
SEMI-ANNUAL STATUS REPORT

Error Control Techniques for Satellite and

Space Communications

NASA Grant Number NAGS-557

Principal Investigator:

Daniel J. Costello, Jr.

February 1990

T



Summary of Progress

During the period August 1, 1989 - January 31, 1990, progress was made in the following

areas:

1) Performance Analysis of Bandwidth Efficient Trellis Codes

Two methods have traditionally been employed to analyze the performance of various

coding schemes. One method bounds the achievable free distance of particular classes of

codes, since free distance is the most important parameter that influences the performance

of a code. The other method uses a random coding approach to directly bound the average

error probability of an ensemble of codes. The best codes are then known to perform at least

as well as the bound. This method is the one originally taken by Shannon.

Most of the performance analyses published for trellis coded modulation (TCM) schemes

have used the first method, i.e., to bound the achievable free distance of particular classes

of codes. We have just completed a new analysis of TCM schemes which uses the random

coding approach. A paper summarizing these results has been submitted for publication

to the IEEE Transactions on Information Theory [1]. A copy of this paper is included as

Appendix A of this report. The most interesting aspect of this paper is that the cutoff rate

R0 of the channel is shown to be the most important factor determining the performance

of TCM schemes. This fact can be used to find signal constellations which maximize the

performance of a particular class of codes when combined with an appropriate mapping.

We have also continued our work on the performance analysis of concatenation schemes

with TCM inner codes and Reed-Solomon (RS) outer codes. Our previous work on this

problem, summarized in earlier reports submitted to NASA and detailed in several journal

and conference publications, used an approach of simulating the performance of the inner

code and then using tlS code bounds to determine overall performance. This approach was

necessitated by the fact that all previous performance bounds for TCM schemes treated only

the bit error probability, whereas for concatenation schemes the symbol error probability of

the inner code is the parameter of interest.

We have now developed a new bound on the symbol error probability of trellis codes.

A summary of this work, which was recently presented at the 1990 IEEE International

Symposium on Information Theory [2], is included as Appendix B of this report. Using this

new bound, we are now able to do a complete analysis of TCM/RS concatenation schemes

without resorting to simulations. This will allow us to examine the performance of a much

greater variety of possible concatenation schemes, since simulation studies are particularly

difficult and time consuming for TCM codes. Mr. Lance Perez, a Ph.D. student supported

by the grant, is conducting this phase of our research. We plan to submit a paper for

publication on this new bound in the near future.



2) Construction of Bandwidth Efficient Trellis Codes

In our annual status report of October 1989, we included the final version of a full length

paper in which a large number of new trellis codes were constructed. Most of these codes

used multi-dimensional (multi-D) 4-PSK, 8-PSK, and 16-PSK signal constellations, although

new codes for two-dimensional (2-D) signal constellations were also given. We have since

begun work on the construction of two new classes of trellis codes:

a) Nonlinear 2-D trellis codes which are fully invariant to discrete rotations of the PSK

signal set.
b) Multi-D trellis codes for QAM signal sets.

Rotational invariance is a desirable feature for TCM schemes. Rotationally invariant

codes have the property that if the demodulator locks onto the wrong phase of the received

signal, the decoder will suffer only a slight degradation in performance. (This also assumes

the use of differential encoding and decoding.) This is particularly important in applications

where the traffic (or the channel) is bursty, thereby causing the demodulator to periodically

reacquire phase lock. Unfortunately, no 2-D linear convolutional code can be fully invariant to

discrete phase rotations of the signal set. This is one of the motivating factors in considering

multi-D signal sets, where it is possible to find linear codes with full rotational invariance. On

the other hand, 2-D TCM schemes are much simpler to implement than multi-D schemes and

are often required for this reason. This led us to the construction of nonlinear convolutional

codes for 2-D signal sets which have full rotational invariance. In general, there is a small

price in performance to be paid to guarantee rotational invariance in the 2-D case. A

summary of our new nonlinear codes, presented at the 1989 IEEE Workshop on Information

Theory [:3], is included as Appendix C of this report. This work is being conducted by Mr.

Steven Pietrobon, a Ph.D. student supported by the grant. A full length paper is being

prepared for submission in the near future which will contain an extensive list of nonlinear

rotationally invariant codes for 8-PSK and 16-PSK signal constellations.

In some applications, constant amplitude signals such as PSK may not be required. In

this case, other signal constellations such as QAM can be considered. We have extended our

constructions of multi-D TCM codes to the QAM case. Generally, better performance can

be obtained with QAM than with PSK because there is more flexibility in assigning signal

points, thereby making it possible to achieve larger free distances with the same average signal

energy. A brief summary of our new QAM code constructions, recently presented at the 1990

IEEE International Symposium on Information Theory [4], is included as Appendix D of this

report. This work is being performed by Mr. Steven Pietrobon, a Ph.D. student supported

by the grant. A full length paper is being prepared for submission in the near future which

will contain extensive lists of multi-D codes for a variety of QAM signal constellations.



3) SequentialDecodingof Trellis Codes

Oneof the major thrusts of our future researchefforts under the grant will be the devel-
opment of suboptimum decodingmethodsfor TCM schemes.Optimum (Viterbi) decoding
canonly be usedto obtain moderateerror rateson the order of 10 .4 -- 10 -s on many chan-

nels. To obtain lower error rates would require the use of prohibitively complex decoders

(long constraint or block lengths). Therefore to achieve error rates in the range 10 .6 - 10 .9

will require the use of longer codes and suboptimum (but still very good) decoding methods

which are insensitive to code constraint (block) length. (Another approach to the problem of

achieving lower error rates than can be obtained with Viterbi decoding is to use concatenated

coding, which is under continuing investigation.)

Sequential decoding has long been recognized as a nearly optimum decoding method

whose complexity is insensitive to code constraint length. Therefore sequential decoding can

be used with large constraint length codes. One major problem with sequential decoders,

however, is that long searches are occasionally necessary, and this may result in some lost or

erased data. Therefore, in order to fairly compare sequential decoding with Viterbi decoding,

it is necessary to account for the erasures in some way, since Viterbi decoders never erase

any information.

We have begun the development of an erasurefree version of sequential decoding which

can be directly compared to Viterbi decoding. Some preliminary results of this work, which

were presented at the 1990 IEEE International Symposium on Information Theory [5], are

included as Appendix E of this report. Our erasurefree sequential decoding algorithm, called

the buffer looking algorithm (BLA), appears to perform quite well. Simulation results show

that its performance with a constraint length 13, rate 2/3, 8-PSK trellis code is about idB

superior to Viterbi decoding of a constraint length 8, rate 2/3, 8-PSK trellis code at a decoded

error probability of 10 .5 . At lower error rates, we would expect the relative performance

of the sequential decoder to be even better. A complete comparison of the performance,

complexity, and delay of sequential decoding and Viterbi decoding of trellis codes will be the

subject of future reports, but the preliminary results look very encouraging. Mr. Fu-Quan

Wang, a Ph.D. student supported by the grant, is conducting our research on sequential

decoding. Dr. Daniel J. Costello, Jr., the principal investigator on the grant, has been asked

to give an invited lecture on this research at the 1990 IEEE Information Theory Workshop

to be held in Eindhoven, The Netherlands, in June.
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Abstract

This paper presents an expurgated upper bound on the event error probability of

trelliscoded modulation. This bound isused to derive a lower bound on the minimum

achievable free Euclidean distance di_ of trellis codes. It is shown that the domi-

nant parameters for both bounds, the expurgated error exponent and the asymptotic

df_ce growth rate, respectively, can be obtained from the cutoff-rate R0 of the trans-

mission channel by a simple geometric construction, making Ro the central parameter

for finding good trellis codes. Several constellations are optimized with respect to the

bounds.
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I. Introduction

In recent years bandwidth efficient trellis coded modulation (TCM) has become increasingly

popular and much analysis has been devoted to the performance of these coding schemes

on AWGN-channels (see [1-5] and the references therein). It is well known that for large

signal-to-noise ratio (SNR), the minimum free Euclidean distance d/_ of a trellis code is

the dominant parameter of a code's performance. Much research has gone into the search

for and the construction of codes with large d/_e. While most of this work has focused on

finding good trellis codes with a given signal constellation, the constellation itself is also

a parameter in the system design. There have been a few attempts to design codes using

non-standard signal constellations, like the asymmetric MPSK signal sets introduced in [6].

These codes showed slight performance improvements, but no general rule on how to choose

a constellation is known.

In this paper we show that a signal constellation with a good value of the cutoff-rate R0

[7] will indicate the existence of codes with good d]_e and good performance. This is done

by calculating an expurgated upper bound on the first event error probability of a trellis

code and relating it to d:_.

