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NOMENCLATURE

metrics of coordinate transformation from physical plane to computational plane.
contraction ratio, wi/we.

P'Pm‘

static pressure coefficient, Cp=
dcL

screen wire diameter.

drag force acting on a screen.

index associated with grid stations in the x- (or &-) direction.

Jacobian of coordinate transformation from physical plane to computational plane.
index associated with grid levels in the y- (or 1-) direction.

pressure loss coefficient of a screen for normal incident flow, ko = D/q.

pressure loss coefficient of a screen for incident flow at angle 0 relative to the screen
normal.

length of contracting section of inlet.

length of constant width upstream duct.

static pressure.

total pressure.

reference static pressure, wall static pressure in test section.

dynamic pressure, q = 1/2 pV2 =pg - p.

reference dynamic pressure, dynamic pressure at centerline of test section.

modified Reynolds number, Reg = v .

Bv
x-component of velocity.

y-component of velocity.

velocity vector, [u,v].

magnitude of the velocity, Vo2 +v2 .



w width of duct.

X physical coordinate in direction of tunnel axis.

Xm x-location of the match point of the two cubic curves defining the contraction shape
measured from the start of the contraction.

Xg x-location of the screen in the upstream duct measured from the upstream end of the duct.

y physical coordinate perpendicular to tunnel axis.

B porosity of a screen, ratio of open area to total area.

0 differential operator.

\Y del operator.

0 flow onset angle relative to screen normal.

0 flow exit angle from screen relative to downstream normal.

\Y kinematic viscosity of the fluid.

p fluid density.

¥ stream function.

® vorticity, ® = V xV .

£ streamwise coordinate in computational domain.

yl transverse coordinate in computational domain.

subscripts:

ts test section.

i inlet or start of contracting section.

e exit of contraction.

CL wind tunnel centerline. . -

1 upstream of screen.

2 downstream of screen.

X, ¥, &M derivative with respect to the variable.



SUMMARY

The design of closed-circuit wind tunnels has historically been performed using "rules of thumb"”
which have evolved over the years into a body of useful guidelines. The development of indraft wind
tunnels however, has not been as well documented. The design of indraft wind tunnels is therefore gen-
erally performed using a more intuitive approach, often resulting in a facility with dissappointing perfor-
mance. The primary problem is a lack of understanding of the flow in the inlet as it passes through the
required anti-turbulence treatment. For wind tunnels which employ large-contraction-ratio inlets, this lack
of understanding is not serious since the relatively low velocity of the flow throught the inlet treatment
reduces the sensitivity of the flow to improper inlet design. Unfortunately, large contraction ratio inlets are
expensive and often violate budgetary and size constraints for new facilities, particularly when a large test
section is desired. A large body of literature concerning the perfomance of various flow control devices to
reduce test-section turbulence is available. The influence of these devices on the test-section flow unifor-
mity, however, has not recieved any detailed study. The effect is particularly strong for short, low-con-
traction ratio inlets. The present study was undertaken to examine the effect of anti-turbulence devices on
test-section velocity uniformity and to find ways of designing low-contraction ratio inlets with antiturbu-
lence treatments which produce uniform test-section flow. The most common antiturbulence treatment is a
set of screens located at the front of the inlet. Therefore, a two-dimensional analysis method capable of
predicting the effect of such screens on the test-section flow uniformity was developed. The analysis
showed that screen turning plays a large role in modifying the inlet flow distribution. The amount of
turning is determined by the pressure drop of the screen, the angle of onset, and the velocity variation of
the flow passing through the screen. Further analyses were performed to examine the effect of geometric
variations on the test-section flow uniformity. The test-section flow distribution provided by a given inlet
geometry and screen combination can be accurately calculated using the computational method, however,
designing a small inlet for uniform flow is still a formidable problem because of the strong interaction
between the inlet geometry and the screen characteristics. A more straightforward design approach was
therefore examined in which a cascade was placed in the inlet to provide a more controllable mechanism
for flow redistribution. By properly tailoring the angles of the individual vanes, uniform test-section
velocity can be obtained. An anlysis method based on existing potential flow methods and an empirical
screen pressure drop calculation was developed to demonstrate the utility of the inlet cascade. Descriptions
of both the screen and cascade analysis methods are presented. The accuracy of the computations was
demonstrated using experimental data from tests of a two-dimensional indraft wind tunnel. The predic-
tions are in very good agreement with the experimental data in all cases. Extension of the results for the
inlet cascade to three-dimensions is demonstrated and a successful wind tunnel design is presented.

vii






CHAPTER 1. INTRODUCTION

Review of Previous Work

The design of closed-circuit wind tunnels has historically been performed using "rules of thumb"
which have evolved over the years into a body of useful guidelines (refs. 1-3). The development of
indraft wind tunnels, however, has not been as well documented. The design of indraft wind tunnels is
therefore performed using a more intuitive approach, which can result in a facility with disappointing per-
formance. This is particularly true of large wind tunnels which are often affected by a lack of sufficient
space and/or funds required to construct a high-performance tunnel using conservative design rules. The
result of this conflict is usually a facility which does not produce the desired flow quality. Expensive
retrofitted modifications may then be necessary to make the tunnel useful. Indraft wind tunnels are notori-
ous for this type of design fault, some of which have been reported in the literature (refs. 4-6).

The required flow quality of a wind tunnel is strongly dependent on the type of testing which will
be performed in it. In general, the test-section flow must have uniform velocity, small flow angularity,
and low turbulence. Quantitative limits for these parameters vary widely for the various types of testing
performed in wind tunnels. For studying natural laminar flow, for example, the turbulence intensity and
flow angle variations must be kept as small as possible so as not to prematurely trip the boundary layer
(rms turbulence intensity < 0.05%). In contrast, large-scale testing of configurations over which the
boundary layer is predominantly turbulent does not require the same restriction on turbulence intensity. In
nearly all types of testing, however, the spatial variation of the test-section velocity should be as small as
possible. The present research was directed at this particular problem; development of short, low-contrac-
tion ratio inlet designs which can provide uniform test-section velocity in low-speed, indraft wind tunnels.

A general description of the traditional design philosophy of both indraft wind tunnel inlets and the
contraction section of closed-return wind tunnels is a good introduction to the inlet design problem. An
important function of a contracting section in a wind tunnel is to reduce the power consumption of the flow
conditioning devices. Flow conditioning devices such as screens and honeycombs are placed upstream of
the contraction in a region of low velocity. The drag of these devices varies with the square of the velocity
of the flow passing through them. Increasing the contraction ratio reduces the velocity of the flow through
the screen. A large contraction ratio is therefore desirable to reduce the power required (or increase the
attainable test-section velocity). The contraction also reduces the relative magnitudes of the mean and
fluctuating velocity variations compared to the average test-section velocity. The amount of reduction as a
function of contraction ratio, ¢ (defined as the ratio of the inlet area to exit area of the contraction) summa-
rized by Mehta and Bradshaw (ref. 2) from Batchelor (ref. 7) are:
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axial component of rms turbulence intensity:
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transverse component of rms turbulence intensity: e

The reduction factors presented were derived using a linearized theory in which the contraction takes place
over an infinitesimal distance which clearly does not occur in practical wind tunnels. Nevertheless, the



trends given by these expressions are in agreement with the observed flow quality in wind tunnels.
Increasing the contraction ratio then improves the test-section flow quality. Care must be taken, however,
in designing a nozzle with a large contraction ratio so as to avoid boundary layer separation at both the inlet
and exit planes of the contracting section.

A large number of reports have been presented which address the particular problem of contraction
design. The earlier works made use of hodograph methods in which a velocity distribution along the wall
or centerline of the contraction is specified and the wall shape required to attain that distribution is solved
for (refs. 8-13). The utility of these methods is limited in that the resulting contractions must be infinitely
long. A novel approach is presented by Rouse and Hassan (ref. 14) in which an electrical analogy is used
to obtain the potential field for specific inlet shapes. In their work, an electric potential field is generated
by proper placement of electrodes on an insulating table to simulate the velocity potential of a contraction.
This approach had limited practical application because of the complexity of setting up the inlet geometry.

The first truly useful work on the subject is that of Morel (refs. 15, 16). In these reports, design
charts are presented for a family of contraction shapes which relate the geometry of the contraction to such
features of the flow field as wall pressure gradients and flow uniformity at the inlet and exit of the nozzle.
A finite difference solution of the Laplace equation for the given wall shapes was obtained for both two-
dimensional (2-D) and axisymmetric contractions. The wall shapes examined were obtained from two
cubic curves joined at the so called match point. Using this family of curves the effects of contraction
ratio, contraction length, and match point location were examined individually. The turbulent Stratford
(ref. 17) separation criterion was used to define limits on the amount of flow nonuniformity at both the
inlet and exit which can be tolerated. By just avoiding separation at both ends of the contraction, Morel
maintains, the minimum exit boundary layer thickness is obtained. Whether or not this is the case, the
reports provided useful design information for contraction shapes.

It is apparent from the results of Morel (refs. 15, 16) that separation is most easily avoided by
using a long contraction. Several reports can be found in the literature which address the "optimum" solu-
tion to the contraction problem. In the reports of Chmielewski (ref. 18), Borger (ref. 19), and Mikhail
(ref. 20), the optimum contraction is defined as the one which provides the required flow quality with
minimum length. The desired flow quality determines the required contraction ratio. The minimum length
contraction which does not exhibit flow separation is then optimum. These three works are very similar in
that a potential flow solution is obtained for a given contraction which is subsequently used in either a
Stratford separation prediction (ref. 18) or in an integral boundary layer calculation (refs. 19, 20). Differ-
ent families of wall shapes are used in the three reports so the results cannot be directly compared but
minimum contraction lengths are defined for the different shapes and the analyses are in good agreement
with the experimental results presented.

In all of the work described, the contractions examined were axisymmetric or 2-D. Most wind
tunnels, however, have contractions which are three-dimensional (3-D). Downie et al. (ref. 21) preserted
3-D solutions to the Laplace equation for contractions with square cross-section. No boundary-layer cal-
culations were performed in this work but the parametric variations of the inlet geometry reported indicate
that contractions with large maximum slope provide more uniform inlet and exit velocity profiles than
those with shallower maximum slope.

