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SUMMARY

For convection-dominated flows, classical second-order methods are notoriously
oscillatory and often unstable. For this reason, many computational-fluid-dynam-
icists have adopted various forms of (inherently stable) first-order upwinding over
the past few decades. Although it is now well known that first-order convection

schemes suffer from serious inaccuracies attributable to artificial viscosity or
numerical diffusion under high-convection conditions, these methods continue to

enjoy widespread popularity for numerical heat-transfer calculations, apparently
due to a perceived lack of viable high-accuracy alternatives. But alternatives are

available. For example, nonoscillatory methods used in gasdynamics, including
currently_opular "TVD" schemes, can be easily adapted to multidimensional incom-
pressible 1low and convective transport. This, in itself, would be a major advance for
numerical convective heat transfer, for example. But, as this report shows, second-
order TVD schemes form only a small, overly restrictive, subclass of a much more
universal, and extremely simple, nonoscillatory flux-limiting strategy which can be
applied to convection schemes of arbitrarily high-order accuracy, while requiring
only a simple tridiagonal ADI line-solver, as used in the majority of general-purpose
iterative codes for incompressible flow and numerical heat transfer. The new uni-
versal limiter and associated solution procedures form the so-called ULTRA-SHARP

alternative for high-resolution nonoscillatory multidimensional steady-state high-
speed convective modelling.

INTROI) UCTION

For many years the state of the art in high-speed convective modelling, espe-
cially in the field of numerical heat and mass transfer, has been dominated by first-
order upwinding, often in the guise of the "Hybrid" scheme of Spalding [1] or, more
recently, the related "Power-Law Differencing Scheme" (PLDS) of Patankar [2].
This situation has clearly evolved from an attempt to remedy the infamous problems
of unphysical oscillations and instabilities associated with "classical" central-differ-

ence methods under high-convection conditions, using practical grids. The Hybrid
scheme avoids oscillatory behaviour by switching from second-order central to first-
order upwinding for convection (and omitting modelled physical diffusion) wherever
the local component grid Peclet (or Reynolds) number exceeds a value of 2. PLDS
and the exponential differencing scheme (EDS) on which it is based [3] involve a

more subtle blending strategy, but both are also equivalent to first-order upwinding
for convection (with physical diffusion totally suppressed) for component grid Peclet
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numbers greater than about 6. For most cases of practical interest, especially in
three dimensions where very fine meshes are out of the question, the actual (laminar
or turbulent) component grid Peclet or Reynolds numbers are likely to be orders of
magnitude larger than 2 or 6 throughout the bulk of the flow domain. This means
that Hybrid and PLDS are operating as first-order upwinding almost everywhere in
the flow-field except at a very small fraction of grid points where the flow direction
happens to be parallel to grid lines or near boundaries and stagnation regions where
the convecting velocities are small. Thus, instead of solving a high-convection
problem, these methods simulate an unphysical (and anisotropic) low-convection
problem in which the effective local component grid Peclet or Reynolds number can
never be greater than 2.

As has been well established theoretically for over a decade [4-6], first-order
upwinding for convection is a highly inaccurate method because of the effects of
global artificial numerical diffusion (or artificial viscosity). Thus, in many cases of
practical interest, Hybrid or PLDS may give rather low-accuracy results; this has
been directly confirmed in several comparative benchmark studies [7-10]. Hybrid
and PLDS, as used in various evolutions of the well-known TEACH code [11], have
been most successful for flows in which the convective terms are not important; i.e.,
for essentially potential flow governed by the kinematic constraint of the continuity
equation (V • v = 0), modified by boundary regions which are usually handled by
built-in "wall-functions", and for turbulence modelling when turbulent-transport
equations are dominated by source-sink terms [12]. However, for simulating recircu-
lating flows or strong shear flows or for predicting scalar transport, these methods
must be considered to be highly unreliable because of the inherent global artificial
viscosity or diffusivity.

Even though these defects are well documented and generally acknowledged,
the Hybrid and PLDS methods continue to enjoy widespread popularity, apparently
because available alternatives claiming better accuracy (such as higher-order
upwinding) are either not well known or have been discarded because of perceived
incompatibilities with TEACH-like solution algorithms [10]. When carefully
applied to three-dimensional laminar recirculating flows however, higher-order
upwinding methods such a QUICK [13] have been extremely successful [14], show-
ing fine-scale details on relatively coarse grids that are simply wiped out by artificial
numerical viscosity in the corresponding Hybrid calculation [15]. In many convec-
tion-dominated flow problems, the multidimensional third-order QUICK scheme has
been shown to be stable, economical, and highly accurate; because of the wider com-
putational stencil, the solution algorithm is most naturally cast in pentadiagonal
form [16], but can also be used with conventional tridiagonal solvers provided that
"outlying" and other compensating terms [17] are carefully transferred to the source
term.

However, in some cases (such as turbulent flows, for example) there may be
problems with higher-order upwinding because, in regions involving sudden jumps
in value, there is a tendency for the simulation to overshoot or undershoot the correct
transition value. In many cases, this presents no problem other than slight inaccu-
racy; however, in codes where turbulent transport variables (such as eddy viscosity,
for example) are computed as part of the solution procedure, it is possible for a
modelled transport coefficient to undershoot to a point where it takes on locally
negative values, thus resulting in violent nonlinear instability. Similar defects
occur in various forms of skew upwinding [18,8]. There have been recent attempts to
suppress the undershoot problem by blending higher-order (or skew) upwinding
methods with standard (component-wise) first-order upwinding, using sophisticated



blending strategies [19,20]. Although much more accurate than Hybrid or PLDS,
these methods still generate an unnecessary degree of numerical smearing when
attempting to simulate near-discontinuities.

The current situation in numerical gasdynamics is considerably better. The
most popular schemesare basedon second-ordercentral differencing for all spatial
derivatives, as used in the canonical second-order Lax-Wendroff method [21], for
example, together with explicitly addedglobal fourth-order artificial dissipation (a
spatial fourth-difference term) to enhance convergence in smooth regions and an
explicit locally varying nonlinear solution-dependent artificial diffusivity or viscos-
ity (a spatial second-difference) to inhibit oscillations in regions of sharply varying
gradient [22,23]. This explicit damping of a potentially oscillatory scheme is usually
quite successful in giving second-order accuracy without excessive oscillation or
gross artificial smearing. In general terms, Hybrid and PLDS could be considered to
follow a similar philosophy: i.e., using second-order central differencing with locally
varying solution-dependent artificial diffusivity or viscosity added explicitly. But a
major difference lies in the strategy adopted for the evaluation of the magnitude of
the artificial terms. With Hybrid and PLDS it is a function of the local component
grid Peclet or Reynolds number, so that artificial diffusivity is always large
wherever physical convection dominates physical diffusion at the grid-cell level,
thus guaranteeing that modelled convection never dominates numerical diffusion.
By contrast, the magnitude of the gasdynamics codes' artificial diffusivity depends in
a nonlinear way on local behaviour of the convected field variables: very low in

smooth regions, but rapidly increasing in regions of strongly varying gradients (high
curvature), irrespective of the local Reynolds number, which could be infinite (as m
Euler-equation simulations). Thus, in these schemes, artificial viscosity is explicitly
added (automatically) only where "needed" (to suppress potential oscillations near
shock waves or contact discontinuities, for example). This technique has been devel-
oped into a sophisticated art with so-called "shock-capturing" and "total-variation-
diminishing" (TVD) schemes [24,25], which may even involve local negative arti-
ficial viscosity, resulting in "artificial compression" to aid in numerically steepening
discontinuities without overshoot. The popular "Superbee" scheme is of this latter
type [26].

Apparently there has never been any attempt to explicitly adapt the highly
successful second-order gasdynamic codes or the so-called "high-resolution" (but
formally still second-order) TVD schemes to incompressible flows and convective
heat and mass transfer, even though (as will be shown) this is extremely simple to
do, using either explicit time-marching or an iterative pentadiagonal matrix
algorithm based on a variable-curvature-factor technique [27,28]. But it turns out
that the commonly used TVD flux limiters form an overly restrictive subclass of a
much more universal technique guaranteeing tight resolution of discontinuities
without overshoots or undershoots; and this "universal limiter" can be applied to
methods of arbitrarily high-order accuracy, giving very sharp resolution without
introducing artificial numerical compression (and concomitant distortion and
clipping of smooth profiles [29]). The strategy developed here is based on a simple
high-accuracy resolution program which uses third-order upwinding in smooth
regions and adaptively increases the accuracy (by locally expanding the compu-
tational stencil automatically) in high-curvature regions, while applying the
universal limiter to eliminate any possibility of overshoot or oscillation. Thus, the
Universal Limiter for Tight Resolution and Accuracy in combination with this
Simple High-Accuracy Resolution Program results in the "ULTRA-SHARP" alter-
native for high-speed nonoscillatory steady-state convective modelling.



