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THREE-DIMENSIONAL ELASTIC-PLASTIC ANALYSIS OF SHALLOW CRACKS IN
SINGLE-EDGE-CRACK-TENSION SPECIMENS

SUMMARY

Three-dimensional, elastic-plastic, finite-element results

are presented for single-edge-crack-tension specimens with

several shallow crack-length-to-width ratios (0.05 _ a/W _ 0.5).

Results showed the need to model the initial yield plateau in the

stress-strain behavior to accurately model deformation of the A36

steel specimens. The crack-tip-opening-displacement was found to

be linearly proportional to the crack-mouth-opening displacement.

A new deformation dependent ,p (plastic-eta factor) equation is

presented for calculating the J-integral from test load-

displacement records. This equation was shown to be accurate for

all crack lengths considered.



I. INTRODUCTION

Damage tolerant design of welded joints in nuclear reactors

and launch vehicles requires a nonlinear fracture mechanics

parameter like J because the materials used are highly ductile.

Cracks in these structural components are typically shallow. The

J-integral data for shallow cracks and simplified calculation

methods are limited or not available. However, a wealth of

experimental data and accurate simplified techniques are reported

in the literature for deep cracks [i - 6] in ductile materials.

The difficulty in developing simplified J-integral techniques

for shallow cracks is due to the interaction of tension and

bending deformations in addition to the material nonlinearity.

Recognizing the importance of developing shallow-crack test

methodology, The International Research Project to Develop Shallow Crack

Fracture Mechanics Tests was initiated jointly by The Welding

Institute (UK) and The Edison Welding Institute (USA).

Government laboratories and industries in the United States and

Europe participated in this program. As a part of this study,

NASA Langley Research Center conducted three-dimensional (3D),

elastic-plastic, finite-element (FE) analyses of single-edge-

crack-tension, SE(T) I, specimens.

The objectives of this paper are: (i) to present results of

three-dimensional, elastic-plastic, finite-element analyses of

SE(T) specimens for crack-length-to-width (a/W) ratios ranging

IASTM notation for single-edge-crack-tension specimen.
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from 0.05 to 0.5; and (2) to develop a simplified method to

evaluate the J-integral for shallow cracks using the measured

load and load-line displacement. The load-line displacements,

crack-mouth-opening displacements (CMOD), and crack-tip-opening

displacements (CTOD) are evaluated and are compared with each

other. The equivalent domain integral method [7-9] is used to

evaluate the J-integral along the crack front. A dimensional

analysis, similar to that used by Rice et.al.[l], Paris et.

al.[2], and Ernst[5], is used to develop a deformation dependent

plastic-eta (,p) factor. This _p factor can be used to

evaluate J from the measured load, load-line displacement, and

material properties.

2. SPECIMEN AND MATERIAL PROPERTIES

Figure l(a) shows the SE(T) specimen configuration and

loading P. The specimen width is W (25 mm), thickness is B (25

mm), and the crack length is a. The specimen total length is

450 mm and the length between the load points is 350 mm. The

load-line displacement is computed at gage points located under

the load (mid-width) and i00 mm (L) apart (see Fig. l(a)).

Symmetry of the specimen configuration and loading allows one to

model only one-quarter of the specimen in the F-E analysis. Six

crack configurations were considered: a/w = 0.5, 0.4, 0.3, 0.2,

0.i, and 0.05. The material used was an A36 steel with E = 207

kN/mm z, Poisson's ratio v = 0.3, yield stress ay = 283.4 N/mm 2,

and ultimate tensile strength au = 470 N/mm 2. This material was
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used in the international test program mentioned previously.

Like many other steels, this material also exhibited an initial

yield plateau at a7 = 283.4 N/mm 2 (see Fig. l(b)). The complete

uniaxial stress-strain response was represented by a piecewise

linear approximation as shown by the straight line segments in

the figure. Figure l(b) also defines a secant modulus E,

corresponding to a nominal tensile strain of _..

3. FINITE-ELEMENTANALYSIS

A three-dimensional, elastic-plastic, finite-element

program, developed in-house at NASA Langley Research Center [i0],

was used in this study. The program was developed using 8-noded

hexahedron elements, yon Mises yield criterion, isotropic

hardening, small strain deformation theory, and associated flow

rule. The numerical algorithm was based on the initial-stress

method and incremental theory of plasticity. The material

stress-strain characteristics can be elastic-perfectly plastic,

Ramberg-Osgood, or multilinear type. The program has special

features like modelling crack extension and an option to use

reduced shear-integration for bending dominant problems. The

program includes the J-integral evaluation by the equivalent

domain integral method [7-9].

