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/ PREFACE

An Improved Error Assessment for the GEM-TI

Gravitational Model

Several tests have been designed to determine the correct error

variances for the GEM-TI gravitational solution which was derived

exclusively from satellite tracking data. The basic method employs both

wholly independent and dependent subset data solutions and produces a

_. full field coefficient by coefficient estimate of the model uncertain-

ties. The GEM-TI errors have been further analyzed using a method based

upon eigenvalue-eigenvector analysis which calibrates the entire

covariance matrix. Dependent satellite and independent altimetric and

surface gravity data sets, as well as independent satelli_e deep

resonance information, confirm essentially the same error assessment.

These calibrations (utilizing each of the major data subsets within the

solution) yield very stable calibration factors which vary by

approximately 10% over the range of tests employed. Measurements of

gravity anomalies obtained from altimetry were also used directly as

observations to show that GEM-TI is calibrated. Based upon these

calibrated error estimates, GEM-TI is a significantly improved solution

which to degree and order 8 is twice as accurate as earlier satellite

derived models. By being complete to degree and order 36, GEM-TI is

much larger than earlier gravitational solutions calculated from direct

satellite tracking and has significantly reduced aliasing effects that

were present in previous models. The mathematical representation of the

covariance error in the presence of unmodeled systematic error effects

in the data is analyzed and an optimum weighting technique is developed

for these conditions. This technique yields an internal self-

calibration of the error model, a process which GEM-TI is shown to

approximate. This geopotential field with calibrated error estimates,

predicts 25 cm for the radial RMS uncertainty of the TOPEX orbit. The

TOPEX Mission has a requirement for 10 cm radial orbital modeling which

is needed to support the oceanographic applications of a high quality

spaceborne altimeter.
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I. INTRODUCTION

The least-squares method yields a formal estimate of a solution's

accuracy. This estimate is generally optimistic due to imperfections in

the mathematical model employed and suspected, yet unmodeled, systematic

error sources resulting in non-random observation residuals. Hence some

form of verification and calibration of errors is required to reliably

establish the "true" accuracy of the results. This verification is made

difficult in circumstances where the solution output is a mathematical

model of a physical phenomenon whose empirical coefficients taken indi-

vidually are not directly observed. This situation applies here to the

problem of estimating the accuracy of a geopotential field determined

from satellite tracking data. Such models have grown in size and

resolution as tracking instrumentation has advanced and many satellite

orbits became available. It is desirable to validate such a solution

completely and even though recent models now contain more than 1300

individual coefficients, this has become feasible with the main method

employed here (Lerch, 1985) and the .use of high speed vectorized

computers. It is also desirable and feasible to validate the entire

error covariance matrix through an eigenvector analysis as developed in

this report.

We discuss here the error calibration of "satellite only" Goddard

Earth Models (GEM). These fields have been computed from restricted

observation sources sensitive only to satellite dynamics. To serve the

objectives of error calibration, data rich in high frequency local

information have been excluded when deriving these fields. An accuracy

assessment of these models benefits from a direct comparison with such

information derived from satellite altimetry and surface gravimetry

which both independently describe the gravitational field over vast

regions of the earth's surface with a resolution well beyond the limits

of satellite dynamical sensitivity. Tests of the geopotential solution

with global sets of these independent local observations have yielded

important statistics on the true accuracy of the gravitational models.

Historically, the Goddard Earth Models have been calibrated through the



use of these and other independent data as described in Lerch (1985),

Lerch et al. (1974, 1979, 1985, and 1986), Wagner (1983), and Wagner and

Lerch (1978). These calibrations were made using a variety of tests and

comparisons including those already mentioned with surface gravimetry

and altimetry, and also utilizing deeply resonant orbits and assessments

of orbit solutions when fit to tracking data excluded from the

solution. All such tests in the past used data sets that were

essentially independent of the model.

For example, an earlier validation method, and one which has had

some success, was to divide the final solution into independent pieces.

Independent solutions were computed from these highly decimated portions

of the original data set to assess solution weighting factors and scaled

formal statistics. In the past, we have used this approach to compare

the laser vs. optical contributions in the GEM models (Lerch et al_,

1985). But this type of test has its limitations, for these subset

solutions seldom approach the accuracy of the complete original field.

Nonetheless, calibrations using this method have proven beneficial in

establishing rough estimates of field accuracy while also testing data

weighting approaches and locating suspect data contributions.

The fundamental objective of our analysis in the GEM models is to

develop the most accurate and well resolved spherical harmonic expansion

of the gravitational field, and at the same time, obtain reliable esti-

mates of its uncertainty. As the work progresses, the information

included in the models is upgraded and made more complete through the

incorporation of additional data types. Independent data tests are more

difficult to construct as these formerly independent observations are

merged into the solution. Obviously, the most accurate and complete

models require the best observations to resolve the geopotential. The

final solution inevitably contains all of the strongest data sets.

Therefore, independent data are increasingly more difficult to find and

the desired accuracy of the model outweighs the needs of specific error

calibrations which require the exclusion of independent test data sub-

sets. Our latest GEM-TI solution (Marsh et al., 1988) has been developed



to serve as the base model for a whole new series of comprehensive

geopotential solutions. Future solutions will contain virtually all

significant satellite tracking data sets, and combination models will

also contain surface gravimetry and satellite altimetry.

In anticipation of the need to verify the accuracy of increasingly

more comprehensive and precise gravitational models, a new technique was

sought to achieve reliable full field calibrations. This new method

developed by Lerch (1985) uses major dependent subsets of the full

solution and is described further in the report on GEM-TI (Marsh et al.,

1987). This method of calibrating a solution is the main focus of this

paper. We will show that in addition to the verification of the model

uncertainties, this technique yields valuable information on the proper

weighting of the data subsets comprising the field, and on the proper

relative weighting of new data when they are introduced into existing

models.

This calibration technique is based upon the comparison of the

complete model with a nearly equivalent one lacking the specific contri-

bution of an individual observation subset. In this case, the subset

field is not substantially reduced in performance and the complete

complementary data set and the original model undergo simultaneous

calibration. Since an individual data subset of GEM-TI does not signif-

icantly span all of the eigenvectors of GEM-TI, it is important to test

the calibration on each of the major data subsets individually. Hence,

this report shows the error assessment of GEM-TI using all of the major

subsets comprising the solution. Furthermore, since GEM-TI lacks gravi-

metry, altimetry and deep resonant satellite information, the calibra-

tions obtained through this analysis are compared with that obtained

through more traditional calibrations using independent data. Finally,

given that the solution uncertainties (error variances) alone of a

satellite-derived model are insufficient to predict the performance of

the field on specific orbits, a more complete calibration and validation

of the error covariance matrix of the geopotential solution was

required. This analysis was extended to the calibration of the



eigenvectors of the GEM-TI error covariance matrix which is a major

element developed within this report.

Since the primary method of calibration subtracts a pair of

solutions with and without a given subset of data, there is concern that

a bias due to some unmodeled effect may exist in each of the solutions

which would be eliminated through the subtraction and therefore remain

undetected. In order to account for this type of problem, calibrations

were also made which test the gravitational solutions directly with

independent surface based and deep resonant observations. Gravity

anomalies obtained from altimeter data and deep satellite resonant

passage observations were employed for this purpose.

A principal interest in these error assessments is to predict the

performance of the geopotential on the yet-to-be-flown TOPEX satel-

lite. Gravitational modeling error is the dominant error source which

can degrade the precise ephemerides sought for this mission. An

accuracy level of 10cm in the radial component of the TOPEX orbit is

required which is substantially beyond the capabilities of any existing

gravitational models. GEM-TI is a preliminary model developed for the

TOPEX Project and has reduced the field uncertainty for this mission.

An assessment of TOPEX orbit modeling capabilities will also be pre-

sented based upon the calibration of the full GEM-TI covariance matrix

since the covariance terms significantly affect this error estimate.

An Appendix in three sections (AI, A2, A3) is presented to

elaborate on the estimation theory employed in GEM-TI and in this

report. Because of the systematic error effects in the data and other

unmodeled force effects, the mathematical validity of the representation

of the covariance error is analyzed in Appendix A. Also included in the

Appendix is an optimum process for simultaneously converging on all data

subset weights. These weights compensate for the unmodeled systematics

and provide an automatic self-calibration of the error covariance

internal to the solution. It is shown that the method of solution for

GEM-TI approximates this process.
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II. GEM-TI CALIBRATION OVERVIEW

GEM-TI was derived from about 800,000 tracking observations on 17

satellites (Table I) consisting of laser, optical and Doppler data.

When combining data from different instruments and different orbits

whose sensitivity to non-gravitational signals vary widely, strategies

must be developed and tested to obtain optimal data weighting factors.

And to account for the general problem of optimistic formal statistics,

we have found it necessary to scale down considerably the entire data

set of the solution in order to yield a properly calibrated solution.

The solution is obtained by simultaneously solving for a 36x36

gravitational model, 66 dynamic tidal terms having long period orbital

perturbations and earth orientation parameters for the post-1979 time

period. A total of nearly 2500 unknowns comprised the solution after

back-substitution of approximately 7000 satellite-arc-dependent

parameters (e.g., orbit elements, drag and solar radiation pressure

coefficients and doppler biases).

The post-fit performance of a solution on the tracking data--the

so called "residual analyses"--plays a significant role in the design

of the solution, the selection of data weights, and in the final error

assessments. Marsh et al., (1987) discuss this problem and show in

considerable detail relatively large orbit residuals for laser systems

as compared to their precision level. In Appendix A2 these tracking

residuals are analyzed on a pass-by-pass basis for some of the laser

systems and show considerable biases which are unmodeled in GEM-TI.

Hence, this verifies the need for the downweighting factors to

compensate for unmodeled biases and to test the calibration of the error

covariances.

This report utilizes all of the major data sets and will more

completely verify the GEM-TI accuracy assessments through a

comprehensive calibration of the solution variances and through a new

technique utilizing eigenvector analyses which will test the entire



TABLE 1

SATELLITE DATA IN GEM-T1

SEHI MAJOR INCL DATA # OF # OF RHS SIGMA*

SATELLITE AXIS (km.) ECC DEG TYPE ARCS 0BS RESID. WEIGHTS

1 LAGEOS 12273. .0038 109.85 LASER 57 144527 10cm. 112cm.

2 STARLETTE 7331. .0204 49.80 LASER 46 57356 20cm. 224cm.

3 GEOS-3 7226. .0008 114.98 LASER 36 42407 70cm. 816cm.

4 PEOLE 7006. .0164 15.01 LASER 6 4113 90cm. 816cm.

5 BE-C 7507. .0257 41.19 LASER 39 64240 50cm. 577cm.

CAMERA 50 7501 2 arcsec 5.6 arcsec

6 GEOS-1 8075. .0719 59.39 LASER 48 71287 70cm. 667cm.

CAMERA 43 60750 1 arc sec 8.9 arcsec

7 GEOS-2 7711. .0330 105.79 LASER 28 26613 80cm. 816cm.

CAMERA 46 61403 1 arcsec 8.9 arcsec

8 DI-C 7341. .0532 39.97 LASER 4 7455 150cm. 816cm.

CAHERA 10 2712 2 arcsec T.3 arcsec

9 DI-D 7622. .0848 39.46 LASER 6 11487 100cm. 816cm.

CAMERA 9 6111 2 arcsec 8.9 arcsec

10 SEASAT 7170. .0021 108.02 LASER 14 14923 70cm. T07cm.

DOPPLER 14 138042 .Scm/sec 7cm/sec

11 0SCAR-14 7440. .0029 89.27 DOPPLER 13 63098 lcm/sec 8cm/sec

12 ANHA-1B 7501. .0082 50.12 CAMERA 30 4463 2 arcsec 4.5 arcsec

13 BE-B 7354. .0135 79.69 CAMERA 20 1739 2 arcsec 4.5 arcsec

14 COURIER-1B 7469. .0161 28.31 CAHERA 10 2476 2 arcsec 4.5 arcsec

15 TELSTAR-1 9669. .2429 44.79 CAMERA 30 3962 2 arcsec 4.5 arcsec

16 VANGUARD-2RE 8496. .1832 32.92 CAMERA 10 686 2 arcsec 4.5 arcsec

17 VANGUARD-2 8298. .1641 32.89 CAMERA 10 1299 2 arcsec 4.5 arcsec

1

* SIGMA(o) =(_)



covariance matrix. To do so convincingly, different accuracy estimates

and error calibrations will be undertaken and compared spanning the

spectrum of eigenvectors in GEM-TI. The stability of results across

this spectrum will give insight into realistic field accuracy and will

demonstrate the reliability of this determination. The coefficient

uncertainties for GEM-TI are shown in Figure 1.1. They are also

presented as an rms coefficient error by degree in Figure 1.2.

A review of the solution technique (Section III) utilized to

achieve the weighting factors employed in the computation of GEM-TI is

useful to the discussion of the calibration method which is presented in

Section IV.

7
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Ill. TECHNIQUE AND DATA WEIGHTING FOR THE GEM-TI SOLUTION

The method of solution is a modified-least squares process which

minimizes the sum (Q) of signal and noise as follows:

C2 + S2 2

Q = _ _Im £,m f _ _ rit2 + -2- (3.1)

_,m e_ t obs et
i

• where the signal is given by

spherical harmonics comprising the solution

C_,m, S_,m: coefficients; and

is rms of the coefficients of degree _ (a priori
rule) and is introduced to permit larger solu-

I 10-5 tions to degree and order 36x36. This law,
a£: _ x

_2 _2 based upon Kaula's rule, has been obtained inde-
pendently from studies of the spectra of the

Earth's gravity field and is used here to repre-

sent the observed power within the geopotential.

• and the noise by

observation residual (observed-computed)

rit : for the ith observation of satellite
tracking data set (type) t; and

RMS of observation residuals (generally

at : significantly greater than a priori
data precision)

f : downweighting factor to compensate for unmodeled
error effects in the data (ideally f=1).

The weighting factor f is used to scale the data contributions;

unmodeled errors remain in the data and this scale factor is utilized to

obtain realistic error estimates from the solution statistics (variance-

covariance matrix). A proper combination of the data normals with the

well-known size of the a priori signal (a_) is the result. Since f is

]!

_ _ _tr-_
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not well known, as it depends upon the biases in the data (see Appendix

AI), it must be estimated in the development of the solution from the

data itself. The value of f was obtained from an extensive calibration

procedure which we describe in what follows. Presently we have found

that the value f = .02 is required since residuals in the tracking data

are systematic and highly correlated particularly within a given

tracking pass.

When minimizing Q in (3.1) using the least-squares method, the

normal metric equation and error covariance is obtained as follows:

are the normal equations, where z is theNz = R
solution, R is the vector of residuals, and

is the approximate form for the variance--I
Vzz = N covariance error matrix which must be (3.2)

calibrated.

The complete expression for Vzz is given in Appendix A2 which accounts

for systematic unmodeled effects. It is shown therein that, with the

proper downweighting factors, N-I is a reasonable approximation.

Certain characteristics of the solution are important. The

relative weighting factors (I/a_) are first obtained as the rms (at)

of the observation residuals from the solution for each satellite data

type t. In converging _t' a few test arcs of each satellite data type

are employed. A value of f is also _ iterated upon and is obtained

principally by comparing the solution with independent gravity anomalies

in the usual calibration procedure. For example, we have found (Marsh,

et al., 1988) the overall weighting factor, f = .02, provides for

realistic error estimates of the coefficients in GEM-TI. It is shown

also (Appendix AI.2 and AI.3) that this downweighting accounts for the

systematic trends in the data residuals which are not random and are

strongly correlated over a pass of tracking data. The residuals in

post-fit analyses (Appendix AI.1) are predominantly trended and

typically fall on a straight line over time for a given tracking

interval. If the residuals were random then f=1 (which is the ideal

case) would be realized for the least-squares weighting. The need to

12



use f=.02 for the solution scaling factor is interpreted as an

indication that non-gravitational signals must be better acco_odated.

Usually a few iterations of combining and fine-tuning the weights for

the normals for each satellite data type are required to converge on

proper weighting factors. In Appendix A3 an optimal technique is

developed allowing f(ft ) to converge simultaneously on all subset data

types. This was applied to a certain extent in the development of

GEM-TI as indicated by the weights given in Table I.

