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SUMMARY

An effort to develop a three-dimensional ice accretion modeling method has been initiated. This

first step towards creation of a complete aircraft icing simulation code builds on previously developed

methods for calculating three-dimensional flowfields and particle trajectories combined with a two-

dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This

work is intended as a demonstration of tile types of calculations necessary to predict a three-

dimensional ice accretion. Results of calculations using tile 3D method for a MS-317 swept wing

geometry are projected onto a 2D plane normal to tile wing leading edge and compared to 2D results

for tile same geometry. It is anticipated that many modifications will be made to this approach,

however this effort will lay the groundwork for future modeling efforts. Results indicate that the

flowfield over the surface and the particle trajectories differed for the two calculations. This led to

lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice

accumulation for the 3D calculation.

NOMENCLATURE

A = area for convection heat transfer h, IITC

Am = area that particles impact on the

surface i, j

Ao = area through which a group of Lv

particles travel at release plane fiac

Cp = pressure coefficient

Cpw = specific heat of water fiae

dic e = ice thickness

f, FF = freezing fraction rili
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= runback mass flux from the Ts, TS =

previous control volume Too =

= mass flux into the downstream t =

control volume u =

= heat flux due to the impacting VE =

water droplets Voo =

= heat flux due to conduction v =

through the ice/airfoil surface W =

= heat flux due to convection Xi

-- heat flux due to evaporation

heat flux required for phase Xj =

change of water to ice

= heat flux associated with the X, =

incoming runback water

= heat flux associated with the x, =

outgoing runback water xc =

= Reynolds number _,BETA =

= surface 7 =

= surface distance p =

temperature at the surface

temperature in the free stream

time

weighting factor in j-direction

local inviscid velocity

free-stream velocity

weighting factor in i-direction

unit width

displacement vector from x(id) to

x(i+lj)

displacement vector from x(ij) to

x(i,j+l)

displacement vector from x(ij) to

Xs

location along surface streamline

location of centroid of Am

collection efficiency

sweep angle

density

I. Introduction

Ice accretion modeling has received considerable attention during the past few years. The

National Aircraft Icing Technology Plan l, drafted in 1986 under the direction of several federal

agencies, calls for the creation of a complete aircraft icing simulation during the coming decade. In

support of this plan several activities related to the creation of a 2D ice accretion modeling and

performance evaluation capability have been undertaken at the NASA Lewis Research Center. A 2D

ice accretion code, LEWICE, was developed in 1983 by the University of Dayton Research Institute 2

and later modified by Ruff 3. This code is divided into three major parts; a potential flow calculation,

a particle trajectory calculation, and an ice growth calculation. The ability of LEWICE to predict

airfoil ice accretions is quite good for rime ice growths. Glaze ice predictions, although acceptable,

have exhibited some deficiencies which have been documented by several authors 4-6. The calculation

of performance degradation due to icing is an equally important aspect of the icing analysis problem.

Over the past several years 2D calculations for iced airfoils have been performed using the interactive

boundary layer method _ and using Navier-Stokes codes s. Recently, Cebeci 9 has combined his

interactive boundary layer method with LEWICE. This has resulted in a code which has the potential

to accurately determine the flowfield and particle trajectories while also providing the performance

degradation information during a single calculation.
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With theseactivitiesfirmly underway,it is appropriateto considerthe methodologyfor

developmentof a three-dimensionaliceaccretionanalysiscapability. Someof the issuesassociated
witha 3D icingcalculationarethesanaeasthosefor2D. Oil tileotherhand,someissuesonlybecome

evidentwhenconsideringa full 3Dcalculation.Thesemayinclude;variationsin icegrowthonbotha

largeandsmallscaleacrossa wingspan,runbackin tile spanwisedirection,non-uniformitiesin the

impingingcloudalongtile span,andparticletrajectoriesin complexgeometricregions.
Thecurrenteffort is directedat takingexistingcomputercodesanddevelopinga strategyfor

performinga 3D iceaccretionandperformancedegradationcalculationfor a sweptwingconfiguration.
This activitywill serveasa demonstrationcalculationandasa focusfor futuredevelopmentof the

approach.Thecomputercodesusedin thiseffortconsistof a 3Dpanelcode,a particletrajectorycode,
andtheiceaccretionsubroutinesof theLEWICEcode.Theperformancecalculationswill usea 3D

