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SUMMARY

A study was made to determine the relevance of impacter shape to nonvlsible

damage and tensile residual strength of graphite/epoxy cases for the solid
rocket motors of the Space Shuttle. Impacters were dropped onto 30.5-cm- (12-

in.) long rings (short cylinders) that were 76.2-cm (30-in.) in diameter and 36-

mm- (l.4-in.) thick. The kinetic energies ranged from 17.0 to 136 J (12.5 to

i00 ft-lbf). Some rings were filled with inert propellant and some were empty.

A 5 kg (Ii ibm) Impacter was used with the following shapes: 12.7-mm- (0.5-in.)

and 25.4-mm- (l.O-in.) diameter hemispheres, a sharp corner, and a 6.3-mm-

(0.25-in.) diameter bolt-like rod. The rings were impacted numerous times

around the circumference and cut into 51-mm- (2-in.) wide specimens. Impacts

with the rod impacter were simulated by pressing the rod against the face of

specimens. The specimens were uniaxially loaded to failure in tension. The

investigation revealed that damage initiated when the contact pressure exceeded

a critical level. However, the damage was not visible on the surface until an

even higher pressure was exceeded. Thus, damage was not visible on the surface

for a wide range of impact energies. The damage on the surface consisted of a

crater shaped like the impacter, and the damage below the surface consisted of
broken fibers. The impact energy to in[tlate damage or cause visible damage on

the surface increased approximately with impacter diameter to the third power.

The reduction in strength for nonvlsible damage increased with increasing

diameter, 9 and 30 percent for the 12.7-mm- (0.5-in.) and 25.4-mm- (l.0-in.)

diameter hemispheres, respectively. The corner impacter made visible damage on

the surface for even the smallest impact energy. The rod impacter acted like a

punch and sliced through the composite. Even so, the critical level of pressure

to initiate damage was the same for the rod and hemispherical impacters.

Factors of safety for nonvisible damage increased with increasing kinetic energy

of impact_ The effects of impacter shape on impact force, damage size, damage

visibility, and residual tensile strength were predicted quite well assuming

Hertzian contact and using maximum stress criteria and a surface crack analysis.



INTRODUCTION

Recently, NASA developed several sets of solid rocket motors with

graphlte/epoxy cases to use in lieu of existing motors with steel cases for the

Space Shuttle. These light-weight motor's were to have been used for certain

missions that required a lower mass at launch. (The program was canceled before

the first flight.) The cases were made using a wet filament-winding process,

hence the name filament-wound case (FWC). It was desired, but not required,

that the FWC's be reusable like the steel cases. Each light-welght motor would

have consisted of four FWC's, a forward case, two center cases, and an aft case.

The FWC's were 3.66 m (12 it) in diameter and were joined together with steel

pins. The forward and center FWC's were 7.6 m (25 it) in length, and the aft

FWC was somewhat shorter. The thickness of the membrane region away from the

ends was approximately 36 mm (1.4 in.). The ends were thicker to withstand the

concentrated pin loads. The FWC's are designed primarily for internal pressure

caused by the burning propellant. However, the motors are subjected to bending

when the main engines of the orbiter ignite, causing relatively large

compression stresses in the aft FWC's. In fact, one FWC that contained a large

area of high porosity or delamlnatlons failed between limit and ultimate

conditions during a structural test in which this bending condition was being

simulated. The ultrasonic inspection could not distinguish between high

porosity and delaminatlons.

For graphite�epoxy pressure vessels with thin walls, the reduction of burst

pressure by impact damage is widely known. See, for example, [I]. However,

because of the stoutness of the FWC's, it was not expected that low-velocity

impacts by tools and equipment could seriously reduce strength. However,

dropped tools and equipment are not the only threat; the potential for handling

accidents is also significant. In fact one empty FWC was dropped in the factory

during the development program. The FWC's were to have been manufactured and

loaded with propellant in Utah and shipped by rall to Florida. Each of the

longer FWC's had a mass of about 4,500 kg (i0,000 Ibm) empty and about 140,000

kg (300,000 Ibm) when filled with propellant. The potential energy or kinetic

energy of even an empty FWC when lifted I m (39 in.) would be over 44,000 J

(33,000 ft-lbf). Thus, handling accidents can potentially cause more serious

impact damage than dropped tools and equipment.

In a previous investigation conducted at Langley Research Center [2-5], the

effect of low-velocity impacts on the tension strength of an FWC was determined

for an impacter with a hemispherically shaped end having a 25.4-mm- (l.0-in.)

diameter. (The compression failure in the bending test had not occurred at this

time.) Impacters of various masses were dropped from various heights onto 36-

mm- (l.4-1n.) thick graphite/epoxy rings (short cylinders) to simulate falling

tools and equipment. Impact energies ranged from 38 to 447 J (28 to 329 ft-

Ibf). The rings were impacted numerous times around the circumference and cut

into specimens. Then, the specimens were loaded unlaxlally in tension to

failure. For impact energies of 38 J (28 ft-lbf) and greater, the laminate was

damaged and the residual tensile strength was reduced accordingly. The damaged

region contained broken fibers, the locus of which resembled cracks. Up to

about I00 J (74 ft-lbf), the damage was not visible on the surface, but the

tensile strength was reduced as much as 30 percent. Even for the largest energy

447 J (329 ft-lbf), the damage was localized and did not extend to the back

face. The damage size (breadth and depth) and residual tensile strength were



predicted assuming Hertzian contact and using maximum stress criteria and

surface crack analysis. However, the size and nature of the damage could not be

positively determined nondestructively to verify the predictions of damage [6-

9]. Thus, a number of specimens were damaged by simulated impacts and deplied

[I0]. The maximum size of the damaged region was in good agreement with that

predicted by maximum stress criteria. The broken fibers appeared to have been

caused by shear failure of the epoxy.

Because of concern about reduction in strength due to nonvlsible impact
damage, the present investigation was made to determine the relevance of

impacter shape to nonvisible damage and the associated reduction in strength.

Accordingly, impact tests were conducted with the following additional

indenters: a 12.7-mm- (0.5-in.) diameter hemisphere, a sharp corner, and a 6.3-

mm- (0.25-in.) diameter bolt-llke rod. The hemisphere and corner indenters were

attached to the end of a 5 kg (II.i Ibm) impacter and dropped from various

heights onto 36-mm- (l.4-1n.) thick graphite/epoxy rings (short cylinders).