Another important aspect of the error estimation process is the

effect of the a priori signal on the solution (in the minimization of Q

in (3.1)). The signal consists of the gravitational coefficients with

an a priori estimate of their size, og, like the modified version of

Kaula's rule (4_1 I0-5/_2) which is used here. The normal least
squares adjustment solely minimizes the noise (observation residuals) to

obtain the solution. The process used here is a modified least squares

adjustment which minimizes both the signal (the size of the potential

coefficients which are constrained with an a priori power spectrum) and

the noise simultaneously. This latter approach (Lerch et al., 1977 and

1985) permits a more satisfactory and accurate estimation of high degree

and order terms. This process is also referred to as collocation

(Moritz, 1978, 1980). The process is necessary for solution stability

especially in the determination of the high degree portion of the

field. While there is some sensitivity within the data to these high

degree terms, there is a lack of separability for the entire set.

With the normal least squares approach (noise-only minimization)

there is a problem of separability due to the strong correlation between

many of the high degree coefficients. The absence of collocation (GEM-TI

without the Kaula constraint) results in excessively large power in the

adjustment of the potential coefficients. Figure 2 illustrates the

instability of the least-squares solution when collocation is not

used. A satellite-derived gravity solution has been solved without

collocation which is evaluated using a global set of independent gravity

13
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anomalies. An unrestricted high degree field performs poorly due to

excessively large adjustment in the coefficients which is normally

Circumvented in the standard least-squares method by solving for a

smaller sized field. Unfortunately, by restricting the size of the

field, one also is requiring the higher degree terms above the field

limits to be constrained absolutely to zero. Figure 2 also shows the

disadvantage of this approach where the smaller sized field (PGS-3067)

contains aliasing in its coefficients and does not perform well. (The

abbreviation PGS stands for Preliminary Gravity Solution.) The aliasing

signal sensed in the data above the field limits is absorbed into the

adjustment of the lower degree coefficients. The best approach is seen

with the least-squares collocation (or constrained) solution, GEM-TI,

with a complete solution of a 36x36 field in harmonics.

Since the a priori signal matrix contains only diagonal terms

which are added to the data normals, it is interesting to compare the

relative size of their contribution to the overall data normals. As

seen in Table 2, the satellite normal equations have considerably larger

diagonal terms than does the collocation matrix. At lowest degree, the

ratio of the two contributions indicates that the collocation

contribution is barely visible. It is only at highest degree that the

collocation contributions become a large percent (30%) of the diagonal

terms. Since collocation stabilizes the entire solution, it does so by

indirectly controlling ill-conditioning due to correlation within the

system of observation equations.

15



Table 2

Ratio of Diagonal Elements of
GEM-T1 vs. Signal (Kaula) * Matrix

ratio** of diagonal elements for specific terms

Degree Order Sectorial
([) m=l m=[

2 400,000,000 4,000,000,000
5 5,000,000 1,700,000

10 400,000 200,000
15 30,000 30,000
20 1,500 10
25 300 7
30 50 6
35 7 3

1

* C°ll°cati°n/KaulaWeight= [ 1 1(_5l,vT_ - . = 2x101°/_

** F.DIAG _..____--r1.]
= L D_kO _ J

16



IV. MATHEMATICAL DESCRIPTION OF ERROR CALIBRATION

BASED UPON FIELD SOLUTIONS

The most direct method of calibration entails the computation of a

field solution wholly independent of the data used in GEM-TI and a

comparison of GEM-TI with its results. The coefficient differences

(AC_m) combined with the error estimator (e_m) between GEM-TI and this

test solution will be used to compute the following quantity as a sample

calibration factor for each spherical harmonic as follows:

AC_m
= (4.1)

k_m e_m

The ensemble of the sample will be utilized to determine a calibration

factor for terms of degree _ or order m in GEM-TI together with the test

field from the formulae developed in this section. An overall

calibration factor can then be obtained from the rms average of the

sample calibration factors.

GEM-TI will also be compared to dependent solutions using the

GEM-TI data set with individual subsets eliminated. Calibrations of the

same form as shown in (eq. 4.1) will be developed using these models.

Since the estimated errors e_m in both of these approaches will involve

both GEM-TI and the test field in a mutual calibration, it is important

for reliability of the entire error spectrum that a significant number

of test solutions based upon a variety of data sets be employed.

The models which will be tested are complete to degree and order

36 containing 1363 terms. A separate calibration factor for each

harmonic is computed and for overall model assessments, these factors

are statistically combined by both degree and order.

A mathematical description of the error calibration is now

presented with a derivation of its components.

17



First, let x and x be the respective errors in two gravitational

models F and F consisting of coefficients C and C respectively and let

E( ) define the expected value. It follows that:

C : Ctrue + x

= Ctrue + X

and

IC - : X - X

m

represent the coefficient differences. Both x and x are errors within

each solution of unknown magnitude. The covariance matrix of these

errors is:

V- - = E(X _) for solutionxx

and similarly

V = E(x xT)- is the covariance matrix for solution F.
x x

m

The cross covariance for x and x, non-zero when they share observations_

is V -. The covariance V for the difference in the two solutions isx x

obtained as:

(x_x)T] -T - -TV = El(x-x) = E(x xT-2x x + x x )

: Vx x - 2Vx x + Vx x (4.2)

18



For solutions which are completely independent (i.e. they share no data

subsets) as noted above

V -- : 0
X X

Therefore, from (4.2) we find

V : V + V-- (4.3)X X X X

For cases where the data in F is totally contained within the F

solution, we will show that:

V - = V
x x x x

Then, again using (4.2) the variance of the difference solution (C-C)

is simply:

V : Vx x- Vx x (4.4)

The complete solution has (n + nl) observations while the subset

solution only contains n observations. Let the contribution of the

least-squares normal equations be denoted as Nx = R and Nix = RI

respectively for the set of n and nl observations. Then for the

combined set of observations n + n1:

(N + N1)x = R + RI (4.5)

are the set of complete normal equations whose covariance for the case

of random noise is:

(N + NI) -I : V (4.6)
XX

19



Likewise, for the subset solution

(N)_ = R (4.7)

with a covariance

(N)-I : V-- (4.8)
x x

See Appendix A2 where this is shown to be an approximation.

From (4.5) and (4.7)

- T (4.9)xx = N-IR (R + RI)T (N + NI) -I

and

- T N-I (4.10)xx = (RRT + RRIT) (N + NI)-I

Since R and RI are based upon independent observations they are

uncorrelated

E(R RIT) = 0 (4.ii)

The expected value for E(x x), using (4.10) and (4.11) is then

E(x xT) = V - = N-I N E(x xT) N (N + NI) -Ix x

: (N + NI) -I : V (4.12)xx

since E(x xT) = N-I. Thus we have the general result for V (the

covariance of solution differences)

for C andC beingV:V--+V
x x x x independent solutions, and

2O



for C with data wholly contained
V = Vx x - V x x within the data of C (4.13)

Since these results (4.13) are approximations based upon random noise,

they need to be calibrated which is done in the remainder of this

report. To this end, we define several quantities used in our field

calibrations:

For two fields F and F:

, F : C£m , S£m , a's (eoeff. errors)

+ 1,2
RMS£(AF) = _. ,m ,m (4.13a)

_m=O 2£ + I

i
2 2 1/2

£ a(C_,m) + a(S£ )

m=O 2£ + I

since there are 21+I coefficients per degree. Further, for order m

36 AC + AS I/2 6 : I, m=O

RMSm(AF) = m m m

Z=m 6m(36-m+1) _ ' = 2, m,O

Ii
2 2 I/2

36 °(C£m) + °(S£m)

°m : _ 6m (36-m-_+I_,=m
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since, for a 36x36 field, there are _m(36-m+1) coefficients per order.

From the derivation given we know that the expected value of the average

coefficient differences for a given degree, e£, is:

2 )2
eh = E(RMS h

When F is independent of F as in (eq. 4.2), the derivation (4.13) shows

that •

2 2 -2

eh = oh + oh (4.14)

and when data in F is wholly contained within F as in (eq. 4.4), the

derivation shows that

2 -2 2

eh : oh - oh (4.15)

Based on the above equations and (eq. 4.1), the calibration factors we

will use throughout the next section are defined by:

rms h

kh - eh for degree h (4.16)

rms
m

km - e for order m (4.17)
m

rms_, m
for an individual coefficient pair (4.18)kh,m -

eh,m
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V. CALIBRATION OF GEM-TIUSING DEPENDENT SUBSET AND
INDEPENDENT TEST SOLUTIONS

5.0 Introduction

Many investigations utilizing the gravity model also require a

validated geopotential error model. To assess the error of the field by

wavenumber, over different geographic regions, or in terms of orbit

error, a detailed knowledge of model errors is required. Independent

data needs to be obtained and calibration techniques need to be

improved. This is especially important when assessing the separation of

oceanographic and gravitational signals simultaneously contained within

satellite altimeter observations. It is of critical importance when

evaluating the accuracy of models for reaching the precision orbit

determination (POD) performance objectives of future missiohs like

TOPEX. In this latter case, actual observations are absent, and

assessments rely solely on statistical considerations. Those

statistics, which is found in the calibrated full solution covariances,

need to be reliable. The uncertainty reported for the GEM-TI

geopotential solution which are to be verified herein have been given as

an RMS coefficient error by degree in Figure la and for each coefficient

individually in Figure lb.

Obtaining detailed knowledge of the geopotential errors is made

difficult due to the lack of a perfect force model, measurement model,

and correction algorithms which enter into the solution. Although it

may appear that we are limited to providing a single overall scaling

factor (f in eq. 3.1) to account for systematic errors (at) per data

type (t) in order to obtain realistic error statistics, the factor

at may be varied somewhat to account for variations in f for different

data types (see Appendix A2.6). We know that each error is unlikely to

contaminate the model uniformly in a way representable by a single scale

factor. However, only through a detailed and rather complete analysis

directed at a total field calibration can the effects of each error

source be isolated through the resulting behavior of subset

calibrations. Appendix A3 derives an optimal weighting process where

each data type is adjusted for a weighting factor ft"
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In earlier gravitational modeling efforts, the inversion of the

2500x2500 parameter matrix for GEM-TI would have represented a

considerable computational burden. On the IBM 360/95, which was the

fastest mainframe available at GSFC until the late 1970's, such a

solution would have taken in excess of 100 CPU minutes. In 1982 the

Cyber 205 vector computer was installed at GSFC. Our geopotential

modeling efforts have benefitted substantially from the advent of this

new "supercomputing" environment. On the Cyber, the inversion of the

GEM-TI normal matrix requires less than 2.5 minutes of CPU time. Given

this enhanced capability, it is now possible to compute a variety of

test solutions complete to degree and order 36 which will calibrate a

broad spectrum of the errors in GEM-TI. If this extensive testing

yields comparable results to those which we found earlier (Marsh et al.,

1988), then we will have a more reliable verification of our estimates

of the accuracy of the GEM-TI model.

In Table 3 the major data subsets of the GEM-TI solution, as well

as independent data used for calibration, are reviewed. The GEM-TI

normal matrix is formed by summing the modularized contribution of each

of these observation groupings. It is therefore a relatively simple

task to manipulate these contributions and solve for models which either

lack specific subset contributions or combine GEM-TI with new

independent observations such as altimetry and surface gravimetry.

GEM-T2 and GEM-T3 are under development and will be models which

optimally combine GEM-TI with new data in this way.

From equations (4.14) through (4.18) we have defined two methods

for calibrating model errors from potential coefficient solutions; the

first when the fields F and F are independent and share no common data;

the second when the data within F are wholly contained within F. The

test solutions made in conformance with the requirements of these

calibration methods are given in Table 4.

For each individual spherical harmonic, the calibration factors

(eq. 4.18) tend to have random variations. To better assess the overall
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TABLE 3

MAJOR DATA SETS USED
FOR THE CALIBRATION OF GEM-TI

COEFFICIENT ERRORS

MAJOR DATA SUBSETS WITHIN THE GEM-TI SOLUTION 1

• SATELLITE TRACKING DATA

LASER - I0 SATELLITES

DOPPLER - 2 SATELLITES

OPTICAL - 11 SATELLITES

• COLLOCATION CONSTRAINTS- r 10-5 ]
MODIFIED KAULA'S RULE L #r_- p 2

INDEPENDENT DATA COMBINED WITH GEM-TI FOR
CALIBRATION PURPOSES

• SEASAT ALTIMETER

GLOBAL COVERAGE (OCEANS)

• SURFACE GRAVITY

OSU "B6 NORMALS
GLOBAL COVERAGE

• 60 DEEP RESONANT SATELLITE
LUMPED HARMONICS
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Table 4

Independent and Dependent
Subset Solutions*

for GEM-T1 Error Calibration

Independent Data Solutions

• GEM-T1 vs. Surface Gravimetry + SEASAT Altimetry

• GEM-T1 minus LAGEOS vs. Surface Gravimetry +
SEASAT Altimetry + LAGEOS

Subset Data Solutions

GEM-T1 vs. GEM-T1 minus
• The laser data from GEOS-1, GEOS-2, GEOS-3 andBE-C;

this data set is referred to el'sewhere as "4-LASERS".

• The laser data from STARLETTE.

• The SEASAT and OSCAR Doppler data.

• The optical observations acquired on 11 different satellites.

• The laser data from LAGEOS

GEM-T1 as a Subset Solution
• Combining GEM-TI's data with surface gravimetry.

• Combining GEM-TI's data with surface gravimetry and SEASAT
alitmetry.

• Combining GEM-TI's data with satellite deep resonant spherical
harmonic constraints.

* All solutions are complete to degree and order 36x36 and solve for
ocean tidal and Earth orientation parameters.
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quality of the calibration, we present the average calibration factors

for terms of the same degree and terms of the same order separately.

These are the k_ and km values given in eqs. (4.16) and (4.17)

respectively. The size of the sample used to calculate these average

calibration factors contributes to their overall stability whether they

are collected by degree or order. Those sampling a larger set of terms

tend to be better behaved across the spectrum within the model. This is

probably why more stable results are generally found in the assessment

by order for the low order terms and by degree for the high degree

terms. Anomalous behavior of the calibration factors for averages taken
j

by order are particularly useful for locating aliasing problems within

the gravitational model arising from satellite dynamic sensitivities to

terms above the 36x36 limits of the field. Performance of data sets

from satellites experiencing larger atmospheric drag and other non-

conservative forcing effects are also scrutinized to assess possible

field contamination arising from these error sources.

Briefly, Subsection 5.1 details the calibration of the GEM-TI

solution, specifically the optimization of data weights, through a

calibration of the solution variances. Gravitational models formed from

completely independent data are evaluated by comparing their respective

uncertainties with their coefficient differences. Subsection 5.2 shows

a more direct calibration of GEM-TI through a mutual calibration

analysis where GEM-TI is calibrated against other models which either

lacked specific data subsets or added additional data to the GEM-TI

field. Subsection 5.3 tests the sensitivity of the calibration

methodology to the data weighting factor, f given in (eq. 3.1). A field

which falsely reports superior results by having f increased by a factor

of ten is evaluated in this subsection. Section 5.4 provides an overall

summary of this calibration technique and the results obtained when

evaluating GEM-TI.
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5.1 Gravitational Model Calibrations Using Independent Data

Turning first to calibrations using independent data, Figure 3

shows the calibration factors, k_ and km, obtained when comparing GEM-TI

with a field computed solely from a combination of SEASAT altimetry

(where the altimeter ranges are treated as tracking observations) and

block areal mean values of surface gravimetry. The gravimetry were

provided to us by Pavlis (1988) in the form of compatible normal

equations. These normal equations from gravimetry were developed under

the direction of R. Rapp of The Ohio State University and have been

scaled for consistency with the GEM-L2 geopotential. Here they will be

used to calibrate GEM-TI. As noted in Marsh et al. (1988) the data in

GEM-TI is largely independent of GEM-L2. The calibration factors, as

shown in Figure 3, cluster around the ideal where k_=1 and km=1. This

indicates that the overall uncertainties estimated within these

independent models agree well with their coefficient variations.

However, one of the limitations of this particular calibration test is

revealed in Figure 4, which shows a large disparity in low degree

coefficients between GEM-TI and this model computed solely from

altimetry and surface gravimetry. A better test of GEM-TI's long wave-

length harmonics was made by removing the Lageos data from GEM-TI and

combining them with the normals of the altimetry/gravimetry model. The

resulting two models were again composed of independent data, but both

were now more equal in accuracy at low degree and closer to the uncer-

tainty level of GEM-TI itself. In Figure 5 the coefficient differences

between GEM-TI lacking Lageos and this altimetry/gravimetry/Lageos

solution are compared. The two solutions resulting from this shift of

the LAGEOS information are compared in terms of their estimated

uncertainty and rms coefficient differences in Figure 6. It is

interesting to note that these uncertainties reverse if the optical data

were also removed from GEM-TI and included in the independent test

field.