In the next section, the primary short-comings of Hybrid and PLDS are briefly
reviewed. Also, the undershoot (overshoot) problems of higher-order upwinding are
demonstrated. The subsequent section describes the Normalized Variable Diagram
(NVD), the construction of the universal limiter and its implicit implementation via
the Downwind Weighting Factor (DWF). The DWF has the added advantage of con-
verting an arbitrarily high-order scheme in N dimensions (using a correspondingly
wide stencil) into a compact (2N + 1)-point scheme involving only scalar tridiagonal
ADI solution methods, thus making the ULTRA-SHARP strategy immediately
available for incorporation into TDMA-based TEACH-type codes. Some of the more
popular TVD schemes are also described within the framework of the NVD and in
terms of the Variable Curvature Factor (VCF) which is most naturally used with a
pentadiagonal solver [27]. Finally, the performance of the ULTRA-SHARP alterna-
tive is demonstrated on a number of simple two-dimensional steady-state bench-
mark test problems for scalar transport in prescribed velocity fields.

SHORT-COMINGS OF HYBRID AND PLDS

Effective Grid Peclet Number

Consider the model convection-diffusion transport equation in one dimension
for a scalar (p

a_ 02¢
--= -u--+D-
Ot c]x Ox2 (1)

for constant u and D. The forward-time, central-space (FTCS) discretization of this
equation takes the form [30]

n + 1 n n n n _ 2(1) 7 + n(P_ - _ (_i+1 - _i-I ) (_i+1 _)_-1 )
- u +D

at 25x _2 (2)

using standard index notation on a uniform grid. This can be rearranged as

n+ 1 rt
#Pi = dPi - c n - 2_7 + #, 1)(*7+,

A (3)

introducing the Courant number

c = uAt/Ax (4)

and the cell Peclet number (or Reynolds number, in the case of momentum or
vorticity transport).

Pa = 1,,1_/o (5)

Equation (1) can also be discretized using first-order upwinding for the convec-
tion term and simply ignoring the physical diffusion term, giving (for u > 0)
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with a similar form for u < 0. Equation (6) can be rewritten in the form of Equation
(3) as

n+l n C n n ]_ ( n _ 2(_n _}_ n )¢i = ¢i - _ (¢i +, - _,-, ) + -- ¢i + 1 ¢i-,
Pa (7)

where the effective grid Peclet number is, in this case

P_ ---2 (8)

Thus, the Hybrid scheme - defined by using Equation (3) for Pa < 2 and Equation
(6) for Pa > 2 - can be written in the form of Equation (7) with

P_ = Pa for Pa _ 2 (9)

and

P_ - 2 for Pa > 2 (I0)

Now consider an exact solution of the steady-state form of Equation (1) with a
downstream boundary condition ¢(L) = 1, and with ¢ = 0 far upstream. This can
be written

_(x) = exp[-(L-x)/M

where the length-constant * is given by

for x < L (11)

(12)_t = D/u

The corresponding central-difference equation is

(2 - Pa)q_i+1- 4¢i + (2+ Pzx)q_i_t = 0 (13)

and the analytical solution of this difference equation for the above boundary condi-
tions is

2 - Pa )k
_k = _2

where k is an integer defined, for discrete values of x, by

(14)

k = (L - x)lAx for x <- L (15)

Note that the exact solution of the differential equation, Equation (11), can be
written, for discrete node values, as



e- PA) k_k = (16)

Thus, for P_ < 2, the central-difference solution is like a solution to the differential
equation, but at a larger grid Peclet number. And for P. > 2, Equation (14) shows
that the discrete solution becomes oscillatory, as is well _nown [30]. These features

are demonstrated in Figure 1, which shows the factors in Equations (14) and (16) as a
function of Pa.

Now consider Equation (13) rewritten in terms of an effective grid Peclet
number, P j-

(2 - P )¢i+l -- 4_i + (2 + Pa)(_i_l = 0 (17)

The solution of this equation is of the same form as Equation (14), with P_ replaced
by Pa*. But this can be forced to match the true solution, Equation (16), by setting

2 + PA (18)

giving, on rearrangement, an explicit formula for the effective grid Peclet number in
terms of the physical value

O

PA = 2 tanh(Pa/2) (19)

This is the basis of the exponential difference scheme [3] or so-called "optimal"
upwinding [31]. Using P^-dependent weighting factors for convection and diffusion,
Raithby and Schneider [3] develop algebraic approximations (to avoid expensive
exponential evaluations) which can easily be shown to be equivalent to an approxi-
mation to Equation (19) given by

, P_ (l + 0.005 P_) I

Pa(R&S) = , + I2(5 + p (1 + o.05  )

-I

(20)

for all (positive) values of PA. Similarly, Patankar's power-law scheme [2] can be
interpreted as

2 P n

Pn(PLI)S) = 0 -< P_x <- 10

P6 + 2(1 - 0.1PA )5

= 2 PA> 10

(21)

In the same spirit, Spalding's Hybrid scheme [1], given by Equations (9) and (10),
could be interpreted as a (much less accurate) piece-wise linear approximation of the
hyperbolic-tangent function. Equations (9) and (10), (19), (20), and (21) are por-
trayed in Figure 2. As defined, Hybrid is equivalent to first-order upwinding for

convection with physical diffusion omitted (i.e., PA ° = 2) for Pa > 2. But also note
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that the other schemesare effectively equivalent to this for P^ greater than about 6.
This is an important point which is sometimes lost in the details of the algebraic or
power-law approximations. In other words, although (as seenfrom Figure 2) Equa-
tions (20) and (21) areboth very good engineering approximations to the tanh-curve,
the exponential difference scheme itself is equivalent to first-order upwinding for
convection with physical diffusion switched off, for physical grid Peclet numbers
larger than about 6. This, of course, is entirely appropriate for the model physical

problem on which Equation (19) is based; for Pa > 6, the solution is essentially a
constant (_ = 0) at all computed points, since the effect of the downstream boundary
condition does not diffuse upstream strongly enough to significantly affect the
nearest computed point (e.g., e -6 _ 0.25%). But this (steady, source-free, one-dimen-
sional, convection-diffusion) model problem is clearly very restrictive. For this
reason, it is dangerous to use Equation (19), or various equivalent formulations, as a
basis for a general-purpose computational-fluid-dynamics algorithm. This is clearly
demonstrated in the following section.

Source Terms, Multidimensionality and Transients

To the extent that the fluid-dynamic problem being modelled differs from
Equation (1), Hybrid and PLDS (or EDS) introduce inaccuracies due to the inherent
artificial diffusion - for PA > 2 in the case of Hybrid, and for all P. values for
PLDS. For example, the introduction of a source term into Equation (1_, represent-
ing either a real source term in one dimension or the effects of transverse transport
in a multidimensional flow, results in a serious degradation in accuracy when these
methods are used. Figure 3 shows a steady-state two-point boundary-value problem
corresponding to the model equation

/_b o2qb
u_ = D-- + S(x)

Ox _x2 (22)

using a piece-wise linear source term given by [7]

S(x) :: 10- 50 iAx for iAx <- 0.3

S(x) :: 50iAx-20 for 0.3 < lax < 0.4

S(x) :: 0 for lax _ 0.4

(23)

where i is a grid index measured from the left-hand end and x = iAx . Solutions

are shown using both Hybrid and PLDS for Pa = 1, 2, 6, and 10. Note that, for Pa =
i and 2, Hybrid (operating as second-order central differencing) gives adequate solu-

tions; but PLDS is already clearly in error even at these small Pa values. Clearly,
for P^ > 2, the Hybrid solution does not change, since the effective P^* is frozen at

. ¢_ ,, .• WTth PLDS, the corresponding saturated solutmn occurs at about qPa = 6, corre-
sponding to Figure 2. Note that this is due to the shape of the hyperbolic-tangent
function and has nothing to do with any errors involved in the power-law approxima-
tion of tanh.

To demonstrate the effects of multidimensionality, Figure 4 shows the well-
known oblique-step test, corresponding to steady two-dimensional convection and
diffusion governed by the model equation



u-- + v-- = D -- + _2Ox Oy _x'2 (24)

with a constant convecting velocity, v = (u,v), at an angle 0 to the (uniform square)
grid, and a prescribed unit-step jump in _ on the upstream boundary. As 0 is
varied, the position of the boundary jump is adjusted so that the centerline of the

transition passes through the center-point of the grid. Figure 5 shows analytical
solutions [32] for Pa ( = Ivl Ax/D) = 100, at 0 = 30 °, 45 °, and 60 °. The analytical
solution omits streamwise diffusion and is therefore valid only at moderate-to-high
Pa values [33]. At this grid Peclet number, both Hybrid and PLDS are operating as
pure first-order upwinding for convection with physical diffusion omitted. As seen in
Figure 6, this results in gross artificial diffusion in a direction transverse to the flow

- a well-known phenomenon [4]. Note the large absolute error, given by

= ___.\",_" [qbc,,,.0 - qb xa_t[
, j (25)

summed over all computed grid points on a 25 × 25 square mesh. The effects of
varying 0 (by 1° increments) are summarized in Figure 7. Note the symmetry with
respect to 0 = 45 °, where there is a slight drop in error due to alignment across
diagonal nodes; other undulations are due to similar interactions between the

almost-discontinuous exact profile and the discrete nodal points, as the angle is
varied. Clearly, except when the direction of the convecting velocity is closely
aligned with the grid (0 _ 0 °, 90 ° .... ), the artificial diffusion of these methods at

practical (i.e., large) grid Peclet numbers results once again in highly inaccurate
predictions.