A code's minimum free Euclidean distance d:_ 1 is often used to obtain an estimate of

the code's error performance as follows:

where rz/_, is the path multiplicity of the code, i.e., the number of error events with distance

d:,_, and Q(x) = f_ 1/v/_exp(x2/2)dx. This approximation provides a good asymptotic

estimate of a code's performance.

This paper is organized in the following way. Section II describes TCM and the definitions

used later. In Sections III and IV we derive a random coding bound and an expurgated

bound on the first event error probability of TCM. The casual reader may want to skip this

derivation and proceed directly to Theorem 1 in Section IV. In Section V we present a strict

lower bound on the event error probability involving d:_,, and, relating it to the expurgated

upper bound, we rederive the lower bound on d/,,_ originally presented by Rouanne and

Costello [8]. In Section VI we develop a geometric approach to constructing the bounds and

determine a number of optimized constellations. Section VII contains the conclusions.

II. Trellis Coded Modulation

A general TCM communication system (Figure l) consists of a trellis encoder, a modulator,

the transmission channel, a demodulator, and a trellis decoder. The structure of a trellis

code is generated by a binary convolutional encoder, which is a finite state automaton with

2" possible states, where _, is the total memory of the encoder. In the minimal realization

[9], the encoder consists of k" feedback free shift register chains of lengths ul,..., u_. We

t Note that all Euclidean distances are normalized, i.e., they are based on unit energy signal constellations.
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assumein this papersthat vl = v2 = "'" = v_ = urn, where vm is the memory length of the

code. It then follows that the shortest non-zero path has length FL= vm + 1. # is called the

constraint length of the code. An extension to different values of vi is generally possible but

messy, and does not seem to provide any additional insight. At each time interval r, the

k-1 .,u_) and makes a transition from its stateencoder accepts k binary input bits (u_,u r ,..

Sr at time r to one of 2 k possible successor states Sr+l at time r + 1.

The h = n - (k - [') output bits from the convolutional encoder and k - k uncoded

, ,_ ,_-1 t,_), calledinformation bits (u_, . k+l) form one of 2" binary n-tuples v_ = ivy, vr

a signal selector. The sequence V = (vl,... ,vl) of signal selectors is the label of a path

through a linear trellis 2, generated by the convolutional encoder, v_ is then mapped into

z_, one of A = 2'_ d-dimensional channel symbols from a signal set ,4 = {as, a2,..., aA} of

cardinality A.
The uncoded information bits do not affect the state of the convolutional encoder and

cause 2 k-_" parallel transitions between the encoder states S_ and Sr+l. A rate /_ = k/n

trellis code transmits k bits/channel signal.

In practical systems, one often uses 2-dimensional (complex) signal sets for their ease of

implementation, and the real part and imaginary part of x_ drive the direct and quadrature

component of the modulator.

III. A Random Coding Bound for Time Varying Trellis Codes

on General Memoryless Channels

In this section we derive an expurgated upper bound on the event error probability of a trellis

code. The derivation is similar to that given in Viterbi and Omura [10] for convolutional

codes. Throughout the derivation we assume that the codes are used in conjunction with

a maximum-likelihood decoder that operates on a decoding metric m(x,y), where x =

(zl,...,zt) is a sequence of transmitted symbols zi and y = (91,... ,!/1) is the corresponding

received symbol sequence. By convention, the signal x with the lowest metric is the most

reliable, i.e., rn(x, y) is some non-negative function of x given y, which is inversely related to

the conditional probability that x was transmitted given that y was received. The decoder

then chooses the message sequence x for which this metric is minimized. It makes an error

if it decodes a sequence x', given that the correct sequence, i.e., the transmitted sequence,

was x. This happens if m(x', y) < re(x, y).

Let t/ and V' be labeled paths through the trellis, i.e., V and V' describe trellis paths

without signals assigned to them. We refer to V as the correct path if it is the one followed

by the encoder. Let V' be a path that diverges from V at node j. We call V I an incorrect

path. Further, let )Y be the set of all incorrect paths V' that diverge from V at node j. The

paths V 1 eventually remerge with V and we call the number of branches over which V and

V t differ the length of V'. Due to the tinearity of the labeling, the sets 1;' for different correct

paths V are equivalent, i.e., they contain the same number of paths of the same lengths. In

2Here linear means that if the binary output sequence V of the eonvolutional encoder is used to label a

path in the trellis, the modulo-2 sum of two labels is a label for another valid path.

3



a particular trellis code,let x be the sequenceof signalsassignedto the correct path V, and

let x' be the sequence of signals assigned to 17'.

Our goal is to obtain an upper bound on the first event error probability P_(j), the

probability that the decoder starts an error event at node j. An error event starts at node

j if the decoder chooses an incorrect path V' with its associated signal sequence x' over the

correct path V with signal sequence x starting at node j, as illustrated in Figure 2.

A necessary but not sufficient condition for such an error event to occur is that the

incorrect path V' accumulates a smaller total metric than the correct path V over their

unmerged segments or time intervals of the trellis. The probability Pc(j) may then be upper

bounded by the probability that any path V' E _3' diverging from the correct path V at node

j accumulates a lower total metric than the correct path V. This probability must then be

averaged over all correct paths V. Letting p(V) denote the probability of path V, we obtain

P_(j)<__p(V)_-_p(y[x)Z{y V'Ev'U V'(m(x',y) - m(x,y) _< 0) } ,
(1)

where V'(m(x',y)-m(x,y) <__0) is a path G V' for which m(x',y)- m(x,y) _< 0, and Z(B)

is a set indicator function such that 27(B) = 0 if B = _, the empty set, and 27(/3) = 1 if

/3 7_ 0. p(ylx) is the conditional probability of receiving sequence y if the encoder follows

path V and transmits the signal sequence x. This conditional probability depends on the

particular channel over which the sequences are transmitted.

If the received signal sequence y consists of real valued symbols, rather than discrete

signal points (unquantized decoding), the summation in (1) is replaced by an integration

over the space of y, i.e.,

P_(J) <- _-_P(V) JYP(YlX)27 {v v,_v,U V'(rn(x"y)--m(x'y)<0)} dy'
(2)

It is, in general, too difficult to evaluate (1) or (2) exactly and we therefore resort further

bounding techniques. Using the inequality 27{U_B_} _< E,27{/3_}, we may immediately

simplify (2) to obtain an upper bound of the form:

P_(j) <_ y_p(V) fyp(y Ix) _ Z{V'(m(x',y) - m(x,y) _< O)}dy.
V V' E V _

(3)

In order for an incorrect path V' to merge with the correct path V at node j + l, the

last u_ entries in the information sequences u'X,..., u 'k associated with V' must equal the

last Um entries in the information sequences ul,..., u k associated with V, i.e., u'/ = ui, for

r E {j + l- urn,...,j + l- 1} and i = 1,2,...,k. That this is the case can easily be seen

bv noting that in order for the two paths V' and V to merge at node j + l, their associated

encoder states must be identical. Because an information bit entering the encoder can affect

the output for u_ time units, this is also the time it takes to force the encoder into any

given state from any arbitrary starting state; in particular, to have V' join V at node j + I.

Because the remaining information bits u¢ for r E {j,... ,j + l - #} are arbitrary, we have

4



M _< (2 k - 1)2 k(t-u) incorrect paths V' of length 1. (Note that the choice of the information

bits at r = j is restricted because we stipulated that the incorrect path diverges at node j,

which rules out the one path that continues to the correct state at node j + 1. This accounts

for the term 2 k - 1 in the expression for 3I.)

\Ve now proceed to evaluate fy p(ylx)Z{V'(m(x',y)-rn(x,y) <_ 0)} for a particular path

pair (V', V) of length I. Let us write (3) as

P_(j) <_ y-_p(V) _ Pr(x _ x'), (4)
V V'E_ '

where

P(x + x') __a fv p(y}x) 2"{V'(m(x',y) - m(x,y) _< 0)}dy

= Eylx[Z{V'(m(x',y)-m(x,y ) <_ 0)}],

and Eylx denotes conditional expectation. We now use the Chernoff bounding technique [11]

and overbound 2"[a _< 0] by exp(-.Xa) to obtain

P(x --+ x') _< Eylx [exp(-.X {m(x', y) - rn(x, y) })] _ C(x, x', .\),

where _ is a non-negative real valued parameter over which C(x,x',,\) is minimized to

obtain the tightest possible bound. We call C(x,x',)_) the Chernoff bound between the

signal sequences x' and x.