With the exception of the work by Rouse and Hassan (ref. 14), all of the work described previ-
ously have addressed only the contraction problem as it relates to closed-return wind tunnels. That is, the
analyses were all for contracting ducts. The flow into an inlet is somewhat more complicated and has not
been examined in much detail, at least for wind tunnel applications. Batill and Hoffmann (ref. 22) and
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Batill et al. (ref. 23) present a 3-D solution to the inlet problem using a finite difference solution to
Laplace's equation. Preliminary design charts are presented to show the effects of contraction ratio, con-
traction length, and match point on the flow uniformity at the inlet and exit. While these results are inter-
esting, the grid generation problem prevents the accurate modelling of the large cowls which are invariably
present on wind-tunnel inlets to reduce the tendency for the flow to separate which would occur if only the
sharp edge of the contraction were present. Panel codes which model potential flow using superposition
of sources and doublets should be capable of accurately calculating inlet flow in the absence of flow sepa-
ration. Complex geometries are easier to simulate using panel codes since only surface points must be
specified rather than points throughout the flow field (refs. 24-26). Batill and Hoffmann (ref. 22) found
that unsatisfactory results are obtained when the surface is represented by use of source singularities alone.
This was attributed to the "leakage" allowed by the calculation. Leakage is caused by the fact that the flow
tangency condition is enforced only at the control points of the panels. Fluid is not prevented from pass-
ing through the panels at other points. Leakage greater than 5% of the volume flow rate through the tunnel
in the calculation is sufficient to invalidate a solution. :

Results of a more advanced panel method, VSAERO (ref. 26), are presented by Ross et al.
(ref. 4). This method uses source and doublet panels to represent the surface and imposes different
boundary conditions resulting in much lower leakage (on the order of 1-2%). Very good agreement with
experimental data for the flow into a rectangular indraft wind tunnel was obtained. Both the wall pressure
distribution and velocity distribution at the inlet were accurately calculated. The boundary-layer
development along surface streamlines was calculated using an integral, 2-D method. The estimated sepa-
ration lines determined from the calculations are in good agreement with the observed separation in the
experiment. '

The mean flow characteristics of indraft wind tunnel inlets can be accurately predicted, in the
absence of separated flow, using existing computational methods (refs. 4, 22-27). Unfortunately, real
wind tunnels operate in a much more hostile environment than can be simulated by the inviscid, steady
analyses presented to date. In many instances, indraft wind tunnels are located outdoors so that they must
operate in the presence of atmospheric winds. These winds can be steady or very gusty and can also gen-
erate thick boundary layers. The inlet must be able to isolate the test section from the effects of wind under
as many conditions as possible. Even for tunnels located indoors, the exhaust of the fan can induce
unsteady flow around the tunnel which, again, must be conditioned by the inlet to provide good test-
section flow quality.

A good deal of research has been performed with the goal of reducing the effect of external flow
conditions on the test-section flow quality of indraft wind tunnels (refs. 5, 6, 28-33). Nonetheless, many
of the facilities built as a result of these studies required modifications to meet the flow quality goals
(refs. 4-6, 28). These modifications ranged from the simple addition more screens (ref. 5) to constructing
elaborate isolation devices upstream of the inlet (ref. 28). One of the more imaginative proposals was to
use a grove of large trees planted surrounding the inlet to isolate a large facility from the wind (zef. 29).
This aesthetically pleasing approach has, unfortunately, never been implemented.

Many of the design rules developed for closed-return tunnels should also apply to indraft facilities.
In particular, large contraction ratio inlets have been shown to provide very steady and uniform test-section
flow when several screens are placed in the inlet (ref. 33). Transverse external velocities are typically
attenuated using honeycomb. This high-loss approach works very well for small facilities where space is
not a major concern. For the large facilities (refs. 4-6, 28-31) the inlet must often be made smaller than
would be desired from a strictly aerodynamic standpoint to fit into the available space.



A small-contraction-ratio inlet has been shown to generate more flow nonuniformity at both the
entrance and exit planes than does a larger contraction-ratio inlet of the same length to diameter ratio
(refs. 15, 16). If the wind isolation devices (i.e., screens and/or honeycomb) are placed in this nonuni-
form flow the result is a large velocity variation in the test section. The velocity variation is caused simply
by the pressure drop experienced by the flow passing through the treatment. The pressure drop through a
screen or honeycomb depends primarily on the local dynamic pressure of the flow (ref. 34). Since the
dynamic pressure is proportional to the square of the velocity, a nonuniform velocity distribution passing
through a screen results in a large variation in the total pressure downstream of the screen. This total
pressure distribution is convected downstream to the test section since there is no mechanism for further
changes in total pressure. The static pressure is constant in the test section once the streamlines are aligned
with the tunnel axis. The result is a variation in the test-section dynamic pressure, equal in magnitude to
the total pressure variation just downstream of the screen. For this reason most modifications to existing
facilities are in the form of high-loss devices located as far upstream of the inlet as possible (e.g., refs. 6,
28-30).

Problem Statement

If the wind isolation devices could be placed in a short inlet without generating large velocity
gradients in the test section, the overall size of the facility could be reduced. To design such an inlet, the
behavior of the nonuniform velocity field generated by a wind-tunnel inlet, passing through a screen must
be better understood. To this end, an experimental study of the effect of inlet screens on the test-section
velocity distribution of a 2-D indraft wind tunnel was performed. The effect of the number of screens in
the inlet was the primary focus of the experiment. The experimental apparatus and results are presented in
Chapter 2. A computational method capable of predicting this type of flow in 2-D was also developed to
further study the problem. Details of the analysis method are presented in Chapter 3. Comparisons with
the experimental results are also presented. The computational method was used to perform parametric
variations of inlet geometry and screen loss coefficient. The results of those calculations provide some
insight as to the interaction of the inlet geometry and screen characteristics and the resulting flow distribu-
tions. These results are summarized in Chapter 4.

The understanding gained in performing the study of the flow into inlets with screens resulted in
the development of the concept of the inlet cascade (ref. 4). In this inlet design, a set of vanes is located
immediately upstream of the anti-turbulence screens. The individual vanes in the cascade are adjusted so
that the resulting test-section flow has uniform velocity. This inlet design proved to be very effective in
the model tests described in references 4, 35, and 36. A prediction method was developed which could be
used to determine the required vane angles without extensive model testing. The details of the prediction
method are presented in Chapter 5. Once again, experimental data were obtained to validate the prediction
method and to demonstrate the effectiveness of the cascade. The experimental data and comparisons with
the calculated results are given in Chapter 6. The dissertation concludes with a discussion of-the
applicability of the prediction methods to other problems and with a description of a simple extension to
3-D.



CHAPTER 2. TWO-DIMENSIONAL SCREEN/INLET EXPERIMENT

An experimental investigation was performed to examine the effect of screens located in the inlet of
a 2-D indraft wind tunnel on the test-section flow uniformity. The data from the experiment were intended
for use in validation of the computational prediction method which will be presented in Chapter 3. A 2-D
experiment was chosen for two reasons. Most importantly, the computational method can then be 2-D.
This simplifies the computational effort tremendously. The other reason is the relative simplicity of a 2-D
test over a similar 3-D test. A 2-D inlet is much easier to define since the contraction takes place in only
one plane. In a 3-D test decisions must be made as to the cross-sectional shape of the tunnel as well as
whether the inlet is located near the ground or not. A 2-D test avoids these complications. In addition, the
results are more easily interpreted since unexpected 3-D effects are minimized. The instrumentation for a
2-D test is also much simpler than for a 3-D test. With a 3-D tunnel the entire test section must be sur-
veyed to completely determine the flow uniformity. In 2-D a single line of measurements is usually suffi-
cient. The number of static pressure taps is also much lower for a 2-D test since only the side wall must
be instrumented rather than the entire periphery as in the 3-D case.

Experimental Apparatus

Inlet geometry definition

The shape of an inlet, or contraction in a closed circuit tunnel, has a large influence on the perfor-
mance of a wind tunnel. In much of the previous work on contraction design a matched cubic wall shape
was employed. Using this type of wall description the geometry can be completely defined by three
parameters: contraction ratio, length to width ratio, and position of the point of inflection (or match point
of the two cubic curves). A parametric geometry definition allows easy variation of the inlet shape for
analytical studies. Since the data from the experiment will be used as part of an analytical study, the
matched cubic contraction geometry was adopted. There is no evidence, however, which indicates that the
matched cubic shape is in any way "optimum.” The particular formula used to determine the wall shape
was obtained from Batill and Hoffman (ref. 22):
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The geometry of the inlet and variable definitions are shown in Fig. 1.
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Figure 1. Inlet geometry definitions

The shape of the inlet was designed to demonstrate two aspects of inlet flows. The primary inter-
est was in documenting the effect of screens on test-section flow uniformity. To examine this effect, the
velocity variation across the inlet at the screen location should be as large as possible. The second aspect
was the effect that screens have on any flow separation at the entrance to the inlet which may exist when
screens are not present. The inlet used was designed to have both a large velocity variation at the screen
location and flow separation on the side walls at the entrance so that both of the flow problems could be
examined using a single inlet.

The design process was aided by use of the 3-D panel code VSAERO (ref. 26). This program can
calculate the potential flow around arbitrary bodies to provide both surface pressure distributions and
velocities at arbitrary points in the flow field. A 2-D, integral boundary layer calculation performed along
surface streamlines was used to predict separation locations. Since the flow-field calculation is 3-D it was
also used to determine the required size of the upstream floor and ceiling plates which confine the flow to
motion in 2-D before entering the inlet. The panelled representation of the experimental tunnel is shown in
figure 2. Projections of the velocity vectors in the inlet plane are also shown in figure 2 It is apparent that
the velocity is confined to 2-D motion by the upstream plates. Boundary-layer separation was indicated in
the calculation at the junction of the inlet cowl and the screen chamber (see figure 1). -~

Tunnel description

The inlet selected for the experimental investigation has a contraction ratio of 4 and a length to
width ratio of 0.5. The match point for the two cubic sections is located at xp/L = 0.2. A screen chamber
is located immediately upstream of the contraction (shown in fig. 1) providing space for up to 12 screens.
The screens are mounted in individual frames to keep them from bowing and to maintain spacing between
the screens. Semicircular cowls are located at the entrance to the screen chamber.



Figure 2. Paneled representation of test facility for a 3-D panel code (VSAERO) and the projected velocity
vectors in the inlet plane

The layout of the experimental facility is shown in figure 3. The inlet opening measures 4 ft wide
by 4 in. high and the test section measures 1 ft by 4 in. The flow entering the inlet is constrained to travel
in only two dimensions by the 4 by 8 ft floor and ceiling planes upstream of the inlet. The tunnel is driven
by a 5-hp centrifugal blower. A large plenum chamber is located between the test section and the blower.

) c/ d

Clamping
bolts

Floor and ceiling

planes (plywood) ( 1 Lexan top 3'x 3'x 6' Plenum
Plywood floor with 5 screens
Screen o
frames ~ "\ -
r Total pfessure
rake
4:1 Contraction l To blower —g

\— Tunnel centerline

Figure 3. Layout of the 2-D wind tunnel test facility
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Five screens were placed in the plenum chamber to increase the steadiness of the flow. The blower can
be operated at either 1200 or 2000 rpm and provides a maximum test section velocity of 140 ft /sec when
no screens are placed in the inlet.

A total pressure rake was used to measure the variation in test-section dynamic pressure. The
static pressure is assumed to be constant across the test section and was measured by mechanically aver-
aging the static pressure on the four walls of the test section. The reference dynamic pressure was taken to
be that at the center of the test section. The pressures were measured using a Scani-Valve™ pressure
scanning device made by Scani-Valve, Inc. A Zenith PC-100 computer with an analog to digital converter
performed both the data aquisition and data reduction. A description of both the hardware and software
used in the test may be found in Appendix A.

Various views of the tunnel are presented in figures 4-7. Figure 4 is an overhead view of the tun-
nel showing the basic layout of the tunnel. The top of the tunnel is made of 0.5 in. plexiglass to allow
viewing of the tufts located one wall of the inlet. The tufts are visible in the photo on the wall furthest
from the camera. Pressure taps are located on the other wall. The screen frames are also visible at the
front end of the inlet. Upstream of the screen frames is the plywood sheet used as a ceiling plane. The
large box at the right of the photograph is the plenum. The Scani-Valve™ is located on top of the test
section. The floor of the tunnel is painted black to contrast with the white walls. A water mannometer was
used to calibrate the pressure transducer before each run. The exhaust from the blower is directed out a
door in the lab (fig. 5). This was done to prevent reingestion of fan exhaust by the tunnel inlet. The total
pressure rake, shown in figure 6, completely spans the test section. It was made as thin as possible to
minimize the blockage. The maximum thickness is approximately 7% of the test section height. The test
section static pressure taps are located 3 in. in front of the main body of the rake at the same streamwise
location as the total pressure tubes.