Finally, Figure 8 shows results of simulating the transient pure-convection
equation (for u = const > 0)

--+u-- =0
,3t ax (26)

for an isolated sine-squared profile 20Ax wide (representing a "smooth" function)
and a unit step, using Hybrid or PLDS (or EDS) - equivalent to pure first-order
upwinding for this infinite-P A case - and an explicit forward time step, i.e.,

,1+, " ('7_, = _, - c - 1) (27)

At the time shown, the exact profiles have moved 45 mesh-widths to the right.
Starting from exact initial conditions, the computed results again demonstrate the
gross artificial diffusion corresponding, in the transient case, to a numerical diffu-
sion coefficient of the form [30]

D = uAx(1 - c)/2 (28)
n U Ill

In the case shown, c = 0.45; from Equation (28), numerical diffusion is clearly worse
at smaller Courant numbers.
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As the abovesimple test casesshow, Hybrid and PLDS are essentially equiva-
lent to first-order upwinding of convection with physical diffusion ignored for grid
Peclet numbers larger than 2 or about 6, respectively. This must cast serious doubt
on the reliability of simulations using these methods for complex high-speed multi-
dimensional flows using practical (i.e., relatively coarse) meshes. In addition, it
seems to make no sense to use sophisticated (and expensive) multiple-equation
turbulence models with these convection schemes- as is usually done - because
wherever the computed (turbulent) component grid Peclet (or Reynolds) number
exceeds2 (Hybrid) or 6 (PLDS), the turbulent transport terms are (actually or effec-
tively) omitted from the momentum and scalar transport equations (and from the
turbulent transport equations themselves) - having been replaced by the artificial
numerical diffusion inherent in the truncation error of the modelled convection
terms• Apart from the questionable logic involved, one wonders how turbulence
modelling itself has been affected by such convection methods - since, except as an
expensive diagnostic to switch itself off, turbulent transport is largely ignored in
most of the flow domain (except near solid boundaries where universal wall-func-
tions are used anyway).

PROBLEMS WITH HIGHER-ORDER METHODS

Spurious Oscillation of Symmetrical Schemes

Although the artificial diffusion associated with Hybrid and PLDS is widely
acknowledged and well documented, these methods continue to enjoy widespread
popularity [34]• This appears to be because simple alternatives, with formally
higher-order accuracy, introduce other anomalies - usually in the form of overshoots,
undershoots, or severe oscillations - which may lead to convergence problems or non-
linear instability. The primary motivation for Hybrid and PLDS seems to be asso-
ciated with the suppression of deeply penetrating oscillations which occur with
"classical" second-order central differencing for P, :> 2, as discussed in relation to

• • . ._

Equation (14). Figure 9(a) shows the one-dimensional source-term boundary-value

problem, considered earlier, at PA = 10 solved using second-order central differenc-
ing. As seen, the oscillations penetrate from the downstream boundary well into the

solution domain. In fact, the penetration distance is directly proportional to PA [7].

By contrast, using second-order upwinding for convection [30], together with
second-order central differencing for diffusion, written in control-volume (CV) form
(for u :> 0) results in

where S is the CV average, giving nonoscillatory results for this one-dimensional

problem, as seen in Figure 9(b) for P_ = 10. This method also gives much better
accuracy than Hybrid or PLDS; compare with Figures 3(d) and 3(h). This may seem
to be a simple viable higher-order alternative and has, in fact, been adopted as the
basis for several codes, both incompressible [35] and compressible [36]. However,
severe undershoot and overshoot problems develop when using second-order upwind-
ing in two-dimensional computations, as will be shown.

9



Figure 9(c) shows the same one-dimensional problem solved by the QUICK
method [37], or third-order upwinding, which, being a control-volume formulation,
takes the form (for u > 0)

Ax2 - (30)

Typically, a few oscillations are generated near the downstream boundary jump.

But the penetration distance does not continue to grow with Pa; instead, it saturates
at about 5Ax as P^ --, _ [37]. Note, the much better (third-order) accuracy in the
source-term region.-There has been some confusion in the literature concerning the
third-order accuracy of QUICK for convection; this is explained in Appendix A.

Many researchers appear to have an unsubstantiated aversion to unsymmet-
rical higher-order (upwind) methods, and prefer to work instead with higher-order
central differencing. For example, the fourth-order central discretization in control-
volume form is given by

u{l' ' lA-"X 2 (_i+1 + qbt) - _ (_i+2 - qb/+l - qbt + _i-1 )

I' ' )}- 2 (_i + _z-1 ) - 16 (¢i+) - _, - _-1 + _,-e)

"/[ 1 q
Ax 2 (_+i _bi) 24 ((Pi+2 3(Pi+l + 3_bi -(Pi-I )

l ' I)-- (_i -- _i-1 ) -- _- (qbt+l - 3qbi +3qbi-1 - _-2 ) -_ S(x) (31)

But, as seen in Figure 9(d), although the smooth-region accuracy is good, the down-
stream oscillation problem is actually worse than second-order! Once again, pene-

tration distance is proportional to P_. This is a characteristic of all higher-order
central-difference schemes; the proportionality constant actually increases with the
formal order of accuracy [38]. From this simple test, it is seen why central-differ-
encing (of any order) is difficult to work with. At this point, second and third (and
possibly higher) order upwind methods seem to offer better alternatives in terms of
accuracy and stability.

Nonmonotonicity of Higher-Order Multidimensional Upwinding

To demonstrate multidimensional effects, Figures 10 and 11 show second-order

upwind and QUICK-2D [13] solutions, respectively, of the oblique-step test for P^ =
100, to be compared with the analytical and first-order solutions of Figures 5 and: 6.
Figure 10 clearly demonstrates the large undershoot and overshoot problems of
second-order upwinding; but note the decrease in error from that of first-order

10



u_)winding (= Hybrid = PLDS). At 45°, QUICK gives qualitatively similar results
to those o_second-order upwinding, but with slightly less undershoot and overshoot
and steeper resolution corresponding to the higher-order accuracy, as reflected by the
smaller absolute error. Note the inverse relationship of undershoot and overshoot
between these two methods as 0 is varied. Figure 12 shows the angular variation

(in 1 ° increments) of absolute error (at Pa = 100) for both methods; cumulative
contributions less than zero (undershoots) or greater than one (overshoots) are also

shown; note the asymmetry between overshoots and undershoots - i.e., an overshoot
at 0 becomes an undershoot at (90 ° - 0) and vice versa, in each case. Again, note the

drop in error at 45 ° and the undular behaviour at other angles. The two-dimensional
oblique-step-test results of this and the previous section have been obtained by
explicit time-marching to steady state; the conservative CV explicit flux formulation
is summarized in Appendix B.

This simple test problem clearly demonstrates the nonmonotonicity problems
associated with higher-order methods in their "unlimited" form. What is needed is a
simple limiting strategy which maintains the good resolution of higher-order up-
winding while eliminating undershoots and overshoots without introducing artifi-
cial diffusion or destroying conservation. The next section shows how this can be
achieved in a straight-forward manner using an extremely simple technique which
can be extended to arbitrarily high-order accuracy.

THE ULTRA-SHARP ALTERNATIVE

Normalized Variable Diagram for the Universal Limiter

Figure 13 shows the local behaviour of the convected variable, (p(x,y,z), in the
vicinity of a control-volume (CV) face, in a direction normal to that face. Depending
on the direction of the convecting velocity (here shown to the right), label the three

indicated node values: (PD (downwind), (pu (upwind), and (Pc, (centrally located
between the other two), as shown. In part (a) of the figure, locaI behaviour is mono-
tonic. One necessary condition of the universal limiter is sketched in the figure,
shown by the cross-hatched limits: the convected face-value, (p_, should lie between
adjacent node-values in locally monotonic regions. Note that t_s includes the limit-

ing case, (pp = (PD (= (pf)" But if (Pc = (P-' an additional condition is necessary,
namely: (pf _ (Pc ( = (p-),'in this case, as sho_vn in part (b) of the figure. Treatment of
locally non'monotonic +behaviour is sketched in parts (c) and (d) of Figure 13. Some
flexibility is possible here, provided the interpolation is consistent, in terms of conti-
nuity, with the previous conditions.

