

 NUREG/CR-6942

Dynamic Reliability Modeling of
Digital Instrumentation and
Control Systems for Nuclear Reactor
Probabilistic Risk Assessments

The Ohio State University

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555-0001

 NUREG/CR-6942

Dynamic Reliability Modeling of
Digital Instrumentation and
Control Systems for Nuclear Reactor
Probabilistic Risk Assessments

Manuscript Completed: May 2006
Date Published: October 2007

Prepared by
T. Aldemir1, M.P. Stovsky1, J. Kirschenbaum2, D. Mandelli1,
P. Bucci2, L.A. Mangan1, D.W. Miller1, X. Sun1, E. Ekici3,
S. Guarro4, M. Yau4, B. Johnson5, C. Elks5, and S.A. Arndt6

1The Ohio State University
Department of Mechanical Engineering
Nuclear Engineering Program
Columbus, OH 43210

2The Ohio State University
Department of Computer Science and Engineering
Columbus, OH 43210

3The Ohio State University
Department of Electrical and Computer Engineering
Columbus, OH 43210

4ASCA, Inc.
1720 S. Catalina Avenue, Suite 220
Redondo Beach, CA 90277-5501

5University of Virginia
Department of Electrical and Computer Engineering
Charlottesville, VA 22904

6U. S. Nuclear Regulatory Commission
Washington, DC 20555-0001

S.A. Arndt, NRC Project Manager

Prepared for
Division of Fuel, Engineering and Radiological Research
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC Job Code K6472

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.

AVAILABILITY OF REFERENCE MATERIALS

IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC’s Public Electronic Reading Room at
http://www.nrc.gov/reading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents
 U.S. Government Printing Office
 Mail Stop SSOP
 Washington, DC 20402–0001
 Internet: bookstore.gpo.gov
 Telephone: 202-512-1800
 Fax: 202-512-2250
2. The National Technical Information Service
 Springfield, VA 22161–0002
 www.ntis.gov
 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: Office of the Chief Information Officer,
 Reproduction and Distribution
 Services Section
 U.S. Nuclear Regulatory Commission
 Washington, DC 20555-0001
E-mail: DISTRIBUTION@nrc.gov
Facsimile: 301–415–2289

Some publications in the NUREG series that are
posted at NRC’s Web site address
http://www.nrc.gov/reading-rm/doc-collections/nuregs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was
accessed, the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852–2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from—

American National Standards Institute
11 West 42 Streetnd

New York, NY 10036–8002
www.ansi.org
212–642–4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series
are not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG–XXXX) or agency contractors
(NUREG/CR–XXXX), (2) proceedings of
conferences (NUREG/CP–XXXX), (3) reports
resulting from international agreements
(NUREG/IA–XXXX), (4) brochures
(NUREG/BR–XXXX), and (5) compilations of legal
decisions and orders of the Commission and
Atomic and Safety Licensing Boards and of
Directors’ decisions under Section 2.206 of NRC’s
regulations (NUREG–0750).

http://www.nrc.gov/reading-rm.html.
http://www.nrc.gov/reading-rm/doc-collections/nuregs

iii

ABSTRACT

As part of the U.S. Nuclear Regulatory Commission’s (NRC’s) effort to advance the state-of-
the-art in digital system risk and reliability analysis the NRC Office of Nuclear Regulatory
Research is sponsoring research into both traditional and dynamic methods for modeling.
The results of a recent study reported in NUREG/CR-6901 indicate that the conventional
event-tree (ET)/fault-tree (FT) methodology may not yield satisfactory results in the reliability
modeling of digital I&C systems. Using subjective criteria based on reported experience,
NUREG/CR-6901 has identified the dynamic flowgraph methodology (DFM) and the Markov
methodology as the methodologies that rank as the top two with most positive features and
least negative or uncertain features when evaluated against the requirements for the reliability
modeling of digital I&C systems. The NUREG/CR-6901 has also concluded that benchmark
systems should be defined to allow assessment of the dynamic methodologies proposed for the
reliability modeling of digital I&C systems using a common set of hardware/ software/ firmware
states and state transition data. This report: a) defines such a benchmark system based on
the steam generator feedwater control system of an operating pressurized water reactor
(PWR), b) provides procedures to illustrate how dynamic reliability models for the benchmark
system can be constructed using DFM and Markov methodologies, and, c) illustrates how the
resulting dynamic reliability models can be integrated into the probabilistic risk assessment
(PRA) model of an existing PWR using SAPHIRE as an example ET/FT PRA tool. The report
also discusses to what extent the DFM and the Markov methodology meet the requirements
given in NUREG/CR-6901 for the reliability modeling of digital I&C systems. Some challenges
are identified. It is concluded that it may be possible to meet most of these challenges by
linking the existing ET/FT based plant PRA tools to dynamic methodologies through user
friendly interfaces and using distributed computing. The challenge that is the most difficult to
address is the acceptability of the failure data used. While it is also concluded that the
proposed methods can be used to obtain qualitative information on the failure characteristics of
digital I&C systems as well as quantitative, and, in that respect, can be helpful in the
identification of risk important event sequences even if the data issue is not resolved, the report
presents only a proof-of-concept study. Additional work is needed to validate the practicality of
the proposed methods for other digital systems and resolve the challenges identified.