The 3D finite-element meshes were generated by translating

the two-dimensional (2D) mesh (for example, shown in Fig. 2) in

the z-direction. The present study involved analyses of several

crack configurations with the other geometric parameters
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remaining constant; hence, a simplified mesh generation scheme

was adopted. In this scheme, a fine polar mesh around the crack

front was developed separately (Region A). An array of

rectangular and triangular elements was used to idealize the

specimen elsewhere. Figure 2 shows a typical 2D idealization

of the specimen for a/w = 0.3. Region A represents the mesh

refinement around the crack front. For a/W > 0.i, the mesh

pattern was obtained by changing the location of region A within

region B. For a/W = 0.05, the element sizes in region A were

reduced to one-half of that used for the other cases and the

remaining region was proportionately scaled to make up the total

width. In all models, the crack tip had multiple nodes. The

element nodes at the crack tip all had the same coordinates but

with different node numbers. The twelve elements around the

crack tip lead to thirteen different nodes at the crack tip and

only the node for the right most element was restrained from

deforming. Such an arrangement would give the local CTOD by

blunting the crack tip during plastic deformation [II].

The 3D mesh had five layers, with layer thicknesses of 6, 3,

2, I, and 0.5 mm. The smallest layer was located at the free

surface of the specimen. The model had 1680 nodes and 1220

elements. The elastic-plastic analysis was performed by

incrementing the displacements applied at the load points shown

in the Fig. l(a). The displacement increment selected was twenty

percent of the initial yield displacement. The analysis was

terminated when the CMOD > 1 mm, CTOD > 0.5 mm, or the program
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exceeded the specified time limit (25,000 CRUs in CDC 205

computer). In calculating the J-integral, several domains

around the crack front were used but they were found to give the

nearly the same values. Hence, J-values from only the domain

shown in Figure 2 at six nodal locations along the crack front

are presented.

4. EQUIVALENT DOMAIN INTEGRAL METHOD

The total J-integral at any point along the crack front in a

3D cracked body is defined as an integral over a closed surface

around the crack front (The tube represented by the broken line

in Fig. 3) as [12]

Lim

J = r/A --_0
--_0

1

Ar+ O1+ 02

au i

_ij a-_l nj ] dA

(1)

where w is the stress work density, defined as

W = I aij d_ij (2)

0

In Eq. i, alj and _ij are stress and strain tensors on the

surface of the tube, u, is the displacement vector, nj is the

jth component_of the unit nOrMal vector on the surface, A is

the projected length of the crack front along the x 3 axis, and
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r is the radius of the tube over which the integral is

evaluated. The indices i and j take the values I, 2, and 3.

Recently, the surface integral Eq. 1 was modified to a volume

integral, called the equivalent domain integral [7-9], for ease

of implementation in a finite-element analysis and accurate

evaluation of the integral. This was accomplished by the

application of Green's divergence theorem and de Lorenzi's [13]

s-function. For traction-free crack faces, Eq. 1 is written as a

volume integral between the inner tube A, (broken line) and any

other closed tube (solid line) enclosing A r (see Fig. 3).

i aulas]w a-_1 _ij ax-_a_--jdv

÷I[ow ]o vl
8x I aij 8x I (3)

where s is any arbitrary but continuous function with a

characteristic value of one on the inner tube and zero on all

outer surfaces, and f is the integrated value of s along the

x3-axis. In the FE analysis, the volume integral was performed

on one-ring of elements surrounding the crack front (see shaded

area in Region A in Fig. 2) and one (for outer surfaces) or two

(for interior region) layers of elements along the crack front.

Equation 3 can be used for isotropic or anisotropic as well as

linear or nonlinear materials. In the present incremental
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elastic-plastic analysis, the stress work density, strains, and

stresses were evaluated at each load step. Then, the J-integral

was evaluated at specified load steps from the accumulated stress

work density, total strain, stress, and displacement fields.

5. RESULTS AND DISCUSSIONS

Three-dimensional, elastic-plastic, finite-element analyses

of SE(T) specimens for a/W ratios of 0.5, 0.4, 0.3, 0.2, 0.I,

and 0.05 were performed. At each applied displacement, the load

P, load-line displacement dn, crack-mouth-opening displacement

(CMOD), crack-tip-opening displacement (CTOD), and the J-integral

were evaluated. The CTOD was calculated by Tracey's 90 deg

intercept method [Ii].

