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Abstract
Because characterizing the unsaturated hydraulic 

properties of sediments over large areas or depths is costly 
and time consuming, development of models that predict 
these properties from more easily measured bulk-physical 
properties is desirable. At the Idaho National Engineering 
and Environmental Laboratory, the unsaturated zone is 
composed of thick basalt flow sequences interbedded with 
thinner sedimentary layers. Determining the unsaturated 
hydraulic properties of sedimentary layers is one step in 
understanding water flow and solute transport processes 
through this complex unsaturated system. Multiple linear 
regression was used to construct simple property-transfer 
models for estimating the water-retention curve and saturated 
hydraulic conductivity of deep sediments at the Idaho National 
Engineering and Environmental Laboratory. The regression 
models were developed from 109 core sample subsets with 
laboratory measurements of hydraulic and bulk-physical 
properties. The core samples were collected at depths of 
9 to 175 meters at two facilities within the southwestern 
portion of the Idaho National Engineering and Environmental 
Laboratory—the Radioactive Waste Management Complex, 
and the Vadose Zone Research Park southwest of the Idaho 
Nuclear Technology and Engineering Center. Four regression 
models were developed using bulk-physical property 
measurements (bulk density, particle density, and particle size) 
as the potential explanatory variables. Three representations 
of the particle-size distribution were compared: (1) textural-
class percentages (gravel, sand, silt, and clay), (2) geometric 
statistics (mean and standard deviation), and (3) graphical 
statistics (median and uniformity coefficient). The four 
response variables, estimated from linear combinations of 
the bulk-physical properties, included saturated hydraulic 
conductivity and three parameters that define the water-
retention curve. 

For each core sample, values of each water-retention 
parameter were estimated from the appropriate regression 
equation and used to calculate an estimated water-retention 
curve. The degree to which the estimated curve approximated 
the measured curve was quantified using a goodness-of-fit 

indicator, the root-mean-square error. Comparison of the root-
mean-square-error distributions for each alternative particle-
size model showed that the estimated water-retention curves 
were insensitive to the way the particle-size distribution was 
represented. Bulk density, the median particle diameter, and 
the uniformity coefficient were chosen as input parameters 
for the final models. The property-transfer models developed 
in this study allow easy determination of hydraulic properties 
without need for their direct measurement. Additionally, 
the models provide the basis for development of theoretical 
models that rely on physical relationships between the pore-
size distribution and the bulk-physical properties of the media. 
With this adaptation, the property-transfer models should have 
greater application throughout the Idaho National Engineering 
and Environmental Laboratory and other geographic locations. 

Introduction
Flow processes within the highly stratified unsaturated 

zone at Idaho National Engineering and Environmental 
Laboratory (INEEL) are not well understood. The thick basalt 
layers are fractured to massive, contain rubble zones, and 
are interbedded with thinner sedimentary layers. All these 
features potentially cause preferential contaminant and water 
flow through the unsaturated zone. To better understand these 
processes, the role that sedimentary interbeds and surficial 
sediments play in unsaturated flow needs to be determined; 
this typically is accomplished using flow simulations. Flow 
models require input of basic unsaturated hydraulic properties, 
such as water-retention and unsaturated hydraulic conductivity 
curves, which are representative of the modeled media. The 
water-retention curve (q(y)) is a measure of how the water 
content (q) varies with the negative water (or matric) pressure 
(y) of a particular soil or sedimentary material. Unsaturated 
hydraulic conductivity (K), or the rate at which water is 
transmitted through a sedimentary material, varies with q or 
y. Saturated hydraulic conductivity (Ksat) is the flow rate at 
the maximum degree of saturation (qsat). Knowledge of Ksat is 
needed to estimate K(q) from established models. Ksat often is 
measured in place of K(q) because Ksat is easier to determine 
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than K(q), and because it can be used along with q(y) to 
estimate K(q) using parametric models (for example, Mualem, 
1976). Field tests can provide information about the average 
unsaturated hydraulic properties over a given region at depth, 
but when studying sedimentary interbeds this task becomes 
more challenging because of the overlying and underlying 
fractured basalt units. Alternatively, minimally disturbed 
core samples can be collected by drilling deep boreholes, and 
their hydraulic properties can be determined in a laboratory; 
however, this process is costly and time consuming. Drilling 
can require months to complete and obtaining undisturbed 
core samples can be problematic, especially in coarse-textured 
materials. Laboratory measurement of unsaturated hydraulic 
properties requires specialized equipment and expertise, in 
addition to requiring several weeks to complete measurements 
for a single core sample. These difficulties are compounded 
at the INEEL by the thick vadose zone (up to 200 m), the 
complex stratigraphy, and the large site area.

An alternative to measuring the unsaturated hydraulic 
properties of core samples in the laboratory is to develop 
a property-transfer model (PTM) that can predict these 
properties from more easily measured bulk-physical 
properties, such as bulk density (rbulk), particle density (rpart), 
and particle-size distribution. General purpose models of this 
type exist, but they are inadequate for sediments at the INEEL 
because they were not developed from measurements specific 
to the site. Hydraulic PTMs have not been developed for the 
sedimentary interbeds at the INEEL. These types of models 
will be a cost effective way to estimate unsaturated hydraulic 
properties for use in flow models, to predict contaminant travel 
times and flow paths, and to provide greater understanding of 
unsaturated flow processes in the complex unsaturated zone at 
the INEEL. Property-transfer modeling is a useful approach 
to estimating hydraulic properties, even when the estimates 
have a large margin of error, because hydraulic-property 
measurements cannot be made for every point in space. 

Often when core samples are not obtained during 
drilling, borehole cuttings are collected that can be analyzed 
for particle size. The majority of laboratory data available at 
the INEEL consists of particle-size distributions and other 
bulk-physical-property measurements obtained from borehole 
cuttings. The U.S. Geological Survey (USGS), Bechtel BWXT 
Idaho, LLC, previous contractors, and other institutions have 
investigated hydrologic processes within the vadose zone of 
the INEEL for several decades; however, relatively little work 
has been done in the laboratory to characterize the hydraulic 
properties of sedimentary interbeds. Unsaturated hydraulic 
property estimates by PTMs can save considerable time and 
effort by reducing the need to measure unsaturated hydraulic 
properties in the laboratory. Additionally, estimation of 
hydraulic properties will enable a broader understanding of the 
distribution of hydraulic and bulk-physical properties at the 
INEEL, which is essential in developing models of ground-
water flow and contaminant transport. 

Site Background

The INEEL was established in 1949 under the U.S. 
Department of Energy (formerly, the U.S. Atomic Energy 
Commission) for nuclear energy research. The site hosts 
several facilities (fig. 1) at least four of which have generated, 
stored, or disposed of radioactive, organic, and inorganic 
wastes. These include the (1) Radioactive Waste Management 
Complex (RWMC), (2) Idaho Nuclear Technology and 
Engineering Center (INTEC), formerly known as the Idaho 
Chemical Processing Plant (ICPP), (3) Test Reactor Area 
(TRA), and (4) Test Area North (TAN). Because of the 
site’s history of chemical-waste production and ground-
water resource contamination, vadose-zone investigations 
are used to determine or forecast critical pathways for 
contaminant migration to the Snake River Plain (SRP) aquifer, 
and to understand flow and transport processes within the 
geologically complex subsurface. Because hydraulic property 
measurements are available only on core samples collected 
from the Vadose Zone Research Park (VZRP) and RWMC, 
this report focuses on these two locations within the INEEL. 

The RWMC (figs. 1 and 2), which covers approximately 
0.6 km2, was established in 1952 as an area for controlled 
management of solid radioactive waste produced on site. 
Facilities include the Subsurface Disposal Area (SDA) for 
shallow burial of mixed low-level wastes and the Transuranic 
Storage Area (TSA) for above-ground waste storage 
containing elements with atomic numbers equal to or higher 
than uranium. Mixed transuranic and low-level wastes were 
buried in pits and trenches at the SDA from 1952 to 1970. 
Since 1970, transuranic wastes have been stored in above-
ground containers on asphalt pads at the TSA, and low-level 
waste burial has continued at the SDA (Anderson and Lewis, 
1989). 

The INTEC is in the southwestern part of the INEEL 
covering an area of about 0.8 km2 (figs. 1 and 2). The 
INTEC was established in the 1950’s for reprocessing spent 
nuclear fuel from government reactors. The facility houses 
an underground tank farm for storing high-level wastes, and 
above-ground storage areas for spent nuclear wastes (Bechtel 
BWXT, LLC, 2003). Between 1952 and 1984, radiochemical 
and chemical wastes produced on site were disposed of in 
a 183-m-deep injection well, which penetrated the SRP 
aquifer. Wastes produced after 1984 were disposed of in two 
percolation ponds (fig. 3) directly south of the facility (Cecil 
and others, 1991; Bartholomay and others, 1997; Bartholomay, 
1998). Contaminants detected in perched water bodies beneath 
these ponds led to their discontinued use in 1995. In 2001, new 
INTEC percolation ponds were constructed within the 3-km2 
VZRP (fig. 3), about 9.5 km southwest of the original ponds. 
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Figure 1.  Location of the Idaho National Engineering Environmental Laboratory and selected facilities, Idaho.
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Figure 2.  Boreholes in the Radioactive Waste Management Complex, Idaho National Engineering 
and Environmental Laboratory, Idaho, where measurements on sedimentary interbed core samples 
were used to develop hydraulic property-transfer models.
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Figure 3.  Boreholes in the Vadose Zone Research Park, Idaho National Engineering and Environmental Laboratory, Idaho, 
where measurements on sedimentary interbed core samples were used to develop hydraulic property-transfer models.
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Geohydrologic Setting

The INEEL occupies about 2,300 km2 within the eastern 
SRP, a northern extension of the Basin and Range Province. 
The eastern SRP is a northeast trending basin, approximately 
320 km long and 80 to 110 km wide, which slopes gently to 
the southwest and is bordered by northwest trending mountain 
ranges. 

The eastern SRP is underlain by interbedded volcanic 
and sedimentary units extending up to 3,000 m below the 
surface. The sedimentary layers represent quiet intervals 
between volcanic eruptions and are of eolian, fluvial, and 
lacustrine origin with large amounts of sand, silt, and clay. 
Volcanic units, composed primarily of basalt flows, welded 
ash flows, and rhyolite, may be vesicular to massive with 
either horizontal or vertical fracture patterns. Near the 
INTEC facility, boreholes drilled to 200-m depths penetrate a 
sequence of 23 basalt-flow groups and 15 to 20 sedimentary 
interbeds (Anderson, 1991). The surficial sediments near the 
INTEC consist of gravelly alluvium, range from 2- to 20-m 
thick, and are thickest to the northwest (Anderson and others, 
1996). Beneath the RWMC, 10 basalt-flow groups and 7 major 
sedimentary interbeds have been identified from boreholes 
drilled up to 220-m depth. Surficial sediments are composed 
primarily of silt and clay, and range in thickness from 0 to 7 m 
(Rightmire and Lewis, 1987; Anderson and Lewis, 1989). 

The climate of the eastern SRP is semi-arid with an 
average annual precipitation of 22 cm. Parts of the SRP 
aquifer underlie the INEEL. The depth to the water table 
ranges from 60 m in the northern part of the INEEL to about 
200 m toward the south (Barraclough and others, 1981; 
Liszewski and Mann, 1992). The depth to the water table is 
about 145 m below the INTEC and about 180 m below the 
RWMC. The predominant direction of ground-water flow is 
from northeast to southwest. Recharge to the aquifer primarily 
is from irrigation water diversions from streams, precipitation 
and snowmelt, underflow from tributary-valley streams, 
and seepage from surface water bodies (Hackett and others, 
1986). Within the INEEL boundaries, the Big Lost River 
(fig. 1) is an ephemeral stream, which flows from southwest 
to northeast about 3 km north of the RWMC (fig. 2) and 
less than 1 km north of the INTEC (fig. 3). Because of the 
proximity of the Big Lost River to waste disposal and storage 
facilities, a diversion dam was constructed in 1958 upstream 
of the SDA to reduce the threat of flooding (Barraclough and 
others, 1967). During high flow periods, flow is diverted to 
topographic depressions (referred to as spreading areas) less 
than 2 km west of the RWMC (fig. 2). 

Previous Investigations

This section describes studies in which hydraulic property 
measurements specific to the INEEL site were measured and 
gives an overview of PTMs. Few studies have been done in 
which the hydraulic properties of sedimentary interbeds have 
been determined on core samples. Only two locations within 
the INEEL have been characterized, the RWMC and the 
VZRP. Two classes of PTMs exist in the literature, those based 
on empirical relationships and those based on theoretical 
ones. Within the empirical model category, multiple linear 
regression often is used as a tool for model development. 

INEEL Hydraulic Property Measurements
Most studies of contaminant transport and measurement 

of hydraulic properties at the INEEL have been done near the 
RWMC (fig. 1), where potential migration of shallow, buried 
hazardous waste through the unsaturated zone poses concern 
for water quality in the SRP aquifer. McElroy and Hubbell 
(1990) presented measurements of q(y), particle size, and 
rbulk on intact sedimentary core samples collected from eight 
boreholes near the RWMC. Core samples from sedimentary 
interbeds were collected from five of these boreholes (USGS 
118, 88-01D, D-02, D-10, and D-15; shown in fig. 2). Deep 
core-sample measurements of q(y) and K(q), in addition 
to bulk-physical properties, were presented by Perkins and 
Nimmo (2000) for borehole UZ98-2, about 1.5 km southwest 
of the SDA (fig. 2). Measurements from an additional 
16 boreholes near the SDA also have been completed on 
sediment core samples collected from depths of 29.45 to 
78.02 m below land surface (S. Magnuson, written commun., 
2002; fig. 2 and table 1). Perkins (2003) and Winfield (2003) 
presented unsaturated hydraulic- and bulk-physical-property 
measurements for seven boreholes near the current percolation 
pond area for the INTEC facility at the VZRP (fig. 3). 

Several studies have been done to characterize the 
unsaturated hydraulic properties of surficial sediments, defined 
as the sediment and soil overlying the shallowest basalt 
layer (Barraclough and others, 1976; McElroy and Hubbell, 
1990; Borghese, 1991; Shakofsky, 1995; Nimmo and others, 
1999). Measurements on surficial soils and sediments are not 
considered in the models presented in this report because their 
hydraulic properties are affected by structural features arising 
from plant growth, compaction by anthropogenic sources, 
animal burrows, and shrink-swell phenomena. Nimmo and 
others (2004), table 1, present a more complete summary of 
available INEEL measurements.
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Borehole identification No.
Borehole 
location

Depth
interval

(m)

Number and type of core sample measurements

Saturated 
hydraulic 

conductivity  
(Ksat)

Unsaturated 
hydraulic 

conductivity as 
a function of 

water content 
(K(q))

Water 
retention 

(q (y))

Bulk 
density 
(rbulk)

Particle 
density 
(rpart)

Particle-size 
distribution

Magnuson, Swen, Bechtel BWXT Idaho, LLC (written commun., 2002)

RWMC-SCI-V-153, RWMC-SCI-V-154, 
RWMC-SCI-V-155, RWMC-SCI-V-156, 
RWMC-SCI-V-157, RWMC-SCI-V-158, 
RWMC-SCI-V-159, RWMC-SCI-V-160,
SOUTH-MON-A-009, SOUTH-SCI-V-011, 
SOUTH-SCI-V-012, SOUTH-SCI-V-013, 
SOUTH-SCI-V-014, SOUTH-SCI-V-015, 
SOUTH-SCI-V-016, SOUTH-SCI-V-018 

RWMC 29.45–78.02 41 0 51 51 51 51

McElroy and Hubbell (1990)

88-01D, D-02, D-10, D-15, USGS 118 RWMC 9.60–17.48 16 0 16 16 16 116

Perkins and Nimmo (2000)

UZ98-2 RWMC 42.98–50.30 18 18 18 18 18 18

Perkins (2003)

ICPP-SCI-V-215 VZRP 45.54–59.92 12 12 14 14 14 14

Winfield (2003)

ICPP-SCI-V-189, ICPP-SCI-V-198,
ICPP-SCI-V-204, ICPP-SCI-V-205,
ICPP-SCI-V-213, ICPP-SCI-V-214

VZRP 36.59–56.33 10 10 10 10 10 10

Number of samples, n 97 40 109 109 109 1109

1Partial particle-size data were reported for sample USGS 118 at 173.48 to 174.39 m from McElroy and Hubbell (1990).

Table 1.  Sedimentary interbed core samples with hydraulic and bulk-physical property measurements at the Idaho National Engineering and 
Environmental Laboratory (INEEL), Idaho.

[Water retention is defined as water content (q) as a function of matric pressure (y). Abbreviations: m, meter; RWMC, Radioactive Waste Management 
Complex; VZRP, Vadose Zone Research Park]

Overview of Property-Transfer Models
PTMs can be classified into two groups: (1) empirical 

models, which rely on statistical methods to determine 
patterns in the data, and (2) quasi-physical models, which are 
based on theoretical or physical relationships between pore 
sizes and particle or aggregate sizes (Arya and Paris, 1981; 
Haverkamp and Parlange, 1986; Nimmo, 1997; Haverkamp 
and Reggiani, 2002). Methods for predicting q(y) are 
described here, however, these methods also can be applied to 
prediction of K(q). 

Empirical models typically involve multiple linear-
regression analyses (although some use a neural network 
procedure) and can be further subdivided based on the 

specific approach used to estimate unsaturated hydraulic-
property curves. One approach involves fitting a parametric 
q(y) function (or set of functions) to the q(y) measurements, 
and developing separate regression equations for each 
q(y) parameter (Campbell, 1985; Saxton and others, 
1986; Wösten and van Genuchten, 1988; Vereecken and 
others, 1989; Campbell and Shiozawa, 1992; Schaap and 
others, 1998, 2001). Another approach involves developing 
unique equations for q at the values of y determined during 
measurement of q(y) (Gupta and Larson, 1979; Rawls and 
Brakensiek, 1982; Puckett and others, 1985; Mecke and 
others, 2002). A third approach uses at least one measured 
value of q(y), in addition to bulk-physical properties, as input 
(Gregson and others, 1987; Schaap and others, 1998). 
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Several studies also have predicted Ksat using multiple 
linear regression (Puckett and others, 1985; Campbell and 
Shiozawa, 1992; Jabro, 1992; Mecke and others, 2002) 
or neural networks (Schaap and others, 1998, 2001). 
By empirical modeling, several equations are required 
to completely predict q(y) because q varies uniquely in 
relation to y. Because Ksat relates only to one q value, qsat, 
a single equation can be used to directly relate Ksat to a set 
of bulk-physical properties using statistical techniques. The 
remainder of the K(q) curve can be predicted using any of 
the aforementioned techniques, providing measurements of 
K(q) are available. Alternatively, estimates of Ksat and q(y) 
obtained by PTMs can be used to predict K(q) using Mualem’s 
(1976) capillary bundle model.

Most PTMs available in the literature were developed for 
specific applications, such as for widespread use (Schaap and 
others, 1998, 2001) or for a specific site or soil type (Jabro, 
1992; Puckett and others, 1985; Mecke and others, 2002). 
PTMs developed for use in agricultural studies typically are 
calibrated using repacked samples where gravels have been 
removed. Mecke and others (2002) reaffirmed the conclusion 
of Puckett and others (1985) and Williams and others (1992) 
that a predictive model should be developed on materials of 
similar mineralogy and genesis. PTMs developed for a specific 
site cannot describe the diverse range of soil textures and 
structures found at other sites. Factors that may cause PTMs 
to differ between sites include water chemistry, mineralogy 
of sediment, liquid-solid interactions, colloidal transport and 
potential blockage of pores, development of cements in pores, 
and sediment structure (macropores, grain shape, orientation, 
roundness, and packing arrangement).

Most PTMs available in the literature have been 
developed for surficial soils, often with characteristics 
particular to a given site and soil type, such as Lower Coastal 
Plain ultisols (Puckett and others, 1985) or glacially-derived 
podzols (Mecke and others, 2002). The development of 
reliable PTMs for deeper sediments (below the zone of soil 
development) is needed, especially as the USGS and other 
agencies move toward characterizing larger portions of 
the subsurface for studies of ground-water recharge. Other 
PTMs calibrated using large databases of soil properties are 
inappropriate for the INEEL because the databases often 
contain too diverse a mixture of samples with conflicting 
characteristics, such as repacked samples included with intact 
samples, or samples with pedologic structure included with 
single-grained soils.

Purpose and Scope

This report describes the development of PTMs for 
predicting q(y) and Ksat of the sedimentary interbeds at the 
INEEL. The PTMs are constrained by available data to two 
locations within the INEEL, the RWMC and the VZRP. 

Because surficial sediments possess different physical 
characteristics than the sedimentary interbeds, these data 
were not used to develop the PTMs in this study. Multiple 
linear-regression techniques were used to estimate hydraulic 
properties from bulk-physical properties based on 109 sets of 
core-sample measurements compiled from previous studies 
(S. Magnuson, written commun., 2002; McElroy and Hubbell, 
1990; Perkins and Nimmo, 2000; Perkins, 2003; Winfield, 
2003; see table 1). Three regression equations were developed 
for parameters defining the q(y) curve (qsat and two parameters 
from the Rossi-Nimmo (1994) junction model). The q(y) 
parameters and Ksat were used as the dependent variables in 
the regression models. Parameters describing the particle-
size distribution, rbulk, and rpart values were used as potential 
independent variables. This report describes the available 
data, data processing, multiple linear-regression assumptions 
and approach, and regression equations developed for each 
hydraulic parameter. Three representations of particle-size data 
were compared to determine the optimal regression variate 
to use in the final PTMs. Selection of the best PTM was 
based on ease of calculating particle-size parameters, model 
behavior (in terms of meeting the assumptions of multiple 
linear regression), model fit, and potential for developing 
a theoretical model. The results of this report contribute to 
the characterization of the unsaturated zone at the INEEL 
by providing a tool that can be used to predict hydraulic 
properties required as input to unsaturated-flow simulations. 

