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Abstract

Self-processing network models (neural/ connectionist models, marker-passing/message-passing
networks, etc.) are currently undergoing intense investigation for a variety of information pro-
cessing applications. These models are potentially very powerful in that they support a large
amount of explicit parallel processing, and they cleanly integrate "high-level” and "low-level”
information processing. However they are currently limited by a lack of understanding of how
to apply them effectively in many application areas. This project is studying the formulation
of self-processing network methods for dynamic, reactive planning. The long-term goal is to
formulate robust, computationally-effective information processing methods for the distributed
control of semiautonomous exploration systems, e.g., the Mars Rover. Our current research ef-
fort is focusing on hierarchical plan generation, execution and revision through local operations
in an "extended blocks world” environment. This scenario involves many challenging features
that would be encountered in a real planning and control environment: multiple simultaneous
goals, parallel as well as sequential action execution, action sequencing determined not only by
goals and their interactions but also by limited resources (e.g., three tasks, two acting agents),
need to interpret unanticipated events and react appropriately through replanning, etc.

Acknowledgements: Supported in part by NASA award NAG1-885 and in part by NSF
award IRI-8451430.






1.0 INTRODUCTION

The purpose of this research is to investigate the use of parallel processing models for
plan generation, execution, monitoring, and replanning in the context of semiautonomous sys-
tems. In particular, the class of parallel processing models being studied here are self-
processing network models incorporating ~message passing, marker passing,
connectionist/neural modelling methods, etc. [Reggia and Sutton, 1988]. Information process-
ing in these models occurs through numerous local and concurrent processes. Self-
processing network models offer several potential advantages (highly parallel processing,
adaptability, fault tolerance, clean integration of symbol-processing Al methods with numeric
connectionist methods, etc.) if a way can be found to use them effectively.

The AutoPlan system (for "Autonomous Planner") described within is a complete plan-
ning system (includes plan generation, execution, monitoring, and replanning) in which the
behavior of the system is based solely on local operations. Plan generation is viewed as a
growth process in which a goal-specific plan is generated from an underlying static*, goal-
independent network. This growth process involves only local operations, mainly controlled
through message passing but also by numeric spreading activation. As the dynamic goal-
specific plan emerges from the underlying static network, local operations representing plan
execution begin. These operations also involve both symbol-processing and numeric calcula-
tions; they commence even as plan generation continues and influence the plan generation
process itself. As a result, plan generation and execution become almost inseparable
processes.

The term semiautonomous as used above refers to a complex software-controlled sys-
tem that is normally under human direction but which autoncmously plans and carries out rou-
tine functions unless directed to do otherwise. Such a system should be able to function
autonomously if necessary. Examples of semiautonomous systems include not only remotely
controlled vehicles but other man-made systems such as nuclear power plants and factory
automation systems. Our own work is particularly motivated by the Mars Rover, but it should
be appreciated that the methods developed will be applicable to semiautonomous systems in
general.

The division of responsibility between the plan generation and execution components of
a planning system is determined by the predictability of the planning situation and hence the
degree of reactivity needed by the system [Cheeseman, 1988]. In traditional planning sys-
tems the plan generation component generates an optimal and correct plan while the execu-
tion system simply implements the plan. These systems generally assume that the state of
the world does not change during plan generation and execution; the predictability of the
world is high and the reactivity needed in the system is low. In contrast, semiautonomous
systems operate in a dynamically changing environment. Unexpected events can occur at
any time and physical equipment failures are not uncommon. A planning system for a
semiautonomous system must be able to react quickly to these types of environmental and
internal changes. Since it is nearly impossible to plan ahead under these circumstances, the
role of the plan generation system shrinks while the plan execution and monitoring systems
take on more responsibility. The execution system must share in decisions such as what
action to execute next and how to allocate limited resources. This is why the AutoPlan sys-
tem uses an integrated plan generation and execution system, hereafter referred to as "the
planner”, in which the execution system has substantial responsibility for triggering and guid-
ing planning and replanning.

*The underlying "static” network only changes when resources change or a fault or anomaly occurs, e.g., loss of a robot
arm. In this case the relevant network components are added/deleted to/from the static network and subsequent plan generation
and execution automatically adjusts to these changes.



Since plan failures are likely to occur in a dynamically changing environment, AutoPlan
includes a plan monitor which takes appropriate actions in the context of unanticipated events.
The plan monitor in the AutoPlan system uses strictly local operations to diagnose the cause
of unexpected differences between the ideal and real world if possible, and then communi-
cates this information to the planner so that it can react and replan accordingly.

This work investigates the use of competitive activation methods [Reggia, 1989] in
resolving conflicts over limited resources. For example, only two robot arms may be available
to do various tasks in a blocks world situation yet more than two tasks may require use of a
robot arm. Each arm can only be allocated to one task at a time. Using competitive activa-
tion methods each task actively competes with the other tasks for the use of an arm. Previ-
ous work [Bourret, et al., 1989; Bourret, et al., 1990; Whitfield, et al., 1989; Goodall and Reg-
gia, 1990] has shown competitive activation mechanisms to be an effective technique for
resolving contention over limited resources.

This research work focuses on conjunctive planning and supports a distinction between
goal achievement and goal maintenance. In conjunctive planning all goals must be accom-
plished although order is not always important. AutoPlan can be used in either situation,
whether order is or is not important. The current work can also be expanded to encompass
disjunctive planning. Goal maintenance means to "protect" a goal until its purpose is fulfilled
(e.g., keeping a hand open until it has grasped a block). Goal achievement means that once
a goal is achieved it is no longer important that the goal maintain a certain state (e.g., once a
camera has taken a picture it has achieved its desired purpose).

The ultimate goal of this research is to implement and demonstrate a robust planning
system for a planetary exploration vehicle (Mars Rover). Before this ambitious task is under-
taken the ideas presented here are being tested in a simpler, dynamically changing blocks
world environment we refer to as the "extended blocks world". This extended blocks world
involves the two-dimensional surface of a table and the three-dimensional space above it. A
limited number of robot arms are expected to concurrently (where possible) achieve multiple
goals. Planning or plan execution may be interrupted at any time. The extended blocks
world is motivated in part by the science experiments of the Mars Rover: individual goals
(e.g., stack(idc, (b1 b2)) correspond to aspects of science experiments (e.g., "collect rock x"),
a limited number of arms corresponds to constrained resources, etc. In addition to providing
an initial critical evaluation of the concepts studied here, this work is investigating the ability of
the Maryland MIRRORS/II connectionist simulator, hereafter referred to as MIRRORS/II, to
model the described planning system and environment [D’Autrechy, et al.,, 1988]. Enhance-
ments needed to MIRRORS/I! to allow the development of AutoPlan and similar systems have
been identified.

This report documents our progress in exploring the applicability of parallel processing
models to plan generation, execution, monitoring, and replanning in the context of the dynami-
cally changing extended blocks world environment. Section 2 discusses related and prere-
quisite work we and others have done. Section 3 provides a top-level system design. Sec-
tions 4, 5, and 6 describe each component of the system in more detail. Section 7 discusses
the implementation of the system using the MIRRORS/II connectionist simulator and neces-
sary enhancements to MIRRORS/II. Finally, Section 8 is a discussion and summary of the
work described within, Extensive design details of the plan generation and execution portion
of the system can be found in Appendix A while details of the plan monitor and diagnosis
component can be found in Appendix B.