Paperwork Reduction Act Statement

This NUREG does not contain information collection requirements and, therefore, is not subject
to the requirements of the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.).

Public Protection Notification

The NRC may not conduct or sponsor, and a person is not required to respond to, a request for
information or an information collection requirement unless the requesting document displays a
currently valid OMB control number.

v

FOREWORD

In 1995, the U.S. Nuclear Regulatory Commission (NRC) issued its Probabilistic Risk
Assessment (PRA) Policy Statement, which encourages increased use of PRA and associated
analyses in all regulatory matters, to the extent supported by the state-of-the-art in PRA and the
data. Toward that end, the NRC’s Office of Nuclear Regulatory Research (RES) is sponsoring
research to evaluate and develop traditional PRA modeling methods [e.g., event tree/fault tree
(ET/FT) approaches] and dynamic PRA methods for use in modeling digital instrumentation and
control (I&C) systems. The research presented in this report is one part of the NRC’s overall
effort to advance the state-of-the-art in digital system risk and reliability modeling to provide a
means to risk-inform the agency’s licensing reviews of digital I&C systems.

The NRC has not yet implemented risk-informed decision-making in the review of digital I&C
systems because the agency and the nuclear industry do not presently have universally accepted
methods for modeling digital system reliability. Additionally, the PRA technical community
has not yet agreed on the level of detail that digital I&C systems require in reliability modeling.
Nonetheless, it is clear that PRA models must adequately represent the complex system
interactions that can contribute to digital system failure modes.

While the traditional ET/FT approach has been used in modeling the reliability of digital I&C systems
in nuclear power plants, the technical literature has raised numerous concerns regarding
the capability of that approach to properly account for dynamic interactions that can occur
in digital systems. Studies indicate that such interactions may lead to coupling between
the triggered or stochastic logic events (e.g., valve opening, pump startup, etc.) during an accident,
with significant impacts on predicated systems failure probabilities. Dynamic methods, such as
dynamic fault trees, Markov models, and the dynamic flowgraph methodology (DFM), can
account for the coupling between systems through explicit consideration of time in system
evolution and interaction. NUREG/CR-6901, “Current State of Reliability Modeling Methods for
Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments,” identified
Markov models and DFM as the most promising dynamic methods for modeling digital systems.

This report provides a proof-of-concept for the use of Markov models and DFM to model
digital I&C systems. It illustrates how these dynamic models can be developed and integrated
into PRAs, using a representative benchmark system and an existing PRA model
of a pressurized-water reactor. As part of this ongoing research, the NRC will complete and
publish a separate study to quantify the reliability and risk of the digital system modeled in this
report.

Brian W. Sheron, Director
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

vii

CONTENTS

Page

Abstract. iii

Foreword. v

Executive Summary. xv

Abbreviations. xviii

1. Introduction. 1-1

1.1 Purpose of the Report. 1-1
1.2 Background. 1-3

1.2.1 Characterization of Analog and Digital Systems. 1-4
1.2.1.1 Analog vs. Digital Instrumentation and Control Systems.. 1-4
1.2.1.2 Digital Instrumentation and Control System Experience. 1-6

1.2.2 Methodologies for Modeling Type I Interactions. 1-7
1.2.3 Methodologies for Modeling Type II Interactions. 1-9
1.2.3 A Subjective Assessment of Available Methodologies. 1-12