These "Lageos-shifted" models were then calibrated with one

another. Figure 7 gives the average calibration factors (k_ and km)
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which were obtained. Again, the results are well centered about I,

indicating that the model uncertainties are reasonably well

calibrated. Furthermore, the calibration factors are more stable than

those shown in Figure 3 although only marginally so. In summary, for

these calibration procedures where geopotential models were composed of

independent data sources, excellent overall calibration results have

been obtained. The variances and model differences are consistent. These

results indicate that the error estimates shown for GEM-TI in Figures

1.1 and 1.2 are supported by independent global altimetry and surface

gravimetry.

The large variation of km from unity for high orders around m=28

is due to the truncation at degree 36 for satellite resonant

perturbations. Hence, this variation will consistently show up in the

calibration plots for km and will be discussed later in more detail.

5.2 Gravitational Model Calibrations Using Dependent Solution Subsets

Returning to Table 3, tracking data from 17 different satellites

contribute data to GEM-TI. These observations have been divided into

several independent subsets. For each experiment which follows, the

data was divided in such a way that the subset contributed significantly

to the GEM-TI solution. In some cases this required combining observa-

tions from several satellites into a single subset. A solution was made

after removing each of the data subsets individually, and all of these

subset fields were used in an extensive evaluation of the uncertainties

published for the GEM-TI coefficients.

A typical example of the variations found among the individual

harmonic calibration factors, k_m , is shown in Figure 8 for the case

where GEM-TI is calibrated against the model which removed the laser

data contributions from GEOS-I,-2,-3 and BE-C. As expected, there is a

good deal of variation in these calibration factors when going from

term to term. However, the values overall fall into an approximate
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o.9 _ o.3 o.8 -_-_RM_"m1._ 3 0.5 0.6 Z.1 1.4
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range of 0.2 to 2.0 and seldom depart by more than a factor of two from

the degree and order average values which are shown in Figure 9. With

the exception of the high order resonances of order 26 through 29, these

average calibration factors are well behaved and centered about I. As

mentioned previously, the misbehavior at the high orders indicate that

these satellites are sensitive to resonance terms beyond the 36th degree

at these specific orders, and that there is some aliasing from these

unmodeled higher degree contributions. When altimetry and surface

gravity are introduced into the solution, these satellite data sets will

contribute to the determination of_ higher degree resonance terms out to

degree 50 and this source of aliasing will be eliminated. The normal

equations from these and the other laser satellites are complete to

degree 50 for all zonal, Ist and 2nd order, and resonance terms although

they have not been used in GEM-TI beyond degree 36.
i

These calibration tests have been repeated for each of the subset

solutions. Table 5 summarizes the overall calibration factors (defined

as the mean of the _ and _mmterms) from these assessments. With the

exception of the model leaving out Lageos contributions, the overall

calibration factors were all found to be highly consistent and close to

the ideal value of I. The less consistent Lageos results are somewhat

understandable. The Lageos satellite orbits at nearly 6000 km altitude

and senses little of the gravitational field beyond degree 8. It is

easy to understand how this subset solution may be ineffective for

calibrating a full 36x36 model. The low degree portion of the field (to

6x6) however, gives essentially the same Lageos calibration factor of

1.2 which is satisfactory. Also of note, the Lageos calibration is

sensitive to the polar motion adjustment, and the calibration improves

if the pole position is fixed. Also in Figure 7 the solution for Lageos

with altimetry and surface gravity data result in a consistent

calibration with the solution for GEM-TI minus Lageos data.

Additional tests were performed where GEM-TI's data became a

subset of larger soiutions--combination gravitational models which are

being investigated as preliminary versions of GEM-T2 and GEM-T3. At

this time, these more comprehensive models were solved only to degree
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TABLE 5

I SUMMARY OF RESULTS
FOR ERROR CALIBRATION

CALIBRATION

I GEM-T1 vs. GEM-TI minus DATA SUBSET FACTOR

4 LASER SATELLITES (GEOS 1,2,3, BE-C) 1.06

STARLETTE LASER I.10

OSCAR + SEASAT DOPPLER 1.09 ,,

OPTICAL (I 1 SATELLITES) 0.84

LAGEOS LASER 1.45

I GEM-T1 vs. GEM-T1 + SURFACE GRAVITY 0.95

• GEM-T1 vs. GEM-T1 + SURFACE GRAVITY +

SEASAT ALTIMETRY 0.94

• GEM-TI vs. GEM-TI +

SATELLITE RESONANCE DATA 1.05

• GEM-T1 vs. SURFACE GRAVITY + SEASAT

ALTIMETRY 0.99

• GEM-T1 minus LAGEOS vs. LAGEOS +
SURFACE GRAVITY • SEASAT ALTIMETRY 0.95
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and order 36. Before the TOPEX work is completed, the limits of these

fields will be extended to degree and order 50. These combination

models were developed by adding new normal equations which were

produced from SEASAT satellite altimetry and surface gravimetry to the

GEM-TI solution and truncating the final solution through parameter

suppression at degree 36. Figure 10 presents one such calibration

comparing GEM-TI with the GEM-T1/surface gravimetry combination

solution. Again, a good calibration centering about I was obtained.

Another source of independent satellite information was also used

to calibrate GEM-TI. Lumped harmonics representing the long term orbit

changes of satellites undergoing deep resonant passages were utilized.

In the first calibration method we compared the observed lumped

harmonics directly with computed values of them using GEM-TI. All of

these observations were from unique orbits not found in GEM-TI. The

observations used, their estimated accuracies and their projected GEM-TI

errors are listed in Table 6. These observations provide a reliable

error estimate for GEM-TI since only lumped harmonics were used with

errors considerably less than projected for GEM-TI. We have computed an

average calibration factor for GEM-TI errors necessary to resolve the

residuals of these observations with GEM-TI predictions - namely:

- I/2

= Ii=1_ (°i-ci)2-i=1y'6°o2C.AT-o20i

where Oi, oOi, Ci and oCi are respectively the observations, their

estimated errors, GEM-TI computed quantities and GEM-TI predicted errors

based on its variance-covariance matrix. AT. is the estimated
i

truncation error for the ith observation for a model truncated at degree
I

36. Over this set of observations (note that oOi _ _ oCi; for all i) we
find that
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TABLE 6. COMPARISON OF GEM-TI WITH THE BEST INDEPENDENT SATELLITE
RESONANT HARMONICS FOR CALIBRATION PURPOSES

RESONANCE • GEM-TI

Satellite

FIEF m q k Obs oo Comp. aQ AT RES RES/ RES/ Name Incl. Eee.
(O-C) oo

(I) II -2 I C-38.1 1.0-45.7 5.6 1.0 7.6 7.6 1.28 VANGUARD 3 33.35 .188
S -33.4 1.2 -17.6 5.6 1.0 -15.8 -13.2 -2.64 VANGUARD 3

(I) II-I I C-30.6 1.0-35.0 5.2 0.6 4.4 4.4 0.80 VANGUARD 3/2R 33.13 .184
S 0.3 2.1 1.9 5.3 0.6 -1.6 -0.8 -0.27 VANGUARD 3Y2R

II 0 1 C 26.1 2.2 25.9 6.6 0.6 0.2 0.I 0.03 VANGUARD 3/2R
S 52.6 I.I 53.7 6.7 0.6 -I.I -I.0 -0.15 VANGUARD 3/2R

II I I C -42.9 1.5 -40.? 8.6 0.8 -2.2 -1.4 -0.23 VANGUARD 3/2R
S-13.9 2.9 -8.2 8.0 0.8 -5.7 -2.0-0.64 VANGUARD 3/2R

II 2 I C 13.6 1.5 6.5 9.9 1.2 Y.l 4.8 0.68 VANGUARD 3/2R
S 24.5 1.4 47.0 I0.8 1.2 -22.5 -16.1 -1.96 VANGUARD 3/2R

(I) 12 0 I C -4.2 2.0 -0.5 7.0 0.9 -3.7 -1.7 -0.48 D-IA & D-IA ROC 34.10 .139
S 38.4 1.4 40.4 7.0 0.9 -2.0 -1.2 -0.27 D-IA & D-IA ROC

12 1 1 C -42.4 1.4 -29.2 10.3 1.2 -13.2 -7.2 -1.20 D-IA & D-IA ROC
S -23.4 2.4 -15.3 9.9 1.2 -8.1 -3.0 -0.76 D-IA & D-IA ROC

(I) 12 I I C 19.2 0.5 16.9 4.1 0.5 2.3 3.1 0.52 EX.9 ROC. 38.90 .121
S 42.2 1.5 39.1 4.2 0.5 3.1 2.0 0.67 EX.9 ROC.

(I) 12 0 1 C -44.3 2.1 -34.1 6.2 0.1 -10.2 -4.8 -1.48 TIROS 9 96.40 .117
S 101.9 1.3 100.8 6.3 0.1 1.1 0.8 0.16 TIROS 9

12 1 1 C -1.1 1.2 2.3 3.9 0.I -3.4 -2.8 -0.80 TIROS 9
S -14.0 1.1 -23.1 3.8 O.1 9.1 8.2 2.20 TIROS 9

(I) 14 0 1 C-31.6 1.1 -31.0 9.5 1.3 -0.6 -0.4-0.06 OV2-I ROC. 32.10 .013
S -4.8 1.1 17.8 9.8 1.3 -22.6 -13.2 -2.17 FRAGMENTS

(2) 14 0 1 C -1.8 0.6 -2.0 2.2 0.3 0.2 0.2 0.07 METEOR 10 81.23 007
S-19.5 0.5-17.0 2.2 0.3 -2.5 -4.3-I.06 METEOR 10

(I) 14 0 1 C -2.3 0.3 -0.3 2.3 0.1 -2.0 -6.2-0.83 LANDSAT I 99.10 001
S -22.5 0.5 -24.4 2.3 0.I 1.9 3.8 0 80 LANDSAT I

(2) 14 0 1 C -2.8 0.3 -0.3 2.2 0.1 -2.5 -7.8-I 05 LANDSAT I 99.10 002
S -22.6 0.1 -24.4 2.2 0.1 1.8 12.1 0 77 LANDSAT I

(3) 15 0 1 C-26.3 1.7 -3.1 13.0 3.0 -23.2 -6.8-I 65 1965-9A 31.76 007
S-11.5 0.8 4.5 13.0 3.0 -16.O -5.1-I 14 1965-9A

(3) 15 0 1 C 26.3 1.0 2.4 12.4 2.9 23.8 ?.9 1 78 1969-68B 32.97 004
S 8.1 1.2 -4.9 12.4 2.9 13.0 4.2 0.97 1969-68B

(I) 15 0 1 C 28.3 1.5 2.4 12.2 2.9 25.9 8.0 1.96 TETR-3 33.10 .012
S 7.4 1.5 -4.9 12.3 2.9 12.3 3.8 0.93 TETR-3

(3) 15-I I C-46.5 2.7-50.I 11.2 1.8 3.6 1.1 0.30 1970-111A 74.00 .001
S -40.5 4.0 -46.5 11.2 1.8 6.0 1.4 0.48 1970-111A

15 0 1 C-26.0 1.0-21.2 6.0 0.6 -4.8 -4.2-0.75 1970-111A
S -5.2 1.3 -9.8 6.0 0.6 4.6 3.3 0.?2 1970-111A

(3) 15-I I C-45.5 2.0-50.2 11.3 1.8 4,7 1.8 0.39 1971-131B 74.05 .002
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S-35.2 1.0-46.6 11.3 1.8 11.4 5.6 0.95 1971-131B
15 O 1 C-24.6 1.3-21.3 6.0 0.6 -3.3 -2.3-0.51 1971-131B

S -6.1 1.0 -9.8 6.0 0.6 3.7 3.2 0.58 1971-131B
(3) 15 O 1 C °23.0 1.6-20.7 5.5 0.3 -2.4 -1.5-0.39 1967-42A 80.17 .007

S -8.6 1.3 -6.9 5.5 0.3 -1.7 -1.3-0.29 1967-42A
15 1 1 C-54.6 3.2-45.6 10.8 0.9 -9.0 -2.7-0.76 1967-42A

$o37.1 2.6-45.7 10.7 0.9 8.6 3.1 0.74 1967-42A
(3) 15-1 1 C-62.9 2.6-49.O 13.7 1.2 -13.8 -4.8-0.95 1971-54A 90.23 .002

S-53.4 1.6-56.3 13.6 1.2 2.9 1.5 0.20 1971-54A
15 O I C-16.0 0.2-15.8 2.7 0.1 -O.2 -0.8-0.07 1971-54A 90.21 .002

S -6.9 0.2 -6.8 2.6 0.1 -O.I -0.5-0.04 1971-54A
(4) 27 0 1 C-14.5 2.0 -13.4 6.2 1.4 -1.1 -0.5 -0.16 NAVSATS 89.80 .010

S +I0.0 2.0 6.8 6.1 1.4 3.2 1.3 0.47 (1967-48A,
70-67A, 73-81A)

(5) 28 0 2 C 7.0 1.1 2.9 4.7 1.0 4.1 2.8 0.80 METEOR 10 81.23 .O07
S 1.5 1.1 0.4 4.7 1.0 1.1 0.7 0.21 METEOR 10

(6) 28 0 2 C -9.3 0.9 -14.3 9.2 1.6 5.0 2.7 0.51 LANDSAT I 99.10 .002
S-21.7 0.9 -7.4 9.2 1.6 -14.3 -7.8-1.45 LANDSAT I

(3) 30 O 2 C -9.8 0.6 0.6 8.2 0.4 -IO.4 -14.8 -1.21 1971-54A 90.23 .002
S 9.0 0.7 0.1 8.2 0.4 8.9 10.5 1.03 1971-54A

(7) 31 0 2 C -2.9 1.2 0.4 6.9 2.2 -3.3 -1.3 -0.43 1961-QI 97.20 .005
S 9.0 2.2 -2.4 6.9 2.2 11.4 3.6 1.44 1961-eI

Column Notes :

(I),(2) For all of these observation pairs C?S: Co(C) + Co(S) < [oc(C) + os(C)]/3.

Thus the comparisons are all dominated by the estimated model error oC and
hence they serve principally to calibrate the model.

tThe resonances are all of periods _>14 days with most passing through perfect
commensurability with the earth's rotation. Their frequencies are:

_m,q,k : uq * (_+M) k * m (_-6e)

where m=geopotentlal order and M,_,_ are the satellite's mean motions of mean
anomaly, argument of perigee and node. ee is the earth's rotation rate. C and S are
the cosine and sine terms of the lumped harmonic observed for these resonances. The
definition of these harmonics is from Ref. (I). Harmonics from all other references

have been converted to thls definition whlch normali2es the observation with respect

to the geopotential harmonic (C0m) of greatest sensitivity to the orbit element whose
resonance is observed. Here t3J'eelements are mainly inclination but equivalently
semi-major axis eccentricity and along track perturbation, covering all cases.

(3),(4) Computed observation and estimated con_nission error from GEM-TI and its
oovariance matrix as presented in this report (precalibrated or formal errors)

(5) Estimate of truncation error for resonant harmonic of GEM-TI for
terms g>36 using a power law for the geopotentlal signal.
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(6) Residual = (!) - (3) _ 1/2

f(7) Residual _
_4o + AT2 weighted residual if model were perfect

for the terms in its solution

(8) Residual _ o + AT2 + (K oC) : weighted residual accountiag
m

for calibrated commission error.

Mere the calibration factor was found by solving for K from

6O

RES2 2 i �hT2.+ K2 o2,i): 60i:I , 1 C

Tne result was : K:I.05. The resulting statistics in (8)

yield : #>2o : 3 (expected from unit normal : 3)
#>la : 17 (expected from unit normal : 19)

References for Resonant Data

I. Wagner, C.A. and F.J. Lerch, "The Accuracy of Geopotential Models," Planet. &
S_. Sci., 26, 1081-1140, 1978.

2. King-Hele, D.G. and D.M.C. Walker, "14th Order Harmonics in the Geopotential

From Analysis of Satellite Orbits at Resonance," Planet & Sp. Sci., 34, 183-
195, 1986.