These rings were taken from the same cylinder as those in [2-9]. The rings were

impacted numerous times around the circumference and cut into 51-mm- (2-in.)

wide specimens as in the earlier investigation. Impacts with the rod indenter

were simulated by pressing the rod against the face of specimens using a testing

machine. The specimens were then loaded uniaxlally in tension to failure. The

effects of indenter shape on impact force, damage size, damage visibility, and

residual tensile strength were predicted assuming Hertzian contact and using the
maximum stress criteria and surface crack analysis reported in [3-5]. Factors

of safety for strength reduction with nonvisible damage were calculated in terms

of impact energy.

The material, test apparatus, and procedure were described in [2-4]. They
will also be reviewed here for the convenience of the reader.
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h

kf

k 1 , k 2

K

%
KEef f

m1 , m2

M

n o

P

Pc

Q
r

c

R1

S
x

S
XC

t
u

u i

uf

v 1 , v 2

W

zo

Vxy' Vyx

vr , Vrz

v I , v 2

v12

[0

T
U

T
max

Subscripts:

I, 2

x, y

thickness, m (in.)

spring constant for flexure, N/m (Ibf/in.)

factors in the Hertz law, Pa -I (psi) -I

stress intensity fact0r, Pa mm I/2, (psi In. I/2)

fracture toughness, Pa mm I/2, (psi In. I/2)

effective kinetic energy, ½ M v_, J (ft-lbf)

mass of impacter and target, kg (Ibm)

effective mass, kg (Ibm)
factor in the Hertz law, Pa (psi)

contact pressure, Pa (psi)

average contact pressure, Pa (psi)

shape factor for an elliptical crack

contact radius, m (in.)

radius of impacter, m (in.)

hoop stress, Pa (ksi)

hoop stress at failure, Pa (ksi)

time, sec
relative displacement between Impacter and target, m (in.)

indentation of target given by Hertz's law, m (in.)

displacement of target due to flexure, m (in.)

velocity of impacter and target, m/sec (in./sec)

width of specimen in test section, m (in.)

depth from surface where damage initiates

Poisson's ratios of FWC laminate

Polsson's ratios of transversely isotroplc seml-lnflnite body or

target
Poisson's ratio of isotroplc impacter and target

principal Polsson's ratio of laminae

ratio z/r c

ratio z0/r c

shear strength, Pa (psi)

maximum principal shear stress, Pa (psi)

parametric angle of ellipse

principal coordinates of the FWC layers (The l-dlrection is the
fiber direction.)
Cartesian coordinates (The x-dlrectlon is the axial direction of

the cylinder or hoop direction of the FWC laminate.)



r, 8, z cylindrical coordinates (The z-directlon is normal to the

laminate.)

Original measurements were made in English units and converted to SI units.

MATERIAL

A 0.76-m- (30-in.) diameter, 2.13-m- (7-ft) long cylinder was made by

Hercules Inc. to represent the region of a FWC away from the ends. The

thickness of the cylinder was the same as that of a FWC, 36 mm (1.4 in.). The

directions of the hoop and helical layers in the cylinder are shown in Fig. i.

Notice that the hoop and helical directions were rotated 900 to provide straight

specimens for unlaxial loading in the hoop direction. For this reason, the hoop

layers could not be wound using the wet process but had to be hand lald using

prepreg tape. (Reference to hoop layers in this paper is reference to fibers in

the hoop direction of the FWC but in the longitudinal direction of the

cylinder.) However, the helical layers were wound using a wet process like that

used to make a FWC. The graphite fiber and winding resin were also the same

used to make the FWC's. The fiber was AS4W-12K graphite, and the winding resin

was HBRF-55A epoxy (Hercules Inc.'s designations). The prepreg tape was

actually a unidirectional broadgoods. The epoxy in the prepreg was Hercules

Inc.'s MX-16. Tests were conducted on fibers from each lot of material used to

make the cylinder. Properties of the helical fiber, broadgoods fiber, and resin

are given in Table i. Properties of the prepreg and winding resins are the

same. The helical and broadgoods fibers were from different lots. The physical

properties and lamina constants, which were measured by Hercules Inc., are given

in Tables 2 and 3, respectively.

From outside to inside, the orientations of the layers were {(±56.5)2/0 /

[(±56.5)2/013/[(±56.5)2/017/(±56.5/02)4/(±56.5)2/cloth}, where the 0 ° layers are

the hoops and the ±56.5 o layers are the helicals. (The layer angles are

measured from the axis of the cylinder.) The underlined ±56.5° helical layers

are about 1.6 times as thick as the other helical layers. The cloth layer at

the inner surface has an equal number of fibers in the warp and weave

directions. The layup is balanced (equal numbers of +56.5 ° and -56.50 layers)

but not symmetrical about the midplane. More hoop layers are near the inner

surface than the outer surface.

The elastic constants of the cylinder are given in Table 4. They were

predicted with lamination theory using the lamina constants in Table 3. In

general, bending and stretching couple in an unsymmetrlc laminate like that of

the FWC. However, for the axisymmetrlc case of a cylinder containing pressure,

bending and stretching do not couple. Thus, the elastic constants were

calculated assuming that the laminate is symmetric. The x- and y-directions in

the subscripts of the elastic constants correspond to the axial and hoop

directions of the cylinder. See Fig. I.

The value of fracture toughness KQ for the cylinder was 0.949 GPa mm I/2

(27.3 ksi in. I/2) [3-5]. A general fracture toughness parameter and the failing



strain of the fibers was used to predict KQ. The crack was assumed to be

normal to the hoop direction.

TEST APPAI_TUS AND PROCEDURE

Impact Tests

The cylinder was cut into seven 30.5-cm- (12-1n.) long rings. The rings

were impacted by free-falling masses. See Fig. i. Inert propellant was cast in

several of the rings, but the others were left empty. The masses of an empty

and a filled ring were 40 kg (89.1 Ibm) and 288 kg (635 ibm), respectively.

During impacts, the rings lay on a thin rubber sheet in a shallow aluminum

cradle. The bottom of the empty ring was secured to the concrete floor with a

cross-bar to prevent the ring from "leaping" off the floor when impacted. Each

ring was impacted every 51 mm (2.0 in.) of circumference, giving 44 impact

sites. The damaged regions did not overlap.

The free-falling impacter was a 51-mm- (2-in.) diameter steel rod with
indenters of several shapes attached to one end. The indenters were a 12.7-mm-

(0.5-1n.) diameter hemisphere and a sharp corner. The tip of the corner

indenter had a radius less than 0.25 mm (0.01 in.). The mass of the impacter

was 5.0 kg (Ii.i Ibm), including the indenter. The impacter was instrumented to

determine the maximum impact force. Drop heights were varied from 36 to 274 cm

(14 to 108 in.) to give kinetic energies from 17 to 136 J (13 to I00 ft-lbf).

