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Median and Low-Flow Characteristics for Streams under
Natural and Diverted Conditions, Northeast Maui, Hawaii

By Stephen B. Gingerich

Abstract

Flow-duration statistics under natural (undiverted)
and diverted flow conditions were estimated for gaged and
ungaged sites on 21 streams in northeast Maui, Hawaii. The
estimates were made using the optimal combination of con-
tinuous-record gaging-station data, low-flow measurements,
and values determined from regression equations developed as
part of this study. Estimated 50- and 95-percent flow duration
statistics for streams are presented and the analyses done to
develop and evaluate the methods used in estimating the statis-
tics are described. Estimated streamflow statistics are pre-
sented for sites where various amounts of streamflow data are
available as well as for locations where no data are available.

Daily mean flows were used to determine flow-duration
statistics for continuous-record stream-gaging stations in the
study area following U.S. Geological Survey established stan-
dard methods. Duration discharges of 50- and 95-percent were
determined from total flow and base flow for each continuous-
record station. The index-station method was used to adjust
all of the streamflow records to a common, long-term period.
The gaging station on West Wailuaiki Stream (16518000)
was chosen as the index station because of its record length
(1914-2003) and favorable geographic location. Adjustments
based on the index-station method resulted in decreases to the
50-percent duration total flow, 50-percent duration base flow,
95-percent duration total flow, and 95-percent duration base
flow computed on the basis of short-term records that aver-
aged 7, 3, 4, and 1 percent, respectively.

For the drainage basin of each continuous-record gaged
site and selected ungaged sites, morphometric, geologic, soil,
and rainfall characteristics were quantified using Geographic
Information System techniques. Regression equations relating
the non-diverted streamflow statistics to basin characteristics
of the gaged basins were developed using ordinary-least-
squares regression analyses. Rainfall rate, maximum basin
elevation, and the elongation ratio of the basin were the basin
characteristics used in the final regression equations for 50-
percent duration total flow and base flow. Rainfall rate and
maximum basin elevation were used in the final regression
equations for the 95-percent duration total flow and base flow.
The relative errors between observed and estimated flows
ranged from 10 to 20 percent for the 50-percent duration total
flow and base flow, and from 29 to 56 percent for the 95-per-
cent duration total flow and base flow.

The regression equations developed for this study were
used to determine the 50-percent duration total flow, 50-per-
cent duration base flow, 95-percent duration total flow, and
95-percent duration base flow at selected ungaged diverted and
undiverted sites. Estimated streamflow, prediction intervals,
and standard errors were determined for 48 ungaged sites in
the study area and for three gaged sites west of the study area.
Relative errors were determined for sites where measured
values of 95-percent duration discharge of total flow were
available. East of Keanae Valley, the 95-percent duration dis-
charge equation generally underestimated flow, and within and
west of Keanae Valley, the equation generally overestimated
flow. Reduction in 50- and 95-percent flow-duration values
in stream reaches affected by diversions throughout the study
area average 58 to 60 percent.

Introduction

For more than a century, surface-water diversion systems
have transported water from the wet, northeastern part of
Maui, Hawaii, to the drier, central part of the island, mainly
for large-scale sugarcane cultivation. Since the 1930’s, the Ter-
ritory and then the State issued water permits to Alexander and
Baldwin, Inc., Hawaiian Commercial and Sugar Co., and East
Maui Irrigation Co., Ltd. (EMI), for the diversion of water
from streams in northeast Maui. The collection system con-
sists of 388 separate intakes, 24 miles of ditches, and 50 miles
of tunnels, as well as numerous small dams, intakes, pipes, and
flumes (Wilcox, 1996). With few exceptions, the diversions
capture all of the base flow, which represents the ground-water
contribution to total streamflow, and an unknown percentage
of total streamflow at each stream crossing. During 1925-97,
total flow for the diversion systems measured at Honopou
Stream, to the west of the study area where records of total
diversion-system flow are most complete, averaged about 163
Mgal/d (million gallons per day) (Gingerich, 1999). The high-
est average flow for an individual ditch system was measured
in the Koolau/Wailoa Ditch system, where total flow cross-
ing Honopou Stream averaged 110 Mgal/d for 1924-87. The
source of diverted water is a watershed with an area of about
56,000 acres, about two-thirds of which is owned by the State
(Wilcox, 1996) and managed by the State Department of Land
and Natural Resources.

The Hawaii State Water Code mandates that the Com-
mission on Water Resource Management (CWRM) establish
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a statewide instream-use protection program (Chapter 174C-
71, Hawaii Revised Statutes). The principal mechanism that
CWRM has for the protection of instream uses is establishing
instream flow standards. “Each instream flow standard shall
describe the flows necessary to protect the public interest in
the particular stream. Flows shall be expressed in terms of
variable flows of water necessary to protect adequately fishery,
wildlife, recreational, aesthetic, scenic, or other beneficial
instream uses in the stream in light of existing and potential
water developments including the economic impact of restric-
tion of such use” (Chapter 174C-71, Hawaii Revised Statutes).
CWRM has recognized certain instream uses as beneficial,
including: (1) maintenance of fish and wildlife habitat, (2)
outdoor recreational activities, (3) maintenance of ecosys-
tems such as estuaries, wetlands, and stream vegetation, (4)
aesthetic values such as waterfalls and scenic waterways, (5)
maintenance of water quality, (6) conveyance of irrigation

and domestic water supplies to downstream points of diver-
sion, and (7) protection of traditional and customary Hawaiian
rights.

The U.S. Geological Survey, in cooperation with CWRM
and in collaboration with the Maui Department of Water Sup-
ply, the Hawaii State Board of Land and Natural Resources,
and East Maui Irrigation Co., Ltd., undertook an investigation
to assist in determining equitable, reasonable, and beneficial
instream and off-stream uses of the surface-water resources of
northeast Maui. The overall objectives of the 3-year study are
to (1) assess the effects of existing surface-water diversions on
flow characteristics for perennial streams in northeast Maui,
(2) characterize the effects of diversions on instream tempera-
ture variations, and (3) estimate the effects that streamflow
restoration (full or partial) will have on habitat availability
for native stream fauna (fish, shrimp, and snails) in northeast
Maui. Scientific information generated by the overall study
will allow CWRM to complete its work on documenting water
rights and uses associated with northeast Maui streams and
analyzing the economic effects of curtailing existing uses
on the streams, and to then establish technically defensible
instream flow standards for those streams.

Purpose and Scope

This report addresses objective 1 described above. This
report presents selected estimated flow-duration statistics for
streams in northeast Maui, Hawaii, and describes the analyses
done to develop and evaluate the methods used in estimating
the statistics. Estimated streamflow statistics are presented for
sites where various amounts of streamflow data are available
and for locations where no data are available. Morphometric,
hydrologic, and geologic basin characteristics are provided for
each stream basin in the study area. Equations used to estimate
the 50- and 95-percent duration flows of total streamflow and
stream base flow at ungaged locations are presented. An evalu-
ation of the accuracy of the equations and limitations for their
use is also provided. Most-reliable estimates of streamflow
statistics for natural (undiverted) and unnatural (diverted) sites
on 21 streams and the basis for these estimates are provided.

The statistics for undiverted and diverted flow were compared
to assess the effects of existing surface-water diversions on
flow characteristics for perennial streams in northeast Maui.

Description of Study Area

The study area lies on the northern flank of the East
Maui Volcano (Haleakala), which forms the eastern part of
the island of Maui, the second-largest island in the Hawai-
ian archipelago. The study area, covering about 67 mi2, is
bounded to the north by about 11 mi of coastline and lies
between (and includes) the drainage basins of Kolea Stream
to the west and Makapipi Stream to the east (fig. 1). Land-sur-
face altitudes range from sea level to 10,000 ft at the summit
of Haleakala. The topography is gently sloping except for the
steep sides of gulches and valleys that were eroded by the
numerous streams. The largest valley is Keanae Valley, which
extends from the coast to Haleakala Crater where the valley
walls are nearly 1,000 ft high. Most of the study area is made
up of forest reserves; at intermediate altitudes, rain forests
densely cover the slopes up to about 7,000 ft. Grasses and
shrubs cover the upper slopes to the north wall of Haleakala
Crater. Two small villages (Keanae and Wailua) are at low alti-
tudes along the coast at the mouth of Keanae Valley. Land use
around the villages is mainly small-scale agriculture, including
wetland taro cultivation.

Streams flow generally south to north from the high
altitude flank of Haleakala to the coast. Twenty-two named
streams reach the coast in the study area. Access to streams is
made difficult by the steep rugged terrain of the incised stream
valleys and dense native and non-native vegetation. Rainfall
is highly orographic and rates average between about 45 in/yr
at the summit of Haleakala to greater than 350 in/yr at about
2,500-ft altitude. Rainfall at the coast ranges from 120 to 160
in/yr (Giambelluca and others, 1986).