3. King-Hele, D.G. and D.M.C. Walker, "Individual Geopotential Coefficients of
Order 15 and 30 from Resonant Orbits," Planet & Sp. Sci., 33, 223-238, 1987.

4. Bowman, B.R., "Analysis of Mean Elements of Three U.S. Navy Navigation

Satellites for the Period 1974-76," Celest. Mech., 19, 203-211, 1979.

5. Walker, D.M.C., "Analysis of 208 Navy Orbits for the Satellite 1970-47B at 14th
Order Resonance," Rac Tech. Report 85015, Farnborough, Hants., England, 1985.

6. Dunn, P., "Geopotential Resonance in a Landsat Orbit," Bull. Geod., 55, 143-
158, 1981.

7. King-Hele, D.G., "Geopotential Harmonics of Order 29, 30 and 31 from Analysis
of Resonant Orbits," Planet & Sp. Sci., 30, 411-425, 1982.
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K:I.14.

To test this calibration of the lumped harmonics of GEM-TI with

the dependent data set method in terms of the specific geopotential

harmonics in GEM-TI (instead of the lumped harmonic observables) we have

combined the lumped harmonics data with GEM-TI. This new solution was

then compared to GEM-TI. As expected from the small set of 60 lumped

coefficients, only a limited number (about 280) of resonant harmonics

(_,m) in GEM-TI were changed appreciably by these new data. The rms

average calibration factor K_m (Eq. 4.18) for these 60 observations was

found to be 1.05 and agrees well with the 1.14 calibration factor

obtained above for the 60 lumped harmonics. The importance of these

resonance tests is that they show the capability of GEM-TI over a wide

range of "new orbits" with respect to the dominant perturbations of

those orbits. Furthermore, since the computed errors for these lumped

harmonic "observations" used the full variance-covariance matrix of

GEM-TI, these are direct tests of the validity of that matrix, a task

essential to reliable radial error prediction for TOPEX. Many more such

full matrix calibrations will be presented in Section VI.

Table 5 (last five entries) also summarizes the overall

calibration factors which were determined for GEM-TI from these tests

using more advanced gravitational models. In all cases tested, the

overall calibration factors indicated satisfactory error estimates for

both GEM-TI and these more advanced gravitational field coefficients.

5.3 Tests of Overall Observation Scaling Factor

Tests were also made to determine the sensitivity of our

calibrations to the overall scaling factor f of the solution (eq.

3.1). Clearly, the overall formal uncertainties of the model are

strongly affected by the adopted value of f used in combining the signal

and observation matrices. By design in GEM-TI and previously in GEM-9

(Lerch et al., 1979), the scaling of f was found to produce solution

uncertainties which reflected the true accuracy of the field. For
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GEM-TI we found f=.02. To test this assignment using our more

comprehensive calibration methods both GEM-TI and the GEM-TI subset

model which lacked data from the 4-Laser satellite group were recomputed

with f increased by a factor of 10 to f=0.2 while leaving the signal

matrix weight for the Kaula constraints (o_) unchanged. This increased

the satellite data weight in the solution by a factor of 10, and as

expected, the overall parameter standard deviations improved by

approximately J10. This was expected since, as we previously mentioned,

(Section Ill) tests with global sets of gravimetry and other independent

data gave f=O.02 as the optimum scale for the satellite data relative to

the a priori constraint information. Here, we deliberately corrupted

this weighting and attempted to confirm this estimate with reference

only to the solution's own satellite contribution.

As shown in Figure 11, when calibrated using the subset solution

technique, the calibration factors kg and km were both found to yield

values approximately equal to /I0 for these test models indicating that

f=.02 is indeed close to optimum. The subset solution method is thereby

shown to be capable of revealing both a poorly calibrated model and also

showing the correct approximate level at which these errors were

improperly reported.

5.4 Summary of the Calibration Based Upon GEM-TI Variances

Clearly from the results shown within this section, the calibra-

tion method we have developed is sensitive to overly optimistic solution

statistics and is consistent across many data subsets as they are

individually tested against the complete GEM-TI field. These results

therefore confirm the coefficient uncertainties of GEM-TI for the

diagonal terms of the covariance matrix. We will now proceed to test

the full covariance matrix for this solution.
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VI. GRAVITY MODEL CALIBRATION BY EIGENVALUE-EIGENVECTOR ANALYSIS

6.0 Introduction

One of the major objectives of this research effort is to produce

gravitational models capable of supporting the stringent orbit

determination requirements of the TOPEX Mission. However, to fully

assess the performance of a gravitational model on a satellite orbit

(prior to launch), knowledge of only the error variances of the field is

insufficient to make a reliable projection. For example, consecutive

even and odd zonal harmonics are correlated by .95 and significant

correlation exists for coefficients in all orders (particularly

resonance orders). For TOPEX, the predicted radial error based upon the

GEM-TI covariance matrix (as more fully described later) gives about

25 cm while using the variances alone predicts radial errors for TOPEX

exceeding 80 cm RMS.

Any given satellite orbit samples the earth's gravitational field

in a way which causes it to sense certain perturbative frequencies.

Each of these perturbations can be mathematically described as some

linear combination of the spherical harmonics used to represent the

gravitational field (see for example Wagner and Klosko, (1977) or

Reigber, (1974) who base their analyses on the linear perturbation

theory given in Kaula, (1966)). These sums (or "lumped-harmonics") can

be very accurately determined, even more so than the individual harmonic

coefficients, but they are satellite-specific and tend to reflect the

distribution of orbital characteristics sampled when forming the

model. Therefore, our pre-launch analysis was directed at estimating

the errors in the "lumped-harmonics" which are TOPEX specific and

TOPEX sensitive. In particular, we are most interested in those that

represent significant radial perturbations.

While it is correct to assume that highly correlated parts of our

gravitational model have degraded variances due to significant off-

diagonal terms in the normal matrix, only these cross-correlations allow
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one to properly sum the effects within a given order to calculate errors

in these "lumped-harmonics". Specific knowledge of the full covariance

(not merely the standard errors) of the solution, especially the cross-

correlation of the coefficients with odd and even parity within the same

orders is therefore essential to predict orbit errors. Acknowledging

this, we wondered, for example, whether the Kaula constraint matrix

within our solution (which artificially reduces the cross-correlation

between high degree terms) would yield a seriously distorted covariance

matrix. In any case, it is necessary to provide a calibration of the

complete GEM-TI covariances before covariant orbital accuracy

projections on TOPEX can be considered reliable.

Our approach to the covariance calibration of GEM-TI was through

the eigenvectors of its error covariance matrix. Again, we were

fortunate that we had a supercomputer available for calculating the

eigenvectors within the GEM-TI solution. The full covariance matrix for

each of the solutions described in Table 4 were calculated and provided

the means for calibrating the GEM-TI covariance. First, in Section 6.1,

we review the mathematical development of this calibration technique

which strongly parallels that given in Section IV. We then discuss the

projection of the eigenvectors from various dependent models onto those

of GEM-TI using the differences in their respective covariances (Section

6.2). Section 6.3 shows the calibration of the model using all of the

major data subsets within GEM-TI and results obtained after introducing

surface gravimetry and satellite altimetry into the model. Here an

approach which projects the difference of the coefficients directly on

the eigenvectors of the main or subset field is employed.

6.1 Calibration by Eigenvector Analysis: Direct Method

Given two fields F and F, let their corresponding coefficient

solutions be C and C, and their corresponding error-covariance matrices

be V and V, respectively.
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Since we are interested here in assessing only the gravity model

uncertainties and their effects on orbital trajectories, the full error-

covariance matrices were truncated to include only the geopotential

parameters. Thus the eigenvector technique of calibration (to be

discussed herein) considers the previously ignored covariances.

Let X and _ be the diagonal eigenvalue matrices of the now

truncated V and V matrices, respectively. By convention, X and _ are

arranged in descending order. Thus, the matrices take on the form

m-- ----

I _,_,1 o o o .... o I
I 0 X2, 2 0 0 .... 0 I

I 0 0 x3, 3 0 .... 0 l (6.1)

I o o o _,4,4 .... o I
I 0 0 0 0 ... x1363,1363 I

Let B and B correspond to the ordered eigenvector matrices, where

the individual normalized eigenvectors form the columns of B and B.

Therefore,

V : B X BT (6.1a)

: _ _ _T (6.1b)

The eigenvectors of the error-covariance matrix represent the

independent combined harmonics unique to the solution while the

corresponding eigenvalues represent the variance of the error in

estimating each of these combinations. These combined harmonics C' are

defined from C as: C' = BTc. Thus, a small eigenvalue means that a

particular combination (corresponding approximately to a "lumped"

harmonic of all terms in the field) is well-determined by the solution

while a large eigenvalue means that a particular combination is poorly-

determined.
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Now we can derive eigenvector calibration factors in analogy to

equation (4.1)

k£ : AC I,m _,m e_,m

Let

AC = C - C = (C - Ctrue ) - [C - Ctrue ) (6.2)

AV = V - V (6.3a)

when the data included in F is a subset of the data included in F.

Also, again by analogy, when models are compared based exclusively on

independent data,

AV = V + V (6.3b)

By equation (6.1), where the D subscript represents the difference in

the covariances as in (6.3a), we get

T

AV = BD kD BD (6.4)

While equation (6.4) is similar to equation (6.1), the inter-

pretations of the eigenvalue sizes are quite different. Small eigen-

values derived from V or V indicate that the associated eigenvectors

are well-determined by the data used to form the respective F or F

gravity fields. In contrast, small eigenvalues derived from AV imply

that the parameters associated with the eigenvectors are not signifi-

cantly altered due to the presence or absence of a specific data subset

which delineates the difference between the main (F) and subset field

solutions (F). Hence, significant effects of the data subsets are found
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with the largest eigenvalues of kD" In this case, the magnitude of the

eigenvalues is a measure of the improvement in the variances achieved

through the inclusion of these data.

The direct eigenvector projection Ay of the difference in the

actual harmonics AC of the two solutions can be obtained through the

eigenvector matrix BD by the relation

T

hy : BD AC (6.5)

We shall refer to Ay as the eigenvector parameters whose variance is

given by E(Ay AyT) :

T E(AC ACT ) BD (6.6)E(Ay AyT) : BD

We are now in a position, by analogy to (4.1), to define the

eigenvector calibration factors where AC_,m becomes {Ay[ while e_m
becomes (E(Ay AyT)) I/2 as follows :

CF i : IAyl / [E(Ay Ay)T] 1/2

From (4.3) and (4.4) we have shown that

E(AC ACT) : AV (6.7)

Thus,

T AV BD (6.8)E(Ay AyT) = BD

Now

T T

BD BD : BD BD : I (6.9)
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from the definition of the eigenvector matrix. Using these identities,

equation (6.4) can be transformed to

T

BD _V BD : kD (6.10)

so that

E(Ay AyT) = kD (6.11)

The direct eigenvector calibration factor then becomes

CF i : [(by AyT)ii / (kD)ii ]I/2 (6.12)

where i = I to 1363, the number of geopotential parameters in GEM-TI

type solutions.

Table 7A shows the results of three calibration tests. For

simplification purposes and to average over individual samples, the

individual calibration factors are divided into groups of 50 beginning

with the CFi associated with the largest eigenvalue. An RMS of the

CFi's

l-n 49 I
<CFk> _. (CFi)2 / 50- 1/2: (6.13)

l i--n

and an average of the <kD>
k

n+49

<XD> : _ (XD)ii / 50 (6.14)
k i=n

where n = 50(k-I) + I, are obtained for eac_ group. Finally, an rms of

the CFk'S (k = I to 27) for the complete sets of CFi's ,
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- 27 27- I/2
rms = I_ _=I<CFk>2 / (6.15)

and a weighted rms

-Wrms : ! <XD>k <CFk>2 / _ <XD>k (6.16)k

are computed for each of the three tests. Note, the weighted rms gives

added weight to the eigenvector parameters which are more significantly

affected by the data.

The exponential fall off in average eigenvalue size shown in

Table 7A led directly to the computation of the weighted rms calibration

factor in equation (6.16). Using this formula, the overall weighted

calibration factor now more closely reflects the significant differences

in the errors of the two solutions.

The size of the average eigenvalues in Table 7A is a measure of

how much a tested data set improves the main field over the subset model

lacking these data. In general, the average eigenvalues for the surface

gravity and altimeter data set are larger than the corresponding average

eigenvalues for the other two tested data sets. Furthermore, the data

subset from the 4 laser satellites ("4-LASERS") improves the solution

more than the solitary Starlette data set. Since four unique orbital

geometries are sampled in the 4-LASER case, this result is expected.

Note that there are only 25 (instead of 27) eigenvalue groups of

50 samples for the case of [GEM-TI] vs. [GEM-TI minus STARLETTE data].

The algorithm which computed the eigenvalues produced about 100 negative

but small eigenvalues. Negative eigenvalues have no physical signifi-

cance but reflect numerical properties of the computation environment.

The positive eigenvalues have a range of about 1012. The computer

arithmetic, however, was done using only 14 digits. Therefore these

negative eigenvalues undoubtedly result from machine round-off errors.

Thus, for all practical purposes, they can be treated as zeros. The
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"1ABLE 7.A

DIRECT EIGENVECTOR CALIBRATION

FACTORS<CFk> AND AVERAGE EIGENVALUES<kpk>

GEM-TI vs. GEM-T1 Minus/Plus the following data sets

(+) SURFACE GRAVITY
[IGENVALU[ (-)STARLETTE (-) 4 LA5ERS + ALTIMETER

GROUP NO(k) (C_.[k) (._.Dk) (C_[ k) (.__.Dk) (CFk) (_..Dk)

I 0.87 .llE-15 0.92 .11(-15 0.73 .28E- 15
2 I.I 5 .60E- I 6 0.86 .54E- 16 0.05 .I 4E- 15
3 I.I 3 .36E- 16 1.10 .36E- 16 0.82 .1 I E- ! 5
4 1.55 .21 [- 16 1.26 .24E- 16 0.08 .O3E- 16
5 1.24 .95E- 17 1.03 .15E-16 0.95 .68E- 16
6 l.O0 .33[- 17 1.19 .94E- 17 0.85 ,57E- 16
7 0,72 .I OE- 17 0.96 .55E- 17 0.79 .50E- 16
8 0.66 .36E- 18 1.26 .30E- 17 0.83 .45[- 16
9 0.64 ,14E-18 1.06 .15E-17 1.16 .40E- 16
I 0 0.52 .53[- 19 0.96 .81 E- I O I.I 2 .36E- 16
I I 0.52 .20E- 19 0.88 .43E- I 8 1.06 .32E- 16
12 0.44 .04[-20 0.65 .23E- 18 1.03 .30[- 16
13 0.45 .36E-20 0.80 .12E-18 0.64 .27E-16
14 0.40 .16E-20 0,60 .66E- 19 0.93 .2,4E- 16
15 0.35 .71E-21 0.82 .35E- 19 1.04 .20E- 16
16 0.38 .31E-21 0.60 .19E-19 1.04 .16E-16
17 0.33 .13E-21 0.59 .IOE-19 I.II .lIE-16
18 0.39 .54E-22 0.73 .52E-20 1.27 .76E- 17
19 0.39 .21 £-22 0.56 .27E-20 1.52 .46E- 17
20 0.27 .74E-23 0.64 .14E-20 1.69 .26E- 17
21 0.34 .24[-23 0.59 .67[-21 1.74 .14E-17
22 0.27 .76E-24 0.58 .31E-21 1.31 .65E- 18
23 0.31 .22E-24 0.63 .13E-21 1.64 .26E- 16
24 0.26 .49[-25 0.56 .51E-22 2.03 .61E-19
25 0.36 .63E-26 0.56 .I 7E-22 1.85 .19E-19
26 0.61 .37E-23 1.91 .25E-20 .
27 0.67 .35E-24 2.01 .I 4E-21

RMS 0.69 0.89 I .30

WEIGHTED 1.08 1,00 0.80
RMS
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weighted rms calibration factors for the three test cases presented in

Table 7A show that the data in GEM-TI is approximately weighted

correctly. Calibration factors less than I mean that the errors have

been over-estimated. Thus, for the cases of [GEM-TI] vs. [GEM-TI minus

STARLETTE data] and of [GEM-TI] vs. [GEM-TI minus 4 LASER data], the

attributed errors are actually slightly too large, but only if all the

eigenvector parameters are weighted the same.

