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SUMMARY

In recent years we have developed high accuracy finite

difference approximations for partial differential equations

of elliptic type, with particular emphasis on the

convection- diffusion equation. These approximations are of
compact type, have a local truncation error of fourth order,
and allow the use of standard iterative schemes to solve the

resulting systems of algebraic equations. In this paper, we

extend these high accuracy approximations to the solution

of Navier- Stokes equations. Solutions are obtained for the

model problem of driven cavity and are compared with

solutions obtained using other approximations and those

obtained by other authors. It is discovered that the high

order approximations do indeed produce high accuracy

solutions and have a potential for use in solving important
problems of viscous fluid flows.

*Work funded by Space Act Agreement C-99066-G.



INTRODUCTION

The basic model for the

representing two and three

fluid dynamics phenomena

dimensional flows of an

incompressible viscous fluid is given by the Navier- Stokes

equations that represent the conservation of mass, momentum

and energy. These equations are highly nonlinear and are

very difficult to solve, especially when the approximate

solutions are required to have a high accuracy. A related

problem is that of obtaining highly accurate solutions of

the convection- diffusion equation especially when

convection is the dominating phenomena.

Prior to the last decade, many researchers examined a

number of first and second order finite difference and

finite element methods that were accurate and stable. In the

area of finite difference methods, it was discovered that

although central difference approximations were locally

second order accurate they often suffered from computational

instability and the resulting solutions exhibited

nonphysical oscillations. The upwind difference

approximations were computationally stable though only first

order accurate and the resulting solutions exhibited the

effects of artificial viscosity. The second order upwind

methods were no better and the higher order finite

difference methods of conventional type were computationally

inefficient.

2



An exception has been found in the high order finite

difference schemes of compact type that are computationally

efficient and stable and yield highly accurate numerical

solutions at least for the linear and quasilinear partial

differential equations. Simplest version of such compact

schemes is given for the Poisson equation

_2u/_x2 + _2u/_y2 = f(x,y)

which can be discretized at a grid point (x,y)

point finite difference approximation:

by a nine

4[ui+ u=+ u3+ u_] + us+ u_+ uT+ u,- 20u0

= h2[f1+ f2+ f3+ f0+ 8f0]/2.

(See Figure 1 for the computational stencil). This

approximation was named Mehrstellenverfahren by Collatz [3]

(see also [I0]). It has a local truncation error of order

h 4 and is an approximation of compact type as it involves

only the eight nearest neighbors of the point (x,y). This

type of approximations have been obtained for other elliptic

equations by many researchers: the Hodie schemes of Lynch

and Rice [14] (see also [2]), the O.C.I. schemes of Berger

et al.[l], and the SCHOS schemes of Gupta et al. [12,13] all

reduce to the above difference approximation when applied to

the Poisson equation. Similar compact schemes of order h'

have also been obtained [15].
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The compact schemes of Gupta et al.

earlier papers) were applied to the

equations in particular and were

(called SCHOS in the

convection-diffusion

found to yield high

accuracy when applied to a large number of test problems

including problems of convection dominated flows [12]. In

this paper, we extend these finite difference schemes to the

Navier- Stokes equations. As a test of this method, we solve

the model problem of lid driven cavity for small to moderate

values of the Reynolds number and compare our numerical

solutions with the highly accurate benchmark solutions

available in the literature. We find that our method yields

high accuracy even though we use a relatively coarse grid.

In the next section we describe the fourth order compact

difference schemes for the convection- diffusion equation

and for the Navier- Stokes equations. The model problem of

the lid driven cavity is described in the following section

that follows with detailed comparisons of our solutions with

the existing solutions in the literature.

FINITE DIFFERENCE APPROXIMATIONS

Consider

equation:

the following steady convection- diffusion

_2u/_x_ +_2u/_y2 +p(x,y)_u/_x +q(x,y)_u/_y =f(x,y). (i)
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Finite difference approximations of eq.(1) at the grid point

(x,y) are obtained in terms of the function values of u, p,

q, and f at (x,y) and its neighbours. Assuming a uniform

grid in both x and y directions, we number the grid points

(x,y), (x+h,y), (x,y+h), (x-h,y), (x,y-h), (x+h,y+h),

(x-h,y+h), (x-h,y-h), (x+h,y-h) as 0,1,2,3,4,5,6,7,8,

respectively (see Figure i). In writing the finite

difference approximations a single subscript 'j' denotes the

corresponding function value at the grid point numbered 'j'.