2.0 BACKGROUND AND RELATED WORK

Some related work has been done in the area of using parallel processing models to do
planning, resource allocation, and scheduling. However, the work that has been done in
applying self-processing network techniques to planning seems to be the most limited. While
semiautonomous systems operate in a dynamically changing environment, most of the models
described below assume that the state of the world remains static during plan generation and
execution and that plan generation and execution are totally separate processes. Also, the
AutoPlan system described in this report combines components of planning — plan genera-
tion, execution, monitoring, and replanning, into a cohesive integrated system. Unlike more
traditional planning systems which use assertions to model the state of the world, AutoPlan
represents each physical entity of the extended blocks world (i.e., arms, grid locations, and
blocks) and its state as part of the self-processing network used for planning. Hence, the
state of the ideal world contributes to the planning process.

The AutoPlan system is closest to and most influenced by Sliwa’s "behavioral networks."
Building on her earlier work in telerobotics [Sliwa and Soloway, 1987], Sliwa has proposed
behavioral networks as a methodology for integrating features of low-level robotic behavior
such as activation and sensing with other more intelligent activities such as planning, schedul-
ing, and learning [Sliwa, 1989]. Such a system must be able to operate in a dynamically
changing environment and handle resource allocation conflicts. Behavioral network models
are a hybrid of classical control techniques, artificial intelligence planning methods, and con-
nectionist approaches. A behavioral network itself can be thought of as an acyclic directed
graph whose nodes represent specific functions, or behaviors, of an intelligent system, with
two-way links which propagate information including functional parameters and weights.
Behaviors at higher levels in this hierarchy decompose into descendent behaviors at lower
levels in the hierarchy. A prototype behavioral network is currently being developed and
tested. AutoPlan is similar in spirit but differs in detail from behavioral networks. AutoPlan
also models an ideal environment (blocks, arms, etc.) as active network components that con-
tribute to the plan generation process.

A model of generating navigational plans for a ship in a two-dimensional space has been
proposed by Miyata [Miyata, 1988]. His planner assumes that the environment remains static
during plan generation. A network with seven layers of nodes is used: one layer represents
the desired state of the environment (the input layer), another represents the action plan, yet
another represents the predicted state of the environment, two more layers are layers of hid-
den units, one is between the desired environment and action plan layers and one of which is
between the action plan and predicted environment layers, and the remaining two layers are
context layers, each of which is connected to both hidden layers. A two-phase supervised
learning algorithm is used to train the network. First the network uses an error backpropaga-
tion technique to learn to associate certain actions with certain predicted environmental states,
and then the network uses the same technique to learn to associate certain desired environ-
mental states with certain actions. Once learning is complete a goal, represented as a pat-
tern of activity on the input environment units, is presented to the system. The system then
goes through an iterative plan generation and refinement sequence until the plan generated is
able to achieve the goal. The plan is represented by rows of two units, one row for each time
step. The activation value of units on the right represent the amount the ship should
accelerate to the right during that time step. Similarly, the units on the left represent the
amount of acceleration to the left for a specific time step.

Whitehead and Ballard have proposed a method for executing stored plans [Whitehead
and Ballard, 1988]. A stored plan is one which may be applied to many situations and there-
fore can be instantiated with different situation-specific parameters. A plan is viewed as a
hierarchy of actions which can be represented by an acyclic graph. Nodes higher up in the



hierarchy represent abstract actions composed of the more detailed actions at lower levels of
the hierarchy. A sequential network with an architecture like that proposed by Jordan [Jordan,
1986] is used to do plan execution. The network learns to associate one step in the execu-
tion of the plan with the next step in the execution sequence.

A model for doing plan execution has recently been developed which uses a localized
parallel processing technique [D'Autrechy and Reggia, 1989a). The system starts with an
existing "Spaceworld” plan, a plan for a simplified modal of the Voyager spacecraft which
photographed Jupiter, Saturn, and their satellites [Vere, 1988]. It then uses a marker-passing
paradigm to execute the plan. The system simulates a parallel execution environment; this
allows independent nodes in the plan to be executed concurrently while other nodes which
are dependent on each others’ execution completion can be executed sequentially. Both
non-hierarchical and hierarchical plans have been executed successfully. Based on the suc-
cess of this earlier system, the AutoPlan system uses marker-passing to distribute symbolic
information during the integrated plan generation and plan execution process.

Hendler has developed a hybrid planning system called SCRAPS which uses a combina-
tion of traditional Al methods and marker passing [Hendler, 1988]. He augments a planner by
adding a parallel marker-passing component which identifies relevant paths in an associative
network. These paths are then inspected for certain types of information which, if present,
cause the planner to modify its current plan. SCRAPS differs from AutoPlan in that is uses a
self-processing network as an adjunct to traditional Al planning methods rather than as the
central planning mechanism. Hendler, a leading advocate of hybrid Al and connectionist sys-
tems, has subsequently investigated other approaches that are complementary to the
approach taken in AutoPlan [Hendler, 1989].

Maes has implemented a model of action selection (plan execution) for autonomous sys-
tems [Maes, 1989]. Her system starts with a pre-wired non-hierarchical network of primitive
competence modules (nodes). It does not do any plan generation. Modules have excitatory
connections to other modules which help satisfy their preconditions and modules which are
successors to themselves. Modules also have inhibitory connections to other modules with
which they are in conflict. Strictly numeric spreading activation is used to do action selection.
Modules receive input from the goals to be achieved, the current state of the environment,
and other modules. The system has a number of global parameters which can be used to
adjust the system’s responsiveness to goal-relevance versus situation-relevance, adaptability
versus speed, and other such trade-offs. While the computations which take place are pri-
marily local, there are some global computations which preclude this model from being strictly
a connectionist model in which only local operations are performed. The system is also
unable to handle variable binding.

The system proposed by Maes is able to adapt to changes in the goals being achieved
and/or to changes in the environment. The numeric input to the system based on the goals
and environment informs the system of the changes. Maes claims that the system can
respond successfully when a competence module fails (e.g., a hand drops a board) but,
without a plan monitor, it is difficult to see how such failures are detected or used by the sys-
tem.

Connectionist models have been studied to determine how to make the best use of lim-
ited resources while still satisfying as many constraints as possible [D’Autrechy and Reggia,
198Sb]. The models discussed below, one for satellite transmission scheduling and one for
camera tracking, demonstrate the viability of using competitive activation methods to allocate
limited resources successtully.

In the satellite-antennas communication scheduling scenario, several low-level satellites
gather information as they orbit the earth. During each revolution a satellite can broadcast its



accumulated information to an antenna only during the short time period within which it is visi-
ble to that antenna. Since a satellite may gather information during a single revolution that
exceeds the time within which that satellite is visible to a single antenna, its broadcasting
might need to be split into messages to several antennas. It is assumed that two satellites
cannot transmit to the same antenna at the same time, and that satellites have varying priori-
ties according to the importance of their information. A successful prototype connectionist
mode! for solving satellite-antennas communication scheduling problems has been devised
[Bourret, et al. 1989]. The goal of this model is to generate communication schedules that
maximize priority-weighted transmission time. Nodes representing each satellite effectively
compete for available time slices on appropriate antennas. Preliminary testing suggests that
this approach may be used effectively [Bourret, et al., 1989, 1990].

Another resource allocation problem considered is that of tracking and photographing
designated targets with cameras on a spacecraft [Whitfield et al., 1989; Goodall and Reggia,
1990]. The scenario, simplified from real life, involves three mobile cameras that are available
to photograph numerous designated locations as the spacecraft passes over them. The prob-
lem to be solved is for the cameras to move so as to track incoming target locations; the cam-
eras are to automatically position themselves to take a photograph of as many targets as pos-
sible just before the targets pass under the spacecraft. The cameras "compete” for targets to
photograph, and a competitive activation mechanism is used to implement this competition.
Two sets of experimental tests have been done demonstrating the viability of using competi-
tive activation mechanisms in this fashion to allocate resources effectively in dynamic environ-
ments [Whitfield et al., 1989; Goodall and Reggia, 1990].