Property-Transfer Model Calibration 
and Approach

To develop PTMs for the INEEL sedimentary interbeds, 
multiple linear-regression equations were used to estimate 
hydraulic properties (measurements of qsat and Ksat, and curve-
fit parameters for q(y)) from linear combinations of bulk-
physical properties (rbulk, rpart, and particle-size parameters). 
To estimate the entire q(y) curve from saturation to oven 
dryness, the Rossi-Nimmo (1994) junction model was used 
to characterize the q(y) measurements. Multiple linear-
regression equations then were developed for each of the 
three parameters defining the Rossi-Nimmo (1994) junction 
model. Three alternative models were compared that used 
different representations of the particle-size distribution as 
input, along with rbulk and rpart: (1) model A included textural-
class percentages, (2) model B included geometric statistical 
parameters, and (3) model C included graphical statistical 
parameters. The basic steps of the multiple linear-regression 
procedure used in this study are outlined in figure 4 for q(y). 
The same steps were followed for Ksat, except no curve-fitting 
was involved. 
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Figure 4.  Steps used to develop multiple linear-regression models for water-retention parameters.
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Data Sets and Measurement Techniques

The hydraulic- and bulk-physical-property data sets 
used to develop the q(y) and Ksat models for the INEEL 
sedimentary interbeds, including the number and type of core-
sample measurements, are summarized in table 1. These data 
represent the potential number of core samples for developing 
the q(y) and Ksat PTMs; smaller subsets were used to develop 
the final regression models after evaluating the data for errors 
and missing values. To develop the multiple linear-regression 
equations, complete data sets of hydraulic (q(y) or Ksat) 
and bulk-physical (rbulk, rpart, and particle-size distribution) 
properties were needed for each core sample. Core samples 
with missing values of either the hydraulic or bulk-physical 
properties were removed from the regression analyses. The 
particle-size distributions needed to have sufficient resolution, 
including points in the clay-sized (less than 0.002 mm) 
fraction, to compute geometric particle-size statistics, textural-
class percentages, or particle sizes at particular cumulative 
percentiles (10th, 50th, and 60th). Because hydraulic property 
measurements are only available for the RWMC and VZRP, 
the PTMs presented in this report can only be generalized 
to interbeds in the southwestern portion of the INEEL. 
Surficial sediments were excluded from the PTM development 
because of likely physical differences from the interbed 
sediments caused by soil development processes, freeze-thaw 
phenomena, or animal or microbial activity. Five data sets 
were used in model development: 

1.	 RWMC, 51 core samples of Bechtel BWXT Idaho, 
LLC (S. Magnuson, written commun., 2002), 

2.	 RWMC, 16 core samples of McElroy and Hubbell 
(1990), 

3.	 RWMC, 18 core samples of Perkins and Nimmo 
(2000), 

4.	 VZRP, 14 samples of Perkins (2003), and 

5.	 VZRP, 10 samples of Winfield (2003).

Boreholes where core samples were collected are shown 
in figure 2 for the RWMC and in figure 3 for the VZRP. The 
McElroy and Hubbell (1990) data were measured by Daniel 
B. Stephens and Associates, Inc., New Mexico. The data of 
Magnuson (written commun., 2002) were measured by the 
Southwest Research Institute, Texas. The data of Perkins 
and Nimmo (2000), Perkins (2003), and Winfield (2003) 
were measured by the USGS. Partial particle-size data were 
reported for one McElroy and Hubbell (1990) sample from 
borehole USGS 118 at 173.48 to 174.39 m. Ten samples from 
Magnuson (written commun., 2002) and two samples from 
Perkins (2003) did not have Ksat measurements. 

Techniques used to determine unsaturated hydraulic 
properties of the 109 core samples differed among studies. 
All q(y) measurements were determined on minimally 
disturbed samples except for those of Magnuson (written 
commun., 2002). These samples were sieved to remove 
the gravel (> 2 mm) fraction and then repacked. For the 
Magnuson (written commun., 2002) data, five q points were 
determined per sample, at y values of -200, -400, -600, -800, 
and -1,000 cm-water, using the pressure-plate technique. 
For the McElroy and Hubbell (1990) data, eight points on 
the q(y) curve were determined per sample, spanning the 
range of y from about -50 to -15,000 cm-water. Points in 
the wet range (> -400 cm-water) were determined by the 
hanging column method, and drier points were determined 
by the pressure-plate technique. The q(y) measurements of 
Perkins and Nimmo (2000), Perkins (2003), and Winfield 
(2003) were completed as part of the steady-state centrifuge 
method (Nimmo and others, 1994; Conca and Wright, 1998; 
Nimmo and others, 2002), which was used to determine 
K(q). Tensiometers were used to determine equilibrium y at 
different q values. When samples were too dry to use with 
a tensiometer, the filter paper method (Fawcett and Collis-
George, 1967; Greacen and others, 1987) was used. For the 
Perkins and Nimmo (2000) samples, additional dry-range q(y) 
points were determined for the range of y between -105 and 
-107 cm-water using a chilled mirror hygrometer (Winfield, 
written commun., 2001). The number of q(y) points for these 
studies varied from 7 to 18, with an average of 14 points for 
Perkins and Nimmo (2000), 10 points for Perkins (2003), and 
9 points for Winfield (2003).

Degree of saturation was either measured directly or 
inferred from other properties. For the Perkins and Nimmo 
(2000), Perkins (2003), and Winfield (2003) studies, saturation 
was achieved by submerging the core samples in a wetting 
solution up to the sample height. To determine qsat values, 
the samples were weighed after measurement of Ksat and the 
weights were converted to volumetric q values using rbulk. 
For the McElroy and Hubbell samples, qsat was determined 
prior to beginning q(y) and Ksat measurements, after 
vacuum saturating the samples. qsat was not measured for the 
Magnuson samples. In this report, the maximum water content 
for the Magnuson samples was assumed to equal the total 
porosity determined from the repacked sample rbulk. 

For all studies, Ksat was measured on intact core samples. 
Ksat values for the McElroy and Hubbell (1990) samples 
were determined using either the falling-head or the constant-
head method. Perkins and Nimmo (2000), Perkins (2003), 
and Winfield (2003) used either the traditional falling-head 
method, or the falling-head method adapted for use with a 
centrifuge (Nimmo and Mello, 1991; Nimmo and others, 
2002) for low Ksat materials. Ksat values from Magnuson 
(written commun., 2002) were measured using the constant-
head method. 
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Particle-size distributions were determined by sieve 
analysis, hydrometer, or laser light scattering. McElroy and 
Hubbell (1990) used sieve analysis for particle sizes greater 
than 0.075 mm, and the hydrometer method for sizes less than 
0.075 mm. The number of points analyzed per sample was 20, 
with the exception of four samples that only had seven points 
greater than 0.075 mm. For one of these samples (USGS 118 
at 173.48 to 174.39 m) the diameter at the 10th percentile (d10), 
the geometric statistics, and textural-class percentages could 
not be calculated. For the Magnuson (written commun., 2002) 
samples, sieve analysis was used for particle sizes greater than 
0.075 mm, and the hydrometer method was used for sizes less 
than 0.075 mm, with 20 points determined per sample. Perkins 
and Nimmo (2000), Perkins (2003), and Winfield (2003) 
used sieve analysis for particles greater than 2 mm. A laser 
diffraction method was used for particle sizes from  
4 ´ 10-5 mm to 2 mm, with 116 points analyzed. 

Total porosity was calculated from measurements of rpart 
and rbulk. Values of rpart were determined on small subsamples 
from the original core samples. The pycnometer method of 
Blake and Hartge (1986) was used to measure rpart on the core 
samples from Perkins and Nimmo (2000), Perkins (2003), 
and Winfield (2003). The entire particle-size distribution 
was analyzed for these samples. For the core samples of 
Magnuson (written commun., 2002) and McElroy and Hubbell 
(1990), rpart was determined using the standard pycnometer 
method D854-83 (now an archived method) of the American 
Society for Testing and Materials (1989). For the McElroy 
and Hubbell (1990) samples, material less than 4.75 mm was 
analyzed, while material less than 2 mm was analyzed for the 
Magnuson (written commun., 2002) samples. For the data set 
of Perkins and Nimmo (2000), the average rpart value of  
2.65 g/cm3 (measured for 4 core samples) was used for all 
18 core samples. Values of rbulk were determined on intact 
core samples for all data sets used in model calibration. 
Total porosity was calculated by 1 – rbulk/rpart. Although total 
porosity values were not used in developing the regression 
models, total porosity was used as a baseline for comparing 
what the core sample degree of saturation should be. Because 
total porosity is a measure of all void space in a sample, 
including any dead-end pores and the internal porosity 
of mineral grains, it should be greater than the measured 
qsat value (which can be considered a measure of effective 
porosity).

Water-Retention Curve-Fit Parameters

Because q varies nonlinearly as a function of y, one or 
more functions involving multiple parameters are needed to 
describe the entire range of q. One approach to developing a 
PTM for q(y) involves developing multiple linear-regression 
equations for several q values associated with particular 
y values. Difficulties applying this method to INEEL 
measurements included that (1) the number of measured q(y) 
points varied between data sets, and (2) q values were not 

obtained at the same y values for all samples due to different 
methods used to measure q(y). An alternate way to develop 
a PTM for q(y) is to fit a curve to the measured q(y) points 
for each core sample. This approach yields parameters that 
uniquely define each curve. Multiple linear regression is then 
used to develop equations relating each of these parameters to 
a set of bulk-physical properties.

The Rossi-Nimmo (1994) junction model (fig. 5) was 
chosen to fit the q(y) measurements because this model 
is more physically realistic over the entire range of q from 
saturation to oven dryness than other parametric models 
(Brooks and Corey, 1964; van Genuchten, 1980) that use 
residual water content (qr) as an optimized parameter; qr 
has no physical meaning. According to capillary theory the 
largest pores are associated with y values near zero and drain 
first, followed by drainage of successively smaller pores 
as q approaches qr. The asymptotic approach to qr means 
that the number of small pores approaches infinity, which 
is physically unrealistic. The q(y) curve represented by the 
Rossi-Nimmo (1994) junction model goes to zero q at a fixed 
value of y calculated for the conditions of oven dryness (yd). 
Another advantage to using the junction model is that it can be 
combined with the capillary-bundle model of Mualem (1976) 
to estimate K(q) (Fayer and others, 1992; Rossi and Nimmo, 
1994; Andraski, 1996; Andraski and Jacobson, 2000).
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of the curve-fit model developed by Rossi and Nimmo (1994). 
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The Rossi-Nimmo (1994) junction model requires three 
parameters to describe the entire q(y) curve, therefore, three 
separate multiple linear-regression equations are needed. By 
contrast, models that estimate q at particular y values usually 
require 7 to 12 separate regression equations. These equations 
typically range from y = 0 at saturation to approximately 
-15,000 cm-water. For the abundance of silt-loam-textured 
samples found at the INEEL, -15,000 cm-water corresponds to 
saturations that vary from 23 to 88 percent, a range that does 
not adequately describe the dry end of the q(y) curve. Using 
a q(y) model that extends from 100 to 0 percent saturation 
avoids this problem. Additionally, developing multiple linear-
regression equations for the q(y) model parameters saves the 
extra step of having to fit the estimated q(y) points in order to 
use these in unsaturated-flow simulations.

The Rossi-Nimmo (1994) junction model consists of 
three functions joined at two points (fig. 5): 

1.	 Parabolic function for the wet range of y,

2.	 Power law function (Brooks and Corey, 1964) for the 
middle range of y, and 

3.	 Logarithmic function for the dry range of y. 

This model has two independent parameters: (1) the 
scaling factor for y (yo), and (2) the curve-shape parameter 
(l). Sometimes, yo is associated with y at which air first 
enters a porous material during desaturation (referred to 
as “air-entry pressure”), but, actually, air begins displacing 
water in the largest pores at a higher (less negative) y than 
yo as evidenced by the departure of q from saturation earlier 
than yo on the q(y) curve (fig. 5). In this study, the units of 
yo are expressed in centimeters of water (cm-water). The 
curve-shape parameter l indicates the relative steepness of the 
middle portion of the q(y) curve, described by the power-law 
function. Larger l values cause the drainage portion of the 
q(y) curve to appear steeper. Unlike the model of Brooks and 
Corey, which holds q fixed between y = 0 and the “air-entry 
pressure”, the junction model produces a smooth curve near 
saturation, represented by a parabolic function, that allows the 
pore-size distribution (the first derivative of the q(y) curve) to 
be represented more realistically. 

The parabolic function applies for yi £ y £ 0, and is 
represented by:
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where 

qsat 
is expressed volumetrically and 

c is a dimensionless constant calculated from an 
analytical function involving the parameter l, 
which also is dimensionless. 

The power law function applies for yj £ y £ yi, and is 
represented by:
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The logarithmic function applies for yd £ y £ yj, and is 
represented by:
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where A is the slope of the dry-range part of the q(y) curve 
on a semilog scale, calculated from a combination of l, yo, 
and yd. The junction points (yi and yj) are calculated from 
analytical functions of yo and l.

Optimized values of yo and l for each core sample were 
determined using a nonlinear regression program based on 
the modified Gauss-Newton least-squares method found in 
the Statistics Toolbox version 3 of MATLAB 6, Release 12 
(The Mathworks, Inc., Natick, MA). qsat can be treated as an 
optimized parameter in the Rossi-Nimmo (1994) junction 
model, however, its value was known by direct measurement, 
and it was treated as a fixed parameter. yd also was treated as 
a fixed parameter because its value can be calculated from the 
Kelvin equation, using average laboratory temperature during 
oven drying of samples and the relative humidity of water 
at average oven and room temperatures (Ross and others, 
1991; Andraski, 1996). Under laboratory conditions of 50 
percent relative humidity and 22°C, and an oven temperature 
of 105°C, yd has a value near -8 ´ 106 cm-water. For 
convenience, a yd value of -1 ´ 107 cm-water was used in the 
model fits for all core samples.

Particle-Size Parameters

To apply multiple linear-regression techniques, discrete 
measurements of the explanatory variables used to predict the 
hydraulic parameters (qsat, yo, l, and Ksat) are needed. These 
explanatory variables include rbulk, rpart, and a representation of 
particle-size data. Because particle-size measurements spanned 
different size ranges and varied in resolution between data 
sets, the first step in representing particle-size data involved 
calculating cumulative particle-size distributions on a percent-
finer-than basis. The cumulative particle-size distribution, like 
the q(y) curve, is nonlinear. Three alternative representations 
of the particle-size distribution were chosen for comparison 
in developing the PTMs (fig. 6): (1) textural classes (percent 
gravel, sand, silt, and clay), (2) geometric statistics (geometric 
mean particle diameter (Mg) and geometric standard deviation 
(sg)), and (3) graphical statistics (median particle diameter 
(d50) and uniformity coefficient (Cu)). 
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Figure 6.  Example particle-size distribution showing three parameter sets (textural-class percentages, geometric 
statistics, and graphical statistics) used to develop property-transfer models for water retention and saturated 
hydraulic conductivity. 
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particles at a given particle diameter.  
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Textural-class percentages commonly are recorded in 
lithologic logs or are easily measured in the field or laboratory, 
requiring only a few measurements of particle size. Textural-
class percentages also have been used to develop simple PTMs 
for other sites or applications (Gupta and Larson, 1979; Cosby 
and others, 1984; Puckett and others, 1985; Wösten and van 
Genuchten, 1988; Schaap and others, 1998, 2001; Schaap, 
1999). For this reason, textural-class percentages were chosen 
as one way of representing the particle-size data. Weight 
percentages were calculated from the cumulative particle-
size distributions using the definitions of gravel, sand, silt, 
and clay from the U.S. Department of Agriculture’s (USDA) 
soil classification system (Soil Survey Staff, 1975; fig. 6B). 
Linear interpolation between points on the cumulative particle-
size distribution was required to determine the frequency of 
particles falling between the particle-size limits defined by this 
soil classification system.

Because particle-size distributions of sediments typically 
follow a lognormal distribution (Krumbein, 1938; Pettijohn, 
1975), descriptive statistical formulas, using the method of 
moments (Beyer, 1991, p. 470-471), were used to calculate Mg 
and sg. Mg is a summary measure of the most abundant particle 
diameter in a distribution. For a distribution with skewness, or 
excess particles in one-half the distribution compared to the 
other, Mg is weighted by the asymmetry away from the mean 
of the normal distribution in the direction of excess particles 
(fig. 6A). Mg and sg together define a particle-size distribution 
having a single mode. Mg was calculated by the formula:
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where 

k is the number of bins, 

dci 
is the geometric center of the ith bin, and 

fi(dci) is the frequency of sizes occurring within ith bin 
assigned to dci. 

sg was calculated by:
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The third representation of particle-size data uses 
graphical statistics, where particle diameters are determined at 
specific cumulative frequencies (fig. 6B). The midpoint of the 
cumulative particle-size distribution is the particle diameter 
at the 50th percentile, or d50. One disadvantage of using d50 

is that it excludes the influence of distribution extremes, so 
skewed distributions are not well represented (Folk, 1980). 
A measure of the spread in particle sizes, referred to as the 
uniformity coefficient (Cu), is calculated as the diameter at 
the 60th percentile (d60) divided by the diameter at the 10th 
percentile (d10). When the cumulative particle-size distribution 
is plotted on a log-log scale, these percentiles commonly lie in 
the part of the distribution that can be fit with a straight line, 
and hence, Cu describes the slope (Fetter, 1994). A small Cu 
reflects a steep curve, or a narrow range of particle sizes. The 
diameter at any given percentile can be determined graphically 
by drawing a horizontal line from the percentile of interest, 
usually plotted on the y-axis, until it intersects the particle-size 
distribution. A vertical line, perpendicular to the horizontal 
line, is drawn until it meets the x-axis, where the particle 
diameter is then read. Because a large number of samples 
needed to be processed in this study, a computer program 
was used to calculate d10, d50, and d60 by linearly interpolating 
between the two points on the cumulative particle-size 
distribution nearest the percentile of interest. 

Multiple Linear Regression

Multiple linear-regression analyses were done using 
custom programs written with Matlab (The MathWorks, Inc., 
Version 6, Release 12) and the Statistics Toolbox utility. The 
basic steps of the multiple linear-regression procedure used 
in this study are outlined in figure 4. Hydraulic property data 
included measurements of qsat, Ksat, and curve-fit parameters 
(yo and l) for the q(y) measurements. Bulk-physical 
properties included rbulk, rpart, and particle-size parameters 
(textural-class percentages; Mg and sg; d50 and Cu). Hydraulic 
properties (referred to as response variables) were predicted 
from a linear combination of the bulk-physical properties, 
referred to as explanatory variables. 

The basic functional form for multiple linear 
regression is:
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where 

n is number of observations (note, in this 
application, n refers to the number of core 
samples with complete sets of measured 
hydraulic and bulk-physical properties), 

yj 
is observed value of the response variable for the 
jth core sample, 

p is number of x (explanatory) variables including 
an intercept term, 

bi is a coefficient estimated by regression and 
associated with xi, and 

ej is prediction error term, or residual. 
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To calculate the regression equations, a complete set of 
hydraulic and bulk-physical-property measurements was 
necessary for each core sample; otherwise, the sample was 
removed from the analysis. The right-hand side of the equation 
that includes regression coefficients and explanatory variables 
is referred to as the regression variate. An intercept term (i = 
0) must be included by setting x0 = 1 for each core sample. 
For each core sample, ej is calculated by subtracting the 
estimated value of the response variable from the observed 
value. Positive residuals indicate that the response variable is 
underestimated by the regression variate. The least-squares 
procedure yields the best estimates for bi by minimizing the 
objective function: 

	
S b y b xj i ij

i

p

j

n

( ) = -
æ
è
ççç

ö
ø
÷÷÷÷

==
åå

01

2

.	 (7)

The strength of the linear relation between a set 
of explanatory variables and a given response variable 
(goodness-of-fit) was assessed using the adjusted coefficient 
of determination (R2

adj), which accounts for the number of 
observations and the number of explanatory variables. R2

adj 
is directly related to the coefficient of determination (R2), 
defined as:
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where 

SSres is the sum of squared residuals (equivalent to 
equation 7 using the known values of bi) and 

SSreg is the regression sum of squares. 

SSreg is calculated by:
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Then R2
adj is calculated by:
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R2
adj measures the ability of the explanatory variables in the 

regression variate to explain variation in the response variable. 
A value of R2

adj equal to 1 indicates that the explanatory 
variables are able to explain all variation in the response 
variable. For comparing the ability of one regression variate 
(A) to explain variation in y over another regression variate 
(B), the percent change in R2

adj is calculated by 100(R2
adj 

(A) 
- R2

adj 
(B)).

The root-mean-square error (RMSE), also referred to as 
the standard error of the estimate, is a measure of the variation 
in the predicted values. It can be used to differentiate between 
competing models of a single response variable. RMSE (in 
units of the response variable) is calculated as:
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where ŷ j  is the predicted value of the response variable 
(equivalent to the second term in equation 7). Smaller values 
of RMSE indicate that the explanatory variables of a particular 
regression variate are more successful in explaining y than 
those in competing models.