Previous Studies

Low-flow duration statistics have not previously been
estimated specifically for ungaged streams in the study area of
northeast Maui. Fontaine and others (1992) developed regres-
sion equations (one for Oahu, Molokai, and Hawaii, and one
for Maui and Kauai) to estimate median flows at ungaged,
unregulated, perennial streams in the State. Data from gaging
stations on ten streams in the northeast Maui study area were
used in developing the median-flow equations. Hirashima
(1965) and Matsuoka (1983) computed flow statistics for gag-
ing stations throughout the State of Hawaii, including some
stations in the study area. Yamanaga (1972) developed regres-
sion equations for low-flow frequency to describe annual
minimum 7-day and 30-day mean flows at 2- and 20-year
recurrence intervals using data from selected windward and
leeward gaged basins across the State, including 14 stations in
the current study area. The equations and flow-duration statis-
tics presented in this report supersede any previously reported
equations or flow-duration statistics. Gingerich (1999)
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described the ground-water occurrence and contribution to
streamflow for northeast Maui covering an area encompass-
ing the current study area. That report detailed the amount of
streamflow, base flow, and surface-water diversions in streams
and gave detailed descriptions of low-flow measurements
made in many of the streams in the current study area.

Numbering System for Surface-Water Gaging
Stations

The surface-water gaging stations mentioned in this
report are numbered according to the USGS “downstream
order” numbering system. Station numbers increase in a
downstream direction along the main stream. All stations on
a tributary entering upstream from a mainstream station have
lower station numbers. A station on a tributary that enters
between two mainstream stations is given a number between
those two station numbers. In this report, the complete 8-digit
downstream-order number for each gaging station has been
abbreviated to the middle four digits, for example, 16518000
becomes 5180.
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Streamflow Characteristics at
Continuous-Record Stream-Gaging
Stations

Values of daily mean flow are used to determine total
streamflow and base flow flow-duration statistics for continu-
ous-record stream-gaging stations. The USGS has operated 16
continuous-record stream-gaging stations for various periods
at unregulated sites in or near the northeast Maui study area
since 1910 (Fontaine, 1996), although only two of these sta-
tions (station 5080 on Hanawi Stream near Nahiku and station
5180 on West Wailuaiki Stream near Keanae) are currently
active (Plate 1, table 1). In addition, records from 17 continu-
ous-record stream-gaging stations on regulated sites are avail-
able for analysis.

The USGS established standard methods for estimating
flow-duration statistics for stream-gaging stations (Searcy,
1959). A flow-duration curve is a graphical representation of
the percentage of time streamflows for a given time interval
(usually daily) are equaled or exceeded over a specified period

at a stream site (fig. 2). Flow-duration curves are constructed
by first ranking all of the daily mean discharge values for

the period of record at a gaging station, next computing the
probability of each value being equaled or exceeded, and

then plotting the discharges against their associated exceed-
ance probabilities. Flow-duration statistics are points along
the flow-duration curve. For example, the 50-percent duration
streamflow (or median streamflow; Q) has been exceeded 50
percent of the time during the specified period. Flow-duration
statistics reflect streamflow conditions only for the period of
record for which they were calculated. If the period of record
analyzed is sufficiently long, the flow-duration statistics can be
considered an indicator of probable future conditions (Searcy,
1959). In an analysis of the data from five long-term stream
gages on Oahu, the median discharge determined from a 10-yr
streamflow record had a standard error of 15 percent, whereas
the standard error for the median discharge determined from a
50-yr record improved to 6 percent (Fontaine, 1996).

At three regulated gaging stations (5090, 5110, and
5210), total unregulated streamflow was calculated by adding
the daily flows for the gaging station of interest to the cor-
responding daily flows for an upstream gaging station on the
same stream but above the 1,300-ft (Koolau Ditch) diver-
sion (the flows at stations 5080, 5100, and 5190 plus 5200,
respectively). Flow-duration statistics were then calculated
using the combined record. This technique is appropriate for
estimating the low flows of interest in this study because the
diversion captures all low flows much greater than the value of
the median total flow, TFQ,, so that the downstream gaging
station on each stream measures only that flow gained below
the diversion. Combined flows at the downstream gaging sta-
tion estimated from this technique are incorrect only when the
diversion is overtopped, which is generally 20 to 30 percent of
the time.

The assumption that the diversion systems within the
1,700- to 1,200-ft altitude interval intercept all low stream-
flows up to at least the TFQ, is based on measurements made
at four stream diversions in the study area. The overtopping
discharges in the four monitored streams were significantly
greater than the TFQ,  discharge for each stream. These sites
are separated into two categories: (1) sites on West Wailuaiki
and Hanawi Streams where water levels at the diversion struc-
tures and streamflow were measured concurrently at active
continuous-record gaging stations, and (2) sites on Waikamoi
and Honomanu Streams, where water levels at the diversion
structures were measured concurrently with water levels at
staff plates from former continuous-record gaging stations
(fig. 3). At all four sites, submersible transducers were used
to monitor the water level in the stream every 15 minutes rela-
tive to the crests of the diversion dams preventing water from
flowing further downstream. When a transducer indicated that
the water level was higher than the crest of the diversion dam,
it was assumed that water was flowing downstream past the
diversion dam. When the transducer indicated that the water
level was lower than the crest of the diversion dam, it was
assumed that all flow in the stream was captured by the diver-
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Table 1. Continuous-record surface-water gaging stations operated by the U.S. Geological Survey, northeast Maui, Hawaii.

[Abbreviated station numbers are highlighted in bold; active station locations are shown in bold italics]

Gaging- Station altitude Low flow

station Station location Period of record (feet) regl_llated during

number period of record
16507000 Makapipi Stream 1932-45 920 Yes
16508000 Hanawi Stream 1914-15, 1921-Present 1,318 No
16509000 Hanawi Stream 1932-47, 1992-95 500 Yes
16510000 Kapaula Gulch 1921-63 1,346 No
16511000 Kapaula Gulch 1932-47 540 Yes
16513000 Waiaaka Stream 1932-47 650 Yes
16514000 Paakea Gulch 1932-47 650 Yes
16515000 Waiohue Gulch 1921-63 1,316 No
16516000 Kopiliula Stream 1914-17, 1921-1958 1,292 No
16517000 East Wailuaiki Stream 1914-17, 1922-58 1,329 No
16518000 West Wailuaiki Stream 1914-17, 1921-Present 1,343 No
16519000 West Wailuanui Stream 1914-17, 1921-58 1,268 No
16520000 East Wailuanui Stream 1914-17, 1921-58 1,287 No
16521000 Wailuanui Stream 1932-36, 1938-47 620 Yes
16522000 Palauhulu diversion ditch to Keanae® 1934-68 51 Yes
16524000 Honomanu Stream 1921-27, 1932-34, 1962-68 2,900 No
16527000 Honomanu Stream 1914-17, 1921-64 1,733 No
16531000 Kula diversion from Haipuaena Stream 1946-68 4,320 Yes
16531100 Haipuaena Stream 1946-68 4,320 Yes
16535000 Haipuaena diversion ditch to Kolea Stream 1938-60 1,866 Yes
16536000 Haipuaena Stream 1946-60 1,512 Yes
16542000 East Branch Puohokamoa Stream 1921-27, 1931-33 2,800 No
16543000 Middle Branch Puohokamoa Stream 1921-27, 1932-34, 1962-69 2,900 Yes
16544000 West Branch Puohokamoa Stream 1921-28, 1932-34 2,800 Yes
16545000 Puohokamoa Stream 1914-17, 1921-71 1,322 Yes
16552800 Waikamoi Stream 1953-68 4,487 Yes
16554000 Waikamoi Stream 1921-28, 1932-34 3,000 Yes
16554500 East Branch Waikamoi Stream 1921-28, 1932-33 3,020 Yes
16555000 Waikamoi Stream 1922-57 1,294 Yes
16556000 Waikamoi Stream 1914-17, 1921-22 1,150 Yes
16557000 Alo Stream 1914-17, 1921-57 1,248 No
16565000° Kaaiea Gulch 1921-62 1,310 No
16566000° Oopuola Stream 1930-57 1,205 No
165700000 Nailiihaele Stream 1910-11, 1913-75 1,205 No
16577000° Kailua Stream 1910-11, 1913-58 1,253 No

*USGS station previously published as “Taro patch feeder ditch at Keanae, Maui”
®Jocated west of current study area
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Flow-duration curves of total streamflow and base flow at gaging station

5180 on West Wailuaiki Stream, northeast Maui, Hawaii, for period 1914-2002.

sion and the stream was dry immediately downstream of the
diversion.

At West Wailuaiki and Hanawi Streams, the water
levels were compared with discharge determined from stage
measurements made every 15 minutes at the active continu-
ous-record gaging stations upstream (stations 5180 and 5080,
respectively). Relation plots of water level and stream dis-
charge show the range of discharges at which the diversion
dam is overtopped and flow continues downstream. For West
Wailuaiki Stream, the overtopping is initiated at discharge
ranging from 20 to 30 ft*/s (TFQ,, to TFQ,, on the basis of
the flow-duration plot in fig. 2). In other words, streamflow
does not pass the diversion dam at 1,300 ft on West Wailuaiki
Stream roughly 70 to 80 percent of the time. On Hanawi
Stream, the overtopping discharge ranges from 15 to 30 ft¥/s
(TFQ, to TFQ on the basis of the flow-duration plot for
station 5080 discussed later in fig. 7). Streamflow does not
pass the dam at 1,300 ft on Hanawi Stream roughly 75 to 85
percent of the time.