After each impact, the ring was rotated to present a new site. Each ring had a

total of 44 impact sites. Some sites on each ring were not impacted but

reserved as undamaged specimens for determining mechanical properties. After

the impacts were completed, each ring was cut into 44 tension specimens that
were oriented as shown in Fig. i. The center of each specimen coincided with an

impact site. The cut edges were ground flat and parallel so that the width and

length of the specimens were 51 mm (2.0 in.) and 31 cm (12 in.), respectively.

Simulated Impact Tests

No rings remained for impacts using other indenters. Thus, nine of the 51-

mm (2.0-in.) by 30.5-cm (12-in.) tension specimens that were reserved for tests

to determine mechanical properties were used instead for simulated impact tests

with a rod shaped indenter. The impacts were not made by dropping weights

because of a potential difference between the dynamic response of the ring and

that of the small tension specimen. The rod indenter had a diameter of 6.3 mm

(0.25 in.). The corner of the rod (intersection of the side and end) had a

radius of 1.3 mm (0.05 in.) to simulate the end of a bolt. The impacts were

simulated by mounting the rod indenter in the upper grip of a hydraulic testing

machine and slowly pressing the rod against the face of the stralght-slded

tension specimens. Stroke was programmed to increase linearly with time. The

maximum strokes were 3.4, 6.5, and 9.5 mm (0.135, 0.255, and 0.375 in.) for

three specimens each. Load and stroke were recorded on an x-y recorder.



X-Ray Tests

The impacted face of each specimen (including those with simulated impacts)

was soaked in a zinc iodide penetrant for 30 sec, and radiographs were made from

the impacted side. The penetrant was contained by a circular dam on the surface

of the specimen. The depth of impact damage in the radiographs was measured.

After the specimens were X-rayed, circular arcs were ground into the specimens'

edges to reduce the width in the test section to 38 mm (1.5 in.). See Fig. 2.
Without the reduced width in the test section, the failure of specimens with

small damage seemed to originate at the grips [2-4]. The width of the specimens
was reduced in the test section to assure that failure originated at the impact

damage and not at the edge of the grips where the stresses were elevated by the

grip pressure [2-4].

Residual Strength Tests

The specimens were uniaxially loaded to failure in tension with a 445-kN-

capacity (I00 kips) hydraulic testing machine. Stroke was programmed to
increase with time at the rate of 0.0076 mm/sec (0.0003 In./sec). Time to

failure was several minutes at this rate. Hydraulically actuated grips that

simulate flxed-end conditions were used. Otherwise, unlaxlal loading would

cause bending because the FWC laminate is not symmetrical.

ANALYSIS AND RESULTS

The experimental results are given in Tables 5-9 for the various indenters.

The tables include kinetic energy of impacter 12 m I v_, maximum impact force

Fmax, damage depth from radiograph, and tensile failure loads. Preliminary

results revealed that differences between values of kinetic energy and potential

energy of the impacter were less than the experimental accuracy. Thus, for
convenience, values of kinetic energy were assumed to be equal to potential

energy. For the rod indenter, the area under the load-dlsplacement curve is

reported for the kinetic energy. When the impacted specimens were loaded to
failure in tension, those with very shallow damage (outermost helical layers or

less) failed catastrophically in one stage [3-5]. However, those with deeper

damage (one or more hoop layers) failed in two stages: first, the damaged

layers failed and delamlnated from the undamaged layers; and then, with
additional load, the undamaged layers failed. The two stages of failure were

referred to as first- and remaining-ligament failure. Loads are given in the

tables for both failures when applicable.

Impact Force

The impact force increases with time to a maximum value and then decreases
to zero, much as a haversine For impacts to the thick composite rings, the

time for the impact force to reach a maxlmum value was usually less than one



millisecond [2-4]. Assuming Hertzian contact and Newtonian mechanics, the

maximum impact force Fma x is given by

_1__ F 2
2 kf max + 5_ R11/3 n°2/3 F5/3max KEef f - 0 (I)

where R 1 is the radius of the impacter, n o is a Hertzlan constant defined by

Eq 20, and kf is a spring constant for the ring defined by Eq 18. The

effective kinetic energy of the impact KEef f is defined by

KEef f - ½ M v 2 (2)

where M is the effective mass defined by Eq 16 and v I is the velocity of the

impacter. The derivation of Eqs i and 2 are given in the Appendix. Values of

n o - 4.52 GPa (656 ksl) for filled and empty rings, kf - 5.08 MN/m (29.0

klps/in.) for empty rings, and kf - 6.34 MN/m (36.2 klps/in.) for filled rings

were determined by tests. Details are given in the Appendix.

The results from the formulation of the impact problem here and in [ii] are

significantly different. In [Ii] it was assumed that the velocities of the

impacter and target are equal during contact. Conservation of momentum was used

to obtain the velocity during contact. Using the same initial and final

conditions as those in the Appendix, one arrives at an equation with a form

similar to that of Eq I but with

KEef f - ½ 2mlVl/(l + ¼ m2/m I) (3)

rather than Eq 2, which also can also be written

KEef f , ½ 2mlVl/(l + 4 ml/m 2) (4)

The mass ratio 4 ml/m 2 in Eq 4 is inverted relative to that in Eq 3. Thus,

the effect of target mass on impact force in [II] is opposite to that in the

present formulation.

Values of impact force are plotted against effective kinetic energy in Fig.

3 for a 25.4-mm- (l.0-in.) diameter hemisphere [3,4]. Each symbol is an average

of several tests. The impact forces for the empty and filled rings coalesce

quite well when plotted against the effective kinetic energy. For all values of

KEef f less than that labeled nonvisible damage (NVD), the impacts did not cause

visible damage on the surface. For values of KEef f greater than this

threshold, the impacts caused a visible crater. Near the threshold, the craters

were very shallow but perceptible. The depth of the craters increased with

increasing KEef f. Values of impact force calculated with Eq I and n o - 4.52

GPa (656 ksi) are also plotted. Curves are shown for three values of ring



stiffness: kf - 5.08 MN/m (29.0 klps/In.), 6.34 MN/m (36.2 kips/in.), and _.

For kf - m, the ring does not flex at all in a global sense. When damage is

nonvlsible, the predicted curve for kf - m agrees with the test results quite

well. But when damage is great enough to be visible, the actual impact forces

are somewhat less than the predicted values. Values of impact force predicted

with quasl-static values of kf are much too small. The quasi-statlc values of

kf greatly overestimate the deflection of the rings during impact. Thus, the

natural vibration periods of the rings were probably the same order of magnitude

as the duration of the impacts, which was only a few milliseconds [3,4].