The usual central difference

the point (x,y) is given by

approximation of eq.(1) at

[ u_ + u2 + u_ + u, - 4u0]

+ poh( u_ - u3)/2 + q0h( u2 - u, /2 = h2f.. (2)

This approximation is obtained by replacing all derivatives

in eq.(1) by central differences that have truncation errors

of second order. A high accuracy approximation of eq.(1) at

the grid point (x,y) is given by

C_U l +C2U 2 +C3U 3 +C4U 4 +CsU s +C6H + +C+U+ +CsU s -CoU o

=h+[ft+f2+f3+f,+8fo]/2 + h3[po(f_-f3)+qo(f2-f,)]/4,

where,

c+ = 4 + h/4(4po+3p++p2-p3+p+)

+h2/814po 2 + Po(Pt-P3) + qo(P,-P,)],

(3)

c2 = 4 + h/4(4q0+q,+3q2+q3-q.)

+h2/814q. 2 + Po(q_-q_) + q0(q2-q,)],



c_ = 4 - h/4(4po-p_+p_+3p_+p_)

+h_/814po 2 - Po(P_-P_) - qo(P_-P4)],

c_ = 4 - h/4(4qo+q_-q_+q_+3q,)

+h'/814qo _ - Po(q_-q_) - qo(q_-q_)],

cs = 1 + h/2(po+qo) + h/8(q_+p2-q_-p_) + h_/4 Poqo,

c, = 1 - h/2(po-qo) - h/8(q_+p_-q_-p,) - h'/4 Poqo,

c_ = 1 - h/2(po+qo) + h/8(q_+p,-q_-p_) + h'/4 Poqo,

c, = 1 + h/2(po-qo) - h/8(q_+p_-q_-p_) - h_/4 Poqo,

') + h(p_-p,) + h(q_-q_)Co = 20 + h_(po _ + q0

(4)

This approximation is of compact type as it involves only

the nine grid values of u at the point (x,y) and its eight

nearest neighbors (see Figure I). This approximation has a

local truncation error of order h 4. Detailed derivation of

this approximation is given by Gupta et al. [12]. (This

approximation has recently been rediscovered by Dennis and

Hudson [21].) Similar high order approximation for general

second order elliptic equations are given in [13]. Other

compact approximations of this type have been obtained for

the Poisson equation [I0], the Helmholtz equation [15], and

the biharmonic equation [19]. Results of computations with

a large number of test problems have been reported in the

cited papers and in each case these compact schemes are

found to yield highly accurate numerical solutions.

Moreover, the accuracy improves rapidly, consistent with the

local truncation error, as the mesh is refined.



The Navier- Stokes equations representing the two-

dimensional steady flow of an incompressible viscous fluid

are given in streamfunction- vorticity form as follows:

a_lax 2 + a2_lay _ = -g (5)

_2g/ax2 + a2g/_y_ _ Re(u aglax + v agl_y) = 0 (6)

u = _/_y, v = -a_/_x (7)

Here _ is the streamfunction, g the vorticity; u,v are the

velocities; Re is the nondimensional Reynolds number.

The streamfunction equation (5) is a special case of

eq.(1). The fourth order compact approximation for this

equation may be obtained by putting u = _, f = -g and

p(x,y)=0, q(x,y)=0 in eq.(3):

4[_+ _,+ _3+ _,] + _,+ _,+ _,+ _.- 20_.

= -ha[g,+ g,+ ga+ g,+ 8g.]12. (8)

The vorticity equation (6)

and the fourth order approximation in

obtained by putting u=_, f=0 and

q(x,y)=-Re v(x,y) in eq.(3),(4):

is also a special case of eq.(1)

this case may be

p(x,y)=-Re u(x,y),

8
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c, = 4 - Reh/4(4uo+3u_+u2-u3+u,)

+(Reh)2/8[4Uo 2 + Uo(U_-U3) + vo(u2-u4)],

c2 = 4 - Reh/4(4Vo+V1+3v2+v3-v,)

+(Reh)2/8[4Vo 2 + uo(v_-v_) + v0(v2-v,)],

c3 = 4 + Reh/4(4Uo-U,+U2+3u3+u,)