At Honomanu and Waikamoi Streams, the water levels
relative to the crests of the diversion dams were compared to
water levels collected every 15 minutes at staff plates bolted
into the bedrock in former gaging station pools upstream from
the dams. Ratings for these staff plates are available from the
U.S. Geological Survey archives for the time when the stations
were discontinued in 1957. Although some erosion on the
bedrock and concrete controls at these former gaging stations
was observed, the assumption was made that the ratings for
staff plates would still provide a reasonable range of flow
estimates in the stream to estimate the overtopping discharge.
At Honomanu Stream, the overtopping discharge ranges from

15 to 18 ft*/s (TFQ,, to TFQ,, on the basis of the flow-dura-
tion plot for station 5270 discussed later in fig. 7). Therefore,
streamflow does not pass the diversion dam at 1,720 ft on
Honomanu Stream roughly 75 to 78 percent of the time. On
Waikamoi Stream, where the water level-discharge relation
recorded is more variable, the overtopping discharge is at least
25 ft'/s (TFQ,, on the basis of the flow-duration plot for sta-
tion 5550 discussed later in fig. 7). Streamflow does not pass
the diversion dam at 1,200 ft on Waikamoi Stream roughly 80
percent of the time.

The technique used to determine the combined median
and low-flow statistics for a gaging station downstream of the
major diversion can be illustrated by using data from Hanawi
Stream. From gaging station 5080, upstream of the Koolau
diversion, TFQ_ is 7.1 ft¥/s (table 2) and from gaging station
5090, downstream of the Koolau diversion and several spring
inflows, TFQ50 is 22 ft*/s. Because the Koolau Ditch captures
at least 15-30 ft*/s at Hanawi Stream near 1,300 ft altitude,
the median flows measured at gaging station 5090 are only
those flows gained downstream of the Koolau diversion. The
combined TFQ,, at gaging station 5090 is estimated to be 29
ft3/s (7.1 + 22 ft¥/s). Median and low-flow statistics for 5090
were generated in two ways, from combined daily flows at
the two stations and by adding the statistics calculated from
each station’s daily flows individually (Table 3). The results
of each calculation compare favorably, indicating that, for the
study area, flow statistics for sites on gaining streams above
and below the major diversion can be estimated by adding the
statistics for each site. For the three stations in the study area
(5090, 5110, and 5210), the value determined from adding
the flow statistics was always less than the value determined
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Streamflow Characteristics at Continuous-Record Stream-Gaging Stations 1"

by first combining the concurrent daily flows, but the relative
error in the value determined from adding the flow statistics
was less than or equal to 10 percent in each case.

On Haipuaena Stream (plate 1), gaging station 5310
recorded diverted flow into the Upper Kula Pipeline near
4,300 ft altitude, and gaging station 5311 recorded streamflow
past the diversion (Fontaine, 1996). These two records were
added together to obtain the total streamflow at this altitude.
Further downstream, flow diverted in Kolea Stream was
measured at gaging station 5350. This flow was added to that
at gaging station 5360 (1,512 ft altitude) upstream of Spreck-
els Ditch and gaging station 5310 to obtain a value for total
streamflow at 1,512 ft altitude.

Gingerich (1999) used a computerized base-flow separa-
tion method described by Wahl and Wahl (1995) to estimate
the base-flow component of streamflow for northeast Maui
streams. Two variables, N (number of days) and f (turning-
point test factor) must be assigned values in the method. The
method divides the daily streamflow record into non-overlap-
ping N-day periods and determines the minimum flow within
each N-day window. If the minimum flow within a given N-
day window is less than f times the minimums in the adjacent
N-day windows, then the central window minimum is made
a turning point on the base-flow hydrograph. Wahl and Wahl
(1995) recommend a value of 0.9 for the turning-point test fac-
tor for most applications. The value of N determined for each
stream is shown in table 2 of Gingerich (1999). A base-flow-
duration curve can than be constructed using the daily base-
flow data (fig. 2).

Streamflow records generally are adjusted to a common
base period for comparison so that differences in flow among
stations reflect spatial differences in climate and drainage-
basin characteristics and not simply temporal differences
in rainfall. Flow-duration curves based on short records are
unreliable for predicting the future flow pattern, but they can
be made more reliable by adjusting them to represent longer
periods. The index-station method described in Searcy (1959)
was used to adjust all of the streamflow records used in this
analysis to a common period (called the base period).

Index station selection

The two currently active continuous-record gaging sta-
tions (5180 on West Wailuaiki Stream and 5080 on Hanawi
Stream) are the obvious candidates for index stations in this
study. Both have been operated nearly continuously from 1914
to the present (2004), with a break during 1918-1920. The
median total (TFQ, ) and median base flow (BFQ, ) for gag-
ing station 5180 are 10 ft*/s and 6.0 ft*/s, respectively, and the
TFQ,, and BFQ, for gaging station 5080 are 7.1 ft¥/s and 4.6
ft¥/s, respectively (fig. 4 and table 2).

The records for gaging-stations 5180 and 5080 appear
to have long-term downward trends in annual median total
flow and base flow during the period 1914—present (fig. 4)
and a Kendall’s Tau trend test (Helsel and Hirsch, 1992) on

those flow statistics confirms such a trend (table 4). Rather
than decreasing monotonically, the flow might actually have
decreased in a stepwise manner, and examination of figure

4 indicates that such a stepwise decrease may have occurred
about 1941-42. The median total flow at gaging station 5180
during 1914-42 was 14 ft%/s, and after 1942 was 9.6 ft/s.
Analysis of a subset of the data, for the period 1942-2001,
shows no statistical trend in median streamflow after the indi-
cated earlier stepped decrease in flow (table 4). No obviously
apparent reason exists for such a stepped decrease in median
total flow and base flow about 1941-42. Such stepped changes
in flow trends are typically caused by changes in a watershed
such as reforestation or by the addition of a streamflow diver-
sion but there is little evidence that these factors caused the
changes in flow at stations 5180 (on West Wailuaiki Stream)
and 5080 (on Hanawi Stream). Helsel and Hirsch (1992)
strongly caution against performing step-trend analysis with-
out prior knowledge of an event that would contribute to such
a change in streamflow. Additionally, rainfall records for this
area do not cover the entire period of streamflow record so it
is not possible to determine if rainfall patterns have changed
similarly to the flow. Therefore, flow statistics for these sta-
tions were calculated on the basis of the entire period of record
with no adjustments made for monotonic or step-wise trends
in the data.

Gaging station 5180 on West Wailuaiki Stream is favor-
ably located geographically as an index station, because it is
near the center of the study area, whereas gaging station 5080,
on Hanawi Stream, is at the eastern end of the study area.
Therefore, all adjustments of streamflow characteristics to a
common base period for the continuous-record stations were
made using only gaging station 5180 as the index station. The
record for gaging station 5080 was not adjusted because the
record was the same length as the index-station base period.

Adjustments to streamflow characteristics for a
common period using the index-station method

Relations between the index station and each shorter-term
record at the other gaging stations were developed using the
following steps (Searcy, 1959):

1. Flow-duration curves were developed for the station
with a short-term record and the index-station record
for concurrent periods of record.

2. Discharges for 13 flow-duration points, ranging from
1 to 99 percent, at the short-term station were plotted
on logarithmic scales against the same flow-duration
points at the index station.

3. A line or smooth curve was drawn through the points.
The upper part of the line is typically a 45-degree line
parallel (assuming 1 log cycle on x-axis is same length
as 1 log cycle on y-axis) to lines of equal yield (drain-
age-area ratio) and equal flow (rainfall ratio) if the
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streams have similar high flow characteristics. Devia-
tion from the line at the lower points is commonly an
indication of different geologic characteristics that
effect low flows between the stream basins.

4. The adjusted discharges at the various flow-duration
points for the short-term station are graphically deter-
mined from the plot using the corresponding flow-
duration points from the index station for the entire
period of record (base period) of the index station.

For example, selected flow-duration points for total
flow and base flow at gaging station 5170 on East Wailuaiki
Stream, which was operated during 1914—17 and 1922-58, are
plotted against the flow-duration points for the index station
(5180) during the same period on logarithmic axes (fig. 5) and
smooth fitting lines are drawn through the points. Matching
base period flow-duration points are determined from the rela-
tion plot (e.g. base period TFQ, at station 5180 = 10 ft*/s and
adjusted TFQ,, at station 5170 = 9.0 ft¥/s; base period TFQ,,
at station 5180 = 2.5 ft*/s and adjusted TFQ,, at station 5170 =
2.8 ft*/s) and then plotted to determine the adjusted flow-dura-
tion curve for station 5170 (fig. 6). Similar relation plots and
adjusted flow-duration curves were computed for 26 continu-
ous-record gaging stations for streams in the study area (fig.
7).