Values of impact force are plotted against effective kinetic energy KEef f

in Fig. 4 for the 12.7-mm- (0.5-in.) diameter hemisphere, the corner, and the

rod indenters. For the simulated impacts with the rod indenter, the area under

the load-displacement curve was used for KEef f. Results for the 25.4-mm- (l.0-

in.) diameter hemisphere in Fig. 3 are also plotted for comparison. Each symbol

is an average of several tests. For a given KEeff, impact force decreases with

decreasing radius or increasing sharpness of the impacter. Filled and open

symbols represent visible and nonvisible damage, respectively. The damage on

the surface consisted of craters shaped like the indenters. The corner and rod

indenters made craters for all impacts. The depth of the craters for all

indenters increased with increasing KEef f. For the hemispherical indenters,

the thresholds for NVD are labeled as in Fig. 3. In the neighborhood of the

thresholds, the craters were shallow. For a given value of KEeff, the depth of

the craters was greater for the smaller hemisphere. Except for the rod

indenter, values of impact force calculated with Eq i are also plotted. The

calculations were made using kf - 219 MN/m (1250 kips/in.) and n o - 4.52 GPa

(656 ksl). This value of kf, which was chosen so that Eq I would best agree

with the data for hemispherical impacters with nonvisible damage, is much larger

than the values determined by quasi-static tests. As a result, the term

containing kf in Eq I contributes very little to KEef f as evident by

comparing this curve with that in Fig. 3 for kf - _. In Fig. 4, the difference

between the curves for the two different hemispheres is not large for nonvisible

damage, as predicted by Eq I. On the other hand, impact forces for both

hemispheres are less than predicted when the damage is visible. The dashed

lines, which were fit to the data with visible damage, were assumed to have the

same slope for both hemispheres. The test data for the 25.4-mm- (l.O-in.)

diameter hemisphere do not have a sufficient range of KEef f to confirm this

assumption. Calculations were made for the corner by representing it as a

hemisphere with a diameter of 0.61 mm (0.024 in.). This diameter was chosen to

give the best agreement between predictions and tests. The actual radius of the

tip was about half this value, approximately 0.25 mm (0.01 in.). The test data

are modeled quite well by Eq 1 even though the indenter made a deep crater on

the surface and the corner was represented as a hemisphere. Even though the

agreement is probably fortuitous, the corner was represented as a small

hemisphere in subsequent calculations of damage size to determine the limits of

this representation. The slopes of the lines that represent test data with



visible damage in Fig. 4 vary wlth indenter shape. Thus, impact force for one

indenter shape is not always less or greater than that for another shape for all

values of KEef f.

Damage

For Hertzian contact [12], the contact pressure between a hemispherical

impacter of radius R 1 and a semi-lnflnlte, transversely isotropic body is

given by

p . 2_ Pc(l " _)i/2

r
c

(5)

where r is the radius (polar coordinate) measured from the center of the

contact site, rc is the contact radius given by

FmaxRl 1/3

r c - ( ) (6)n o

and Pc is the average pressure given by

F

Pc " max2 (7)
r

c

Using the theory of elasticity, Love [13] obtained a closed form solution

for the internal stresses in a seml-lnfinite, isotropic body produced by the

"hemispherical" pressure given by Eq 5. The problem is axlsymmetrlc. Even

though the composite is made of orthotroplc layers, the results for the

isotroplc half space should at least be applicable in a qualitative sense.

Contours of maximum shear stress - 228 MPa (33.0 ksl) and maximum compression

stress - 587 MPa (85.1 ksi) were calculated using the equations in [13] with

w - 0.3 and plotted in Fig. 5 for various values of average contact pressure.

The maximum compression stress is in the plane of the composite layers, but the

shear stress is generally not. Along the centerllne, for example, the maximum

shear stress lles in a plane that is inclined at 450 to the surface. The depth

from the surface and distance from the center of contact are normalized by the

contact radius r . For a given contact pressure, each contour represents the
c

outermost extent of damage according to the maximum shear or maximum compression

stress criterion. Since the stresses from Love's solution do not account for

damage, they are valid only for predicting the onset of damage. Thus, the

contours only give the approximate size of the damage region. Notice that

damage initiates on the axis of symmetry, For the maximum shear stress

criterion, damage initiates below the surface at a normalized depth of 0.482 for

Pc " 490 MPa (71.1 ksl); whereas, for the maximum compression stress criterion,

10



damage initiates at the surface for Pc - 487 MPa (70.6 ksl). Therefore, damage

initiates at a critical contact pressure, independent of impacter radius.

The maximum depth of the damage contours for maximum shear stress in Fig. 5

is given by

(} . vt)( I + _2)-i + (I + vt)[_ Tan'l(_)

4T

_2(i + _2)-I] ---_- 0
3P c

(8)

where

T
max

- a/r c. The depth f0 - zo/r c, which corresponds to the location of

and damage initiation, is given by I

3_"o (1 + vt)(l + _'o2)[(i + _2)Tan'l(_o) " _'o] " 0 (9)

The size of the damage in Fig. 5 and Eqs 8 and 9 are normalized by the
contact radius. The contact radius r can be written in terms of the average

C

contact pressure Pc instead of the maximum impact force Fma x. Using Eq 7 to

eliminate F in Eq 6 results in
max

PC R_
r - (I0)
C n 0

Thus, rc increases in proportion to Pc and Impacter radius R I. Hence, the

absolute size of the damage contours in Fig. 5 increases in proportion to Pc

and R I. Thus, for a given pressure above the critical level, the depth and

width of damage increase in proportion to impacter radius.

Since damage is predicted to initiate on or near the surface for a constant

value of average contact pressure, damage should also become visible on the

surface for a constant value of average contact pressure, at least for

hemispherical indenters. Accordingly, contact pressures are plotted against

impact force in Fig. 6 for the various indenters. The contact pressures were

calculated using Eqs 6 and 7 and the measured values of impact force in Fig. 4.

The value of n o was assumed to be 4.52 GPa (656 ksi). The corner indenter was

again represented as a 0.61-mm- (0.024-in.) diameter hemisphere. For the 6.5-
mm- (0.25-in.) diameter rod indenter, the contact area was assumed to be equal

to the full area of the rod's cross sectlon -- not the reduced area at the end.

i The equation in [5,10] that corresponds to Eq 8 in this report contains an

error. The author also discovered a discrepancy between Eqs 8 and 9 in this

report and results reported in [14]. It is believed that the sign of the

second term in Eq 20a of [14] should be reversed.
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Filled and open symbols represent visible and nonvlslble damage, respectively.
The lines were fit to the data. Indeed, the critical pressure to cause visible

damage for the 25.4-mm- (l.0-in.) diameter hemisphere was only about 7 percent

greater than that for the 12.7-mm- (0.5-1n.) diameter hemisphere. The dashed
horizontal llne in Fig. 6 represents a critical pressure of 705 MPa (102 ksi).