Navier-Stokescode,ARC3D. Presently,thecalculationsareperformedseparately. In the future,

thesecalculationswill be performedin a singlecodethus requiringlessuserinteractionthan is

currentlynecessary.Thisreportdescribestheiceaccretioncalculationasappliedto an infiniteswept

wingconfiguration.
Thewinggeometrychosenfor thiscalculationis that ofanMS-317airfoilwitha 30° sweepangle,

asshownin Figure1. TheMS-317airfoilmodelrepresentsa typicalmedium-speedwingsection.This

geometrywaschosendue to the availabilityof experimentalinformationfrom iceaccretiontests
currentlybeingcarriedout in theNASALewisIcingResearchTunnel. Comparisonsof thepredicted

iceaccretionprofilesto thoseof theexperimentwill becompletedasafollow-onto thiswork.

II. Code Description

A 3D ice accretion calculation for a complete aircraft is a major step forward from current

capabilities. The present activity is directed at extending current 2D capabilities to simple 3D

geometries by assuming constant spanwise gradients. For this work, an infinite swept wing of constant

geometry in the spanwise direction is used. Such a geometry produces similar streamlines along the

span. As a result of this streamline similarity, it is assumed that there is no net transport of water

across the control volume in the spanwise direction. The control volume analysis of the ice accretion

can thus be considered two dimensional and the 2D LEWICE routines can be used. This also allows a

single evaluation of the ice growth for any streamline to represent the ice accretion behavior for any

location on the wing. Since the resulting ice shape geometry will not vary along the span, re-paneling

of the iced wing for subsequent ice accretion calculations is simplified.

An infinite swept wing also avoids consideration of ice growth near the tip of the wing or at the

wing-body junction. At these locations, the flowfield is quite irregular and major changes to the

approach currently being employed would be required. It is anticipated that future work in 3D ice

accretion prediction would be directed at addressing these regions of the flowfield. Currently, the tools
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necessaryfor evaluationof thesecomplexflowfieldsarebeingdevelopedby Sankar1°and Caruso11.

Additional work will be required to create a 3D control volume analysis for the ice accretion

calculation. As these codes become available, they will be incorporated into the 3D ice accretion

analysis methodology.

II-1.3D Panel Code and Particle Trajectory Calculation

The flowfield and particle trajectory calculations are extensions of the 2D analysis methods used

in LEWICE. The three-dimensional flowfield calculation uses a Hess-Smith panel code 12. The code

can accomodate lifting and non-lifting geometries or combinations, thus allowing simulation of complex

surfaces such as a complete aircraft (Figure 2). A Prandtl-Glauert correction is used to allow

compressible flow calculations. The code can also handle leaking panels to simulate inlets or

instrument orifices. The code provides velocity information at any point in the flowfield away from the

surface. This type of code uses very little computer time compared to a viscous flow code and yet

provides sufficient flowfield informatiou for subsequent trajectory and energy balance calculations under

most circumstances.

The trajectory calculation is based on the computer code developed by Norment 13 with one

additional feature. The code solves a force balance equation on a single particle and then determines

the new particle position using an Adams-type predictor-corrector algorithm developed by Krogh 14.

The added feature is the ability to calculate the local collection efficiency from the impacting particles.

The code generates an array of impingement points for each region of interest. This is done by

releasing an array of particles which impact the region of i,terest (Figure 3). The collection efficiency

is the ratio of the particle flux at the target point to the free-stream particle flux. If a known group of

particles is tracked from their release location to the target location, then the collection efficiency can

be determined by the ratio of the target area to the release area. The collection efficiency can then be

determined from the following relationship,

_(x,(i,j)) = Ao(ij)/Am(i,j) (1)

Once the collection efficiency is determined for the surface, an array of surface locations and

corresponding fl values is created for streamlines on the surface. This information will be used in the

ice accretion calculation to determine ice growth along the streamline paths. The streamlines are

calculated using a 4th order Runge-Kutta integration scheme. The streamline is carried forward from

the stagnation region for both the upper and lower surface at the region of interest.