We now express (4) as the sum over individual sequences of length l

P_(j)

o_

_<Ep(v)E E
V l=u V{_V[

= E E E C(x,x,,,\),
t=. t'_ev, _Tev[

(,5)

where )?t is the set of all correct paths I/_ of length l starting at node j and l,'[ is the set of

all incorrect paths I_' of length l unmerged with Vt from node j to node j + l. Note that

U, v; = v'.
Pc(j) is the event error probability of a particular code since it depends on the signal

sequences x and x' of the code. The aim of this section is to obtain a bound on an ensemble

of trellis codes, and we therefore must average over the event error probabilities of all the

codes in the ensemble, i.e.,

oo

Pe(j) <_ _., _ p(Vt) _ C(x,x',)_), (6)

l=_, v_v_ v,'_v[

where the overbar denotes an ensemble average.

Using the linearity of the expectation operator and noting that there are exactly N = 2 kt

equiprobable paths in l/t, because at each time interval there are 2 k possible choices to



continue the correct path, weobtain
1

<_iv: Z Z
l=u- _ev, v,'eg

,2)O

= _ 7r,(j), (7)

where we have implicitly defined _t(j).

We will now proceed to evaluate rrl(j). Let Xl,''',XN be a set of possible correct signal

sequences associated with the paths _'} E Vt as we go through the codes in the ensemble and

let qlN(xl,"'", XN) be their probability of occurrence. Note that there are M incorrect paths

' .. , ' that spread around each correct path Vt. BecauseI,}' 6 )2[ with signal sequences xl, • x M

each incorrect path in _2[ is also a possible correct path V} of length l, we have V[ C l?t.

Averaging over all codes in the ensemble is the same as averaging over all possible signal

sequences in these codes, i.e., over all assignments of signal sequences x to paths V. We then

obtain

N M
l

< .7, x ,A)
xl XN h=l i=1

1 ,v i

- E E E q, (xh, (s)
h=l i=1 xh x I

where in the last step we have summed over all pairs of sequences x, x' # Xh, x{. We have

now obtained a bound where we can limit our attention to one correct signal sequence Xh

and one incorrect signal sequence x_, both of length I.

In order to proceed further, we will now restrict our attention to memoryless channels.

On a memoryless channel, the metrics become additive over the individual time units, i.e.,

l

= >).
r----1

This allows us to rewrite (5) as

l l

C(x,x',A) = 1-IC(x_,x',A)= rI Ey, lx,[exp(-A{rn(x'_,Y')- m(x"Y_)})]'
r=l r=l

' and Xr.' A) is the Chernofffactor between the signals x_where C(x_, x_,

We now assume further that in composing our code ensemble, each individual signal in

each sequence is chosen independently according to a common probability distribution q(x),

i.e., q_(xh) l lI'I7"-----1 '= YI_=l q(xh,) and ql(x'ilXh) q(x},) respectively. In order to make this

possible we must assume that the trellis codes are time-varying in nature, for otherwise each

symbol would also depend on the choices of the um last symbols. We now obtain a much

simpler version of the above bound, namely

N _1 l

rq(j) < _ __, _ _ __, 1-I q(x_)q(x',)C(x_,x',,A ). (9)
h=l i=l x x _ r=l



Because the choice of the signals x, and x'_ does not depend on the particular signal sequences

xh and x_, we dropped the dependency on h and i in (9). Upon interchanging multiplication

and summation we obtain

1 N 5,1 l

7rdJ) < 97 _ _ rI _ _ q(x_)q(x'_)C(x_,x'r,A)"
h=li=lr=l xr :c_

(10)

The signals x_, x' r are chosen randomly from the signal set A = {al,..., @4}, where p(a_) is

the probability of choosing ap, i.e., q(xr) = p(ap) if xr = ap. We may now rewrite (10) as

1 N M l A A

<- 97 _ _-' rl _ __,p(a,,_)p(ap)C(a,,_,ap, A)
h=l i=1 r=l m=l p=l

-- 9kl E E EP(am)p(ap)C(am, ap ,)_
h=l i=1 m=l p----1

\m=l p=l

Let us now define R0(p) as

Ro(p) a= _ log 2 rn_n

A A

__ p(a,_)p(ap)C(am, ap, A ).
m=l p=l

(11)

We may now finally evaluate the average event error probability P_(j) at time unit j as

P_(j) <_ El_. tel(j)

<
oo

(2 k _ 1)2-urn(p) _ 2k'2 -sin(p)
8----0

(2 k - 1)2-.re(p)

1 -2-(R°(P) -k) ; 0 < k < Ro(p).

Since k is the number of information bits transmitted in one channel symbol x_, we may

call it the information rate in bits per channel use and denote it by the symbol ft. P_(j) is

independent of the node j and we may thus drop the parameter j and obtain

< (2n - 1)2-uno(p)
- 1 - 2-(P_(P) -n) ; 0 < R < Ro(p). (12)

The parameter

m ))Ro _ maxn0(p) = max -log 2 n _ Y_p(am)p(ap)C(am,a_,,._
p p

rn-----1 p----1

(13)



is the cutoff-rate of the channel and (12) holds for all rates R < Ro(p). We will later use the

uniform distribution p = 1/A in (13) and refer to R0 = Ro(1/A) as the cutoff rate 3 unless

noted otherwise, even though the strict definition of cutoff-rate is (13).

Note that R0 depends on the particular metric m(yr, xr) which is used by the decoder.

If the decoder uses the maximum-likelihood (ML) metric for a memoryless channel, i.e.,

m(y,x)

l

= -log(Pr(y]x)) = -log 1-I Pr(y_]x_)
r=l

l l

= _-_(-log(Pr(y_lx_)))= _-_'m(x_,yr),
r----I r----I

(13) becomes the channel cutoff-rate for the optimum receiver, which is the usual definition

of R0 [7]. \Ve will denote the value of )_ which maximizes the (13) by Am. In this case, the

Chernoff factors will be written as C(am, ap) _- C(am, ap, Am).

The actual evaluation of the maximum-likelihood metric for most channels is not simple,

however. In fact, only for the AWGN-channel does the maximum-likelihood metric assume

a form simple enough to be implemented in decoding circuits [7]. For the AWGN-channel,

the maximum-likelihood metric is the squared Euclidean distance between the received se-

quence y and the transmitted sequence x, i.e., rn(y, x) _ 12., = E_=1 [Y_ - x_ With this metric

(13) is minimized by setting ,\ = )_no = 1/(2N0), and the Chernoff factors turn out to be

exponentials in the squared Euclidean distance, i.e.,

E-_ x ;2

C(x , = e-. o .-..l ,

where Es is the average signal energy.

From this it is easily seen that a code's performance is dominated by the two distinct

sequences xl and x2 that are closest to each other in terms of squared Euclidean distance.

Their distance is referred to as the minimum free squared Euclidean distance, or d}_, of the

code, defined as
l

d}r_ A= min _-_ Ixl_ - x_l 2.
XI_X2 r=l

Figure 3 shows R0 forthe AWGN-channel as a function of the ratioof the average signal

energy Es over the average noisepower No fora number of popular signalconstellations.Itis

interesting to note that rectangular constellations fare slightly better than constant envelope

constellations with the same number of signal points. The reason for this lies in the added

flexibility provided by the amplitude modulation in the case of rectangular constellations.

IV. Expurgated Error Bound

In this section we derive an expurgated bound on the event error probability which improves

the R0-bound, especially for rates R significantly below R0. The event error probability for

3R0(1/A) is sometimes referred to as the symmetric cutoff-rate.



e_lv_(J ) <-

Applying the inequality (see e.g. [11])

a particular correct path II_ is a special case of (4), i.e.,

Z C(x,x', _).

to (14) we obtain

(z 01"Ea____ a ,
I

0<s_l,

Ptavo(J)-< E c'(x,x',,\).
V'EW

Following analogous steps as those leading from (5) to (7),we obtain

oo

P:lvc(J) <- _ __, C'(x,x',A)
l=, v,,ev I

c<)

= E _,(J,_, v;),
l=p.

where for memoryless channels r,t(j, s, i/_) is given by

M

_,(j,_,v_) <_ EEEq,_(x_,x',)C'(x_,x',,A)
/=1 Xh X_

<
(2 k -- 1)2k(1-") \_==l_=lP(am)p(ap)CS(am, ap, A)

Note that rrl(j, s, V_) is independent of V, i.e.,

and

_'t(j, s, _) = _'t(j, s) ; for allV_EV

(14)

t=O

(2 k - 1)2-,E(_)

= 1 - 2-(E0) -k) ; 0 < } < F_,(s).