Contact pressures for all tests with the corner and rod indenters exceeded 705

MPa (102 ksi) and damage was visible llke that for the hemispheres. The slope
of the curve for the rod indenter was greater than that for the other indenters

because contact area was a constant, whereas contact area increases with impact

force to the two-thirds power for a hemisphere.

Fiber Damage

To verify radiographic and ultrasonic measurements of impact damage in the

rings, specimens from an actual FWC were impacted and pyrolyzed. The pyrolysis
removed most of the epoxy, facilitating the separating of layers or deplylng of

the composite. The results were reported in [I0]. The impacts were simulated

by quasl-statlcally pressing a hemispherical indenter against the specimen's
face, much like the simulated impacts with the rod indenter in the present

investigation. Photographs of the outermost 9 deplled layers from one specimen
are shown in Fig. 7. The layers contain broken fibers, the locus of which

resembles cracks. The layer samples were 38 by 38 mm (1.5 by 1.5 in.). The

"cracks" were visible in the 15 outermost layers, of which the outermost 9 are

shown in Fig. 7. These cracks were mostly parallel to the direction of fibers

In the neighboring layers. By coincidence, the cracks appear to be nearly
normal to the fibers in the layer in which they reside. When the fibers in the

neighboring layers were not parallel to each other, the direction of the cracks
wandered between the direction of the fibers in the each neighboring layer. For

this sample, a 50.8-mm- (2.00-1n.) diameter hemispherical indenter was used to

produce a contact force of 267 kN (60.0 kips) and a contact pressure of 648 MPa

(94,0 ksl). The simulated impact caused a visible crater on the surface.

Several specimens in [I0] were not deplied but were sectioned through the
thickness and examined using a scanning electron microscope. Photomicrographs

of two sections from the same depth are shown in Fig. 8. This impact was also

simulated with the 50.8-mm- (2.00-in.) diameter hemisphere, producing a contact

force of 200 kN (45.0 kips) and a contact pressure of 589 MPa (85.4 ksl). A

crater was visible on the surface. The section on the left in Fig. 8 is

directly below the contact area, and the section on the right is outside the
contact area. The sections are normal to the plane of the hoop layers and

parallel to the direction of the hoop fibers. An edge of the outermost hoop

layer can be seen at the center of both sections. The section on the left
reveals several matrix cracks in the helical layers on both sides of the hoop

layer. The cracks are located in the plane of maximum shear stress. The matrix
shear cracks continue across the hoop layer and thus break the fibers. This

combination of matrix shear cracks and broken fibers was typical in the other

sections as well. Fiber kinking in the hoop layer, which is associated with in-

plane compression failure, can be observed in the section on the right. A

rather large void lies above the kinked fibers, and what appears to be a
delamination lies below. This delamination is probably a lack of bond caused by

the manufacturing process rather than by the simulated impact. This type of

delamlnatlon was not unusual in the many FWC's that were made. Thus, the fiber
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kinking is probably a result of the inplane compression stress due to the

simulated impact combined with the lack of matrix support to the fibers.

The maximum depths of fiber breaks for the deplled specimens from [i0] are

plotted in Fig. 9. Each symbol is an average of several tests. The damage

depth was normalized by the contact radius. The filled symbols indicate visible

damage on the surface, and the open symbols indicate nonvlslble damage. The

maximum depths of the contours in Fig. 5 are also plotted in Fig. 9 for

comparison. The compression allowable in Fig. 5 is based on the failing strain

and Young's modulus of the composite. The shear allowable was chosen to give an

upper bound to the damage depths in Fig. 9. Compression tests [i0] gave an

ultimate shear strength of 310 MPa (45.0 ksl), which would have moved the curve

for maximum shear stress to the right by 0.178 GPa (25.8 ksi) in Fig. 9 and

would have given a lower bound to the test data. The envelope of predicted

damage depth is represented by the solid line. The damage far below the surface

corresponds to the maximum shear stress criteria, and the damage near the

surface corresponds to the maximum compression stress criteria. The maximum

stress criteria represent the data quite well considering that the composite is

neither homogeneous nor isotropic. Widths of the contours in Fig. 5 are

approximately 1.6 times the depth [I0]. The widths (crack lengths) from the

tests were 2 to 3 times the depths. Hence, the maximum stress criteria tended

to underpredict the width of damage, probably an effect of the transversely

Isotropic nature of the composite.

The maximum depths of impact damage from radiographs of the impacted

specimens are plotted in Fig. 10. Recall that impacts with the rod indenter

were simulated. Each symbol is an average of several tests. The data for the

25.4-mm- (l.0-1n.) diameter impacter are from [3,4]. The damage depth was

normalized by the contact radius calculated with Eq 6. The filled symbols

indicate visible damage on the surface, and the open symbols indicate nonvlslble

damage. Logarithmic scales are used because of the wide range of values for the

various Impacters. The maximum depths of the contours in Fig. 5 are also

plotted in Fig. I0 for comparison. As with the deply data for simulated

impacts, the radiographic data for the hemispheres and corner follow the maximum

stress criteria quite well. The agreement for the corner indenter is better

than anticipated considering that it was represented as a small hemisphere. The

rod indenter produces uniform displacements on the surface, which result in

infinite stresses at the edge of the rod compared to finite stresses at the edge

of the contact region of the hemisphere. (See [14] for an excellent review of

the contact problem.) Thus, the rod indenter acts like a punch and slices

through the composite. Consequently, the depth of damage is greater than that

predicted for the hemisphere.

Values of average contact pressure are plotted against stroke (displacement

of the actuator) in Fig. Ii for three of the simulated impact tests with the rod

indenter. Again, the full area of the rod's cross section was used to calculate

pressure. The stroke is approximately equal to indentation. These curves are

typical for the rod indenter. Notice that each curve is smooth until reaching

pressures between 600 and 650 MPa (87 and 94.3 ksi) where a Jump in displacement

occurs These jumps probably correspond to damage initiation. These pressures

are only slightly more than the lowest pressure that resulted in damage for the

hemispheres in Fig. i0. Thus, the critical level of contact pressure to

initiate damage is essentially the same for the rod and hemisphere indenters.