For the case of [GEM-TI plus surface gravity + altimeter data] vs.

[GEM-TI], the rms calibration factor indicates that at certain

frequencies the attributed errors have been under-estimated. However, a

close look at Table 7A shows that all of the large calibration factors

are associated with small average eigenvalues. In this case, the small

eigenvalues generally correspond to eigenvectors of primarily long-

wavelength combination terms or zonal and resonance effects. Surface

gravity and altimeter data cannot resolve these dynamically resolved

terms nearly as well as the direct satellite tracking (see Figure 4).

Therefore, it is not surprising that these eigenvector calibration

factors for the best determined eigenvectors are all significantly

larger than I using surface gravimetry and the radially-sensitive

satellite altimetry. Hence, the weighted calibration factor (0.88)

should give the more reliable estimate.

The average geoid height error Ahi implied by each eigenvalue is

• = /I--_.R (6 17)A hI 11 e

where Re is the mean radius of the earth.

Thus, the contribution of these long wavelength eigenvalue errors is

insignificant compared to the contribution of the large shorter

wavelength eigenvalue errors. Therefore, if the attributed errors (for

the surface gravity/altimeter case) for these longest wavelength terms

were increased to reduce their calibration factors to approximately I,

there would be little change in the total predicted orbit determination

error produced by GEM-TI.
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Of the calibration factors associated with large average eigen-

values, only a few of them are exceptionally high, such as the 1.55 in

the case of [GEM-TI] vs. [GEM-TI minus STARLETTE data]. A close look at

the components of the associated eigenvectors shows that the largest

components are higher order resonant and near-resonant terms, such as

C(33,27) and $(33,28). The primary resonance order of STARLETTE is 14

with strong secondary resonances with 27th and 28th order terms.

STARLETTE senses terms beyond the degree 36 cutoff of GEM-TI for these

resonance orders. Therefore it appears that these large calibration

factors are due to aliasing arising from these neglected coeffic-

ients. Thus, if the gravity field model is expanded to degree and order

50 as is planned when altimetry and surface gravimetry are fully

utilized, STARLETTE will contribute significantly to the recovery of

these higher degree harmonics. Therefore, this aliasing problem and the

large calibration factors for these vectors would be expected to

disappear.

When the weighed rms calibration factors are computed for each of

the three cases, the results are all approximately I. Thus, as far as

the significant errors in the GEM-TI gravity field model are concerned,

especially for the more significant larger errors, a satisfactory

calibration is indicated.

6.2 Calibration by Eigenvector Analysis: Projection Method

Calibration can also be done by an indirect projection method

using eigenvector analysis. Instead of converting AC into combined-

harmonics using the eigenvectors of the difference of the two error-

covariance matrices by equation (6.5), AC can be projected onto the

combined-harmonics of either the main gravity field solution or the

subset gravity field solution using either B or B, respectively.

= BT
Aye AC (6.18a)
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- = §T
Ayp AC (6.18b)

Thus, we have

T BT
E (Ayp Ayp) : AV B (6.19a)

- -T _T
E (Ayp Ayp) = AV B (6.19b)

The calibration factors of the projection are then

= T
PCF i [(Ayp Ayp).. / (BT AV B)ii]I/2 (6.20a)

ii

PC---Fi : [(Ayp Ayp).. / (_T AV B>ii ] (6.20b)
ii

The eigenvectors of any GEM-T1-type field completely span the 1363

geopotential parameter space. Thus, mathematically, Ay and its

associated eigenvector calibration factors can be computed using either

B or B. Projecting AC and AV into the combined-harmonics of either the

main or subset fields (rather than onto the harmonics of the difference

field) yields additional insight for assessing the errors in the gravity

field solutions.

Table 7B shows the results of the projection method when applied

to the three test cases shown in Table 7A. Individual calibration

factors were calculated for each eigenvector and averaged in groups of

50 as before. However, for the sake of brevity, only the rms and

weighted rms of the projected eigenvector calibration factors are

presented in the table.

The results show again that the data in GEM-TI is basically well-

calibrated. When projections are made onto the main field, both the rms

and weighted rms projected calibration factors are found to be approxi-

mately I.
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TABLE 7.B

PROJECTED EIGENVECTOR

CALIBRATION FACTORS <PCFk>

GEM-T1 vs. GEM-T1 Minus/Plus the following data sets

(-) STARLETTE (-) 4 LASERS (+)SURFACE GRAVITY
+ SEASAT ALTIMETRY

PROJECTED ONTO PROJECTED ONTO PROJECTED ONTO

(GEM-T I ) (GEM-T I) (GEM-T I )
SUBSET MAIN 5UB5ET MAIN 5UB5ET MAIN
FIELD FIELD FIELD FIELD FIELD FIELD

RM5 1.30 1.03 1.15 .99 1.22 .87

WTED.
AM5 1.09 .99 1.00 .94 .89 .97
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However, when projections are made onto the subset field, the rms

projected calibration factors depart markedly from I. This result

should not be surprising since the subset field does not contain any of

the data whose errors are being assessed. Thus, the eigenvectors of the

subset field are not likely to align with the errors of the data being

calibrated, resulting in less reliable projections. On the contrary,

projections onto the main field which contain the data being calibrated

are likely to align with the data errors yielding more reliable

calibration results.

A closer look at the projected calibration factors when using the

subset solution for each group of 50 also shows that all of the high

calibration factors are associated with small average eigenvalues. The

weighted rms projected calibration factors which favor more significant

model differences are all reasonably close to I. Therefore, as far as

the significant errors in the data are concerned, the GEM-TI gravity

field is still calibrated correctly even when the errors are projected

onto the subset field. We thereby have another useful method for

further assessing the errors in GEM-TI through this projection method

utilizing subset solutions.

6.3 Calibration by Means of Eigenvector Projections onto GEM-TI

A total of 1363 projected eigenvector calibration factors were

computed for each of the subse_ test solutions. To reiterate, the

PCFi's were then ordered so that the PCF I term came from the best

determined eigenvector found within the GEM-TI solution. Likewise,

PCF1363 was from the poorest determined eigenvector. To more easily

evaluate the behavior of these calibration factors (as was done for the

calibration factors k_ and km) , the CPFi factors have been averaged over

groups of 50 taken from this ordering. The first group contained the

best determined eigenvectors, while the 27th group had the worst.

Table 8 presents the results of these average projected eigenvector •

calibration factors from tests using:
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Case (A) a GEM-TI subset solution that lacks the contribution of

GEOS I, 2, 3 and BE-C laser data: "4 LASERS" and also

Case (B) GEM-TI as the subset of a GEM-TI plus altimeter/surface

gravimetry model.

Shown in Table 8 are the average size of the GEM-TI eigenvalues

and the scaled average error (found through a scaling with Re) of the

eigenvalues in cm within each of the groupings. The group calibration

factors for each of these test solutions are also given in Table 8. In

general, the projected eigenvector calibration factors have stable

behavior over these groupings, and as seen earlier with the coefficient

uncertainties, these eigenvector calibration factors also cluster around

I indicating GEM-TI's covariance is well calibrated.

All of the subset solutions were evaluated using this projected

eigenvector assessment including those which used subsets of GEM-TI and

those where new data was added to the GEM-TI normals. Table 9 compares

the weighted rms calibration factor obtained as in equation (6.16) from

the eigenvector analysis with that obtained earlier using the coeffic-

ient differences and their variances.

The eigenvector analysis was also performed on the GEM-TI plus

deep resonance information solution. Not surprisingly, there were

exactly 60 independent significant eigenvectors in the covariance matrix

of the combined solution minus GEM-TI corresponding to the number of

independent (lumped) observations introduced into the solution. But

only 52 of the 60 eigenvectors were found to be well determined because

8 represented independent resonance effects determined from very similar

orbits. For the 52 significant eigenvectors, a satisfactory calibration

was achieved. The derived eigenvector calibration factor of 1.09 was

based upon these 52 independent points and agrees well with the value of

1.14 presented earlier.
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H

TABLE 0 _ : .i '_

iGEM-TI EIGENVALUE PROJECTED ERRORS
AND CALIBRATION FACTORS ' ,i ....

AVERAGED IN GROUPS OF 50

CASE A: GEM-,TI,vs. GEM-T1 without 4,Lasers data

CASE B- GEM-TI vs. GEM-TI + Surface Gravity+ Seasat'
..... Altimeter ' _.... =_

i i •

r----- GEM- T I--'--'1 Ki Ki
< Ah> . CALIBRATION CALIBRATION

EIGENVALUE AVERAGE SCALED AVERAGE "FACTORS : FACTORS
GROUP EIGENVALU[ ERROR(cm) CA5F A CASE B

I .58E- 20 0.05 1.01 2. I 2
2 .66E' 19 _ O. 16 0.89 ..... _ I. 19
3 ,20E" 18 : 0.29 ' 0.83 1.65
4 .46F- 18 0.43 1.14 1.58
5 .89E- I8 0.60 ....I.09 I.40
6 .15E'17 0.79 _ •0.85 _ _, 1.56
7 .25E-17 1.01 0.93 1.6_
8 .39E-17 1.25 1.00 i _ 1.32

:1.489 59E- I 7 1.55 ! ._16
10 90E- 17 !.91 0.99 1.16
II 13E-16 2.31 1.17 1.25

12 17F-16 2.66 0.84 1.01
13 22E-16 3.01 1.09 0.92
14 27E. 16 3.29 1.14 0.77
15 30E-16 3.47 !:12 0.89
16 32E- 16 3.62 0.96 .... 0.83
17 35E-16 3.79 1.12 : 0.94
I8 39E- 16 3.97 0.98 I.I0
19 43E- 16 4.16 0.78 I .23
20 48F- 16 4.39 0.89 0.93
21 .53E-16 4.63 1.05 0.83
22 .60E:_16 ' 4:92 0.93 _ _ _0-81
23 .69E. 16 5.28 0.96 0.91
24 .82E- 16 5.75 I .03 " _ 0.93
25 .lOE-15 6.47 0_88 _ _ 0 85
26 .I 3E- 15 7.34 0.98 0.83
27 .I BE- 15 8.47 0.79 0.74

• i

61



We have similarly performed these calibrations using the models

which contained a factor of 10 bias introduced in the data weighting.

The eigenvector projections yielded a comparable indication of a poorly

calibrated model (see Table 9).

There clearly is a good agreement between the two sets of results,

indicating that both the variances and covariances of the GEM-TI

solution are well understood. Again, with the exception of LAGEOS'

subset solution, all calibration factors shown are within 10% of the

ideal value of I.

6.4 Summary of Eigenvector Calibrations

The overall calibration for the eigenvector analysis is expected

to agree somewhat with that obtained on the basis of the variances of

the geopotential coefficients themselves. This is because of the

invariance of the trace (sum of the variances) of the variance-

covariance matrix under rotation. This is not surprising because for an

overall calibration factor obtained from the complete set of coefficient

differences it holds that:

T T
AC AC Ay Ay

k -

Tr(AV) _ _..11

and it is thus independent of the technique used to determine it. The

individual calibration factors

IAYil
k. =

1
/ _..

show significant variation among the different data subsets utilized and

have provided a very interesting spectral decomposition of the errors,

While it is important to know which parts of the field calibrate best

and poorest from a statistical point of view, for our purposes it is

even more important that the parts of the field which the TOPEX orbit is

most sensitive to are those calibrated satisfactorily.
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TABLE 9

SUMMARY OF SOLUTION CALIBRATION FACTORS 1

IFROM GEM-TI FIELD ASSESSMENTS

RMS WEIGHTED

PROJECTED

EIGENVECTOR

COEFFICIENT CALIBRATION

CALIBRATION FACTOR ONTO

FACTOR GEM-T 1

• (GEM-TI) vs. (GEM-TI minus DATA SUBSET)

4-LASERS (GEOS 1,2,3, BE-C) 1.06 0.94
STARLETTE LASER I.10 0.99

OSCAR + SEASAT DOPPLER 1.09 1.07

OPTICAL (I 1 SATS) 0.84 0.89
LAGEOS LASER 1.45 1.59

• GEM-TI vs. GEM-TI + SURFACE GRAVITY 0.95 0.92

• GEM-T1 vs. GEM-T1 + SURFACE GRAVITY +

SEASAT ALTIMETRY 0.g4 0.89

• GEM-TI vs. SURFACE GRAVITY + SEASAT

+ ALTIM 0.g9 0.90

• GEM-TI minus LAGEOS vs. LAGEOS +

SURFACE GRAVITY + SEASAT ALTIMETRY 0.g5 0.88

• GEM-T1 vs. GEM-T1 + Lumped Resonance 1.00 1.06
Data

• GEM-T1 with 10 times the Data Weight vs.
GEM-T1 minus 4-LASERS with 2.75 2.45

10 times the Data Weight
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Returning to the original question pertaining to the influence of

collocation on the correlation of the model, our eigenvector analysis

has shown that there has been no significant aliasing of the coefficient

variances in the region of the field most important in orbit determina-

tion. Apparently, collocation controls only weakly determined parameters

and has little or no effect on those which are well sensed by the data.

This insight into the behavior of the field could not be gained without

a detailed calibration of individual coefficients and their corres-

ponding eigenvectors.

64



VII. DIRECT CALIBRATION OF GEM-TI WITH 1071 5°x5 ° MEAN
GRAVITY ANOMALIES FROM ALTIMETRY

The purpose of this phase of our analysis is to perform a

calibration of GEM-TI's errors by comparing gravimetric observations

directly with corresponding values computed from the GEM-TI model and

equating these residuals with the errors produced by the model scaled by

a calibration factor (k). Previously, except for the direct satellite

resonant calibration, all other tests performed herein were based on

subtracting coefficients between two solutions which differed by a given

subset of data. This difference was then equated to a scaled (k)

difference of the error estimates (that is, to be more precise, the

square root of the difference of the error variances). These previous

calibrations therefore indirectly test the fields against their data. A

possible concern with this indirect method of data calibration is that

both geopotential solutions may be affected similarly by unmodeled

effects and hence, these errors go undetected when forming the field

difference. The direct calibration of gravity models with independent

observations as undertaken here will avoid this pitfall.

Mean gravity anomalies (AT) for 5°x5 ° blocks are somewhat

commensurate in field resolution with the 36x36 harmonic model of

GEM-TI. These independent data were used to calibrate the model.

Although con_nensurate, analysis of the truncation effects beyond

degree 36 was considered for the 5°x5 ° mean anomaly Ag and this effect

was found to be important. The 5° mean anomalies from altimetry have

accuracies which are usually better than I milligal which is far better

than the errors from the GEM-TI model. The uncertainty ascribed to the

altimeter gravity anomalies are presented in Figure 12, and are compared

to the GEM-TI model in Figure 13. These figures indicate that the large

GEM-TI errors are due to the effects of the higher degree terms which

are less well known in satellite models. Therefore, the calibration

will primarily test these harmonic terms.
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7.1 Mean Gravity Anomaly Data for 5°x5 ° Blocks from Altimetry

Mean gravity anomalies Ag for 5°x5 ° blocks were obtained from a

set of areal mean I°xi° anomalies, which were derived from SEASAT and

GEOS-3 altimetry by Rapp (1986). A set of 1071 5°x5 ° equal-angle Ag

blocks were formed where each block had a complete set of 25 measured

I°xi° values. The set covered the entire ocean area and this type of

data has been used previously to calibrate the earlier GEM models (Lerch

et al., 1985b).

7.2 Initial Method of Calibration Excluding Truncation Effects

Because of the commensurability of observed 5°x5 ° anomaly blocks

(Ag) with those computed from the 36x36 model of GEM-TI (Agc) the

effects of the truncation of higher degree terms were not included in

the initial field calibrations. Values for the mean anomalies from GEM-

TI were obtained by averaging I°xi° mean anomalies (Agc) to form 5°x5 °

mean anomaly blocks. The Agc (I0xi 0) were computed (Heiskanen and

Moritz, 1967) from harmonics of GEM-TI evaluated at the center point of

the I°xi° block as follows:

36 n a n

e pm (sin ¢)Agc(l°xl°) : y _ _ ( _-" ) (n-l) n
n:2 m:O

(7.1)

[ C nmCOS mX + S nmSin mX ]

where r is evaluated on the reference ellipsoid with y = GM/r2. The

5°x5 ° mean anomaly blocks were formed as:

25

Age (I°xi°) i
i=I

Agc =
25
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The calibration _factor k is related to the mean gravity anomaly

residual, Ag Agc and errors as follows:

E(Ag - Age)2 : k2 aR(Agc) + am(Ag) (7.2)

where a(Ag) and a(Agc) are the errors in the mean anomaly data and the

GEM-TI errors respectively which are derived below. A global scale

factor, k, can be obtained from (7,2) by averaging over the 1071 ocean

points, namely _

M[(Ag - Agc)2] : k2 M[a2(Agc)] + M[c2(Ag)]

where

-M[Ag" - Ag'c)2] _ M[a2(A_.)]il 1/2

and M denotes the mean square value.