+(Reh)2/8[4Uo 2 - Uo(U_-U3) - v0(u2-u4)],

c, = 4 + Reh/4(4Vo+Vl-V2+V_+3v,) (i0)

+(Reh)2/8[4v02 - uo(vl-v3) - Vo(V2-V,)],

cs = 1 - Reh/2(Uo+Vo) - Reh/8(v,+u2-v_-u,) + (Reh)2uoVo/4,

c_ = 1 + Reh/2(Uo-Vo) + Reh/8(v1+u2-v3-u,) - (Reh)2uoVo/4,

c7 = 1 + Reh/2(Uo+Vo) - Reh/8(v_+u2-v_-u,) + (Reh)2uoVo/4,

c, = 1 - Reh/2(Uo-Vo) + Reh/8(v,+u2-v3-u,) - (Reh)2uoVo/4,

Co = 20 + (Reh)2(Uo 2 + Vo 2) - Reh(u_-u3) - Reh(v2-v,).

The velocities u,v at a grid point (x,y)

from the discrete approximations of eq.(7). The

second order central difference approximations

velocities are:

are calculated

typical

for the

Uo = (_- _,)/2h, vo = (_3- _i)/2h. (ii)

High order approximations for the velocities u, v can also

be defined. We [i0] earlier derived some high accuracy

compact approximations for the gradients of the solution of

Poisson equations. As the streamfunction equation (5) is a

Poisson equation in _, high accuracy approximations for the

gradients _/_x, _@/ay can be obtained from [i0]

corresponding approximations for the velocities are

below. (For details of the derivation, see the

and

given

cited



reference.) The following approximations are compact and

have a local truncation error of order h 4.

u0 = (_2-_4)/3h + (_,+_,-_7-_,)/12h + h(_2-_,)/12

v0 = (_3-_i)/3h - (_s-_-_+_,)/12h + h(_3-_i)/12.

(12)

MODEL PROBLEM

AS a model problem, we consider the steady flow of an

incompressible viscous fluid in a square cavity (0_x_l,

0_ygl). The flow is induced by the sliding motion of the top

wall (y=l) from right to left, and is described by the

Navier- Stokes equations (5)-(7). The boundary conditions

are those of no slip: on the stationary walls u=0 and v=0;

on the sliding wall u=-i and v=0 (see Figure 2).

A large number of investigators have used this model

problem to test new schemes and solution methods, (see for

example [4,5,6,7,8,9,11,17,18,20,22] and references given

therein). Highly accurate benchmark solutions of this

problem are available in the literature. In particular, Ghia

et al. [7] obtained highly accurate solutions using 256x256

grids for 100_Regl0000. Schreiber and Keller [17] solved

this problem using a continuation method on a sequence of

grids including an 180x180 grid; Goodrich and Soh [8] used a

streamfunction algorithm on a 65x65 grid. These solutions

facilitate comparison and assessment of new solution



techniques. Experimental and numerical work on the three-

dimensional cavity has been reported by Freitas et ai.[4,5].

In order to solve the driven cavity problem, we replace

the Navier- Stokes equations (5)-(6) by the finite

difference approximations given in eq.(8)-(10). The

velocities, defined in eq.(7), are calculated using either

the second order approximations (ii) or the fourth order

compact approximations (12) in order to compare the

effectiveness of these approximations. The unit square is

covered by a grid of uniform mesh width h (h=I/N). The

discrete approximations (8), (9) are written at each of the

(N-I) 2 interior grid points. Zero values are prescribed for

on the boundary; vorticity

using the Jensen formula [11,16]:

we define _o = (-8_ + _2)/2h2;

define _0 = (-8_i + _2)/2h 2 + 3/h.

denotes a grid point on the

on the boundary is obtained

on the stationary walls,

on the sliding wall y=l, we

Here the subscript '0'

boundary; the points 'i', '2'

that the points 0,1,2 all

to the boundary (see Figure

local truncation error of

lie inside the flow region such

lie on the straight line normal

3). These approximations have

second order. Higher order approximations could also be

defined for obtaining boundary values of _; it is

anticipated that the impact on the accuracy of the computed

solutions would be marginal. These and other boundary

approximations for vorticity were studied in detail by Gupta

and Manohar [ii] (see also Gajjar[6]).