Figure 4. Overhead view of the 2-D wind tunnel
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Figure 6. Total pressure rake mounted in the test section, viewed from upstream
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Figure 7. Single screen mounted in the screen chamber, viewed from upstream. The thread tufts are visi-
ble on the tunnel floor and wall behind the screen

Up to 12 screens can be mounted in the inlet by clamping them between the frames in the screen
chamber. A single screen is shown mounted in figure 7. In this view, the upstream floor and ceiling
planes have been removed.

Experimental Results

Flow separation

The tunnel was run without screens to observe the flow separation that was predicted during the
design process. A sketch of the separated region is shown in figure 8. When a single screen was posi-
tioned as shown in the figure, the tufts indicated that the flow separation was eliminated. This particular
effect of screens on boundary layer flow has been noted by other researchers. Mehta (ref. 37) terms the
effect of screens on the boundary layer as giving it "a new lease on life." A screen can be used to clean up
a separated inlet, therefore eliminating the need for reshaping the walls as long as flow uniformity con-
straints are not violated. This phenomenon was not examined in the present study but it does merit fur-
ther investigation.

Test-section flow uniformity

The primary focus of the present study is the effect of screens on test-section flow uniformity.
The most straightforward method of measuring the dynamic pressure distribution is to determine the total
pressure distribution. The variation in total pressure in the test section is equivalent to the dynamic pres-
sure variation since the static pressure is constant. The dynamic pressure is determined by subtracting the
test-section static pressure from the total pressure measured by the rake. To facilitate comparisons of the

10



Separated region (when screen not present)

Inlet wall

Screen location —~\!

/—- Tunnel centerline
____________ i L L

Figure 8. Sketch of the separated flow region present on the inlet wall when no screens are present

distributions obtained in the various inlet configurations, the dynamic pressure is normalized by that mea-
sured in the center of the test section. This procedure eliminates the problem of comparing data obtained
for different configurations which may have been run with different mass flows. The plots of the dynamic
pressure distribution which will be presented show the value of g/q¢y, plotted against the lateral position in
the test section normalized by the test-section width, y/wis.

Two dynamic pressure distributions are shown in figure 9 for the tunnel operated with no screens
in the inlet. Operated in this manner, there should be very little dynamic pressure variation across the test
section except for that introduced by the separated flow in the inlet (see fig. 8) and by the side-wall
boundary layers. These two effects should only be apparent near the test-section walls. Because of space
limitations in the laboratory, the tunnel was placed near a wall (see fig. 4). The exhaust from the fan was
directed at a door located in this wall. During the winter months in Iowa, it is very desirable to run
experiments with this door closed. Unfortunately when operated in this manner, the fan exhaust is
reingested by the inlet. This is apparent in the differences in the two curves in figure 9, particularly on the
right-hand side. This was the side closest to the laboratory wall. This sensitivity to reingestion required
that all of the subsequent testing be done with the exhaust door open as shown in figure 5.

The repeatability of the test-section dynamic pressure measurements is shown in figures 10a and
10b. Figure 10a shows four distributions measured with two screens present while figure 10b is the same
comparison with 12 screens present. The measurements were made in separate runs with the curves in
each figure obtained at two different test-section velocities, as indicated. From these two figures, it is
apparent both that the normalized dynamic pressure distribution is not sensitive to tunnel speed and that
the data are repeatable. The 90% confidence band is £0.02 (q/q¢y) for the two-screen case and +0.012 for
the 12-screen case. The stated confidence bands are for the measurements made between y/wis = -0.4 and
+0.4. Much more scatter is evident in the data outside of this region. The boundary layer is apparent in
the figures as a rapid decrease in the dynamic pressure near the test-section walls located at y/ws ==£0.5.

11
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Figure 9. The effect of exhaust reingestion on the test-section dynamic pressure distribution. No screens

present
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Figure 10a. Repeatability of the test-section dynamic pressure distribution measurements with two screens
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Figure 10b. Repeatability of the test-section dynamic pressure distribution measurements for 12 screens

The shape of the curves in figures 10a and 10b are a result of the velocity distribution across the
width of the inlet. The shape of the inlet was designed to produce very nonuniform inlet flow with the
velocity at the center much higher than near the sides. The air passing through the center portion of the

screen experiences a larger drop in total pressure than the air near the sides. As this total pressure distri-
bution is convected into the test section, the result is that the velocity in the center is lower than toward the
sides. '

As the number of screens is increased the magnitude of the dynamic pressure nonuniformity also
increases. Figure 11 shows the dynamic pressure distributions for one, three, five, seven, and nine
screens. The increase in nonuniformity with number of screens is quite apparent. The amount of
increase with each additional screen, however, decreases as the number of screens increases. In fact,
adding more than nine screens has almost no effect on the distribution. The distributions for 9, 10, 11,
and 12 screens are shown in figure 12, and the variations between these curves are comparable to those in
repeat runs of the same configuration.

Another way of examining the effect of multiple screens on the test-section flow nonuniformity is
to plot some measure of the flow distortion versus the number of screens in the inlet. The maximuna-vari-
ation of q/qcy, across the center 80% of the test section (-0.4 < y/wis < 0.4) was used as this measure.
Outside of this region the effect of the wall boundary layers is noticeable. This measure of distortion ver-
sus the number of screens is plotted in figure 13. The magnitude of the distortion reaches a maximum at
about 10 screens. Adding more screens has no effect on the amount of variation. This was an unexpected
result and the mechanism for this behavior was fully understood until examined using the analysis method
presented in the next chapter.

13
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Figure 11. Test-section dynamic pressure distributions for different numbers of screens in the inlet (up to
9 screens)
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Figure 12. Insensitivity of the dynamic pressure distribution to more than 9 screens
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Figure 13. Effect of the number of screens on the magnitude of the test-section dynamic pressure nonuni-
formity
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CHAPTER 3. SCREEN ANALYSIS METHOD

While perfectly feasible, a completely experimental investigation of the effects of screens on the
test-section flow uniformity of indraft wind tunnels would be extremely time consuming and expensive.
The extent of such a study would, therefore, be limited in scope. To perform a detailed study of the
screen effects an analysis method was developed which could properly predict inlet flows including the
pressure drop induced by the screen. Use of a computational method allows the effects of many inlet
design parameters to be examined individually over a wide range of values. For this purpose, a 2-D pre-
diction method was developed. A 2-D method was chosen to gain an understanding of screen effects
without the increased complication and computational effort of a 3-D analysis.

Computational Method

Governing equations

When modeling fluid dynamics problems on the computer it is best to solve the least complicated
set of equations which contain the important physics of the problem of interest. Flow through a screen
involves viscous drag and the resulting generation of vorticity. The Navier-Stokes equations contain all of
the physics of continuum fluid dynamics. These equations could be solved for the entire flowfield for the
inlet flow problem including the screens. This approach is not very practical because of the large number
of computational grid points which would be required to properly resolve the flow through the screen.
Some of the physics of the problem is also sacrificed to achieve closure by using a turbulence model
which is required in the current Navier-Stokes solution methods. Fortunately, the details of the flow
through the screen and the boundary-layer development along the walls of the tunnel are not of primary
interest in the present study. By ignoring the viscous terms, the governing equation can be reduced to the
Euler equation. In using this equation of fluid motion, the screens are modelled as actuator disks across
which the total pressure is discontinuous.

In making the simplification to an inviscid flow solution some approximations are made. The
major approximation is the lack of viscous forces in the equation. This limits the region of accurate flow
modelling to areas outside of the shear layers and separated flow. The wall boundary layer in a wind tun-
nel is relatively thin compared to the width of the test section so this assumption should not affect the
accuracy of the calculations over most of the flowfield as long as there are no large regions of separated
flow. Modelling the screen as an actuator disk entails additional approximation. This type of analysis of
the flow through screens has been shown to work well for some simple flows (ref. 34) such as flow at an
angle through a screen and flow through a bowed screen. It is a straightforward way of including the
pressure drop produced by a screen into the inviscid flowfield solution.

If the flow velocity is limited to the incompressible range (i.e., Mach number less than 0.2) the
momentum equation may be written as:

vVevv=_"P

P
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-1
or uu, + vu =—p, 2)

-1
uv_+ Vv =-——p_ .
X y y

P

In this equation, V is the velocity vector, p is the static pressure, and p is the fluid density. In the
present problem, it is more convenient to solve for the total pressure rather than the static pressure.
Rewriting the static pressure in terms of the velocity and total pressure gives:

1 2 1 2 2
P=Py=5 PV =p,-5p +v)
P, =P, - P Uy, +vv) 3)
P, =poy -p (uuy +Wy) .

Substituting the expressions for px and py from equations (3) into (2) gives:

-1
uu, +vu, =—p, + (uu, +vv, )

X

)
-1
uv, + vV, =— poy + (uuy + vvy) .
Equation (4) may be rewritten as:
-1
VO w) =,
_1 5)
u(vx - uy) = — poy .
Multiplying the first of (5) by v and subtracting from u times the second, gives the single equation:
vx-uy=——-2-(upo -vp, ). (6)
pvo. 77

The right-hand side of (6) may be recognized as an expression for the vorticity, ®, in terms of total pres-
sure gradients. The velocity derivatives may be written in terms of the stream function as:

17



u=%¥ and v =-¥
y yy x

xx*
Equation (6) may then be written in the more familiar form of the Poisson equation:

VY = —@ .

A more convenient form of (6) is obtained by writing the velocities on the right-hand side in terms of the
stream function:

g - =L |¥ +¥
Y \P_pVZ[ Py p] | ™)

Equation (7) contains two unknowns, namely the stream function and the total pressure (the
velocity is specified by the stream function). The convection equation for the total pressure is used to
achieve closure:

or, in terms of stream function:

lIl}’pox - \Pxpoy =0. (8)

Equations (7) and (8) must be solved over the computational domain.
To solve these equations for arbitrary geometries the equations are written in generalized coordi-

nates. The solution grid is mapped from the x-y plane into the rectangular &1 plane. The momentum
equation (7) must then be rewritten in terms of € and 1. Looking first at the V2¥ term:

Y +¥ =0Y¥ +d Y
XX yy XX y'y

= ax(‘Paﬁx + ‘Pnnx) + ay(\ygay + lPnny)

&)
=0, (.5 +¥ MJE +0 (PE +¥ ),
+O,(FE +¥ n)E +9 (¥ L +¥ nom, . _
Collecting the derivatives with respect to & and 1 individually gives:
ry 2 2
VY = ag(‘I’&&x + ‘I’nnxéx + ‘I’nnyéy + ‘I’&éy) (10)

2 2
+ an(‘I‘nnx + ‘I‘E_'&xnx + ‘Péﬁyny + ‘I’nny) .
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Continuing to collect terms and simplifying:

v2y - ag[ (VE + VOT, + (VE + vy, |

a1
. an[ (VE- V2, + (V- V¥, |

Dividing both sides by the Jacobian of the coordinate transformation gives the desired form:

V2 = aé[Al‘Pg + AZ‘PT]] + an[AZ\PF, + A3‘Pn] (12)

where:

_VEVE
17y
_ VEVn
AN |

Vn+Vn
A= — .