1.3 Review of Current NRC Position on Digital Systems. 1-13
1.4 Characterization and Taxonomy of Digital I&C Systems. 1-13

2. Description of the Benchmark System. 2-1

2.1 System Overview. 2-2
2.2 Detailed View of the Benchmark System. 2-5

2.2.1 Physical Connections for the DFWCS. 2-6
2.2.2 Control Laws. 2-11
2.2.3 Steam Generator Simulation Package. 2-13

2.2.3.1 Steam Generator Model. 2-14
2.2.3.2 Main Steam System. 2-16
2.2.3.3 Main Feedwater and Auxiliary Feedwater Systems. . . 2-17

2.2.4 Fault Tolerant Features. 2-17
2.3 Description of System Operation under Abnormal Conditions. 2-19

2.3.1 Main and Backup Computer FMEA. 2-19
2.3.2 The FMEAs for MFV, FP, BFV and PDI decision Controllers. 2-25
2.3.3 Communication in I&C Systems and Related Problems. 2-29
2.3.4 Discrete-State Representation of the Benchmark System. 2-31

2.4 Application of a Safety Quantification Methodology to the Digital Feed Water
Control System for Failure Data Generation. 2-42
2.4.1 Background.. 2-42
2.4.2 Concepts of Dependable Systems. 2-43

2.4.2.1 The Attributes of Dependability.. 2-44
2.4.2.2 Impairments to Dependability. 2-44

2.4.3. Fault Injection as Dependability Assessment Method.. 2-46

viii

2.4.3.1 Introduction.. 2-46
2.4.3.2 Fault Injection Space. 2-47

2.4.4 Overview of the Quantitative Dependability Assessment Methodology.2-48
2.4.5 Experimental Setup: Design, Implementation of the Fault Injection

Environment . 2-64
2.4.5.1 Overview. 2-64
2.4.5.2 The DFWCS Experimental Test Bed. 2-66
2.4.5.3 Identifying Potential Fault Injections Locations and Values for the

DFWCS Application. 2-68
2.4.5.4 Fault Injection Automation. 2-69
2.4.5.5 Data Collection. 2-70

2.4.6 Results From a Fault Injection Campaign.. 2-70
2.4.6.1 Error Classification. 2-71
2.4.6.2 Common Mode Failures. 2-71

2.4.7 Estimation of Failure Mode Rates and Failure Mode Probabilities on
Demand .. 2-72

2.4.8 Initial Conclusions. 2-73
2.5 An Example Initiating Event For Illustration. 2-74

2.5.1 Example Initiating Event Transitions.. 2-87

3. Description of the Dynamic Flowgraph Methodology. 3-1

3.1 DFM Model Construction. 3-2
3.1.1 DFM Modeling Elements. 3-2

3.1.1.1 Process Variable Nodes. 3-3
3.1.1.2 Causality Edges. 3-3
3.1.1.3 Transfer Boxes and Associated Decision Tables. 3-4
3.1.1.4 Condition Edges. 3-4
3.1.1.5 Condition Nodes. 3-5
3.1.1.6 Transition Boxes and Associated Decision Tables. 3-5
3.1.1.7 DFM Model Construction and Integration. 3-5

3.2 DFM Model Analysis. 3-6
3.2.1 Deductive Analysis and Inductive Analysis. 3-7

3.2.1.1 Deductive Analysis. 3-7
3.2.1.1.1 Multi-Valued Logic and Prime Implicants. 3-7
3.2.1.1.2 Physical Consistency Rules.. 3-9
3.2.1.1.3 Dynamic Consistency Rules. 3-9
3.2.1.2 Inductive Analysis. 3-9

3.2.2 Design Verification. 3-10
3.2.3 Failure and Fault Analysis. 3-10
3.2.4 Automated Test Vector Generation. 3-10

3.3 Quantification of Deductive Analysis Results. 3-11
3.4 Benchmark System Application. 3-12

3.4.1 Benchmark System DFM Model. 3-12
3.5 Example Initiating Event Application. 3-16

3.5.1 DFM Model for the Example Initiating Event Application.. 3-16
3.5.2 Example Initiating Event DFM Analysis. 3-21

3.5.2.1 Example of Deductive DFM Analysis. 3-22

ix

3.5.2.2 Example of Inductive DFM Analysis. 3-29

4. Markov/CCMT Methodology. 4-1

4.1 Example Initiating Event.. 4-2
4.2 The Markov Approach Coupled with CCMT: Markov/CCMT Methodology. . . . 4-3

4.2.1 Definition of the Top Events. 4-4
4.2.2 Partitioning of the State Space or the CVSS into Computational Cells. 4-5
4.2.3 Markov Modeling of Components. 4-6