10



An inner- outer iteration procedure is utilized to obtain

the numerical solutions. At each outer iteration, the linear

systems from the discrete streamfunction and vorticity

equations are solved iteratively. We solved these linear

systems using point- S.O.R. iteration with the relaxation

parameters 1.7 and 1.2, respectively. The inner iterations

are allowed no more than a preset number (usually i0)

iterations. As the fourth order approximations of

vorticity equation are stable, the

convergent for all values of Re.

We obtained numerical solutions

inner iterations

of

the

are

of the driven cavity

problem for Reynolds number ranging between 1 and 2000. The

solutions were obtained on a 21x21 grid (h=I/20) and a 41x41

grid (h=I/40). All iterations were started with zero initial

data and were terminated when the maximum difference between

successive approximations of _, _ was smaller than I0-'.

The computations were carried out on an IBM 4381 at The

George Washington University and on a CRAY XMP24 at NASA

Lewis Research Center.

In Table i, we present the representative parameters of

the driven cavity problem for the 41x41 grid, obtained using

the fourth order approximations (12) for the velocities.

This table contains the values of _, _ at VC (VC= center of

the primary vortex), the values of _ at the centers of the

secondary vortices in the lower corners, and the value of

at the mid-point (.5,1) of the moving wall. These
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parameters are the major indicators of the accuracy of the

computed solutions [ii] and are quoted by most authors.

Primary Vortex Secondary Vortices

Re _ _ _ _ _(.5,1)
VC VC UVC DVC

i

i0

i00

400

i000

2000

.100027 3.33906 -.2091(-5)* -.2100(-5) 5.8637

.100029 3.35029 -.2212(-5) -.2011(-5) 5.8686

.103463 3.28572 -.1245(-4) -.1747(-5) 6.5505

.112814 2.30247 -.6512(-3) -.1452(-4) 10.0856

.111492 2.02763 -.1833(-2) -.1491(-3) 15.9470

.099586 2.24579 -.2849(-4) -.7597(-4) 18.5790

-.2091(-5)=-.2091xi0 -s

Representative Parameters of Driven Cavity
(Fourth Order Velocities, 41x41 mesh)

Table 1

We also computed numerical solutions using the second

order approximations (ii) for the velocities. The solutions

for Re=l,10 were found to be almost identical with those

obtained using the fourth order approximation for the

velocities. The representative parameters for second order

velocities for Real00 are given in Table 2.

Primary Vortex Secondary Vortices
Re _ _ _ _ _(.5,1)

VC VC UVC DVC

I00 .103263 3.28369 -.1241(-4) -.1742(-5) 6.5641

400 .111151 2.29561 -.7004(-3) -.1367(-4) 10.1538

i000 .107392 2.01499 -.2108(-2) -.1384(-3) 16.2462

2000 .088152 2.37916 -.1368(-4) -.7979(-4) 20.6838

Representative Parameters of Driven Cavity
(Second Order Velocities, 41x41 mesh)

Table 2
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COMPARISON WITH EXISTING SOLUTIONS

We now present a comparison of our solutions with the high

accuracy solutions available in the literature (see, for

example [7,8,17]). Qualitatively, our solutions exhibit the

well known features of the driven cavity, including the main

vortex in the central part of the cavity and secondary

vortices in the lower corners. Figures 4-7 present the

streamfunction and vorticity contours for Re=l and i00 using

the O(h 4) approximation for velocities. Figures 8-11

contain the streamfunction and vorticity contours for Re=400

using O(h 2 ) and O(h 4 ) approximations for velocities.

Figures 12-15 contain similar contours for Re=1000. It is

apparent that our streamfunction and vorticity contours are

consistent with the published data [5,7,8,17,18].

Quantitatively,

compare very well

solutions available

compare the values

our solutions using the 41x41 mesh

with the highly accurate benchmark

in the literature. In Table 3, we

of streamfunction _ at VC and the

location of VC with the results from [7,8,17] as applied to

the driven cavity configuration shown in Figure 3. We note

that the locations of the vortex center VC using the fourth

order approximations for the velocities are within the

cellwidth h (h=.025) of the reference data.