The adjusted Q,, and Q,; statistics for total flow and base
flow for the 26 stations are listed in table 2. Adjustments to
TFQ,, ranged from a 17-percent increase (station 5528) to a
53-percent decrease (station 5560), and averaged a 6-percent
decrease. Adjustments to TFQ,, ranged from a 20-percent
increase (station 5440) to a 40-percent decrease (stations 5310
+ 5311) and averaged a 5-percent decrease. Adjustments to
BFQ50 ranged from a 20-percent increase (station 5528) to a
29-percent decrease (station 5560) and averaged a 4-percent
decrease. Adjustments to BFQ,, ranged from a 44-percent
increase (station 5540) to a 50-percent decrease (station 5528)
and averaged a 1-percent decrease. In general, the largest
adjustments were needed for stations with the shortest record
lengths.

The point on the total flow-duration curve at which
streamflow is equivalent to median base flow provides added
information about the ground-water contribution to stream-
flow. BFQ,, ranges from 56 percent to 78 percent on the total
flow-duration curve for the gaged basins and averages 70 per-
cent (table 5). BFQ, ranges from 95 percent to 98 percent on
the total flow duration curve for the gaged basins and averages
96 percent. Gaging stations east of the index station on West
Wailuaiki Stream all have the same or higher rainfall-normal-
ized low flow relative to the index station, indicating a higher
ground-water contribution to these streams. The mapped
springs that contribute to the low flows in these streams are
listed in the “Comments” column in table 5. Gaging stations
west of the index station generally have the same or lower
rainfall-normalized low flows relative to the index station,
indicating that the ground-water contribution to streamflow
is relatively less to the west. The effects of minor upstream

diversions in this area also are apparent from the relatively
lower low-flows measured at the gaging stations.

Estimation of Flow Characteristics of
Ungaged Streams

Multiple linear-regression analysis is a standard tech-
nique used to develop equations for estimating streamflow
statistics for ungaged sites (Koltun and Schwartz, 1986;
Vogel and Kroll, 1990; Ludwig and Tasker, 1993; Ries and
Friesz, 2000). In this study, a selected streamflow statistic
(the duration discharges TFQ, , TFQ,,, BFQ,,, or BFQ,,) at
unregulated, gaged sites was the dependent variable and the
quantified basin characteristics, rainfall rates, and surficial
geologic units were the independent variables used as input
in the regression analysis. The regression analysis statistically
relates the dependent variable to the independent variables and
results in an equation that can be used to estimate the selected
streamflow statistic for a site where no streamflow data are
available. The goal of the regression algorithm is to minimize
the differences between the values of the dependent variable
used in the analysis (observed values) and the corresponding
values provided by the regression equations (estimated or fit-
ted values).

Drainage-Basin Characteristics

For the drainage basin of each continuous-record gaged
site and selected ungaged sites, the morphometric, geologic,
and rainfall characteristics were quantified using Geographic
Information System (GIS) techniques.

Morphometric characteristics

Drainage basins were delineated on the basis of 10-meter
digital elevation model (DEM) data and the GIS program
GISWeasel (U.S. Geological Survey, 2004). The drainage
basins thus delineated (plate 1) were checked against existing
manually determined drainage-basin boundaries for gaged
sites to ensure the reliability of the computerized delineation
routine. Minor adjustments were made to the boundaries of
those drainage basin for which the computer-delineated drain-
age area differed from the manually determined drainage area
by more than 5 percent (Chiu Yeung, U.S. Geological Survey,
written commun., 2003). The GIS program Basinsoft (Harvey
and Eash, 1996) was used to quantify basin characteristics
considered in the regional regression analysis. Basinsoft uses
GIS data layers of drainage divides, hydrography, and a digital
elevation model to automatically and efficiently quantify 22
morphometric characteristics for each drainage basin selected.
These characteristics are described in Appendix A. Computed
basin characteristics for the gaged basins are listed in Table
6 and those for selected ungaged basins are listed in table 7.
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1,000

100

DISCHARGE AT GAGING STATION 5170,
IN CUBIC FEET PER SECOND

———- Total flow, unadjusted
———- Base flow, unadjusted
Total flow, adjusted
Base flow, adjusted

1 10 30

50 70 90 99

PERCENTAGE OF TIME INDICATED DISCHARGE WAS
EQUALED OR EXCEEDED

Figure 6.

Unadjusted and adjusted flow-duration curves of total streamflow and

base flow at gaging station 5170 on East Wailuaiki Stream, northeast Maui, Hawaii.

The ungaged basins are denoted by an abbreviation for the
stream name followed by a U, M, or L for upper, middle, or
lower locations on the stream (plate 1). These three locations
on each stream roughly correspond to the following settings:
(U) upstream of the main diversion ditch at around 1,700- to
1,200-ft altitude; (M) roughly 600- to 500-ft altitude; and (L)
near the stream mouth. These locations were chosen to help
meet the goals of objective 3 of this study regarding the habitat
available in the stream for native species.

Hydrologic and geologic characteristics

Average yearly total rainfall rates for each drainage basin
were determined using GIS techniques by overlaying the
drainage-basin boundaries on a map of mean annual rainfall
isohyets from Giambelluca and others (1986) (fig. 8). The
overlying GIS layers created polygons that were assigned
rainfall rates, in inches per year, equal to the average of the
two bounding isohyets of each polygon. Each polygon area, in
square feet, was multiplied by the assigned rainfall rate, after
converting the rainfall rate to feet per second, to determine a
volume rainfall rate, in cubic feet per second, for each poly-
gon. Final rainfall rates were then determined by summing
the rainfall volumes in a basin. In areas of equal rainfall rates,
larger drainage basins would have larger total rainfall volumes
and smaller drainage basins would have smaller total rainfall
volumes. Average annual rainfall rates in the gaged basins
ranged from 1.3 to 76 ft¥/s (table 6). Average annual rainfall
rates in the ungaged basins ranged from 1.9 to 192 ft*/s (table
7).

Distributions of surficial geologic units in each gaged
drainage basin were determined from a digital geology map by
Sherrod and others (2003) (fig. 9). Three geologic units were
considered, the Honomanu Basalt, the Kula Volcanics, and the
Hana Volcanics (table 6). The percentage of each unit in the
basin was determined by dividing the area of each unit in the
basin by the total basin area and multiplying the result by 100.
Only two gaged basins contained surficial exposures of Hono-
manu Basalt, both having less than 1 percent of the total area
of each basin, so only Kula and Hana Volcanics were included
in the following analysis.

Development of regression equations

Linear equations generated by use of regression analysis
have the general form

Y=b+bX,+b,X,+...+bX,+¢, (1)

where Y, is the estimate of the dependent variable for

site i, X, to X are the n independent variables, b, to b are the
n+1 regression model coefficients, and ¢, is the residual error
(difference between the observed and estimated value of the
dependent variable for site i). Regression analysis results must
be evaluated to make sure that the following assumptions are
met: (1) equation 1 adequately describes the relation between
the dependent and independent variables, (2) the mean of ¢,
is zero, (3) the variance of ¢, is constant and independent of
the value of X , (4) values of ¢, are normally distributed, (5)
values of ¢, are independent of each other, (6) all independent
variables selected are statistically significant at the 5-percent
level, (7) independent variables are not correlated, and (8) the
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Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki

Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base

flow.
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Figure 7. Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki
Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base
flow—Continued.
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Figure 7. Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki
Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base
flow—Continued.
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Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki
Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base
flow—Continued.
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Figure 7. Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki
Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base
flow—Continued.
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Figure 7. Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki
Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base
flow—Continued.
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Figure 7. Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki
Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base
flow—Continued.
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Figure 7. Correlation of flows at selected gaging stations in northeast Maui, Hawaii with flow at index station 5180 (West Wailuaiki
Stream) based on discharge of equal percentage duration and unadjusted and adjusted duration curves of total streamflow and base
flow—Continued.
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signs and magnitudes of the coefficients determined for the
significant, independent variables are hydrologically reason-
able (Fontaine and others, 1992; Iman and Conover, 1983, p.
367).

Streamflow and basin characteristics used in hydrologic
regression usually are log-normally distributed; therefore, the
variables must be transformed to logarithms to satisfy regres-
sion assumption 2. The dependent and independent variables
were transformed using log-base 10 units. Where values of
percent coverage of Kula Volcanics were 0 percent, they were
set to 1 percent before log transformation.

Ordinary-Least-Squares (OLS) regression analysis was
used to develop the equations presented in this report. Because
streamflow data are correlated spatially and in time, assump-
tion 5 for use of regression is not strictly satisfied. A theoreti-
cally more appropriate method, Generalized-Least Squares
(GLS) regression, was developed by Tasker and Stedinger
(1989) to allow weighting to compensate for length-of-record
and spatial correlations. However, Vogel and Kroll (1990)
found that the equation parameters (b, to b ) were nearly
identical when either OLS or GLS was used to develop the
equation, even though OLS does not correct for length-of-
record or spatial differences. Ries and Friesz (2000) used
Weighted-Least-Squares (WLS) regression analysis to predict
duration flows because WLS can compensate for length-of-
record differences. They found that equations developed using
WLS and GLS methods were nearly identical. Because the
streamflow statistics used in the development of the equations
in this report were adjusted to equivalent lengths of record,
and the spatial correlations between gaged basins in the study
area are relatively insignificant, OLS regression analysis was
determined to be the most appropriate for this study.