It is more convenient to summarize the limiter constraints in terms of normal-

ized variables. Figure 14(a) shows local behaviour near a CV face in a direction
normal to the face. Note that node-value labelling again conforms to the convecting
velocity direction - in this case, to the left. Now define the normalized variable, (l),
anywhere in the vicinity of this CV face as

_(x,y ,z) - epU
"_(x,y,z) =

(PD - CV (32)

Note, in particular, that 7, = 0 and _, = 1. Figure 14(b) gives the same infor-
mation as 14(a), but in ter_ns of normali_ed variables. Now the universal limiter

constraints can be portrayed in the Normalized Variable Diagram (NVD) - i.e., the
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c, (P) plane. This is shown in Figure 15. Symbolically, the universal limiter con
_rain_s on (pf can be written

(PC _ (Pf _ | for 0 < _C -< I (33)

with

_)f : (} at (PC = 0 (34)

and with continuous extensions beyond >__c0> 1 and _: < 0, maintaining a
monotonically rising condition: O_t/a(p C In Figure 1"5, these extensions are

• • f °

given by second-order central-differencing for (Pc > 1:

qbf = 1 + 0.5(qb C- l) for qbC> 1

and by second-order upwinding for negative (Pc"

(35)

_pf : _5 _c for ¢_c < 0 (36)

but other functional relationships are possible. The dotted lines show extensions of
Equations (35) and (36) into the monotonic range, 0 < _c < 1; note that they both
pass throug h the "second-order" point C, located at (0.5, 0.75). To avoid nonunique-
ness near i_ _ 0 , the boundary OB has a steep but finite positive slope This
• C .+. .
introduces an additional constraint

dpf <- constOPC near _bC --* 0+

where const = O(100), for example.

(37)

At each stage of a pseudo-time-marching (Appendix B) or iterative solution, the
universal limiter constraints are applied as follows:

(i) For each CV face, note the direction of the (current) normal velocity com-

ponent, thereby identifying (pu, (Pc, and (PD"

(ii) Explicitly compute a tentative high-order multidimensional upwind-

biassed face value, (pf.

(iii) Compute the corresponding normalized face-value, (pf, and the normal-
ized adjacent upwindnode-value, (pc-

(iv) If the point (_c, _r) falls within the triangular region of Figure 15, simply
proceed to the ne:_t CV face.

(v) If not, _)f is limited to the nearest appropriate constraint boundary at the
given (Pc- value.

(vi) The unnormalized face-value is then reconstructed by

qbf = _f(_D- qbU) + qbU

(vii) The same procedure is used for each CV face.

(38)
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Then in a time-marching algorithm, the (limited) convective fluxes and correspond-
ing diffusive fluxes (computed using second-order central differencing) are now
available for the explicit update step. Alternatively, iterative alternating-direction
implicit solution can be implemented by introducing the downwind weighting factor,
as now described.

The Downwind Weighting Factor

Instead of limiting the face variable directly, the Downwind Weighting Factor
(DWF) is introduced as an auxiliary variable, thereby generating a compact implicit
scheme suitable for tridiagonal solution methods. After explicitly computing the

high-order multidimensional upwind-biassed estimate, qbf, define

DWF -
(39)

Since this is the same as

@f - Oc

DWF - 1 - _'7 (40)

it is not difficult to see that, in terms of DWF, the universal limiter constraints,

corresponding to Figure 15, become

< 1 (41)0 <_ I)WF <_ 1 for 0 <dp c-

or

(const - 1)_C

I)WF -< near (PC-* 0
(, - ¢_c) + (42)

in the monotonic region, with, for example,

c
1)WF - for qbC_<O

2(, - ¢c) (43)

and

I)WF ---0.5 for (PC > 1 (44)

This is shown in Figure 16. Note that the point A, given by (1,1) in Figure 15, has
been stretched out into a vertical line in Figure 16. Point C is now at (0.5,0.5).

Now rewrite the face value (in terms of the known DWF) as

_f DWF "TBC TBC= q_u + (1 - DWF) _)c (45)

13



where "TBC" stands for "to-be-computed" - in the next iteration of an implicit line-
sweep update. Note that the convective flux at each CV face now involves only the
adjacent upwind and downwind "TBC" node-values; but the DWF in Equation (45)
implicitly contains higher-order wide-stencil information (in addition to the univer-
sal limiter constraints). Clearly, when DWF's are computed for each CV face on a

quadrilateral grid, the implicit update stencil consists of the central CV node-value
itself, together with only the surrounding adjacent node-values - i.e., a compact
(2N + 1)-point stencil in N dimensions. This is the same compact stencil as used by a
large number of 2D and 3D commercial and research codes of TEACH-like structure,
based on tridiagonal line-sweep solution algorithms, thus immediately opening up
the possibility of incorporating (in principle, arbitrarily) high-order nonoscillatory
convection schemes into these well-established general-purpose elliptic solvers.

Using the popular compass-point notation [2], the individual convected face
values are computed as follows. Considering the west face, for example, the face-
value obtained from Equation (45) will depend on the sign of the convecting velocity

at the west face. If (Pw* is the initial higher order estimate on the west-face, the
DWF is first computed according to

DWF + - if u -> 0

_P - (Pw w (46)

or

I)WF- - if u <0

qbw - Cp _ (47)

Then (the appropriate) DWF is limited according to Figure 16. The face-value used
in the implicit update is then

or

(Pw = DWF: qbp + (1 -DWF:)qb W for u w >-0 (48)

qbw = DWF w qbw + (1 -DWF w)(pP for u w <0 (49)

In either case, _b is a linear combination of its two adjacent (upwind and downwind)
node values, with SGN(u ) as a parameter,

._f DWF[. " "SGN(u )] (50)
(l)w = w q)W' (PP' w

Similarly for the other faces of this particular CV cell. This results in an update (in
three dimensions) of the form

ap_p = aw(_ W + as_ S + aB_ B + aE¢_E + aN¢_N + aT¢_T + b (51)

which is, of course, identical to the form generated by first-order upwind or second-
order central methods or combinations such as Hybrid, PLDS, or EDS [2]. Again, it
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should bestressed that the higher-order multidimensional information and the non-
oscillatory universal limiter constraints are implicitly contained in the DWF's of
each facerather than involving "outlying" node-valuesthat are then lumped into the
explicit source term. The limiter constraints inherent in the DWF's guarantee non-
oscillatory results, with stability and convergenceproperties similar to first-order
methods (DWF _ 0) - but without introducing artificial numerical diffusion.

Nonoscillatory Multidimensional Results

Figure 17 shows results of applying the universal limiter constraints to the
QUICK-2D scheme for the oblique step test at P^= 100. These ULTRA-QUICK
results should be compared to the unlimited QUICK results of Figure 11. Note that
resolution remains sharp (reflecting the third-order accuracy) even though there are
no overshoots or undershoots. Also note the concomitant reduction in error seen in

Figure 17(d). But the great power of the universal limiter resides in the fact that it
can be used with higher-order convection schemes. A dramatic increase in sharpness
in the simulation of the near-discontinuity is seen in Figure 18, showing results for
the same problem using ULTRA-fifth-upwinding for convection. As explained in
Appendix C, this scheme uses (one-dimensional) fifth-order upwinding normal to
each CV face, together with third-order (QUICK) transverse curvature terms;
second-order-central terms are adequate for diffusion. As 0 is varied from 0 ° to 90 °,
the total error is never more than about 5.2. Considering the fact that the error is a
cumulative value summed over 625 grid-points, these ULTRA-5th results are seen to
be highly accurate.

Cost-Effectiveness and Adaptive Stencil Expansion

Now that it has been established that viable nonoscillatory higher order
methods can be easily devised, a natural question to ask is: which is more cost-
effective in terms of overall computer usage (for a prescribed accuracy), a fine-grid
computation using a low-order method, or a coarse-grid calculation using a higher-
order scheme? Gaskell and Lau [27] compared first-order upwinding with the third-
order QUICK scheme and a nonoscillatory version (similar to ULTRA-QUICK),
using successive grid refinement on the two-dimensional oblique-step test. For a
prescribed accuracy, _st-order methods required such a fine grid, compared with
the practical-grid third-order methods, that CPU time was larger by three orders of
magnitude! This disparity would be even more impressive in three dimensions.
Another obvious question is: what order is "optimal" in the above sense of cost-
effectiveness? Clearly second-order upwinding (which involves the same stencil as
QUICK or ULTRA-QUICK) is not. Higher order nonoscillatory methods such as
ULTRA-5th require more operations (than ULTRA-QUICK) at each grid point; but
perhaps this can be offset by the greater accuracy available on a coarser grid.

Figure 19 gives some indication of optimality in the two-dimensional case.
Part (a) of the figure shows global absolute error versus number of grid-points for

several different methods applied to the infinite-Pa oblique step-test for 0 = 45 °.
Part.(b) shows the corresponding CPU time (without cost-adjustment for storage).
The results, corresponding to a prescribed accuracy from part (a), are cross-plotted in
part (c) of the figure. Even on a logarithmic scale, the "cost" of the first-order method
is off-scale. As expected, third-order methods are significantly better than second-
order upwinding (because of better accuracy for essentially the same cost-per-grid-
point); but fifth and higher-order methods are somewhat less cost-effective than
third. On the other hand, for a given grid-size, Figure 18 shows that ULTRA-5th, in
particular, can give dramatically sharper resolution of discontinuities than the
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corresponding third-order scheme. This suggests a simple strategy of adaptive
stencil expansion that is proving to be extremely cost-effective in both steady-state
and time-accurate transient simulations [39]:

Use third-order ULTRA-QUICK in "smooth" regions of the flow;
then on the basis of some "non-smoothness" monitor, switch to

a higher-order (ULTRA) scheme locally, as needed.