Statistical tests are used to make inferences about how 
representative the results of a regression analysis, based on 
a particular sample, are of the population. In this context, 
sample refers to the group of observations (hydraulic and 
bulk-physical properties). Significance testing involves stating 
a hypothesis, specifying a significance level (a) for the test 
(probability of finding a hypothesis true when, in fact, it is 
not), and determining whether the hypothesis is true or false. 
The hypothesis is rejected if the value of the test statistic 
exceeds a certain critical value, calculated using the a-level, 
number of observations, and number of explanatory variables. 
In this study, the significance level (a) was specified at 0.05. 
For the significance tests to be valid and to yield accurate 
results, the assumption of normally-distributed residuals must 
be met. 

For the t-test, the hypothesis states that the value of a 
particular regression coefficient is equal to zero. Partial t-
values were calculated by dividing the value of the coefficient 
by its standard error. The standard error denotes the expected 
variation of a coefficient across multiple samples of data 
from a given population. Smaller standard error values imply 
more reliable predictions (smaller confidence intervals for the 
coefficient). To determine whether a regression coefficient 
is significantly different from zero, the partial t-value is 
compared to the critical t-value, which is determined from the 
Student’s t-distribution for the number of observations and a-
level specified. If the magnitude of the partial t-value exceeds 
the critical value, then the coefficient is significantly different 
from zero, indicating that the explanatory variable is useful in 
explaining the variation in the response variable. 

For purposes of predicting the response variable from a 
set of explanatory variables, hypothesis testing, and estimating 
confidence intervals, the assumptions of multiple linear 
regression are that 

1.	 Residuals are normally distributed, 

2.	 Response variable displays equal levels of variance 
across the range of values for the explanatory 
variables (homoscedasticity), 
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3.	 Relation between the response variable and each 
explanatory variable is linear, and 

4.	 No correlated errors or systematic effects exist in the 
data. 

The assumption that the residuals are normally distributed 
must be met for valid hypothesis testing or calculation of 
confidence intervals. 

To determine whether the residuals were normally 
distributed, the residuals were plotted on a normal probability 
plot and the probability-plot correlation coefficient (PPCC) 
was calculated. PPCC measures the departure of the residual 
distribution from a straight line, which represents the normal 
distribution on a probability plot. A normal distribution would 
have a PPCC value of 1.0 and skewness of zero. Skewness 
was used as another means of assessing normality. Skewness 
measures the degree of asymmetry in a distribution, with 
negative skewness indicating a distribution with an excess 
of smaller values compared to the mean of the normal 
distribution. Skewness should be near zero for a residual 
distribution to be considered normal, and the PPCC value 
should be near or greater than the critical value for the number 
of observations comprising the distribution (Looney and 
Gulledge, 1985; Helsel and Hirsch, 1992). 

Residual plots were used to identify heteroscedastic 
trends (unequal variance in either the response variable or 
one of the explanatory variables) that would violate a basic 
assumption of multiple linear regression. A residual plot 
is constructed by plotting the residuals from a particular 
regression model against the predicted values of the response 
variable. More commonly the residual is studentized. This 
refers to a special form of standardization where the jth 
observation is omitted. Standardization is used to create a 
common scale for comparing the residuals from different 
models. Each residual is standardized by dividing its value 
by the standard deviation of residuals for all observations 
from a particular regression analysis. After standardization, 
the residual distribution has a mean value of 0 and a standard 
deviation of 1 (Hair and others, 1998). For n greater than or 
equal to 50, the studentized residual distribution approximates 
the Student’s t-distribution. Residuals whose absolute values 
exceed the critical t-value (typically near 2) are considered 
outliers. Heteroscedasticity exists if the pattern of residuals 
appears nonrandom, with either a nonlinear trend, clustering 
of points in a particular region, or both. Heteroscedasticity can 
be corrected, although sometimes not entirely, by transforming 
one or more explanatory variables or the response variable.

Linearity between response and explanatory variables 
was assessed by examining scatter plots and variable 
distributions, and by calculating Pearson’s correlation 
coefficient (r). Scatter plots of each response variable and each 
explanatory variable, in addition to Pearson’s r, were used to 
identify univariate trends in the data. Pearson’s r measures 
the correlation between two variables. It can vary from -1 to 
+1, with 0 indicating no correlation and ±1 indicating perfect 
correlation. 

While Pearson’s r is used to identify univariate trends in 
the data and to identify explanatory variables that exhibit high 
covariance, the variance inflation factor (VIF) is used to test 
for multicollinearity resulting from the combined effect of two 
or more variables in the regression variate. VIF indicates the 
effect of the other explanatory variables on the explanatory 
variable of interest; each explanatory variable (xi) is in turn 
regressed against the remaining explanatory variables to 
calculate Ri

2 (as defined in equation 8), where VIF = 1/(1-
Ri

2). Large values of VIF, typically greater than 10, indicate 
a high degree of collinearity or multicollinearity among the 
explanatory variables examined (Hair and others, 1998). 

The existence of collinearity between explanatory 
variables invalidates hypothesis tests, for example if 
interpretation of estimated coefficients (bi) is important. 
However, if prediction is the main application of the 
regression models, then collinearity is acceptable as long 
as the prediction is made within the range of data values 
used in model development (Helsel and Hirsch, 1992). 
Multicollinearity makes it difficult to separate the effects 
among explanatory variables on the regression model, for 
example when stepwise procedures are used to iteratively 
select variables. Other effects of multicollinearity include 
a limited size to R2 (because the predictive power of each 
explanatory variable is shared or overlaps with other 
variables), incorrect magnitudes or signs of the coefficients, 
and instability in the coefficient values during the regression 
(Helsel and Hirsch, 1992; Hair and others, 1998).

Another assumption of multiple linear regression is that 
the predicted values of the response variable are not related 
to each other, or that the values are not sequenced by any 
particular explanatory variable. Sequencing often occurs when 
time- or event-based variables are included in the regression 
analysis. Plotting residuals against a given explanatory 
variable should show a random pattern if the predicted values 
are independent. A clustered or nonlinear pattern in this 
type of plot indicates error dependence, or that an essential 
explanatory variable has been omitted from the regression 
variate (Hair and others, 1998). Hydraulic and bulk-physical 
properties of core samples used to develop multiple linear-
regression equations in this study should be independent of 
seasonal fluctuations in moisture content and timing of core 
collection, therefore, the error terms for each regression model 
were considered independent without further testing of this 
assumption.

Property-Transfer Model Analyses
Multiple linear-regression techniques were used to 

develop two separate PTMs, one for q(y) and the other for 
Ksat. The q(y) PTM involved a separate regression equation 
for each of the three parameters (qsat, yo, and l) that define 
the Rossi-Nimmo (1994) junction model. For each of the four 
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hydraulic properties (qsat, yo, l, and Ksat), three models were 
examined to identify the best set of particle-size parameters to 
use as explanatory variables. Model A refers to the regression 
variate that includes rbulk, rpart, and textural-class percentages 
(gravel, sand, silt, and clay). Model B includes rbulk, rpart, Mg, 
and sg as explanatory variables. Model C includes rbulk, rpart, 
d50, and Cu. 

The minimum, maximum, average, and standard 
deviation of the hydraulic properties (qsat, yo, l, and Ksat), 
(table 2), and bulk-physical properties (rbulk, rpart, and various 
particle-size parameters), (table 3), are summarized for each 
data source. Although y is a negative pressure measured 
relative to atmospheric pressure, absolute y values were 
used to develop the regression equations for yo. Textural 
classes (gravel, sand, silt, and clay) are reported as weight 
percentages, or the weight of material falling within a given 
range of particle diameters divided by the total weight of the 
material analyzed. Particle-size limits for each textural class 
are defined according to the U.S. Department of Agriculture’s 
soil classification system (Soil Survey Staff, 1975). Ninety-one 
out of 108 samples were classified as sands or loams, with 38 
samples classified as silt loams. The texture of sample USGS 
118 at 173.48 to 174.39 m from McElroy and Hubbell (1990) 
could not be determined due to incomplete particle-size data. 
The Magnuson (written commun., 2002) data set included the 
finest-textured samples, with 17 samples classified as clay 
loams, silty clay loams, silty clays, and clays. Because gravel-
sized particles (> 2 mm) were removed prior to measuring 
q(y) of the Magnuson (written commun., 2002) samples, the 
particle-size distributions of this data set were adjusted to zero 
percent gravel before calculating the particle-size parameters 
used to develop the q(y) PTMs. In table 3, two summaries 
of the particle-size parameters are reported for Magnuson 
(written commun., 2002), one for use in developing the Ksat 
PTM and the other for developing the q(y) PTM. 

Evaluation of Calibration Data

During the multiple linear-regression analyses, data were 
thoroughly examined for typographical errors, measurement 
errors, or differences between groups of core samples (arising 
from differences in measurement technique, collection 
method, or sample handling). In some cases, core samples 
were removed from the regression analyses due to missing or 
incomplete data. 

Effect of Repacked Core Samples
For the Magnuson (written commun., 2002) data set, q(y) 

measurements were completed on disturbed samples (after 
removing gravel and repacking). For the other data sets used 
in this study, q(y) curves were measured on intact samples. 
Although qsat was not measured on the Magnuson (written 

commun., 2002) samples, the repacking effect was observed 
by comparing the total porosity of the repacked samples (taken 
as the qsat values for these samples) with the total porosity 
calculated from the intact samples used for measurement of 
Ksat. Measured qsat values should be less than or equal to the 
values of total porosity calculated for intact core samples. For 
the Magnuson (written commun., 2002) samples, total porosity 
of the repacked samples exceeded total porosity of the intact 
samples by 25 percent or more for 37 out of 51 samples. In 
contrast, only 3 out of 58 of the intact samples from the other 
data sets had measured qsat values that exceeded total porosity 
by 25 percent. Because the interbed samples are deep and 
consolidated, repacking “fluffs” the material, creating a larger 
mean pore size compared to an intact sample. As a result, the 
repacked rbulk will be smaller than the rbulk of the intact core 
sample. The repacked total porosity is then larger than that of 
the intact sample.

“Fluffing” the material by repacking also should affect 
yo and l values because the sample mean pore size has been 
increased. From capillary theory, y is inversely related to 
the pore size at which drainage occurs. An increase in mean 
pore size as a result of repacking suggests that the absolute 
value of yo would be smaller than for an identical, intact 
sample, with drainage occurring “earlier” on the q(y) curve. 
A more uniform pore-size distribution is expected for a 
repacked sample because the material has been homogenized, 
destroying both large- and small-sized pores in the process. 
This would be reflected in the q(y) curve by a steeper drainage 
slope or a larger l value. 

The Mann-Whitney rank-sum test (Zar, 1996) was used 
to determine if the medians of the distributions of qsat, yo, 
and l for repacked (S. Magnuson, written commun., 2002) 
and intact (McElroy and Hubbell, 1990; Perkins and Nimmo, 
2000; Perkins, 2003; Winfield, 2003) samples were equal. For 
qsat, the calculated test statistic, Zc, was 3.191, compared to 
the critical two-tailed value of 1.645, using the t-distribution 
approximation to a normal distribution with infinite degrees 
of freedom and an a-level of 0.10. For yo, Zc was 2.930, and 
for l, Zc was 1.473. The rank-sum test indicated a statistical 
difference between repacked and intact samples for qsat and 
yo. Aside from the way samples were pretreated before 
experimental analyses, this difference could be due to the high 
clay content of the Magnuson samples (table 3) compared 
to the other data sets. However, the test was repeated after 
excluding 17 samples classified as clay loams, silty clay 
loams, silty clays, and clays from the Magnuson data set. 
Results showed that the medians of the qsat and yo distributions 
between intact and repacked samples were again dissimilar, 
suggesting that repacking has a stronger effect on the 
distributions of qsat and yo than percent clay does. For l, the 
distributions of repacked and intact samples were found to be 
dissimilar after excluding the samples with high clay content, 
indicating that repacking also affects l.
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Statistic
Saturated water content,

qsat (cm3/cm3)

Scaling parameter for 
matric pressure, 
yo (-cm-water)

Curve-shape  
parameter, 

l

Saturated hydraulic 
conductivity, 
Ksat (cm/s)

Magnuson, written commun. (2002)1

Minimum 0.4427 0.06 0.0820 1.14×10-7

Maximum .7333 241.77 .6568 8.41×10-2

Average .5098 45.73 .2380 4.03×10-3

Standard deviation .0482 54.63 .1292 1.32×10-2

Number of samples 51 51 51 41

McElroy and Hubbell (1990)

Minimum 0.3481 7.97 0.0853 1.13×10-8

Maximum .6290 3,499.98 .7082 6.73×10-3

Average .5191 295.56 .2340 1.33×10-3

Standard deviation .0814 831.84 .1836 2.20×10-3

Number of samples 16 16 16 16

Perkins and Nimmo (2000)

Minimum 0.3473 3.13 0.1066 2.35×10-7

Maximum .4497 556.67 1.1850 3.90×10-3

Average .4083 150.55 .3056 8.73×10-4

Standard deviation .0326 179.37 .2607 1.62×10-3

Number of samples 18 18 18 18

Perkins (2003)

Minimum 0.4516 2.12 0.0765 1.66×10-7

Maximum .5773 399.93 .5312 1.42×10-3

Average .5075 67.79 .1742 2.78×10-4

Standard deviation .0371 106.36 .1249 3.81×10-3

Number of samples 14 14 14 12

Winfield (2003)

Minimum 0.3585 16.65 0.0950 2.07×10-7

Maximum .5661 1,207.78 .2593 8.31×10-4

Average .4796 430.15 .1681 8.88×10-5

Standard deviation .0531 334.98 .0543 5.34×10-3

Number of samples 10 10 10 10

Total number of samples, n 109 109 109 97

1Water-retention measurements were completed on samples that were repacked after removing gravel (particle sizes greater than 2 millimeters).

Table 2.  Statistics for hydraulic data used to develop property-transfer models, listed by data source.

[Abbreviations: cm3/cm3, cubic centimeter per cubic centimeter; cm-water, centimeter of water; cm/s, centimeter per second]
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Statistic

Bulk 
density, 
rbulk

(g/cm3)

Particle 
density,
rpart

(g/cm3)

Gravel
(percent)

Sand
(percent)

Silt
(percent)

Clay
(percent)

Geometric 
mean particle 

diameter, 
Mg 

(mm)

Geometric 
particle-size 

standard 
deviation, 

sg

Median 
particle 

diameter, d50 
(mm)

Uniformity 
coefficient, 

Cu

Magnuson, S., written commun. (2002)1

Minimum 1.06 2.04 0.00 0.89 3.33 1.76 0.0013 2.76 0.0009 2.94
Maximum 1.97 2.66 74.70 91.05 70.07 63.81 2.4070 71.43 5.5197 2,254.05
Average 1.58 2.42 11.79 34.77 33.23 20.20 .2280 10.70 .4035 85.85
Standard deviation .21 .13 18.04 25.14 18.95 18.35 .5154 11.16 1.1436 311.74
Number of samples 51 51 51 51 51 51 51 51 51 51

Magnuson, S., written commun. (2002), adjusted2

Minimum 1.06 2.04 0.00 0.89 3.92 2.17 0.0012 0.00 0.0007 2.86
Maximum 1.97 2.66 .00 92.92 70.07 81.40 .2427 14.76 .6163 257.62
Average 1.58 2.42 .00 41.92 36.25 21.83 .0568 6.32 .0825 30.78
Standard Deviation .21 .13 .00 29.25 17.87 19.18 .0678 2.84 .1216 42.50
Number of samples 51 51 51 51 51 51 51 51 51 51

McElroy and Hubbell (1990)

Minimum 1.18 2.52 0.00 21.83 2.84 0.12 0.0133 1.91 0.0115 2.59
Maximum 1.94 2.89 .26 96.91 67.36 15.75 .2363 7.78 .2345 79.44
Average 1.44 2.63 .03 61.37 32.12 6.50 .0708 4.27 .0820 20.45
Standard deviation .20 .08 .07 24.11 21.10 5.08 .0720 1.59 .0699 24.01
Number of samples 16 16 15 15 15 15 15 15 15 15

Perkins and Nimmo (2000)

Minimum 1.22 2.65 0.00 0.04 2.37 0.14 0.0065 2.14 0.0082 2.77
Maximum 1.63 2.65 6.81 97.25 82.88 17.83 .4267 8.02 .4395 32.95
Average 1.42 32.65 .82 34.73 53.31 9.97 .0881 4.22 .0995 13.61
Standard deviation .09 .00 1.92 33.03 29.62 6.04 .1328 1.37 .1437 7.34
Number of samples 18 18 18 18 18 18 18 18 18 18

Perkins (2003)

Minimum 1.11 2.60 0.00 11.86 7.76 1.29 0.0094 2.71 0.0108 3.30
Maximum 1.46 2.75 .02 90.97 74.13 13.99 .1992 9.42 .3970 118.17
Average 1.31 2.63 .00 59.20 34.54 6.28 .0856 5.75 .1361 32.70
Standard deviation .10 .04 .00 24.97 20.95 4.20 .0579 2.08 .1145 33.33
Number of samples 14 14 14 14 14 14 14 14 14 14

Winfield (2003)

Minimum 1.18 2.74 0.00 0.00 61.43 9.91 0.0039 3.01 0.0046 6.98
Maximum 1.63 2.84 .00 25.20 80.80 25.08 .0160 4.67 .0183 16.40
Average 1.41 2.78 .00 9.00 73.59 17.41 .0083 3.87 .0097 10.95
Standard deviation .12 .03 .00 8.85 5.45 4.44 .0036 .55 .0042 2.83
Number of samples 10 10 10 10 10 10 10 10 10 10

Total number of 
samples, n

109 109 108 108 108 108 108 108 108 108

1 Core sample properties were used to develop the saturated hydraulic conductivity property-transfer model.
2 Adjusted samples: water-retention measurements were completed on samples that were repacked after removing gravel (particle sizes greater than 2 mm). 

Particle-size distributions were normalized to zero gravel content prior to calculating parameters. These core sample properties were used to develop the water-
retention property-transfer model.

3 The average particle density of 2.65 g/cm3, for measurements on 4 core samples, was used for all 18 samples.

Table 3.  Statistics for bulk physical-property data used to develop property-transfer models, listed by data source.

[The uniformity coefficient is defined as the particle diameter at the 60th percentile divided by the diameter at the 10th percentile, calculated from the cumulative 
particle-size distribution on a percent-finer-than basis. Abbreviations: g/cm3, gram per cubic centimeter; mm, millimeter]
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Including the repacked samples in preliminary regression 
analyses had a pronounced effect on the results compared to 
analyses that excluded these samples. The goodness-of-fit 
values, indicated by R2

adj, decreased by 30.9 to 31.2 percent 
for models A, B, and C for qsat, by 22.8 to 39.6 percent for yo, 
and by 4.2 to 34 percent for l. Note that for the Magnuson 
data set, Mg, sg, d50, and Cu were determined on particle-size 
distributions reconstituted without gravel (to match the way 
the q(y) measurements were completed), although rbulk values 
included gravel. To adjust the measured rbulk values to zero 
percent gravel, the rbulk of the gravel fraction would have to 
be known (Andraski, 1996). As a result of these findings, 
the Magnuson data were excluded from the development of 
the q(y) PTMs. However, this data set was included in the 
development of the Ksat PTM because Ksat and rbulk were 
measured on intact core samples.

Errors in Fitted, Calculated, or Measured 
Parameters

Complete core sample measurement sets were needed to 
do the regression analyses for qsat, yo, l, and Ksat,. Because 
some core samples had missing values, the number of core 
samples available for developing the PTMs was reduced. 
One sample from McElroy and Hubbell (1990), USGS 118 
at 173.48 to 174.39 m, had only partial particle-size data. 
Because the particle-size parameters for this sample could not 
be calculated, this sample was excluded from all regression 
analyses, reducing the number of samples for developing the 
q(y) PTMs from 109 to 108 (table 4). Ksat measurements 
were not completed for 10 samples from Magnuson (written 
commun., 2002) and two samples from Perkins (2003). The 
total number of samples for developing the Ksat PTM was 
reduced from 109 to 96, accounting for the sample with 
missing particle-size data and the 12 samples with missing Ksat 
values (table 4). 

Borehole 
identification 

No.

Depth 
interval  

(m)

Water retention (q(y)) parameters
Saturated hydraulic 

conductivity, 
log(Ksat)

Saturated water content,  
qsat

Scaling parameter for  
matric pressure,  

log(yo)

Curve-shape parameter, 
log(l)

Model A Model B Model C Model A Model B Model C Model A Model B Model C Model A Model B Model C

Magnuson, S., written commun. (2002)

RWMC-SCI-V-153 32.74–33.54 H H H
RWMC-SCI-V-154 33.99–34.30 H H H
RWMC-SCI-V-157 71.04–71.19 H H H
RWMC-SCI-V-159 72.56–72.71 H H H
RWMC-SCI-V-160 73.84–73.99 H H H
SOUTH-SCI-V-012 35.98–36.13 H H H
SOUTH-SCI-V-013 71.98–72.13 H H H
SOUTH-SCI-V-014 35.18–35.37 H H H

36.40–36.59 H H H
SOUTH-SCI-V-018 74.21–74.39 H H H

McElroy and Hubbell (1990)

USGS 118 173.48–174.39 B B B B B B B B B B B B

Perkins (2003)

ICPP-SCI-V-215 45.53–45.59 H H H
45.59–45.65 H H H

Total number of samples 109 109 109 109 109 109 109 109 109 109 109 109
Number of samples with missing 

data
1 1 1 1 1 1 1 1 1 13 13 13

Adjusted total number of samples, n 108 108 108 108 108 108 108 108 108 96 96 96

Table 4.  Core samples removed from multiple linear-regression analyses due to missing data.