4.2.3.1 MFV and BFV. 4-7
4.2.3.2 FP. 4-7
4.2.3.3 Main (MC) and Backup Computers 4-8
4.2.3.4 Sensors. 4-12
4.2.3.5 FP, MFV and BFV Controllers. 4-12
4.2.3.6 PDI Controller. 4-14
4.2.3.7 System State Reduction Through Macro-Components.4-15

4.2.4 Determination of the Cell-to-Cell Transition Probabilities. 4-18
4.2.5 Determination of the Component State Transition Probabilities. 4-19
4.2.6 Determination of the pdf and Cdf for the Top Events. 4-20

4.3 Implementation with the Example Initiating Event. 4-21
4.3.1 Definition of the Top Events . 4-21
4.3.2 Partitioning of the CVSS.. 4-21
4.3.3 Markov Modeling of the Components and the Determination of the

Elements h(n|n’,j’->j) . 4-23
4.3.4 Determination of the Cell-to-Cell Transition Probabilities. 4-25

5. Incorporation of the DFM and Markov/CCMT Models into the Example Plant PRA. . . 5-1

5.1 Introduction. 5-1
5.2 Description of Example Plant PRA. 5-1
5.3 Incorporation of DFM Output into the Example Plant PRA.. 5-25

5.3.1 Augmentation of the ET/FT Structure with DFM. 5-25
5.3.2 Example of Integrating DFM Results into the Master PRA. 5-26
5.3.3 Technical Issues and Potential Resolution for Integrating DFM into the

Master PRA. 5-27
5.4 Incorporation of Markov/CCMT Methodology Output into the Example Plant PRA5. -28

5.4.1 DET Generation from Markov Model. 5-28
5.4.1.1 Algorithm 1. 5-29
5.4.1.2 Algorithm 2. 5-31

5.4.2 DET Analysis of a Failure Scenario for the Benchmark System. 5-32
5.4.3 DET Incorporation into an Existing PRA. 5-41
5.4.4 Outstanding Issues.. 5-42

5.5 Comparison of DFM and Markov/CCMT Methodology Results to be Incorporated
into the Example Plant PRA.. 5-42
5.5.1 Example Initiating Event. 5-42
5.5.2 DFM Analysis Results. 5-43
5.5.3 Markov/CCMT Analysis Results. 5-44
5.5.4 Comparison.. 5-44

x

6. Interfacing with SAPHIRE.. 6-1

6.1 Description of SAPHIRE. 6-1
6.2 Model Input Format. 6-3
6.3 Integrating the Model to the Plant PRA. 6-5

7. Uncertainty Quantification. 7-1

7.1 Modeling Uncertainty. 7-4
7.1.1 Analytical Model. 7-4
7.1.2 Statistical Model. 7-5
7.1.3 Generic Processor Fault Model. 7-6

7.2 Operational Profile Uncertainty. 7-6
7.3 Fault Injection Experiment Uncertainty. 7-7
7.4 Summary. 7-8

8. Proposed Benchmark, Procedures and the Requirements for the Reliability Modeling
of Digital Instrumentation and Control Systems. 8-1

9. Summary and Conclusion. 9-1

10. References.. 10-1

Appendix A Steam Generator Model. A-1

A.1 Upper Region Superheated, Lower Region Subcooled. A-2
A.2 Upper Region Superheated, Lower Region Saturated.. A-3
A.3 Upper Region Saturated, Lower Region Subcooled. A-4
A.4 Upper Region Saturated, Lower Region Saturated. A-5