< (2 k - 1)2-#E(*) _-'_ 2kt2-tE(_)

P2lt_ (J) = P:(J )'

i.e., P_(j) averaged over all time-varying trellis codes is independent of the correct path

through the trellis and averaging over all correct paths becomes trivial. We now define E(s)

aS
A A

E(s) _=-log2m_n _ __,p(a,_)p(ar,)C_(ar_,ap, A),
m----1 p=l

and proceed to obtain

oo

P$(j) <_ E_,(j,_)



P:(j) is the the event error probability Pc(j) raised to the power s, averaged over all codes

and all correct sequences. There must then be at least one code in the ensemble for which

P:(j) <_ P$(j). Using this in the equation above we obtain an expurgated upper bound on

the event error probability of the best trellis code in the ensemble

- (Pc< p,/s < ,
- - 1-2 -(E(')-k)] " • 0< k< E(s)O<s <_1,

where we have again dropped the dummy parameter j. It is sometimes convenient to express

this bound as a function of the memory order um of a code. Since um = It - 1, we obtain

Theorem 1: There exists a rate R = k trellis code, with a trellis generated by a convolutional

encoder with register lengths vi = v,,, for 1 <_ i <_ k, using a signal constellation .A =

{ao,'", aA-1} of cardinality A whose error event probability Pc is bounded above by

Pc _< 1

./'or any s and R such that 0 < s < 1 and 0 < R < E(s), where

A A

E(s) A _log2mi n _ _-_p(am)p(%)C_(a,._,av,,\).
m=l p----1

V. Bounds involving the Free Euclidean Distance

In this section we restrict ourselves to AWGN-channels, the most widely used channel model.

All results, however, can be extended to general memoryless channels. The following theorem

gives a strict lower bound on the average first error event probability Pc, i.e., Pc(j) averaged

over all time units j, for trellis codes used on an AWGN-channel.

Theorem 2: The average event error probability P_ of a trellis code on an A WGN-channel

with one sided noise power spectral density No is lower bounded by

1 _piQ di
re>--- /ma----'7 i= 1

i ,1where di is the minimum normalized Euclidean distance di = min _9=1 [x_ - x_ achiev-
X ,X_ E S

A aable between a particular correct sequence x and any incorrect sequence x', Es = _i=, P( i)[ai[ _

is the average signal energy, Im_. = max li, where li is the minimum length (in branches) of
I

the error events that achieve the minimum distance di, and Pi is the probability that the min-

imum distance sequence pair x,x' has distance di. nd is the number of different minimum

distances di achievable in a particular code, where da < d2 < ." < d,_d, and dl = di_ is the

minimum free Euclidean distance of the code.

Remark: Since trellis codes, in general, are non-linear [1-3], the minimum Euclidean distance

di among all error paths V' with respect to a particular correct path V depends on V. Then

pi is the fraction of correct paths whose nearest error path is at distance di.

10



Proof." Assume that we want to bound the event error probability at node j (Figure 4). Let

];'(j) be the set of paths diverging from the correct path at node j. Let x' be the signal

sequence on a path V/E l;[(j) of length I. Assume that the correct path is V. Denote the

probability that the decoder follows V for at least 1 time units by Pc. Further, denote the

set of error paths diverging from V at node j + r by V'(j + r), and let Pc be the probability

that the decoder chooses any path in the set g __aY'(j) U V'(j + 1) U... U l;'(j + l - 1), i.e.,

is the probability that the decoder diverges from the correct path before node j + I. P_

is lower bounded by

P, >_ P(x _ x'). (15)

This follows from the fact that eliminating all signal sequences but x _ from £ allows us to

expand the decision regions of both x and x _, thus increasing Pc and decreasing 1 - Pc = Pc.

On the other hand, Pc may be upper bounded tightly by

<_Re(j) + P (j + 1) +... + Po(j + l - 1). (16)

In order to proceed further, we combine (15) and (16) and average over all possible time

units and correct paths V 4, i.e.,

P(x ---, x') _< Pc(j) + Pe(j + 1) +... + P_(j + l - 1).

Due to the linearity of the expectation operator

Pe(j) + P_(j + 1) +... + P¢(j + l- 1) = Pc(j) + P_(j + 1) +... + P_(j + l - 1) = IP_(j),

since the average first event error probability P,(j + r) is independent of time when averaged

over all possible time units and correct paths. If we denote this average first event error

probability by P_ we obtain from above

P(x --* x') < IP,. (17)

Note that (17) holds for any incorrect path E V' and that l is the length of this path.

We now also carry out the averaging on the left hand side of (17), where in each case we

choose the incorrect sequence x _ such that Ix- xq is minimized, which yields the tightest

possible lower bound. This sequence has length li which possibly differs from l in (17). This

causes the dilemma that the chosen error sequences x _ may not all have equal lengths l_,

raising the question of which l to use in (17). To guarantee that the bound in (17) is not

violated, we let l be the maximum length of the incorrect paths chosen, denoted by /max.

For the AWGN-channel with one-sided noise power spectral density No, the two code word

error probability P2(x _ x') is given by

(ix--x'f)p (x x') = Q \ ,

4Here the overbar denotes the averaging over the correct sequences for a particular code, not an average
over a code ensemble as in the two preceding sections. For time invariant codes, the average is reduced to
an average over all correct paths.

11



I-1
,,,here Ix-x'[ = _/}2j=0(xj - z})2 is the Euclidean distance between the two signal sequences
x and x'.

For some nodes and sequences x, the nearest neighbor is at distance

dl = minx.x, Ix - x'] = d/tee, for some it is at distance d2, etc., up to some largest distance

d,_. Further, let li be the minimum length of the error event that achieves di. If we collect

all the node error probabilities and weight them according to their probability of occurrence

pi, we obtain from (17)

[maxP_ >__ P2(x---+ x I)

= i_ t=PiQ di , i=1 Pi = 1,
(18)

where pi denotes the probability that the nearest incorrect sequence x' is at distance di, thus

proving the theorem. Q.E.D.

Note that Theorem 2 is valid for time-invariant as well as for time-varying trellis codes,

while we had to assume time-varying codes in the derivation of Theorem 1. We now combine

these two theorems. Using the well-known approximation of the Q-fimction [7, page 83]

1 f .2 1 _d.

,/=27 (1- <

in Theorem 2 and neglecting all terms i > 1, we obtain s

(P, ___ ,/_/------_exp -d/r_ 4

P' ( E'/X°(I +O(Es/N°)))-- _/_--_ll exp-d}ree T

+ In

(19)

,,,here O(E,/No) is a quantity, that goes to 0 as E,/No ---+oo.

Specializing Theorem 1 to AWGN-channels, we obtain

_ - 9-"... , E(s) > R,P_ < 2 E(')-R- 1 - (20)

where0<s < 1 and

.4 A _

E(s) =-log 2 _ _-'_.p(am)p(a,)e _ , E,/No.
m=l p=l

We thus have an upper bound (20) and a lower bound (19) on the first event error

probability, of trellis codes on AWGN-channels, and therefore

Px (1 9-R) _ (ln2)um 1v_ll exp -d}_e_ 7 (l+O(Es/No)) < --_ exp s E(s)-'_ ln(2E(*)-n-1)

5This also allows us to set lmaa = ll.

12



where dr,,, is the normalized minimum free Euclidean distance of the best trellis code, since

tile upper bound is for the best trellis code (Theorem 1). We may take the natural logarithm

of both sides to obtain

2 E,,/No(14 + O(Es/NO)) <_ (ln2)umE(S)s - sl ln (2_:(')-n 1)

1
+ -ln(1-2 -R)

8

d}_,_(1 +O(E,/No)) >

4
4(ln2)umE(s)-4- --In (2 E(_)-R - 1)
sE,/No sE,/No

4 (1 2 -R) 41n(x/_l,/p,)E,/----YoIn - - E /Xo

For simplicitv, let us denote _ by a. Then we obtain4

a} o.(1+ o(E/Xo))>_
(ln 2)umE(a) O (E(a)) 41n(x/:_l,/p,)

(21)+
a a E_/No

where

O(E(a)) = ln(2 m(_',-n-1)-ln(1-2 -R)

A A

E(a) = -log 2 _ _-_p(a,_)p(ap)e -_'ta''-a_'t;,
'm=l p=l

E_/No
0 < a<--

-- -- 4

We can now obtain a lower bound on the minimum free Euclidean distance d1_ of the best

code by letting E,/No --* _ in (21). This gives us the same bound derived in a different

fashion by Rouanne and Costello [8], i.e.,

(ln(2)umE(a) O(E(a))) (22)d}_ _> max + , E(a) > R.
a>0 Oz ol

On the other hand, (20) can be written as

p_ _< 2-,,,,E_*, (23)

where from the definition of a the expurgated exponent E_ is given by

max (ff.__+O(E(a))_'_Es/No E(a) > R.
E__ -a (24)

o<_< E__2_ (ln2)uma ] 4 '

If the maximizing value of a in (22), am_,, is smaller then (E,/No)/4, maximizing the

minimum free Euclidean distance is the same as maximizing the expurgated error exponent

EC'X *

13



For large urn, tile contribution of the term ®(E(a)) in (22) and (24) becomes negligible,

and we may form tile asymptotic expurgated error exponent

Ee_ = max
o<_< E__ a 4

E(c ) > R, 25)

and the bound of (22) becomes

d}ree 4 E(ctmax) 26)
(ln2)um - E_ Es/No - amax '

where _max is the value of a which maximizes (25) and d2e/um/ is the asymptotic distance

growth rate. If C_m_x _< (Es/No)/4, then a signal constellation that maximizes the bound

on the free distance will also maximize the expurgated error exponent. If, however, OfmtLx

(E,/No)/4, then the error bound (23) reduces to

1 -2 -R
_ 2 -_''_" R0 > R, (27

P_ < 2 _-n - 1

where

A A _ E,/_0
R0 _-log2 _ _-]P(a_)p(av)e- ' (28)

m:l p=l

is the cutoff-rate of the constellation on an AWGN-channel, and no expurgated error bound

exists.