Taking the results of Ghia et al.[7] as the benchmark

solutions, we compute the relative errors of the _ values at

VC for the solutions obtained by us, by Goodrich and Soh

13



Re Second Order Fourth Order

Velocities Velocities

1 .100027 .100027

(.5,.775) (.5,.775)

I00 .103263 .103463

(.375,.75) (.375,.75)

400 .111152 .112814

(.45,.625) (.45,.60)

i000 .107392 .111492

(.475,.600) (.475,.575)

Reference

Data

.10006 [17]

(.5,.7667)

.103423 [7]

(.3828,.7344)

.10330 [17]

.113909 [7]

(.4453,.6055)

.11198 [8]

.11297 [17]

.117929 [7]

(.4687,.5625)

.11359 [8]

.11603 [17]

Value of _ at VC and location of VC

(VC = Center of Primary Vortex)

Table 3

[8], and by Schreiber and Keller [17]. This data, given in

Table 4, shows that our solutions obtained using the fourth

order approximations for the velocities are either

comparable in accuracy or are somewhat more accurate than

the other results.

The values of streamfunction _ at the center of the

secondary vortex in the upstream corner UVC (in bottom left

corner of the cavity, see Fig. 3) are given in Table 5. We

also give the reference data from [7,8,17] for comparison.

The values of this parameter obtained using the fourth order

velocity approximations are much more accurate than those

14



Re Second Order Fourth Order

Velocities Velocities

i00 .15% .04%

400 2.4% .96%

i000 8.9% 5.4%

Reference

Data

.12% [17]

.82% [17]

1.7% [8]

1.6% [17]

3.7% [8]

Relative Error in the Value of _ at VC

Table 4

obtained using the second order velocity approximations; at

large values of Re, the improvement becomes even more

pronounced.

Re Second Order Fourth Order Reference

Velocities Velocities Data

1 -.2091(-5) -.2091(-5)

i00 -.1241(-4) -.1245(-4)

400 -.7004(-3) -.6512(-3)

i000 -.2108(-2) -.1833(-2)

-.247 (-5) [17]

-.1254(-4) [7]

-.1320(-4) [17]

-.6424(-3) [7]

-.5749(-3) [8]

-.6440(-3) [17]

-.1751(-2) [7]

-.1892(-2) [8]

-.1700(-2) [17]

Value of _ at UVC

(UVC = Center of Upstream Corner Vortex)

/

Table 5

In Table 6, we give the values of _ at VC and compare

with the available data. The agreement with the reference

IS



data is quite good even though the location of VC

substantially effects the values of this parameter; smaller

values of h would locate VC more accurately and give even

better agreement in the _ values at VC. In Table 7, we give

the values of _ at the mid-point of the sliding wall y=l and

the only comparison data available in [7].

Re Second Order Fourth Order Reference

Velocities Velocities Data

1 3.339 3.339 3.232 [17]

I00 3.284 3.286 3.167 [7]

3.182 [17]

400 2.296 2.302 2.295 [7]

2.281 [17]

i000 2.015 2.028 2.050 [7]

2.026 [17]

Value of _ at VC

Table 6

Re Second Order Fourth Order Reference

Velocities Velocities Data

1 5.8637 5.8637 -

i00 6.5641 6.5505 6.5745 [7]

400 10.1538 10.0856 10.0545 [7]

i000 16.2462 15.9470 14.8901 [7]

Value of _ at (.5,1)

Table 7

In Table 8, we give the extreme values of the horizontal

velocity u at the centreline x=0.5 near the bottom wall y=0.
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Data from

this data is given for Real00; also given

error data from [8] for Re=400 and 1000.

given in Table 9 for the extreme values

velocity v at the centreline y=0.5 near the

We observe that our extreme u values

comparable to those of [8] although our extreme v values

(Table 9) are somewhat more erroneous than those of [8].

[7] and relative deviation of our results from

is the relative

Similar data is

of the vertical

left wall x=0.

(Table 8) are

Re Second Order Fourth Order Reference

Velocities Velocities Data

1

i00

4OO

i000

.2065 .2070

.2212 .2223 .2109 [7]
(4.9%) (5.4%)

.3235 .3288 .3273 [7]

(1.2%) (.46%)

(2.2%) [8]

.3473 .3596 .3829 [7]

(9.3%) (6.1%)

(4.6%) [8]

Extreme Value of Horizontal Velocity u

at centerline x=0.5 near the bottom wall y=0

Table 8

In Table

obtained with

values of these parameters rapidly approach towards the

benchmark values when the grid is refined. The rate of

convergence is somewhat slower when Re is large. It is

expected that on further grid refinement, the solutions for

large Reynolds numbers would also exhibit rapid convergence.