Figure 4 shows the normalized load (P/WB) against the load-

line displacement (dn) for all six a/w ratios. Although the

maximum dll for a/W ratios of 0.2, 0.i, and 0.05 were larger

than 1.0 mm, curves are terminated at 1.0 mm for clarity. Load

and load-line displacement curves for a/W _ 0.2 show a sharp _

knee, whereas, the curves for a/W > 0.3 are smooth and similar

in shape. The sharp knee in the load against load-line

dispi_ement curve is attributed to the initial yield plateau in

the material stress-strain curve (see Fig.l(b)). The specimens

for a/W _ 0.2 have a dominant tension stress component compared

to the bending stress component, unlike the cases of a/W _ 0.3.

Therefore, to predict the true response of shallow cracked

tension specimens, modelling of the initial yield plateau of
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stress-strain curve is important.

Figure 5 shows the plastic components of CTOD (CTODp)

against CMOD (CMODp) at the midsection (z=0) of the specimen for

a/W ratios of 0.5, 0.3, and 0.i. Results for other a/W ratios

are a subset of those shown in the figure. After a small initial

deformation (CMODp _ 0.I mm), the CTODp varied linearly with

CMODp. The same linearity was found between the total CTOD and

CMOD (results are not shown), but with a slope smaller than that

for plastic components.

Figure 6 shows the distribution of normalized J (EDI

method) along the crack front for the three a/W ratios. J for

each case is normalized by the J-value at the midsection (z =

0). Solid curves represent the elastic solution and the dashed

curves represent the elastic-plastic solution at their respective

plane stress limit load (plastic hinge condition). The limit

load was P11 = (2e -l)bBoo, where b is the uncracked ligament

length (W - a), oo = (Oy + ou)/2, and the term _b represents

the distance of neutral axis (NA) from the crack tip (see Fig.

7). The equation for _ is

= 1/2 [ 1 - a/b + J(l + (a/b) 2) ] (4)

The limit loads for a/W ratios of 0.5, 0.3, and 0.I were 48.76

kN, 108.67 kN, and 189.65 kN, respectively, and the corresponding

midsection J-values were 12.0 N/mm, 16.27 N/mm, and 90.73 N/mm.

The elastic solution for all three curves show that J drops
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near the free surface (z = B/2) due to the free-surface boundary-

layer effect caused by the material Poisson's ratio [14, 15].

The relative drop off is more for deep crack (like a/W = 0.5)

than for shallow crack (like a/W = 0.i) specimens. This is

attributed to the larger antiolastic bending curvature in deep

crack specimens compared to the shallow crack, as explained by

Crews et al. [16]. For a/W = 0.I, the maximum J is not at the

mld-section but at z/B = 0.44 for the elastic case and z/B =

0.33 for the elastic-plastic case. The variation of J along

the crack front at the limit load condition is the same as that

for the elastic case, except that the variation near the free

surface is more pronounced.

Figure 8 shows the average J along the crack front plotted

against the load-line displacement for several a/W ratios.

Solid curves are from the EDI method and the dashed curves are

from the J equation developed in the next section. J - d n

curves for a/W ratios of 0.5 and 0.3 show a steep slope and

fall nearly together. However, for a/W < 0.3 the J curves

show a change in the curvature from concave to convex (through an

inflection point). The characteristic change in the shape of the

J - dn curve is believed to be related to initial yield

plateau, subsequent hardening in the material stress-strain

curve, and global tensile yielding (influences dn) of the

specimen. The °J value, however, calculated by the EDI method

is a local crack-tip parameter and is not affected by the global

yielding.
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6. DEFORMATION DEPENDENT PLASTIC ETA-FACTOR (_p)

As explained in references 1-6, eta-factors greatly simplify

the evaluation of G for linear-elastic materials and J for

elastic-plastic materials in both test specimens and structural

components. The simplicity is because only the measured load and

the load-line displacement are used to compute G or J. For

linear-elastic materials, the eta-factor can be shown to be

dependent only on the specimen configuration (for example, see

Ref. 6). This eta-factor is similar to the compliance derivative

term in the usual G equation, hence it is only a configuration

parameter. In general, for elastic-plastic materials, the eta-

factor depends on the magnitude of deformation in addition to

configuration. However, for deeply cracked (bending dominant)

specimens, made of either power-law hardening nonlinear material

[i] or elastic-plastic material the eta-factor was shown to be

independent of deformation [1-5]. The present analysis was

focused on developing a deformation dependent elastic-plastic

eta-factor (,p) for SE(T) specimens which is valid for a complete

range of a/W ratios (shallow to deep). Dimensional analysis,

like that in references i, 2, and 5, was used to develop an

equation for the _p.