Maximizing Ee_ is the same as maximizing the function E(a)/a, which is accomplished

easily with the help of the following lemma, which is proved in the appendix.

Lemma 3: E(c_)/a is a monotonically decreasing function of a.

Since E(a)/a is a monotonically decreasing function of a, (25) achieves its supremum at

the smallest value a such that a > 0 and E(a) > R. Since E(a), on the other hand, is a

monotonically increasing function of c_, _,,_,, is the smallest value of c_ such that E(a) > R

and is given by the implicit equation

)E(c_m_x) = R=-log 2 Y_p(a_)p(av)e -_''''1_"-_'1_ •
m=l p=l

(29)

VI. A Geometric Construction

\Ve now show how E_ and O_ma x can be constructed from a graph of the cutoff rate Ro. As

an example consider the 8-PSK constellation whose cutoff-rate R0 in bits/signal is shown

in Figure 5 (dotted line). When E,/No > 4am, x, (25) implies that E_ is a linear function

of E,/No and, as can be seen from (29), its slope E(o_m,,,)/4ama.,, depends only on the rate

R for a fixed constellation. As E,/No ---* 4C_m_x from above, E_ --* R0. The higher the

available energy, i.e., the larger E_/No is for a particular R, the larger E_ will be. In Figure

14



5, E,_ is shown as solid lines over the range where (23) exists for several values of R. For a

code with a larger value of R, the expurgated exponent grows more slowly with E,/No and

a larger E_/No is required for the expurgated bound to exist.

With these preliminaries, E,_ as well as the asymptotic distance growth rate, can easily

be constructed from a graph of the cutoff-rate R0. This construction is also illustrated in

Figure 5.

Construction of the asymptotic expurgated error exponent E,_ from the cutoff-rate Ro:

, Choose tile value of the code rate R. The cutoff-point is the intersection of a line

a distance R above and parallel to the E,/No-axis with the cutoff-rate curve. The

z-value of the cutoff-point is 4am_x.

2. Draw a straight line g through the origin of the graph and the cutoff-point.

3. The expurgated exponent for any E_/No > 4aro._x is the y-value of g at that value of

z 15%.

2
The asymptotic bound on dfr_, from (26) is 4(ln 2)urn times the slope of g.

We should note the importance of R0 at this point. If a constellation C1 has a higher

value of R0 than constellation C_ for some range of the signal-to-noise ratio Es/No, then

is evident from the above construction that trellis codes using constellation C1, at a rate

R such that 4am_, (the x-value of its cutoff-point) fMls into that range, will have a larger

expurgated error exponent E,, as well as a larger asymptotic bound on the achievable free

Euclidean distance df_,, than trellis codes using constellation C2. The merit of a constellation

in conjunction with trellis codes can therefore be judged on the basis of its cutoff-rate R0, and

it is not necessary to evaluate either the expurgated bound or the bound on the minimum
free Euclidean distance.

A constellation can now be optimized for Euclidean distance as well as event error prob-

ability by optimizing its cutoff-rate. Consider the upper envelope of the cutoff-rate curves

for a set of possible signal constellations. Then using the above construction, the desired

code rate R determines the constellation with the best cutoff-rate. This constellation then

optimizes the Euclidean distance and the event error probability for this code rate R.

As an example of constellation optimization we have numerically optimized a pulse am-

plitude modulation (PAM) constellation with 8 signal points in Figure 6. It is interesting

to see that for very small signal-to-noise ratios, Es/No <_ ldB, the resulting constellation

is in fact only 2-valued (BPSK). For larger Es/No, successively more signal points move

away from the clusters to form higher-sized constellations. At values of Es/No > 13dB, the

constellation with uniform spacing (8-PAM) becomes optimal.

This optimization gives a cutoff-rate gain of up to a factor 2 (3dB) in Es/No, as shown

in Figure 7. This may be important for the construction of trellis codes for very low Es/No

applications. It also confirms the well accepted observation that small-sized constellations

are preferable for small values of Es/No. The optimization of a PAM constellation with 4

signal points gives similar behavior, with much smaller gains in Es/No, however.

15



It is not hard to showthat the regular, unit-energy constrained,2-dimensionalconstel-
lation with 4 signal points (QPSK) is optimal in the abovesensefor all valuesof Es/No.

\Ve have further observed numerically that the corresponding optimal circular constellation

with 8 signal points is also regularly spaced (uniform 8-PSK).

VII. Conclusions

\Ve have presented an expurgated bound on the first event error probability of trellis coded

modulation on AWGN-channels. The asymptotic form of this bound is equivalent to known

bounds on the minimum free Euclidean distance. The expurgated form of the bound gives,

however, more information since it does not require an infinite signal-to-noise ratio to eval-

uate. The expurgated bound is a linear function of the signal-to-noise ratio and a simple

construction, based on R0, has been presented. The bound can also be used as a means of

comparing different signal constellations.
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IX. Appendix: Proof of Lemma 3

We must show that _ is a monotonically decreasing function of a. Let F(a) = E-I-_. Then

F(.+c)
1

a+¢

1 a

aa+s

1
log2

--log 2 _ _--_p(a__,_)p(a_p)exp (a + e) am --_av 2
m----1 p----1

- log: _ _ p(a_m)p(a_p) exp (a + _) a_m - a_v
m=l p=l

y_p(a_m)p(a_p)ex p (a+e)a__m-a_v 2
m----1 p=l

We now use 3ensen's inequality (see, e.g., [12, appendix B]) for the special case X--5 __. _-Y_,

with 3 < l, where the overbar denotes expectation, and obtain

F(_ + c) _< -l-log 2 _ _p(a_m)p(a_,)exp\ _-_T___ __2
O_ m=l p=l

_< --- log 2 _ _ p(am)p(a_p) exp a _am - _av 2
m=l p=l

_ F(_).

Thus F(a) is monotonically decreasing, which proves the lemma. Q.E.D.

17



References

it] G. Ungerboeck, "Trellis-Coded Modulation with Redundant Signal Sets Part I: Intro-

duction", IEEE Communications 3lagazine, Vol. 25, No.2, pp. 5-tl, February 1987.

[2] G. Ungerboeck, "Trellis-Coded Modulation with Redundant Signal Sets Part II: State

of the Art", IEEE Communications Magazine, Vol. 25, No.2, pp. 12-21, February 1987.

[3] G. Ungerboeck, "Channel Coding with Multilevel/Phase Signals", IEEE Trans. Inform.

Theory, Vol. IT-28, No.l, pp. 55-67, January 1982.

[4] G. D. Forney, Jr., "Coset Codes-Part I: Introduction and Geometrical Classification",

IEEE Trans. Inform. Theory., \1ol. IT-34, No.5, pp. 1123-1151, September 1988.

[5] G. D. Forney, Jr., "Coset Codes-Part II: Binary Lattices and Related Codes", IEEE

Trans. Inform. Theory., Vol. IT-34, No.5, pp. 1152-1187, September 1988.

[6] D. Divsalar and M. I(. Simon, "Combined Trellis Coding with Asymmetric Modula-

tions", IEEE Trans. on Commun., Vol. COM-35, No.2, pp. 130-141, February 1987.

[7] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley,

New York, 1965.

[8] M. Rouanne and D. J. Costello, Jr., "A Lower Bound on the Minimum Euclidean

Distance of Trellis-Coded Modulation Schemes", IEEE Trans. Inform. Theory., Vol

IT-34, No.5, pp. 1011-1020., September 1988.