3.0 TOP-LEVEL SYSTEM DESIGN
The AutoPlan system has a number of features:

. self-processing network model - information processing is strictly based on local
operations

o complete planning system includes plan generation, execution, monitoring, and
replanning

. reactive planning - the planning system reacts to changes in a dynamically
changing environment and replans accordingly

. resource-limited planning - competitive activation methods are used to allocate
limited resources

o conditional planning - some primitive actions are only executed under certain
environmental conditions

« deferred planning - decisions regarding the execution of conditional parts of a
plan, allocation of limited resources, and the order of execution of the actions of
the plan are deferred until the time during plan execution when the decisions
must be made.

. hierarchical planning - a plan in the form of a hierarchy is generated; nodes at the
top-level of the hierarchy are the most abstract while the lowest level is com-
posed of primitive action nodes which, when executed, change the state of the
world.

Many of these features are innovations in the context of self-processing network models.



Extended Blocks World

We refer to the dynamically changing environment in which AutoPlan operates as an
"extended blocks world." It differs from traditional blocks worlds in the following respects: the
two-dimensional table has a finite size, the space above the table is treated as a three-
dimensional grid and hence has specific spatial locations (e.g., (2 2 1)), multiple robot arms
may be present thereby allowing muitiple goals to be achieved in parallel, and anomalous
conditions may occur. See Figure 1. The extended blocks world is represented explicitly as
part of the self-processing network. Each entity in the blocks world (e.g., grid location, arm) is
represented by its own node in the network. This differs from other planners which represent
the world as a set of assertions (e.g., (on a b)).

The Plan

Goals are states of the world which a plan tries to achieve. A plan represents one possi-
ble sequence of steps that can be taken to achieve a given set of goals. The plan generated
by AutoPlan is a hierarchy of actions where each lower level in the plan hierarchy represents
a more detailed level of abstraction. The lowest level actions are the primitive actions which
when executed actually cause changes in the state of the world. Actions have preconditions,
conditions which must be true in order for the actions to execute and effects, changes in the
state of the world as a result of the execution of the actions.

In the plans generated by the AutoPlan system, some of the connections from an action
to its subactions or child actions are conditional. See Figure 2. These conditional links allow
AutoPlan to do conditional planning based on the current state of the world when it is time to
execute the subactions at the end of the conditional links. For example, suppose the
pickup(a, b) action connects conditionally (if another block is on top of block b) to a
moveblock(a, b’, loc) action where b’ is a block on top of block 6. The moveblock action only
gets executed if another block is on top of block b at the time the planner is ready to execute
the child actions of the pickup action.

The Planning System

Conceptually one can think of the AutoPlan system as consisting of four components:
plan generation, execution, monitoring, and replanning. in reality there are only two tightly-
coupled components: the planner, an integrated plan generation and execution module which
also handles replanning, and the plan monitor which notices differences between the ideal
state of the world, as maintained by the planner, and the real world, diagnoses the cause(s)
of the observed differences, and communicates this information to the planner so that it can
react and replan accordingly. See Figure 3.

Thus far this discussion of the planning system has not differed from one which might be
found in a paper describing a more traditional planning system with centralized control. How-
ever, in a self-processing network model one can no longer think of each of the planner and
monitor as separate but whole software modules. Instead one must think of the planner and
monitor as overall behaviors which emerge from the local computations taking place between
the nodes in a self-processing network. Each node in the network executes some set of func-
tions which implement the planner and monitor functionality for that node. A separate piece
of software which implements the planner or monitor for alf the nodes in the system does not
exist.
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Figure 1: 3-D Extended Blocks World Space
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Figure 3: The AutoPlan System




4.0 PLAN GENERATION AND EXECUTION

In traditional planning systems planning is split into two separate and sequential
processes — plan generation and plan execution. First the planner generates a plan that is
typically an "optimal" sequence of steps used to achieve a given goal. Then the planner exe-
cutes this plan. The problem with this division of responsibilities is that during the plan gen-
eration phase the state of the world may change thus rendering the plan useless.

In order to plan in a dynamically changing environment, the processes of plan generation
and execution must be integrated. The desirability of an optimal plan decreases and it
becomes much more desirable to have a system which can adapt to changes in the environ-
ment during the planning process. AutoPlan has an integrated plan generation and plan exe-
cution process also referred to as the planner. In fact, the plan generation and plan execution
process is actually a behavior which emerges as the result of functions executed in paraliel by
nodes in a parallel processing network.

An Example

At this point it would be useful to look at an example. Suppose the top-level goals to be
achieved by the planning system are (stack (11 1) (b2 b3 b4)) and (align
(3 3 1)(1 0 0)(b5 b6)). Assume that the blocks world system has two arms a1 and a2. All the
dynamic nodes for the blocks, grid locations, and arms sets already exist. Only the dynamic
action and binding nodes remain to be created at run time by the planner. See Figures 4 and
5.

Plan generation is a growth process controlled by message passing. First, each static
action node which corresponds to a top-level goal (e.g., stack and align) is sent a message
telling it to create a dynamic instance of itself. The message includes the values for the vari-
ables of the action nodes. Figure 6 illustrates this just for the single goal (stack ...); other
goals, such as align, are generating separate growth. The dynamic action node (stack) is
passed pointers to the static action node (stack), the descendents of the static action node
(moveblock), and the static block binding node. Once the dynamic node has been created it
uses these pointers to connect back to its static counterpart, the descendents of the static
action node, and the static block binding node. See Figure 7.

Each newly created dynamic action node still needs to do variable binding so it sends a
message to the static block binding node telling it the blocks to which it needs to connect.
The block binding node then creates an instance of itself for each block to which an action
node needs to connect. See Figure 8. Each new dynamic block binding nodes points back
to its static counterpart and to the static biock node to which the static block binding node is
also connected. The static block binding node sends a message back to the dynamic action
node containing pointers to the new dynamic block binding nodes. See Figure 8. Upon
receipt of this message, the dynamic action node deletes its connection to the static block
binding node and makes new connections to the dynamic block binding nodes. Each block
binding node sends a message to the static block node requesting the pointer to a specific
dynamic block node. The static block node then sends back the pointer to the requested
dynamic block node. See Figure 9. Only the pointer for block b3, is illustrated. The dynamic
block binding node then deletes its connection to the static block node and, using the pointer
it just obtained, makes a new connection to the dynamic block node. See Figure 10. A simi-
lar process occurs for the arm binding and arm nodes, and the grid location binding and grid
location nodes but is not illustrated here.

Simultaneously, the align action node and the corresponding binding nodes for the align
action node are created. No binding node is created for the second argument & = (1 00), the
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direction of the alignment since the direction is not a resource for which the align node needs
to compete. The direction variable slot of the align action node is simply set to (100).

Next the stack and align action nodes each receive an external input of 1.0. They in turn
send output to each binding node to which they are connected. The binding nodes receive
this input and update their own activation values. During the next iteration the action nodes
send output to the binding nodes and the binding nodes send output to the action nodes and
the various resource nodes to which they are connected. Then all the nodes update their
activation values. The following iteration is essentially the same except that the resource
nodes now have activation which they can send to the binding nodes. This process continues
until a binding node becomes fully activated. At this point the binding node takes the
resource to which it connects out of the competition.

One might think that at this point the binding node has done its job and can be pruned
from the network. This is not the case. A binding node remains part of the network until the
action node to which it is connected finishes executing or releases it for some other reason.
The binding node is still needed for two reasons. First, it may be needed later if replanning is
necessary before the action node (and its descendents) have finished executing. Second, the
action node frees a resource once it has finished with it by communicating to the resource via
the binding node to which they are mutually connected.