The error for each 5°x5 ° mean anomaly a(Ag) was obtained from

the 1°xl * errors given with the data as follows:

o(A-) = X / 5 .
i:I 25

This assumes the errors for I°xi° anomalies are random and

Uncorrelated. These errors are plotted in Figure 13 along with the

GEM_TI errors a(Agc), The altimeter derived gravity anomaly errors are

seen to be quite small (RMS = I mgal)as compared to the ones derived
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from GEM-TI (RMS = 4.5 mgal). For comparison purposes, a second global

scale factor will be computed from (7.3) where the altimeter anomaly

data errors are set to zero which will yield a conservative estimate of

k. This result also shows that these relatively small altimeter block

data errors are not very significant in the determination of k.

The calculation of the commission error a(Agc ) from GEM-TI is

now described. The mean anomaly errors were obtained from the GEM-TI

error covariance matrix (V) with the use of a spectral (Pellinen)

smoothing operator Bn (Rapp and Jekeli, 1980). The operator enables

errors for point values to be averaged over a capsize with area

corresponding to a 5°x5 ° block. The error for Agc due to coefficient

errors in GEM-TI is given as:

36 n a n

6(Age) = y _. _ Bn (_) Pnm(sin ¢) [AC cos mk + AS sin taXI
n=2 m=O nm nm

_=AAC ,

then

E [_2(Agc) ] e a2(Agc ) = AVAT (7.4)

which is evaluated at the center point of the 5°x5 ° block. For a

conservative estimate of the calibration factor, the _n were computed

using an area corresponding to the size of an equal-angle block at the

equator. A more rigorous computation would account for the smaller

5°x5 ° areas remote from the equator.

The importance of the smoothing operator Bn may be seen by

comparing a(Agc) with point values of e(Agc) where Bn = I. The

histogram (Figure 13) for a(Agc) shows an rms value of 4.5 mgals,

which is the square root of the term being scaled by k2 for the global

calibration, namely M[o2(Agc)]. For point values, M[_2(Agc) ]
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equals about 6.0 mgals 2. Hence, the effect of Bn provides for a more

realistic calibration factor by the ratio of (6.0/4.5) or 1.33. This is

still somewhat conservative since the smoothing for Bn is based upon

equatorial areas (which yields both smaller Bn and o(Agc)).

7.3 Calibration Results

From the global calibration given by (7.3), the value of k

computed was

k: 1.1

A histogram (Figure 14) using the global k value was obtained from

individual calibration factors ki for each mean anomaly as follows:

A c{i
k = (7.5)

]. [ o2(A_-) + k 2 o2(A_-c) ]1/2

Using a 3 sigma edit of 3.3 (based upon the global value of k = 1.1)

8 points with large residuals were edited yielding a new global

calibration factor of:

k = 1.04 (7.6)

With use of this k an rms of ki from (7.5) gave

- I/2

• 1

1062
- (7.7)

= 1.03
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The value for k rose to 1.07 when the data _rrors c(Bg) were set to

zero, showing as predicted, that these errors are not very significant

in this calibration; the commission error in GEM-TI is much larger than

these data errors.

The geographical distribution of the ki calibration factors are

shown in Figure 15 with the 8 points selected for editing shown in

black. These edited points overlie areas of oceanic trenches. If the

editing is tightened to 2 sigma, 34 points (Figure 16) are selected for

editing using (2k = 2.2) as a residual cutoff. These blocks are all

located in areas of steep geoidal variation, leading us to conclude that

GEM-TI's truncation error is significant and the effect should be

included in the calibration.

7.4 GEM-TI Calibration with Adjustment for Truncation Effects

As a result of the relatively large values in the tail of the

histogram (Figure 14), it was decided to adjust the gravity anomaly data

for truncation effects, AgT, for terms beyond degree 36 in the harmonic

expansion. These new calibrations used altimeter anomalies, AgA,
defined as:

AgA (I°xi °) : Ag(1°xl °) - AgT(1°x1°) (7.8)

The mean anomalies over 5°x5 ° blocks, corrected for truncation effects,

were computed as:

AgA = Ag - AgT (7.9)

Using the gravitational model of Rapp and Cruz (1986a), which is

complete in spherical harmonics through degree and order 360, a grid of

1o x ½o AgT values were computed for terms beyond degree 36. These

AgT values were areally averaged to produce AgT(1OxlO) anomaly

corrections.
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Using the adjusted 5°x5 ° mean anomalies AgA in place of Ag in

(7.9), the calibration process was repeated. The new global value of k

from (7.3) gave

k = .87 (7.10)

which was based upon all 1071 adjusted anomalies with no editing. The

new ki from (7.5) corresponding to each adjusted mean anomaly (AgA) i

was plotted alongside the previous values in Figure 14. Note the tail

of the new histogram shows significant improvement, with many fewer

instances of large disagreements (which required editing for the

previous calibration). Also, accounting for truncation improved the

overall calibration factor indicating conservative estimates published

for the commission error in GEM-TI.

7.5 Improved Comparisons of Gravity Models with Adjusted Gravity
Anomalies

Based on this new set of 5° anomalies which have now been

corrected for truncation effects (AgT), we have revised some earlier

comparisons using older GEM models, applying these new anomalies

instead. For each field the mean square residuals

(AgA - Agc)2i
i

M(AgA) :
I071

are computed and compared to M(Ag) for the original uncorrected

anomaly data. Results are presented in Table 10 for comparison showing

significant reductions in the mean square residuals.
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7.6 Surface Gravimetry Calibration Conclusions

An oceanwide set of I°xi° altimeter-derived gravity anomalies,

when averaged to form 5°x5° mean gravity anomalies, were found to be

quite productive in calibrating the GEM-TI model. The truncation effect

for 5°x5° mean anomalies was found to be an important contaminant in

estimating the calibration factor for the 36x36 model. Estimations for

the global calibration factor reduced k from 1.11 to 0.84 by applying

estimates of the truncation effect for terms above degree 36 obtained

from a high degree and order gravity model. This truncation effect,

when used to correct the 1071 5°x5° mean gravity anomalies, gave a

significantly improved anomaly data set for testing 36x36 geopotential

models. The commission error in the field is better tested using these

new anomaly values, which is the chief concern in field calibrations.

These adjusted anomalies reduced the mean square residual misclosure

between altimeter anomalies and GEM-TI from 29 to 15 mgals2.

Because of the greater sensitivity of the gravity anomaly to the

higher degree harmonic terms, the calibration results obtained herein

apply more directly to the higher degree (above degree 10) terms of

GEM-TI.
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Table 10. Improved Field Comparisons of 1071 5°x5 ° Mean

Gravity Anomalies Based Upon Mean Square Residuals (MSR) Using

Original Data (Ag) and the Data Adjusted for

Truncation Effect (AgA)

Field MSR(A_) MSR(AgA)

GEM-TI 25 mgal 2 15 mgal 2

COMBINED MODEL 14 5

(GEM-TI + SURF. GRAV. +

ALTIMETER)

GEM-L2 40 29
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Table 10. Improved Field Comparisons of 1071 5°x5 ° Mean

Gravity Anomalies Based Upon Mean Square Residuals (MSR) Using

Original Data (Ag) and the Data Adjusted for

Truncation Effect (AgA)

Fi___eld MSR(Ag) MSR(AgA ) -

GEM-TI 25 mgal 2 15 mgal 2

COMBINED MODEL 14 5
(GEM-TI + SURF. GRAV. +

ALTIMETER)

GEM-L2 40 29
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VIII. ESTIMATED TOPEX ORBITAL ERRORS FROM GEOPOTENTIAL SOURCES

Figure 1.2 has indicated that there is a significant improvement

in the level of coefficient accuracy which has been achieved with the

development of GEM-TI. It is of interest to assess how these

improvements translate into radial uncertainty performance on the TOPEX

nominal orbit. This assessment is now possible since we have demon-

strated in Section VI that the covariance of the GEM-TI solution is

well calibrated and gives a reliable estimate of model uncertainty in

the presence of model correlation.

To make these calculations, the GSFC ERODYN Program (Englar et al,

1978) was used. This program is capable of propagating the full gravity

model covariance error statistically into an rss position error of the

satellite's trajectory as a function of time using the variational

equations involving the partial derivatives of position with respect to

the force model. The covariance matrices for GEM-L2 (Lerch et al.,

1982), GEM-TI and a combination solution containing GEM-TI and surface

gravimetry/altimetry were individually assessed. In this section we

give only the radial error contributions from the gravitational field

alone and consider no other sources of error such as those from the

tracking systems.

Three days worth of Doppler data were simulated from a global

network of 40 stations to provide observations for this analysis. These

'perfect' observations were made without any consideration for tracking

system errors and merely reflect the likely data distribution for TOPEX

from one of the possible tracking scenarios. These observations were

based on our best knowledge of the nominal TOPEX orbital characteristics

and were reduced in our standard mode to yield gravitational normal

equations and the variational matrix of force model derivatives as they

are computed within our orbit determination program, GEODYN (Martin

et al., 1987). The covariance matrix of the geopotential solutions

completed the information required by ERODYN to give a picture of the

TOPEX orbit errors in time over this tested three day interval arising

from geopotential uncertainty.
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TABLE 11

Radial Orbital Errors (RMS)
for Three Day Arc Lengths

Using Calibrated Covariance Matrices

Geopotential Radial
Model RMS Error (cm)

GEM-L2 65

GEM-T1 25

GEM-T1 +
Surface Gravimetry + 17
Altimetry
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Table 11 summarizes these results. Shown in this table is the rms

radial error due only to geopotential effects for the TOPEX orbit over

this three-day arc length. The results displayed as a function of time,

are presented in Figure 17. They indicate that GEM-TI has made

considerable progress in reducing the likely gravitational modeling

problems for TOPEX. And with the further addition of altimeter/surface

gravity data types, these errors should be substantially reduced still

further. While they are preliminary, these findings are grounds for

cautious optimism.

Figure 18 shows a breakdown of the GEM-TI radial errors on TOPEX

for terms of the same degree and those of the same order. The strongest

signal is seen from an evaluation of the geopotential error contribu-

tions by order, where two very significant peaks are found. These high

error sources are due to the m=1 and m=13 terms. The m=13 harmonics are

those which have primary resonance with TOPEX and even a small amount of

TOPEX data will be capable of resolving them to a high level of accuracy

for they act at a limited and very narrow frequency band. Likewise, the

m=1 effects are largely due to the so-called "m-daily" perturbations

which give rise to perturbations with a period of nearly one cycle per

day for m=1 terms. Again, limited amounts of TOPEX data can

effectively resolve these "lumped" harmonic effects. Therefore, while

the overall performance of the fields seems to be improving, this

preliminary assessment of the most "TOPEX-orbit" sensitive part of the

error spectrum indicates that limited amounts of TOPEX tracking data (a

few month's worth) should yield a satisfactory orbit (radial

errors ~10 cm) even with current models shortly after TOPEX flies.
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IX. SUMMARY

This report documents the derivation of calibration techniques

using independent and dependent data sets incorporating both variance

and eigenvector analyses. It details their application in assessing the

accuracy and calibration of the error covariances of the GEM-TI

gravitational model. Taking full advantage of the "super-computing"

environment available at NASA/Goddard Space Flight Center, many

solutions have been compared providing a completeness of field testing

heretofore impossible within earlier computing environments. The

results show a model remarkably consistent in stability for the

calibration of its errors. With the exception of a few known and

understood high-order resonance terms (and the limitations of the high

altitude Lageos satellite providing data suitable for the calibration of

a full 36x36 field), the calibrations show a stability in error

assessment at the 10% level for each of the major data subsets employed

in this evaluation. The published coefficient uncertainties for GEM-TI

and its error covariance matrix are herein found to be reasonably well

calibrated and reliable. For example, the average calibration factor

(k) for GEM-TI using nine major sets of data in Table 9 (excluding the

anomalous result for LAGEOS data) gave k=0.99 (± .08) for the

coefficient calibration and k=0.95 (± .09) for the eigenvector

calibration. This is a gratifying result, particularly, since formal

least squares error formulae based on random variables were employed

with compensating downweighting factors to account for more general

formulae involving error sources with unknown systematic effects.

Appendix A analyzes the mathematical validity of the error estimation

techique for the gravity model, develops an optimal weighting technique

with internal self-calibration of the error model, and shows that GEM-TI

approximates this process.

PRECEDI_G PAG£ BLA_K NOT FILMED

85



ACKNOWLEDGEMENTS

The authors would like to thank C.K. Shum, John Ries and Byron

Tapley of the Center of Space Research, University of Texas, for their

thoughtful reading and constructive comments in the preparation of this

report. George Rosborough of the University of Colorado likewise made

valuable comments. The authors would like to also thank Dick Rapp and

Nick Pavlis of Ohio State University for their assistance in processing

and helping us successfully utilize the surface gravimetry.

86



APPENDIX A

F.J. Lerch and E.C. Pavlis

WEIGHTING, ERROR COVARIANCE, AND

OPTIMIZED CALIBRATION FOR BIASED DATA IN GEM-TI

The least-squares or modified least-squares linearized adjustment

methods are commonly used to estimate a set of parameters (the solution)

from a linear combination of observation residuals. The residuals

(difference between the observations and the computed observables from

a model) consist of, in addition to the errors arising from the modeled

parameters, a systematic effect due to unadjusted parameters and a

random noise component. While the exact cause of these systematic

effects (biases) is unknown, we will show that they can be accommodated

for in the solution statistics through the proper weighting of the

data. It is shown that the ensemble of biases in the GEM-TI observation

residuals also have some form of randomness so that the linear

combination of the data errors tend to average towards zero; this is

necessary for the signal to be recovered well in the solution. The

analysis in this appendix is an attempt to (I) characterize the bias

errors, (2) weight their effects along with the noise errors,

(3) develop an approximate form of the error covariance, and (4) provide

an optimized technique for weighting the various data subsets. The

calibration of the error estimates for our solutions hinges on deriving

the optimal data weights; we use a combination of solutions which use

data subsets in these assessments.

The estimation technique for the GEM-TI solution is a weighted

least squares process with a priori constraints on the size of the

adjusting coefficients. The inverse of the weighted least -squares

normal equations (N) is used as the error covariance of the estimated

parameters. This process is common in least-squares solutions in a

formal sense, and it is formally correct when the mathematical model is

complete and thus the computed residuals are unbiased. Since the GEM-TI
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observation residuals display a biased behavior due to unmodeled

effects, a special weighting of the normal equations is employed to make

the simplified error estimation (N-I) applicable as an approximation for

the error estimate of the solution. An optimization of this weighting

process is developed herein which automatically provides for a well

calibrated error estimate of the gravity parameters. The appendix is

presented in three parts:

AI. Weighting for Biased Data

A2. Error Covariance for Biased Data Reduced to Simplified Form

(N-I), and

A3. Optimization of Weighting With Error Calibration

There is also a Summary section to the appendices.

AI. WEIGHTING FOR BIASED DATA

AI.1 Experimental Analvsis

The characteristics of the weighting system are based upon the

actual performance of the observation residuals. The tracking data is

post-processed, in this case using GEM-TI, over orbital arc lengths used

in the GEM-TI solution, and the data residuals are analyzed to determine

the systematic characteristics seen in the passes of tracking data. Let

the residuals r be denoted as

r = rs + n (AI-I)

where rs is the systematic part of the residual and n is the random

noise. Typically the systematic effects appear as a straight line (when

the residual is plotted against the observation derivative in time). For

example, for laser ranges (R) over a pass of NOBS points
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rs = ro + R • (AI-2)

where ro is an offset constant, _ is a timing constant, and R is the

range rate. Let the average data residual per pass represent a bias

_r
_r s _n

b = NOBS - NOBS + NOBS (AI-3)

where the symbol (z) indicates sun_ation over the components in the

vectors (r, rs, and n).