[9] G. D. Forney, "Convolutional Codes I: Algebraic Structure", IEEE Trans. Inform. The-

ory, Vol. IT-16, No.6, pp. 720-738, November 1970.

[10] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding,

McGraw-Hill, New York, 1979.

[11] R. G. Gallager, Information Theory and Reliable Communication, Wiley, New York,

1968.

[12] R. J. McEliece, The Theory of Information and Coding, Encyclopedia of Mathematics

and its Applications, Volume 3, Addison-Wesley, London, 1977.

18



Figure Captions

Figure 1: Trellis coded modulation using quadrature modulation.

Figure 2: A correct and incorrect path pair through a trellis.

Figure 3: Cutoff-rates for different signal constellations for the AWGN-channel.

Figure 4: Some error paths diverging from the correct path at node j.

Figure 5: The cutoff-rate R0 and the expurgated error exponent of 8-PSK.

Figure 6: Optimized 4-PAM and 8-PAM constellations for several rates R.

Figure 7: Optimized QPSK and 8-PSK constellations for several rates R.
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Figure 2: A correct and incorrect path pair through the trellis.
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Introduction

_o In concatenated coding systems using Reed-Solomon (RS) outer

codes over GF(2 b) and ideal symbol interleaving between the

inner and outer code, the system bit error rate (BER) is closely

approximated by

i=t+l

1- p_)_,v-i (1)

where P_ is the symbol error rate (SER) out of the inner decoder.

• Thus, for a given outer code the performance measure of the

inner code is the SER and not the BER.

• For convolutional and trellis inner codes, simulation is gener-

ally used to obtain Ps- The byte size of the outer code symbol

requires a very large number of bits to be simulated for statis-

tically valid points.

-• Goal: Find an analytic method for determining Ps for convolu-

tional and trellis codes. (Onyszchuk and McEliece for 1In convolu-

- tional codes)



Conceptual Motivation

Reinterpret the union bound on the probability of bit error for

a convolutional code given by

Pb= -_ Z BaRd (2)
d=dfree

where Bd is the total number of nonzero information bits on all

- weight d paths and I'd is the two codeword error probability.

_, Traditionally, this bound is developed by considering a trun-

cated trellis as a block code and then computing the average

_ number of information bit errors per decoded information block.

Another derivation of this bound is useful.

Example: r = 1/2, m = 2, convolutional code with the following

feedforward encoder realization and trellis.



L | !

O

-0 An error event of weight d occurs with probability Pd. By simple

counting, this error event can cause the information bit on the

jth branch to be in error in precisely Bd = 2 ways. Where Bd is

the number of nonzero informaton bits on the incorrect path.

Thus, the BER due to this error even,, denoted Pbd, is

Pb. = BdPd (3)

Summing over all possible error events yields

eb= E BdPd (4)
d=d free

-, The counting technique used to determine the upper bound on

Pb can be extended to bound the SER out of the inner decoder.



- Bound on the Symbol Error Rate

Example: r = 2/3, m = 1 convolutional code with a feedforward

encoder and the following trellis and with 4-bit symbols for the

-outer RS code.

• • t • •

|

_IT 5Y_ _0 L..

Assuming that symbol boundaries are always aligned with trel-

lis nodes, the error event shown can cause the particular 4-bit

symbol to be in error in 3 ways, each occuring with probability

Pd.

v Thus, the probability of symbol error due to this error event is



,An error event of length l branches and weight d, can cause

- an error in at most (b/k +l-rn- 1) ways, each occuring with

probability Pd.

nn ZEr_O @_,aNC_4_-_
A

f I
= I I I I

._ PoRQNC N

% _r_RNC_S

_, The -m term is due to the fact that in feedforward realizations,

all error events end with m consecutive 0 branches.

• Summing over all error events of all lengths gives,

C_O _0

P_ < E E (b/k + l - m- 1)AdjPd (6)
d=dfree /=m+l

where Ad.l is the number weight d paths with length l. This can

be simplified to

where

P_ < (b/k- m- 1) E
d=dlree

AdPd + E LdPd (7)
d=d free

Ld= E 1Ad,: (8)
/=m+l

is the total leneth in brmlvhes of all weight d paths.

, Performance Factors:

1. Path multiplicity, A_, is dominant.

2. Degree of byte orientation, b/k. (Lin-nan Lee)

3. Length of the error events. (Simon and Divsalar)



• In terms of the code transfer function

P_ < K(df) ((b/k - m- 1)T(D ,L,I) +
OT(D,L,I)

OL
(9)

• In systematic feedback encoder realizations, error events cannot

end in all zeroes branches. Thus, the bound becomes

P_ < K(df) ((b/k- 1)T(D, L, I) + OT(D, L, I) )OL (10)

Trellis Codes

• For appropriate trellis codes, a bound on the SER can be ob-

tained using the Zehavi and Wolf transfer function.

• For the LxMPSK codes constructed by Pietrobon, et.al, and

Ungerboeck, systematic feedback encoders are used and the

_ bound becomes

Ps <_ K(df) ((b/k- 1)T(W,L,I) + OT(W,oLL, I) ) I L=I=I

W=exp(-E_/ _No)

(11)



Simulation vs. Bound

Ungerboeck .- 2, 8PSK Code
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Simulation Results

Multi-Dimensional 8PSK Trellis Codes
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Conclusions

• An upper bound on the SER for convolutional/trellis codes can

be obtained using a transfer function approach.

_. Feedforward realizations of a particular code may perform bet-

ter than the feedback realization of the same code in concate-

nated systems.

• For concatenated systems, it may be better to design the inner

code to have a short dfree path, i.e. to design the dfrce path to

be a parallel transition.

• N[ulti-D trellis codes with byte oriented branches do not im-

prove in SER compared to 2D Ungerboeck codes because of

high path multiplicities and dense spectra.
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A General Parity Check Equation for

Rotationally Invariant Trellis Codes
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Trellis Codes With Linear Parity Check Equations.

• For rate k/(k + 1) trellis codes, the parity check equation

defines the relationship between the k + 1 binary output

sequences y°(D), y_(D),., y_'(D).

• A linear parity check equation:

H_(D)y_(D) ®... ® HI(D)yl(D) ® H°(D)y°(D) = O(D)

where Hi(D) = parity check polynomial of yi(D).

0(D) = all zeros sequence.

• The constraint length (u) of an encoder is the maximum

degree of all Hi(D), i.e.,

u = max deg Hi(D)
all ,

• The memory (m) of an encoder is the number of delay

elements required to implement an encoder.

• For linear codes it can be shown that m = u.

(See Forney, "Convolutional Codes I" IEEE Trans on, •

Inform. Theory, November 1970).



• The ,integer representation of yi(D), for 0 <__i <__k, is defined as

y(D) = y°(D)+ 2yl(D)+... + 2kyk(D)

= E 2'y_(n)
i=0

• We define a naturally mapped signal set as a signal set

such that a discrete phase rotation of the signal set

produces a rotated sequence y_(D)

y,.(D) = y(D) + I(D) (mod M)

where I(D) -- all ones sequence

M = 2k+i

Example: MPSK

l 0

Q Y Y 010 •

O1 •

10 *

4PSK

.00

• 11

011 *

I00 °

I01 *

8PSK

Q y2ylyO

,001

• 110

,000

• III

3



Special Case: Naturally Mapped 16 QAM

_oi_ o11o

o111 oolo

I0_0 11_1

] 2 I 0

Q YYYY

o_o oloi

o_ 1_1o

0100 I_01

Here

with

y(D) = y°(D) + 2yl(D)

y,.(D)=y(D)+I(D)

y_(D) - y2(D) and

(mod 4),

y3_(D)=y3(D).

4



Systematic Encoding

For a systematic encoder we let

y_(D) = xl(D)

y_-(D)= _2(m)

yk(D) : x_(D)

Example of Systematic Encoder with u -3 and k = 2 (rate 2/3).

x2(D)

xl(D)
A

A

IL

()

y'(D)

y1(D)

y°(D)

5



Effect of Phase Rotation on Linear Parity Check
Equations

With natural mapping we have

y0 = y0 ® 1 = y0

y_ = yl • y0

y_ = y_ • y0. yl

/c-1

i=0

• On a phase rotation the parity check equation becomes

H_(D)y_(D)®H_-_(D)y_-I(D)®...®HI(D)y_(D)®H°(D)y°(D) - O(D

H°(n)y°(n) : H°(D)(y°(D)• I(D))
= H°(D)y°(D)® H°(D)I(D)
= H°(D)y°(D)® E[H°(D)](D)

where E[H°(D)] is the modulo-2 number

H°(D), e.g., E[D 5 ® D 4 ® D 3 ® D 2] = O.

of non-zero terms in

6



• if E[H°(D)] : o, then H°(D)y°(D)= H°(D)y°(D).