Since the pressures to initiate damage are about the same for the two indenter
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shapes, it is expected that the pressures to cause visible damage are also about
the same. Notice that the displacement in Fig. II increases dramatically once

damage develops because the rod indenter penetrates like a punch.

In Fig. 12, values of actuator stroke and damage depth for the rod indenter

are plotted against average contact pressure. Except for the largest value of
stroke, the damage extends ahead of the rod indenter, much as it does for the

hemispheres. Some specimens were delaminated completely at the bottom of the

damage as a result of the simulated impact. On the other hand, large

delamlnatlons were not found in specimens impacted with the other indenters.

Perhaps the large amount of damaged material pushed ahead of the rod caused the
delamlnatlon.

Impact damage from the 25.4-mm- (l.0-1n.) diameter hemisphere was difficult

to see in radiographs [3-9]. A comparison between damage depth determined by

deply [i0] and radiographs for the 12.7- and 25.4-mm- (0.5- and 1.0-1n.)

diameter hemispheres is made in Fig. 13 and 14. The radiographic data for the

25.4-mm- (l.0-in.) diameter hemisphere is from [3,4]. The impacts were

simulated for the deply data but not for the radiographic data. The maximum

depth is normalized by contact radius and plotted against average contact

pressure. The contact radius was calculated with Eq 6. The predictions made

with the maximum stress criteria are also plotted for a reference. The deply

and radiographic results are in good agreement for the 25.4-mm- (l.0-in.)

diameter hemisphere. However, for the 12.7-mm- (0.5-1n.) diameter hemisphere,

the depths from radiographs are much smaller than those from the deply tests and

do not coalesce with depths for the 25.4-mm- (l.0-in.) diameter hemisphere as

the maximum stress criteria predict. On the other hand, the thresholds for

nonvlslble damage for radiographs and deply tests are in agreement for the two

hemispheres. The difference between results for the radiographs and deply tests

is not likely due to the difference between impacts and simulated impacts but

rather due to the x-ray opaque dye not penetrating to the innermost damage

[3,4,6] and to the small size of the damage. In impact tests with the 12.7-mm-

(0.5-in.) diameter hemisphere where the contact pressures were high, local

heating was sufficient to pyrolyze the epoxy matrix. The higher temperatures

may have made the damage less penetrable. Pressures were generally lower for

the 25.4-mm- (0.5-in.) diameter hemisphere and no pyrolysis was noticed.

Regarding damage size, the volume of damaged material and dye for the 25.4-mm-
(l.O-in.) diameter hemisphere is 8 times that for the 12.7-mm- (0.5-in.)

diameter hemisphere. (Recall that the depth and radius of the damaged region

increases in proportion to hemisphere radius for a given contact pressure.)

Hence, more x-rays are attenuated for damage from the larger hemisphere than
from the smaller one, and the contrast between damaged and undamaged material is

greater. Therefore, damage from the 12.7-mm- (0.5-in.) diameter hemisphere is

more difficult to see in a radiograph than that from the 25.4-mm- (l.0-1n.)

diameter hemisphere.

The critical contact pressure to cause visible damage did vary somewhat

with hemisphere diameter. Average contact pressures from Figs. 9 and i0 are

plotted against hemisphere diameter in Fig. 15. Different symbols are used to
indicate visible and nonvlsible damage. The average contact pressure to cause

visible damage increased somewhat with decreasing hemisphere diameter,

particularly for the deply tests where the variation of diameter is greatest.

Because the contact radius increases in proportion to hemisphere radius for a

given contact pressure (Eq I0), the surface area of damaged material increases
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in proportion to the square of the hemisphere diameter. Thus, the surface

damage caused by a large hemisphere is more visible than that caused by a small

hemisphere. Hence, there is no contradiction between damage initiation being

independent of hemisphere radius and damage visibility increasing with

increasing hemisphere radius.

The impacter diameter is plotted against effective kinetic energy for

constant values of contact pressure in Fig. 16. The curves were calculated

using Eq.s I, 6, and 7 for the pressures that correspond to thresholds for

damage initiation 490 MPa (71.1 ksl) and damage visibility 705 MPa (102 ksl).

Values of n o - 4.52 GPa (656 ksi) and kf - 219 MN/m (1250 klps/in.) were

used. Equation i should be reasonably accurate for Pc _ 705 MPa (102 ksl),

since damage is small. The curves divide the graph into regions of no damage,

nonvlsible damage, and visible damage. Along these curves, the effective

kinetic energy increases approximately with impacter diameter to the third

power. Thus, for large impacter diameters, very large energies are necessary to

initiate damage. Also, the region of nonvlsible damage is quite large. For a

given value of effective kinetic energy, the ratio of impacter diameters for the

upper and lower curves is approximately 1.8; and, for a given value of impacter

diameter, the ratio of effective kinetic energies for the upper and lower curves

is approximately 0.16. Test data for the two hemispheres and the corner and rod

indenters are plotted for comparison. The agreement between the tests and

predictions verifies the use of simple mechanics and Hertzian contact to predict

the effect of indenter size and shape.

Residual Strength

As noted previously, when the impacted specimens were loaded to failure in

tension, those with very shallow damage (outermost helical layers or less)

failed catastrophically in one stage [3-5]. But, those with deeper damage (one

or more hoop layers) failed in two stages: first, the damaged layers failed and

delamlnated from the undamaged layers; and then, with additional load, the

undamaged layers failed. The two stages of failure were referred to as first-

and remalnlng-llgament failure. Only the flrst-ligament strengths will be

considered here because they are the lowest. The first-ligament strengths were

predicted by representing the impact damage as a seml-elliptical surface crack

in a plane normal to the hoop direction. The depth of the equivalent crack was

calculated with Eq 8. The length of the equivalent crack was assumed to be

equal to the depth. The singular stresses along the crack front are

proportional to the stress intensity factor K. For a seml-elliptlcal surface

crack in an isotroplc plate with membrane loading, K is given by

V)I _K - Sx ( /2 f(_, c' W' 4) (ii)

, is the hoop stress, a is the equivalent
where Q is the shape function Sx

crack depth, c is the equivalent crack length, and f(_ _' c' W' 4) corrects

for the finite thickness h and width W of the specimen. The thickness h

was 36 mm (1.4 in.), and the width W was 38 mm (1.5 in.). The stress

intensity factor K, which varies along the crack front with the parametric
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angle _, is greatest at the point where the crack intersects the free surface
(_ - 0°) or at the maximum depth (_ - 900), depending on the ratio a/c. The

functionals Q and f(_ _ K _) are given in [3-5,15]' c' W'

KQ mAt failure, K - and Sx Sxc where

and S is the strength. Solving Eq Ii for
xc

K - KQ and Sx - Sxc results in

KQ is the fracture toughness

Sx and making the substitutions

sxc-KQ =w' (12)