[Model A, regression model with textural class percentages and bulk density as explanatory variables; Model B, regression model with geometric mean particle 
diameter, geometric standard deviation, and bulk density as explanatory variables; Model C, regression model with median particle diameter, uniformity 
coefficient, and bulk density as explanatory variables. Abbreviations: m, meter; B, Core sample removed due to error in one or more bulk physical-properties, 
typically a particle-size parameter; H, Core sample removed due to error in the hydraulic property value indicated] 
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Figure 7.  Textural classification of core samples (based on the system 
of the U.S. Department of Agriculture) used to develop a property-transfer 
model for estimating water retention (q(y)) . 

Because errors in hydraulic and bulk-physical properties 
can cause the regression models to be strongly influenced 
by a few points, the values of the explanatory and response 
variables were carefully examined. Errors can be due to 
sample collection, handling, measurement technique, and 
measurement resolution. Errors in sample collection and 
handling can adversely affect the rbulk of a core sample, 
which needs to be representative of a minimally disturbed 
sample. Sample disturbance also affects the hydraulic 
properties, particularly those most sensitive to the structure 
of the medium, such as qsat or Ksat. The resolution of the q(y) 
measurements can affect the quality of the Rossi-Nimmo 
(1994) junction curve fits and cause errors in the optimized 
curve-fit parameters, yo and l. The textural, geometric, and 
graphical parameters calculated from particle-size distributions 
also are sensitive to the resolution and range of measurements. 

Measurements of rbulk and rpart were examined for errors 
by dividing the values into each of the nine USDA textures 
represented by the data (fig. 7A). rbulk is a complex property 
affected by multiple factors, such as depth (or amount of 
overburden pressure), texture, particle arrangement, and 
aggregation or macropores. The influences of these factors, 
in addition to the possible effects of sample disturbance 
during core collection and subsequent handling, on rbulk 
are difficult to separate. Because natural variation in rbulk is 
expected, no values of rbulk seemed unusually high or low 
for a given texture. Values of rpart ranged from 2.04 to 2.89 
g/cm3 (table 3). Minerals commonly found in the sedimentary 
interbeds beneath the RWMC include quartz, plagioclase, 
orthoclase, pyroxene, and calcite (Rightmire and Lewis, 
1987; Bartholomay, 1990; Reed and Bartholomay, 1994). The 
rpart values of these minerals range from 2.57 to 2.76 g/cm3. 
Compared to these values, the rpart values of the other data 
sets, and the rpart values of similarly textured samples, one 
value of rpart equal to 2.04 g/cm3 (for sample SOUTH-SCI-
V-015 at 38.81 to 39.02 m, classified as a clay) seemed too 
low; therefore, this sample was excluded from the regression 
analyses. 

Several samples were excluded from the q(y) and Ksat 
PTMs because their particle-size distributions did not extend 
to small enough diameters (or cumulative frequencies) to 
accurately calculate statistical and textural-class parameters. 
The resolution of the particle-size distribution also will affect 
the values of most particle-size parameters; however, this 
issue is not addressed in this report. To adequately define the 
distribution shape, it is important to have as many points at 
the particle-size distribution’s fine end as at the coarse end. 
Definition at the distribution’s fine end is needed to interpolate 
d10 (for calculating Cu) and the frequency at 0.002 mm (for 
determining percent clay and percent silt). If the cumulative 
frequency at the smallest measured particle size is greater than 
10 percent, then d10 can have significant error because this  
part of the cumulative distribution’s slope is unknown. 
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If a significant percentage of particles is finer than the smallest 
measured particle diameter, then the width of the last bin at 
the distribution’s fine end, defined as the interval between 
the smallest measured diameter and zero, will be large, 
weighting Mg toward larger values and sg toward smaller 
values. The cumulative frequency at which deviations in Mg 
and sg became unacceptable was near the 10th percentile. 
Therefore, samples that did not have measurements on the 
cumulative particle-size distribution that extended to at least 
the 10th percentile were excluded from the multiple linear-
regression analyses. Samples that did not have particle-size 
measurements extending to at least 0.002 mm were excluded 
because percent clay and percent silt could not be determined. 
Four McElroy and Hubbell (1990) samples (USGS 118 at 
173.48 to 174.39 m, D-02 at 70.91 to 71.41 m, D-02 at 71.41 
to 71.71 m, and D-15 at 33.11 to 33.84 m) were excluded from 
model A due to lack of particle-size data in the clay range 
(down to 0.002 mm). For models B and C, three samples 
from this data set (USGS 118 at 173.48 to 174.39 m, D-15 
at 33.11 to 33.84 m, and D-15 at 69.94 to 71.16 m) were 
excluded because the size of the last particle-size bin was too 
large, causing errors in the calculated values of Mg, sg, and 
Cu. For the Magnuson data set, all particle-size measurements 
extended to small enough diameters to allow determination of 
percent silt and percent clay. However, 26 out of 51 samples 
were excluded from models B and C (table 5) due to poor 
definition at the fine end of the particle-size distribution, 
which affected the values of Mg, sg, and Cu. These 26 samples 
were classified as silt loams, clay loams, silty clay loams, silty 
clays, and clays. Among the Ksat models, these samples are the 
finest in texture compared to the remaining samples (fig. 8A); 
as a result, model A included more fine-textured samples than 
models B and C. 

Values of each hydraulic property (qsat, yo, l, and Ksat) 
were evaluated by examining their distributions within each of 
the nine USDA textures. A few anomalous values of Ksat and 
yo were identified this way. One core sample, SOUTH-SCI-
V-011 at 32.29 to 32.44 m, from the Magnuson data set had a 
measured Ksat value of 1.24 x 10-3 cm/s, which is too large for 
a sample containing 41 percent clay. This sample was removed 
from the final regression analyses for Ksat. Cracks in the 
sample or gaps between the sample and sample holder could 
have contributed to this large Ksat measurement. Swelling 
of a sample containing a large amount of clay would tend to 
lower Ksat. The maximum yo value of all 58 samples used for 
calibrating the q(y) models (sample D-15 at 33.11 to 33.84 m 
from the McElroy and Hubbell (1990) data set) was 3,499 cm 
for a sandy sample. Because this yo value is much too large 
for a sample of this texture, sample D-15 at 33.11 to 33.84 m 
was removed from the yo regression models. Values of yo are 
affected by the texture (particle-size distribution) and structure 

(particle arrangement, macropores) of the porous media, the 
influences of which are difficult to separate. For fine-textured 
samples and samples with a wide range of particle sizes, yo 
will tend to be large. For sample D-15 at 33.11 to 33.84 m, 
the optimization of yo may have been weighted by a few 
erroneous points in the wet range of q. A mismatch of reported 
particle-size distribution with measured q(y) curve (McElroy 
and Hubbell (1990) listed the texture of this sample as ‘clay’) 
also could be the reason for this large yo value. 

To evaluate the qsat measurements, values for each core 
sample were compared to total porosity values calculated from 
rbulk and rpart. Values of qsat were converted to percent saturation 
by dividing by total porosity and multiplying by 100. Values of 
percent saturation exceeding 125 percent were removed from 
the regression analyses for qsat. This conservative threshold 
was selected to keep most samples in the analyses, but exclude 
samples with unreasonably high values of saturation compared 
to total porosity. Three core samples from the McElroy and 
Hubbell (1990) data set (from boreholes 88-01D, D-10, and 
USGS 118) had qsat values that met this criterion. Because the 
rbulk values seemed reasonable for these three samples, ranging 
from 1.29 to 1.57 g/cm3, the high qsat values could be due to 
sample disturbance (although the Ksat values of these samples 
are reasonable) or to saturation in excess of total porosity. As 
mentioned above, qsat was not measured for the Magnuson 
(written commun., 2002) core samples. For this reason, and 
due to repacking effects on the Rossi-Nimmo (1994) junction 
model parameters, all 51 of the Magnuson (written commun., 
2002) samples were excluded from the q(y) PTMs. 

The l parameter approximates the slope of the drainage 
portion of the q(y) curve on a semilog scale, with larger values 
typically associated with coarse-textured materials or materials 
with a narrow range of particle sizes. The maximum value of 
l was 1.19 for a sandy sample (UZ98-2 at 43.09 to 43.21 m 
from Perkins and Nimmo (2000)) and the minimum was 0.077 
for a sandy loam sample (ICPP-SCI-V-215 at 46.10 to 46.20 m 
from Perkins (2003)). Because no upper limit on l exists, 
there is no reason to omit the 1.19 value from the regression 
analyses. The minimum value is low for a sandy loam material 
but this could be due to the way the particles are arranged 
in the sample, or the particular proportions of sand, silt, and 
clay. The values of l and yo are affected by the number and 
quality of measurements defining the q(y) curve. For sample 
ICPP-SCI-V-215 at 46.10 to 46.20 m, most of the measured 
points are clustered between 20 and 400 cm-water. Lack of 
q(y) points in the dry range makes it difficult for the Rossi-
Nimmo (1994) junction model to find an inflection point that 
would cause the curve fit to have a steeper drainage slope 
(corresponding to a larger l value). However, no core samples 
were excluded from the multiple linear-regression analyses for 
having anomalous l values.
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Table 5.  Core samples removed from multiple linear-regression analyses due to errors in fitted, calculated, or measured parameters.

[Model A, regression model with textural class percentages and bulk density as explanatory variables; Model B, regression model with geometric mean particle 
diameter, geometric standard deviation, and bulk density as explanatory variables; Model C, regression model with median particle diameter, uniformity 
coefficient, and bulk density as explanatory variables. Abbreviations: m, meter; B, core sample removed due to error in one or more of its bulk physical-
properties, typically a particle-size parameter; H, core sample removed due to error in the hydraulic property value indicated]

Borehole  
identification  

no.

Depth  
interval  

(m)

Water retention (q(y)) parameters
Saturated hydraulic 

conductivity, 
log(Ksat)

Saturated water content,  
qsat

Scaling parameter for  
matric pressure,  

log(yo)

Curve-shape parameter, 
log(l)

Model A Model B Model C Model A Model B Model C Model A Model B Model C Model A Model B Model C

Magnuson, written commun. (2002)

RWMC-SCI-V-153 30.79–31.59 H H H H H H H H H
31.98–32.16 H B, H B, H H B, H B, H H B, H B, H B B
32.74–33.54 H B, H B, H H B, H B, H H B, H B, H

RWMC-SCI-V-154 30.34–31.55 H H H H H H H H H
32.16–32.32 H B, H B, H H B, H B, H H B, H B, H B B
33.99–34.30 H B, H B, H H B, H B, H H B, H B, H

RWMC-SCI-V-155 67.99–68.14 H H H H H H H H H
RWMC-SCI-V-156 30.95–31.25 H H H H H H H H H
RWMC-SCI-V-157 69.51–69.66 H B, H B, H H B, H B, H H B, H B, H B B

71.04–71.19 H B, H B, H H B, H B, H H B, H B, H
RWMC-SCI-V-158 29.73–29.94 H H H H H H H H H
RWMC-SCI-V-159 68.17–68.35 H B, H B, H H B, H B, H H B, H B, H B B

69.82–70.27 H B, H B, H H B, H B, H H B, H B, H B B
72.56–72.71 H B, H B, H H B, H B, H H B, H B, H
72.71–72.87 H B, H B, H H B, H B, H H B, H B, H B B

RWMC-SCI-V-160 68.29–68.45 H H H H H H H H H
72.29–72.74 H H H H H H H H H
73.84–73.99 H B, H B, H H B, H B, H H B, H B, H

SOUTH-MON-A-009 40.64–40.82 H H H H H H H H H
43.29–43.75 H H H H H H H H H
46.01–46.19 H H H H H H H H H

SOUTH-SCI-V-011 29.88–31.89 H H H H H H H H H
32.29–32.44 H B, H B, H H B, H B, H H B, H B, H H B, H B, H

SOUTH-SCI-V-011 33.54–34.15 H B, H B, H H B, H B, H H B, H B, H B B
71.04–71.22 H H H H H H H H H

SOUTH-SCI-V-012 33.54–33.96 H H H H H H H H H
35.98–36.13 H B, H B, H H B, H B, H H B, H B, H
37.68–38.11 H H H H H H H H H

SOUTH-SCI-V-013 29.45–29.88 H H H H H H H H H
69.70–71.55 H H H H H H H H H
71.04–71.22 H H H H H H H H H
71.98–72.13 H B, H B, H H B, H B, H H B, H B, H

SOUTH-SCI-V-014 31.40–31.65 H H H H H H H H H
35.18–35.37 H B, H B, H H B, H B, H H B, H B, H
36.40–36.59 H B, H B, H H B, H B, H H B, H B, H
73.78–73.96 H H H H H H H H H
74.21–74.39 H B, H B, H H B, H B, H H B, H B, H B B

SOUTH-SCI-V-015 35.67–35.88 H H H H H H H H H
36.89–37.10 H B, H B, H H B, H B, H H B, H B, H B B
38.81–39.02 H B, H B, H H B, H B, H H B, H B, H B B B
70.73–70.95 H H H H H H H H H
75.09–75.30 H B, H B, H H B, H B, H H B, H B, H B B
77.53–77.74 H B, H B, H H B, H B, H H B, H B, H B B
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Core samples that were removed from models A, B, and 
C for qsat, yo, l, and Ksat due to measurement errors, errors in 
fitted parameters, or errors in calculated parameters are listed 
in table 5. Samples removed due to errors in a measured or 
fitted hydraulic parameter are indicated with an ‘H’, while 
samples removed due to errors in a bulk property are indicated 
with a ‘B’. The adjusted total number of samples reflects the 
number of samples removed after subtracting from the original 
109 samples. For the q(y) PTM, textural classification of core 

samples is shown in figure 7A (before excluding samples, 
n = 108; one sample had missing particle-size data and its 
texture could not be determined), and in figure 7B (after 
removing the maximum number of samples with errors and 
missing data, n = 51). For the Ksat PTM, textural classification 
of core samples is shown in figure 8A (before excluding 
samples with errors, n = 96; 13 samples had missing data) and 
in figure 8B (after removing the maximum number of samples 
with errors and missing data, n = 78). 

Table 5.  Core samples removed from multiple linear-regression analyses due to errors in fitted, calculated, or measured parameters.—Continued

[Model A, regression model with textural class percentages and bulk density as explanatory variables; Model B, regression model with geometric mean particle 
diameter, geometric standard deviation, and bulk density as explanatory variables; Model C, regression model with median particle diameter, uniformity 
coefficient, and bulk density as explanatory variables. Abbreviations: m, meter; B, core sample removed due to error in one or more of its bulk physical-
properties, typically a particle-size parameter; H, core sample removed due to error in the hydraulic property value indicated]

Borehole  
identification  

no.

Depth  
interval  

(m)

Water retention (q(y)) parameters
Saturated hydraulic 

conductivity, 
log(Ksat)

Saturated water content,  
qsat

Scaling parameter for  
matric pressure,  

log(yo)

Curve-shape parameter, 
log(l)

Model A Model B Model C Model A Model B Model C Model A Model B Model C Model A Model B Model C

Magnuson, written commun. (2002)—Continued

SOUTH-SCI-V-016 37.96–38.11 H B, H B, H H B, H B, H H B, H B, H B B
41.55–41.77 H B, H B, H H B, H B, H H B, H B, H B B
45.21–45.43 H B, H B, H H B, H B, H H B, H B, H B B
74.70–74.85 H H H H H H H H H

SOUTH-SCI-V-016 75.76–75.91 H H H H H H H H H

SOUTH-SCI-V-018 68.69–68.87 H H H H H H H H H
71.04–71.25 H H H H H H H H H
74.21–74.39 H B, H B, H H B, H B, H H B, H B, H

McElroy and Hubbell (1990)

88-01D 170.15–71.13 H H H
D-02 70.91–71.41 B B B B

71.41–71.71 B B B B
D-10 110.58–10.98 H H H
D-15 33.11–33.84 B B B B, H B, H B, H B B B B B B

69.94–71.16 B B B B B B B B
USGS 118 68.60–70.12 H H H

Perkins (2003)

ICPP-SCI-V-215 45.53–45.59 H H H
45.59–45.65 H H H

Total number of samples (excluding 
missing)

108 108 108 108 108 108 108 108 108 96 96 96

Number of samples removed due to 
errors

57 56 56 54 53 53 54 53 53 5 18 18

Adjusted total number of samples, n 51 52 52 54 55 55 54 55 55 91 78 78

1Two core samples were analyzed from the depth interval indicated. Samples indicated by McElroy and Hubbell (1990) as duplicates were removed.
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Linearity Between Explanatory and Response 
Variables

Linearity between explanatory and response variables 
is an important assumption in applying the multiple 
linear-regression approach. Multiple linear regression is a 
correlation-based method, where measuring the strength of 
relations between variables assumes linearity. The strength 
of these relations will be underestimated if nonlinearity is 
present. The most direct way of correcting nonlinearity is by 
transforming one or both of the variables (Hair and others, 
1998). Data transformations can improve the correlation 
between variables and correct violations of multivariate 
assumptions. Linearity was evaluated by examining scatter 
plots, using Pearson’s r, and examining residual plots from 
preliminary regression analyses. Nonlinear trends identified 
in the scatter plots and residual plots were corrected by 
transforming the explanatory variable, the response variable, 
or both.

By examining scatter plots (not shown), and from the 
Pearson’s r values (tables 6 and 7), several explanatory 
variables (Mg, sg, d50, Cu, and percent gravel) appeared to 
vary nonlinearly with the response variables (qsat, yo, l, and 
Ksat). Based on the curvature of the relations between the 
explanatory and response variables, transformations such 
as the square root, inverse, or logarithm were selected as 
candidates for correcting the nonlinearity (Hair and others, 
1998). Because the values of Mg, d50, and Cu spanned 
approximately two orders of magnitude for the q(y) models, 
and more than three orders of magnitude for the Ksat models, 
a logarithmic transformation was chosen to establish linearity. 
The spread in particle sizes is described by both sg and Cu. 
Although sg varied by less than an order of magnitude for the 
q(y) and Ksat models, a logarithmic transformation also was 
applied to sg to provide a better comparison with log(Cu) in the 
comparison of competing regression models. Percent gravel 
varied by less than one order of magnitude. By definition, the 
textural-class percentages are constrained to vary between 
zero and 100 percent; the other particle-size parameters have 
no such lower and upper limits. Several core samples had zero 
gravel content, causing nonlinear patterns in the scatter plots. 
Transformation of percent gravel using the logarithm, inverse, 
or square root was not possible due to the zero values. 

After transforming Mg, sg, d50, and Cu, preliminary 
regression analyses were done and residuals for models 
A, B, and C were examined for each response variable. If 
residuals displayed heteroscedasticity, then the response 
variable was transformed. This procedure typically corrected 
all nonlinear effects in the scatter plots and in the residual 
plots. The response variables Ksat, yo, and l showed nonlinear 
relations with the explanatory variables. The logarithmic, 

Figure 8.  Textural classification of core samples (based on the system 
of the U.S. Department of Agriculture) used to develop a property-transfer 
model for estimating saturated hydraulic conductivity (Ksat ) .
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Property-Transfer Model Analyses  25 



square-root, and inverse transformations were tried based 
on the shape of the relation between Ksat, yo, and l and the 
explanatory variables observed in the scatter plots (Hair 
and others, 1998). Because transformation of the response 
variable changes the model units, transformed models 
cannot be compared directly using the R2

adj, RMSE, or other 
measures of model fit (Helsel and Hirsch, 1992). Instead the 
residuals were examined to determine the best transformation 
of Ksat, yo, and l to implement. Ksat varied over five orders 
of magnitude, yo varied over three, and l varied over one. 
The transformation providing the best residual behavior for 
Ksat and yo was the logarithmic transformation. After the 
logarithmic transformation was applied, values of Ksat and yo 
spanned less than an order of magnitude and the linearity of 

Bulk  
density,  
rbulk  

(g/cm3)

Particle 
density,  
rpart  

(g/cm3)

Gravel
(percent)

Sand
(percent)

Silt
(percent)

Clay
(percent)

Geometric 
mean 

particle 
diameter,  
Mg (mm)

Geometric 
particle-size 

standard 
deviation, sg

Median 
particle 

diameter, 
d50 (mm)

Uniformity 
coefficient,  

Cu

Saturated water
content, qsat (cm3/cm3)

-0.568 -0.046 -0.247 0.283 -0.250 -0.256 0.016 -0.036 0.074 0.047

Scaling parameter for matric 
pressure, yo (-cm-water)

0.346 0.112 -0.097 -0.092 0.087 0.136 -0.091 -0.292 -0.134 -0.178

Curve-shape parameter, l -0.202 -0.057 0.221 0.490 -0.484 -0.505 0.721 -0.538 0.572 -0.364

Bulk density, rbulk (g/cm3) 1 -0.058 0.063 -0.268 0.233 0.334 -0.320 -0.034 -0.399 -0.125

Particle density, rpart (g/cm3) 1 -0.039 -0.460 0.435 0.479 -0.221 -0.289 -0.256 -0.310

Gravel (percent) 1 0.201 -0.276 -0.271

Sand (percent) 1 -0.992 -0.901

Silt (percent) 1 0.858

Clay (percent) 1

Geometric mean particle 
diameter, Mg (mm)

1 -0.229

Geometric particle-size 
standard deviation, sg

1

Median particle diameter, 
d50 (mm)

1 0.217

Uniformity coefficient, Cu
1

Table 6.  Correlation matrix between water-retention parameters and bulk-physical properties, without transformation of selected variables.