Since the random noise will largely average out over the typical number

° of points seen in a pass, the significant effect is given by

Zr
S

E(b) = NOB----S_ O. (AI-4)

Note that for syn_netric coverage about R = O, (point of closest

approach):

E(b) = r .
0

In the analysis presented here using a sample of passes (Brown,

1988) fit with GEM-TI, it was found that the biases (as in (AI-3)) are

the dominant part of the systematic effects seen in rs (from (AI-2))

which may be associated with a bias in the measurements. For example,

on 450 passes of laser tracking acquired on GEOS-I during 1977 and 1978

(mostly SAO/NASA tracking), the rms of the residuals, o(r), and the

biases o(b) for all the passes were

o(r) e ot = 70 cm

o(rs) : 60 cm
o(b) = 50 cm

NOBS = 60 average pts. per pass (after data sampling)
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where at refers to the residuals for a specific satellite data type t

(i.e., GEOS-I laser ranges).

The histogram of the biases for the 450 passes appear as a normal

distribution with an average bias

b: 0.2 cm.

Inspection of the biases (per pass) in time plots on a daily basis show

fluctuations that appear random. At this point it is unimportant to

characterize whether these biases are in the data themselves or whether

they are a result of unmodeled (or poorly modeled) force modeling

effects. What is important is that these errors yield data residuals

which are quite systematic over a pass and are describable using the

model given in (AI-2).

During the 1980 period the laser data on GEOS-I was not used in

GEM-TI, but a similar analysis of these data gave an improved set of

residuals: at = 35 and a(b) = 25. This result is typical for the laser

systems, especially for the SAO systems which were improved over this

time interval. Similar analysis on a pass-by-pass basis is being

developed for other satellites. Preliminary results on Starlette and

Lageos indicate that much smaller and less biased residuals are

obtained. Because of the significant improvement in the residuals and

biases on GEOS-I laser data between 1977 vs. 1980 with the same gravity

model, it would appear that a significant source of the biases for the

earlier time frame is the measurements themselves (or related pre-

processing).
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AI.2 Effects of Biased Data on Least Squares Estimation

To examine the effect of biased data (unmodeled effects) on the

solution, a single pass of tracking data with residuals r contributes to

the overall weighted least-squares solution (as in GEM-TI), as

Q = f rT Wr N points for the pass (AI-5)

where

W = [I/a_] diagonal weight matrix

at = rms of residuals for satellite data type t

f = scale factor to be estimated to account for effects of

biased data in the solution

Let the bias* be constant per pass and random from pass to pass with

variance for a given data type as

E(b 2) : a2(b)

Denote the residual r as

r :Ax+b+n

= rs + n (AI-6)

where

x = gravity and other unknowns

*The bias b and other constants are used interchangeably as a constant
and a vector constant.

9]



n : random noise

b = bias

rs = systematic effect as in (AI-2).

For simplicity, consider the systematic part of r from (AI-6) as

rs : Ax + b

Ax = g + Ag (AI-7)

where

zA.x
- i

g : NOBS average offset (i = I to NOBS) (AI-8)

B

and let g be estimated from the biased data. Minimizing Q wrt g will

give the normal equations as

f GTwG _ = f GTwr (AI-9)

M = f GTwG normal matrix (AI-I0)

where GT = (1,1,1...I) NOBS ones for the pass. From (AI-6 through AI-9)

^

- Zr ZAx z(n+b)
g = NOBS = NOB----S+ NOB--_

- Zn

= g + b + NOB----S

with error and variance respectively as

^

-- -- Zn

g - g : b + NOB----S
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a2(n) (A1-11)
°2(g) = a2(b) + NOBS

From (AI-I0) the least-squares error estimate of the variance is

2

a2(g) : M-I at- f NOBS (AI-12)

Equating (AI-11) and (AI-12) gives the scale factor

2

at
f = (AI-13)

a2(n) + NOBS a2(b)

I at 2

since the effect of the noise is small compared to NOBSxa2(b).

Noting that a2(b) varies with the data type

at(b ) _ a(b)

and since it is a significant part of the rms of the residuals,
w

at(r) , then

a t at(r)

a(b) e at(b) = 1 (A1-15)
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Hence (AI-14) becomes, using (AI-15)

f _ 1 (AI-16)
NOBS

which is a factor used to downweight the data to account for the

unmodeled bias in the pass.

For GEM-TI, f=.02 was found to be optimal; this corresponds to N=50 on

average which agrees well with the overall distribution of GEM-TI's

data. This is especially true for the sampling used for the SAO laser

data where a typical pass contained 50 to 60 observations (Brown, 1988).

AI.3 Optimal Estimation By Adjustment of Bias Per Pass of Data

Herein, we will analyze the effect of the bias adjustment on the

weighting and error estimation from a pass of data as defined in Section

AI.2. From (AI-6) the residuals r are unadjusted for bias. Designate

the adjusted residuals for bias as

^ ^ ^

r = r- b = n + Ax+ b- b

where as before

r : n + b +Ax

An a priori constraint oA e e(b) is applied to the bias in the

adjustment. Using the symbols and definitions of Section AI.2 we first

minimize Qb (similar to equation (AI-5)) wrt b, solve for an a priori

value of b, and transform Qb by back substitution for b as follows:

Qb = r Wr+
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^

I = _GT ^ b
2Qb Wr+_=O

aA

^ _r
b:+

NOBS+q

q = (at/aA)2

rTw r (N+q-1) Z r2 (_ r)2+ - (AI-17)
Qb - NOBS+q 2

at (NOBS+q)

Note that if the residuals are dominated by the bias b, then

at(r) = aA or q=1. In this case, with q=1 and

r = constant bias over the pass, then

T

r W r (AI-18)
Qb - NOBS+I

This result is very similar to the weighting in (AI-5) where by (AI-15)

and (AI-16)

Q = Qb
with

I
f_

" NOBS

For GEM-TI, f=.02 corresponding to NOBS=50 on average. Hence the

weighting in GEM-TI is near optimum for the case where the laser

residuals are dominated by a bias and all passes would ideally have 50

points.

If, in addition to a bias, we consider a timing error _ (as in

(AI-2)) in the residuals with balanced sampling about R=O (i.e., a pass
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which is symmetric about the point of closest approach of the satellite

to the station) where

r=r =b+RT
s

then (with q:1) in (AI-17)

T
r W r z(_ _)2

Qb - NOBS+I + 2 (AI-19)

°t

This case shows that the downweighting factor f only principally

influences the bias. The approach would still be optimum if the timing

errors were largely attributed to the gravity field signal.

Therefore, this method is ideal when biases dominate the

measurement residuals. It has great benefit in the proper relative

weighting of the data, particularly when there is significant

variability in the number of points per pass and in the magnitude of the

biases ot(b). The bias variability can be systematic chronologically as

will happen as the laser systems are improved. Of most benefit, this
^

approach reveals the reduction of the adjusted residuals ot(r) when

biases are removed as compared to the ct(r) when biases are not

removed. Based upon this approach for error estimation, a reduction of
^

the ratio of at(r)/at(r) should occur in the errors (which is a

significant reduction for laser tracking when normal points are

employed) since ot(r) would be small.

It should be noted that AI.2 accounts for the effect of bias on

the solution when it is not modeled whereas AI.3 considers its effect

when it is modeled, which is the recommended approach. Since our

solution (GEM-TI) does not adjust for biases (per pass), this situation

is analyzed in the subsequent sections.
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A2. ERROR COVARIANCE FOR BIASED DATA REDUCED TO SIMPLIFIED FORM (N-I)

A2.1 FORMAL LEAST-SQUARES ERROR ESTIMATE

The weighted least-squares solution of the normal equations with

random observation errors (n) and complete modeling of parameters in the

solution (_) gives a simplified form of the error covariance matrix

V(x). A more general form is given when the observation or modeling

errors (e) have systematic effects (es) in addition to the pure random

errors attributable to (n).

The following development is given for the error estimation,

namely :

^
^ ^

r e 0 - C observed minus computed quantities from solution

e e 0 - C C computed from true values

= n + e n - random noise
s

es - systematic error

^

x = X - X error in solution (A2-I)m

^

C = C + A x A is matrix of partials for Taylor's

expansion (linear) about the true _.

From the above

^

r =O-C-Ax

= e - A x (A2-1a)

The least-squares weighted normal equations with weight matrix W (to be

defined) become from (A2-I, la).
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^

AT Wr = AT We - AT W A x = 0 (A2-2)

with error

x : (AT W A)-I AT We (A2-3)

Note that if e is biased, then x is expected to be biased, as is the

case within our solution. The error matrix for the solution is

V(x) e E(x xT) : E[x-E(x)][x-E(x)] T + E(x) E(x)T

= (ATwA) -I ATw E(eeT) WA(ATwA) -I (A2-4)

We will refer to V(x) as the error covariance. For the most generalized

case where e has systematic effects let

W-I = E(eeT) which is non-diagonal,

then

V(x) : (ATwA) -I : N-I (A2-5)

This case is not generally useful since W is non-diagonal and generally

unknown given our lack of knowledge of all the unmodeled errors. For

the most simplified case let

e:n

then

W-I = la_] which is a diagonal matrix

and

V(x) = [ATwA]-I = N-I (A2-6)
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which is the formal least squares error covariance estimate.

Our solution for the error x is a mixture of (A2-5) and (A2-6).

We cannot apply W-I of (A2-5) to the solution (A2-3) since the weight

matrix is non-diagonal and unknown. Further we cannot apply (A2-6)

since the error covariance is assumed to be diagonal and our errors by

definition include biases which are strongly correlated within a pass of

tracking data. Hence our errors follow (A2-4) where ideally we model

W = f [I/o_(e)] which, again, is a diagonal matrix. (A2-7)

Here f is a downweighting factor accounting for the correlated

systematic error effects in modeling the data an_ o_(e) is estimated

from the rms of the residuals of a given data type for a given satellite

based upon its post-solution performance. It remains for us to show

that (A2-4) with (A2-7) can be approximated by (A2-6) under empirical

conditions, albeit, which are reasonably simplified.

A2.2 EMPIRICAL MODELING OF SYSTEMATIC EFFECTS

For our case consider systematic effects (es) on a pass-by-pass

basis for a given satellite's data. We typically find these systematic

signatures to exhibit a straight-line character as follows (see Section

AI.1):

e = n + es (A2-8)

es = b + Aesi T (A2-9)

Aes = es(t) - es(tm)

where

es - straight-line fit
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b - constant offset centered at the midpoint (tm) of

the straight line

- constant timing error

es - time rate of eS

n - random uncorrelated noise

For each data type the biases over all passes can be characterized as

(see Section AI.1)

E(b 2) : o2(b) (A2-I0)

and our experience has shown that it is reasonable to assume these

systematic trends are uncorrelated among passes (certainly, for

weighting purposes), then

E(b i bj) = O, i $ j . (A2-11)

We will further assume that within a pass the bias b is orthogonal

to the timing error term

bz Ae x = 0 (A2-12)s

which is reasonable (in our case) since the orbits are nearly circular

and the coverage is usually somewhat symmetric about the midpoint tm of

the straight line.
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A2.3 ERROR COVARIANCE AND SIMPLIFIED MODELING

Let the contributions to the least-squares normal matrices be

defined as follows:

(a) for each tracking pass p of observations of a given data type, t,

with the number of observations equal to NOBSp

= (ATWA)p,t (A2-13)Np,t

Rp, t = (ATWe)p,t

where from (A2-7) with f=fp,t

which is a diagonal

W = Wp, t = Ifp,t / o_(e)]_ matrix of dimension
NOBSp

(b) for each data type t

Nt = z Np, t (A2-14)

Rt = _ Rpt

(c) for all data types

N=EN t

R = z Rt (A2-15)

The normal equations with solution x are

Nx=R

(A2-16)

x=N-IR
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and the error covariance is (a priori constraints to be added later)

V(x) : E(x xT)

: N-I E(R RT) N-I (A2-17)

We will show that

E(R RT) N-I _ I (A2-18)

and hence (A2-17) is simplified to

V(x) : N-I (A2-18a)

From (A2-11), (A2-12), (A2-8,-9), and the condition of

uncorrelated random noise (n) we have

RT I : 0 pSq or tSt' (A2-19)
E[Rp,t q,t'

RT ] p=q and t=t'
= E[Rp,t p,t

hence, using (A2-13) through (A2-16)

T] (A2-20)E [R RT] : E [(Z Rt) (7.Rt)T ] : E [_ Rt Rt
t

T ],
: E [I [ (Rp,t Rp,t)

tp

T

E [Re RT] : E [I (Rp,t Rp,t)]
P

: E[_. (ATWe)p (ATWe)_]t , (A2-21)
P

and

RT t) : (AT W e eT W Ap) (A2-22)(Rp,t p, p p p p p t
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For each pass of data, from (A2-I, -8, -9)

= e = n + e (A2-23)
(O-C)p P P s,p

(0- :r :e -A x
P P P P

for NOBSp data points.

Since gravity and other parameters modeled in the solution (ApX) produce

misclosure errors in the residuals r within a pass of data which (like
p

es) largely fit to a straight line (see equations AI-I,-7,-8), we will

, average the signature Ap over the pass (AI-8) for each component k of

the solution. Thus for each data type let

Ap=[A_I

i
_k _

p NOBS
P

Ap:[Ak]_ [_G]__ (A2-24)P P

where

GT = (I, I, I ... I) NOBSp ones

• k = I to K solution parameters.

Note that in (A2-12), with b replaced by Ap, the orthogonality holds.

Using (A2-24) and (A2-8,-9,-11,-12,-21) in (A2-22) with Ap _ A-p,
then
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RT,t)=E[ATWpepe_ Ap]E IRp,t p p Wp2 t

= [ATP Wp Aplt (A2-25)

where

2
at (e)

f : (A2-26)
2

p,t c_(n) + NOBSp, t at(b)

Notice that (A2-26) may be approximated by

I (A2-27)f -

p,t NOBSp, t

if we assume (as found in Section AI.1) that the variance of the

o_(b), o_(e) for a typical pass. (In thebias, dominates the errors

presence of biases of weighting this type tends to equalize the data by

passes instead of by number of observations.)

Using the result (A2-25) in (A2-20) and (A2-21), then with

A =A
P P

E [R RT] = _, _, {A_ Wp A)t (A2-28) ,
tp

This simply gives from (A2-13, -14, -15)

E IRRT]: N (A2-29)

yielding the desired result (A2-18) and hence

V(x) = N-I. (A2-30)
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This represents the simplified form of the weighted least-squares

inverse.

For practical application, the weighting Wp, t in (A2-26) can be

optimally achieved by solving for a bias per pass as indicated in

Section AI.3 (see equation AI-19). The next level of simplification is

shown in Section A3 of the Appendix. Here an average factor of fp,t in

(A2-26) is employed which may be represented by

2 e)at(

' ft = fp,t = a2(n)t+ NOBSt _2(b)t (A2-31)

where a mean number of points per pass (NOBSt) for each data type t is

employed. In Section A3 the weighting factor ft in actual practice is

resolved for each data type t from analysis of subset solutions

associated with each data type requiring the condition (A2-30).

A2.4 MODELING THE A PRIORI KAULA CONSTRAINT

Before showing further simplification of the weighting used in

GEM-TI, it is desirable to introduce the Kaula constraint equations

which we may regard as data type t=O. The equations for the errors in

the solution are obtained directly from the constraints on the

coefficients (C) as follows:

firstly, denote the coefficients of degree _ as

C_ [ C_m ] m = 0 to _ (S_o=O) , (A2-32)
= S_m

the entire set by
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the solution errors AC (a subset of x) by

^

AC:C-C,

then the error eo and residual r° (data type t=o) are

eo : O(zero) - C (A2-33)

r = O(zero) - C = e + AC
o o

The contributions to the normal equations for t=o become

N AC=R
o o

(A2-34)

No = Wo = [fo/a_ (eo)]

R0 = Woe 0

2 I
a_ (eo) = _ (I0-5/_2) 2 (Kaula's rule).

The weighting factor fo _ I can be contrasted to the actual tracking

data types, where ft _ .02 was found to be appropriate. From equation

(A2-27) each coefficient behaves like a bias with one observation point

as in (A2-33).