Values of strength associated with flrst-ligament failure were divided by

the undamaged strength of 345 MPa (50.1 ksi) and plotted against impact force in

Fig. 17. The test values of strength, which are plotted as symbols, were

calculated by dividing the failure loads by the thickness h - 36 mm (1.4 in.)

and width W - 38 mm (1.5 in.) of the test section. See Fig. 2. Each symbol

is an average of several tests. A different symbol was used for each indenter

with open symbols representing nonvlsible damage and filled symbols representing

visible damage. The test data for the 25.4-mm- (l.0-in.) diameter hemisphere

was taken from [3,4]. Calculations with Eq 12 were plotted as lines, which are

dashed to indicate nonvisible damage, Pc < 705 MPa (102 ksi), and solid to

indicate visible damage, Pc _ 705 MPa (102 ksi). The strengths for the corner

indenter were predicted by representing it as a 0.61-mm- (0.024-in.) diameter

hemisphere. No strengths were predicted for the rod indenter. The predictions

and tests are in reasonably good agreement, even for the corner. The residual

strengths for the rod indenter are lowest because of the penetration and hence

deep damage. Notice that the strength was reduced as much as 9 and 30 percent

by the 12.7-mm- (0.5-1n.) and 25.4-mm- (l.O-in.) diameter hemispheres,

respectively, without causing visible damage. The locus of predictions for Pc

- 705 MPa (102 ksi), which represents the lowest strengths with nonvlslble

damage, is also plotted in Fig. 17 as a dash-dot line. About one third of the

open symbols lle below this curve due to the scatter in strengths. Thus, the

curve for Pc - 705 MPa (102 ksi) is in good agreement with the test data on the

average.

The factor of safety for impact damage is given by the ratio of undamaged

strength to damaged strength. Reciprocals of the strength ratios for the test

data in Fig. 17 are plotted against KEef f in Fig. 18. The curve for Pc " 705

MPa (102 ksl) in Fig. 17 is plotted as a solid line. The values of KEef f were

calculated with Eq.s I and 2 using n o - 4.52 GPa (656 ksi) and kf - 219 MN/m

(1250 klps/in.). For the simulated impacts with the rod indenter, KEef f was

assumed to be equal to the area under load-stroke curves. The predicted curve

for Pc - 705 MPa (102 ksi) corresponds to a factor of safety for nonvisible

damage. For this factor of safety, all nonvlsible damage would be acceptable,
but all visible damage would be unacceptable and have to be detected and

repaired. As in Fig. 17, the predicted curve and open symbols are in agreement

on the average due to the scatter in strengths. A design curve should lie above
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all the open symbols. Accordingly, the dashed curve was drawn through the locus

of highest open symbols. The predicted curve was used as a guide. The dashed

curve represents a minimum factor of safety based on the test data.

In Fig. 18, the predicted factor of safety for nonvlsible damage increases

with increasing KEef f. Thus, in design, one would choose the factor of safety

corresponding to the condition with the largest KEef f. The corresponding

impacter diameters for no damage, nonvisible damage, and visible damage can be

determined from Fig. 16. If the smallest possible impacter diameter were in the

no-damage region or the largest possible impacter diameter were in the visible

damage region, nonvlsible damage could not occur and the factor of safety would

be unity. However, most environments are not that restrictive, and the factor

of safety for nonvlslble damage would usually be greater than unity. The factor

of safety for the membrane of the FWC was _1.4, Thus, nonvlsible damage was

acceptable for KEef f _ 123 J (91 ft-lbf). See Fig. 18.

Although the investigation here and in [2-4] was conducted with impacts

from small objects llke tools and equipment in mind, designs should also account

for the structure moving. The results here can be applied if the velocity of

the structure is set equal to v I in Eq 2, and the mass of the stationary

object is assumed to be concentrated at it's centroid. (The velocity v I in Eq

2 can be replaced by the relative velocity between the impacter and target.)

The longest FWC's had a mass of about 4,500 kg (I0,000 ibm) empty and about

140,000 kg (300,000 Ibm) when filled with propellant. Thus, the potential

energy or kinetic energy of one of these FWC's is very large when they are being

moved, 44,000 J (33,000 ft-lbf) for an empty FWC lifted i m (39 in.). The

energy for a filled FWC would be 30 times that for an empty FWC. For kinetic

energy exceeding 2,000 J (1,500 ft-lbf), the predicted minimum factor of safety

in Fig. 18 would exceed two. Thus, the factor of safety for nonvislble damage

can be greater for handling accidents than for dropped tools and equipment.

The analytical methods used here to predict impact damage and residual

strength could be used to perform sensitivity studies and to evaluate material

improvements analytically, for example, variations in no, _u' and KQ. Design

curves, like the dashed curve in Fig. 18, can also be established experimentally

for other composites and other thicknesses. Kinetic energies need only be large

enough to exceed the threshold for visible damage. The range of test parameters

could be established analytically with the methods used here.

CONCI/ISIONS

The relevance of Impacter shape to nonvlsible damage and residual tensile

strength was determined for thick graphite/epoxy rocket motor cases of the Space

Shuttle. The impacter shapes included hemispheres with 12.7- and 25.4-mm (0.5-
and 1.0-in.) diameters, a 6.3-mm- (0.25-in.) diameter bolt-like rod, and a sharp

corner. The cases were represented by rings (short cylinders) that were 30.5-cm

(12-1n.) long and 36-mm (l.4-in.) thick. The rings were cut from a 2.13-m- (7-

foot) long cylinder that was wet-wound on a 76.2-cm- (30-in.) diameter mandrel

using AS4 graphite fibers and an epoxy resin. A 5 kg (II.i Ibm) instrumented
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Impacter was dropped from various heights onto the rings, which were either

empty or filled with inert propellant. After the rings were impacted numerous

times around the circumference, they were cut into 51-mm- (2-in.) wide specimens

that were loaded unlaxlally in tension to failure. The damage was always local

to the impact site and never extended into neighboring impact sites.

For the hemispherical impacters, damage initiated and became visible on the

surface when the peak contact pressure during the impact event exceeded a

critical level. The damage on the surface consisted of a crater shaped like the

indenter and the damage below the surface consisted of brokens fibers that

appeared to be caused by shear failure of the matrix. The damage initiated

below the surface before it became visible on the surface. The pressure level

to cause visible damage was about 1.4 times that to initiate damage. The extent

of nonvlslble damage and the resulting reduction in strength increased with

increasing impacter diameter. For the 12.7-mm- (0.5-1n.) and 25.4-mm- (l.0-1n.)

diameter hemispheres, the reductions in strength were I0 and 30 percent,

respectively. The corner impacter acted like a hemisphere with a very small

diameter and caused visible damage for even the smallest values of kinetic

energy. The rod impacter acted like a punch and sliced through the composite.