[The statistical relation between parameters listed in the header and first column is indicated by Pearson’s correlation coefficient (r). Values of r can vary from 
-1 to +1, indicating parameters are either perfectly negatively or positively correlated. Values near zero indicate no correlation between parameters. Calculations 
were made using a subset of the original 109 core samples that excluded the samples with missing values and the Magnuson (2002) data, for a total of 57 
samples. Abbreviations: g/cm3, gram per cubic centimeter; mm, millimeter; cm3/cm3, cubic centemeter per cubic centimeter; cm-water, centimeter of water]

Ksat and yo with the explanatory variables greatly improved. 
For l, the inverse and logarithmic transformations produced 
the best linear patterns in the scatter plots, but nonlinearity 
was not entirely corrected. The studentized residual patterns 
were similar for the logarithmic and inverse transformations, 
typically with slight heteroscedasticity existing for smaller 
predicted l values. Applying the logarithmic transformation 
to l improved the linearity with the explanatory variables, 
corrected most of the heteroscedasticity in the residual plots, 
and provided the most normally distributed residuals. An 
added benefit of using the logarithm of l is that predicted 
values cannot be negative, which is a restriction on l in the 
Rossi-Nimmo (1994) junction model. 
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The effect of transforming the variables is reflected in 
Pearson’s r values calculated before and after transformation 
by comparing tables 6 and 8 for the q(y) models and tables 
7 and 9 for the Ksat models. To simplify the discussion of 
correlation between variable pairs, the r values reported 
between each of the q(y) parameters and the explanatory 
variables were based on 57 core samples (excluding the 51 
Magnuson (written commun., 2002) samples and the sample 
with missing particle-size data from McElroy and Hubbell 
(1990)). The r values between Ksat and the explanatory 
variables were based on 96 core samples (excluding the 13 
samples with missing particle-size or Ksat values). Similar 
r values were obtained using the final number of samples 

included in models A, B, and C after removing erroneous 
values. After applying a logarithmic transformation to log(yo), 
the correlations with most textural-class parameters greatly 
improved. Prior to transformation, the r values between yo and 
percent sand, percent silt, and percent clay were -0.092, 0.087, 
0.136, respectively (table 6), reflecting the nonlinear relations 
observed in the scatter plots. The r values between log(yo) 
and percent sand, percent silt, and percent clay improved 
after transformation of yo (r = -0.645, 0.629, and 0.653, 
respectively, (table 8)). Similar improvements in r values were 
observed after applying the logarithmic transformation to other 
response variables (Ksat and l) and some of the explanatory 
variables (Mg, sg, d50, Cu). 

Bulk
density, 
rbulk  

(g/cm3)

Particle 
density,  
rpart  

(g/cm3)

Gravel 
(percent)

Sand
(percent)

Silt
(percent)

Clay
(percent)

Geometric 
mean 

particle 
diameter, 
Mg (mm)

Geometric 
particle-size 

standard 
deviation, 

sg

Median 
particle 

diameter, 
d50 (mm)

Uniformity 
coefficient, 

Cu

Saturated hydraulic 
conductivity, Ksat 
(cm/s)

-0.138 -0.032 0.326 0.132 -0.261 -0.148 0.250 0.127 0.210 0.077

Bulk density, rbulk (g/cm3) 1 -0.199 0.282 -0.311 0.013 0.379 0.216 0.177 0.231 0.039

Particle density, rpart 
(g/cm3)

1 -0.160 -0.003 0.305 -0.408 -0.025 -0.328 -0.011 -0.155

Gravel (percent) 1 -0.045 -0.394 -0.213

Sand (percent) 1 -0.819 -0.662

Silt (percent) 1 0.381

Clay (percent) 1

Geometric mean particle 
diameter, Mg (mm)

1 0.178

Geometric particle-size 
standard deviation, sg

1

Median particle diameter, 
d50 (mm)

1 0.107

Uniformity coefficient, 
Cu

1

Table 7.  Correlation matrix between saturated hydraulic conductivity and bulk-physical properties, without transformation of selected variables.

[The statistical relation between parameters listed in the header and first column is indicated by Pearson’s correlation coefficient (r). Values of r can vary from 
-1 to +1, indicating parameters are either perfectly negatively or positively correlated. Values near zero indicate no correlation between parameters. Calculations 
were made using a subset of the original 109 core samples that excluded the samples with missing values, for a total of 96 samples. Abbreviations: g/cm3, gram 
per cubic centimeter; mm, millimeter; cm/s, centimeter per second]
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Poor correlations between some variable pairs indicated 
either that the explanatory variables had no relation with 
the response variable or that the linearity assumption was 
poorly met after applying transformations. All response 
variables were poorly correlated with percent gravel because 
most core samples had zero gravel content. As a result, the 
distribution for percent gravel was asymmetric, with large 
positive skewness, causing points on the scatter plots to be 
clustered near zero. rpart was poorly correlated with qsat (r = 
-0.046), log(l) (r = 0.017), and log(Ksat) (r = -0.204), with 
only a slightly better correlation with log(yo) (r = 0.315). 
By examining the scatter plots, it was determined that the 
relation between rpart and the response variables was weak. 
This was an early indication that rpart would not help explain 
the variation in qsat, log(l), and log(Ksat) during the regression 
analyses. The implications for poor correlations between some 
variable pairs are that the coefficients may become unstable 

or may not be found significantly different from zero when 
in fact they are (incorrect significance testing). Regression 
models with poor correlations between variable pairs may be 
less desirable to use than models with explanatory variables 
better able to explain the variation in the response variable 
of interest. Assumptions of multiple linear regression are, on 
rare occasions, perfectly met. In this study, the explanatory 
variables for models A, B, and C were pre-selected to simplify 
comparison of different particle-size parameter sets; therefore, 
some variable pairs with low correlations were included in 
the regression analyses. Explanatory variables that are poorly 
correlated with the response variables will not likely contribute 
to explaining variation in response variables. Goodness-of-
fit values likely would increase or decrease only slightly 
by including these explanatory variables in the regression 
variates. 

Bulk 
density, 
rbulk  

(g/cm3)

Particle 
density, 
rpart  

(g/cm3)

Gravel
(percent)

Sand
(percent)

Silt
(percent)

Clay
(percent)

log(Geo-
metric mean 

particle 
diameter,  
Mg (mm))

log(Geo-
metric 

particle-size 
standard 

deviation,  
sg)

log(Median 
particle 

diameter,  
d50 (mm))

log(Uni-
formity 

coefficient,  
Cu)

Saturated water content, qsat 
(cm3/cm3)

-0.568 -0.046 -0.247 0.283 -0.250 -0.256 0.173 -0.038 0.175 -0.068

log(Scaling parameter for 
matric pressure, yo  
(-cm-water))

0.565 0.315 -0.196 -0.645 0.629 0.653 -0.699 -0.183 -0.708 -0.095

log(Curve-shape parameter, 
l)

-0.168 0.017 0.213 0.420 -0.406 -0.481 0.461 -0.684 0.408 -0.662

Bulk density, ρbulk (g/cm3) 1 -0.058 0.063 -0.268 0.233 0.334 -0.317 -0.007 -0.323 0.044

Particle density, rpart (g/cm3) 1 -0.039 -0.460 0.435 0.479 -0.437 -0.224 -0.450 -0.223

Gravel (percent) 1 0.201 -0.276 -0.271

Sand (percent) 1 -0.992 -0.901

Silt (percent) 1 0.858

Clay (percent) 1

log(Geometric mean particle 
diameter, Mg (mm))

1 -0.140

log(Geometric particle-size 
standard deviation, sg)

1

log(Median particle 
diameter, d50 (mm))

1 -0.060

log(Uniformity coefficient, 
Cu)

1

Table 8.  Correlation matrix between water-retention parameters and bulk-physical properties, with transformation of selected variables.

[The statistical relation between parameters listed in the header and first column is indicated by Pearson’s correlation coefficient (r). Values of r can vary from 
-1 to +1, indicating parameters are either perfectly negatively or positively correlated. Values near zero indicate no correlation between parameters. Calculations 
were made using a subset of the original 109 core samples that excluded the samples with missing values and the Magnuson (2002) data, for a total of 57 
samples. Abbreviations: g/cm3, gram per cubic centimeter; mm, millimeter; cm3/cm3, cubic centimeter per cubic centimeter; cm-water, centimeter of water]
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Collinearity Between Explanatory Variables

Because collinearity affects the size of R2, and can 
produce errors in coefficient magnitudes or signs, or 
instabilities in coefficient values, assessing collinear relations 
among explanatory variables is needed to understand the 
results of the multiple linear regression analyses. Collinearity 
was evaluated by using scatter plots, Pearson’s r, and VIF 
values. Scatter plots between explanatory variables in model 
A indicated that percent sand was collinear with both percent 
silt and percent clay, and that percent silt was collinear with 
percent clay. This is true because any given textural-class 
percentage can be calculated by subtracting the sum of the 
remaining variables from 100 percent. For the q(y) PTM, 
Pearson’s r between percent sand and percent silt was  
-0.992; Pearson’s r between percent sand and percent clay 
was -0.901; and Pearson’s r between percent silt and percent 
clay was 0.858 (table 8). For similar reasons, the degree of 

correlation between percent sand and percent silt and between 
percent sand and percent clay was also high for the Ksat PTM 
(table 9). The correlation of percent gravel with the other 
textural-class percentages is smaller because a large number 
of core samples had zero gravel content. For the q(y) PTM 
and the Ksat PTM, Pearson’s r values indicated a poor degree 
of correlation among the explanatory variables in models B 
(rbulk, Mg, and sg) and C (rbulk, d50, and Cu). VIF indicates the 
degree of multicollinearity in a model, which can come from 
the combined effect of two or more explanatory variables in 
the regression variate. Calculations of VIF for the q(y) PTM 
were based on 57 core samples, excluding the 51 Magnuson 
(written commun., 2002) samples and the sample with missing 
particle-size data from McElroy and Hubbell (1990). For Ksat, 
96 samples were used to calculate VIF values, after excluding 
the 13 samples with missing particle-size or Ksat values. For 
model A and the q(y) PTM, VIF values ranged from 286 
to 38,600 for percent gravel, sand, silt, and clay (table 10). 

Bulk 
density, 
rbulk

(g/cm3)

Particle 
density, 
rpart

(g/cm3)

Gravel 
(percent)

Sand 
(percent)

Silt 
(percent)

Clay 
(percent)

log(Geo- 
metric mean 

particle 
diameter,  
Mg (mm))

log(Geo- 
metric particle-

size standard 
deviation, 

sg)

log(Median 
particle 

diameter,  
d50 (mm))

log(Uni- 
formity 

coefficient,  
Cu)

log(Saturated hydraulic 
conductivity, Ksat 
(cm/s))

-0.035 -0.204 0.369 0.655 -0.735 -0.476 0.728 0.270 0.710 0.197

Bulk density, rbulk 
(g/cm3)

1 -0.199 0 .282 -0.311 0.013 0.379 -0.131 0.199 -0.151 0.165

Particle density, rpart 
(g/cm3)

1 -0.160 -0.003 0.305 -0.408 -0.010 -0.347 0.063 -0.162

Gravel (percent) 1 -0.045 -0.394 -0.213

Sand (percent) 1 -0.819 -0.662

Silt (percent) 1 0.381

Clay (percent) 1

log(Geometric mean 
particle diameter, Mg 
(mm))

1 0.316

log(Geometric particle-
size standard 
deviation, sg)

1

log(Median particle 
diameter, d50 (mm))

1 0.279

log(Uniformity 
coefficient, Cu)

1

Table 9.  Correlation matrix between saturated hydraulic conductivity and bulk-physical properties, with transformation of selected variables.

[The statistical relation between parameters listed in the header and first column is indicated by Pearson’s correlation coefficient (r). Values of r can vary from 
-1 to +1, indicating parameters are either perfectly negatively or positively correlated. Values near zero indicate no correlation between parameters. Calculations 
were made using a subset of the original 109 core samples that excluded the samples with missing values, for a total of 96 samples. Abbreviations: g/cm3, gram 
per cubic centimeter; mm, millimeter; cm/s, centimeter per second]
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For the Ksat model, VIF values ranged from 124 to 605 for 
percent gravel, sand, silt, and clay. For VIF much greater than 
10, results indicate a high degree of multicollinearity among 
the textural-class parameters. For models B and C, the VIF 
values ranged from 1.09 to 1.59 for explanatory variables in 
the q(y) PTM and from 1.07 to 1.33 for those in the Ksat PTM 
(table 10), indicating a lack of multicollinearity among the 
explanatory variables. Because rbulk does not relate directly 
to particle size, lack of multicollinearity is indicated by the 
low VIF values between rbulk and the explanatory variables of 
models A, B, and C (ranging from 1.19 to 1.40 for the q(y) 
PTM and from 1.10 to 1.40 for the Ksat PTM). The VIF values 
for rpart also were low because rpart has no relation with particle 
size. 

Collinearity is acceptable as long as the prediction 
is made within the range of data values used in model 
development (Helsel and Hirsch, 1992). However, because 
the PTMs presented in this report will potentially be used 
to predict a wide range of sediment textures at the INEEL, 
beyond the range of textures in the calibration data, 
collinearity between textural-class percentages was deemed an 
undesirable aspect of model A. The sediment texture for the 
q(y) models ranged from sands to silt loams (fig. 7B), which 
does not include materials with higher clay content found 
at the INEEL site. Solutions for correcting multicollinearity 
between variables in model A, but not used in this report, 
include centering the data, eliminating variables, collecting 
additional data, or performing a more sophisticated type of 
regression, such as ridge, Bayesian, or weighted least squares 
(Helsel and Hirsch, 1992; Hair and others, 1998). 

Explanatory variable

Water-retention (q(y)) models
Saturated hydraulic conductivity (Ksat) 

models

Coefficient of 
determination  

(R2)

Variance inflation 
factor 
(VIF)

Coefficient of 
determination  

(R2)

Variance inflation 
factor 
(VIF)

Model A

Bulk density, rbulk
0.284 1.40 0.287 1.40

Particle density, rpart
.304 1.44 .436 1.77

Gravel .997 286 .993 134
Sand 1.000 38,600 .998 605
Silt 1.000 27,400 .998 420
Clay 1.000 1,580 .992 124

Model B

Bulk density, rbulk 0.165 1.20 0.095 1.11
Particle density, rpart .324 1.48 .145 1.17

log(Geometric mean particle diameter, Mg) .372 1.59 .146 1.17

log(Geometric particle-size standard deviation, sg) .137 1.16 .250 1.33

Model C

Bulk density, rbulk
0.157 1.19 0.092 1.10

Particle density, rpart
.308 1.45 .063 1.07

log(Median particle, diameter, d50) .348 1.53 .124 1.14

log(Uniformity coefficient, Cu) .084 1.09 .142 1.17

Table 10.  Variance inflation factors for explanatory variables used to develop property-transfer models for water retention and saturated hydraulic 
conductivity. 

[VIF, variance inflation factor, measures multicollinearity between explanatory variables in a particular regression model. To calculate VIF, each explanatory 
variable is regressed against the remaining explanatory variables in the model, and the goodness-of-fit, indicated by the coefficient of determination (R2), is 
calculated. VIF equals 1/ (1-R2). VIF less than 10 indicates little or no multicollinearity between the explanatory variable of interest and the rest of the variables 
used in the regression variate. VIF greater than 10 indicates the variable of interest is correlated with one or more of the other variables. Calculations were made 
using a subset of the original 109 core samples that excluded the samples with missing values, for a total of 57 samples for the water-retention models and a total 
of 96 samples for the saturated hydraulic conductivity models.]
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Water-Retention Property-Transfer Model

Because q varies nonlinearly with y, the Rossi-Nimmo 
(1994) junction model was used to characterize the q(y) 
curve. The Rossi-Nimmo (1994) junction model requires three 
parameters (qsat, yo, and l) to describe the entire range of y; 
therefore, three separate multiple linear-regression equations 
are needed. 

Saturated Water Content
Regression results for qsat were analyzed for overall 

goodness-of-fit, normality of residuals, homoscedasticity 
of residuals, and significance of coefficients. A summary of 
regression results for qsat, including values of R2

adj, RMSE, 
PPCC, and residual-distribution skewness, for models A, 
B, and C are presented in table 11. The regression analyses 
were completed after removing as many as 57 core samples 

identified as erroneous from the original total of 109 (see 
table 5). For samples included in models A, B, and C, qsat 
ranged from 0.3473 to 0.6151. Goodness-of-fit values (R2

adj) 
were comparable for each model, ranging from 0.491 to 
0.568, with model A having the highest value. The residuals 
were normally distributed for all models, as indicated by 
probability plots, PPCC values, and skewness values. PPCC 
values ranged from 0.989 to 0.992 compared to the critical 
value of 0.981. Residual distributions showed slight negative 
skewness, with values ranging from -0.05 to -0.20. Residual 
plots did not show heteroscedastic or nonlinear patterns (see 
example in fig. 9A for model C). Predicted qsat values are 
plotted against observed values in figure 10A for model C. The 
qsat values for the samples from Perkins and Nimmo (2000) 
were consistently overestimated, falling above the 1:1 line. 
Most similarly textured samples had higher qsat values than the 
Perkins and Nimmo (2000) samples, which may be a cause for 
qsat overestimation. 

Model Explanatory variables R2
adj

RMSE
PPCC for residual 

distribution
Critical 
PPCC

Skewness 
of residual 
distribution

Number of 
observations, n

Saturated water content, qsat (cm3/cm3)

A rbulk, gravel, sand, silt, clay 0.568 0.043 0.989 0.981 -0.20 51

B rbulk, log(Mg), log(sg) .491 .047 .992 .981 -.06 52

C rbulk, log(d50), log(Cu) .491 .047 .992 .981 -.05 52

Scaling parameter for matric pressure, yo (-cm-water)

A rbulk, gravel, sand, silt, clay 0.667 0.406 0.993 0.982 -0.04 54

B rbulk, log(Mg), log(sg) .727 .367 .986 .982 -.33 55

C rbulk, log(d50), log(Cu) .693 .389 .987 .982 -.32 55

Curve-shape parameter, l

A rbulk, gravel, sand, silt, clay 0.192 0.230 0.990 0.982 0.23 54

B rbulk, log(Mg), log(sg) .667 .157 .993 .982 -.16 55

C rbulk, log(d50), log(Cu) .607 .170 .989 .982 -.05 55

Saturated hydraulic conductivity, Ksat (cm/s)

A rbulk, gravel, sand, silt, clay 0.632 0.918 0.994 0.988 -0.19 91

B rbulk, log(Mg), log(sg) .606 .982 .991 .987 -.34 78

C ρ
bulk

, log(d
50

), log(C
u
) .589 1.003 .989 .987 -.36 78

Table 11.  Multiple linear-regression results comparing alternative representations of particle-size distribution for water-retention parameters and 
saturated hydraulic conductivity. 

[Hydraulic parameters used as response variables in regression models included saturated water content, the scaling parameter for matric pressure, the water-
retention curve-shape parameter, and saturated hydraulic conductivity. Three models (A, B, and C) with alternative forms of the particle-size distribution as 
input were compared for each hydraulic parameter. R2

adj indicates the goodness-of-fit for the model, accounting for the number of explanatory variables and the 
number of observations; values close to 1 indicate that the variables successfully explain the variation in the hydraulic parameter. RMSE, in units of the hydraulic 
parameter, measures the variation in the predicted values of each hydraulic parameter, similar to the standard deviation of a variable around its mean. PPCC 
indicates the normality of a distribution by comparing it to the normal distribution (a straight line) on a probability plot. If PPCC is greater than the critical PPCC 
value, then the data are considered normally distributed. Abbreviations: R2

adj, adjusted coefficient of determination; RMSE, root-mean-square-error; PPCC, 
probability plot correlation coefficient; ρbulk. bulk density; Mg, geometric mean particle diameter; σg, geometric particle-size standard deviation; d50, median 
particle diameter; Cu, uniformity coefficient; cm3/cm3, cubic centimeter per cubic centimeter; cm-water, centimeter of water; cm/s, centimeter per second]
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Figure 9.	   Studentized residuals and predicted hydraulic property values for multiple-linear regression model C (where the median 
particle diameter, uniformity coefficient, and bulk density were used as the explanatory variables). 
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Figure 10.  Predicted and observed hydraulic property values for multiple-linear regression model C (where the median particle 
diameter, uniformity coefficient, and bulk density were used as the explanatory variables). 
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Because the residual behavior was equivalent among 
models A, B, and C, the best model for qsat was chosen as 
model A, which had the highest R2

adj and lowest RMSE. 
However, model A was able to explain only about 8 percent 
more of the variation in qsat, as indicated by the values of R2

adj, 
than the other two models. The null hypothesis test states 
that coefficients are significantly different from zero if their 
t-value magnitudes exceed the critical t-value for the specified 
a-level and number of observations in the model. The partial 
t-value magnitudes for Mg, sg, d50, and Cu were less than the 
critical t-value of 2.011 (table 12). These variables did not 
help explain the variation in qsat, which is why the goodness-
of-fit values for models B and C were nearly identical. For 
models A, B, and C, the partial t-value magnitudes for rbulk 
ranged from -6.975 to -6.960, greatly exceeding the critical t-
value of about 2.010 at a = 0.05. rbulk was the most significant 
variable for explaining the variation in qsat. This finding also 
was supported by the values of Pearson’s r calculated between 
each explanatory variable and qsat, where rbulk was the only 
explanatory variable that had at least a moderate correlation 
with qsat (r = -0.568; table 8). Textural-class percentages in 
model A are affected by multicollinearity, and are not highly 

correlated with qsat (table 8). The geometric and graphical 
particle-size variables in models B and C do not correlate 
highly with qsat, which is a likely reason why their coefficients 
were not significantly different from zero. 

Because qsat is related to total porosity, which can be 
calculated from both rbulk and rpart, the effect of including 
rpart in models A, B, and C was evaluated. The R2

adj value 
decreased by 0.4 percent and 0.5 percent for models B and 
C, respectively, and did not change for model A. From the 
scatter plots and Pearson’s r  (table 8), rpart was not strongly 
correlated with qsat. Additionally, rpart was poorly correlated 
with yo, l, and Ksat (tables 7 and 9). Therefore, rpart was 
excluded from the regression analyses of all response 
variables. 