Regression assumption 7 was addressed by removing
independent variables having high correlation (> 90 percent)
with several other independent variables in the analysis. For
example, Drainage Area (DA) was highly correlated with Total
Stream Length (98 percent), Basin Relief (94 percent), Rain-
fall (93 percent), and Basin Width (91 percent), and therefore
DA was removed from further analysis. Other basin charac-
teristics removed from further consideration because of high
correlations were Basin Perimeter (BP), Rotundity of Basin
(RB), and Main Channel Length (MCL).

A variable-selection algorithm was applied to the remain-
ing independent variables to aid in determining which com-
bination of independent variables provides the best estimates
of the dependent variables. The algorithm used was a leaps-
and-bounds implementation with Mallow’s Cp as the selec-
tion criterion (Insightful Corporation, 2002). Subsets of the
independent variables were evaluated and ranked according to
the lowest value of Mallow’s Cp for each subset of 1,2, 3 ...
n independent variables. The subsets of 1, 2, 3, and 4 inde-
pendent variables having the lowest Mallow’s Cp were then
further analyzed using OLS regression to select a final model
for each statistic.

During equation development, several gaging stations
were eliminated from the analysis because (1) the sites were
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known outliers on the basis of observed hydrologic differ-
ences or (2) plots of Cook’s distance (Draper and Smith, 1998)
indicated that the flow statistics for a particular gaging station
were statistically biasing the results. Gaging stations elimi-
nated for hydrologic reasons prior to the Mallow’s Cp analysis
were stations 5070, 5311, and 5528 (intermittent streams);
station 5090 (has anomalous spring input); and stations 5110,
5130, 5140, and 5210 (regulated streams). Gaging stations
5240 and 5420 were eliminated because of high Cook’s dis-
tance values determined during the analyses. The final number
of gaging stations from which data were used to develop the
equations was 17 (n = 17).

The final models were selected on the basis of the fol-
lowing parameters: (1) Mallow’s Cp statistic; (2) R?, the
proportion of total variation about the mean explained by the
regression; (3) SE, the average standard error of the estimates;
and (4) Pr (>|t]), the probability of significance for an indepen-
dent variable in the regression. Pr (>[f]) had to be lower than 5
percent for each independent variable used in the regression
model for that independent variable to be included.

The retransformed regression equations are biased
because they predict the median rather than the mean response
of the dependent variable. In the case of streamflow data,
the median tends to be lower than the mean. Duan’s (1983)
“smearing estimate”, the mean error of the retransformed
residuals, was used as the bias-correction factor (BCF) to
adjust the retransformed b, coefficient. This BCF is advanta-
geous in that it does not require normally distributed regres-
sion residuals and is simple to calculate (Ries and Friesz,
2000).

Accuracy and limitations of the regression
equations

Regression equations for predicting duration discharges
TFQ,,, TFQ,,, BFQ, , and BFQ,, at unregulated sites were
developed using OLS regression as described above. The
equations, along with several measures of model adequacy and
the BCF for each equation, are presented in table 8. The mea-
sures of model adequacy include (1) the coefficient of deter-
mination (R?); (2) the average standard error of estimate (SE ),
in percent; (3) the average standard error of prediction (SEI s
in percent; and (4) the median absolute deviation (MAD), in
percent. The R? is a measure of the proportion of the variation
in the dependent variable that is explained by the indepen-
dent variables. The SE_ is a measure of the average precision
with which the regression equations estimate the streamflow
statistics for stations used in the analyses, whereas the SEp
indicates the average precision with which the equation can be
used to estimate streamflow statistics for ungaged sites with
basin characteristics similar to those for the stations used in
the regression analyses. About 68 percent of streamflows esti-
mated using the regression equations would have errors within
the noted average standard errors. Half of the regression-equa-
tion estimates for stations used in the analyses had absolute
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Table 8.
streams, Hawaii.

Summary of regression equations developed for estimating selected flow-duration statistics of northeast Maui

[Statistic: TF is total flow; BF is base flow, QXX is the xx-percent duration flow; Statistic estimator: Rainfall is area-weighted rainfall rate (cubic feet per
second); MAXELEYV is maximum drainage-basin elevation (feet); ER is elongation ratio (dimensionless); R?: Coefficient of determination (percent); SE_
and SEP: Average standard error of estimate and prediction (percent); MAD: Median absolute deviation (percent); BCF: Bias correction factor; n = 17 for

all equations]

Statistic Statistic estimator R? SE, SE, MAD BCF

TFQ,, 3,184(Rainfall) **¥(MAXELEV) ' ¥%6(ER) 094 94.9 15.3 20.9 12 1.009
BFQ,, 25,384(Rainfall) 5 (MAXELEV ) 735(ER) 9 91.0 225 30.5 17 1.019
TFQ,, 56,267(Rainfall) **(MAXELEV) 7% 76.6 38.1 50.3 21 1.059
BFQ 409,732 (Rainfall)' > (MAXELEV)2%* 75.3 43.0 56.5 28 1.073

95

Range used in analysis

Minimum Mean Maximum
Rainfall ............ 6.8 28 51
MAXELEV...... 2,505 6,602 9,329
ER .coovvvriinn 0.17 0.26 0.34

errors, in percent, that were greater than the MAD, and half
of them were less than the MAD. Scatter plots comparing
observed and estimated flow-duration statistics show the fit
of the regression equations for sites used in determining the
equations (fig. 10).

The rainfall rates for stations used in developing the
regression equations ranged from 51 to 6.8 ft*/s and averaged
28 ft¥/s (table 8). For all four equations, rainfall has a positive
coefficient, thus higher rainfall rates lead to higher estimated
flows. The value of MAXELEYV ranged from 9,329 to 2,505 ft
and averaged 6,602. For all four equations, MAXELEV has a
negative coefficient, thus higher elevations lead to lower esti-
mated flows. The value of ER ranged from 0.34 to 0.17 and
averaged 0.26. Only the median flow equations included ER,
which has a negative coefficient in both equations. Therefore,
short and wide drainage basins (higher ER), will have lower
median flows. Estimates of flow-duration statistics derived by
using the regression equations for drainage basins with charac-
teristics outside the ranges (table 8) used in equation develop-
ment could be subject to substantial errors.

Values of estimated streamflow statistics and several
measures of estimation error for each continuous-record gag-
ing station in the study area and at four gaged stations (5650,
5660, 5700, and 5770) west of the study area can be compared
to the observed statistics to evaluate the performance of the
equations (table 9). Statistics were generated for the gaged
stations west of the study area to provide an additional indica-
tion of the accuracy of the equations for sites where measured
streamflows are available. Estimated streamflow, in cubic feet
per second, is the value determined by applying the regression
equation. Prediction intervals (90 percent lower confidence
limit [90% LCL], 90 percent upper confidence limit [90%
UCLY)), in cubic feet per second, indicate the uncertainty

inherent in the use of the regression equations. Assurance is
90 percent that the true value of the streamflow statistic will
be within the prediction interval. Standard error, in percent, is
a measure of the precision with which the equation estimates
the streamflow statistic. Measured flow, in cubic feet per sec-
ond, is the observed streamflow statistic determined from the
continuous record and adjusted to the long-term index station.
Relative error, in percent, is calculated from [100(estimated
flow — measured flow)/measured flow], and where available,
indicates how well the estimated value matches the measured
value. The value of MAD for each equation (table 8) is the
average of relative errors for all stations used in the develop-
ment of the regression equations.

At the stations used in the development of the equations,
the equations tend to predict more accurately the higher flow
statistics, TFQ50 and BFQSO, than the lower flow statistics,
TFQ,, and BFQ,,. At the outlier stations eliminated from the
regression analysis, the accuracy of the equation estimates
generally is poor, indicating that a factor not considered in
the regression analysis is probably affecting the streamflow
statistics at these stations (fig. 11). The most likely factor is
variable subsurface geology that can control where streams are
intermittent and where springs discharge high flow to streams.
At the stations on intermittent streams (stations 5070 and
5528), the equations overestimate the flow-duration statistics.
At stations on streams with notable springs (stations 5090,
5110, 5130, 5140), the equations underestimate the flow-dura-
tion statistics, especially at lower flows. At two (stations 5110
and 5210) of the three regulated stations where streamflow
statistics were determined on the basis of combined records of
the upstream and downstream gaging stations, the equations
provide a reasonably accurate estimate of the flow statistics at
the downstream stations. At stations 5110 and 5210, the rela-
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tive errors for TFQ,, and BFQ,, range from -10 to -20 percent
and for TFQ,, and BFQ,,, the relative errors range from -28

to -57 percent. At the third regulated station (station 5090)
where streamflow statistics were determined on the basis of
combined records, the estimates have relative errors ranging
from -57 to -77 percent, indicating that the anomalous input
from springs to Hanawi Stream is not accounted for by the
equations.