Since "smooth" regions correspond to small values of the convected variables'
change in gradient (i.e., curvature), a suitable monitor at face (i+½), for example,
would be the absolute average "curvature" (normal to the CV face):

CURVAV = 0.5 I(qbi+ 2 - qbi+ l) -((Pi - qbi-l)] (52)

This, of course, is also a good indicator of sudden changes in gradient near discon-
tinuities. Thus, if CURVAV is below a prescribed threshold, the algorithm uses the
optimally cost-effective ULTRA-QUICK scheme. Even when discontinuities are
present, this will account for the bulk of the flow domain - since, by definition, dis-
continuities (when tightly resolved) involve only a very few number of grid points in
narrow isolated regions. Wherever CURVAV exceeds the threshold, the algorithm
automatically expands to a wider stencil, such as ULTRA-5th, and uses this more
accurate scheme in the appropriate local regions. In most cases of practical interest,
the additional "cost" is imperceptible compared with a global ULTRA-QUICK
calculation; however, resolution of near-discontinuities is dramatically enhanced.
Additional thresholds can be used for further adaptive stencil expansion to invoke
(in principle, arbitrarily) higher-order resolution, if desired. In addition, it is
desirable to use a higher-order (ULTRA) scheme where the local absolute normal
"gradient"

GRAD = ]qbi+ 1 - qbil (53)

across the CV face exceeds a given threshold. This strategy has been used up to
ninth-order in inviscid transient calculations [39] in order to resolve extremely
narrow pulses in the convected variable. For steady-state calculations, it appears
that an adaptive ULTRA-QUICK/5th/7th-order convection scheme has a number of
attractive attributes, including cost-effectiveness (high coarse-grid accuracy),
reliability (excellent stability and convergence properties), and ease of coding. The
order-switching strategy is shown schematically in Figure 20. Results of the

oblique-step test (at Pa = 100, with second-order diffusion terms) are seen in Figure
21 to be essentially exact for all practical purposes. Even higher-order adaptive
stencil expansion could be developed for specialty applications.

Variable Curvature Factor

For second- and third-order methods, the normalized convected CV face-value,

_r, is a single-valued function of qb_, and the curve representing this relationship in
the NVD passes through the point U of Figure 15. Passing through C guarantees
second-order accuracy; third-order accuracy (in a control-volume formulation)
requires a slope of 3/4 at C (see Appendix A). In terms of unnormalized variables,
such schemes can always be written

qbf ----- 0.5((_D + qbC)-- VCF.(Qb D- 2_C h- qbU) (54)
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where VCF - VCF@c) is the variable curvature factor. For third-order methods,
transverse-curvature terms [13] should be added for consistency. Equation (54) can
be written in terms of normalized variables, asfollows

(pf = 0.5(1 +(pC )-VCF.(l -2 ) (55)

Rearranging gives

VCF = = VCF(_c)
2(I - 2(p_C) (56)

when (p_(pc) Is known. Note that thin expression is determinate at t(])hCe= 0.5 forcurves passing through point C. It is thus a simple matter to convert universal
limiter constraints of Figure 15 into constraints on VCF; these are shown in Figure
22. For reference, the figure also shows the third-order QUICK value, VCF -= 1/8.

ULTRA-QUICK is shown by the heavy solid lines. Second-order central-differencing
corresponds to VCF - 0; whereas second-order upwinding has VCF - 1/2. Third-

order accuracy for a given "nonlinear" scheme requires VCF = 1/8 at _c = 1/2.

In an iterative procedure, VCF is computed from Equation (56) based on
current values (of _c )" Then Equation (54) is written in terms of"to-be-computed"
values

• TBC, . TBC -. TBC . TBC,
(pf = 0"5((pTBC+OpC )-- VCF'((PD -2(PC q-q)u ) (57)

implying a pentadiagonal matrix algorithm (PDMA) for line-sweep solution. This
technique was originally developed by Gaskell and Lau [27] using a "curvature
correction", a, from the default value of 1/8; i.e., in terms of the present notation,

°(%) = vcF((p .) - ,/8 (58)

Figure 23 shows another third-order scheme based on an exponential upwinding or
linear extrapolation refinement of third-order upwinding known as EULER [28].
Note the alternative treatment in the nonmonotonic regions.

For reference, a pentadiagonal compass-point algorithm proceeds as follows:

(i) For each CV face, compute VCF + or VCF -, depending on SGN(uf).

(ii) The VCF value may be under-relaxed to enhance convergence [27].

(iii) Then for a typical, say west, face

or

% = (05 - vcF:)(p. + (05 + 2vcF:)(p w - vc . +(pw for uw - o (59)

dl)w - (0.5 - VCF2)(p w + (0.5 + 2VCF2)(p P - VCF w (pE for u < 0 (60)

In either case, (p_ is a linear combination of four adjacent node-values in a direction

normal to the face (two upwind and two downwind), with SGN(u ) as a parameter:
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_w = "_ VCF[. , , ;w q)WW,d_W d_p _E SGN(uw)] (61)

[Inclusion of transverse curvature introduces additional terms which can be handled

explicitly.] Similarly for the other faces of this CV cell. This results in an overall
three-dimensional update algorithm of the form

apd_p = aWW_W w 4- assd2s S + aBBd_B B + aEEr_EE 4- aNNd_N N + aTT_T T

+ awd_w + as(_s + aB(_B + aE_ E + aN_ N + aT_ T + b
(62)

which is solved most effectively by alternating-direction pentadiagonal line-sweep
iteration [27]. Tridiagonal methods could, of course, be used, taking care to place
outlying - and certain other [17] - terms in the explicit source term; this, however, is
not recommended as it appears to be somewhat less felicitous than the straight-
forward (and highly efficient) PDMA technique.

Relationship to TVD Schemes

All of the so-called "shock-capturing" and "total-variation-diminishing" (TVD)
schemes currently used in many gasdynamic codes [24] can be immediately adapted
to incompressible convective modelling. Since these methods use the same stencil as
QUICK (without transverse curvature), they can be described within the framework
of the variable-curvature-factor technique. They can also, of course, be represented
as specific curves in the downwind-weighting-factor diagram or the normalized-
variable diagram. For example, Figures 24 and 25 show three well-known schemes
of this type in terms of the NVD and the DWF, respectively: Superbee (a supercom-
pressive scheme), Minmod (a relatively diffusive scheme) [26], and the "harmonic"
scheme devised by van Leer [40].

All shock-capturing and TVD schemes in common use conform to an overly
restrictive limiter [25] which tends to make them more diffusive than necessary. In
terms of normalized variables, this restriction is

_f <_ 2_C for O<qb_ C-<0"5
(63)

Superbee, for example, can be described as a hybrid between second-order central
and second-order upwinding, constrained by Inequality (63) - and by ¢bf _ 1 in the
remainder of the monotonic region. Figure 26 shows the NVD for a scheme similar
in philosophy to Superbee but constrained only by the universal limiter; this might
appropriately be called ULTRA-B. In fact, the basic idea of just such a method was
originally proposed by Roe for gasdynamic methods [41] and, coincidentally, named
"Ultrabee". Figure 27 shows the 45 ° oblique-step test at P. = 100 using Minmod,
the harmonic scheme, and ULTRA-B (or Ultrabee). Note"the diffusive nature of

Minmod; the harmonic scheme gives results similar to those of ULTRA-QUICK; by
contrast, the supercompressive ULTRA-B scheme gives extremely sharp monotonic
resolution - in fact, slightly sharper than the exact solution at this finite grid Peclet
number.
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Although the step-resolution .properties of simple supercompressive schemes
such as ULTRA-B are very impressive, it should be realized that the sharp resolu-
tion is actually obtained by the local introduction of negative numerical diffusion,
which is directly responsible for artificial steepening of discontinuities. Unfortun-
ately, such methods have a tendency to artificially steepen all profiles - with con-
comitant flattening of peaks (due to mass conservation). This draw-back is seen in
Figure 28, which shows oblique convection without diffusion (at 0 = 45 °) of a semi-
elliptical upstream boundary profile simulated using ULTRA-B; the (infinite-Pa)
exact solution is shown for reference. By contrast, Figure 29(a) shows the same test
simulated by ULTRA-QUICK/5th/7th. Note that, in this case, the sudden change in
gradient at the base of the profile is well captured without the extreme clipping
produced by the supercompressive scheme. However, there is still some loss of
resolution near the local maximum because of the action of the universal limiter.

This problem, in turn, can be largely resolved by switching off the limiter in regions
of true local extrema, as seen in Figure 29(b). The problem then becomes one of
pattern-recognition: near physical local extrema, the limiter needs to be switched
off; but it should remain active near discontinuous jumps or sudden changes in
gradient to suppress spurious unphysical overshoots or undershoots. An automatic
discriminator of this type has been constructed for one-dimensional steady-state [7]
and transient [39] cases. In Figure 29(b), the limiter is simply artificially switched
off for (1) _ 0.5. Clearly, this strategy cannot be used in general. An automatic dis-
criminator for multidimensional steady-state flow is currently under development.