The child action nodes of a parent action node are not generated until all the variables of
the parent action node are bound. It is inefficient to generate child actions until one is sure
the parent action is able to obtain the resources it needs since most child actions inherit these
resources from their parent. Once the stack action has its variables, i6¢ and blocks, bound it
sends a message to the static moveblock action node and stack action node, children of the
existing static stack action node telling them to create dynamic instances of themselves. The
parent stack node is then connected to these nodes and a lateral sequence connection from
the child moveblock node to the child stack node is created. The moveblock node inherits
bindings for its b and loc variables from the parent stack node. However, it still needs to bind
an arm node. The child stack node inherits all its bindings from the parent stack node so no
new binding nodes need to be created for it. Simultaneous to the generation of child nodes
for the top-level stack action, analogous variable binding and action nodes are generated for
the top-level align action node. See Figure 11.

Once the parent action nodes are no longer competing for resources, all their activation
is sent to their child action nodes. The moveblock child node uses that incoming activity to
compete for an arm node. It competes against a moveblock node which is a child of the align
node.

In parallel to the arm node competition, the children of the child stack action node are
generated since the child stack action node has all its variables bound. Once the children are
created the child moveblock node of the child stack node also enters into the competition for
the arm nodes. However, it does not compete as effectively as the other two moveblock
nodes because its parent stack action node is not as active as the stack node's sibling
moveblock node. This is because the stack node is not receiving much lateral input from the
moveblock node and therefore cannot get as active as the moveblock node. See Figure 12.

As the process continues, child action nodes for pickup and putdown nodes are created.
Some of the child action nodes of the pickup or putdown nodes are only created under certain
conditions. The state of the world is checked when it is time to generate each child and then
some of the children are only generated if the conditions necessary for their creation are
currently present. By delaying the generation of children for as long as possible, the plan
generated is more appropriate to the current state of the extended blocks world.
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Some of the child actions of pickup or putdown action nodes can use an arm other than
the one used by the parent action node. If when one of these child action nodes is created
there are no arms available for which the new child can compete, the new child node inherits
the arm binding from its parent pickup or putdown node. This is more efficient than having
the child node wait until an arm node becomes available and then spend time competing for
it.

Distributed Plan Generation and Execution

Plan generation and execution occur simultaneously in the AutoPlan system parallel pro-
cessing network. While some nodes may be growing their child nodes (plan generation) other
nodes in the network may be actively competing for resources or executing their particular
action (plan execution). There are not two distinct plan generation and execution phases of
processing.

The plan generation and execution process is really the emergent behavior of the execu-
tion of a number of functions by each node in a parallel processing network. On a per-node
basis planning can be thought of as the method of parallel processing used by each nede in
the network. The methods for various sets of nodes in the network differ. Typically, a single
method is used for each node in a set. For example, each arm node uses the same method.
The exception to this is action nodes. Each action node has its own method. However, for
the sake of discussion, a generic action node method is presented.

A method for action nodes is responsible for:
« competing for resources (sending and receiving output to/from binding nodes)

« sending activation out to neighboring nodes (lateral action nodes, child action
nodes, and binding nodes)

e receiving input from neighboring nodes (parent, child, and lateral action nodes,
binding nodes)

» calculating the new activation value for the node based on the input from neighbor-
ing nodes. (A node cannot become fully active unless all nodes preceding it in
sequence have finished executing and, if it is a non-terminal node, until all its chil-
dren have also finished executing.)

« generating messages to create child action nodes and their corresponding binding
nodes (if necessary) once all the variable bindings for this parent action node are
complete

o letting the parent action node and subsequent action nodes in sequence know
when this node has finished executing (e.g., when its activation value reaches 1.0) or
if it has failed. If at least one child node fails to complete executing then the parent's
execution is considered failed as well.

The method for bindings nodes is responsible for:

« sending output to action nodes and resource nodes (e.g., arm, block, or grid loca-
tion)



e raceiving input from action nodes and resource nodes
e updating the activation values of the binding node
* recognizing when multiple action nodes are trying to access a single resource

¢ communicating to an action node the resource to which that node is bound when
the activation value of this node is 1.0

» taking the resource to which it is connected out of the competition once this node's
activity reaches 1.0

The methods for arm, block, and grid location nodes simply:
e send output to any binding node competing for it
» receive input from any bindings node competing for it

» update the activation value based on input received and output sent from/to neigh-
boring nodes (binding nodes)

As illustrated above, the method for a node is responsible for all internode communica-
tion. The information communicated is a combination of numeric and symbolic. Numeric
activation values are used for competition for resources and for activating action nodes. Uses
of symbolic information include the binding and unbinding of variables, and the communica-
tion of the execution status of an action node.

5.0 PLAN MONITOR AND DIAGNOSIS

Anomalous conditions (manifestations) are detected by the plan monitor either when
differences are observed between the ideal state and the real state or when plan actions fail
due to unexpected conditions. Based on the manifestations present, the monitor performs
diagnosis to determine a cause(s) for the existing manifestations. Causal associations
between manifestations and causes are used by the diagnosis program. The monitor then
communicates the final diagnosis to the planner so that it can react and replan accordingly.
This information consists of messages saying that a resource in the blocks world (e.g., block,
arm, grid location) is unavailable (either on a temporary or short-term basis) or that a resource
has a different state than its current state in the ideal world.

Plan generation and execution can continue while diagnosis is being done. The monitor
sends preliminary information about observed manifestations to the planner before diagnosis
is performed so that the part of the plan that is affected by the manifestations can pause its
execution while diagnosis takes place. Meanwhile other unaffected parts of the plan can con-
tinue to be generated and executed.

Manifestations

A manifestation is a phenomenon that serves as an indication of a disorder. A manifes-
tation may indicate that one or more disorders are present in a system. In the extended
blocks world, a manifestation occurs when any state in the real world does not match the
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corresponding state in the ideal world maintained by the planner or when the execution of an
action fails due to some unexpected occurrence. For example if in the ideal world block b1 is
at location Joc, but in the real world block b2 is at location loty then the difference between
the ideal state and the real state indicates that a manifestation is present. Block b2 may be
at a location other than that expected by the planner (/oc,), for many reasons. For example,
the cause of the manifestation may be that an arm dropped the block at a different location
than expected (/o¢c,) due to some problem with the arm or the cause may be that a person
bumped the table and therefore moved the block to a different location (loty) after it had been
placed in the anticipated location (loc,) by an arm. Either one of these scenarios could have
caused the observed manifestation. It may also be the case that more than one disorder may
combine to cause a single manifestation.

Manifestations in the Extended Blocks World
Manifestation Description
dispicd_block(b) | block b is displaced,; it is in a location other than expected
miss_block(b) block b is missing; its location is currently unknown
displcd_arm(a) arm a is displaced; it is in a location other than expected
Varm_stop(a) arm a is stopped in the vertical direction; in other words something is
preventing arm a from moving either up, down, or in both directions.
nopickup(a, b) for some unknown reason, arm a did not pick up block b

Causes (Disorders)

Manifestations appear as a result of causes or disorders. The following table lists the
causes being modelled in the extended blocks world.

Causes of Manifestations in the Extended Blocks World

Cause Description
fall_stack(/oc) stack at loc fell
slip_block(a, b) block b slipped from arm a
bump_block(b) block b bumped out of place
excess_hand _press(a) | the hand of arm a exerted excess pressure
hand_stuck_open(a) the hand of arm a is stuck open
Hmotor_imp(a) the motor of arm a which controls horizontal movement is impaired
Vmotor_imp(a) the motor of arm a which controls vertical movement is impaired

Causal Associations

The diagnostic problem solving method used by the monitor to do diagnosis uses causal
associations between manifestations and disorders [Peng and Reggia, 1889]. Each causal
link between a disorder and manifestation is associated with a probability representing the
strength of the causal association. The causal associations for the manifestations and disord-
ers modelled for the extended blocks world are represented pictorially in Figure 13.