Scaling Parameter for Matric Pressure
The regression results for yo are listed in tables 11 and 

13. The regression analyses were based on a subset of the 
original 109 core samples, with the final number of samples 
ranging from 54 to 55. Values of yo ranged from 2.12 cm-
water for a sandy loam to 1,207.78 cm-water for a silt loam. 

Explanatory variable Coefficient
Lower 

boundary
Upper  

boundary
Standard  

error
Partial
t-value

Critical
t-value

Model A

Y-intercept -5.0123 -12.6245 2.6001 3.780 -1.326 2.014
Bulk density, rbulk

-.3974 -.5121 -.2826 .057 -6.973
Gravel .0604 -.0161 .1369 .038 1.590
Sand .0595 -.0170 .1359 .038 1.567
Silt .0641 -.0129 .1411 .038 1.677
Clay .1353 -.0502 .3209 .092 1.469

Model B

Y-intercept 1.0029 0.8453 1.1605 0.078 12.796 2.011
Bulk density, rbulk

-.4002 -.5156 -.2848 .057 -6.975

log(Geometric mean particle diameter, Mg) -.0130 -.0379 .0119 .012 -1.049
log(Geometric particle-size standard 

deviation, sg)
-.0022 -.0872 .0827 .042 -.053

Model C

Y-intercept 1.0063 0.8531 1.1595 0.076 13.207 2.011
Bulk density, rbulk

-.3998 -.5153 -.2843 .057 -6.960

log(Median particle diameter, d50) -.0123 -.0362 .0115 .012 -1.039

log(Uniformity coefficient, Cu) -.0029 -.0372 .0314 .017 -.171

Table 12.  Multiple linear-regression model coefficients, confidence limits, standard errors, and partial t-values for the water-retention parameter, 
saturated water content.

[Three regression models (A, B, and C) with alternative forms of the particle-size distribution as input were compared. Regression coefficients and the upper 
and lower 95-percent confidence limits are listed for each explanatory variable in a given model. Standard error denotes the expected variation of a coefficient 
across multiple samples of the data from a given population. Smaller standard error values imply more reliable predictions (smaller confidence intervals for the 
coefficient). Partial t-value, used to test whether a coefficient is significantly different from zero, is calculated by dividing the coefficient by its standard error. 
If the magnitude of the partial t-value is greater than the critical t-value (calculated from the Student’s t-distribution at a significance level of 0.05 and for the 
number of observations in the model), then the coefficient is significantly different from zero]
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The R2
adj values were high for all models, ranging between 

0.667 and 0.727. Model B had the highest R2
adj (0.727) and 

smallest RMSE (0.367). The residuals for model A were the 
most normally distributed. Although the PPCC for model B 
was greater than the critical value (0.986 > 0.982), the residual 
distribution for model B was more negatively skewed than 
that of model A or C (with skewness of -0.33 for model B 
compared to -0.04 for model A and -0.32 of model C). For 
models B and C, the studentized residuals were homoscedastic 
(fig. 9B for model C). Observations from different data sets 
were not preferentially underestimated or overestimated, as 
shown by the example for model C in figure 10B. 

The coefficients for each model were examined for 
significance from zero using the partial t-test. If the partial 
t-value magnitude exceeded the critical t-value calculated from 
Student’s t-distribution at a = 0.05, then the coefficient was 
significantly different from zero. As with qsat, only rbulk was 
significant in explaining the variation in log(yo) for model 
A (table 13). The correlation between rbulk and log(yo) was 
moderate, with r = 0.565 (table 8). However, compared with 
the qsat results for model A, the textural parameters—percent 

sand, silt, and clay—are at least moderately correlated with 
log(yo), with values of Pearson’s r of -0.645, 0.629, and 0.653, 
respectively (table 8). The coefficients for these parameters 
did not pass the partial t-test, indicating the influence of 
multicollinearity on model A. The coefficients for rbulk, Mg, and 
sg were significantly different than zero because the partial 
t-value magnitudes were greater than the critical t-value of 
2.008. Log(yo) was moderately correlated with log(Mg) (r = 
-0.699) and poorly correlated with log(sg) (r = -0.183). For 
model C, the coefficients for the intercept term, rbulk, and d50 
were significantly different from zero. rbulk and d50 also showed 
the highest univariate correlations with log(yo) for model 
C. Overall, model B had the greatest number of explanatory 
variables that would be helpful in predicting log(yo). 

Based on residual behavior and goodness-of-fit values, 
model B was chosen as the best model for predicting log(yo). 
The residuals of model B were the most normally distributed 
according to the PPCC and did not display unequal variances 
when plotted against predicted values of log(yo). Model B had 
the highest goodness-of-fit values, explaining 6 percent more 
of the variation in log(yo) than model A and 3 percent more 

Explanatory variable Coefficient
Lower 

boundary
Upper 

boundary
Standard 

error
Partial
t-value

Critical
t-value

Model A

Y-intercept 51.4054 -17.4564 120.2670 34.249 1.501 2.011
Bulk density, rbulk

1.8613 .8042 2.9183 .526 3.540
Gravel -.5303 -1.2235 .1628 .345 -1.538
Sand -.5199 -1.2124 .1727 .344 -1.509
Silt -.4977 -1.1964 .2011 .348 -1.432
Clay -1.2932 -2.9783 .3920 .838 -1.543

Model B

Y-intercept -1.1183 -2.3143 0.0777 0.596 -1.877 2.008
Bulk density, rbulk

1.4866 .6178 2.3554 .433 3.435

log(Geometric mean particle diameter, Mg) -.9035 -1.0956 -.7115 .096 -9.445
log(Geometric particle-size standard 

deviation, sg)
-.8969 -1.5605 -.2332 .331 -2.713

Model C

Y-intercept -1.4080 -2.6350 -0.1810 0.611 -2.304 2.008
Bulk density, rbulk

1.5344 .6139 2.4549 .459 3.346

log(Median particle diameter, d50) -.8394 -1.0330 -.6458 .096 -8.703

log(Uniformity coefficient, Cu) -.1510 -.4347 .1328 .141 -1.068

Table 13.  Multiple linear-regression model coefficients, confidence limits, standard errors, and partial t-values for the water-retention scaling parameter 
for matric pressure.

[Three regression models (A, B, and C) with alternative forms of the particle-size distribution as input were compared. Regression coefficients and the upper 
and lower 95-percent confidence limits are listed for each explanatory variable in a given model. Standard error denotes the expected variation of a coefficient 
across multiple samples of the data from a given population. Smaller standard error values imply more reliable predictions (smaller confidence intervals for the 
coefficient). Partial t-value, used to test whether a coefficient is significantly different from zero, is calculated by dividing the coefficient by its standard error. 
If the magnitude of the partial t-value is greater than the critical t-value (calculated from the Student’s t-distribution at a significance level of 0.05 and for the 
number of observations in the model), then the coefficient is significantly different from zero]
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than model C. All coefficients for model B were significantly 
different from zero, indicating that all explanatory variables 
were important for describing the variation in log(yo).

Curve-Shape Parameter
Multiple linear-regression analyses for log(l) are 

summarized in tables 11 and 14 for models A, B, and C. After 
removing samples with erroneous or missing values (table 
5), the final number of samples used in model A was 54, and 
the number used in models B and C was 55. Model B had 
the highest R2

adj and smallest RMSE. The residuals also were 
the most normally distributed for this model, with a PPCC 
value of 0.993 compared to the critical PPCC value of 0.982, 
and a skewness value of -0.16. The residual plot for model B 
showed the least heteroscedasticity. Residual plots for models 
A and C showed some clustering of points at smaller values 
of predicted log(l) (fig. 9C), and the residual plot for model 
A showed slight nonlinearity. Most of the l values for the 
Perkins and Nimmo (2000) data set were underestimated 
(fig. 10C for model C). The coefficients for log(Mg), log(sg), 

log(d50), and log(Cu) were significantly different from zero for 
models B and C; whereas for model A, only the coefficient 
for percent silt was significantly different from zero. From 
Pearson’s r values (table 8), log(sg) and log(Cu) were most 
highly correlated with log(l). Based on the comparison of 
regression results for models A, B, and C, model B was 
selected as the best model for predicting log(l). 

Saturated Hydraulic Conductivity Property-
Transfer Model

The Ksat PTM was developed using the same core 
samples as the q(y) PTM in addition to the 51 samples from 
Magnuson (written commun., 2002), for 96 potential samples 
(excluding the samples with missing Ksat and particle-size 
measurements). Twelve samples had missing Ksat values (10 
samples from Magnuson (written commun., 2002) and two 
samples from Perkins (2003)) and one sample had partial 
particle-size data (USGS 118 at 173.48 to 174.39 m from 
McElroy and Hubbell (1990)); these samples were treated 

Explanatory variable Coefficient
Lower 

boundary
Upper 

boundary
Standard 

error
Partial
t-value

Critical
t-value

Model A

Y-intercept 38.0186 -0.9624 76.9996 19.387 1.961 2.011
Bulk density, rbulk

.1387 -.4596 .7371 .298 .466
Gravel -.3881 -.7805 .0043 .195 -1.989
Sand -.3867 -.7788 .0053 .195 -1.983
Silt -.4099 -.8055 -.0144 .197 -2.084
Clay -.9143 -1.8683 .0396 .474 -1.927

Model B

Y-intercept 0.2489 -0.2615 0.7594 0.254 0.979 2.008
Bulk density, rbulk

.0799 -.2909 .4507 .185 .433

log(Geometric mean particle diameter, Mg) .2029 .1209 .2848 .041 4.970
log(Geometric particle-size standard 

deviation, sg)
-1.2227 -1.5059 -.9394 .141 -8.666

Model C

Y-intercept -0.0411 -0.5777 0.4955 0.267 -0.154 2.008
Bulk density, rbulk

.0974 -.3051 .4999 .201 .486

log(Median particle diameter, d50) .1925 .1079 .2772 .042 4.565

log(Uniformity coefficient, Cu) -.4910 -.6151 -.3669 .062 -7.944

Table 14.  Multiple linear-regression model coefficients, confidence limits, standard errors, and partial t-values for the water-retention curve-shape 
parameter.

[Three regression models (A, B, and C) with alternative forms of the particle-size distribution as input were compared. Regression coefficients and the upper 
and lower 95-percent confidence limits are listed for each explanatory variable in a given model. Standard error denotes the expected variation of a coefficient 
across multiple samples of the data from a given population. Smaller standard error values imply more reliable predictions (smaller confidence intervals for the 
coefficient). Partial t-value, used to test whether a coefficient is significantly different from zero, is calculated by dividing the coefficient by its standard error. 
If the magnitude of the partial t-value is greater than the critical t-value (calculated from the Student’s t-distribution at a significance level of 0.05 and for the 
number of observations in the model), then the coefficient is significantly different from zero]
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as missing data and subtracted from the original set of 109 
samples. Ksat values of the 96 samples ranged from 1.13 ´ 
10-8 to 8.41 ´ 10-2 cm/s (table 2), with textures ranging from 
clays to sands (fig. 8A). Thirty six of the 96 samples were 
classified as silt loams, with the second greatest number of 
samples (19) classified as sandy loams. As discussed above, 
five additional core samples were removed from model A due 
to either inadequacies in measured particle-size distributions 
or errors in measured Ksat and rpart values. An additional 18 
samples were removed from models B and C for similar 
reasons. The total number of core samples used to develop 
model A was 91, with 78 samples used to develop models B 
and C. The range of textures for models B and C is shown on 
the textural triangle in figure 8B.

Regression results for each Ksat model are summarized in 
tables 11 and 15. Model A had the highest R2

adj value (0.632), 
but no coefficients were significantly different from zero due 
to the multicollinearity between the textural-class parameters. 
The residuals for Model A were the most normally distributed, 
with a PPCC value of 0.994 compared to the critical value 
of 0.988, and a skewness of -0.19. Model B had the second 
highest R2

adj value (0.606) and ranked second best in terms of 

residual normality (PPCC of 0.991 compared to the critical 
value of 0.987, and skewness of -0.34). Coefficients for the 
intercept term and log(Mg) were significantly different from 
zero. The correlation between log(Ksat) and log(Mg) (r = 0.728; 
table 9) was highest among all the explanatory variables 
in model B. Model C had the lowest R2

adj value (0.589). 
Although the normality of the residuals was found to be good, 
with a PPCC of 0.989 compared to the critical PPCC value 
of 0.987, the residual distribution was slightly bimodal. Only 
the intercept term and log(d50) had coefficients that passed 
the partial t-test for significance from zero. Log(d50) also was 
more highly correlated with log(Ksat) (r = 0.710; table 9) than 
rbulk or log(Cu). Studentized residual variances, plotted against 
the predicted Ksat values, were nearly random and equal for 
all models (fig. 9D for model C), with the exception of a 
few extreme values exceeding the t-value threshold of about 
2.0. Trends observed in residual plots were basically linear. 
Predicted values of Ksat are shown plotted against observed 
values for model C in figure 10D. The Ksat values for the 
Magnuson samples tended to be underestimated, likely due to 
the large number of samples with high clay contents and high 

Explanatory variable Coefficient
Lower 

boundary
Upper 

boundary
Standard 

error
Partial
t-value

Critical
t-value

Model A

Y-intercept -14.2998 -29.4376 0.8379 7.614 -1.878 1.988
Bulk density, rbulk

.6625 -.5308 1.8557 .600 1.104
Gravel .1123 -.0381 .2627 .076 1.484
Sand .1127  -.0387 .2641 .076 1.480
Silt .0712 -.0788 .2212 .075 .944
Clay .0826 -.0685 .2336 .076 1.087

Model B

Y-intercept -1.5121 -3.4163 0.3920 0.956 -1.582 1.993
Bulk density, rbulk

-.0500 -1.2985 1.1985 .627 -.080

log(Geometric mean particle diameter, Mg) 1.8423 1.4862 2.1984 .179 10.308
log(Geometric particle-size standard 

deviation, sg)
-.2906 -1.3644 .7833 .539 -.539

Model C

Y-intercept -1.7690 -3.6640 0.1260 0.951 -1.860 1.993
Bulk density, rbulk

.0794 -1.1796 1.3384 .632 .126

log(Median particle diameter, d50) 1.7507 1.4155 2.0858 .168 10.408

log(Uniformity coefficient, Cu) -.3274 -.8314 .1765 .253 -1.295

Table 15.  Multiple linear-regression model coefficients, confidence limits, standard errors, and partial t-values for saturated hydraulic conductivity.

[Three regression models (A, B, and C) with alternative forms of the particle-size distribution as input were compared. Regression coefficients and the upper 
and lower 95-percent confidence limits are listed for each explanatory variable in a given model. Standard error denotes the expected variation of a coefficient 
across multiple samples of the data from a given population. Smaller standard error values imply more reliable predictions (smaller confidence intervals for the 
coefficient). Partial t-value, used to test whether a coefficient is significantly different from zero, is calculated by dividing the coefficient by its standard error. 
If the magnitude of the partial t-value is greater than the critical t-value (calculated from the Student’s t-distribution at a significance level of 0.05 and for the 
number of observations in the model), then the coefficient is significantly different from zero]
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Ksat values compared with the rest of the data. Based on the 
high value of R2

adj, and the normality and homoscedasticity 
of the residuals, model A was identified as the best model for 
predicting Ksat. 

Model Discrimination

Several tests were done to keep the use of the q(y) and 
Ksat models practical by limiting explanatory variables to one 
common set of particle-size parameters and determining the 
sensitivity of the estimated q(y) and Ksat values to the way 
the particle-size distribution was represented. For the qsat, yo, 
and l models, R2

adj values were not consistently higher for 
one common set of particle-size parameters. The set of three 
regression models for qsat, yo, and l that produced the highest 
R2

adj values was model combination A-B-B (textural-class 
percentages (A) for qsat, and geometric statistics (B) for yo 
and l). These models also showed the best behavior in terms 
of meeting the assumptions of multiple linear regression. 
Model A had the highest R2

adj and displayed the best model 
behavior for Ksat. Because the combined ability of the qsat, 
yo, and l models in estimating the q(y) curve is of more 
interest than obtaining the highest goodness-of-fit values for 
individual parameters, four model combinations were tested 
based on: (1) highest R2

adj values (A-B-B), (2) textural-class 
percentages (A-A-A), (3) geometric statistics (B-B-B), and (4) 
graphical statistics (C-C-C). Model discrimination then was 
completed by (1) calculating the RMSE between the observed 
and predicted q(y) curve for each core sample, (2) comparing 
the RMSE distributions of the four competing model 
combinations, and (3) evaluating the best model combination 
based on ease of model use, best model behavior, highest 
values of R2

adj, and best representation of the particle-size 
distribution to use for development of a theoretical PTM.

For each core sample, predicted values of qsat, yo, and 
l were calculated using the appropriate regression equations 
developed for models A, B, and C. For each of the four model 
combinations tested, the predicted values of qsat, yo, and l 
were used as input to the Rossi-Nimmo (1994) junction model 
(eqs. 1 to 3) to produce predicted q(y) curves for each core 
sample. The q(y) curve could not be estimated if any value 
of qsat, yo, or l was missing for a particular core sample. 
For this reason, the number of estimated curves per model 
combination was constrained to the minimum number of core 
samples used to develop the qsat, yo, and l models as a whole. 
For model combination A-B-B, 50 samples were used, and 
for model combination A-A-A, 51 samples were used. For 
model combinations B-B-B and C-C-C, 52 samples were used 
in the comparisons. Because yo and l were log-transformed, 
and the range of measured qsat values was not close to zero, 
predicted values of the hydraulic parameters were always 
positive. Negative values would cause errors in the q(y) curve 
calculated with the Rossi-Nimmo (1994) junction model.

Due to the difficulty in visually assessing the quality of 
predicted q(y) curves for each model combination (which 
would require up to 52 comparisons per combination), R2 and 
RMSE values were used to assess goodness-of-fit between 
observed and predicted q(y) curves. For each core sample, 
the observed q(y) curve was defined using the measured qsat 
value and the two parameters (yo and l) obtained by fitting 
the Rossi-Nimmo (1994) junction model (eqs. 1 to 3) to the 
q(y) measurements. The R2 and RMSE values originally were 
computed from q values at the measured y values, however, 
goodness-of-fit values were found to be sensitive to the range 
and number of measured q(y) points. Among core samples, 
the measured q(y) points spanned different ranges of y and 
varied in number. R2, calculated between the observed and 
predicted q values at the measured y values, was highly 
sensitive to the range and number of q(y) points. For some 
core samples, the R2 value was high (0.90 or greater) even 
when the observed and estimated curves visually appeared 
quite different. To place samples on an equal basis for 
comparison, observed and predicted q values were calculated 
at 1,000 logarithmically-spaced y points to define an 
approximately smooth curve, and R2 and RMSE values were 
recalculated. R2 values increased using the finer resolution 
of y points and still falsely indicated goodness-of-fit for 
some samples. Although RMSE differs from R2 because it is 
expressed in units of the dependent variable (q) and does not 
have a fixed scale like R2, which varies from 0 to 1, RMSE was 
chosen as the best goodness-of-fit indicator for comparing the 
four model combinations because R2 did not always indicate 
true goodness-of-fit.

Predicted q(y) curves for each model combination 
are shown in figure 11 for two core samples of silt loam 
texture with contrasting goodness-of-fit values. For model 
combination C-C-C, the RMSE between observed and 
predicted curves for core sample ICPP-SCI-V-214 at 56.24 to 
56.33 m from Winfield (2003) (fig. 11A) was 0.012, indicating 
a good fit, while the RMSE for core sample UZ98-2 at 49.89 
to 49.99 m from Perkins and Nimmo (2000) (fig. 11B) was 
0.043, indicating a poor fit. The overestimation of qsat inflated 
the RMSE value for UZ98-2 at 49.89 to 49.99 m, indicating 
the importance of accurately estimating qsat because it controls 
the relative position of the q(y) curve along the q axis. 