Rotating Velocity Field

To get some idea of the effect of spatially varying velocity, pure convection
(without diffusion) of boundary-specified profiles in a velocity field given by solid-
body rotation represents an effective benchmark problem. In a two-dimensional
conservative, finite-volume, formulation, it is convenient to have the stream-
function values available at control-volume corners; then the CV face-average

convecting velocity is simply the difference of the corner stream-function values
across the face. The stream-function used in the proposed benchmark test is

60
o

ty(x,y) = _- [(x --xc)2 + (y -yc )2] (64)

where a) is a specified angular velocity and (x , y ) is the location of the rotation axis.
O ..... C C

The velocity field is shown schematically m Figure 30.

Figure 31 gives the exact solution for a sharp nondiffusing (Pa = oo ) comple-
mentary-error-function step in boundary value at the lower left corner. Figure 32
shows results for first-order upwinding ( - Hybrid -_ PLDS --- EDS in this infinite-
P^ case). Figures 33 through 35 show unlimited forms of second-, third-, and fifth-
or-der upwinding. Figures 36 and 37 give Minmod and ULTRA-B results. Finally,
Figure 38 shows the ULTRA-QUICK/5th/7th results. These figures and the corre-
sponding global errors listed in the captions are self-explanatory.
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CONCLUSION

In terms of normalized variables, first-order upwinding is represented by 7- =
c which, m the NVD, is a straight line passing through (0,0) and (1,1). It thus c_)n-

orms (marginally) to the universal limiter constraints (Figure 15) and, thereby,
produces nonoscillatory results. As shown bby Godunov [42], it is the only "linear"
scheme (i.e., in the present terminology, (pf is a linear function of _) which
possesses this property, as can easily be seen from Figure 15. TVD seKemes are
based on single-valued nonlinear relationships between (pf and (Pc but also require
the corresponding NVD curves to pass through (0,0) and (1',1), witE certain other (in

some respects, unnecessary) restrictions. If the NVD curve passes through (0.5,
0.75), the scheme is second-order accurate (or third-order if it passes through this
point with a slope of 3/4); if not, the scheme is only first-order accurate. Schemes
with generally larger values of _f (at a given (Pc value) tend to be more "compres-

i 9, • .s ve than schemes with lower values. Thus, Superbee is more compressive than
ULTRA-QUICK, for example; whereas, Minmod is more diffusive. First-order

upwinding, of course, is seen to be the most diffusive of all nonoscillatory schemes•

Higher-order schemes cannot be represented by a single curve in the ((Pc, (Pf,)
plane; however, they can still be constrained to pass through (0,0) and (1,1), which
appears to be a basic condition for non_cillatory results. In the monotonic range
(0 ¢_ _¢. _ 1), the downwindconstraint, (1)e_ 1, guarantees uniqueness, whereas the
upwind constraint, _r _ (pc, eliminat'es stair-casing. The additional ad hoc
constraint, (p_ _%: cons_ (p-, avoids nonuniqueness near (P- _ 0. The resulting

• f .... C' 1-" v

trmngular region m the _VD, Figure 15, constitutes the steady-flow universal
limiter in the monotonic range. In the nonmonotonic regime, there is considerable
flexibility, provided the constraints are consistent with passing through (0,0) and
(1,1), and t at 0_./0(P c remains positive and finite (for uniqueness). It is not

• _ • . • •

necessary to specifjr a single-valued functmn m this regime; this is usually done
purely as a matter of convenience.

As has been shown, it is a simple matter to design higher-order nonoscillatory
convection schemes and to frame them in terms of simple explicit time-marching
techniques or (by using the downwind weighting factor) traditional TDMA iterative
algorithms. [The special class of second- and third-order schemes (including all
currently used TVD schemes) can also be constructed using straight-forward PDMA

iterative methods, using the variable curvature factor technique - essentially
equivalent to Gaskell-and-Lau's "curvature correction" method.] Existing codes
based on a TEACH-like structure involving iterative line-sweep TDMA solvers can
now be immediately upgraded to incorporate cost-effective higher-order nonoscilla-
.tory methods such as ULTRA-QUICK/5th/7th. Alternatively, because of effieieneies
revolved in vectorization and parallel processing, the simple explicit time-marching
algorithm may be more attractive. In any case, there is certainly no longer any
reason why grossly artificially diffusive methods, such as Hybrid, PLDS (or EDS),
should be used under any circumstances. The availability of ULTRA-SHARP
schemes, giving nonoscillatory high-accuracy results on coarse grids, means that
computational fluid dynamicists will at last be able to focus their attention on

physical modelling of complex fluid phenomena and on reliable practical three-
dimensional simulations for analysis and design, without being plagued by spurious
oscillations or nonconvergence or by the (less obvious but potentially more
dangerous) debilitating inaccuracies attributable to massive artificial diffusion.

2O



ACKNOWLEDGMENT

Portions of this work were supported by the National
under contract ECS-8904595.

Science Foundation

APPENDIX A

Formal Accuracy of the QUICK Scheme

There has been some confusion in the literature [43] regarding the formal order
of accuracy of the QUICK scheme in terms of truncation error. The problem seems to
have arisen through a confusion of the point-simulation of the convective derivative
with the corresponding control-volume formulation. It is enough to consider the
simplest case of one-dimensional constant-velocity flow using a uniform grid. At
third (and higher) order, there is a difference between

on the one hand, and the integrated control-volume (CV) conservative expression

(Dr -- (De

ax (A.2)

where the subscripts refer to the right and left CV face values of the convected
variable. A Taylor-series expansion of(A.1) results in [30]

/)(D) (Di+1 - (Di-1 (D,+l - 3(Di +3(Di-t - (Di-2i 2Ax 6Ax + O(Ax3) (A.3)

where an upwind bias is used on the third-difference, assuming a positive convecting
velocity. This could be split into two terms, resulting in a conservative CV form

i Ax (A.4)

where

l 1

(D_ = 2 ((D,+I + (Dr)- 6 ((Di+! - 2(Di + (Di_l) (A.5)

and qbe*is obtained from Cr* by decreasing all indexes by 1.

However, Equation (A.4) does not represent the control-volume expression
given by (A.2) to third order. To see this, make Taylor expansions of the node values
about the CV face locations. For example,
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(t) , 1(t)3 l$i+1 = cr+(P_ + 2_r "_- + 6_r + _'_--r -_- +''" (A.6)

,flAx) 1 ,,(Ax) 2 1 ,,,(Ax) 3 1 d){iv)(._) 4 (A.7)

_i-1=4r-¢) T +_(l)_,--_- -6_(T +_-_-r X -" (A.8)

So that linear interpolation across the right face would give

(A.9)L 1 ,,( Ax 2 )_r = _(¢,+1+_ )=%+% T +O(_x%

It is easily seen that the 1/6 factor in Equation (A.5) does not completely cancel the

_" term. In order to cancel this term completely, one needs the QUICK formulation

giving

1 1

(PQ = _- (_i+1 + (Pi) - _ (_,+l - 2_,+ Oi_l) (A.10)

1 (p_, Ax 3 + ... (A.11)

Thus, for the complete CV term,

H,

(PQ-(P? (Pr-_e 1 (dP:'_AxdP_)- + -- Ax3 + .-. (A. 12)
Ax Ax 16

and, of course, in the limit Ax _ 0, the term in square brackets becomes (p(iv), so that

Ax Ax
+ O(Ax 3) (A.13)

Since a conservative flux-based formulation should be consistent with the CV form,

the QUICK simulation is the appropriate one to use. Note that several other
discretization schemes can be represented in terms of a "curvature factor"

D 1

_br = 2 ((Pi+l + _bi) - CF "((P,+I - 2¢p,+ (pi_l) (A.14)

(with an analogous expression for negative convecting velocities). For example,
second-order upwinding has CF = 1/2, and Fromm's method [44] has CF = 1/4 (and,
of course, central differencing is equivalent to CF = 0). The distinction between
Equations (A.5) and (A.10) thus hinges on the factors 1/6 and 1/8, respectively. For a
steady-state control-volume formulation, the 1/8-factor gives the appropriate third-
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order accuracy. Interestingly enough, for the corresponding time-accurate control-
volume formulation of unsteady convection-dominated flows, an additional factor of

1/24 (together with a Courant-number-dependent term) must be added to the 1/8-
factor, thereby reconstructing the value ofl/6. This was explained - but evidently
not universally understood - over ten years ago, when the QUICK and QUICKEST

algorithms were initially published [37].