11
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Information Communicated from Monitor and Diagnosis Component to the Plan Genera-
tion and Execution Component

Based on its final diagnosis for a given set of observed manifestations, the monitor com-
municates to the planner the states of the real world which differ from the states of the ideal
world maintained by the planner, and the diagnosis for the observed manifestations. The
planner then updates the ideal state of the extended blocks world and replans according to
the communicated changes in state and the diagnosis.

6.0 REPLANNING

Replanning occurs when an anomalous condition is detected. Specifically, when a man-
ifestation is detected by the monitor replanning must occur. The replanning operation may be
as minor as resetting some attribute values (e.g., a new grid location for a block) and then
just continuing planning, or it may require more extensive resetting of attributes, recompetition
for limited resources, and changes in the actual plan hierarchy. Replanning is really part of
the functionality of the planner but is discussed separately here for the sake of clarity.

Basically replanning must be able to handle two types of situations. One situation
occurs when a resource in the extended blocks world is no longer available (e.g., an arm is
broken). The second situation occurs when a resource is in a state other than that expected
(e.g., a block is at locs instead of at /oc,). In either of these two scenarios, the planner must
also take into account the diagnosis information sent to it by the monitor before making any
replanning decisions.

Replanning When a Resource is No Longer Available

There are two possible situations in which the planning system can be when a particular
resource becomes unavailable. One, the planning system is not using that resource at the
present time. Two, the resource is being actively used by the planning system.

When a resource which is not being used by the planning system suddenly becomes
unavailable the planner simply takes steps to make that resource unavailable. The exact
mechanism for this is discussed below. AutoPlan automatically adapts to the loss of the
resource since the system only utilizes resources that are part of the self-processing network.
The system exhibits a high level of adaptability and fault tolerance.

If a resource is actively being used by the plan when it becomes unavailable replanning
is more complicated. The action node to which the resource is bound is notified that the
resource is no longer available. If another resource of the same type (e.g., an arm) is avail-
able to be competed for then the node competes for that resource. If the action node wins
the competition, then all its child action nodes are reexecuted with the new variable binding.
If the action node does not win the competition for the resource or there are no resources of
the same type available for which to compete, the action node sends a message to the action
node one level higher in the action hierarchy. That action node in turn sends a message to
any unexecuted child nodes below the current level in the hierarchy instructing them to
release any variable bindings of the type required by the action node whose resource became
unavailable. If no resources of the required type become free by this process, the highest
level action node to receive the message sends the message one level higher in the hierar-
chy.
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This process continues until the top of an action hierarchy is reached or until a resource
of the required type has been freed. For example, in a stack hierarchy multiple arms may be
bound to multiple moveblock operations. If an arm for one of the moveblock operations fails
and no other arms are available this replanning process eventually causes the release of at
least one of the arms bound to one of the other moveblock operations later in sequence in the
same action hierarchy(e.g., the stack action hierarchy). Descendent nodes recompete for the
disabled type of resource. The action node who lost its resource will win the competition and
execution will continue at that point in the hierarchy with the new variable binding. Other vari-
able bindings stay intact. If the message is passed all the way to the top of the action hierar-
chy and no resource of the type required is freed, then the action node must wait and com-
pete for a resource currently being used by some other action hierarchy (e.g., the align action
hierarchy).

When a resource becomes unavailable, it must delete itself from both the static and
dynamic plan hierarchies. A plan fails when a resource (e.g., an arm) becomes unavailable
and there are no other resources of the same type left in the static network. This condition
will be detected by the static binding nodes. If a static arm binding node has no outgoing
connections to any static arm nodes then it must generate a message indicating that the plan
is a failure because there are no more arms available.

Example

Using the example illustrated in Figures 4 through 11 one can examine what will happen
when arm 1 (node al,) becomes unavailable.

When the monitor detects that arm 1 is displaced, it sends a message to the dynamic
instance of arm 1 (node at,) telling it to pause its execution. Node aly then relays this mes-
sage to the dynamic arm binding node to which it is connected, node ab,. Node ab, then
relays this information to the action node movebiock,. Node moveblock, then sends this mes-
sage to all its descendent action nodes. If a descendent node is not a primitive action then it
passes the message along to its descendents. If it is a primitive action then it stops its execu-
tion.

While the plan execution is paused the diagnostic component determines that the hor-
izontal motor of the arm is impaired. It then sends a message to this effect to the dynamic
arm node aly. The arm node knows that it cannot recover from such an impairment so it
must delete itself from the system.

Before it deletes itself, the static arm node a1 sends a message to the static arm binding
node that it is deleting itself. Upon receipt of this message the static arm binding node
checks to make sure that it still connects to at least one other static arm node. If it will not
have at least one other connection after the static arm a1 is deleted the static arm binding
node will generate a message indicating that the plan is a failure because there are no more
arms available.

The dynamic arm binding node sends a message to the dynamic action node
moveblock, telling it that it is deleting itself and that arm 1 is no longer available. The
moveblock,; node must then set its arm variable to be unbound. It will have to recompete for
another arm. Since in this example there are only two arms available, the moveblock, node
will have to wait until the moveblock, node is finished with the second arm at which point the
moveblock; node will compete with any other action nodes which want to make use of the
arm.

It originally there were three arms available and the third arm was bound to a
moveblocks node, a child of the stack, node, then the moveblock, node would have to use
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the message passing process described above to get the moveblocks node to relinquish its
binding of the third arm so that the moveblock, action could compete for the third arm.

Replanning When a Resource is in a Different State Than Expected

The tables in the previous section on the plan monitor describe differences in the state of
the ideal world and the state of the real world which the replanning system accomodates.
When any of these differences in state occur, replanning takes place. As is the case when a
resource becomes unavailable there are two possible situations in which the planning system
can be when the state of a particular resource changes. One, the planning system is not
using that resource at the present time. Two, the resource is being actively used by the plan-
ning system. Depending on the diagnosis for the observed state difference, if the resource
whose state is different than the expected state is not currently bound to any action node then
the planner updates the state of that resource to reflect its current state in the real world. If
the resource is currently being used by an action node in the planning system then more
extensive replanning is done.

The procedure for handling a difference in the state of a resource currently in use by the
planner is similar to the procedure undertaken when a resource becomes unavailable. The
action node to which the resource is bound is notified that the resource has a different state
than expected. The state of the resource is then updated to reflect its current state in the real
world. Sometimes multiple resources may be involved; the same procedure is undertaken for
each resource having a different state. For example, if in the ideal world the location of a
block is io¢, and in the real world the hand of arm a1 is holding the block, then the real states
of the arm and the block are in conflict with the states of the block and arm in the ideal world.

Once the state of the ideal world is updated to match the state of the real world, the
planner attempts to continue planning starting with the nodes to which the resources are
currently bound. If this is not possible the planner then tries moving up one level in the plan
hierarchy and executing the plan from there. The replanning procedure differs slightly
depending on the type of resource involved, the nature of the change in state, and the diag-
nosis for the difference in state.

7.0 MIRRORS/II IMPLEMENTATION OF THE SYSTEM COMPONENTS

The Plan and the ldeal State

The plan is represented by the parallel processing network created by MIRRORS/II and
the planner. In MIRRORSY/II, a self-processing network has two parts: a static network which
basically defines legal node connections and a dynamic network composed of instantiations of
various parts of the static network. MIRRORS/II creates the static network based on user
specifications. It also creates the dynamic arm, block, and grid location nodes based on the
static network. The planner generates the dynamic action and binding nodes of the network
based on the goals posted to the system and the current state of the network. The ideal state
of the system is represented by the attributes of the nodes in the dynamic network. The
sequence of actions taken to achieve the given goals is represented by the order in which the
action nodes in the plan become active.
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Plan Generation and Execution

The process of plan generation and execution is an emergent behavior of the self-
processing network. Each node has its own method of spreading numeric activation levels
and symbolic information. It is the parallel execution by each node in the network of its local
method that creates this emergent global planning behavior. The details of each method
were enumerated earlier in Section 4.0.