RMSE distributions for each model combination were 
examined to determine the best particle-size parameter set to 
implement based on the distribution with the smallest RMSE 
values. In figure 12, the RMSE distributions for each model 
combination are presented as a boxplot. The box represents 
the interquartile range for each R2 distribution, where the 
upper box limit is the 75th percentile and the lower limit is the 
25th percentile. The median of the distribution (50th percentile) 
is drawn as a line across the box. Skewness is indicated by 
the relative position of the median line within the box, with 
a perfect normal distribution indicated by a line centered in 
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the box. The “whiskers” extend from the box edge to the data 
points that lie within 1.5 times the interquartile range. Any 
points that lie beyond the ends of the whiskers, plotted as 
circles, are outlying points. If there are no outlying points, a 
dot is placed at the end of the left whisker. The range of RMSE 
values was similar between each model combination, varying 
from 0.001 to 0.064 (fig. 12). The medians ranged from 0.015 

to 0.021. These results indicated that the estimated q(y) 
curves were insensitive to the way the particle-size distribution 
was represented. The distributions for model combinations 
A-B-B and B-B-B were nearly identical, indicating that the 
estimated qsat values for each core sample were insensitive to 
the regression equation used. This result supports the earlier 
observation that the particle-size parameters explain little 

Figure 11.  Estimated water-retention (q(y)) curves for two silt loam core samples 
based on three multiple linear-regression models with different particle-size parameter 
sets as input. 
The q(y) curve was represented by the Rossi-Nimmo (1994) junction model.
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of the variation in qsat, and that rbulk is the most important 
explanatory variable for qsat. Model combination A-A-A 
possessed the largest interquartile range, or spread of RMSE 
values, likely because the l model had such a low value of 
R2

adj (0.192). 
The RMSE distribution for model combination C-C-C 

was divided into groups to examine trends based on texture, 
source data, and location. The 52 core samples for this model 
combination were divided into groups based on the five U.S. 
Department of Agriculture textures (sand, loamy sand, sandy 
loam, loam, and silt loam) represented by the data (fig. 13A). 
The primary texture represented by the data was silt loam 
(n = 29), followed by sandy loam (n = 10). Sandy loam had the 
smallest median RMSE value (0.008) among all textures, with 
silt loam having the second smallest median (0.017). Samples 
of silt loam texture were expected to have the smallest RMSE 
values because silt loam is the dominant texture represented 

in the models. Removing the three outlying points of the silt 
loam distribution decreased the median only slightly, from 
0.017 to 0.015. The range of RMSE values for sands compared 
to loams was quite similar, indicating lack of model bias 
toward a particular texture. The same RMSE values divided on 
the basis of source data are shown in figure 13B. The RMSE 
distribution for the Winfield (2003) data set had the tightest 
range (0.008 to 0.019), with a median value only slightly 
smaller than the other distributions. This range likely resulted 
from all 10 samples having silt loam textures. The McElroy 
and Hubbell (1990) data set displayed the largest range of 
RMSE values (0.001 to 0.054). The qsat values for five samples 
were either greatly over- or underestimated, with absolute 
residual values of 0.07 or more. Over- or underestimation of 
qsat could cause the RMSE values to be inflated due to the large 
difference between estimated and measured values of q near 
saturation. Textures represented by the McElroy and Hubbell 

 Figure 12.	  Comparison of root-mean-square-error (RMSE ) distributions for four combinations of multiple 
linear-regression models with different particle-size parameter sets as input. 
RMSE was calculated for individual core samples between water-retention curves estimated from regression 
models and fitted to measured points. The water-retention curve was represented by the Rossi-Nimmo (1994) 
junction model.
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data set were the most diverse among the four data sets shown 
in figure 13B, with a mixture of silt loams, loams, sandy 
loams, and loamy sands. This diverse mixture of textures also 
could explain why the RMSE distribution for the McElroy and 
Hubbell data spanned such a large range. 

Comparison of RMSE distributions in figure 12 showed 
that estimated q(y) curves were insensitive to the way the 
particle-size distribution was represented; therefore, other 
criteria were used to select the best particle-size parameter 
set for the final q(y) and Ksat models. These criteria 
included: (1) ease of model use or ease of determining the 
particle-size parameters, (2) best model behavior for each 
hydraulic parameter (qsat, yo, l) in terms of normality and 
homoscedasticity of the residuals, (3) highest degree of model 
fit for each hydraulic parameter, based on R2

adj, and (4) best 
model combination to use for developing a theoretical model 
from results of the statistical analyses. Model combination 
A-B-B involved computing two sets of parameters from 
the particle-size distribution, textural-class percentages and 
geometric statistics. Although textural-class percentages can 
be readily determined, calculation of geometric statistics 
requires good particle-size distribution resolution and points 
that extend to at least a cumulative frequency of 10 percent 
on a percent-finer-than basis. Model combination A-B-B was 
undesirable to use because two sets of particle-size parameters 
needed to be calculated. Although model combination A-B-B 
involved regression models with the highest R2

adj values for 
each q(y) parameter, the RMSE distribution for this model 
combination differed only slightly from distributions for 
model combinations A-A-A, B-B-B, and C-C-C. For these 
reasons, model combination A-B-B was eliminated from 
further consideration.

Textural-class percentages are the easiest particle-size 
parameters to determine, followed by the graphical statistics, 
and then the geometric statistics. The minimum number of 
particle-size points needed to calculate textural classes is 
three, chosen to correspond to the textural-class limits of a 
particular sedimentary or soil classification system. More 
points are typically measured for those methods where precise 
determination of particle sizes corresponding to classification 
limits is difficult (for example, the pipette or hydrometer 
method). Percent gravel, sand, and silt can be calculated 
directly from the cumulative particle-size distribution, 
graphically or by interpolation between measured points. 
Percent clay is then calculated from the sum of the other 
three percentages subtracted from 100 percent. The second 
easiest set of parameters to calculate includes d10, d50, and d60, 
which can be determined graphically from the cumulative 
particle-size distribution or calculated by interpolating 
between measured points. Calculating the graphical statistics 
requires better particle-size distribution resolution than for 
calculating textural-class percentages, primarily because the 

Figure 13.	   Root-mean-square-error distributions for the multiple 
linear-regression model with median particle diameter, uniformity 
coefficient, and bulk density as input (model combination C-C-C). 
RMSE was calculated for individual core samples between curves 
estimated from the regression models and fitted to the measured 
water-retention points. The water-retention curve was represented 
by the Rossi-Nimmo (1994) junction model.
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values of d10, d50, and d60 are not defined by specific particle 
diameters but by cumulative percentiles. Using geometric 
statistics is attractive because particle-size distributions of 
sediments often are lognormally distributed (Krumbein, 1938; 
Pettijohn, 1975). This means that particle-size distribution 
can be characterized using only two parameters, the mean and 
standard deviation. However, calculating these parameters 
requires good resolution of the particle-size distribution. The 
number of particle-size bins reported for samples in this study 
varied from 20 for 67 samples (McElroy and Hubbell, 1990; 
S. Magnuson, written commun., 2002) to 116 for 42 samples 
(Perkins and Nimmo, 2000; Perkins, 2003; and Winfield, 
2003). Geometric statistics can be calculated directly from 
particle-size data using the moment method (which is sensitive 
to bin size), or by fitting a lognormal function to the data 
(which involves access to software with nonlinear regression 
capabilities). Mg and d50 are the two most common measures 
of central tendency used in the earth sciences. Because a 
small number of observations can strongly influence Mg, it 
is not considered a resistant measure of central tendency. 
However, d50 is determined solely by the relative order of the 
observations in the distribution. The resistant analogs to the 
geometric statistical parameters are d50 and Cu (d60/d10), which 
have the advantage of not including effects due to skewness or 
outliers. 

To estimate K(q), Ksat can be combined with q(y), 
represented by the Rossi-Nimmo (1994) or van Genuchten 
(1980) equations, in Mualem’s (1976) equation. For ease 
of application of this step, the Ksat and q(y) PTMs needed 
to have the same input parameters, which would require 
calculating only one set of particle-size parameters. For Ksat, 
model A had the highest R2

adj (0.631), with models B and C 
differing only by 2.5 and 4.2 percent, respectively, from model 
A. Because the goodness-of-fit values were similar for models 
A, B, and C for Ksat, the final Ksat PTM was selected based on 
the best model combination for q(y). 

Besides ease of use, other criteria used to discriminate 
between competing models included the best behavior of 
residuals for each hydraulic parameter (qsat, yo, l), the highest 
R2

adj, and the best parameters to use for development of a 
theoretical PTM. In general, model combination B-B-B ranked 
the highest for all of the criteria for model selection except 
ease of use. Model combination C-C-C ranked second best. 
Values of R2

adj for each hydraulic parameter were, on average, 
higher for model B (table 14) than for the other models. Model 
B also tended to have the most normally distributed and 
homoscedastic residuals for log(l) and qsat, with the normality 
being only slightly degraded compared to model A for log(yo). 
Model combination B-B-B also was the best candidate for use 
in developing a theoretical model because Mg and sg can be 
related to similar parameters of the pore-size distribution on 
a lognormal basis (Kosugi, 1996; Hwang and Powers, 2003). 
Model A involved four explanatory variables that described 
the particle-size distribution, but because these summed to 
100 percent, only three needed to be measured. Model A 
ranked highest for ease of use because textural data typically 

are the minimum data reported when describing particle size. 
However, due to multicollinearity among the textural-class 
parameters, model A was less desirable to use as the final 
PTM than models B or C. The parameters for model C readily 
can be calculated from the cumulative particle-size distribution 
as long as enough points are available to interpolate accurately 
d10, d50, and d60. Accurate calculation of model B particle-size 
parameters depends on particle-size distribution resolution. 
Resolution affects the width of the bin sizes, and wider bins 
create larger errors in Mg and sg. In addition, distribution’s 
fine end needs to be adequately defined (at least down to a 
cumulative frequency of 10 percent), otherwise calculated 
Mg and sg values are greatly affected. Because d50 and Cu are 
closely related to Mg and sg, respectively, and given that model 
C ranked second highest for the model criteria, model C was 
chosen as the final model. The following are the final q(y) 
equations using the graphical particle-size statistics and rbulk as 
input:

	

q rsat bulk

ud C
= -
- -

1 0063 0 3998
0 0123 0 002950

. .
. log( ) . log( ) 	

	

log( ) . .
. log( ) . log( )

y ro bulk

ud C
= - +
- -

1 4080 1 5344
0 8394 0 151050 	 (12)

	

log( ) . .
. log( ) . log( )

l r= - +
+ -

0 0411 0 0974
0 1925 0 491050

bulk

ud C 	

The Ksat model equation is:

	

log( ) . .
. log( ) . log( )

K
d C

sat bulk

u

= - +
+ -

1 7690 0 0794
1 7507 0 327450

r

	 (13)

For comparison, the coefficients for the explanatory variables 
of models A and B are listed in tables 12 through 15 for qsat, 
yo, l, and Ksat.

Property-Transfer Model Application at the 
INEEL

Although multiple-linear regression models are empirical, 
with results depending on data types and quality used in 
calibration rather than on physical relationships or processes, 
their nature does not preclude their usefulness, but may 
limit their universal applicability. A model that is capable of 
estimating measurements over great depths and large areas 
where none were previously available, even if the results are 
not optimal, is better than having no model at all. Statistical 
model application is constrained to the data types used in 
calibration. Because the core sample textures included in 
the regression models ranged from sands to clays, with most 
samples classified as silt loams, q(y) prediction for sediment 
textures not used in calibration, such as clays or samples with 
more gravel, may be poor. Measurements of hydraulic and 
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bulk-physical properties on core samples with more diverse 
textures are desirable. Development of a PTM that relies 
more on physical than statistical relationships will be useful 
because it is not possible to characterize every point in space. 
A theoretical model developed from the statistical models 
could be more general in its application to other areas of the 
INEEL or other geographic locations. Because the calibration 
data used in this study represent only a small fraction of the 
total population of sediment properties, the PTMs can only be 
generalized to the southwestern part of the INEEL until further 
testing has been completed using samples from other locations 
at the INEEL. Examining variation in sediment texture and 
thickness across the INEEL may provide another way to 
determine locations where the PTMs may be applied.

rbulk was the most important bulk-physical property for 
developing the qsat model. Inclusion of rbulk as an explanatory 
variable in the PTMs requires continued collection of intact 
core samples. However, it may be possible to use average rbulk 
values for each textural class or remote sensing of rbulk (using 
neutron, gamma-gamma, or acoustic-velocity logs) in place 
of core sample collection. Care must be taken in applying 
remote-sensing techniques because the methods respond 
differently in the presence of certain minerals, bound water, 
and high salinity water (Keys, 1988). Additionally, methods 
that provide total porosity estimates rather than effective 
porosity would be desirable to use because the rbulk values 
were determined using the total volumes of the core samples. 
Total volume includes pores that may not be interconnected. 
Measurements of rpart could be obtained from borehole 
cuttings and used with estimates of total porosity to calculate 
rbulk values. Further testing is needed to improve applicability 
and ease of use of the PTMs presented in this report.

The moderate goodness-of-fit values observed for 
the qsat, yo, l, and Ksat models, as measured by the R2

adj 
values, might indicate missing information in the regression 
variates. Including other bulk-physical-property data, such as 
mineralogy or specific surface area, in the regression variates 
could provide better predictions of qsat, yo, l, and Ksat than 
the use of rbulk and particle-size data alone. Future adjustments 
to the PTMs may need to incorporate more diverse types of 
bulk-physical-property data. As more information is added to 
the PTMs, the model fits will likely improve. The moderate 
R2

adj values also could be due to significant errors in the 
hydraulic and bulk-physical-property measurements. Some 
experimental methods may have more uncertainty associated 
with the measurements than other methods, or sparse data may 
increase the uncertainty of calculations made from the data. 
Data limitations that could potentially affect the model results 
include sparseness of particle-size distributions, erroneous 
measurements (such as qsat exceeding total porosity), 
sparseness of q(y) measurements, and repacking samples prior 
to hydraulic property measurements. For some core samples 
used in calibrating the regression models, errors in qsat and 
particle size were observed. The approach used in dealing with 
anomalous measurements was to remove the core samples 

from the regression analyses. However, weighted least-squares 
regression could be used as an alternative approach, where 
more weight could be given to samples judged higher quality 
than others.

Most widely-used unsaturated flow and transport 
models use the van Genuchten (1980) model rather than 
the Rossi-Nimmo (1994) junction model to represent q(y) 
measurements for a particular layer or texture. A conversion 
between the Rossi-Nimmo (1994) and van Genucthen (1980) 
parameters is presented in figure 14. The van Genuchten 
equation is parameterized by qsat, qr, ho, and N, where the 
scaling parameter for y is ho (analogous to yo) and the 
curve-shape parameter is N (analogous to l). In this study qsat 
represents a physical measurement rather than an optimized 
parameter, and because of this, its regression equation can be 
used directly in the van Genuchten model. For the 58 potential 
samples used to calibrate the q(y) regression models, the 
relation between log(ho) and log(yo) is shown in figure 14A 
and that between N and l is shown in figure 14B. The R2 was 
0.911 and 0.837, respectively. Setting qr equal to zero in the 
van Genuchten equation and assuming M = 1 – 1/N allows 
conversion between the Rossi-Nimmo (1994) junction and 
van Genuchten (1980) model parameters. An alternative way 
of converting between functional forms of the q(y) curve 
involves estimating q at several y values using the Rossi-
Nimmo (1994) junction model and the regression equations 
for each q(y) parameter, and then fitting the van Genuchten 
(1980) model (or any other curve-fit model) to these estimated 
q(y) points. 

Development of a PTM for K(q) is needed because 
both q(y) and K(q) are required to describe unsaturated flow 
using Richards’ equation. Mualem’s (1976) model is most 
commonly used for estimating K(q), in combination with 
van Genuchten’s (1980) q(y) equation. A PTM for K(q) can 
be created by (1) developing regression equations from the 
existing K(q) measurements for 40 core samples (Perkins 
and Nimmo, 2000; Perkins, 2003; and Winfield, 2003), or (2) 
combining regression models developed in this study for Ksat 
and q(y) with the K(q) equation of Mualem (1976), or other 
K models in the literature (Gardner, 1958; Campbell, 1974). 
Andraski and Jacobson (2000), Andraski (1996), Rossi and 
Nimmo (1994), and Fayer and others (1992) discuss how 
to combine the Rossi-Nimmo (1994) junction model with 
Mualem’s (1976) equation. One unsaturated K measurement 
is better to use as the scaling parameter for K than Ksat in 
Mualem’s (1976) equation. Ksat includes the influence of 
macropores, which drain first during desaturation. The shape 
of the K(q) curve does not depend on drainage from the largest 
pores, but from the pores of the sediment matrix. Using Ksat as 
a scaling parameter for K can give a wrong shape to the K(q) 
curve if macropores are present. Therefore, the first approach, 
developing regression equations from parameters fit to K(q), 
may be more desirable than an approach that uses Ksat as the 
scaling parameter. 
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Figure 14.  Relation between water-retention parameters of the Rossi-Nimmo (1994) junction model 
and the van Genuchten (1980) model. 
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Testing of the regression models in this report is needed 
to determine whether the results can be generalized to a wide 
population of sediments. Model testing can be accomplished 
by (1) comparing regression models in this study to existing 
PTMs, (2) completing a new set of core sample measurements, 
and (3) splitting the original set of measurements into two 
parts, one for development of the regression equations and 
one for testing. Other available data sets (Borghese, 1991; 
Barraclough and others, 1976) and future data sets can be used 
to test the PTMs developed in this report for q(y) and Ksat, 
or to adjust the calibration of the models. New measurements 
can be used to validate the PTMs in this report by comparing 
the predictions of qsat, yo, l, and Ksat using equations 12 
and 13 to the observed values. Additionally, the predictions 
can be compared to results from other PTMs not calibrated 
for the INEEL site to evaluate the need for continued PTM 
development and the accuracy of the site-specific PTMs. A 
second set of measurements also could be used to develop 
separate PTMs that could be compared to the original PTMs 
in terms of predictive accuracy, and the magnitude and sign of 
the coefficients. These steps will help ensure that the original 
PTMs are appropriate for a diverse range of sediment textures 
and for multiple locations throughout the INEEL. Another 
way of testing the PTMs involves subdividing the original set 
of measurements to create one set of observations for model 
development and one for testing. The limiting factor in this 
approach, at least for the q(y) models, is the small number of 
measurements available. Splitting 58 or fewer observations 
into two parts leaves only a small data set to work with, which 
may cause problems in meeting the assumptions of multiple 
linear regression. 

Summary and Conclusions
In this study, multiple-linear regression models were 

developed for sedimentary interbeds near two facilities 
at the Idaho National Engineering and Environmental 
Laboratory, the Radioactive Waste Management Complex 
and the Vadose Zone Research Park, using available core 
sample measurements. Separate regression equations were 
developed for parameters defining the water-retention 
curve (q(y)) and for saturated hydraulic conductivity (Ksat). 
Three representations of the particle-size distribution were 
considered as possible input to these models, in addition 
to bulk density (rbulk) and particle density (rpart). These 
representations involved the calculation of textural-class 
percentages (gravel, sand, silt, and clay), geometric statistics 
(mean and standard deviation), and graphical statistics 

(median and uniformity coefficient) from the particle-size 
data. The Rossi-Nimmo junction model was used to represent 
the q(y) measurements. Three parameters define this model: 
(1) saturated water content (qsat), (2) a scaling parameter for 
matric pressure (yo), and (3) a curve-shape parameter (l). 
The bulk-physical-property data and optimized hydraulic 
parameter values were used to develop separate regression 
models for qsat, yo, and l. The predicted parameters then 
were used to calculate the q(y) curve from saturation to oven 
dryness. 

The individual regression models for qsat, yo, l, and Ksat 
were evaluated based on goodness-of-fit and model behavior, 
in terms of meeting the assumptions of multiple linear 
regression. Because rpart was poorly correlated with qsat, yo, 
l, and Ksat, and affected the R2

adj values only marginally, it 
was not included as an explanatory variable in the regression 
analyses. The model fits, assessed using the adjusted 
coefficient of determination (R2

adj), ranged from 0.491 to 0.568 
for qsat, from 0.667 to 0.727 for yo, and from 0.192 to 0.667 
for l. The R2

adj values for Ksat were moderate, ranging from 
0.589 to 0.632. For qsat and Ksat, the highest R2

adj values were 
achieved using textural-class percentages and rbulk as input. 
The highest R2

adj for yo and l were obtained using geometric 
particle-size statistics and rbulk as input. Models involving 
geometric particle-size parameters tended to have better model 
behavior, in terms of residual normality and homoscedasticity, 
than those involving textural-class percentages or graphical 
particle-size statistics. The geometric statistics are appealing 
to use because they describe the breadth of particle sizes and 
average particle size, which may be related directly to similar 
features of the pore-size distribution. The best models for qsat 
and Ksat used textural-class percentages and rbulk as input, and 
the best models for yo and l used geometric statistics and 
rbulk as input. The sensitivity of the model results to the form 
of the particle-size distribution used as input was tested by 
examining the combined effect of the qsat, yo, and l regression 
models in predicting the entire q(y) curve.

The root-mean-square-error (RMSE) distributions for four 
different model combinations were compared, involving: (1) 
highest R2

adj for qsat, yo, and l, (2) textural-class percentages, 
(3) geometric statistics, and (4) graphical statistics. Because 
the goodness-of-fit values for the Ksat models were similar 
for each of the three sets of particle-size parameters, the final 
Ksat model was selected based on the best model combination 
to use for estimating q(y). For each core sample, the q(y) 
curve was estimated using the predicted values of qsat, yo, 
and l from the individual regression equations in the Rossi-
Nimmo junction model. This estimated curve was compared 
to the curve fit to the measured q(y) points using RMSE as 
a goodness-of-fit indicator. These steps were completed for 
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each of the four model combinations. RMSE distributions 
then were compared for each competing model to select the 
best particle-size parameter set to implement. RMSE values, 
in units of volumetric q, ranged from 0.001 to 0.064 among 
the four distributions. The RMSE distribution for the model 
combination involving the highest R2

adj values for qsat, yo, 
and l was similar to the distributions that used geometric 
or graphical statistics as input. Median values for the four 
distributions were quite similar, ranging from 0.015 to 0.021. 
The RMSE distribution with textural-class percentages used 
to estimate qsat, yo, and l had a slightly larger median than the 
other combinations, likely due to the low R2

adj of 0.192 for the 
l regression model. The RMSE distribution based on graphical 
statistics was further subdivided according to core sample 
texture and data source for model development. The range of 
RMSE values for sands compared to loams was quite similar, 
indicating lack of model bias toward a particular texture. 
Variations in RMSE distributions among the source data 
sets were found to be mainly due to the textures of the core 
samples analyzed and the over- or underestimation of q near 
saturation. From comparisons of RMSE distributions among 
the four model combinations, the predicted q(y) curves were 
insensitive to the particle-size distribution form used as input 
to the regression equations. 