We statistically treat the coefficients C in the error equation

eo, (A2-33), similar to the biases for the tracking data, namely

E (Ci Cj) : 0 i _ j

E (C_): a2_(Ci) (A2-35)
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Ci = C_m or S_m

With this treatment the normal equations (A2-34) with the error eo (A2-

33) may be combined as data type t=o in (A2-15, -16, -17) resulting in

(A2-18a).

A2.5 RANDOMNESS TESTS FOR THE ENSEMBLE OF BIAS PARAMETERS AND
COEFFICIENTS

The degree of randomness of the biases and the coefficients (as

with random noise) is important for the error solution x in (A2-16),

. which is a linear combination of all these error effects. The effect of

randomness, with proper weighting, permits (x) to average toward zero.

A measure of the randomness of the biases and the coefficients is given.

A measure of the randomness of the ensemble of the biases for a

given data type t is

Z - _ 2 (A2~36)

o(bt )

where

_ b.

bt - NBt _

ct(b)
a(bt): I/2 '

, (NBt)

with NBt being the number of passes.

Similarly, for the randomness of the coefficients

(C_m + S_m)
m

C_ : 2_ + I (A2-37)
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(Modified Kaula's Rule) = a(c_) = I0-5//2/_ 2

a(C_) = (I0-5//2/_2)/(2_+I)I/2

Z(_) -

o(C_)

Some results are available.

From Section AI.1, the biases for the GEOS-I (1977-78) laser data

employed in GEM-TI gave (for 450 passes) the following values:

bt = .2 cm

at(b) = 50 cm

a(bt) = 2 cm

Z =0.I

A time ordered plot of the biases is given in Figure A2-I and a

randomness test per tracking site for these biases is given in Table

A2-I showing strong indication of stochastic behaviour from pass to

pass.

Using a solution (PGS-3325) which is a combination of GEM-TI

normals, surface gravity, and altimeter data, the statistics in (A2-37)

for the randomness of the coefficients are listed in Table A2-2. Since

the constraint dominates the higher-degree terms in GEM-TI, it is

important that the Z(_) improve with degree _, which is supported by the

tabulated results. The random behaviour of the coefficients causes a

minimal error in the solution when the "apparent" biases (C) in (A2-33)
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(187 passes - 8 months, 1977)
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TABLE A2- I

BIAS RANDOMNESS TEST PER LASER SITE

(Z _<2.5)

LASER CENTIMETERS

STATION PASSES a(b) b a(b) Z

AREQUI91 68 54 9 6.5 1.4

HOPLAS91 43 40 11 6.1 1.8

ORRORL91 46 41 -15 6.0 -2.5

RAMLASI 4 57 3 28.5 .I

STALASI 6 17 -2 7.0 -.3

NATAL91 15 98 -15 25.3 -.6

GORFIOOI 4 42 -34 21.0 -1.6

GORF0652 I 177 177 __

AVG (187) 54 I 3.9 .3
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TABLE A2-2

Randomness Test for Potential Coefficients*
of Degree _ (Z < 2.5)
(Coeff. units of 10-9)

Degree No. of RMS Kaula C_ O(_ Z
_ CO¢ff, (Cocff,) x 0,7
3 7 1122.7 785.7 807.90 296.96 2.72
4 9 529.2 441.9 161.19 147.31 1.09
5 11 351.4 282.8 -105.43 82.28 -1.24
6 13 251.3 196.4 -158.04 54.48 -2.90
7 15 193.2 144.3 23.43 37.26 0.63
8 17 118.9 110.5 25.65 26.80 0.96
9 19 97.7 87.3 10.50 20.03 0.52
10 21 77.7 70.7 -26.82 15.43 -1.74
11 23 53.5 58.4 -19.00 12.19 - 1.56
12 25 31.2 49.1 6.17 9.82 0.63
13 27 45.7 41.8 8.49 8.05 1.05
14 29 26.0 36.1 0.89 6.70 0.13
15 31 25.3 31.4 2.38 5.64 0.42
16 33 23.3 27.6 -3.87 4.81 -0.81
17 35 20.0 24.5 -0.06 4.14 -0.01
18 37 18.6 21.8 -0.84 3.59 -0.23
19 39 15.2 19.6 0.35 3.14 0.11
20 41 13.7 17.7 1.06 2.76 0.39
21 43 15.1 16.0 2.03 2.45 0.83
22 45 14.0 14.6 1.39 2.18 0.64
23 47 11.7 13.4 -0.79 1.95 -0.41
24 49 10.1 12.3 -0.15 1.75 -0.09
25 51 11.5 11.3 -0.12 1.58 -0.08
26 53 8.8 10.5 1.23 1.44 0.86
27 55 7.8 9.7 0.59 1.31 0.45
28 57 8.8 9.0 0.47 1.19 0.40
29 59 7.6 8.4 -1.59 1.09 - 1.45
30 61 8.2 7.9 -0.66 1.01 -0.65
31 63 8.0 7.4 -0.10 0.93 -0.11
32 65 6.9 6.9 0.06 0.86 0.07
33 67 6.9 6.5 -0.51 0.79 -0.64
34 69 7.2 6.1 -0.51 0.74 -0.70
35 71 6.7 5.8 -0.72 0.69 -1.05
36 73 5,7 5,5 -0,18 0,64 -0,28

PGS-3326:50 x 50 model GEM-T1 without Kaula constraint with surface gravimetry and
SEASAT altimetry.
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are properly weighted. Hence, any downweighting of fo from unity in

(A2-34) or misuse of e_(eo) by ignoring the scale factor of I/2 will

allow the errors in the coefficients to increase and falsely represent

their power. Note that when the Kaula constraint is present, the power

in the coefficients should become zero for high degree _ at the point

when the satellite tracking data just begins to have negligible effect

on the solution.

A2.6 APPLICATION TO GEM-TI

In the GEM-TI solution, a more simplified case of the weighting of

Wp, t and fp,t in (A2-26) was employed. The more general weighting in

(A2-26) is based upon NOBSp, t (points per pass) while the simplified

weighting is based upon an average NOBS over all passes and data types

in the solution, namely

Wt = f/e_(e) (A2-38)

f : I/NOBS (A2-39)

= 1/50 (for GEM-TI)

In GEM-TI, e_(e) was approximated basically by the rms of the

observation residuals from iterative test solutions. It was allowed to

vary from the rms by use of tests with other data, in order to account

for the variability in NOBS for different data types (NOBSt) and other

variable effects in (A2-26). Furthermore, in the special case of the

optical data where considerably fewer points per pass were taken than
2

the laser data, an effective f : 1/10 was employed by applying at(e) to

I/5 of its corresponding rms residual value so these optical data retain

some influence on the solution.

Since the weighting represents an average for the different

satellite data types and since the simplified form of V(x) in (A2-28a)

is an approximation, an optimal technique for iterating on a weighting

factor per data type
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wt = ft/c_(e) (A2-40)

and a scale factor (k) for the error covariance V(x) has been developed

and is presented in the next section. GEM-TI followed this procedure in

somewhat of a piecewise fashion and hence the model may be further

refined with use of this more rigorous optimal weighting approach.

The data type t should be considered broadly in general

applications of this approach. There is variability in the precision

and accuracy among the different laser tracking sites, hence the data

type in (A2-40) should reflect this situation. The general improvement

seen in modern tracking performance as time progresses is another

consideration. Although the former condition has not been generally

applied to develop station specific weights in (A2-40) in GEM-TI, the

latter condition is considered in the individual weighting factors

applied to the normal equations for orbital arcs of tracking data which

sequentially span periods of time. In GEM-T2, which will employ some 30

different satellites, we utilize variable weighting factors for

satellite tracking data of a similar type. In particular, the laser

data from GEOS-I and GEOS-3 spanning 1975 through 1978 is given smaller

weight than the newer data in 1980 (see Section AI.3).

A2.7 SUMMARY

If a more generalized description of the different data types is

utilized for the application of the weighting in (A2-26), the better the

approximation of the simplified inverse N-I in (A2-30) will become. In

summary, N-I is the inverse of the least-squares weighted normal

equations and represents, as an approximation, the complete error

covariance expression of the solution parameters in (A2-17), namely

V(x) : N-I [ (AT W e eT W Ap) t N-I
t,p P P P P P
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= N-I (A2-41)

V(x) = [_ !t p (ATWp P Ap)t_[-I

The result is considered an approximation because it is based upon an

average signature A = A over each pass p of tracking data for the
P P

gravity parameters and other modeled parameters. Furthermore, the

errors (ep), in addition to random noise, were assumed to have .

systematic effects which were empirically modeled as a bias and a timing

error for each pass of tracking data. The result has also considered

the effect of the Kaula constraints by modeling it as data type t=O as

given in Section A2.4.
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A3. OPTIMIZATION OF WEIGHTING AND AUTOMATIC CALIBRATION

There are two major concerns in the proper weighting of least-

squares normal equations:

(a) weighting of individual observations corresponding to the

expected accuracy of the observation residuals (at) for a

given data type t (at is computed from the iterated, rms of

the observation residuals), and

(b) the effects of unmodeled biases and forces on the solution by

applying a downweighting factor (wt) for the normal equations

(see Table I for GEM-TI weights).

The normal least-squares approach, given _t' accounts for (a) but not

for the effect of (b) without some special analysis and downweighting

process. In our approach we obtain _t on a few test arcs for each data

type based upon trial (iterative) solutions of the weighted normal

equations (wt). It is the purpose of this section to derive the weights

wt. We will show that these weights can be obtained in a process that

automatically calibrates the error estimates of the gravity model.

The optimized process of determining the weights (wt) for each

data type in the solution (with an automatic calibration of the error

model) is a refinement in the determination of the GEM-TI solution. As

before, this process is based upon forming subset solutions and

J comparing these solutions with the complete solution. The subset

solution is formed by deleting a given satellite data type from the

complete solution. The weighting and calibration is then established by

requiring that the difference between the solutions and the error

estimates be compatible. It will be shown that in the process of

converging the weights (wt), one automatically obtains a calibration of

the error estimates. Hence this process, when applied to GEM-TI data

sets, can then be tested by calibrating the new (refined) GEM-TI

solution with independent surface gravity data by the method given in

Section VII of this report.
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Solutions are formed after summing the weighted least-squares

normal equations. For simplicity let each subset of normal equations

(Nt) correspond to the reduced normals, where only the gravity

parameters x remain, and assume all other parameters have been accounted

for through the back substitution process. Denote the subset normals

for a given data type by

^

wt Nt x = wt Rt t = 0 to T representing all of the data
in the solution,

_y

where t=O corresponds to the Kaula constraint equations
2

with Wo=I/a £ (see Section A2.4).

It is convenient to write

2

wt = ft / at

where at is given by (a) above and ft accounts for the downweighting

effect in (b). Note for the case where biases are the dominating errors

in the data, equations (AI-15) and (AI-16) show that ft is expected to

correspond somewhat to the reciprocal of the average number of points in

a pass for the given data type. For the case of GEM-TI (Section A2) the

overall value of f=.02 would correspond to an average of 50 points per

pass for all data types.

Denoting x as the solution (S) for all data subsets and xt as the

subset solution (St) of all data except data type t, the difference in

the solutions corresponds to the difference in the errors between the

solutions, namely

x-x t = [X-X(true)] - [Xt-X(true)] = X-Xt

Hence, for the analysis we will assume as in (A2-I)
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x = X - X (true)

xt = Xt - X (true)

The following quantities are defined from the weighted normal equations

associated with the solutions S and St:

^ subset normals for
wt Nt x = wt Rt

data type t

Nt = A_At

(A3-I)

Rt : A_et

: _. w.N. data type t removed (A3-2)
j_t J J

7w.R.
j_t J J

xt = R subset solution St (A3-3)

(N +wtN t) x : R + wt Rt complete solution S (A3-4)

V(xt ) £ _-I error variance of xt

V(x ) £ (N + wt Nt)-1 error variance of x

x = V(x) (R + wt Rt)

xt : V(xt)

V(xt-x) : EIxt-x) (xt-x)T 1 error variance x-x t

= V(x t) - V(x) (A3-5)
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V(x_xt ) : _-I _ (_ + wt Nt)-1

_-wt _-I Nt _-I t_O (A3-6)

Letting Tr denote the trace of a matrix

Qt = (xt-x)T(xt-x) : Tr[(xt-x)(xt-x)T] (A3-7)

then a scale factor, kt, is defined as

Qt = ktE(Qt) = kt Tr E[(xt-x)(xt-x)T ]. (A3-8)

Since kt scales the variances of the errors, V(x-xt) , it will be

inversely proportional for scaling the weights. Hence, an adjusted

weight w_ is

w_ = kt I wt .

This result can be shown more directly from use of (A2-25, -26, -31)

where

wtR t = _ Rp,t
P

T wt et= At

Wt = wtl

then, with use of an updated weight w_ ,

Is

E(RtRTt) = E[ATeteTA] = _t Nt , (A3-9)

for which, as in (A3-I)
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T AtNt = At

In order to establish the result we need (x-xt) to the same

approximation as (A3-6), namely

m-- I

x-x t - wt N Rt

which gives from (A3-5), (A3-6), and (A3-9)

(x-xt)(x-xt)T ~ Wtw_wt --IN Nt _-I

_w_%_t
v(x-xt) (A3-I0)

and then from (A3-8)

wt (A3-11)
kt = w" t

In the above development all the formulae are based upon the a priori

weighting (wt) with the exception of (A3-9) where the updated weight

(w_) is based upon the observation errors et including unnmodelled

effects. Thus, the adjustment of the weights is obtained from x-x t

which is a linear combination of these errors et.

In summary, the adjusted weight for each data type t can be
i ,

computed from

= _w twt" k- (A3-12)

where from (A3-8)
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Qt (A3-13)

kt - Tr V(xt-x)

This process should be iterated until the weights converge for all t

(kt=1). An overall calibration factor k from (A3-12) when summed over

all t is given as

Qt
k = I (A3-14)

Tr V(xt-x) =

when the weights converge, since kt=1 for all t.
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SUMMARY

A summary is given for the three areas of analysis in the Appendix

(AI,A2, and A3). Appendix AI has shown that the solution scaling factor

for overall weighting of the data, f=0.02, found to be optimal for

GEM-TI, is attributable to the non-random characteristics of the

tracking data residuals in post-fit analyses of these data. While the

specific cause of this anomalous data behaviour is not presently known,

the net result is that each pass of data, and not the original

observations themselves, is more nearly the fundamental data "unit"

within our solution. It was shown that the scaling factor represents

f=I/n, where n=50, and approximates reasonably well the average number

of observations found within a pass of electronic and laser tracking

data in GEM-TI. For optical tracking, an n=10 was used through a

rescaling of data weights by a factor of 5; this was applied to properly

reflect the lower data density found within this observation type.

Appendix A2 has developed a general mathematical form of the error

covariance for the GEM-TI solution parameters which includes effects of

unmodeled biases within the data. It was shown that the simplified

inverse of the weighted least-squares normal equations (N-I) can

approximate the error covariance by downweighting the data to account

for the unmodeled bias effects. The weighting should account for the

effect of a bias per pass of tracking data to be most complete.

However, it is reasonable to statistically account for the biases by

applying an average weighting factor to each different satellite data
b

type. This latter process was achieved somewhat in GEM-TI to

approximate the error covariance matrix. It was also shown that the use

of least squares collocation (a priori constraint on the size of the

coefficients using Kaula's rule) which introduces its own bias-like

influence on the coefficient solution (favoring zero power) is well

accommodated by the simplified inverse. The process was also shown to

perform well because the biases behave largely in a random way across

the solution.
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Appendix A3 developed an optimized technique for estimating a

weighting factor for the different data types in the weighted least-

squares solution. The algorithm indicates that by iterating the data-

weights to a converged solution, the error covariance matrix (N-I) will

automatically be calibrated. A solution which properly combines the

subsets of data at their appropriate weights will also be achieved.

Again, GEM-TI was shown to approximate this process in the estimation of

its data weighting factors.

Some of the benefits and recommendations which can be made on the

basis of the three parts of Appendix A are:

I) It was shown that the more recent data has a diminished

biased behaviour which leads us to believe that older data

sets can be replaced as new data becomes available; the

solution will likewise improve.

2) We are attempting to understand the modeling errors and

system causes for these biases so that they can be either

eliminated or specifically recovered within the solution,

thusly reducing the need for any downweighting of the least-

squares normal equations.

3) We will use the methods developed herein as an algorithm for

optimal data weighting. Future GEM models will be easier to

develop and less difficult to optimize given the analysis

performed here. q
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