A linear interpolation scheme is used to determine the collection efficiency along the streamline

from the matrix of/3 values generated in the trajectory calculation. The array of/3 values is searched

to find the surface cell in which the streamline point resides (Figure 4). The /3 value at the streamline



point is thendeterminedfrom a weightedaverageof tile localcollectioneffieienciesat the four

surroundingcellpoints.Theinterpolationexpressionis,

fl(xs) _ 3(xc(i+lj+l)).u.v + fl(x_(i,j+l)).u.(1-v)+ _(x_(i.j)).(1-u).(1-v)

+ 3(x_(i+l_i)).(1-u).v

(2)

where,

and

u = • (3)
]

v = .X,. X.. (4)
l

represent weighting factors in the interpolation based on the geometry of tile cell.

II-2. Ice Accretion Calculation

Tile ice accretion calculation is l)erfornled as a 2D strip analysis along streamlines calculated by

the 3D panel code. The results of the previous calculation are written into a file containing the x,y,z

coordinates of the streamline, the surface distance between points, the x,y,z components of the unit

normal vector for the panel at tile streamline coordinate locations, the velocities, and the local

collection efficieneies, 3- Tile subroutines from tile LEWICE code which determine the boundary layer

values, the control volume energy balance and the resulting ice growth are used to determine the ice

shape at a given spanwise location. A brief outline of the LEWICE calculation follows. Further details

can be found in reference 3.

The ice accretion calculation consists of a control volume mass and energy balance. Tile 2D strip

analysis allows use of the assumption that there are no spanwise fluxes into the control volume, which

is consistant with the infinite swept wing flowfield assumption. A depiction of the control volume for

the process is shown in Figure 5. The As value is based on distance along the streamline.

The mass balance equation is,

lhc + riar,, = rile + riarout+ riai (5)

The impinging mass flux, riac, is determined from the 3 distribution. The mass flux into the control

volume, fiarin, is any water remaining in the liquid state after evaluation of an upstream control

volume. This mass flux is called runback. The mass flux out of the control volume due to

evaporation, lhe, and to freezing, lh i, are determined from the energy balance calculations. The mass

flux out of the control vohune, rilro_t, is used as input for the downstream control volume. The
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freezingfractionis a term used to describe tile fraction of incoming liquid that freezes within the

control volume. It is given by the expression,

rh i
f= rile + rii r in (6)

The energy balance equation is,

Clc + dtri, = {]cond + /ie_,p + dlco,_ + dtrou t + dti (7)

The values of dtc and _trin are obtained from mass flux values and the internal energy levels of

the incoming water. Integral boundary layer expressions are used to determine the heat flux due to

convection. The inviscid flowfield values are used as boundary values for the viscous calculation. The

boundary layer calculation determines tile location of transition from laminar to turbulent flow and

then uses an appropriate value of the convection heat transfer coefficient. Tile heat transfer value is

then obtained by use of Newton's law of cooling,

(I ..... =hA(T,- Too) (8)

The evaporative heat flux is also obtained from consideration of tile inviscid flowfield conditions using

the expression,

_l_v = fiae (Cpw, T , + L_)As (9)

where the evaporative mass transfer rate, 1lie, is determined from local pressure and temperature

conditions. Further details on this calculation are found in reference 3. The heat flux due to

conduction is a user specified value. This leaves two equations for the two unknowns, lhrout and rh i.

The mass of ice that freezes is used to determine the tlfickness of the resulting ice layer. Since the

analysis is locally 2D, the ice thickness call be found from the relation,

fla. At
di_e _ l (10)

Pice As W

The thickness is then considered to be uaiform over the entire panel for subsequent flowfieid

calculations. The new coordinates for the panel are obtained from tile relation,

xi = xi q- dice _:i (11)

where x i is the ith coordinate of the center of tile panel and £i is tile ith componeut of tile unit normal

vector for the panel.
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As the ice thickness increases, there is the possibility that ice segments will intersect and thus this

must be accounted for in the determination of the new geometry. Since this is a strip analysis, the

spanwise thickness does not vary. Therefore, the possibility of ice growth intersection is limited to the

normal and chordwise directions. In that case, the line segments corresponding to the top of every

other panel are examined for intersection. If intersection is determined to occur, then a new panel is

formed with its center halfway between the two old panels. This requires determination of the

coordinates of the new panel and renumbering of the panels. This information is then used in

subsequent potential flow calculations.