Following the energy method, the total J can be defined as

the sum of the elastic (J.) and the plastic (Jp) components. J.

is calculated from the stress-intensity-factor (K) for a given

a/W ratio [17] using the standard linear elastic fracture

mechanics relationship (J. = Kz (I-_)/E). The plastic component
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Jp is defined as a differential of the plastic potential energy

(Wp) with reference to the uncracked ligament, b (Jp = I/B

(aw_ab)). Under constant displacement conditions, Jp is

written in terms of the load P and the plastic component of the

load-line displacement dllp as

dllp

1 _ ,_P dJp = _ 8 (b/W) (dllp) (5)

0

The load P is a function of the load-line displacement, material

properties, crack length, and other configuration parameters of

the specimen. Paris et al. [2] and Ernst [5] showed that for

deeply cracked specimens, P can be expressed as a product of

two functions where one is independent of deformation and the

other independent of crack length. Thus, a plastic eta-factor

(q'p) can be defined which is constant for all deformations.

Using these assumptions, Eq. 5 can be reduced to

dllp

Jp _ I P d( (6)= bB dllp)

0

Therefore, Jp and hence, J, can be calculated from the measured

load and load-line displacements. If the assumption leading to

Eq. 6 is valid, then the load and load-line displacement (total

12



or plastic component) curves for different a/W ratios would be

in constant ratio to each other. The curves in figure 4 for a/W

P

ratio of 0.4 and 0.5 in figure 4 show such a trend. Hence, _ p

can be found. However, the curves for a/W < 0.3 do not show

such a trend and the curv@ for a/W = 0.3 falls in a transition

region. Therefore, a new plastic eta-factor needs to be defined

which would be=valid for b0t _ deep and shallow cracks. Consider

the load P as a product of two functions. One depends on crack

length and deformation; the second is independent of crack length

but depends on other configuration parameters and deformation.

Therefore,

P = F(b/W, d1_L ) H(dI_L , B/W, . . .) (7)

Then, one can show that

a (b/w)" = P F- 8 (b/W) (8)

Substituting Eq. (8) in Eq. (5), Jp is written in terms of a

deformation dependent plastic eta-factor (%) as

dllp

Jp = _B _ P d(dllp ) (9)

0
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Where

b aF

"p = W'-_ 10 (b'/W)) (i0)

This qp is a function of dl_L (ratio of load-line

displacement to gage length L) and b/W. For shallow crack SE(T)

specimens, the tension component of load-line displacement (dnt)

is more dominant than the bending component. Furthermore, for

bending dominant deep crack specimens, ,p should become

deformation independent [2-5]. Therefore, only dnt (which is

small or zero for deep cracks) is believed to introduce the

deformation dependency to qp factor. Therefore _p in Eq. I0

can be expressed as a function of tension component of the load-

line displacement (dlzJL) and an uncracked ligament length (b/W)

dependent parameter _p= as

_p = 'lpr f(diIJL) (ii)

For bending case f(d1_L ) becomes unity and qp _ _pr-

Assuming that the average tensile strain _. = d1_dL is

proportional to the strain at the midsection of the uncracked

ligament (b), dndL may be expressed in terms of the load-line

displacement d_L (average strain at the load-line section)

derived using similar triangles as shown in the Figure 7.

the similar triangle relationship is not exact, a geometry

dependent term b/W, with an unknown exponent m, is also

Since
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introduced. Therefore,

d_iJL = c. = _ (dl_L) (b/W)"

where

(12)

b/W - 1)
= (i - 2(1 - a) b/W) (13)

The exponent m will be evaluated later. The value of B

varies between 0 for b/W = 0 (pure bending) and 1 for b/W =

1 (pure tension). Equation 12 gives the average tensile strain

(,.) between the gage points in the specimen. This strain

component can be related to the material stress-strain curve

through the secant modulus (E.) as shown in the Figure l(b).