HI(D)y_(D) = HI(D)(yl(D)® y°(D))

= HI(D)yl(D)® HI(D)y°(D)

=_ HI(D)yl(D)

• Thus linear parity check equations are not phase transparent.



A Parity Check Equation Not Affected by a Phase
Rotation

• Assume that E[H°(D)] = 0. Let

lz(D) = (D a + (M - 1)Db)y(D) (mod M)]

_ where u>a> b>0.

• On a phase rotation

z,.(D) = (Da--_(M- 1)Db)y,.(D) (mod M)

- (Da -}-(M-- 1)Db)(y(D)+ I(D)) (mod M)

= (Da+ (M -- 1)Db)y(D)+ (Da+ (M - 1)Db)I(D) (mod M)

• Note that Dil(D)= I(D) for all integers i. Thus

z_(D) = z(D)+ I(D)+ (M - 1)(D)
= z(D)+ M(D)
= z(D)

(mod NI)

(mod M)

• Thus all the bits in z(D) are unaffected by a phase rotation.



• Note that the most significant bit of z(D) is a function of

all yi(D)_ satisfying the requirement that these bits are

checked by the encoder.

• We have that

z(D) = z°(D) + 2zl(D) -Jr-" Jr 2kzlC(D)

and

.-t _,-1 • '_D 2 h_D 1.H °(D) = D _ ® h o D ®.. ® h 5 ® ®

• We form the parity check equation

Izk(D] @ h=__lzk-l(D) ® .. . @ h_zl(D) ® H°(D)y°(D) = O(D]I

z1_(D) is always selected_ since it checks all input bits

(thus avoiding parallel transitions).

h_ are used to select other bits of z(D).

z°(D) is not selected since it is a linear function

of y°(D) (which is taken care of by H°(D)y°(D)

in the parity check equation).

• In implementing an encoder, need to determine zi(D) in

terms of y°(D), yl(D),..., yk(D).

9



• If E[H°(D)] : 1, we let

Iz(D) = (D a + (M/2 - 1)Db)y(D) (rood M)

• With this form of z(D) we have

z,.(D) -_ (D a --[-(M/2 - 1)Db)(y(D) + I(D))

-= (D a -4-(M/2- 1)Db)y(D) + I(D) + (M/2 - 1)(D)

= z(D)+ (M/2)(D)

(mod M)

(mod NI)

(rood NI)

- • Thus we have z'r(D ) = zi(D) for 0 _< i _< k- 1 (i.e., the first k

least significant bits of Z(D) are unaffected by a phase

- rotation) but

kz_(D) = _(D) • I(D).

- • Since zk(D) is always selected, the I(D) term generated by

z_:(D) will cancel the 1(0)term generated by H°(D)y°(D).

• We can also have other forms of z(D), as long as zk(D) checks

all the bits in y(D). For example (with E[H°(D)] = 0),

z(D) : (D a -+-3D b + 4DC)y(D) (mod 8).

10



- Example: Rate 1/2 QPSK (1V[ -- 4)

• The input sequence

x(D) = xl(D)

and the output sequence

y(D) = y°(D) + 2yl(D).

• We have

z(D) =(D"+3Db)y(D) (mod 4).

• We need to express z(D) in terms of y°(D) and yl(D):

z(D)

z(D)

z°(D)+2zl(D)

= (D _ + 3Db)y(D) (mod 4)

= (D _ + D b + 2Db)(y°(D)+ 2yl(D)) (mod 4)

= (D _ + Db)y°(D)+ 2((D a + Db)yl(D)+ Dby°(D))

• For a two bit binary adder

I

fc.ls s=eO f @c_

Co - e. f • ci" (e (9 f)

• Thus z°(D) = (D a (9 Db)y°(D) (not used)

zl(D) = (D a (9 Db)yl(D) (9 Dby°(D) (9 D_y°(D) • Dby°(D)

= (D a (9 Db)yl(D)(9 Day°(D)Dby°(D)

• The parity check equation becomes

(D a (9 Db)yl(D) (9 Day°(D) • Dby°(D) (9 H°(D)y°(D) = O(D)

11



Example of Rate 1/2 Systematic Encoder With
Feedback

• We have _ = 3, a = 2, and b = 1, which gives the parity

check equation

(D _ ® D)yl(D) • D_y°(D) • Dy°(D) • (D 3 • h_D 2 • h_D • 1)y°(D) = O(D)

xfD) ,' ,, ) y(D)

• Example of rate 1/2 encoder with _ = 4, a = 3, and b = 1.

•, ) y'fD)

°

yOfD)

h

• For la- b I > 2 the encoder may not be minimal or

may need to be restricted.

H°(D)

12



Example: Rate 2/3 8PSK (M -- 8)

• We have

z(D) = (D _ + 7Db)y(D) (mod 8)

• Ex_ressing z(D)

-(D =

_(D) =

in terms of y°(D),yl(D), and y2(D)

(Da+ Db+ 2Db+ 4Db)(y°(D)+ 2yl(D)+ 4y2(D))
(Da+ Db)y°(D)+
2((Da+ Db)yl(D)+ Dby°(D))
4((Da+ Db)y2(D)+ Dbyl(D)+ Dby°(D))

bit logic adders• Using two

z° (D)
0

I

Z 1s (D)

C
0

D b yO(D)__

(rood 8)

$

(rood 8)

0
1

C C.

* Z 2s (D) $ (D" • Dby2(D)

f c 2
o =w (D)

or

z2(D) (D" ®Db)y2(D)@Db(yi(D)@y°(D))
eD"yi(D) •Dbyi(D)• Day°(D)•Dby°(D)•(Da®Db)yi(D
eDby°(n) •((D_69nb)yl(n) @D"y°(n) •nby°(n))

13



• Example of rate 2/3 encoder with u = 3, a = 2, and b = 1.

- • Parity check equation:

- _(D 2 e D)y2(D) • w2(D) • hlzzl(D)• (D 3 G h_D 2 • h_D • 1)y°(D) =0(D)

xZ(D)

xtO))

D'tyl(D)

tl

ytfD)

D" ly°(D)

y°fD)

- . Note that encoder is not minimal.

14



Conclusions

• Trellis codes based on linear parity check equations are

not rotationally invariant.

• A general parity check equation for rotationally invariant

trellis codes has been presented.

• A method of finding an encoder implementation for these

codes has been given.

- • Not all rotationally invariant codes are minimal. Rate

k,/(k + 1) codes with two or more checked bits are not

- minimal.

• Method can be applied to all signal sets with phase

symmetry by appropriately mapping points in the signal
set.

• Since codes are non-linear, a systematic code search

involves searching all paths to find the free distance.

15
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QAM Signal Sets



TRELLIS CODING USING MULTI-DIMENSIONAL QAM SIGNAL SETS*

by

Steven S. Pietrobon and Daniel J. Costello, Jr.

June 1989

Submitted to the

1990 IEEE International Symposium on Information Theory

Abstract

A method of finding good trellis codes with multi-dimensional (multi-D) QAM modu-

lation is presented. Using the 16QAM signal set, 4-D, 6-D, and 8-D QAM signal sets are

constructed which have good partition and phase rotational properties.

The good partition properties are achieved by the use of block codes and their cosets

restricting each level in the multi-D mapping. The rotational properties are achieved through

the use of a "naturally mapped" 16 QAM signal set. This signal set has the property that,

of the four bits used to map the signal set, only two bits are affected by a 90 ° phase rotation.

With an appropriate addition of the coset generators, the multi-D signal sets also have two

mapping bits affected by a 90 ° phase rotation (the remaining bits being unaffected).

This implies that many good rate k/(k+l) trellis codes can be found for effective rates be-

tween 3.0 and 3.75 bit/T and that are 90 ° or 180 ° transparent. The results from a systematic

code search using these signal sets are presented.

*This work was supported by NASA Grant NAG5-557.



TRELLIS CODING USING MULTI-DIMENSIONAL QAM SIGNAL SETS

by

Steven S. Pietrobon and Daniel J. Costello, Jr.

June 1989

Submitted to the

1990 IEEE International Symposium on Information Theory

Summary

A systematic method of finding good trellis codes using multi-dimensional QAM signal

sets is presented. An important part of these types of trellis codes is in the construction of

the multi-dimensional signal sets.

The method used is very similar to that in [1] in which multi-dimensional MPSK signal

sets were constructed. That is, we start with a 2-D signal set with M = 2 J points and form

a partition chain such that the minimum squared subset distance (MSSD or 6_) at partition

level i is as large as possible. The partition starts at partition level 0 with the whole signal

set. dividing each set in two until we are left with M subsets of one point each at partition

level I. With rectangular signal sets, it is easily shown that 3_+1 = 26] for 1 < i < I - 2 and

=
The next step in forming multi-dimensional signal sets is to take the cartesian product of

L of these 2-D signal sets to form a 2L-dimensional (2L-D) signal set and find a partitioning.