The regression equation for TFQ, estimates that statistic
within a relative error of £25 percent at 20 of the continuous-
record gaging stations. Flow at 15 stations is underestimated
and flow at 12 stations is the same as the measured statistic
or overestimated. All but one of the TFQ,, flows at stations
east of Keanae Valley and downstream of the Koolau ditch are
underestimated, indicating the influence of springs with high
discharge volume in this area (fig. 12). The only overestimate
east of Keanae Valley is at gaging station 5070 on an intermit-
tent reach of Makapipi Stream. The regression equation for
BFQ,, estimates that statistic within a relative error of £25
percent at 18 of the continuous-record gaging stations. Flow
at 13 stations is underestimated and flow at 14 stations is the
same as measured or overestimated. Most of the flow at sta-
tions east of Keanae Valley is underestimated with the stations
downstream of the Koolau ditch having the greatest errors (fig.
13). The regression equation for TFQ,, estimates that statistic
within a relative error of £50 percent at 15 of the continuous-
record gaging stations. The errors are higher for lower flows
because, for the same absolute error in flow, the relative error,
in percent, increases as the actual flow decreases. For example,
at station 5180, an absolute error of 1.0 ft¥/s is 10 percent of
TFQ,, (10 ft'/s) but 17 percent of BFQ, (6.0 ft¥/s). Flow at
13 stations is underestimated and flow at 14 stations is the
same as the measured statistic or overestimated. The cluster of
underestimated stations east of Keanae Valley and downstream
from the Koolau ditch is apparent at lower flows (fig. 14). The
regression equation for BFQ,, estimates that statistic within
a relative error of 50 percent at 12 of the continuous-record
gaging stations. Flow at 12 stations is underestimated and flow
at 15 stations is the same as the measured statistic or overesti-
mated. The cluster of underestimated stations east of Keanae
Valley and below the ditch is persistent at this lowest flow
statistic (fig. 15).

The results of applying the equation for TFQ,, developed
in this study can be compared with results using an equation
for TFQ,, developed by Fontaine and others (1992) for streams
on Maui and Kauai:

TFQSO — 449(DA) O,SOS(CE)»OMI(P) 0.985 , (2)

where: TFQ50 is median streamflow, in cubic feet per
second,

DA is drainage area, in square miles,

CE is mean altitude of the main stream channel, in feet,
and

P is mean annual precipitation, in inches.

For this comparison, CE was calculated using the relation
0.5[MAXELEV+MINELEV], and P was calculated using the
relation 13.53719[Rainfall/DA] for each drainage basin from
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the data in table 5, because the original values from Fontaine
and others (1992) were not available. For the 17 stations from
which data were used to develop the regression equations for
this study, equation 2 (1992 study) provides a MAD of 20
percent compared with 12 percent determined using the equa-
tion for TFQ,, (table 8) developed in this study. The SE and
SE, for the newly developed equation are also lower (15.3 and
20.9 percent, respectively) than for the previous equation (46.2
and 54.3 percent, respectively). Therefore, the newly devel-
oped equation for TFQ, is an improvement over the equation
determined by Fontaine and others (1992).

Application of the regression equations to
ungaged sites

The regression equations developed for this study from
the flow statistics in table 2 and the basin characteristics listed
in tables 5 and 6 were used to estimate the TFQ, , TFQ,,
BFQ,,, and BFQ,, duration discharges at selected ungaged
sites in the study area (plate 1). Estimated streamflow, predic-
tion intervals, standard error, measured flow, and relative error
for 47 ungaged sites are listed in Table 10. Where possible,
measured flow values were determined using a combination
of flow-duration statistics for an upstream gaging-station and
low-flow measurements at ungaged sites downstream of the
diversions to provide additional basis for evaluating the equa-
tion-based estimates.

Generally, an estimate of flow at an ungaged site made
on the basis of a flow-duration discharge at an upstream gag-
ing station and a single measurement of flow at the ungaged
site results in a large uncertainty in the estimate. For most
ungaged sites in the study area, however, these values are all
the information that is available. This technique is considered
applicable in the study area because the streams are dry imme-
diately downstream of the diversions at least 50 percent of the
time, and measured low flow further downstream represents
only those gains to the stream downstream of the diversions.
Inflow downstream of the diversions from minor tributaries is
insignificant.

Low-flow estimates listed in table 10 were derived from
low-flow measurements from three sources: (1) measurements
made as part of this study in 2002 and 2003; (2) measurements
made as part of a previous USGS study in the area during
1995 to 1999 (Gingerich, 1999); and (3) measurements made
by EMI in 1928 (reported in Gingerich, 1999). The average
of all these low-flow measurements were assumed roughly
equal to TFQ,, flow duration. This is because the flow at
the index station (5180) during all the USGS measurements
(1995-99 and 2002-03) ranged from TFQ,, to TFQ,, and the
flow was at TFQ,, during the 1928 EMI measurements. The
difference in flow between TFQ,, (3.3 ft3/s) and TFQ,, (2.5
ft’/s) at 5180 is 0.8 ft¥/s, or a relative difference of 32 percent.
However, because the low-flow measurements were all made
downstream of the diversion ditches during base-flow periods,
there is little variation between low flows even as flow at the
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58 Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii

index station varied between TFQ, and TFQ,. Flow-duration
values for five gaging stations (5090, 5110, 5130, 5140, and
5210) operated downstream of the Koolau Diversion indicate
an average relative difference between TFQ,, and TFQ, of

11 percent, and absolute differences ranging from 0.05 ft*/s

at station 5130 to 1.0 ft¥/s at station 5090. In general, base
flows sustained by springs downstream from the diversion
ditch exhibit less variability. Where measured TFQ, and
BFQ50 flow durations are listed in table 10, they are based on
a combination of upstream flow statistics and the measured
TFQ, low flows, but are preceded by a greater than symbol
(>) indicating that the TFQ,, flow is a minimum value and the
actual flow is higher by an unknown amount.

Application of the regression equations to estimate flow
at some of the sites shown in table 10 violates the assumptions
of the regression analysis because they are intermittent-flow
sites or have basin characteristics that are outside the range
used to develop the equations. Some of the poor results shown
in table 10 can be explained by these violations. A plot of
the spatial distribution of relative-error values for TFQQS, the
only duration discharge for which some measured flow values
are available, shows two distinct groupings of results. East of
Keanae Valley, the TFQ, equation generally underestimates
flow, and within and west of Keanae Valley, the equation gen-
erally overestimates flow (fig. 16). This grouping reflects the
pattern for ground-water occurrence east and west of Keanae
Valley described by Gingerich (1999). West of Keanae Valley,
ground water occurs at high elevations in the low-permeability
Kula Volcanics and at low elevations in the higher perme-
ability Honomanu Basalt. Streams at high elevations gain
base flow from the upper perched zone and lose water to the
underlying unsaturated zone nearer the coast. Where streams
lose water at lower elevations, the regression equations gener-
ally overestimate the amount of water in the stream. East of
Keanae Valley, the discharge of ground water from a vertically
extensive freshwater lens causes streams to gain flow all the
way to the coast. The regression equations generally underes-
timate the additional streamflow gained from springs. Within
Keanae Valley, streamflow gain from the freshwater lens is
lost to the veneering lava flows of the Hana Volcanics; hence,
the equations overestimate streamflow here as well.

Ordinarily, regression equations would be developed for
each distinct hydrologic regime (east or west of Keanae Val-
ley) to better account for the basin characteristics controlling
streamflow. However, dividing the gaging stations used to gen-
erate the regression equations (n =17) into two groups would
result in the number of stations in each group (n =8 and n =9)
being too small for significant statistical analyses.

At sites where flow is underestimated by the regression
equation, the relative errors range from 7 to 79 percent and
average 30 percent. At sites where flow is overestimated, the
relative errors are not always meaningful because many of the
streams are dry. Therefore, any flow estimate greater than zero
means that relative error for that site cannot be calculated.

Most-reliable Estimates of Natural
Flow-Duration Statistics

Most-reliable estimates of flow-duration statistics for
natural (undiverted) streamflow at ungaged sites on 21 streams
in the study area were made using a combination of continu-
ous record gaging-station data, low-flow measurements, and
values determined from the regression equations developed
as part of this study (Table 11). No estimates were made for
Piinaau Stream because no flow data were available and the
regression equations were not applicable to this intermittent
stream. Furthermore, all three of the basin characteristics
for Piinaau Stream that are used in the regression equations
fall outside the range of values used to develop the equa-
tions (table 8). The reliability of the estimates depends on the
combination of data used to develop the estimates. Estimates
of flow statistics developed on the basis of data from continu-
ous-record gaging stations are deemed the most reliable; those
estimates developed from the regression equations alone are
considered the least reliable. Estimates that are developed for
sites downstream from gaging stations and adjusted on the
basis of low-flow measurements or the regression equations
are considered to be of intermediate reliability.

The various data combinations used to develop the
most-reliable estimates can be described using Hanawi Stream
as an example. At the Hanawi upper site, the TFQ, , TFQ
BFQ,,, and BFQ,, duration discharges were estimated on
the basis of data available from gaging station 5080. At the
Hanawi middle site, which is downstream from the Koolau
ditch, duration discharges were estimated from a combina-
tion of daily flows at gaging stations 5090 at the middle site
and 5080 at the upper site. At the Hanawi lower site, TFQ,,
was developed using the estimated TFQ,, at the middle site
(19 ft¥/s), plus the average of gains in streamflow downstream
from the middle site, which was determined from two pairs of
low-flow measurements [2.8 ft*/s (TFQ,, at index site); and 3.4
ft'/s (TFQ,, at index site)]. TFQ,, at the Hanawi lower site was
estimated using the estimated TFQ,, from the middle site (28
ft’/s), plus the estimated gain between the lower and middle
sites, using the TFQ_ regression equation (16 ft¥/s — 12 ft'/s =
4.0 ft¥/s). BFQ,, and BFQ,, were estimated in a similar manner
to TFQ

95°

50

50°

Discussion of results for selected streams

For some streams, the decisions made in developing the
most-reliable estimates of flow-duration statistics require
further discussion. Estimates for middle and lower sites on
Makapipi Stream were not attempted due to lack of flow data
at these sites and the inapplicability of the regression equa-
tions to this intermittent/losing stream.

