oxygen concentration and the amount that would theoretically be present at 100% saturation for existing conditions of temperature and pressure.

Oxygen demand - Measure of the dissolved oxygen used by a system (microorganisms) in the oxidation of organic matter. See also biochemical oxygen demand.

Oxygen depletion - Deficit of dissolved oxygen in a water system due to oxidation of organic matter.

Partition coefficients - Chemicals in solution are partitioned into dissolved and particulate adsorbed phase based on their corresponding sediment to water partitioning coefficient.

Point source - Pollutant loads discharged at a specific location from pipes, outfalls, and conveyance channels from either municipal wastewater treatment plants or industrial waste treatment facilities. Point sources can also include pollutant loads contributed by tributaries to the main receiving water stream or river.

Pollutant - A contaminant in a concentration or amount that adversely alters the physical, chemical, or biological properties of a natural environment. The term include pathogens, toxic metals, carcinogens, oxygen demanding substances, or other harmful substances. Examples of pollutant sources include dredged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical waste, biological material, radioactive materials, heat, wrecked or discharged equipment, sediment, cellar dirt, hydrocarbons, oil, and municipal, industrial, and agricultural waste discharged into surface water or groundwater.

Quality - A term to describe the composite chemical, physical, and biological characteristics of a water with respect to it's suitability for a particular use.

Reaeration - The absorption of oxygen into water under conditions of oxygen deficiency.

Respiration - Biochemical process by means of which cellular fuels are oxidized with the aid of oxygen to permit the release of the energy required to sustain life; during respiration oxygen is consumed and carbon dioxide is released.

Secondary treatment plant - Waste treatment process where oxygen demanding organic materials (BOD) are removed by bacterial oxidation of the waste to carbon dioxide and water. Bacterial synthesis of wastewater is enhanced by injection of oxygen.

Sediment - Particulate organic and inorganic matter that accumulates in a loose, unconsolidated form on the bottom of natural waters.

Sediment oxygen demand (SOD) - The solids discharged to a receiving water are partly organics, and upon settling to the bottom, they decompose anaerobically as well as aerobically, depending on conditions. The oxygen consumed in aerobic decomposition represents another dissolved oxygen sink for the waterbody.

Simulation - Refers to the use of mathematical models to approximate the observed behavior of a natural water system in response to a specific known set of input and forcing conditions. Models that have been validated, or verified, are then used to predict the response of a natural water system to changes in the input or forcing conditions.

Stabilization pond - Large earthen basins that are used for the treatment of wastewater by natural processes involving the use of both algae and bacteria.

Steady state model - Mathematical model of fate and transport that uses constant values of input variables to predict constant values of receiving water quality concentrations.

STORET - U.S. Environmental Protection Agency (EPA) national water quality database for STORage and RETrieval (STORET). Mainframe water quality database that includes physical, chemical, and biological data measured in waterbodies throughout the United States.

Storm runoff - Rainfall that does not evaporate or infiltrate the ground because of impervious land surfaces or a soil infiltration rate lower than rainfall intensity, but instead flows onto adjacent land or waterbodies or is routed into a drain or sewer system.

Streamflow - Discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term streamflow is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Suspended solids or load - Organic and inorganic particles (sediment) suspended in and carried by a fluid (water). The suspension is governed by the upward components of turbulence, currents, or colloidal suspension.

Trickling filter - A wastewater treatment process consisting of a bed of highly permeable medium to which microorganisms are attached and through which wastewater is percolated or trickled.

Verification (of a model) - Subsequent testing of a precalibrated model to additional field data usually under different external conditions to further examine model validity (also called validation).

Waste load allocation (WLA) - The portion of a receiving water's total maximum daily load that is allocated to one of its existing or future point sources of pollution.

Wastewater - Usually refers to effluent from a sewage treatment plant. See also domestic wastewater.

Wastewater treatment - Chemical, biological, and mechanical procedures applied to an industrial or municipal discharge or to any other sources of contaminated water in order to remove, reduce, or neutralize contaminants.

Water quality criteria (WQC) - Water quality criteria comprised numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or States for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal.

Water quality standard (WQS) - A water quality standard is a law or regulation that consists of the beneficial designated use or uses of a waterbody, the numeric and narrative water quality criteria that are necessary to protect the use or uses of that particular waterbody, and an antidegradation statement.