Appendix B Benchmark System Full FMEA . B-1

xi

Figures

Figure 1.3.1: Conceptual Model of Digital System Modeling Categorizations.. 1-16
Figure 1.3.2: Possible Implementation of the Conceptual Model. 1-16
Figure 2.1.1 The Benchmark System Outlay.. 2-4
Figure 2.1.2 Detailed View of the DFWCS for SG1.. 2-5
Figure 2.2.1 Feedwater Temperature Sensor Signals. 2-6
Figure 2.2.2 Feedwater Flow Sensor Signals. 2-7
Figure 2.2.3 Neutron Flux Sensor Signals.. 2-7
Figure 2.2.4 Feedwater Level Sensor Signals.. 2-8
Figure 2.2.5 Steam Flow Sensor Signals. 2-9
Figure 2.2.6 Digital Feedwater Controller Status Interconnections for MC. 2-10
Figure 2.2.7 Digital Feedwater Controller Status Interconnection for BC.. 2-11
Figure 2.2.8 Schematics of a Steam Generator. 2-16
Figure 2.3.1 Intra-computer interactions of the DFWCS. 2-32
Figure 2.3.2 Inter-computer interactions of the DFWCS. 2-34
Figure 2.3.3 Computer-Controller-Actuated Device Interactions. 2-35
Figure 2.4.1 Cause-Effect Relationship Among Faults, Errors, and Failures using the 3-

Universe Model. 2-45
Figure 2.4.2 Operation of the Quantitative Dependability Assessment Process 2-49
Figure 2.4.3 Markov model of main computer of the DFWCS. 2-51
Figure 2.4.4 Fault Space Characterized by Location, Value, and Time. 2-57
Figure 2.4.5 Instruction Set level Behavioral Fault Model. 2-58
Figure 2.4.6 Typical Operational Profiles Applied During Fault Injection. 2-60
Figure 2.4.7 Generation of the Fault Experiments from the Fault Space.. 2-62
Figure 2.4.8 Fault Equivalence concept. . 2-63
Figure 2.4.9 Architectural View of the Benchmark DFWCS. 2-67
Figure 2.4.10 Integration of the In-circuit Emulator into DFWCS Lab. 2-68

wnFigure 2.5.1 The Solution of f from Eq.(2.5.15) as a Function of. 2-78
Figure 2.5.2 Real Part of Root 1 of the Transfer function of Eqs.(2.5.17), (2.5.18) and (2.5.19)

Ln Following Linearization Around E = 0 . 2-79
Figure 2.5.3 Real Part of Root 2 or Root 3 of the Transfer Function of Eqs.(2.15.17), (2.15.18)

 and (2.15.19) Following Linearization Around ELn=0. 2-79
Figure 2.5.4 Variation of Actual level with Time for the Example Initiating Event.. 2-80
Figure 2.5.5 Variation of Compensated Level with Time for the Example Initiating Event. . . 2-81
Figure 2.5.6 Variation of Level Error with Time For the Example Initiating Event. 2-81
Figure 2.5.7 Different Failure Modes as Result of Timing of BFV Failure. 2-83
Figure 2.5.8 Variation of Level with Time with Artifact. 2-84
Figure 2.5.9 Variation of Compensated Level with Time with Artifact. 2-84
Figure 2.5.10 Variation of Level Error with Time with Artifact. 2-85
Figure 2.5.11 Correct Evaluation of the Integral in Eq. (2.5.20).. 2-86
Figure 2.5.12 Incorrect Evaluation of the Integral in Eq. (2.5.20). 2-87
Figure 2.5.13 Example Initiating Event Transitions. 2-88
Figure 3.1.1 DFM Model Elements. 3-3
Figure 3.4.1 DFM Model of the Benchmark System. 3-13
Figure 3.4.2 DFM Model of the Digital Feedwater Control System. 3-14
Figure 3.5.1 DFM Model for the Example Initiating Event. 3-16
Figure 4.2.1 The CVSS for the Benchmark System based on Eqs (2.5.17) - (2.5.20).. 4-6