A

A (13)

J is the Jacobian of the transformation defined by:

d(€,n)
a(x,y)

(14)
=&n, - &N,

Performing a similar set of operations on the right-hand side of (7) gives the final form of the
momentum equation in generalized coordinates:

aé[Al‘I‘é +a¥ |4 an[Az\P& +a7 | -

o, p, +my -, |
pV2J !

The velocities u and v, and the magnitude, V, in (15) remain in the physical coordinate system. This is
convenient since the equation, as written, is nonlinear since the velocity is a function of the stream func-
tion. The equation is linearized by lagging the velocity so it can be considered to be a known in the above
derivation. The velocity is obtained from the stream function as:

_ (15)
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V2=u2+v2=‘P2 +p?
y X
(16)
2 2
=(F L+ ¥ ) +(F L +Y M)

Finite Difference Representation

The alternating direction implicit (ADI) approximate factorization scheme presented by Chaderjian
(ref. 34) and Chaderjian and Steger (ref. 39) was used to solve for the stream function. The compressible
dual potential code developed by Chaderjian was modified to solve only for the stream function. The
original derivation of the dual potential method used Crocco's equation which expresses the pressure gra-
dients in terms of entropy gradients. Therefore, the program was also modified to retain total pressure as

one of the variables. The ADI approximate factorization algorithm used in solving for the stream function
is:

[1 i hVnA3k+mAn][1 i hV§A1j+U2Aa] Y = b a7

where:

3k+1

Ype=VA A¥Y+V A
n

A0 W
T ﬂAn‘P+8§(A28n‘I’)+8n( 28€ )

18)
1
: ;?[(Alsgy +AB W) 8p, +(ASY +AS W) Snpo] _

The difference operators in the above equation are given by:

_()j+1-()j

A
£ AE

V =()j'()j_1
3 AE

5 =()j+1-()j-1 —
5 2AE
The n-differences are defined in the same manner. Recall that AE and An have been setto 1. The handr
terms on the right-hand side of (17) are relaxation parameters (refs. 38, 39) which accelerate the conver-

gence of the scheme and n refers to an iteration level. The total pressure is treated as a known in the above
formulation and is obtained from the previous iteration level.
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Boundary conditions

Boundary conditions must be supplied both on the far-field boundaries and on the solid walls of
the tunnel. The walls themselves must correspond to streamlines in order for the zero-normal velocity
condition to be met. The walls therefore have a prescribed value of stream function. The mass flow
through the tunnel is proportional to the difference in stream function between the two walls. At the
downstream end of the test section, the streamwise gradient of the stream function is set to zero. This
specifies zero transverse velocity. The far-field boundaries are assigned values of stream function such
that the normal velocity (tangential gradient in V) is the same at every point on the boundary. The gradient
in ¥ is set such that the mass flow into the computational domain through the far-field boundary is equal
to the mass flow exiting the test section. This is a very simple, if somewhat arbitrary, boundary condi-
tion. It was found, however, that if the far-field boundary is placed far enough from the region of interest
(the inlet) that it has very little effect on the solution. A sufficient distance was found to be approximately
1 inlet width in both the upstream and lateral directions. In the present study all calculations were per-
formed with the boundaries placed at least 2 inlet widths from the inlet.

Determination of total pressure

So far, the solution procedure for finding the stream function has been described with the total
pressure treated as a known throughout the flowfield. This is not the case as it is the total pressure distri-
bution downstream of the screen which is the unknown of primary interest. Before passing through the
screen, the flow is irrotational, that is, the total pressure is uniform. The screen is modelled as an actuator
disk across which the total pressure is discontinuous. The total pressure drop is a function of both the
dynamic pressure and onset angle of the flow at each point on the screen. Using the actuator disk model
described in the next section, the total pressure at each grid point immediately downstream of the screen is
calculated. The total pressure is then convected downstream in accordance with (8).

Total pressure is convected by specifying that it remain constant along streamlines. This is equiv-
alent to solving the convection equation. The total pressure distribution immediately downstream of the
screen is determined using the actuator disk model. This distribution defines a relationship between the
stream function and the total pressure. At grid points further downstream of the screen (inside the tunnel)
the total pressure is obtained by linear interpolation; that is the total pressure is set equal to the total pres-
sure corresponding to the same value of stream function at the first grid station past the screen. A higher
order interpolation scheme or finite difference solution of the convection equation could be used at the
expense of additional complication but the results obtained using the scheme described are quite accurate.

Actuator disk model

The pressure drop caused by a screen in the inlet is modeled by use of a simple actuator disk
representation. The static pressure-loss coefficient for flow perpendicular to a screen depends-en the
physical characteristics of the screen; porosity, Reynolds number of the flow based on wire diameter, and
the details of the weave among others. The loss coefficient for normal flow is defined as:

kK = D _pl'p2
o1 2 1 2 (19)
PV 3PV
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where D is the drag force per unit area acting on the screen and the subscripts 1 and 2 refer to upstream
and downstream of the screen, respectively. The value of kg is a function of Re (for low values of Re).
When the onset flow is not perpendicular to the screen, the loss coefficient has been found to vary as:

ke = kocosm(-) (20)

where 0 is the angle between the onset flow and the normal to the screen (ref. 37). The value of m in (20)
varies between 1.0 and 1.4 depending on the porosity of the screen.

A large body of literature can be found describing the loss characteristics of many types of screens
(refs. 34, 37, 40-48). Some of these reports present empirical methods for determining the value of kg
based on the porosity and wire diameter (refs. 43-48). None of these methods is entirely satisfactory,
however, the formula presented by Wieghardt (ref. 44) appears to be the most accurate based on the mea-
surements of Smith, Olson, and McMahon (NASA TM to be published). Those measurements were made
for a screen which is identical to that used in the experimental investigations of the present study. The
exponent, m, in (20) for this screen is given in Smith et al. as 1.1. The formula used to determine the
loss coefficient at each point across the width of the screen for use in the actuator disk model is:

k =551 B R cosi e . @1)
0 BZ B

B is the porosity of the screen which is defined as the ratio of the open area of the screen to the total area.
The parameter Reg is the modified Reynolds number defined by:

Re =—
8 By (22)

where d is the wire diameter, V is the onset flow velocity, and v is the kinematic viscosity of the fluid.
The value of Reg ranges from 60 to 600 in (21). For values greater than 600, Reg is set equal to 600 in
this formula.

Figure 14 shows a comparison of the predicted and measured (Smith et al.) pressure loss coeffi-
cient for a 20-mesh screen with a porosity of 0.46 and wire diameter of 0.016 in. Results for onset
angles of 0 and 40° are presented. The predicted values are in good agreement with the experimental data
especially for velocities greater than 20 ft/sec. The pressure drop at each point on the screen is then given
by:

1 2 -
Poy =Po1 ~ Kz PV (23)

where kg is determined by (21) using the local flow velocity and its angle of onset relative to the screen.
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Figure 14. Comparison of the predicted and measured pressure loss coefficient for 20-mesh stainless steel
screen. Wire diameter = 0.06 in., B = 0.46. (The data are from Smith et al.)

mputational Gri

The grid used in the calculations is shown in figures 15a and 15b. Grid points are distributed on
lines of constant x. The wall shape is generated using the matched cubic formula presented in chapter 2.
Points are clustered near the walls of the tunnel and in regions of rapid area changes. Since the inlet is of
the indraft variety, a small cowl was added at the end of each wall. The large amount of grid skewness
near this cowl causes some small inaccuracies in the local solution but the perturbations are much smaller
than are present without the cowl. An orthogonal grid around the cowl would eliminate the problems with
skewness but the simplicity of the present grid outweighs the small, localized inaccuracy which it induces.
The simple grid also simplifies the screen modelling since the screen can be simulated at a single grid line.
A close-up of the grid in the cowl region is shown in figure 15b. The wall of the tunnel has finite thick-
ness and is represented by two grid points. These points are not used in the solution of the finite differ-
ence equations. The value of the stream function at each point on the walls is supplied as part of the
boundary conditions.

Solution procedure -

The solution procedure is as follows:
1) First an initial guess for the stream function and total pressure is made at every grid point.

2) Equation (17) is solved iteratively using the ADI scheme with the right-hand side set equal to
zero. This gives the potential flow solution (i.e., no screen present).
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3) The pressure drop at the screen is calculated using (23).
4) The total pressure downstream of the screen is determined by interpolation using the current
solution for the stream function.

5) The solution for ¥ is updated in (17) by a complete cycle of the ADI scheme with the right-
hand side as shown in the equation.

6) Repeat steps 3 - 6 until the solution for ¥ is converged.

The program can solve cases with more than one screen by simply multiplying the pressure drop
determined in (23) by the number of screens desired in the simulation. When a large number of screens
was used in the simulation the solution procedure as described above sometimes became unstable. By
gradually increasing the loss coefficient used in the screen simulation the instability was avoided. The
procedure was to obtain converged solutions first for no screens, then for one screen, two screens, etc.,
until the desired number of screens was reached.

Code Verification

The predicted wall static pressure coefficient is plotted in figure 16 for an inlet with a contraction
ratio of 4, length to width ratio of 0.5, and a match point of 0.2. The calculation did not include a screen
and therefore should be identical with potential flow results. Results from a potential flow calculation are
also shown in the figure. The potential flow results were obtained using the program HILIFT (ref. 25).
Except for the cowl region, the two codes give nearly identical results. The large suction spike in the
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X/W,

Figure 16. Comparison of the calculated wall static pressure distributions from a panel code and from the
screen analysis
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pressure distribution near the cowl in the present solution is very likely due to the skewness of the grid in
that region. An interesting point to note is the small wiggle in the present prediction at x/w = 0.4. This
is the location of the match point and the glitch is due to the discontinuous curvature of the wall at that
point. The formula used to define the wall shape generates a shape with continuous first derivatives so the
present method is able to resolve discontinuous changes in curvature.

The screen analysis was applied to the same configurations tested in the experiment which was
described in chapter 2. Comparisons of the calculated and measured dynamic pressure distributions for
the inlet with 1, 5, 9, and 12 screens are shown in figures 17a-d. The agreement between the predictions
and data is very good except near the walls where the boundary layer significantly reduces the dynamic
pressure. A small asymmetry in the experimental results is apparent in the figures. The asymmetry was
found to be caused by a slight misalignment of the inlet with respect to the wind tunnel centerline. Keep-
ing these differences in mind the results of the analysis are in good agreement with the data over the center
80% of the test-section span.