In terms of normalized variables, Equation (A.10) becomes

_q
Or = 0.5 (1 - _C ) - 0.125 (1 - 2_C) (A.15)

or, more simply

"_Q 0.75 (_'c 0.5)(Pr = 0.75 + (A.16)

Similarly, Equation (A.14)becomes

_D
_d)r = 0.75 +(2CF + 0.5)-u (_-0'5)

(A.17)

For finite CF, any scheme of this form passes through point C of Figure 15, and is
therefore at least second-order accurate, as seen from Equation (A.14). If CF = 1/8,

then the slope S is given by

S = 2CF + 0.5 = 0.75
(A.18)

so that a steady-state control-volume scheme which passes through point C with a
slope of 3/4 is third-order accurate, according to Equation (A.16). Table A.1 sum-
marizes several second-order schemes in comparison with the third-order QUICK

algorithm.

Table A.1

Method CF S Order

QUICK 1/8 3/4 Third
Eq. (A.5) 1/6 5/6 Second
Fromm 1/4 1 Second

2nd-up 1/2 3/2 Second
Central 0 1/2 Second
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APPENDIX B

Explicit Control-Volume Time-Marching Algorithm

Using compass-point (plus "top" and "bottom") notation, fluxes are computed
explicitly for the west, south and bottom faces. For example, for the west face

F w = Cw_w- a GRAD (B.1)
w W

where the west-face Courant number is

c : u At/Ax (B.2)
W £0

and the corresponding diffusion parameter is

a = D At/ax 9 (B.3)
W W

The face-value is first computed explicitly, using (in general) a wide upwind-biassed
multidimensional stencil; then the universal-limiter constraints are applied - again
explicitly - to give _b,,,. The gradient term is appropriately taken to be a second-order
approximation simurating the diffusive flux; i.e.,

(_)w AxGRADw = _ = _e - _w (B.4)

[A higher order treatment of diffusion is not necessary because, for sharp changes in
gradient, diffusion is very small, whereas when diffusion is large, gradients vary
smoothly.] Then the update algorithm consists of a FORTRAN over-write assign-
ment statement inside a multiple DO-loop:

Set:

¢_p(i,j, k) = C_p{i,j, k) + Fw(i,j, k) + Fs(i,j, k) + Fb(i,j, k)

- Fw(i+ 1 ,j, k) - Fs(i,j+ 1, k} - Fb(i,j, k + 1 ) + At S(i,j, k} (B.5)

where conservation has been used - e.g., for the east face at (i,j, k),

Fe(i,j, k) : Fw(i + l ,j, k) (B.6)

and so on. Because of nonlinearities inherent in the limiter, it is not possible to give
precise stability restrictions on the time-step. However, experience suggests that
local Courant numbers near 0.3 appear to give satisfactory results under high-
convection conditions.

The steady-state limiter portrayed in Figure 15 needs to be slightly modified
for the time-marching algorithm. Rather than using the ad hoc restriction given by
OB, it is necessary to use a more precise condition corresponding to the time-
accurate limiter [29], i.e.,
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_f _ _c./c for 0 - _c -- I (B.7)

(in addition to requiring _f =< 1 in the same range) where c is the appropriate
normal-direction Courant number at the CV face in question. Without this con-
straint, (very) slight undamped temporal oscillations may occur at isolated points

near strong discontinuities at finite Pa values; at such points, a steady state might
never be reached.

Although only first-order accurate in time, Equation (B.5) can give some indi-
cation of the temporal evolution of the solution from the assumed initial conditions.
From a practical point of view, this can indicate the total time necessary for reaching
a steady state. One simply observes how long it takes for initial transients near an
upstream boundary to "wash out" of a downstream boundary; then continued time-
marching for 2 to 3 times this time-scale is usually enough to cause reflections and
other transients to die away. Of course, more precise stopping criteria can easily be
devised.

APPENDIX C

Higher-Order Multidimensional Fluxes

For first- and second-order methods - including combinations such as Hybrid,
EDS, PLDS, and various TVD schemes - the multidimensional fluxes at each CV
face, are identical to their normal-direction one-dimensional counterparts. For
second-order upwinding, for example, the left-face convective flux is given by upwind
linear extrapolation in the normal direction,

CFI,UXL(i,j,k) = CXL.(1.5qbi_l,j, k - 0.5(pi_2,j, k)
(C.1)

where CXL is the appropriate left-face normal (x-component) Courant number. Note
that, to a consistent order, no "transverse curvature" terms are included.

At third-order, it is appropriate to include transverse curvature; thus, for
example, the QUICK left-face convective flux is given by

CFLUXL(i,j,k) = CXL-(PeQ (C.2)

where

using the definition

1

(PQ = (PLIN -- 8-1CURVLN + 24-- CURVTL (C.3)

1

and where, ifCXL _ 0, the normal and transverse "curvature" terms are given by

CURVNL = ((Pi,j,h -- 2d_i-l,j,k + (Pi-2,j,k) (C.5)
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and

CURVTL = (dpi_l,j+l,h - 2dpi_l,j,k + ¢i_l,j_l,_)

+ (_i-l,j,k+l

respectively; whereas, if CXL < 0,

-- 2_i - 1,j, k + (l)i - I,j, k- 1)

and

CURVNI, = (qbL+l,j, k

(C.6)

- 2¢i,i, k + ¢,__,j,_) (C.7)

CURVTL : (_i,j+l,k - 2_bi,j,k + _i-l,j-l,h ) + (_i,j,h+l -- 2_i,j,h + _bi.j,k-l) (C.8)

For higher-order convective fluxes, other transverse terms could be included.
However, numerical experimentation has shown that

(i) whereas inclusion of the third-order CURVT terms provides a significant
increase in accuracy,

(ii) higher-order transverse terms can actually reduce accuracy in some eases and
are therefore omitted, and

(iii) the coefficients of higher-order normal terms can be optimized to give better
accuracy than that obtained from values using formal interpolation formulas.

Thus, for example, the "fifth-order" convected value (at the left face) used in
this report is given by

1
m(sj 1 __3 FOURT]I + -- CURVTI,
"re = d_tjN - 6 CURVAV + 128 24 (C.9)

where CURVAV is an "average normal curvature" across the left face

1

CURVAV = 2 (qbl+l,j,k -- dPi,J,k -- _i-l,j,k + _i-2,j,k )

FOURTH is the upwind-biassed fourth-difference normal to the face

(C.10)

FOURTll = (qbi_ 1,j,k -- 4_i,j,k + 6_i-l,j,k -- 4dPl-2,j,k + qbi-a,j,k) (C.11)

(for CXL > 0), and CURVTL is as defined previously. Note the use of 1/6 (rather
than 1/8) in Equation (C.9)!

The "seventh-order" formula used in this report is given by

3 1 1
fh(7 ) 1 CURVAV + m FRTtIAV + _ SIXTIt + m CURVTI,
_'¢ = _LIN- 6 128 100 24 (C.12)

where FRTHAV is the (symmetrical) average fourth-difference across the left face,
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FRTiiAV = (d_i+3 - 3¢i+2 + 2qbi+ I + 2qbi - 3qbi_ 1 + qbi_2) (C.13)

(suppressingj's and k's), and SIXTH is the upwind-biassed sixth-difference normal to
the face

SIXTH = (qbi+ 3 -6qbi+ 2 + 15¢i+1 + 20qbi + 15_bi_ l - 6qbi_ 2 + qbi_3) (C.14)

Formal interpolation would indicate factors of 1/8 multiplying CURVAV and 5/1024
multiplying SIXTH - together with additional transverse and cross-difference terms.
The factors used in Equation (C.12) have been found to give slightly more accurate
results.

In all cases, diffusive fluxes are modelled using the simple second-order approx-
imation for the normal gradient. For example, for the left face,

_) (¢i,j, k --¢i-l,j,k )
e ax (C.15)

As explained previously, higher order terms are not warranted since, when diffusion
is large, profiles are smooth and Equation (C.15) is consistent with the appropriate
(QUICK) treatment of convection [13]; whereas, when steep gradients occur- neces-
sitating higher-order convective modelling and the use of the universal limiter -
diffusion terms are very small, so that a simple diffusion model suffices.
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FIGURE I. - ALGEBRAIC AND EXPONENTIAL FACTORS APPEARING IN EQUATIONS (14) AND (16),

RESPECTIVELY, AS A FUNCTION OF GRID PECLET NU/'giER,P&.
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FIGURE 2. - APPROXIMATIONS OF THE HYPERBOLIC-TANGENT FUNCTION GIVEN BY EQUATION (19).

EXACT CURVE: LIGHT CONTINUOUS LINE. HYBRID: HEAVY PIECEWISE LINEAR APPROXIMATION.

PATANKAR POWER-LAW APPROXIMATION: TRIANGLES. RAITHBY-AND-SCHNEIDER ALGEBRAIC AP-

PROXIMATION: CIRCLES.
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(g) PLDS." PA = 6.

FIGURE 3. - STEADY-STATE BOUNDARY-VALUE PROBLEM WITH SOURCE TERM GIVEN BY EQUATION (23).
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FIGURE q. - SCHERATIC PORTRAYALOF THE OBLIOUE-STEP

TEST. AS 0 IS VARIED, THE LOCATIONOF THE BOUNDARY

DISCONTINUITY IS ADJUSTEDSO THAT THE EENTERLINE OF

THE TRANSITION PASSESTHROUGHTHE RIDPOINT OF THE

6RID.