Given the similarity of the results for each model 
combination, other criteria were used for final model selection, 
including: (1) ease of model use or ease of determining 
the particle-size parameters, (2) optimal regression model 
behavior and fit, and (3) ability to develop a theoretical model 
from the statistical results. Ease of model use was deemed 
the most important criterion for selecting the form of the 
particle-size distribution to use in the q(y) and Ksat models. 
Although textural-class percentages are the easiest particle-
size parameters to determine, multicollinearity among the 
textural-class parameters limits the applicability of this model. 
Even though the models with geometric statistics as input 
generally performed better than the other two particle-size 
models, geometric statistics are more difficult to calculate 
and require higher resolution of particle-size distribution 
than textural-class percentages or graphical statistics. Median 
particle diameter and uniformity coefficient, which can be 
calculated directly from a cumulative particle-size distribution, 
ranked second for ease of determination. The final regression 
equations for qsat, yo, l, and Ksat involved rbulk, the median 
particle diameter, and the uniformity coefficient as explanatory 
variables.

Moderate R2
adj values for qsat, yo, l, and Ksat may indicate 

that the bulk-physical-property data used in calibrating the 
regression models are not sufficient to predict completely the 
hydraulic parameters or may indicate significant measurement 
errors in the response or explanatory variables. Other bulk-
physical-property data not available for calibrating the 
property-transfer functions, such as mineralogy or specific 
surface area, might correlate more strongly with the hydraulic 
parameters, and may be useful in future regression analyses. 

The regression models in this report represent the first 
attempt to develop a site-specific model for estimating the 
unsaturated hydraulic properties of sediments at the INEEL. 
Because the models are the first of their kind for the INEEL, 
adjustments or recalibration likely will be required in the 
future as new data become available. These models allow 
easy determination of hydraulic properties without need for 
direct measurement. Although collection of core samples 
still likely will be needed to estimate rbulk and particle size, 
these measurements are less time-intensive to complete than 
hydraulic-property measurements. The regression models 
will be useful in estimating hydraulic properties of sediments 
over large areas, especially as input to unsaturated flow 
and contaminant transport models. The property-transfer 
models from this study provide a basis for development of a 
theoretical model that relies on physical relationships between 
the pore-size distribution and the bulk-physical properties of 
the media. A theoretical model based on physical relationships 
should be more universal in its application throughout the 
INEEL and other geographic locations. 

References Cited
American Society for Testing and Materials (ASTM), 1989, 

Part 19—soil and rock; building stones: Annual Book of 
ASTM Standards: Philadelphia, Pa., American Society for 
Testing and Materials, [variously paged].

Anderson, S.R., 1991, Stratigraphy of the unsaturated zone 
and uppermost part of the Snake River Plain aquifer at 
the Idaho Chemical Processing Plant and Test Reactors 
Area, Idaho National Engineering Laboratory, Idaho: U.S. 
Geological Survey Water-Resources Investigations Report 
91–4010 (DOE/ID–22095), 71 p.

Anderson, S.R., and Lewis, B.D., 1989, Stratigraphy of the 
unsaturated zone at the Radioactive Waste Management 
Complex, Idaho National Engineering Laboratory, Idaho: 
U.S. Geological Survey Water-Resources Investigations 
Report 89–4065 (DOE/ID–22080), 54 p.

Anderson, S.R., Liszewski, M.J., and Ackerman, D.J., 1996, 
Thickness of surficial sediment at and near the Idaho 
National Engineering Laboratory, Idaho: U.S. Geological 
Survey Open-File Report 96–330 (DOE/ID–22128), 16 p.

Andraski, B.J., 1996, Properties and variability of soil and 
trench fill at an arid waste-burial site: Soil Science Society 
of America Journal, v. 60, p. 54-66.

Andraski, B.J., and Jacobson, E.A., 2000, Testing a full-range 
soil-water retention function in modeling water potential 
and temperature: Water Resources Research, v. 36, no. 10, 
p. 3081-3089.

Arya, L.M., and Paris, J.F., 1981, A physicoempirical model 
to predict the soil moisture characteristic from particle-size 
distribution and bulk density data: Soil Science Society of 
America Journal, v. 45, p. 1023–1030.

46    Development of Property-Transfer Models for Estimating the Hydraulic Properties of Deep Sediments, INEEL, Idaho



Barraclough, J.T., Lewis, B.D., and Jensen, R.G., 1981, 
Hydrologic conditions at the Idaho National Engineering 
Laboratory, Idaho—emphasis 1974-1978: U.S. Geological 
Survey Water-Supply Paper 2191, 52 p.

Barraclough, J.T., Robertson, J.B., and Janzer, V.J., 1976, 
Hydrology of the Solid Waste Burial Ground as related to 
the potential migration of radionuclides, Idaho National 
Engineering Laboratory: U.S. Geological Survey Open-File 
Report 76–471 (IDO–22056), 183 p.

Barraclough, J.T., Teasdale, W.E., and Jensen, R.G., 1967, 
Hydrology of the National Reactor Testing Station area, 
Idaho—annual progress report, 1965: U.S. Geological 
Survey Open-File Report (IDO–22048), 107 p. 

Bartholomay, R.C., 1990, Mineralogical correlation of 
surficial sediment from area drainages with selected 
sedimentary interbeds at the Idaho National Engineering 
Laboratory, Idaho: U.S. Geological Survey Water Resources 
Investigations Report 90–4147, 17 p.

Bartholomay, R.C., 1998, Distribution of selected 
radiochemical and chemical constituents in perched ground 
water, Idaho National Engineering Laboratory, Idaho, 1992-
95: U.S. Geological Survey Water Resources Investigations 
Report 98–4026 (DOE/ID–22145), 59 p.

Bartholomay, R.C., Tucker, B.J., Ackerman, D.J., and 
Liszewski, M.J., 1997, Hydrologic conditions and 
distribution of selected radiochemical and chemical 
constituents in water, Snake River Plain aquifer, Idaho 
National Engineering Laboratory, Idaho, 1992 through 
1995: U.S. Geological Survey Water-Resources 
Investigations Report 97–4086 (DOE/ID–22137), 57 p.

Bechtel BWXT Idaho, LLC, 2003, INEEL Facilities: Idaho 
Nuclear Technology and Engineering Center—background, 
accessed March 29, 2004 at http://www.inel.gov/facilities/
intec.shtml, last updated March 12, 2003.

Beyer, W.H., ed., 1991, CRC standard mathematical tables 
and formulae (29th ed.): Boca Raton, Fl., CRC Press, Inc., 
609 p.

Blake, G.R., and Hartge, K.H., 1986, Particle density, in Klute, 
A., ed., Methods of soil analysis, part 1—physical and 
mineralogical methods (2nd ed.): Soil Science Society of 
America Book Series No. 5, Madison, Wis., Soil Science 
Society of America, p. 377-382.

Borghese, J.V., 1991, Hydraulic characteristics of soil cover, 
Subsurface Disposal Area, Idaho National Engineering 
Laboratory: Pocatello, University of Idaho, M.S. thesis, 
94 p.

Brooks, R.H., and Corey, A.T., 1964, Hydraulic properties of 
porous media: Colorado State University Hydrology Paper, 
no. 3, 27 p.

Campbell, G.S., 1974, A simple method for determining 
unsaturated hydraulic conductivity from moisture retention 
data: Soil Science, v. 117, p. 311-314.

Campbell, G.S., 1985, Soil physics with BASIC—transport 
models for soil-plant systems: New York, Elsevier, 150 p.

Campbell, G.S., and Shiozawa, S., 1992, Prediction of 
hydraulic properties of soils using particle-size distribution 
and bulk density data, in van Genuchten, M.T., Leij, 
F.J., and Lund, L.J., eds., International workshop on 
indirect methods for estimating the hydraulic properties 
of unsaturated soils, October 11-13, 1989, Proceedings, 
University of California at Riverside, Calif., p. 317-328.

Cecil, L.D., Orr, B.R., Norton, T., and Anderson, S.R., 
1991, Formation of perched ground-water zones and 
concentrations of selected chemical constituents in water, 
Idaho National Engineering Laboratory, Idaho, 1986–88: 
U.S. Geological Survey Water Resources Investigations 
Report 91–4166 (DOE/ID–22100), 53 p.

Conca, J.L., and Wright, J.V., 1998, The UFA method for 
rapid, direct measurements of unsaturated transport 
properties in soil, sediment, and rock: Australian Journal of 
Soil Research, v. 36, p. 291-315.

Cosby, B.J., Hornberger, G.M., Clapp, R.B., and Ginn, T.R., 
1984, A statistical exploration of the relationships of soil 
moisture characteristics to the physical properties of soils: 
Water Resources Research, v. 20, no. 6, p. 682-690.

Fawcett, R.G., and Collis-George, N., 1967, A filter paper 
method for determining the moisture characteristics of soil: 
Australian Journal of Experimental Agriculture and Animal 
Husbandry, v. 7, no. 24, p. 162-167.

Fayer, M.J., Rockhold, M.L., and Campbell, M.D., 1992, 
Hydrologic modeling of protective barriers—comparison 
of field data and simulation results: Soil Science Society of 
America Journal, v. 56, p. 690-700.

Fetter, C.W., 1994, Applied hydrogeology (3rd ed.): 
Englewood Cliffs, N.J., Prentice Hall, Inc., 691 p.

Folk, R.L., 1980, Petrology of sedimentary rocks (2nd ed.): 
Austin, Tex., Hemphill Publishing Company, 184 p.

Gardner, W.R., 1958, Some steady-state solutions of the 
unsaturated moisture flow equation with application to 
evaporation from a water table: Soil Science, v. 85,  
p. 228-232.

Greacen, E.L., Walker, G.R., and Cook, P.G., 1987, Evaluation 
of the filter paper method for measuring soil water suction: 
International Conference on Measurement of Soil and Plant 
Water Status, v. 1, p. 137-143.

Gregson, K., Hector, D.J., and McGowan, M., 1987, A one-
parameter model for the soil water characteristic: Journal of 
Soil Science, v. 38, p. 483-486.

Gupta, S.C., and Larson, W.E., 1979, Estimating soil water 
retention characteristics from particle size distribution, 
organic matter content, and bulk density: Water Resources 
Research, v. 15, no. 6, p. 1633-1635.

Hackett, B., Pelton, J., and Brockway, C., 1986, 
Geohydrologic story of the eastern Snake River Plain 
and the Idaho National Engineering Laboratory: U.S. 
Department of Energy, Idaho Operations Office, Idaho 
National Engineering Laboratory, 32 p.

Hair, J.F., Jr., Anderson, R.E., Tatham, R.L., and Black, W.C., 
1998, Multivariate data analysis: Upper Saddle River, N.J., 
Prentice Hall, Inc., 730 p.

References Cited  47 

http://www.inel.gov/facilities/intec.shtml
http://www.inel.gov/facilities/intec.shtml


Haverkamp, R., and Parlange, J.Y., 1986, Predicting the water-
retention curve from particle-size distribution 1. Sandy soils 
without organic matter: Soil Science, v. 142, no. 6,  
p. 325-339.

Haverkamp, R., and Reggiani, P., 2002, Physically based water 
retention prediction models [property-transfer models], in 
Dane, J.H., and Topp, G.C., eds., Methods of soil analysis, 
part 4—physical methods: Soil Science Society of America 
Book Series No. 5, Madison, Wis., Soil Science Society of 
America, p. 762-777, 781-782.

Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods 
in water resources: Studies in Environmental Science 
Monograph Series, Amsterdam, Elsevier, v. 49, 522 p.

Hwang, S.I., and Powers, S.E., 2003, Lognormal distribution 
model for estimating soil water retention curves for sandy 
soils: Soil Science, v. 168, no. 3, p. 156-166.

Jabro, J.D., 1992, Estimation of saturated hydraulic 
conductivity of soils from particle size distribution and 
bulk density data: Transactions of the American Society of 
Agricultural Engineers, v. 35, no. 2, p. 557-560.

Keys, W.S., 1988, Borehole geophysics applied to ground-
water investigations: U.S. Geological Survey Open-File 
Report 87–539, 305 p.

Kosugi, K., 1996, Lognormal distribution model for 
unsaturated soil hydraulic properties: Water Resources 
Research, v. 32, no. 9, p. 2697-2703.

Krumbein, W.C., 1938, Size frequency distributions of 
sediments and the normal phi curve: Journal of Sedimentary 
Petrology, v. 8, no. 3, p. 84-90.

Liszewski, M.J., and Mann, L.J., 1992, Purgeable organic 
compounds in ground water at the Idaho National 
Engineering Laboratory, Idaho—1990 and 1991: U.S. 
Geological Survey Open-File Report 92–174 (DOE/ID–
22104), 19 p.

Looney, S.W., and Gulledge, T.R., 1985, Use of the correlation 
coefficient with normal probability plots: The American 
Statistician, v. 39, p. 75-79.

McElroy, D.L., and Hubbell, J.M., 1990, Hydrologic and 
physical properties of sediments at the Radioactive Waste 
Management Complex: EG&G Idaho, Inc., EGG-BG-9147, 
[variously paged].

Mecke, M., Westman, C.J., Ilvesniemi, H., 2002, Water 
retention capacity in coarse podzol profiles predicted from 
measured soil properties: Soil Science Society of America 
Journal, v. 66, p. 1-11.

Mualem, Y., 1976, A new model for predicting the hydraulic 
conductivity of unsaturated porous media: Water Resources 
Research, v. 12, no. 3, p. 513-522.

Nimmo, J.R., 1997, Modeling structural influences on soil 
water retention: Soil Science Society of America Journal, 
v. 61, no. 3, p. 712-719.

Nimmo, J.R., and Mello, K.A., 1991, Centrifugal techniques 
for measuring saturated hydraulic conductivity: Water 
Resources Research, v. 27, p. 1263-1269.

Nimmo, J.R., Perkins, K.S., and Lewis, A.M., 2002, Steady-
state centrifuge [simultaneous determination of water 
transmission and retention properties], in Dane, J.H., and 
Topp, G.C., eds., Methods of soil analysis, part 4—physical 
methods: Soil Science Society of America Book Series No. 
5, Madison, Wis., Soil Science Society of America, p. 903-
916, 1041–1045.

Nimmo, J.R., Rousseau, J.P., Perkins, K.S., Stollenwerk, 
K.G., Glynn, P.D., Bartholomay, R.C., and Knobel, L.L., 
2004, Hydraulic and geochemical framework of the Idaho 
National Engineering and Environmental Laboratory vadose 
zone: Vadose Zone Journal, v. 3, no. 1, p. 6-34.

Nimmo, J.R., Shakofsky, S.M., Kaminsky, J.F., and Lords, 
G.S., 1999, Laboratory and field hydrologic characterization 
of the shallow subsurface at an Idaho National Engineering 
and Environmental Laboratory waste-disposal site: U.S. 
Geological Survey Water-Resources Investigations Report 
99–4263 (DOE/ID–22163), 31 p.

Nimmo, J.R., Stonestrom, D.A., and Akstin, K.C., 1994, The 
feasibility of recharge rate determinations using the steady-
state centrifuge method: Soil Science Society of America 
Journal, v. 58, p. 49-56.

Perkins, K.S., 2003, Measurement of sedimentary interbed 
hydraulic properties and their hydrologic influence near the 
Idaho Nuclear Technology and Engineering Center at the 
Idaho National Engineering and Environmental Laboratory: 
U.S. Geological Survey Water-Resources Investigations 
Report 03–4048 (DOE/ID–22183), 19 p.

Perkins, K.S., and Nimmo, J.R., 2000, Measurement of 
hydraulic properties of the B-C interbed and their influence 
on contaminant transport in the unsaturated zone at the 
Idaho National Engineering and Environmental Laboratory, 
Idaho: Water-Resources Investigations Report 00–4073 
(DOE/ID–22170), 30 p.

Pettijohn, F.J., 1975, Sedimentary rocks (3rd ed.): New York, 
Harper & Row, Publisher, Inc., 628 p.

Puckett, W.E., Dane, J.H., and Hajek, B.F., 1985, Physical and 
mineralogical data to determine soil hydraulic properties: 
Soil Science Society of America Journal, v. 49, p. 831-836. 

Rawls, W.J., and Brakensiek, D.L., 1982, Estimating soil water 
retention from soil properties: Journal of the Irrigation and 
Drainage Division, American Society of Civil Engineers, 
v. 108, no. IR2, p. 166-171.

Reed, M.F., and Bartholomay, R.C., 1994, Mineralogy of 
selected sedimentary interbeds at or near the Idaho National 
Engineering Laboratory, Idaho: U.S. Geological Survey 
Open-File Report 94–374, 19 p.

Rightmire, C.T., and Lewis, B.D., 1987, Hydrogeology and 
geochemistry of the unsaturated zone, Radioactive Waste 
Management Complex, Idaho National Engineering 
Laboratory, Idaho: Water Resources Investigations Report 
87–4198 (DOE/ID–22073), 89 p.

Ross, P.J., Williams, J., and Bristow, K.L., 1991, Equation for 
extending water-retention curves to dryness: Soil Science 
Society of America Journal, v. 55, p. 923-927.

48    Development of Property-Transfer Models for Estimating the Hydraulic Properties of Deep Sediments, INEEL, Idaho



Rossi, C., and Nimmo, J.R., 1994, Modeling of soil water 
retention from saturation to oven dryness: Water Resources 
Research, v. 30, no. 3, p. 701-708.

Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, 
R.I., 1986, Estimating generalized soil-water characteristics 
from texture: Soil Science Society of America Journal, 
v. 50, p. 1031-1036. 

Schaap, M.G., Leij, F.J., and van Genuchten, M.Th., 1998, 
Neural network analysis for hierarchical prediction of soil 
hydraulic properties: Soil Science Society of America 
Journal, v. 62, no. 4, p. 847-855.

Schaap, M.G., Leij, F.J., and van Genuchten, M.Th., 2001, 
ROSETTA—a computer program for estimating soil 
hydraulic parameters with hierarchical pedotransfer 
functions: Journal of Hydrology, v. 251, no. 3-4, p. 163-176.

Shakofsky, S.M., 1995, Changes in soil hydraulic properties 
caused by construction of a simulated waste trench at 
the Idaho National Engineering Laboratory, Idaho: U.S. 
Geological Survey Water-Resources Investigations Report 
95–4058 (DOE/ID–22121), 26 p.

Soil Survey Staff, 1975, Soil taxonomy—a basic system of 
soil classification for making and interpreting soil surveys: 
USDA-SCS Agriculture Handbook no. 436, Washington, 
D.C., U.S. Government Printing Office, 754 p.

van Genuchten, M.Th., 1980, A closed-form equation for 
predicting the hydraulic conductivity of unsaturated soils: 
Soil Science Society of America Journal, v. 44, p. 892-898.

Vereecken, H., Maes, J., Feyen, J., and Darius, P., 1989, 
Estimating the soil moisture retention characteristic from 
texture, bulk density, and carbon content: Soil Science, 
v. 148, no. 6, p. 389-403.

Williams, J., Ross, P., and Bristow, K., 1992, Prediction of the 
Campbell water retention function from texture, structure, 
and organic matter, in van Genuchten, M.Th., Leij, F.J., and 
Lund, L.J., eds., International workshop on indirect methods 
for estimating the hydraulic properties of unsaturated soils, 
October 11-13, 1989, Proceedings, University of California 
at Riverside, Calif., p. 427-441.

Winfield, K.A., 2003, Spatial variability of sedimentary 
interbed properties near the Idaho Nuclear Technology 
and Engineering Center at the Idaho National Engineering 
and Environmental Laboratory, Idaho: Water-Resources 
Investigations Report 03–4142 (DOE/ID–22187), 36 p.

Wösten, J.H.M., and van Genuchten, M.Th., 1988, Using 
texture and other soil properties to predict the unsaturated 
soil hydraulic functions: Soil Science Society of America 
Journal, v. 52, p. 1762-1770.

Zar, J.H., 1996, Biostatistical analysis (3rd ed.): Upper Saddle 
River, N.J., Prentice Hall, Inc., [variously paged].

References Cited  49 



Manuscript approved for publication, June 2, 2005
Prepared by the U.S. Geological Survey Publishing staff, 
Washington Water Science Center, Tacoma, Washington
	 Bill Gibbs 

Debra Grillo 
Bobbie Jo Richey 
Ginger Renslow

For more information concerning the research in this report, contact the 
Idaho Water Science Center Director,  
U.S. Geological Survey, 230 Collins Road  
Boise, Idaho 83702-4520 
http://id.water.usgs.gov

http://id.water.usgs.gov


D
evelopm

ent of Property-Transfer M
odels for Estim

ating the H
ydraulic Properties of D

eep Sedim
ents at the 

Idaho N
ational Engineering and Environm

ental Laboratory, Idaho
SIR 2005–5114

W
infield


	DEVELOPMENT OF PROPERTY-TRANSFER MODELS FOR ESTIMATING THE HYDRAULIC PROPERTIES OF DEEP SEDIMENTS AT
	Table of Contents
	List of Figures
	List of Tables
	Conversion Factors, Datums, and Acronyms
	Abstract
	Introduction
	Site Background
	Geohydrologic Setting
	Previous Investigations
	INEEL Hydraulic Property Measurements
	Overview of Property-Transfer Models

	Purpose and Scope

	Property-Transfer Model Calibration and Approach
	Data Sets and Measurement Techniques
	Water-Retention Curve-Fit Parameters
	Particle-Size Parameters
	Multiple Linear Regression

	Property-Transfer Model Analyses
	Evaluation of Calibration Data
	Effect of Repacked Core Samples
	Errors in Fitted, Calculated, or Measured Parameters

	Linearity Between Explanatory and Response Variables
	Collinearity Between Explanatory Variables
	Water-Retention Property-Transfer Model
	Saturated Water Content
	Scaling Parameter for Matric Pressure
	Curve-Shape Parameter

	Saturated Hydraulic Conductivity Property-Transfer Model
	Model Discrimination
	Property-Transfer Model Application at the INEEL

	Summary and Conclusions
	References Cited