A useful measure of the flow uniformity in a wind tunnel is the magnitude of the dynamic pressure
variation over the useful portion of the test section. In most situations no more than 75% of the test sec-
tion width is occupied by a model caused by excessive wall interference or blockage effects for larger
models. In fact, most wind tunnel models occupy a much smaller portion of the test section. As intro-
duced in chapter 2, the maximum dynamic pressure variation over the center 80% of the test-section width
was used as a measure of the flow uniformity. In figure 18 the test-section flow uniformity is plotted
against the number of screens for both the experiment and calculations. The agreement is again good,
with the predictions within about 3.5% of the measured values for all the configurations studied. The
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Figure 17a. Comparison of the predicted and measured test-section dynamic pressure distributions for the
case of one screen in the inlet

26



1.5
O  Experiment
Th
1.4 e
1.3 4
q/
e a1
1.1
1.0 7
0.9 T T T T T T T T T
05 04 -03 -02 -01 -00 01 02 03 04 0S5
/W

Figure 17b. Comparison of the predicted and measured test-section dynamic pressure distributions for the
case of five screens in the inlet
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Figure 17c. Comparison of the predicted and measured test-section dynamic pressure distributions for the
case of nine screens in the inlet
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Figure 17d. Comparison of the predicted and measured test-section dynamic pressure distributions for the
case of 12 screens in the inlet '
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Figure 18. Comparison of the predicted and measured test-section dynamic pressure non-uniformity as a
function of the number of screens in the inlet
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flattening of the curve at about 10 screens is also predicted, indicating that the analysis may be used to
determine the cause of this behavior.

The wall static pressure distribution is also accurately calculated by the analysis. Figure 19 shows
a comparison between the predicted and measured static pressure-coefficient distributions for the case of
no screens in the inlet. A similar comparison was shown previously between the present analysis and a
panel method calculation. The agreement with the panel method was nearly exact while there are some
differences between the present method and the data. The most significant difference is in the region
where separated flow was indicated by the tuft and smoke flow visualizations of the experiment. The
slightly lower pressures measured in this region is consistent with the displacement effect of a separated
bubble just downstream of the inlet cowl.

If the difference is indeed due to the separation in the experiment, the comparison should be better
for cases which did not exhibit flow separation. The predictions and measurements for a single screen
case are shown in figure 20. The agreement is better in this case but the experimental pressure data still
appears to indicate separation in spite of the tuft observations. This may not be separated flow but rather
caused by the displacement effect of a thick boundary layer in the upstream portion of the inlet resulting in
lower pressure than indicated by the theory.

The calculation shows a possible mechanism for the elimination of the separation when a screen is
added. As the air passes through the screen it experiences a drop in total pressure. An identical drop in
static pressure must also occur in order to satisfy continuity. Therefore, the screen induces a favorable
pressure gradient to the flow through the screen. It is possible that this results in the elimination of the
separation. Mehta (ref. 37) reported that a screen has a rejuvenating effect on turbulent boundary layers,
reducing the thickness and turbulent fluctuations relative to the upstream values. The turning of the flow
passing through the screen may also be responsible for the cleaning up of the flow at the inlet in the
experiment.
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Figure 19. Comparison of the predicted and measured wall static pressure coefficient distributions for the
case of no screens in the inlet
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Figure 20. Comparison of the calculated and measured wall static pressure coefficient distributions for the
case of 1 screen
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CHAPTER 4. PARAMETRIC STUDY OF SCREEN EFFECTS

Experience does not ever err, it is only your judgment that errs in
promising itself results which are not caused by your experiments.

- Leonardo Da Vinci (c.1510)

To obtain an understanding of the effect of screens on flow uniformity, several parametric varia-
tions of inlet geometry and screen loss coefficient were performed. Calculations were performed for vari-
ous screen loss coefficients to observe the effect on flow uniformity. The use of nonuniform screen loss
coefficient was also examined as a possible method of achieving uniform test-section velocity. The geo-
metric variations examined include contraction ratio, length to inlet width ratio, match point to inlet length
ratio, length of the upstream constant width section, and the screen position in the constant width section.

Effect of Screen Loss Coefficient

One surprising result of the experimental study of screen effects was that adding more screens in
front of the inlet did not improve the test-section flow uniformity. The author, as well as some associates,
felt that high enough losses at the inlet would result in uniform test-section flow. The argument was that
the large drag in the center of the screens, where the flow is the fastest, would cause more air to be drawn
through the outer portions of the screens where the flow was originally slower and hence had less drag.
Redistribution of the flow, as the logic went, would result in a situation with uniform drag and, hence,
uniform test-section flow. The experimental data, however, did not support this conclusion. As seen in
chapter 2, the flow uniformity was insensitive to additional screens once 10 screens were in place. Since
only 12 screens could be installed in the experimental tunnel one possible conclusion is that 12 screens
were simply not sufficient to produce the expected effect. The fallacy of the expected result was not dis-
covered until the prediction code was applied to the problem.

Figure 21 shows the magnitude of the test-section flow nonuniformity across 80% of the test sec-
tion as a function of the number of screens. While it is obviously not possible to physically place as many
as 80 screens in the inlet, the number of screens can be interpreted as a multiple of the screen loss coeffi-
cient of a single screen. Above about 12 screens, there is very little change in the magnitude of the
nonuniformity even up to 80 screens. In fact, the dynamic pressure distributions are nearly identical for
the 12- and 40-screen cases as shown in figure 22. Clearly, some mechanism other than the drag of the
screens is responsible for redistributing the flow.

The transverse or lift force generated by the screens has a large effect on the velocity distribution of
the flow passing through the screens. The velocity distribution in the test section is, therefore, also
affected. The effect of the screen turning is apparent in the calculated streamline plots shown in figure 23.
The dashed streamlines are for the case of no screens while the solid lines indicate the streamlines for the
12-screen case. The turning induced by the screen is quite apparent at the screen location. The flow exits
the screen nearly perpendicular to the screen when 12 screens are present. The exit angle of a flow pass-
ing through a screen has been shown to approach 90° as the loss coefficient of the screen is increased
(ref. 47). Therefore, once the flow is made to exit normal to the screens adding more screens cannot
increase the screen turning and, hence, does not change the distribution of the flow passing through the
screen. This is evident in the streamline patterns shown in figure 24 for the cases of 12 and 40 screens in
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Figure 21. The predicted effect of the number of screens on the magnitude of the test-section dynamic
pressure nonuniformity. ¢ =4; L/w;=0.5; xp/L=0.2
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Figure 22. Comparison of the calculated test-section dynamic pressure distributions for 12 and 40 screens

in the inlet
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Figure 24. Predicted streamline paths for the case of 12 and 40 screens in the inlet
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the inlet. Once the flow distribution at the screen is made insensitive to the presence of additional screen
loss the amount of flow distortion in the test section will also not change with the addition of more
screens.

Screen turning is a result of the vorticity generated by the pressure drop induced by the screen.
Recall that the vorticity is given by:
0)=—(upo - Vvp, ).
y x

oV’

Both of the total pressure gradients are nonzero along the screen. The y-derivative is nonzero because of
the nonuniform velocity distribution passing through the screen and the x-derivative because of the drop in
pressure across the screen. The resulting vorticity generates the lift force which turns the flow. Capturing
the screen turning was very important in accurately calculating the flow through the screens.

Variable Loss Coefficient

Since the velocity of the air passing through the screen varies across the width of the inlet it should
be theoretically possible to vary the loss coefficient of the screen in such a way as to achieve uniform test
section flow. A simple approach would be to determine from a no screen calculation (potential flow) the
required loss coefficient at every point at the screen location necessary to obtain uniform pressure drop
across the width of the inlet equal in magnitude to that produced by a single screen at the inlet centerline.
In performing such an analysis, both the magnitude and onset angle of the flow relative to the screen nor-
mal must be taken into account (see eq. 21). The loss coefficient distribution (kg as a function of the lat-
eral position in the inlet) determined in this manner is shown in figure 25. The required loss coefficient
varies from 1.6 (the loss of a single screen) at the center of the inlet to 4.5 near the side walls. When this
loss distribution was used in a calculation the result was a reduction in the magnitude of the dynamic pres-
sure nonuniformity from 10% to 6% (over the center 80% of the test section). The dynamic pressure dis-
tributions for the two cases are shown in figure 26. While the trend is in the right direction the remaining
distortion is still too large for most wind tunnel applications. The problem is that the inlet flow is redis-
tributed by the screen and is no longer the same as when no screen was present. A simple estimate such
as this is not adequate to produce uniform test-section flow.

A somewhat more sophisticated adaptive method was then used to find the required loss coefficient
distribution. In this procedure, the centerline value of screen loss is increased in small steps to the final
value of 1.6 (the single screen value). At each step a converged solution is obtained. The velocity distri-
bution thus obtained is used to determine the screen-loss distribution necessary to generate constant pres-
sure drop across the width of the inlet with the centerline value incremented to the next step. A new solu-
tion is then obtained using this loss distribution and the process is repeated until the desired centerline4oss
coefficient is reached. By taking small enough steps the correct distribution can be found. Taking 100
steps resulted in only 0.06% variation in dynamic pressure over the center 80% of the test section. The
dynamic pressure variation for this case is shown in figure 27 along with the distributions for constant
loss coefficient and for the simple estimate. The loss coefficient distribution required for uniform flow is
shown in figure 28. The simple estimate is also shown in figure 28 for comparison. The optimized dis-
tribution is very different than the first estimate, requiring a loss coefficient of more than 70 near the walls
(considerably larger than the scale of the figure) compared with only about 4.5 for the simple estimate.
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Figure 26. Comparison of the calculated test-section dynamic pressure distributions for a uniform single
screen and for the estimated variable loss coefficient distribution
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Figure 27. Comparison of the calculated test-section dynamic pressure distributions for a uniform single
screen, the estimated variable loss coefficient distribution, and the "optimized" loss distribution
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Figure 28. Comparison of the loss coefficient distributions necessary to produce uniform test-sectior
dynamic pressure as determined by a simple estimate and by "optimization"

A continuously variable screen loss (not to mention a loss coefficient of 70) is not easily achieved
in practice. Therefore, a calculation was made using stepwise increments in the loss coefficient. This type
of loss coefficient distribution could be achieved by adding more layers of screen toward the walls of the
inlet. One such stepwise distribution is shown in figure29 along with the optimized distribution. The
resulting test-section dynamic pressure distribution is shown in figure 30 in comparison with the distribu-
tions for the optimized screen and the simple estimate. The stepwise loss distribution results in a very
jagged dynamic pressure distribution. The general character of the distribution, however, is fairly flat. It
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Figure 30. Comparison of the calculated test-section dynamic pressure distributions for the "optimized",
estimated, and stepped loss coefficient distributions
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should be possible, therefore, to achieve uniform test section flow if the loss coefficient distribution can be
made sufficiently smooth. This method of obtaining uniform flow may be particularly useful for cases in
which the screen is placed in a region of more uniform flow than was examined in the present study.

A method of producing uniform flow which, at first glance, seems to have merit is to locate the
screen along a line of constant velocity. Unfortunately, the pressure drop through the screen depends not
only on the flow velocity but also on the angle of onset relative to the screen normal. Determining the
curve along which the screen produces uniform pressure drop is therefore a difficult task. In practice it is
also much more difficult to install a screen along a curve than it is to hang it in a straight line.

Geometric Variations

The effects of various geometric parameters on the flow uniformity at the inlet plane of 2-D and
axisymmetric contractions in ducts were calculated by Morel (refs. 15, 16). The parameters examined in
these studies were contraction ratio, match point, and the length of the contraction. The same geometric
variations were performed in the present study. In addition, the effect of a straight duct between the inlet
cowl and the start of the contraction was studied. The purpose of this part of the study is to show some of
the effects of these variations on test section flow uniformity when screens are present in the inlet. The
intent of this report is not to provide detailed design charts, but rather to show general trends. The analy-
sis method could, however, be used as part of the design process of wind tunnel inlets to demonstrate
trade-offs for a particular design.