xii

Figure 4.2.2 Failure States for the MFV and BFV. 4-7
Figure 4.2.3 Failure States for the FP. 4-8
Figure 4.2.4 Failure States for the Main Computer (MC).. 4-10
Figure 4.2.5 Failure States for the Backup Computer. 4-11
Figure 4.2.6 Failure States for the Example Initiating Event of the BC. 4-11
Figure 4.2.7 Failure States for the Sensors.. 4-12
Figure 4.2.8 Failure States for the BFV Controller.. 4-14
Figure 4.2.9 Failure States for the PDI Controller. 4-15
Figure 4.2.10 Failure States for the Combined BFV and BFV Controller.. 4-17
Figure 4.3.1 Markov Modeling of the Example Initiating Event. 4-24
Figure 4.3.2 Small Portion of the Matrix which Contains the Elements g(j|n’,j’,k).. 4-26
Figure 4.3.3 Small Portion of the Matrix which Contains the Elements q(n,j|n’j’,k).. 4-27
Figure 5.2.1 Schematic of Example Plant Unit 1. 5-3
Figure 5.2.2 Example Plant Event Tree for Turbine Trip. 5-6
Figure 5.2.3 Example Plant Event Tree for Turbine Trip (continued).. 5-7
Figure 5.2.4 P&ID for Example Plant Simplified AFW System 5-8
Figure 5.2.5 Example Plant AFW Top Event - Insufficient Water Flow to SGs.. 5-10
Figure 5.2.6 AFW13 - Subtree for Example Plant AFW System. 5-11
Figure 5.2.7 AFW14 - Subtree for Example Plant AFW System. 5-11
Figure 5.2.8 AFW15 - Subtree for Example Plant AFW System. 5-12
Figure 5.2.9 AFW17 - Subtree for Example Plant AFW System. 5-13
Figure 5.2.10 AFW18 - Subtree for Example Plant AFW System. 5-14
Figure 5.2.11 AFW21 - Subtree for Example Plant AFW System. 5-15
Figure 5.2.12 AFW22 - Subtree for Example Plant AFW System. 5-15
Figure 5.2.13 E1A - Failure of 125V DC Bus 1A. 5-16
Figure 5.2.14 E1B - Failure of 125V DC Bus 1B. 5-17
Figure 5.2.15 EH1 - Failure of 480 V AC MCC. 5-18
Figure 5.2.16 EH2 - Failure of 480 V AC MCC. 5-19
Figure 5.2.17 EJ1 - Failure of 480 V AC MCC.. 5-20
Figure 5.2.18 EJ2 - Failure of 480 V AC MCC.. 5-21
Figure 5.2.19 4KV1H - Failure of 4kV AC Bus 1H. 5-22
Figure 5.2.20 4KV1J - Failure of 4kV AC Bus 1J. 5-23
Figure 5.3.1 Integration of DFM Results into SAPHIRE. 5-27
Figure 5.4.1 Event Tree vs. Tree Data Structure.. 5-29
Figure 5.4.2 Dynamic Event Tree Generation–Algorithm 1. 5-30
Figure 5.4.3 Dynamic Event Tree Generation–Algorithm 2. 5-31
Figure 5.4.4 Display of Part of the Dynamic Event Tree. 5-35
Figure 6.1.1 SAPHIRE MAR-D window. 6-3
Figure 6.2.1 A Sample Fault Tree Imported into SAPHIRE. 6-4
Figure 6.3.1 Appended Fault Tree to Include Imported DFWCS. 6-6
Figure 6.3.2 Incorporation of the trajectory bifurcation in Fig.2.5.7 into a conventional PRA.. 6-7
Figure 8.1 Digital I&C Benchmark System Requirements . 8-2

xiii

Tables

Table 2.3.1 Abbreviated FMEA for the MC. 2-20
Table 2.3.2 Abbreviated FMEA for the BC. 2-22
Table 2.3.3 Abbreviated FMEA for MFV Controller. 2-25
Table 2.3.4 Abbreviated FMEA for BFV Controller. 2-26
Table 2.3.5 Abbreviated FMEA for FP Controller. 2-27
Table 2.3.6 Abbreviated FMEA for PDI Controller. 2-27
Table 2.3.7: Explanation of State Transitions. 2-36
Table 2.3.8: Grouping of Transitions by Event Type. 2-41
Table 2.4.1 Failure Rate Estimations for DFWCS Main Components. 2-54
Table 2.5.1 Data Used for the Example Initiating Event. 2-76
Table 2.5.2 Possible Transitions for the Example Initiating Event. 2-89
Table 2.5.3 BFV Position as Function of the System State for the Example Initiating Event