17

i0, we compare the values of _ and _ at VC

the 21x21 and 41x41 grids and note that the



Re

1

i00

400

i000

Second Order
Velocities

Fourth Order
Velocities

-.1678 -.1685

Reference

Data

-.2263 -.2289 -.2453 [7]

(7.8%) (6.7%)

-.4022 -.4203 -.4499 [7]

(10.6%) (6.6%)

(1.6%) [8]

-.4188 -.4522 -.5155 [7]
(18.7%) (12.3%)

(3.9%) [8]

Extreme Value of Vertical Velocity v

at centerline y=0.5 near the left wall x=0

Table 9

VC

Re 21x21 41x41 Reference

solution solution Data

1 .099994 .100027
i00 .103168 .103463

400 .101073 .112814

I000 .084237 .111492

.10006 [17]

.103423 [7]

.113909 [7]

.117929 [7]

VC

1 3.0294 3.3391 3.232 [17]

i00 3.1112 3.2857 3.1665 [7]

400 2.3784 2.3025 2.2947 [7]

i000 3.0194 2.0276 2.0497 [7]
_n_

Comparison of 21x21 and 41x41 Solutions

_, _ at the Center of the Primary Vortex
(Fourth Order Velocities)

Table I0

18



DISCUSSION

We note that for moderate values of the Reynolds number Re,

the numerical solutions obtained using our high order

compact difference approximations are highly accurate and

compare well with the benchmark solutions available in the

literature. This fact is remarkable also due to the fact

that our solutions are obtained with a relatively coarse

grid (h=i/40) whereas the benchmark solutions have been

obtained with fine grids (with h as small as h=i/256).

In Table ii, we give the number of iterations needed to

converge to the required tolerance. As expected, for larger

values of Re the convergence is slower; however, the

convergence is faster with the fourth order velocity

approximations than with the second order velocity

approximations. We also give the CPU execution times for

Re=1000, 2000 on a CRAY XMP24 in this table. With Re=1000,

the convergence with fourth order velocity approximations

required almost 13% less CPU time than with the second order

velocity approximations; with Re=2000 the discrepancy

increased even further. Thus, the numerical computations

using the second order velocity approximations have slower

convergence and produce less accurate results than the

computations using the fourth order velocity approximations.

We conclude that the fourth order approximations for the

Navier- Stokes equations do provide highly accurate

solutions when coupled with appropriate high order

19



Re

1

I00

400

I000

2000

Second Order

Velocities

157

353

516

1248 ( 148 s)

>6200 (>645 s)

Fourth Order

Velocities

157

353

5O9

1040 (127 s)

4266 (482 s)

Number of Outer Iterations,
CPU execution times

to converge to i0-'
(CRAY XMP 24)

Table ii

approximations for the velocities.

of the outer iterations slows

computing for larger values of Re.

difficulty with all solution methods.

investigating alternative methods such

The rate of convergence

down considerably when

This is an on-going

We are currently

as the multigrid and

multilevel techniques [7,20,22] to obtain high accuracy

driven cavity solutions for much larger values of Re, and to

solve other problems of viscous fluid flow. The results of

these investigations shall be reported in the future.
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FIGURE 1. - CORPUTATIONAL STENCIL.
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FIGURE 2. - DRIVEN CAVITY PROBLEM.
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F]GURE 3, - CORPUTATIONAL STENCIL FOR WALL VORT]CITY.
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FIGURE 4. - STRE,'V'ILINESFOR Re = I (FOURTH ORDER

VELOCITY).

FIGURE 5. - EOUIVORTICITY CURVES FOR Re = I (FOURTH

ORDER VELOCITY).

FIGURE 6. - STREAt_.[NESFOR Re = 100 (FOURTH ORDER

VELOCITY).

FIGURE 7. - EQUIVORTICITY CURVES FOR Re = 100 (FOURTH

ORDER VELOCITY).
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FIGURE 8. - STREAMLINES FOR Re = 400 (FOURTH ORDER

VELOCITY).

FIGURE 9. - EQUIVORTICITY CURVES FOR Re = 400 (FOURTH

ORDER VELOCITY).

FIGURE 10. - STREAMLINES FOR Re = 400 (SECOND ORDER

VELOCITY).

FIGURE 11. - EQUIVORTICITY CURVES FOR Re = 400 (SECOND

ORDER VELOCITY).
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