Contraction ratio

The contraction ratio of an inlet can have a large influence on the flow uniformity in the test section
for a given screen loss coefficient and screen location. The effect of the contraction ratio on test-section
flow uniformity is shown in figure 31. The contraction shape for these calculations was a matched cubic
with the match point at 0.2 times the inlet width from the start of the contraction (xp,/L = 0.2) and a length .
of 0.5 times the inlet width (L/wj = 0.5). The effect of contraction ratio is quite dramatic with a maximum
flow distortion produced by ¢ = 2. The g/qcilgoq, parameter plotted in the figure is simply the maximum
variation of the dynamic pressure across the center 80% of the test section divided by the dynamic pres-
sure at the centerline. For ¢ > 2, the dynamic pressure distortion decreases rapidly from the peak of 1.64
forc=2to 1.1 forc =8.

This result is consistent with references 15 and 16 which state that a large contraction ratio pro-
vides more uniform velocity distributions at the both the inlet and exit than does a small contraction ratio.
Since large inlets are expensive to fabricate, compromises are usually made in the design of large wind
tunnels which general result in a smaller than desired contraction ratio. In figure 31, it is apparent that
there is diminishing return for increasing ¢. The improvement in uniformity is much more rapid fromrc =
2 to 4 than from 4 to 8. The length of the contraction also has an effect on this behavior. Other factors
may also dictate a large contraction ratio for a given facility, for example, low-turbulence-intensity
requirements for the types of testing to be done and low power consumption by the inlet treatment to
increase the maximum test section velocity for a given drive system.
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Figure 31. Effect of the contraction ration on the magnitude of the test-section dynamic pressure nonuni-
formity. xm/L =0.2; L/w;j =0.5; 5 screens

The effect of loss coefficient on three inlets with different contraction ratios is shown in figure 32.
Contraction ratios of 1, 4, and 8 were chosen for this comparison. For these cases, ¢ = 1 produces the
least flow distortion and ¢ = 4 the most. The ¢ = 1 case is interesting in that the sense of the distortion is
opposite to that of the other cases studied. That is, the flow near the walls is slower than the centerline
flow except for the five-screen case which shows no distortion. This was the only geometry examined for
which the addition of screens improved the velocity distribution. For this geometry, the flow distribution
at the screen location is different from that generated by the larger contraction-ratio inlets. The velocity in
the inlet is higher near the walls than at the center resulting in a larger pressure drop and lower dynamic
pressure in the test section near the walls. The streamline patterns in figure 33 give an indication of the
reason for the decrease in flow distortion with the addition of five screens. Compared to the no screen
case, the streamlines for the five-screen calculation show the flow redirected more toward the center of the
inlet producing a more uniform velocity distribution. The more uniform velocity passing through the
screen produces in less flow distortion in the test section.

Constant width duct

The unique behavior of the unit contraction ratio geometry can be used to improve the performance
of a wind tunnel inlet by attaching a constant area duct onto the inlet. The screens can then be positioned
farther upstream of the start of the contraction in a region of more uniform flow. A sketch of the resulting
inlet shape is shown in figure 34. A parametric study of this type of inlet was performed by varying the
length of the duct as well as the screen position in the duct. The general geometry and definitions are
shown in the figure.
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Figure 33. Effect of five screens on the calculated streamline paths forc = 1.0
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Figure 34. Geometry definitions for the inlet with a constant width duct upstream of the contraction

The effect of duct length is summarized in figure 35. Three different screen positions are shown in
the figure; x¢/Lq =0, 0.5, and 1.0. The length of the duct has almost no effect when the screen is located
immediately upstream of the contraction, x¢/Lg = 1.0. This position also gives the largest flow distortion.
When the screen is moved to xg/Lq = 0.5 or 0.0 the duct length has a noticeable effect. For xg/LLg = 0.0 the
distortion can be reduced to less than 1% if Lg/w; is between 0.5 and 0.8. For longer ducts the distortion
is increases again to greater than 1%. This tradeoff is caused by the interaction of the flow distributions
induced by the flow around the cowl and by the contraction shape. When the duct is short, the flow
through the screen (located just downstream of the cowl) is dominated by the contraction but is dominated
by the cowl when the duct is long.

Another way to look at the effect of the duct is to keep the duct length constant and vary the screen
position in the duct. The effect of this variation is shown in figure 36 for Lg/w;j = 1.0. There is almost no
test-section dynamic pressure distortion as long as the screen is less than half-way from the cowl to the
contraction. At xg/wj = 0.5 the distortion is approximately 1% and grows rapidly as xg/L4 increases.
These results indicate that some benefit may be found from the addition of a constant area section to an
indraft wind tunnel inlet when the contraction ratio is smaller than desired as long as the screens are prop-
erly positioned in the duct. There are also implications for closed-circuit wind tunnels which empley anti-
turbulence screens. These screens generally have a large total loss coefficient and can have an influence
on the test-section flow uniformity if they are placed too close to the start of the contraction. The curve in
figure 36 indicates that such screens should be placed at least 0.5 duct widths upstream of the start of the
contraction for the geometry examined.
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Figure 35. The effect of the upstream duct length, Lg/wj, on the magnitude of the test-section dynamic
pressure nonuniformity for various positions of the screen in the duct. ¢ =4; xp/L =0.2; five screens
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Figure 36. The effect of the position of the screen in the upstream duct on the magnitude of the test-section
dynamic pressure nonuniformity. ¢ =4; xp/L =0.2; Lg/w;=1.0; five screens
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Match point

The effect of the match point on the magnitude of the test-section dynamic pressure nonuniformity
is summarized in figure 37 for ¢ =4 and 8. The effect of moving the match point downstream is to reduce
the amount of flow distortion at the screen location and, as a result, in the test section. This is in agree-
ment with the results of references 15 and 16. Placing the match point near the beginning of the contrac-
tion results in rapid area change immediately upon entering the contraction. The rapid area change tends to
slow the fluid near the walls and accelerate the fluid near the center. The net result when screens are
placed in the inlet is a large variation in dynamic pressure in the test section. Moving the match point
downstream reduces the inlet flow nonuniformity; the area change at the start is not as rapid so the flow is
more uniform and the test-section dynamic pressure is more uniform as a result. This analysis does not
include the effect of the match point on the wall boundary-layer thickness. Several researchers have
shown that regions of high curvature near either end of the contraction result in thickened boundary layers,
and if the curvature is too high, separation may occur. Careful attention must be paid to this particular
effect in the design of any inlet or contraction.
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Figure 37. The effect of the match point, xp/L, on the magnitude of the test-section dynamic pressure
nonuniformity for c =4 and ¢ = 8. L/w;j =0.5; five screens -

ontraction length

The effect of contraction length on flow uniformity is shown in figure 38 for c =4 and 8. Longer
inlets have less rapid area changes at the start for a given match point location, and therefore have a more
uniform inlet flow distribution. This results is more uniform test-section dynamic pressure. The 8:1 con-
traction had less than 1% distortion in test section "q" when the length was twice the inlet width. Itis
often impractical to build inlets this long and a penalty arises from the additional boundary-layer growth
which occurs. For this reason, very long inlets are not usually built.
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CHAPTER 5. INLET CASCADE

In Chap. 4 it was shown that the turning of the flow by a screen located in an inlet can significantly
modify the inlet velocity distribution. Flow turning may also be achieved by employing a cascade in the
inlet, upstream of the required anti-turbulence screens. It should therefore be possible to manipulate the
flow passing through the screen in order to obtain uniform test section velocity. The successful applica-
tion of this concept could significantly reduce the size requirement for wind tunnel inlets since the nonuni-
form flow produced by a small inlet would be alleviated by the inlet cascade.

The cascade concept is shown in figure 39a. The flow direction at the inlet is shown both with and
without the cascade present. The flow is redirected by the vanes to travel in a different direction down-
stream of the cascade than it would if the vanes were not present. In the example shown, the vanes redi-
rect the flow toward the center of the inlet. To illustrate the concept the lift generating vanes in figure 39a
can be represented by point vortices at the vane locations as shown in figure 39b. The net effect of the
vanes in this particular example, is to slow the flow near the center of the inlet and accelerate it near the
walls. This redistribution of the flow can have a large effect on the test-section flow uniformity if there is
a screen located downstream of the cascade. By tailoring the cascade to provide uniform pressure drop
through the screen across the width of the inlet, the test-section flow can be made uniform. To examine
the practicality of the inlet cascade concept an analysis method was developed which could predict the per-
formance of an inlet cascade. The details of the analysis method are presented in the next section and,
somewhat more briefly, in Appendix B.

——= FLOW VECTOR WITHOUT VANES
-=~-» FLOW VECTOR WITH VANES

Figure 39a. Qualitative effect of a cascade on the direction of the flow in the inlet of an indraft wind tunnel
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Figure 39b. Point vortex analogy for the vanes in an inlet cascade

Cascade Analysis

It is possible to use the analysis method presented Chap. 3 to calculate the performance of an inlet
cascade. This would require that the cascade included as an actuator disk, similar to the way the screen
was simulated. In such an approach the flow turning would take place at individual grid points in the cal-
culation. The desired exit angle from the cascade would be specified. The proper stream function gradient
imposed to accomplish the required turning is given by:

v=-§;=utan9

where 0 is the desired outflow angle and v is the transverse velocity required to achieve the desired out-
flow angle. The cascade actuator disk would have to be placed one grid station upstream of the screen
location so that the screen turning would also be included. The interaction of the two closely coupled
actuator disks may prevent accurate prediction of the cascade performance. Due to this uncertainty an
alternative approach was taken. In keeping with the simpler is better philosophy of computational aerody-
namics a well-tested potential flow program was employed along with an empirical model of the screen
effects. _

Flow through cascades can be accurately modeled using panel methods. The theory of panel
methods is well covered in the literature (refs. 24-26). Briefly, the basic idea is to model bodies by
superposition of source and doublet distributions on the body surface. The singularity distribution results
from the satisfaction of the zero normal flow boundary condition imposed on the body. In practice, the
boundary condition is satisfied at a limited number of points on the body called control points. Each con-
trol point is associated with a panel of unknown singularity strength (source, doublet, or both). If there
are n control points there are also n unknown singularity strength. The system of equations is solved to
obtain the singularity strengths. Once the individual singularity strengths are known, the velocity at any
point in the flowfield may be calculated by superposition.
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In the present application, the panel method has a major drawback; it is a potential flow method
and, as such, cannot model the rotational flow produced by a screen. An empirical model of the screen
effects was therefore included in the calculations resulting in an accurate simulation of the entire flowfield.

Potential flow cascade calculation

A simple inlet cascade is shown in figure 40. The panel code HILIFT (ref. 25) was used to model
the inlet and cascade. Flow through the tunnel is established by specifying a normal velocity on each of
the panels which close off the downstream end of the test section. The normal velocity is obtained by the
proper distribution of sinks on each of these panels. The free-stream velocity is set to zero so that only the
induced flow of the sinks is present. This simulates the flow into an indraft tunnel located in quiescent
surroundings. The velocity can be calculated at any point in the flow field. For the present work, the
velocity of the flow at the screen location is of primary interest. The magnitude and direction of the flow
at the points along the velocity survey line shown in figure 40 are used to predict the pressure drop
induced by the screen.