Therefore, _p in Eq. ii is expressed in terms of the normalized

secant modulus (E./E), to account for the tensile component of

the displacement by replacing f(dnJL ) as follows

,p = ,pr (E./E)" (14)

The exponent n will be evaluated later. As mentioned

previously, the secant modulus is obtained from the ,. given by

Eq. 12. The unknowns to be evaluated for computing ,p are m,

n, and _pr" Note that m and n in Eqs. 12 and 14 are constants

and they should be independent of crack length. In a nonlinear

problem, like the present example, unless correct kinematic forms

are selected for Eqs. 12 and 14 there is no guarantee that unique
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values of

geometries.

using the values of J and Jp

method. Substituting for Jp

from

m and n can be found which are valid for all crack

The constants m, n, and _pr were evaluated by

(Jp = (J - J.)_DI) from the EDI

in Eq. 9, _p can be calculated

(J - Je)EDI b B
= (15)i/p

I P d (dll p )

Theden0minator represents the total plastic energy calculated

from the area under the load P versus plastic load-line

displacement curve. _p was calculated for each crack length and

at every increment of applied displacement. Then at each of the

,p. @p_ was calculated from Eq. 14 using the average tensile

strain ,. (Eq. 12), material stress-strain data (Fig. l(b)) to

define E./E, and by using different trial values for m and n.

Variations of ,pr with dn were examined for each pair of m

and n for all a/W ratios. The values of m and n which gave

nearly constant "pr (within ± 5% variation) for each a/W and

at all d_1 (larger than twice the initial elastic displacement)

were selected. In this numerical parametric study, the selection

of m and n was simplified because it was found that m

influenced the transition of deformation from tension to bending

and n influenced the shape of the J curve at small a/W

ratios. Value of m = 2 and n = 1/2 was found to fit results

16



for all crack lengths.

17

Therefore, Eqs. 12 and 14 are written as

dn_/L = e, = _ (d1_L) (b/W) 2 (16)

and

"p ----"pr J (E,/E) (17)

Values of %r for different a/W ratios are given in Table 1

and are shown as the symbols in the Figure 9. Note that b/W = 0

represent the limiting condition of a pure bending problem, for

w

which _ = 0, d_iJL = 0, and _p = _pr = _ p = 2 [i]. The pure

bending solution is shown by a solid symbol in the Figure 9.

Table I. _pr for various a/W ratios.

0.4 0.3 0.2 0.i 0.05

2.0 1.85 1.55 0.66 0.25

The solid line in Figure 9 is a best fit to the

Table 1 and the limiting value of 2 at a/W = i.

for this best fit line is

_pr values in

The equation

"pr _- 2. 52 -- 0° 52 (a/W) -2.90 (b/W) 5 (18)

This equation approaches the Clarke and Landes [3] equation for

deeply cracked compact specimens (see Fig. 9).
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The J-values calculated from the _p-factor method

(referred to as J,q in Fig. 7) are compared with the J-values

from the EDI method in the Figure 7 for various a/W ratios.

The two results agree well with each other for all four a/W

ratios. Note that the results from J.q were nearly identical

to JzDI for a/W = 0.5. Results for an a/W = 0.3 showed the

largest difference between JzD1 and JEq, which was about ten

percent.

7. CONCLUDING REMARKS

Three dimensional, elastic-plastic, finite-element analyses

of single-edge-crack tension, SE(T), specimens for a wide range

of crack-length-to-width (0.05 _ a/W _ 0.5) ratios were

performed. The material was A36 steel and the stress-strain

curve was represented by a piecewise linear approximation. The

J-integral along the crack front was evaluated using the

equivalent domain integral method. The analysis used small

strain theory, the von Mimes yield criterion, and the associated

flow theory. The following conclusions were made from this

study:

I. The material stress-strain curve (for example, the initial

yield plateau) needs to be accurately modelled for shallow

cracks (a/W _ 0.3) to predict all characteristics (for

example, the sharp knee) of the load against load-line

displacement curves.

2. At large plastic deformations, both the total and the

18



•

plastic components of crack-tip-opening displacements are

linearly proportional to the respective crack-mouth-opening

displacements.

A deformation dependent plastic eta-factor (.p) was

developed for SE(T) specimens. _p is valid for the

complete range of crack-length-to-width ratios considered.

.p is a function of crack length and the secant modulus of

the material corresponding to the tension component of the

load-line displacement. J-values from the _p method

agreed well with those from the EDI method. The deformation

dependent _p is developed for A36 steel and further

research was needed to generalize to all other materials.
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