Nevertheless, the critical level of pressure to initiate damage was about equal

for the rod and hemispherical impacters.

The depth and width of impact damage was predicted assuming Hertzian

contact and maximum stress criteria. Internal stresses were calculated using

theory of elasticity. The impact damage was represented as a surface crack with

the same depth and length, and residual strengths were predicted using surface

crack analysis. The corner was represented as a hemisphere with diameter of 6.3

mm (0.25 in.). Strengths were not predicted for the rod impacter. Factors of

safety predicted for nonvlslble damage increased with increasing kinetic energy

of impact. The size of damage and residual strengths for the hemispheres and

corner were predicted quite well. Ground handling accidents can involve much

more energy than tool drops, requiring a much larger factor of safety for

nonvlslble damage.

APPENDIX - DERIVATION OF EQUATION FOR MAXIMUM IMPACT FORCE

The mass and velocity of the impacter and ring are denoted by ml, v I and

m2, v2, respectively. Because the mass of the rings is distributed, only a

portion of the mass will act at the contact point. For example, when a simply

supported beam is impacted transversely at the center [ii], the "effective" mass

is approximately 1/2. Based on rebound velocities for Impacters of various

masses, the effective masses of the empty and filled rings were found to be

approximately 1/4 the total mass [3,4].

The following formulation of the impact problem is taken from [12] with the

mass of the ring m 2 replaced by the effective mass m2/4. The mass of the

impacter is assumed to be fully effective, that is, concentrated at the end.

During contact, Newton's law gives
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Denoting the relative displacement between the impacter and ring by u, the

relative velocity can be written,

du . Vl + v2 (14)dt

Differentiating Eq 14 with respect to time and substituting Eqs 13 into the

result,

d2u F
u -

dt 2 M
(15)

where

i
M - (16)

i 4

m I m 2

If the duration of the impact is long compared to natural periods of

vibration, the relative displacement u in Eqs 14 and 15 can be written

u - uf + ui (17)

where uf is the global deflection of the ring due to flexure and u i is the

local indentation for Hertzian contact. The steel impacter is assumed to be

rigid compared to the composite ring. The flexural component is represented by

a linear spring,

Y-- (18)
uf - kf

where kf is a spring constant.

For a spherical, isotropic body in contact with a seml-lnflnlte body that

is homogeneous and transversely isotropic, the local indentation from [12] is

([_)2/3
u i - R_ I/3 no

(19)

where R I is the radius of the sphere. The term n o is defined as

4 (20)
no - 3_ (k I + k2)

where
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and vI and E1 are the elastic constants of the isotropic sphere and Vr,

Vrz , Er, Ez, and Gzr are the elastic constants of the transversly isotroplc

semi-lnflnlte body. Equation 19 is accurate only when u i < R I.

Substituting Eqs 18 and 19 into 17 and differentiating with respect to

time, the relative velocity is

du 1 d.._EF 2 1/3 2/3 F" 1/3 dF
dt - kf dt + _ RI nO --dt

(21)

m-I
Multiplying Eq 15 by Eq 21 and using the identity d(xm)/dt - m x

!l _l [di__]
2M dt dt

2 n-2/3 _ _L d(F 2)
o Ri I/3 t 2kf d

dx/dt,

(22)

Integrating Eq 22 with initial conditions du/dt - v I and

conditions du/dt - 0 and F - Fma x yields

F - 0 and final

._l__ F2 + 5_ Rll/3 no2/3 F5/3
2 kf max max

KEef f - 0

where
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Calculations with Eq 20 give n o - 4.69 GPa (680 ksl) for the

approximately transversely isotroplc ring and steel Impacter [I0]. Values of

n o were also determined experimentally by directly measuring contact radii and

displacements. From the measurements of contact radii, the average value of n o

was 3.98 GPa (577 ksl) [3-5]; and, from the displacement measurements, the

average value of n o was 4.52 GPa (656 ksl) [I0]. These values of n o agree

quite well. The value n o - 4.52 GPa (656 ksl) was used in all subsequent

calculations.

Values of the spring constant kf were 5.08 MN/m (29.0 klps/in.) and

6.34 MN/m (36.2 klps/in.) for an empty ring and a filled ring, respectively [4].

They were determined from quasl-statlc load-dlsplacement curves. The value of

kf for the filled ring is only 25 percent greater than that for the empty ring.

Thus, the inert propellant, which has a Young's modulus of 1.2 to 34 MPa (0.18

to 5.0 ksl) depending on loading rate, did not contribute substantially to the

static compliance of the ring.
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TABLEl--Properties of fiber and matrix or winding resin.

Tensile modulus, GPa (Msl)

Poisson's ratio

Tensile strength, GPa (ksi)

Elongation at failure

Densltv. kg/m 3 (Ibm/in, 3)

Helical Broadgoods

fiber fiber

228 (33) 228 (33)

..o .o._

3.96 (574) .75 (544)
0.0167 ...

1790 _0,0_48) 1780 (0,0_42)

Matrix

2.85 (0.414)

.35
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TABLE 2--Physical properties of composite ring.

Property,

Composite density, kg/m 3 (Ibm/in. 3)
Resin mass fraction

Resin volume fraction

Fiber volume fraction

Void Content

Value

1490 (0.0540)
0.346

0.385

0.545

o,o7o_
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TABLE 3--Lamina constants.

Unidirectional

broadgoods

Helical

layers

in (16.2)

1.92 (0.278)

4.28 (0.621)

0.267

0.427 (16.8)

Ell, GPa (Msl)

E22, GPa (Msl)

GI2, GPa (Hsi)

u12

Layer thickness,

pm (in.)

1.06 (15.4)

6.39 (0.927)

4.47 (0.649)

0.275

a0.427 (16.8)

Cut

helical

_yer_
111 (16.2)

1.92 (0.278)

4.28 (0.62l)

0.267

0.711 (28.0)

Cloth

59.3 (8.60)

59.3 (8.60)

3.68 (0.533)

0.0348

0.427 (16.8)

aEqual to three plies of broadgoods.
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TABLE 4--T_a_alnate constants.

_ F[operty Value

Ex, GPa (Msi) 30.6 (4.44)

Ey, GPa (Msi) 39.0 (5.66)

G GPa (Msi) 19.7 (2.86)
xy'

u 0.351
xy

v 0.447
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