The effectiveness of a cascade in redirecting the flow in the inlet is shown in the streamline plots of
figure 41. Calculated streamline paths are shown for cases both with and without the inlet cascade. The
effect of the cascade in this example is to accelerate the flow near the walls relative to the empty inlet flow.

Total pressure determination

The pressure drop at discrete points along the survey line is calculated using the method described
in Chap. 3. Since the total pressure cannot vary in a potential flow calculation, the total pressure distribu-
tion determined at the screen location by (23) for the flow conditions determined by the panel code calcu-
lation is simply transformed to a test section coordinate system by conservation of mass. This is equiva-
lent to the convection of total pressure which was included in the screen analysis of Chap. 3. The trans-
formation is given by:

VELOCITY SURVEY
VANE POINTS

SPLAY WIND TUNNEL

/ WALL
TEST SECTION

ORIGINAL PAGE IS
OF POOR QUALITY

—\

\
DISTRIBUTED
SINK -

REPRESENTATION

INLET
CASCADE

Figure 40. Geometry of the tunnel with an inlet cascade as modelled in the 2-D panel code calculation
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Figure 41. Comparison of the calculated streamline paths with and without the inlet cascade

Tli nt_g
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The value of 1j is known from the location on the survey line. The total pressure at each of the nj was
then assigned to the corresponding T value. In this transformation, the value of u is a constant deter-
mined by the sink strength in the HILIFT calculation. This is not the case when the total pressure varies
across the width of the test section. The error resulting from this assumption will be larger for cases with
large variation in test-section total pressure than if the pressure drop through the screen is madé uniform. .
Since the goal of the inlet design is to generate uniform test-section flow, the transformation is valid when .. -
the design goal is met. The integration was performed using the trapezoidal rule. After integrating to find
all of the corresponding values of My, a cumulative error of approximately 3% of the test-section width
was found. Rather than using a more sophisticated integration scheme, the values of Mg were simply
rescaled to range from -0.5 to 0.5.

Simulation of screen turning

The screen itself was not simulated directly in the potential flow calculation so the turning effect of
the screen had to be included in another manner. The simplest way to include screen turning was to
deflect the trailing edge of each vane by the amount of screen turning expected for the particular onset
angle and screen loss coefficient (ref. 49). Several methods have been proposed to empirically predict the
turning angle of flow through screens (refs. 34, 42, and 47). Taylor and Batchelor (ref. 42) present
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results from tests of various screens which indicates that the ratio ¢/6 is constant for a screen of given loss
coefficient. They present an empirical formula to calculate this constant as:

o 11
9 1+k
[]

The angle ¢ is the outflow angle and 6 is the onset angle. Both angles are measured with respect to the
normal vector of the screen. This simple result makes the calculation of the screen-turning angle relatively
easy if the constant of proportionality is known. For the screen used in the experimental work of the
present study, (26) gives this ratio a value of 0.74. The experimental investigation described in reference
49 gives a value ¢/6 = 0.8 which is in good agreement with the empirical equation. The turning angle is
therefore taken to be 0.2 times the onset angle as indicated by the experimental data cited. The onset angle
in the potential flow calculation was taken to be equal to the angle of the vane relative to the tunnel center-

line (before the trailing-edge deflection). The panelled representation of a vane with and without trailing-
edge deflection are shown in figure 42.

C —

( %‘b

—~

Figure 42. Details of the vane geometry in the potential flow calculation shown with and without trailing-
edge deflection simulating screen turning

Effect of Kutta condition

The predicted dynamic pressure distributions from two calculations are shown in figure 43. The
curve without symbols was generated using field velocities calculated at 100 points along a line located 2%
of a vane chord downstream of the vane trailing edges.

The waviness in this curve is caused by the Kutta condition which is applied at airfoil trailing
edges in the potential flow calculation in order to generate the correct lift. The condition specified in
HILIFT is that the potential at the trailing edge is zero on both the upper and lower surfaces. This satisfies
the condition of zero vorticity at the trailing edge. The predicted lift using this condition is quite accurate,
however, the local velocity field is not the same as exists for a real airfoil. The potential-flow Kutta con-
dition results in stagnation at the trailing-edge point. The calculated flow in the vicinity of the trailing edge
is therefore different from that which exists in an actual flow where the trailing-edge condition is that the
velocity on upper and lower surfaces are equal. The panel code, therefore, calculates lower velocitres near
the trailing edge than occur in real flows.

This low calculated velocity near the trailing edges of the vanes causes the local pressure drop
through the screen to be underpredicted. The peaks in the dynamic pressure distribution of figure 43 then
correspond to the low calculated velocity behind the trailing edge of each vane. A better prediction of the
pressure drop would be obtained if some sort of average velocity between vane trailing edges was used in
the estimate. A simpler solution is to use the predicted velocity at the midpoint between adjacent vanes.
Using the midpoint velocity should not degrade the accuracy of the predicted test-section distributions.
The curve with symbols in figure 43 shows the result of using only the mid-points in the analysis. The
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Figure 43. Demonstration of the effect of the potential flow Kutta condition on the calculated test-section
dynamic pressure distribution

small change in the shape of the curve is due to repositioning the survey line to lie along the actual screen
position which was along a line connecting the vane trailing edges.

Sample calculations

The primary variable which determines the cascade performance is the angle at which each of the
vanes is set relative to the wind-tunnel centerline. This is referred to as the splay angle or splay distribu-
tion. With a little experience, it was possible to modify the splay distribution in such a way as to change
the test section flow distribution in any desired manner. Three different splay distributions are shown in
figure 44. The symbols represent the actual vane locations. Only the splay angles for positive values of
y/w are show. The curves are antisymmetric about y/w; =0. The curves were generated using a polyno-
mial curve fit. Splay distributions were obtained by selecting up to six points through which the distribu-
tion was required to pass. This method of splay generation gave good control of the angle distribution and
provided an automated means by which the splay angles could be supplied to the potential flow solver.

Calculated dynamic pressure distributions for the three splay distributions of figure 44 are shown
in figure 45. The power of the cascade is apparent in the figure. By modifying the splay distribution
almost any test-section dynamic pressure distribution could be obtained. Splay distribution "I" resulted in
a predicted dynamic pressure distribution which varies less than 1% from the centerline value across more
than 80% of the test-section width. Without the cascade the variation is approximately 10% from the cen-
terline value over the same portion of the test section.
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Figure 44. Comparison of several splay distributions used in both the numerical and experimental study of
the inlet cascade
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Figure 45. Effect of the vane splay distribution on the calculated test-section dynamic pressure distribution
The splay distribution labeled "C" in figure 44 was defined by positioning each vane at an angle

equal to the angle of flow at the location of the vane trailing edge determined in a calculation which did not
include the vanes. This case was used to examine the effect of including the actual cascade geometry in
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the modeling. If the cascade were modeled as an actuator disk it would have no effect on the solution for
splay distribution "C." When the cascade analysis was applied to the cases of no vanes and splay "C" a
noticeable difference was found between the two solutions. Figure 46 shows the predicted test-section
flow distributions for the two cases. The presence of the vanes increases the flow non-uniformity. It is
apparent that the chord of the vanes has an effect in this case. Even though the trailing edges are pointed
in the direction of the flow found in the no vane case, they still generate lift. Lift must be generated since
the vanes are located in a region of curving flow. If the vanes are to carry no load and, hence, not change
the results from the no vane calculation, each vane must be cambered to conform to the streamline which
passes through its trailing-edge point in the no vane calculation. Since the vanes are uncambered they do
generate a small amount of lift and therefore affect the flow distribution. It is, therefore, important to
include the vanes in the modelling of an inlet cascade, particularly if the chord of the vanes is large com-
pared to the radius of curvature of the streamlines entering the inlet.
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Figure 46. Comparison of the calculated dynamic pressure distributions for the cases of no vanes and vane
splay "C."

Inlet Cascade Experiment

If the analysis method is to be used as a design tool it must be capable of accurately predicting
actual test-section flow distributions. The test facility used in the inlet screen experiments described in
Chap. 2 was modified to accept an inlet cascade with a single screen fastened to the trailing edges of the
vanes. Photographs of the modified 2-D tunnel are shown in figures 47a, 47b, and 48. Figure 47a is a
top view of the inlet without vanes. The shape of the inlet walls was changed from the matched cubic to a
straight line tangent to the inlet cowl and the contraction near the entry to the test section. The cascade is
easier to fit in an inlet of this shape than in a matched cubic type. This is the same geometry used in the
analyses presented previously (see fig. 40). The inlet is shown in figure 47b with the vanes installed.
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Figure 48. Details of vane installation showing the trailing edge pivots and the screen

Figure 48 shows the trailing edge of one of the vanes and the screen. The vanes are made of balsa
wood and are pivoted at the trailing edge to allow easy adjustment of the splay angles. The pivot is pro-
vided by a 1/16 in. ID copper tube glued to the trailing edge. A pin passes through the plexiglas top and
bottom plates of the tunnel and through the tube. The trailing edges are therefore rather blunt. This
should pose no particular problem since only the outflow angle is important. The increase in drag caused
by the blunt trailing edge should be negligible compared to the pressure drop of the screen. The tunnel
was operated in exactly the same manner as during the previously described screen experiment. The data
acquisition system from those tests was also used.

Comparison of Predictions and Experiment

The tunnel was tested with the screen but without the cascade to provide a simple test case for the
analysis. A comparison of the predicted and measured test-section dynamic pressure distributions is
shown in figure 49. A prediction from the screen analysis program is also presented. There is reasonably
good agreement between all three distributions. The discrepancy between the cascade analysis and the
screen analysis for y/ws > .35 is due to the lack of screen turning in the potential flow method since the
vanes are not present. Near the tunnel centerline, the flow passes through the screen in a nearly perpen-
dicular direction so there is no screen turning. When the vanes are present in the simulation, screen turn-
ing is modelled which improves the accuracy near the walls. The agreement with the experimental data is
fairly good, however, particularly over the center 80% of the test section.

The cascade analysis was used to predict the performance of several splay distributions. Experi-
mental results were also obtained for these distributions. Figures 50 - 52 present comparisons between
the predicted and measured performance of the splay distributions in figure 44. The comparison is made
for splay "C" in figure 50. In general the agreement is good particularly over the center 50% of the test
section where the predicted and measured dynamic pressure ratios are within 0.5% of each other. The
analysis, however, overpredicts the dynamic pressure near the edge of the boundary layer by approxi-
mately 3%. This is evidence of the inaccuracy of the transformation given in (25) since the flow is very
nonuniform in the test section for this case. For splay distribution "E" in figure 51, the agreement is much
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Figure 49. Comparison of the computational results with experimental measurements the test-section
dynamic pressure distribution for the modified inlet shape with no vanes and one screen
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Figure 50. Comparison of the predicted and measured test-section dynamic pressure distributions for
cascade splay configuration C
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Figure 51. Comparison of the calculated and measured test-section dynamic pressure distributions for
cascade splay configuration E -
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Figure 52. Comparison of the calculated and measured test-section dynamic pressure distributions for
cascade splay configuration I
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better since the flow is more uniform for this configuration (note the change in the vertical scale in relative
to fig. 50). The difference between the prediction and measurements is no larger than 1% outside of the
boundary layer. The asymmetry of the experimental data is also much more apparent for this
configuration.