(a) B = 30 °.

(b) O = 45°.

(c) 9 = 60°.

FIGURE 5. - THREE-DIfflENS|ONALPLOT OF¢(x,y) FOR THE ANALYTICAL

SOLUTION OF THE OBLIQUE-STEP PROBLERFOR PA (= I Vl Ax/D) = 100.
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(a) 0 = 30° , _ = 50.6.

(b) B = q50 , _ = 6q.2.

%

60

40

20

0

Y

FIGURE 7. - VARIATION OF TOTAL ABSOLUTEERROR,_, tilTH STREAN-TO-

GRID ANGLE, e, IN 1o INCREflENTSFOR PLDS AT P.,. = 100 (Eg(J]VALENT
TO FIRST-ORDER UPgINDING EXCEPT NEAR 0° AND 90%. RAXIP_M _ IS
65.8 AT qqO OR 116o.

(c) e = 60° , £ = 50.6.

FIGURE 6. - CORRESPONDINGSOLUTIONS OF THE OBLIOUE-STEP PROBLEM

USING FIRST-ORDER UPWINDING--EQUIVALENT TO HYBRID, PLDS, OR EDS

AT THIS PECLET NUMBER (PA = 100). _ IS DEFINED IN EQUATION (25).
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FIGURE 8. - FIRST-ORDER-UPIAIND SOLUTION OF THE INVISCID TRANSIENT

CONVECTIONPROBLF_FOR A UNIT STEP AND AN ISOLATED SINE-S_JARED

PROFILE, AFTER 100 TIIqE-STEPS AT c = O.qS.

(a) SECOND-ORDERCENTRALDIFFERENCING.

X X

(c) QUICK.

A_

X

(b) SECOND-ORDERUPWINDING. (d) FOURTH-ORDERCENTRAL DIFFERENCING.

FIGURE 9. - STEADYSOURCE-TERRBOUNDARY-VALUEPROBLEROF FIGURE 3 FOI_P_, = 10.
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(b) e = 45°, # = 19.3.

(c) e = 600 • # = 21.2.

FIGURE 10. - RESULTS OF THE OBLIQUE-STEP PROBLEMFOR P& = 100 USING
SECOND-ORDER UPWINDING,

(b) 0 - 45O, _= 11.5. " ......

(c) e = 60°, _ = 13.8

FIGURE 11. - RESULTS OF THE OBLIQUE-STEP PROBLEMFOR P& = 100 USING
QUICK-2D.
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FIGURE 12. - ANGULARVARIATION OF ABSOLUTEERROR, _, AT PA = 100.
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FIGURE 13. - CONVECTEDFACE VARIABLE, ®f, DEPENDINGON THE LOCAL BEHAVIOR OF ® NORNALTO THE CV FACE.
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FIGURE lq. - DEFINITION OF NORRALIZEDVARIABLES ACCORDINGTO EQUATION (32).
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FIGURE 15. - UNIVERSAL LIRITER CONSTRAINTSIN THE NORNALIZEDVARIABLE

DIAGRAN (NVD). POINT C IS LOCATEDAT (0.5, 0.75).
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FIGURE 16. - UNIVERSAL LIRITER CONSTRAINTS(CORRESPONDINGTO FIGURE 15) IN TERRS

OF THE DONNWINDWEIGHTING FACTOR (DM:). POINT C IS AT (0.5, 0.5). NOTE THE

SINGULARITY AT ¢C = 1.
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(a) 0 = 300 , 8 = 9.2. (a) 8 = 30°, _ = 5.0.

_10 lO

(b) e = q5°, 8 = 8.6.

1

(c) 8 = 600 , _ = 9.2.

0o q5o 900

(d)8 AS A FUNCTION OF 8 (RAXIRUR = 10.2 AT 430 OR q7°).

FIGURE 17. - ULTRA-OUICK OBLIgUE-STEP RESULTSFOR PA = 100.

(b) 0 = 45 o, # = 2.8.

(c) e = 600 , # = 5.0.

lO _-

°i 0o q5o 90o

(d) £ AS A FUNCTION OF 9 (RAXIRUR = 5.2 AT 100 OR 80°).

FIGURE 18. - ULTRA-STH-UPWINDOBLIOUE-STEP RESULTS FOR PA = 100.
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FIGURE 19. - COST-EFFECTIVENESS OF HIGHER-ORDER SCHEMES.

FIGURE 20. - SCHEMATIC DIAGRAM OF ORDER-SWITCHING STRATEGY USED IN THE LOCALLY ADAPTIVE

STENCIL EXPANSION ALGORITHM.
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Ca) e = 30°, _'= q.3.

(c) 0 = 600 , 8 = q,3,

FI6URE 21, - ULTRA-3RD/5"rH/TTH-UPklIND OBLIOUE-STEP RESULTS FOR

PA = 100.
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FIGURE 22. - UNIVERSAL LIRITER BOUNDARIES PORTRAYED IN TERMS OF THE VARIABLE CURVATURE

FACTOR. NOTE THE SINGULARITY AT_ C = 0.5. THE STRAIGHT LINES THROUGH 0 AND A CORRE-

SPOND TO THOSE IN FIGURE 15. THE DASHED LINE SHOWS THE QUICK VALUE: VCF_I/8.

VCF

-1.0 0 1.0 _C

FIGURE 23. - VARIABLE CURVATURE FACTOR FOR THE EULER-QUICK SCHEME. THIRD-ORDER ACCURACY

REQUIRES VCF= I/8 AT_C= I/2, NOTE THE ALTERNATE TREATMENT IN THE NONMONOTONIC REGIONS
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FIGURE 2q. - NORMALIZEDVARIABLE DIAGRA/_FOR SUPERBEE

(HEAVY PIECEW]SE LINEAR GRAPH), THE HARMONICSCHEME
(DOTTED PARABOLICCURVE), AND MINMOD (DASHEDLINES).

ALL SCHEMESFOLLOW®f = ¢C IN THE NONI'IONOTONICREGIONS.
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FIGURE 25. - DOWNWINDWEIGHTING FACTORVARIATION FOR THE

SUPERBEE(HEAVY LINES), HARMONIC(DOTTED), AND MINI_)D

(DASHES) SCHEMES.
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I II-

FIGURE 26. - NORMALIZEDVARIABLE DIAGRAMFOR THE ULTRA-B

SCHEME. COMPAREWITH SUPERBEEIN FIGURE 2q. NOTETHE

SIGNIFICANT DIFFERENCE NEAR _t - 0+.
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(a) NINROD, _ = 26.4.

(b) HARPI)NIC SCHEME, _ = 17,1.

(c) ULTRA-B, _ = 4.0. (b) EXACT SOLUTION FOR REFERENCE.

FIGURE 27. - OBI_IQUE-STEPRESULTSOFR e = q5° AND PA = 100. FIGURE 28. - OBLIOUE CONVECTION (AT 0 = q5°, PA = 0o) OF AN
ELLIPTIC PROFILE IMPOSEDAT THE INFLOW BOUNDARY.
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(a) ULTRA-SRD/STH/7TH, _ = 10.7.

(I)1 ULT'RA-3RD/STH/7TH WITH LIMITER-RELAXATION NEAR LOCAL

RAXIMA, _g = 10,1.

FIGURE 29. - OBLIOUE CONVECTION OF THE ELLIPTIC PROFILE.

Ob= 1

/. ,oo

/,/
0 b = 0

(x c, Yc )

FI6URE 30. - SCHEMATIC DIAfitINq OF THE ROTATIIgl-

VELOCITY-FIELD _Y-STEP PROBLER.

FIGURE 31. - EXACT SOLUTION OF THE ROTATING-VELOCITY PROBLF_.MFOR

P,,. = _ AND A NARROM COI_LEJ'IENTARY-ERROR-FUNCTION PROFILE
AT THE UPSTREAR BO(JNORY CORNER.

J
FIGURE 32. - FIRST-OEDER UPWIND (--HYBRID- PLDS-'- EDS) RESULTS

FOR THE ROTATING PROBLER_ _ = G5.3.
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FIGURE 33. - SECOND-ORDER-UPICIND RESULTS FOR THE ROTATING STEP FIGURE 3q. - UNLIMITED gUICKo2D RESULTS FOR THE ROTATING STEP

PROBLE.R: g = 27.3. PROBLEM- _ = 18.9.

FIGURE 35. - UNLIRITED FIFTH-ORDER UI:_IND RESULTS FOR THE ROTATING FIGURE 36. - RINROD RESULTS FOR THE ROTATING STEP PROBLF_: _ = 30.8.

STEP PROBLER: # = 16.1.
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FIGURE 37, - ULTRA-B RESULTS FOR THE ROTATINGSTEP PROBLF_.M-
_= 7.7.

FIGURE 38. - ULTRA-3RD/5TH/7TH RESULTSFOR THE ROTATING STEP
PROBLF._ 8 = 9.1,
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