Real State

It is not yet clear how the real state will be implemented in the MIRRORS/II environment.
It is highly probable that it will be implemented as an event which communicates real state
information or manifestations to the plan monitor.

Plan Monitor and Diagnosis

Implementation details for the plan monitor are also still being worked out. Most likely it
will be an event that is executed once every iteration.

8.0 DISCUSSION

AutoPlan is a complete planning system which includes plan generation, execution, mon-
itoring, and replanning and is based entirely on local operations. It operates in an extended
blocks world which is rich enough to provide many challenging features that would be
encountered in a real planning and control environment: multiple simultaneous goals, parallel
as well as sequential action execution, action sequencing determined not only by goals and
their interactions but also by limited resources (e.g., three tasks, two acting agents), the need
to interpret unanticipated events and react appropriately through replanning, etc. Conflicts
over limited resources are resolved using competitive activation techniques.

The long-term goal of this work is to formulate robust computationally-effective informa-
tion processing methods for the distributed control of semiautonomous exploration systems,
e.g., the Mars Rover. While AutoPlan takes a significant step in this direction it is admittedly
limited in the face of the complexity of semiautonomous systems like the Mars Rover. The
Rover will operate in a significantly more complex world than the extended blocks world: there
is a lot of information about Mars which is unknown, the terrain is highly variable, the potential
for mechanical failure is much higher, communication to Earth takes a long time and is sub-
ject to corruption, etc. The current design of the Rover includes separate functional modules
(e.g., navigation module, science module, etc.) which do some planning independently but
also interact with a central coordinator [Johnston, 1989). Some responsibilities of the coordi-
nator include integrating module plans into a master plan and coordinating resource alloca-
tion. It is not clear how a system such as AutoPlan fits into such a scenario. Perhaps
separate AutoPlan systems could be used for each module as well as for the coordinator.
Many details remain to be worked out before a simulation of a representative subset of the
activities of a semiautonomous system like the Mars Rover can be attempted.

Although the AutoPlan system has its limitations it still makes many contributions to plan-
ning research. AutoPlan does reactive planning, resource-limited planning, conditional plan-
ning, deferred planning, and hierarchical planning, all of which are implemented using strictly
local operations. The AutoPlan system has an integrated plan generation and execution pro-
cess which allows it to react quickly to unexpected changes in the environment. The plans
generated by the planner are hierarchical in nature. Conflicts over limited resources in the
extended blocks world are resolved using competitive activation methods. Conditional
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planning is implemented via conditional links in the static plan hierarchy. Certain dynamic
action nodes are only generated under specific environmental conditions. Many planning
decisions (e.g., which resource an action uses or which child nodes to generate) are deferred
as long as possible.
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Appendix A
Plan Generation and Execution Details

Assumptions

1. A robot arm can only hold one block at a time.
2. Using a 3-dimensional notation.
3. The arguments are always valid.
¢ 2 always evaluates to an existing robot arm in our environment
e b, ¢ always evaluate to blocks in our blocks world
e blocks is a list of blocks (e.g., b;, . . ., b;)
e loc is a 3-D vector representing a grid location
e d is a 3-D vector in which one of the components is + 1
and the rest of the components are zero (e.g., [0 0 -1] ).
4. Each block knows about the six positions adjacent to it. If the block
is at position (x, y, z), the six adjacent positions are:
(X'1, Y, Z)
(x+1,y, 2)
(x,y-1,2)
(x, y+1, 2)
(X, Y, 2'1)
(%, y, z+1)
5. Thetableis atz=1. z< 1is anillegal z value.
6. The robot arm moves in a plane (z = ZMAX) above the highest stack
of blocks.
7. The robot arm moves horizontally only when the arm is in the highest z-plane {e.g., from
(Xsources Ysourcer» ZMAX) 10 (Xgost» Ydest» ZMAX). The arm moves vertically along a
line segment between (x, y, z=1) to (x, y, 2). The arm cannot move both horizontally and
vertically at the same time.
8. The bounds on x, y, and z are [XMIN, XMAX], [YMIN, YMAX], and [1, ZMAX] respectively.
9. The highest stack can only go to a height of ZMAX-1 because the arm needs to move
at height ZMAX.
Notations
1. Subscript meanings:
a = some arm
d = destination
i = some block
j = some block
r = random
s = source
2. (log;) is the location of block b;.
3. (loc;) where rstands for random, is the random location of block b;.
4. I loc =[x y z] then maxloc = [x y ZMAX].
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Possibie States of the System

Much of the state of the extended blocks world can be described using the predicates listed in the

table below.

Possible States of the System

State Description
openhand(a) the hand of robot arm a is open
empty(a) the hand of robot arm a is empty
holding(a, b) the hand of robot arm a is holding block b
loc(object, loc) | the ogject, either an arm or a block, is at loca-
tion loc

The possible actions of the system are described in the following table. The Level column is used
to indicate the level of the given action in the overall action hierarchy. Primitive (lowest level) actions
are listed first in the table. Following them, actions are listed in order, by level, with the top level actions
coming at the end of the table.

Possible Actions of the System

Possible Actions of the System

away from the block it is currently next to and put it at
an unoccupied location on the table

Action Description Level
down(a, loc) move robot arm a down to location /oc; the z coordinate primitive
changes while x and y remain the same
up(a, loc) move robot arm a up to location Joc; the z coordinate primitive
changes while x and y remain the same
open(a) open the hand of robot arm a primitive
close(a) close the hand of robot arm a primitive
movearm(a, loc) move robot arm a to location Joc; the x and y coordi- | primitive
nates change while z remains the same (at ZMAX)
pickup(a, b) pick up block b with arm a third
putdown(a, b, loc) put block b held by arm a down at location /oc third
moveblock(a, b, loc) using arm a, move block b to location loc second
stack(/oc, blocks) make a vertical stack of blocks at location loc where | top
the first block in the list is on the top of the stack and
the last block in the list is on the bottom of the stack
unstack(blocks) take each block starting with the top block off the stack | top
and put it on the table at an unoccupied location
align(loc, d, blocks) | make a horizontal stack of blocks where the last block | top
in the list is on the table at location loc, the next to the
last block in the list is on the table at location /6¢c+d,
etc.
unalign(d, blocks) take each block starting with the first block in the list | top
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Connectionist Network

Grid Set

Each grid position is a node which connects to its six neighbors within a radius of one and to a grid
binding node.

Grid Set Attributes
Name Value Description
block dynamic block node or nil block which occupies that square of the grid
arm dynamic arm node or nil arm which is positioned at that square of the grid
maxloc | dynamic grid node grid node which has the same x,y coordinates as the
grid node itself but has ZMAX as its z coordinate

These attribute values change dynamically.

Blocks Set

Each node represents a single block. A node has a connection to a block binding node.

Blocks Set Attributes
Name Value Description

dynamic grid node | The block is at location loc in the three-dimensional
grid. The block is either on another block (z(/oc) > 1) or
is on the table (z(/6¢) = 1).

dynamic arm node | The block is being held by the hand of the arm
represented by the arm node. The block is at the same
location as the arm.

location

NOTE: The two possible values for the location attribute are mutually exclusive.

Arm Set

Each node in this set represents one robot arm in the blocks world environment. A node has connec-
tions to arm binding nodes.