The use of splay distribution "I" (see fig. 44) was shown by the analysis to provide very nearly
uniform test-section flow. The experimental data support this result with approximately 0.8% variation in
dynamic pressure across 90% of the test section. It should be noted that the calculations shown were all
performed prior to the wind-tunnel test. The experimental results were quite accurately predicted in all of
the cases examined.

The slight asymmetry in the measured dynamic pressure was found to be due to a misalignment of
the inlet relative to the tunnel centerline amounting to approximately 1°. When the misalignment is
included in the analysis (referred to as splay distribution J) the calculated results are in much better agree-
ment with the experimental data (fig. 53). Splay distribution J was generated by rotating each of the vanes
so that they are in the same orientation relative to the wind-tunnel centerline as in the experiment. Asa
separate check, the 1° shift was also made to the experimental splay distribution and the results are plotted
along with the splay "I" calculation in figure 54. The agreement in this case is also very good showing the
sensitivity of both the analysis method and the inlet cascade to small changes in the splay distribution.

The effectiveness of the inlet cascade in improving the test-section flow uniformity of a poorly
performing inlet is demonstrated in figure 55. The experimentally measured dynamic pressure distribu-
tions for the inlet without the cascade and with the cascade adjusted to splay distribution "J" are shown n
the figure. In this particular example the dynamic pressure nonuniformity was reduced from approxi-
mately 7% to 1% over the center 80% of the test-section width. Further improvement could be achieved
by refining the splay distribution and possibly by increasing the chord to gap ratio of the cascade to gain
tighter control of the inlet flow distribution.
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Figure 53. Comparison of the calculated and measured test-section dynamic pressure distributions with a
1° shift in the theoretical splay distribution
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Figure 54. Comparison of the calculated and measured test-section dynamic pressure distributions with a
1° shift in the experimental splay distribution
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Figure 55. Improvement of the test-section dynamic pressure distribution by a properly tailored inlet
cascade
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Extension to Three-Dimensions

The analyses and experimental data presented so far are for a 2-D, idealized wind tunnel. Real
wind tunnels, however, are almost always 3-D. The present cascade analysis can accurately predict the
performance of a 3-D inlet when a rather simple correction is made to the calculated velocity distribution at
the screen. This correction procedure is presented in reference 4 (Appendix B). In that report a
1/15-scale model of the 80- by 120- Foot Wind Tunnel at NASA Ames Research Center was modelled in
the analysis as a simple horizontal cut through the tunnel. In choosing this representation, the horizontal
contraction of the inlet is included in the analysis but the contraction in the vertical direction is ignored.
Therefore, for a given test-section velocity, the calculated 2-D velocity at the screen location is higher than
the actual value. If the predicted velocities are scaled by the ratio of the 2-D contraction ratio to the full
3-D contraction ratio, the predicted test-section dynamic pressure distribution is in good agreement with
the measured distribution as shown in figure 56. The measurements shown were made along the mid-
height of the test section.

A description of the inlet design selected for the 80- by 120-Foot Wind Tunnel is given in
Appendix B. In this design, the inlet cascade is incorporated into a large honeycomb located at the front of
the inlet. The vanes in the cascade are the vertical surfaces in the honeycomb and horizontal plates placed
between the vanes at 22 levels complete the honeycomb. A screen with a loss coefficient of 1.7 is attached
to the trailing edges of the vanes. The large honeycomb/screen combination is effective in preventing
large, atmospheric turbulent structures from influencing the test-section flow. By properly tailoring the
vane splay distribution the test-section flow can be made uniform. The application of this technology
allowed the wind tunnel to achieve the desired flow quality with an inlet which is much smaller than would
be required using a more conventional approach.
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Figure 56. Dynamic pressure distribution in the test-section of a 1/15-scale model of the 80- by 120- Foot
Wind Tunnel across the mid-height of the test section
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CHAPTER 6. CONCLUDING REMARKS

The design of indraft wind tunnels is a complex task in that the inlet must perform several simulta-
neously, some of which interfere with one another. The contraction of the inlet accelerates the air to the
test-section velocity allowing the anti-turbulence treatment to be placed in a region of relatively low veloc-
ity. Anti-turbulence devices include screens and honeycombs and can effectively isolate the test section
from the effects of unsteady external flow conditions. A properly designed honeycomb/screen combina-
tion can provide acceptable levels of test-section turbulence and flow steadiness. This particular design
problem has been adequately addressed in the literature. The interaction of the inlet geometry and the ..
pressure drop induced by screens and honeycombs can cause the test-section flow to be nonuniform, par-
ticularly if the inlet has a low contraction ratio (less than about 8) and a short length to width ratio (less
than 2). The objective of the present study was to investigate the fluid dynamics of an inlet with screens
with the goal of developing an inlet design method for small inlets.

Before a design method could be developed, it was necessary to gain a better understanding of the
flow through a screen located in an inlet. An experimental study was conducted to obtain information
about the effect of screens on the flow uniformity for a short, low contraction ratio inlet. The experimental
results indicate that the drag of the screen does not affect the flow distribution in the inlet directly. It was
therefore not possible to generate uniform flow by simply adding more screens in the inlet. While the
information obtained from these experiments did not provide a detailed picture of the flow mechanisms
involved, it did generate an extensive data set which was useful in validating the computational methods
developed.

The computational method uses the stream function, vorticity formulation of the incompressible
Euler equation. In this analysis, the screen is modeled as an actuator disk with the pressure drop deter-
mined by an empirical formula. The screen analysis method can accurately calculate the test-section
dynamic pressure distribution generated by screens in the inlet. The calculated distributions are in good
agreement with the experimental data. Insight into the fluid dynamics of the overall flow field was also
gained. In particular, it was found that the primary factor determining the distribution of the flow passing
through a screen is the turning of the flow by the screen when the onset angle differs from the screen nor-
mal. Parametric geometry variations were performed which showed that uniform flow can be achieved if
the screens are located appropriately in a constant-width duct upstream of the contracting section of the
inlet. This approach has been used in several wind tunnels to date (e.g., refs. 5, 30). These designs
were arrived at through experimentation rather than by analysis. The present analysis could be used to
analyze this type of inlet design and eliminate a large amount of iterative experimentation.

The effectiveness of a variable loss coefficient screen in providing uniform test-section flow was
examined. An technique was developed by which the the required loss coefficient distribution is found
which includes the flow redistribution caused by the screen in the calculation. The loss distribution thus
obtained was found to produce uniform test section flow. Unfortunately, the required loss coefficient near
the sides of the inlet is too large to be practical for the inlet geometry examined (k, was as high as 70 in
that region). Production of a continuously variable screen would also be impractical. Another calculation
was made using a "stepped" loss distribution which could be produced by placing more layers of screen in
the regions where a larger loss coefficient is called for. The resulting flow distribution was very nonuni-
form with the steps in loss coefficient plainly visible in the predicted dynamic pressure distributions. For
the inlet geometry studied the graded screen approach is not feasible, however it may be useful for
geometries which have smaller velocity gradients than the inlet of the present study.
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The most promising concept for a small inlet providing uniform test-section flow is the addition of
an inlet cascade. The idea is that a properly tailored cascade placed in the inlet is used to redistribute the
flow passing through the screen. When properly designed, the pressure drop through the screen can be
made constant across the width of the inlet, thus providing uniform test-section dynamic pressure. An
analysis method was developed based on a 2-D panel code and an empirical pressure drop analysis. The
method was used to determine the angle for each vane in a cascade, located just upstream of a screen,
required to produce uniform-test section flow. An experiment that was performed using several vane
splay angle distributions which had been examined computationally showed that the experimentally mea-
sured dynamic pressure distributions were accurately predicted by the computations. The analysis proved
sensitive enough to determine the source of a slight asymmetry in the experimentally measured test-section
dynamic pressure distributions. The asymmetry was found to be due to a 1° misalignment of the inlet with
respect to the axis of the wind tunnel. The ability of the inlet cascade to produce any desired test-section
flow distribution (within reason) makes it a good choice in the design of indraft wind tunnels.

A simple scaling of the velocities predicted by the 2-D panel code at the screen location was subse-
quently used to extend the analysis to 3-D. The scaling was introduced to account for the lack of contrac-
tion in the third dimension in the analysis. Including the correction in the analysis allowed the accurate
prediction of the horizontal dynamic pressure distribution at the vertical centerline of a 1/15-scale model of
the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center. The analysis method was used to
design the inlet for the full-scale facility (ref. 4). The inlet was found to produce sufficient isolation from
external winds while maintaining uniform test-section flow.

The analysis methods presented in the present study could be extended to 3-D which would allow
a more detailed examination of the effects of external wind on inlet performance. In addition, the ground
boundary layer could be modeled by a proper distribution of total pressure in the far field which is a prob-
lem that cannot be addressed using the present analysis method.

The computational methods and design concepts developed in the present study can also be used in
the design and analysis of closed-return wind tunnels. Screens are often placed in the settling chamber of
these tunnels to reduce the turbulence intensity in the test section. If the screens are placed too close to the
start of the contraction, nonuniform test-section flow can be produced. The minimum space between the
contraction and the nearest screen can be determined using the screen analysis presented here. Screens are
also used in closed-return wind tunnels to prevent separation in wide-angle diffusers which are often
located upstream of the settling chamber. Coupling the screen analysis with a boundary layer calculation
could provide a useful tool in the analysis of this type of flow.
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APPENDIX A: DESCRIPTION OF DATA ACQUISITION SYSTEM

The data acquisition and reduction for the experiments was performed automatically during by a
Zenith PC-100 microcomputer equipped with a MetraByte DASH-8 input/output card. A schematic of the
overall system is shown in figure 57. The I/O card has eight analog inputs, a 4-bit digital input, and a 4-bit
digital output. One of the analog inputs was used for the signal from the 1 psi pressure transducer. The
pressure transducer signal was filtered and amplified by a Vishay signal conditioning amplifier. A
Scanivalve™ scanning pressure switching device was used to measure the pressure at all of the ports on
the model using a single transducer. During the tests the static pressure was measured at 20 points along
one wall of the inlet and contraction and on all four walls in the test section. In addition 24 total pressures
were measured across the test section using the rake shown in figure 6 of Chap. 2.

Stepper Motor

Pressure Measurement
Controller

Ports (Scanivalve, Inc.)
Stepper Motor Signal Stepper Control Signat
Transducer Signal & Conditioned Signal
Excitation
Scanivalve
Module
Vishay
Position Signal Con_d_itioning
Display Amplifier

e ]

Zenith PC-100

Figure 57. Schematic of data acquisition system

The data acquisition process is as follows. Upon initiation of a cycle, the computer reads a preset
number of samples of the signal from the transducer through the A/D converter. These samples were
averaged and the result stored. A command is then sent by the computer to the stepper motor controllex-to
step the Scanivalve to the next port. This process was repeated until all of the desired pressure data were
recorded. The first, 24th, and 48th ports all measured the test section static pressure. After a complete
cycle, these three pressures are compared and if they differ by more than 1% the entire cycle of data is
discarded. This is to assure that all the pressures were measured for the same test section conditions since
a complete cycle through the 48 ports required approximately 5 min. A total of 200 samples were taken at
every port to obtain a good average. The data were saved on disks for subsequent analysis and plotting.
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