This is achieved by the use of coset generators which are found from the partitioning of

binary block codes. If the 2-D signal set is naturally mapped, a multi-D signal set mapping

can be found which has at most I bits affected by a phase rotation out of the total of IL

bits used to map the multi-D signal set.

A 16QAM signal set is presented which has these properties. It is shown that only the

two tsb's are affected by a 90 ° phase rotation, while the two msb's are unaffected by a phase

rotation. This signal set is then used to construct 4-D, 6-D, and 8-D QAM signal sets which

have only 2 bits affected a phase rotation out of the 4L bits used to map the signal set.

Since the multi-D signal sets have only 2 bits affected by a 90 ° phase rotation (due to the

way they are constructed) many of the trellis codes that are found are rotationally invariant

to 90 ° phase rotations.

[1] S. S. Pietrobon, R. H. Deng, A. Lafanech6re, G. Ungerboeck, and D. J. Costello, Jr.,

_'Trellis coded multi-dimensional phase modulation", IEEE Trans. Inform. Theory, to ap-

pear.



Appendix E

Erasurefree Sequential Decoding and

Its Application to Trellis Codes
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• Performance Results
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Why Sequential Decoding ?

• Tile Viterbi Algorithm (\_-k) is practical for decoding

convolutional codes with small constraint lengths _.

• Performance (free distance dfree) is limited due to
small u.

• Sequential Decoding (SD) can be used with anv value
of //.

• Better performance (df_ee) can be achieved with

larger _.



Problems with Sequential Decoding

• SD's computational effortisa random variable.

• Therefore. some information may be lost due to over-

flow of the decoder input buffer.

• This results in an erasure probability for SD typically

on the order of 10 -'-_ to 10 -a (Lavland and Lushbaugh).

• Complete (erasurefree) decoding may be impossible

if"a feedback channel is no_ available.



Goal of This Research

• Propose erasurefree SD algorithms which perform

better than the \qk and have lower computational re-

quirements.

• Investigate the application of SD to Trellis Codes.

• Some results using conventional SD algorithms with

Trellis Codes have been reported by Pottle and Tavlor.



Conventional Sequential Decoding Algorithms

• The Fano Algorithm (FA) requires little storage.

• The Stack Algorithm (SA) decodes faster at higher

code rates.

• The M- Algorithm (MA) achieves the performance

of the VA for asymptotically large SNR.

• The FA requires the least compte.-dty cost to achieve

:he same performance (for a BER around 10 -_). (Ander-

son and Mohan)

• The FA is prefered in most practical implementa-
tions.



Erasurefree Sequential Decoding

• Assume that the information sequence is dixided into

flames of length L. each terminated by a string of_ :_c-

roes.

• Erasurefreealgorithmsrequirethata computational

limitC'limbe specifiedforeach frame such that"

'1). If the number of computations C <_ Cli,_. a con-

ventional sequential decoding algorithm is used.

(2). If C > Czim. a suboptimal decoding a lgorithnl

',vhich guarantees complete decoding of the flanle is _lse(t.

Examples

_:1).The hIuhipte Stack Algorithm (.MSA. Cheviilat anti

Cost.clio)-

• Uses one large stack and several smaller stacks.

• Once the main stack is filled, the T best paths are

t ransfered to a secondary stack.

• Once a secondarv stack is formed, the decoder can

never back up beyond the initial nodes in that stack.

• Additional secondary stacks are formed _ needed.

(2). The Erasurefree Fano Algorithm (EFA. new)-

• A predetermined computational limit is set.

• Once this limit is reached, the decoder jumps to the

deepest node it has examined thus far (the deepest node

must always be stored).

• Decoding resumes at this node and can never back

tip beyond this node.

• This process is repeated as many times as needed.

but each with a smaller computational limit.



Performance Comparison of the iVISA, EFA,

and VA

i

e_

e_
O

e_

O

10"2

10"3

10-4

10-6
' I ' I

4 5 6

SNR (dB)

Problems with the NISA and EFA

• Although it is bounded, the number of computations

isstilla random variable.

• The maximum number of computations per frame.

C._a=.must be largeifgood performance isdesired.

• In order to guarantee erasurefree

finite buffer, a large speed factor > =

required (sav,# >__60 for MSA or # _>

decoding with a

Cma=/(L + z,') is

150 for EFA).



The Buffer Looking Algorithm (BLA)

Diagram of the BLA

buffer

B

--t II I corechannel B1 B2 " ' Bk = decoder
input

decoder

-_"output

• The input buffer of the decoder is divided into I(

sections.

• Clim(j) is & computational limit corresponding to

the j-th section of the buffer.

• The decoder continuously monitors the buffer state

j ( number of occupied sections in the buffer).

• If C _< Clim(j), the BLA works exactly like the Ka_.

• If C > Clim(j), the BLA works exactly like the EFA.

• If all buffer sections are occupied, the decoder changes

parameters (bias) to guarantee the frame is decoded be-

fore the buffer overflows.

R



Erasurefree Decoding Conditions for the BLA

• Let B be the size of the buffer

• Let BK be the size of the last section of the buffer.

• Let # be the speed factor of the decoder.

o B :> L+_,.

• Br( > (L+_ /#.

• Cn_K) < (# - I)(L + _).



Influence of Parameters on Performance

• Number of buffer sections:

Fewer sections allow larger computational limits in each

section. (2 is best).

• Buffer size:

Larger buffer size allows more frames to be decoded op-

timumlv.

• Speed factor:

Larger speed factor implies more computations are avail-
able.

• Frame length:

More data mav be decoded suboptimumly for long frames.

1N



Performance Comparison with the VA

10-2

in
i
°_

O

e'_

O

=m

10-3

10-4

10-5

10-6 ' i ' I '

5 6

BLA (v=15)

VA (v= 7)

7

SNR (dB) (E_,_o)

BLA=

SF'e_. -[-._.¢4-_v'=

VA : Speed %_or = i2g
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Sequential Decoding of Trellis Codes

• Cut-off rate for two-dimensional signal constellations:

R0=2 log 2 K- log 2{zi=0K-I_'KO1.-_

_ " )2
exp[_(a_i axJ)2+(ay z ay j ]}

8_ 2

• For g-PSI,:. R0=2 bits/symbol when SNR=7.6 dB.

O
.f2

E

ffl

if}
,m

O

ID

L_

O
!

,I,,,o

3

2

0 ' I ' | ' ! ' I ' I ' I ' I ' ! " I ' I ' I ' I ' | " I ' I ' | ' I ' I ' I '

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SNR (dB) (_=-_/Wo)
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Metric and Threshold Increment

for Trellis Codes

• Branch Fano metric:

L(m,yi) - log 2

-3R

• Unscaled threshold increment A should be chosen

between 3 to 5 for trellis codes (determined by experi-

ment).

12



Quantization Schemes

im
i
,m

e_

e_
0
L._

e_

10-1

10-2

o 10-3

im

10-4

10-5
' I _ I ' I ' I '

6 7 8 9 10 11

I
4 bit circular

I

5 bit circular
I

8 bit rectangular

SNR (dB)(_S/_o)

• More than 5 bit circular and 8 bit rectangular quan-

tizations are virtuallv equivalent to 5 bit circular and S

bit rectangular respectively.



Tail Mapping Must Be Changed for

Frame-type Decoding of Trellis Codes

5

1 1 1 1 1 1 1

path 2

path 1

3 / _,2_1 0.

5 6

• Ungerboeck S- state (_, = 3] code.

• Tail begins at point X and we assume no noise occurs

after X.

• Path 1 is the correct path.

• Branch v is corrupted bv noise, which makes the

decoder follow path 2 (an incorrect path).

• The noise level:
' 9

\//_0 2 + _1"/2(= O.S)< n < df,._/2(= 1.1).

• Natural mapping cannot correct the error in a one

constraint length tail.

• This ldnd of error will dominate in man?" cases.

• Onh, 0 and 1 are possible signals in the tail (00X).

• Change the mapping in the tail to achieve a larger

distance between signals 0 and 1.



Conventional FA Decoding of Trellis Codes
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BLA Decoding of Trellis Codes
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Conclusions

• Erasurefree sequential decoding algorithms can per-

form better than the \:A with less computational effort.

• SD can work fortrelliscodes as wellas convolutional

codes.

• More than 1 dB gain over the \% can be achieved at

a BER of 10 -'_ when the BLA is applied to trellis codes

(Porath and Aulin code).
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