Arm Set Attributes
Name Value Description
location dynamic grid node The arm is currently positioned at location /oc.
holding dynamic block node or nil | The block which is currently being held by the arm.
handopen | tor nil Boolean value indicating whether the robot hand is open
(1) or closed (nil).
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Arm Bindings Set

Each node in this set connects to one action node and one arm node. These nodes are used by action
nodes to compete for arm nodes. When an arm binding node becomes fully active, it takes steps to
bind the action node to the arm node to which it is connected.

Block Bindings Set

Each node in this set connects to one action node and one block node. These nodes are used by
action nodes to compete for block nodes. When a block binding node becomes fully active, it takes
steps to bind the action node to the block node to which it is connected.

Grid Location Bindings Set

Each node in this set connects to one action node and one grid location node. These nodes are used by
action nodes to compete for grid location nodes. When a grid location binding node becomes fully
active, it takes steps to bind the action node to the grid location node to which it is connected.

Actions Set

Each node in this set represents an action in a hierarchical plan. There may be more than one dynamic
instance of each action node.

Actions Set Attributes

Name Value Description
parent dynamic action node or nil the action node which is one level above this action
node in the action node hierarchy
arm dynamic arm node or nil the value of the arm variable for this action node:

may be bound at run time or may be inherited from
the parent action node; may be nil if action does not
have an arm variable (e.g., stack)

blocks list of dynamic block nodes, | the value of the b or blocks variable for this action
dynamic biock node, or nil node; often inherited from the parent action node;
may be nil if action does not have a b or blocks
variable (e.g., up)

location | dynamic grid node or nil the value of the location variable for this action
node; may be nil if action does not have a location
variable (e.g., open)

direction | 3-D vector in form of [+1 0 0], | the vector is used to change the current location by
{0 £1 0], or [0 O £1], or nil adding this vector to the location vector; only one
of the components of this vector may be +1 at a
time (e.g., [+1 0 0]); may be nil if action does not
have a direction variable (e.g., stack)

vars list of atoms (variable names) the list of variables for this action node

bindings | list of lists of variable bindings describes the variable bindings for each child node
of this action node
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Actions Set Attributes (continued)

Name Value Description
lat-seq-conns | list of lists of action node | describes which child nodes of this action node con-
names nect laterally to which other child nodes of this ac-

tion node. These lateral connections provide
sequencing information in terms of which nodes can
be executed in parallel and which must be executed
in sequence.

effects list of state changes or nil describes the effects, in terms of state changes,
which are the result of executing a primitive action;
nil for non-primitive actions

Value of the Effects Attribute of the Primitive Action Nodes

Value of the Effects Attribute
Action Node Effects Value Explanation
down (setf (loc a)(loc self)) loc of arm is loc argument to action
up (setf (loc a)(loc self)) loc of arm is loc argument to action
(setf (handopen a) t) hand is now open
(cond ((holding a) if the hand was holding a block
open (setf (blockat (loc a))(holding a)) grid loc now occupied by block
(setf (loc block)(loc a)) loc of block is grid loc
(setf (holding a} nil))) arm no longer holds block
(setf (handopen a) nil) hand is now closed
(cond ((eq (parent self) 'pickup) if arm is picking up block
close (setf (holding a}(blockat (location a))) arm now holds block at its location
(setf (loc (blockat (loc a))) a) block is now held by arm
(setf (blockat (loc a)) nil})) block held by arm is no longer at grid loc
movearm (setf (loc a)(loc self)) loc of arm is loc argument to action
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Connectionist Network Architecture

action nodes

grid location

block binding

arm binding dos

nodes binding nodes

grid location
arm nodes nodes block nodes
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Functions Used to Access Slots in Node Data Structures

These functions are primarily used to determine if action preconditions have been satistied and to
bind variables to values "inherited" from parent nodes.

Access Functions

Function

Description

arm(action_node)

Returns the value of the arm variable (attribute) of the specified
action_node. The value can be either an arm node or nil. If the value is
nil then the arm variable (attribute) needs to be bound at the current lev-
el.

block({action_node)

Returns the value of the blocks attribute of the specified action_node.
The value can be either a list of dynamic block nodes, a dynamic block
node, or nil.

blockat(grid_node)

Returns the value of the block attribute of the specified grid node. The
value can be either a dynamic block node or nil.

dir(action_node)

Returns the value of the direction attribute of the specified action_node.
The value can be a direction vector or nil.

holding(arm_node)

Returns the value of the holding attribute of arm_node. The value can
be either a dynamic block node or nil.

loc(action_nodsg)

Returns the value of the location attribute of the specified action_node.
The value is a vector in the form of [x y Z].

loc(arm_node)

Returns the value of the location attribute of the specified arm_node.
The value is a vector in the form of [x y z].

loc{block_node)

Returns the value of the location attribute of the specified block_node.
The value is a vector in the form of [x y 2].

maxloc(/oc)

Assuming loc is [x y z], then this function returns the dynamic grid node
which represents vector [x y ZMAX]. Vector [x y ZMAX] is the location
in the arm movement plane which corresponds to 10C.

neighbor(loc, dir)

dir is in the form of [£1 0 0], [0 £1 0], or [0 0 £1]. A new vector is ob-
tained by adding loc + dir. The grid node corresponding to the new
vector is returned.

parent{action_node)

Returns the value of the parent attribute of the specified action_node.
The value can either be a dynamic action node or nil.

random_grid_loc(type)

type = “occupied or ‘unoccupied. According to the value specified for
type, this function returns a pointer to either an occupied or unoccupied
location (on the table?).

z(loc)

Returns the value of the z coordinate of the loc vector.
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The following table describes functions which are used to manipulate lists of dynamic block nodes.

Block List Manipulation Functions

Function Description
firstblock(block_list) Retums the first dynamic biock node on the list. This is analo-
gous to (car block_list) in Lisp.
lastblock(block_list) Returns the last dynamic block node on the list. This is analo-

gous to (car (last block_list)) in Lisp.

alibutfirstblock(block_lisf) | Returns a list of dynamic block nodes starting with the second
block in the list and ending with the last block in the list. This is
analogous to (cdr block_list) in Lisp.

allbutlastblock(block_list) | Returns a list of dynamic block nodes starting with the first
) biock in the list and ending with the next to last block in the list.
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Preconditions and Effects of Actions/Goals

If a precondition remains true after the goal is accomplished then it is not listed as an effect. Each
action is responsible for making sure it has not already been achieved before continuing to check to see
it the rest of its preconditions have been achieved. The effects of non-primitive actions are really just
the cumulative effects of many primitive actions.

Preconditions and Effects

Preconditions Goal Effects
2(/0Ccurent) > Z(lOC) down(a, loc) loc{a) = loc
Z(10Ccysrent) < 2(l0C) up(a, loc) loc(a) = loc
—openhand(a) open(a) openhand(a)

if holding(a) then
blockat(loc(a)) = holding{a)
loc(holding(a) = loc(a)
—holding(a)

openhand(a) close(a) —openhand(a)

it parent(self) = pickup then
holding(a) = blockat(loc(a))
loc(blockat(a)) = a
blockat(loc(a)) = nil

loc = loc(a) movearm(a, loc) loc(a) = loc

—holding(a, b) pickup(a, b) holding(a, b)
—blockat(neighbor(ioc, [0 0 1])))
—holding(a, ¢)

maxloc, = loc(a)

b # blockat(/oc) putdown(a, b, loc) loc(b) = loc
—blockat(/oc)

blockat(neighbor(/oc, [0 0 -1])))

holding(a, b) handempty(a)
maxloc = loc(a)

b # blockat(/oc) moveblock(a, b, loc) blockat(/oc) = b
b; # blockat(/oc) stack(loc, blocks) blockat(/oc) = b;
.. n = the number of blocks .

b; # blockat(neighbor(/oc, [0 0 blockat(neighbor(/oc, [0 0 n-
n-1]))) 1) = b

b; = blockat(loc) unstack(loc, blocks) blockat(loc,;) = by
C. n = the number of blocks .

b; = blockat(neighbor(ioc, [0 0 blockat(/oc,;) = b;
n-1])))

b; = blockat(/oc) align(ioc, d, blocks) blockat(loc) = b
- n = the number of blocks

b; # blockat(neighbor(/oc, d * blockat(neighbor(/oc, d * n-1))
n-1))) = by

b; = blockat(/oc) unalign(d, blocks) blockat(/oc,)) = b;
- n = the number of blocks .

b; = blockat(neighbor(/oc, d = blockat(/oc,)) = b;

n-1))
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Variable Bindings

Bindings for a descendent action may vary according to the identity of the parent and the condition
(i any) on the link from the parent to the descendent. So, how should we store this binding information
which is dependent on the parent action? Since the parent stores the lateral connection information
which is parent-dependent, perhaps the parent should also store the variable binding information which
is parent dependent.