III. Results and Discussion

Prior to the development of modern computational techniques, Dorsch and Brun 15 devised a

method for determining cloud-droplet impingement on swept wings. Their approach is based on the

argument that droplet trajectories for an infinite swept wing can be calculated in the same manner as

for a 2D plane normal to the leading edge of the wing, using the component of the free-stream velocity

in that plane. Thus, the impingement limits, local collection efficiencies, and total water collected are

calculated for the normal plane. The results are then considered to be equivalent at all normal planes

along the span.

An examination of that approach can be undertaken by comparing results of the current method

to a 2D LEWICE calculation for a normal plane of the swept wing configuration. In order to compare

the swept to unswept condition, the approach velocity of the 2D calculation was taken as the

component of the swept wing velocity in the normal plane. If 7 is the sweep angle, then the

appropriate 2D approach velocity is found using the relation,

V_ = Voo, cos 7 (12)

In order to understand the forces exerted on the incoming particles, it is illustrative to compare

the relative strengths of the pressure fields for the two cases to the inertia of the incoming water

droplets. The inertia of the droplets is characterized by the expression,

2 (13)

An alternate pressure coefficient based on the droplet inertia would have the form,

(_P - lP-P°°2 (14)
_pwVoo
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This term is simplyrelatedto the standardpressurecoefficientthroughthe ratio of waterto air

densities.Thus,thestandardCpvaluesbasedon thedensityof air andtheapproachvelocitycanbe
usedto evaluatetheforcesexertedon the waterdroplets.Theseareplottedin Figure6 for thetwo
casesconsidered.

The 3D potential flow calculation for the MS-317 wing section with a 30" sweep angle yielded

pressure coefficient profiles in a plane normal to the leading edge as shown in Figure 6. The Cp

distribution is contrasted to that of a 2D airfoil section in the figure to show the influence of the sweep

angle. The swept wing Cp distribution has somewhat higher pressure values on the suction surface.

Based on the discussion above, this indicates that the swept wing suction pressure has less influence on

the incoming particle trajectories than tile 2D suction pressure. This difference causes a shifting of the

local collection efficiency distribution, as discussed below. The differences in flowfield characteristics

also have an impact on the convective heat transfer in the region of ice accretion.

Three-dimensional particle trajectory calculations from this flowfield are shown in Figure 7. The

trajectories indicate particle motion in the spanwise direction in the region just in front of the wing.

Apparently the influence of the spanwise velocities is not felt until the particles are close to the surface.

The free-stream velocity, sweep angle, and particle size all play a role in the extent of spanwise travel.

The particles thus impact the surface at some angle with respect to the chordwise direction. The effect

of this 3D particle trajectory is evident ill tile local collection efficiency plots, as shown in Figure 8.

Additionally, more complex geometries would affect particle trajectories to a greater degree than the

simple geometry examined here.

Along the streamline, the local collection efficiencies are determined according to Eq. 2. For

comparison purposes, a plot of /3 vs. distance from the stagnation point in a plane normal to the

leading edge of the wing, along with 2D results for the same geometry, are shown in Figure 8. The 3D

/3 curve has impingement limits at a distance somewhat closer to the stagnation point than tile 2D

case. Additionally, the 3D results indicate a somewhat lower /3 near the stagnation region. This

behavior is most noticeable for the suction surface (i.e. positive s values). The higher pressure levels on

the suction surface of the 3D calculation result in a relative shift of the particle trajectories to the

pressure surface compared to the 2D case. This combined with spanwise motion of the particles

described above account for the different/3 distributions.