The TFQ,, estimate at the middle site on Waiokomilo
Stream was based on flow measurements upstream that
demonstrated net gains of about 4.1 ft*/s (Gingerich, 1999)
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Base modified from U.S. Geological Survey
digital data, 1:24,000, 1983, Transverse Mercator
projection, zone 4, central meridian -1590,
North American Datum 1983

in the study area and at selected gages west of the study area, northeast Maui, Hawaii.
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Estimates of Flow-Duration Statistics under Diverted Conditions 63

combined with the estimate developed from the regression
equation at the upper site (1.3 + 5.9 — 1.8 = 5.4 ft¥/s). At the
lower site, additional gains (0.12 ft¥/s) and a tributary inflow
(1.3 ft¥/s) increase the undiverted flow estimate to 6.8 ft’/s
[5.2 ft’/s were diverted from the stream for taro at the time of
the measurements (Gingerich, 1999)]. The estimate for TFQ,,
at the upper site appears high on the basis of reconnaissance
observations on March 5, 2003, when the stream at the upper
site was observed to be nearly dry, yet the average daily flow
at the index station was 5.8 ft’/s (about BFQ, ). However,
because no other measurements are available to support this
observation, the estimate from the regression equation was not
adjusted.

Ohia Stream is fed almost entirely by Ohia Spring, which
discharges about 4.7 ft¥/s (Stearns and Macdonald, 1942),
yet during reconnaissance on March 12, 2003 (about TFQ,
at index station), the stream was nearly dry at the mouth.
Streamflow is lost to evapotranspiration through watercress
agriculture and through infiltration to the subsurface where
stream channel modifications have filled the natural channel
with soil and vegetation. The regression-equation-derived
estimates for this stream basin are not reliable because rainfall
(2.2 ft}/s) and MAXELEV (413 ft) values for this basin are
outside the ranges used to develop the equations (table 8).
Therefore, the most-reliable estimates are based on the average
spring discharge, and are considered maximum values because
of the unquantified streamflow losses between the spring and
the coast.

Palauhulu Stream also has sections of losing channel and
was dry between 800 and 300 ft altitude during reconnais-
sance on March 12-13, 2003 (about TFQ,; at index station).
Therefore, estimates of TFQ , and BFQ,; at the middle site
(about 500 ft altitude) are maximum values, assuming all flow
at the upper sites reaches the middle site. Estimates of TFQ,,
and BFQ,; at the lower site are based on a continuous record
gaging station (5220), which measured diversions from the
stream, plus flow from the middle and upper sites assuming
that all flow from those sites would reach the lower site.

Estimates of flow-duration statistics for Piinaau Stream
determined from the regression equations are the highest of
any sites in the study area (table 10), yet the flow observa-
tions, although scarce, indicate that flows are much lower
than estimated. The stream channel was dry between 1,200 ft
and 600 ft altitude during reconnaissance on March 14, 2003
(about TFQ,, at index station), and only a trickle of flow was
observed upstream of the 1,300-ft diversion. A recent (2001)
large landslide, which covered the stream at about 1,000 ft
altitude and filled most of the stream channel downstream to
600 ft altitude with gravel, cobbles, and boulders, complicates
flow in the stream. This basin has the highest rainfall and
MAXELEYV in the study area and both are above the range of
characteristics used to develop the flow-duration regression
equations. Because the regression equations are not valid for
this stream and reliable flow measurements are lacking, no
estimates of stream statistics were made for Piinaau Stream
sites.

Information about gaining or losing reaches on Nuaailua
or Punalau Streams is not available and therefore estimates
were made using the regression equations and single low-flow
measurements.

Honomanu Stream is known to lose flow and be mainly
dry downstream of the diversion at 1,700 ft altitude (Ging-
erich, 1999). However, the amount of streamflow lost has not
been quantified. Therefore, the estimates of TFQ,, and BFQ,,
at the middle and lower sites (table 11) are maximum val-
ues, assuming all natural flow at the upper site (station 5270)
reaches the middle and lower sites. The estimates of TFQ,
and BFQ,, are determined solely from the regression equa-
tions and are expected to be overestimates but by an unknown
amount.

Losses of flow were observed in the lower reaches of
Waikamoi Stream and are expected but have not been quanti-
fied in the lower reaches of Haipuaena, Puohokamoa, Wahine-
pee, and Kolea Streams. Therefore, estimates at ungaged sites
in the lower reaches of these streams are expected to be high.

Estimates of Flow-Duration Statistics
under Diverted Conditions

Estimates of flow-duration statistics for diverted streams
were made for gaged and ungaged sites on 21 streams in the
study area downstream from the main diversion systems on
the basis of a combination of continuous-record gaging-station
data, low-flow measurements, and values determined from the
regression equations developed as part of this study (Table 12).
It is assumed that the diversion systems remove all flow lower
than TFQ,  above 1,200 ft altitude in all diverted streams. The
flow-duration statistics for the streams can be easily calculated
by subtracting the flows above the diversion system from the
estimated undiverted flows below the diversion system. For
example, TFQ,, at the lower site on West Wailuaiki Stream
is calculated by subtracting the TFQ,, flow (from table 2) at
the upper site (station 5180) from the estimated undiverted
TFQ,, flow (from table 11) at the lower site (12 ft*/s — 10 ft¥/s
=2 ft¥/s). In this example, it is assumed that all of the 10 ft¥/s
median flow at the upper site is removed from the stream by
the diversion just downstream from the upper site. Values of
BFQ,,, TFQ,,, and BFQ,, are similarly calculated to be 1.2,
1.0, and 0.3 ft¥/s, respectively. West of Keanae Valley, where
another diversion ditch at lower altitude (Spreckels) captures
additional low flows, the flow statistics for diverted streams
are even lower. For example, TFQ50 at the lower site on Waika-
moi Stream is calculated by subtracting the TFQ,, regression-
equation estimate at the middle upper site from the estimated
TFQ,, flow at the lower site (10 ft'/s — 9.2 ft¥/s = 0.80 ft'/s) to
account for the diversion of 9.2 ft*/s by Spreckels Ditch. Val-
ues of BFQ,, TFQ,., and BFQ,, are similarly calculated to be
0.50, 0.20, and 0.00 ft*/s, respectively. Flow-duration curves
of natural and diverted flow for median and lower flows at the
lower West Wailuaiki and lower Waikamoi sites illustrate the
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Figure 17. Estimated low-flow duration curves of natural and diverted streamflow
at lower West Wailuaiki and Waikamoi Streams, northeast Maui, Hawaii.
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significant effects of the diversion on streamflow statistics (fig.
17).

Estimated flow-duration curves are made by connect-
ing the four estimated flow statistics (TFQ,,, BFQ,,, TFQ,,,
and BFQ,) with a line assuming a linear relation. The values
of BFQ,, and BFQ,; are plotted at the average equivalent
total-flow durations from table 5 (72 and 97 percent, respec-
tively). Inspection of the flow-duration curves in fig. 7 shows
that nearly all the curves can be represented by a straight line
through TFQ,,, BFQ,,, TFQ,,, and BFQ,; so that it is reason-
able to synthesize the estimated curves using a straight line to
estimate the missing flow-duration points.

In addition to diversions above 1,200 ft altitude, three
streams in the study area (Wailuanui, Waiokomilo, and
Palauhulu Streams) also are diverted at lower altitudes for taro
cultivation. On August 8, 2002, the taro diversion at about
200 ft altitude on Wailuanui Stream was observed to divert all
water from the stream and then subsequently allow a sig-
nificant amount of the diverted water to return to the stream
channel downstream. An additional unmeasured amount of
flow was observed to enter the Wailuanui stream channel
downstream of the taro cultivation. Therefore, the diverted-
flow statistics for the lower site at Wailuanui were estimated
by assuming 50 percent of the diverted flow at about 200 ft
altitude is lost to the stream although measurements to confirm
this assumption are not available.

Three taro diversions take water from Waiokomilo
Stream downstream of 540 ft altitude including one at 440 ft
altitude that takes all low flows (Gingerich, 1999). Flow at the
middle Waiokomilo Stream site is affected by one diversion
of relatively constant volume of about 0.40 ft*/s. Additionally,
flow at the lower site is reduced by at least 3.7 ft/s at the 440-
ft altitude diversion, 1.1 ft¥/s at the 220-ft altitude diversion,
and an unknown amount of flow is “lost” to individual private
water diversions at about 250 ft altitude. These estimates
of diverted volumes are determined from a set of low-flow
measurements reported in Gingerich (1999). Diverted flow
statistics at the lower site were calculated on the assumption
that all low flows are removed at 1,300 ft and again at 440 ft
altitude (table 12). Because the equations for TFQ,, and BFQ,,
estimate less flow than has been measured for TFQ%, the val-
ues for TFQ, and BFQ,  were increased to the value of TFQ,,
and should be considered a minimum estimate.