Descendent Variable Bindings
pickup(a,b)

moveblock(a’, ¢’, o¢,)

" = #«To Be Bound++ or (arm (parent self))
c_"=- (blockat (neighbor (loc (blocks (parent self))) [0 0 +1]))
loc, = (random_grid_loc ‘unoccupied)

putdown(a, ¢, /o¢,)

a = (arm parent)
Cs= (holding (arm (parent self)))
loc, = (random_grid_loc “unoccupied)

up(a, maxloc,)

a= _garm (parent self))
maxloc, = (maxloc (loc (arm (parent self))))

-
movearm(a, maxl/oc)

a = {arm (parent self))
maxioc, = (maxloc (loc (blocks (parent self))))

open(a)
a = (arm (parent self))

down(a, /0c,)

a = (arm (parent self))
loc, = (loc (blocks (parent self)))

close(a)
a = (arm {parent self))

up(a, maxioc,)

a = (arm (parent self))
maxioc, = (maxloc (loc (arm (parent self)}))
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putdown(a, b, 16¢)

moveblock(a’, ¢, Ioc,)

a’ = *»+To Be Bound++ or (arm (parent self))
c= (blockat (loc (parent self)))
loc, = (random_grid_loc ‘unoccupied)

moveblock(a”, ¢’, 1oc)

a’” = *«To Be Bound+* or (arm (parent self))
c;= {blockat (random_grid_loc “occupied)
loc = (neighbor (loc (parent self)) [0 0 -1))

pickup(a, b)

a = (arm (parent self))
b = (blocks (parent self))

up(a, maxioc,)

as= _garm {parent self})
maxloc, = (maxloc (loc (arm (parent self))))

-
movearm(a, max/oc)

a =_§arm (parent self))
maxloc = (maxloc (loc (parent self)))

down(a, loc)

as= (arm (parent self))
loc = (loc (parent self))

open{a)
a = (arm (parent self))
up(a, maxioc)
a = (arm (parent self))
maxloc = (maxloc (loc (parent self)))

close(a)
a = (arm (parent self))
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moveblock(a, b, loc)

pickup(a, b)

a = (arm (parent self))
b = (blocks (parent self))

putdown(a, b, /oc)

a = (arm (parent self))
b = (blocks (parent seif))
loc = (loc (parent self))

stack(loc, blocks)

moveblock(a, b, /o¢)

a = *»To Be Bound+* or (arm (parent self))
bl.’ (lastblock {blocks (parent self)))
loc = (loc (parent self))

stack(/oc’, blocks’)

I6¢’ = (neighbor (loc (parent seif)) [0 0 +1])
blocks’ = (allbutlastblock (blocks (parent self)))

unstack(blocks)

moveblock(a, b;, 10¢,)

a = ++To Be Bound+* or (arm (parent self))
b; = (firstblock (blocks (parent self)))
loc,; = (random_grid_loc “unoccupied)

unstack(blocks’)
blocks’ = (allbutfirstblock (blocks (parent self)}))

align(loc, d, blocks)

moveblock(a, b;, 0¢)

a = »*+To Be Bound*+ or (arm (parent self))
bL'.= {lastblock (blocks (parent self)))
loc = (loc (parent self))

align(ioc’, d, blocks’)

e’ = (neighbor (loc (parent self)} (dir (parent self)))
d = (dir (parent self))
blocks’ = (allbutiastiblock (blocks (parent self)))
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unalign(d, blocks)

moveblock(a, b;, 10C,)

a = *+To Be Bound«* or (arm (parent self))
bi. = (firsthlock (blocks {parent self)))
loc; = (random_grid_location “unoccupied)

unalign(d, blocks’)

d = (dir (parent self))
blocks’ = (alibutfirstlblock (blocks (parent self)))
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Hierarchy Diagrams

The following diagrams show the relationship between each action node and the action nodes one
level below it in the hierarchy of action nodes.
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Changes to MIRRORS/II

(1)

()

)

(6)

(7)

The ability to have a different method for different nodes in a set. This implies that the method
statement should also become a legal node statement.

The ability to add/delete a new dynamic node to/from a network. This implies the need for a new
constructor.

The ability to add/delete node connections dynamically. This also implies the need for a new con-
structor.

The ability to have symbolic weights. May sometimes want to have both symbolic and numeric
weights on the same link.

The ability to pass symbolic as well as numeric information over links. (We can sort of do this
already but it's probably worth rethinking in terms of having links with symbolic weights.)

Two new events — goal and state. The goal event sets the goal which the planning system is try-
ing to achieve. The state event indicates the current (initial) state of the system. It is possible that
the state event could aiso be used to indicate that the state has changed part way through the
planning process.

A new connection logic is needed in order to indicate parallelism (e.g., do one or more of the fol-
lowing independent things in parallel).
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Appendix B
Plan Monitor and Diagnosis Details

Possible States of Objects in the Planning System

The following table describes predicates used to represent some of the possible states of objects
in the planning system. The predicates in this table in combination with the predicates in the table of
possible states from Appendix A can be used to describe the possible states of the extended blocks
world.

Possible States of the System Pertaining to Plan Monitoring
State Description

handop(a) the hand of arm a is operative

armop(a) the arm of arm a is operative

lost(b) the location of block b is unknown

arm_busy(a, action) arm a is in use by action node action

arm_res(a, action) arm a is reserved by action node action

Differences in State

The following three tables describe differences in state between the ideal world and the real world
which the monitor can detect and for which it can diagnose causes. In turn, the replanning part of the
planner can replan for each of these possible differences in state.

Possible Differences in the State of a Block
Ideal State Real State
block is at loc, block is at /oc,
block held by arm a block is at loc,
block is at loc, block held by arm a

Possible Differences in the State of a Grid Location

Ideal State Real State
unoccupied occupied by an arm with an empty, closed hand
unoccupied occupied by an arm with an empty, open hand
unoccupied occupied by an arm holding a block
unoccupied occupied by a block

occupied by an arm with an empty, closed hand || unoccupied
occupied by an arm with an empty, open hand unoccupied
occupied by an arm holding a block unoccupied
occupied by a block unoccupied

In the following table one will not see any states in which a hand is open and is holding a block.
The two states, hand open and holding a block, are mutually exclusive.
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Possible Differences in the State of an Arm

Ideal State Real State
Location | Holding | Hand || Location | Holding | Hand
loc, no open || loc, no closed
loc, no open || loc, yes closed
loc, no closed [} loc, no open
loc, no closed || loce yes closed
loc, yes closed || loc, no open
joc, yes closed || loc. no closed
loc, no open || locy no open
loc, no open || locy no closed
loc, no open || locy yes closed
loc, no closed || locy no open
loc, no closed || locy no closed
loc, no closed || locy yes closed
loc, yes closed || locy no open
loc, yes closed || locy no closed
loc, yes closed || loc, yes closed
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