The convective heat flux term has a major influence on the control volume energy balance. The

velocity distribution over the surface and tile resulting convective heat transfer coefficient are shown in

Figures 9 and 10 respectively. Since the spanwise velocity does play a role in tlle convective heat

transfer of tile energy balance, tile total free-stream velocity was used in this portion of the 2D

calculation. The velocity distributions are somewhat different for the two calculations. The higher

pressure of the 3D calculation is reflected in the lower velocity levels. This results in lower heat

transfer coefficient values for that surface. Tile greatest differences are in the staguation region. The
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milderpressure-sideinviscidvelocitygradientsfromtile 3Dcalculationresult in a lower heat transfer

coefficient value. This suggests the possil)ility of more runback water on the pressure side for the 3D

calculation. Additionally, the 2D calculation produces smoother distributions. Examination of

interpolation routines and surface panel distribution is required.

These changes in tile heat transfer distribution on tile surface combined with the altered /3

distribution lead to differences in the surface temperature and freezing fraction, as shown in Figures 11

and 12 respectively. Both figures show tile shifting of the region of ice accumulation to the pressure

side of the wing. The surface temperature plots show a small region of transition from an ice/water

interface (indicated by the regions where T is constant at 0*C) to a completely dry, iced surface

(indicated by the regions where T is constant at approximately -16°C) for the 2D calculation. The 3D

calculation indicates a dry iced surface over the entire accretion area. The large gradient in surface

temperature at s = 0.024 for the 3D calculation may be due to the sharp spikes in the heat transfer

coefficient distribution. The freezing fraction plots indicate a small region of wet ice growth for the 2D

calculation and a completely dry ice growth for the 3D calculation. The heat transfer coefficient in this

region does not drop as low for the 3D calculation as it does in the 2D calculatiou. This results in

sufficient energy loss to provide for freezing of all the incoming water.

The ice accretion results for this wing are shown in Figure 13. Comparisou to the 2D results

indicate the influence of the altered collection efficiency distril)utiou and of the 31) flowfield. The ice

shape obtained with the 3D calculation has less mass and extends over a smaller porlion of the surface.

In this calculation, that shape would then be considered to be uniform along the span.

IV. Conclusion

An approach to calculate the ice accretion for an infinitely swept wing has been proposed. This

method employs existing technology to couple the evaluation of 3D particle trajectories with a 2D strip

analysis to predict ice buildup along surface streamlines. This reduces the computational resources that

would be required for predicting the full 3D flowfield and uses only a small increase in resources over

the current 2D LEWICE code. This approach could be easily extended to other simple 3D geometries

such as axisymnaetric engine inlets or rotor blades.

Comparisons to a 2D analysis were made for a MS-317 infinite swept wing geometry. Results

indicate that the flowfield over the surface and the particle trajectories differed for the two calculations.

This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and

ultimately ice accumulation for the 3D calculation. These results also indicate that improvements can

be made to the previously used method for evaluation of swept wing cloud-droplet impingement. The

present calculations include the influence of sweep on pressure levels relative to droplet inertia.

Additional work is required to determine the nunlber of panels necessary to accurately model the

flowfield and resulting collection efficiency distribution for the swept wing. Studies of several swept



winggeometriesarenecessaryto confirmtilecurrentresults. Comparison to actual ice accretions for a

swept wing geometry are also required to provide confidence ill tile calculation procedure. Future

studies of the effects of finite span and wing/body junctions will be incorporated to give a prediction of

the ice accretion distribution oil complete wing geometries.
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Figure 1 - MS-317 Swept Wing Prof|le
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Finely resolved version

Coarsely resolved versicm

Fiaure 2 Digi%al description of the DeHavilland Twin O_er.
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Figure 10. Convection Heat Transfer Coefficients in a
Plane Normal to the Leading Edge for a MS-317

Swept Wing : 2D and 3D Calculations
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Figure 11. Surface Temperature Near Stagnation Region of
MS-317 Swept Wing : 2D and 3D Calculations
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MS-317 : 20 CALCULATION I
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Figure 12. Freezing Fraction Near Stagnation Region of

MS-317 Swept Wing ; 2D and 3D Calculations
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Figure 13. Ice Shape Profiles Near Leading Edge of
MS-317 Swept Wing ; 2D and 3D Calculations
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