One taro diversion takes water from Palauhulu Stream
at about 50 ft altitude several hundred feet upstream from the
stream mouth. A continuous-record gaging station (5220) was
operated on the diversion during 1934-68 and during that time,
the statistics for flow in the diversion were 3.4, 3.0, 2.4, and
2.3 ft¥/s for TFQ,, BFQ, , TFQ,,, and BFQ,,, respectively.
These values were subtracted from the estimated natural flow
statistics at the lower Palauhulu Stream site to obtain estimates
of diverted flow statistics.

Estimated total reductions in streamflow due to diver-
sions in the study area average 58 percent for TFQ,, 55
percent for BFQ,,, 60 percent for TFQ,,, and 60 percent for
BFQ,,. The streams with the lowest relative reduction in

streamflow are mostly those in the eastern side of the study
area, where springs discharge below the main diversion (fig.
18 and table 12).

Needs for Additional Data

Additional data are needed to improve and confirm the
estimates of median and low-flow statistics in the study area.
Estimates of flow lost in losing streams would allow better
definition of flow statistics in these streams. In reaches where
streams go dry, additional water is needed in the reaches to
permit accurate measurements of flow losses. Such additional
water sources include allowing natural streamflow to bypass
the diversions or releasing water from a diversion system into
the stream. Streams for which the reliability of flow statistics
would be most improved by the data provided by additional
measurements include Ohia, Palauhulu, and Piinaau Streams
in Keanae Valley; Honomanu Stream; and the lower reaches of
streams west of Honomanu.

Summary and Conclusions

Median and low-flow statistics were estimated for
streams in northeast Maui, Hawaii, and analyses were made
to develop and evaluate the methods used to estimate the sta-
tistics. Estimated flow statistics are presented for continuous-
record gaging sites and for other sites where various amounts
of streamflow data are available, as well as for locations where
no data are available.

Records of daily mean flows were used to determine
flow-duration, low-flow frequency, and base flow statistics
for continuous-record stream-gaging stations in the study area
following US Geological Survey established standard meth-
ods. Duration discharges of 50- and 95-percent were deter-
mined from total-flow and base-flow data for each continuous
record. In order to compare streamflow records to each other,
records were adjusted to concurrent periods, so that differ-
ences between the records were due to differences in climatic
or drainage-basin characteristics and not to the fact that the
records cover different times. The index-station method was
used to adjust all of the streamflow records to a common
period with the gaging station on West Wailuaiki Stream
(5180), which was chosen as the index station because of its
record length (1914-2003) and favorable geographic loca-
tion near the middle of the study area. Adjusting the record
length resulted in average decreases to the 50-percent duration
total flow, 50-percent duration base flow, 95-percent duration
total flow, and 95-percent duration base flow of 7, 3, 4, and 1
percent, respectively. In general, the largest adjustments were
needed for the records with the shortest lengths.

For the drainage basin of each continuous-record gaged
site and selected ungaged sites, morphometric, geologic, soil,
and rainfall characteristics were quantified using GIS tech-
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niques. Regression equations relating the streamflow statistics
to basin characteristics of the gaged basins were developed
using ordinary-least-squares regression analyses. Rainfall rate,
maximum basin elevation, and the elongation ratio of the basin
were the basin characteristics used in the final regression equa-
tions for 50-percent duration total flow and base flow. Rain-
fall rate and maximum basin elevation were used in the final
regression equations for the 95-percent duration total flow and
base flow. The proportion of the variation in the dependent
variable that is explained by the independent variables (R?)
ranged from 94.9 to 75.3 percent, with the highest flows hav-
ing the highest R?. Standard errors of prediction ranged from
20.9 to 56.5 percent, with the highest flows having the lowest
errors. The relative errors between observed and estimated
flows ranged from 11 to 20 percent for the 50-percent duration
total flow and from 29 to 56 percent for the 95-percent dura-
tion total flow and base flow.

The regression equations developed for this study were
used to determine the 50-percent duration total flow, 50-per-
cent duration base flow, 95-percent duration total flow, and
95-percent duration base flow at selected ungaged sites within
the study area and at three gaging stations west of the study
area using the appropriate basin characteristics. Estimated
streamflow, prediction intervals, and standard errors were
determined for 47 ungaged sites in the study area and four
gaging stations west of the study area. Relative errors were
determined for sites for which observed values of 95-percent
duration discharge of total flow were available. East of Keanae
Valley, the 95-percent duration discharge equation generally
underestimated flow, and within and west of Keanae Valley,
the equation generally overestimated flow.

Finally, most-reliable estimates of natural (undiverted)
and diverted streamflow flow-duration statistics at gaged
and ungaged sites on 21 streams in the study area were made
using a combination of continuous-record gaging-station data,
low-flow measurements, and values determined from the
regression equations developed as part of this study. Average
reduction in the low flow of streams due to diversions ranges
from 55 to 60 percent.
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Appendix A: Selected Drainage-Basin Characteristics Quantified Using
Basinsoft

[Descriptions modified from Harvey and Eash (1996) for purposes of regression analyses of streamflow data from northeast
Maui, Hawaii]

BL-Basin length, in miles, measured along a line areally centered through the drainage divide from basin outlet to where
the main channel extended meets the basin divide.

BP-Basin perimeter, in miles, measured along entire drainage-basin divide.

BR-Basin relief, in feet, measured as the difference between the elevation of the highest grid cell and the elevation of the
grid cell at the basin outlet, BR = MAXELEV-MINELEV

BS-Average basin slope, in feet per mile, measured by the "contour-band" method, within the drainage area (DA). BS =
(total length of all selected elevation contours) (contour interval) / DA.

BW-Effective basin width, in miles, BW = DA/ BL.
CCM-constant of channel maintenance, in square miles per mile, CCM=DA/TSL=1/SD.

CR-Compactness ratio, dimensionless, the ratio of the perimeter of the basin to the circumference of a circle of equal area,
CR = BP/2 (xt DA)">.

DA-Drainage area, in square miles.
DF- Drainage frequency, in number of first-order streams per square mile

ER-Elongation ratio, dimensionless, ratio of (1) the diameter of a circle of area equal to that of the basin to (2) the length of
the basin, ER = [4 DA/n (BL)?]°° = 1.13 (1/SF)%3

MAXELEV- maximum basin elevation, in feet

MCL-Main channel length, in miles, measured along the main channel from the basin outlet to where the main channel, if
extended, meets the basin divide.

MCS-Main-channel slope, in feet per mile, an index of the slope of the main channel computed from the difference in
streambed elevation at points 10 percent (E, ) and 85 percent (E,,) of the distances along the main channel from the basin
outlet to the basin divide. MCS = (E, -E, ) / (0.75 MCL).

MCSP-Main channel slope proportion, dimensionless, MCSP=MCL/(MCS)°?.
MCSR-Main-channel sinuosity ratio, dimensionless, MCSR = MCL / BL.

MINELEV- minimum basin elevation, in feet

RB-Rotundity of basin, dimensionless, RB =[x (BL)?]/ [4 DA] = 0.785 SF.

RN- Ruggedness number, in feet per mile, RN = (TSL)(BR)/DA

RR-Relative relief, in feet per mile, RR = BR/BP.

RSD- Relative stream density, dimensionless, RF = DF/(SF)?

SD-Stream density, in miles per square mile, SD = TSL / DA.

SF-Shape factor, dimensionless, ratio of basin length to effective basin width, SF = BL/BW.
SR- Slope ratio of main-channel slope to basin slope, dimensionless, SR = MCS/BS

TSL-Total stream length, in miles, computed by summing the length of all stream segments within the DA.

Reference

Harvey, C.A., and Eash, D.A., 1996, Description, instructions, and verification for Basinsoft, a computer program to quantify
drainage-basin characteristics: U.S. Geological Survey Water-Resources Investigations Report 95-4287, 25 p.



	Median and Low-Flow Characteristics for Streams under-Natural and Diverted Conditions, Northeast Maui, Hawaii
	Abstract
	Introduction
	Purpose and Scope
	Description of Study Area
	Previous Studies
	Numbering System for Surface-Water Gaging Stations
	Acknowledgments

	Streamflow Characteristics at Continuous-Record Stream-Gaging Stations
	Index station selection
	Adjustments to streamflow characteristics for a common period using the index-station method

	Estimation of Flow Characteristics of Ungaged Streams
	Drainage-Basin Characteristics
	Morphometric characteristics
	Hydrologic and geologic characteristics

	Development of regression equations
	Accuracy and limitations of the regression equations
	Application of the regression equations to ungaged sites

	Estimates of Flow-Duration Statistics under Diverted Conditions
	Needs for Additional Data
	Summary and Conclusions
	References Cited
	Appendix A
	Selected Drainage-Basin Characteristics Quantified Using Basinsoft 