. 2-90
Table 3.4.1 Description of the Nodes in the DFM Model. 3-14
Table 3.5.1 Description of the Nodes in the Simplified DFM Model. 3-17
Table 3.5.2 Discretization of the Node BFV. 3-18
Table 3.5.3 Discretization of the Node CL.. 3-18
Table 3.5.4 Discretization of the Node Comp. 3-18
Table 3.5.5 Discretization of the Node CP. 3-19
Table 3.5.6 Discretization of the Node EL. 3-19
Table 3.5.7 Discretization of the Node ELP.. 3-19
Table 3.5.8 Discretization of the Node fSN. 3-19
Table 3.5.9 Discretization of the Node L. 3-19
Table 3.5.10 Discretization of the Node LP. 3-20
Table 3.5.11 Discretization of the Node Sbn. 3-20
Table 3.5.12 Discretization of the Node SbnP.. 3-20
Table 3.5.13 Decision Table for the Transition Box Tf2.. 3-20
Table 3.5.14 Decision Table for the Transition Box Tt7.. 3-21
Table 3.5.15 Transition Table for the Top Event. 3-22
Table 3.5.16 Transition Table for after the first expansion. 3-22
Table 3.5.17 Prime Implicants for High Steam Generator Level. 3-23
Table 3.5.18 Prime Implicants for Low Steam Generator Level. 3-26
Table 3.5.19 Forward Tracing through Transfer Box Tf3.. 3-30
Table 3.5.20 Forward Tracing through Transfer Box Tf1.. 3-30
Table 3.5.21 Forward Tracing through Transfer Box Tf2.. 3-30
Table 3.5.22 Forward Tracing through Transition Box Tt6. 3-31
Table 3.5.23 Forward Tracing through Transition Box Tt10. 3-31
Table 3.5.24 Forward Tracing through Transition Box Tt9. 3-31
Table 3.5.25 Forward Tracing through Transition Box Tt8. 3-31
Table 3.5.26 Forward Tracing through Transition Box Tt7. 3-31
Table 3.5.27 Forward Tracing through Transfer Box Tf3.. 3-32
Table 3.5.28 Forward Tracing through Transfer Box Tf1.. 3-32
Table 3.5.29 Forward Tracing through Transfer Box Tf2.. 3-32
Table 3.5.30 Forward Tracing through Transfer Box Tf3.. 3-33
Table 3.5.31 Forward Tracing through Transfer Box Tf1.. 3-33
Table 3.5.32 Forward Tracing through Transfer Box Tf2.. 3-33

xiv

Table 3.5.33 Forward Tracing through Transition Box Tt6. 3-33
Table 3.5.34 Forward Tracing through Transition Box Tt10. 3-34
Table 3.5.35 Forward Tracing through Transition Box Tt9. 3-34
Table 3.5.36 Forward Tracing through Transition Box Tt8. 3-34
Table 3.5.37 Forward Tracing through Transition Box Tt7. 3-34
Table 3.5.38 Forward Tracing through Transfer Box Tf3.. 3-34
Table 3.5.39 Forward Tracing through Transfer Box Tf1.. 3-35
Table 3.5.40 Forward Tracing through Transfer Box Tf2.. 3-35
Table 4.2.1 Examples of State Combinations (m=1,...,M; n=1,...,N). 4-16
Table 4.2.2 Examples of Ordering of State Combinations After Grouping (m=1,...,M; n=1,...,N)

. 4-17
Table 4.3.1 Partitioning Scheme of the 4 Variables of the CVSS. 4-22
Table 4.3.2 Component State Combinations for the Example Initiating Event.. 4-24
Table 4.3.3 Allowed Component States Combination Transitions. 4-25
Table 4.3.4 BFV Position for Different Component State Combinations. 4-25
Table 5.2.1 Selected Example Plant PRA Initiating Events . 5-4
Table 5.4.1 Example Failure Scenario. 5-36
Table 5.4.2 Number of Failure/Non-Failure Scenarios. 5-38
Table 5.4.3 Classification of Failure Paths . 5-39
Table B.1: FMEA Chart. B-1

xv

EXECUTIVE SUMMARY

The results of a recent study published as NUREG/CR-6901(Current State of Reliability
Modeling Methodologies for Digital Systems and Their Acceptance Criteria for Nuclear Power
Plant Assessments) indicate that the conventional event-tree (ET)/fault-tree (FT) methodology
may not yield satisfactory results when a digital I&C system:

• interacts with a process that has multiple Top Events, logic loops and/or substantial time
delay (with respect to system time constants) between the initiation of the fault and Top
Event occurrence,

• relies on sequential circuits that have memory,
• has tasks that compete for the I&C system resources, and,
• anticipates the future states of controlled/monitored process.

Using subjective criteria based on reported experience, the study NUREG/CR-6901 has
identified the dynamic flowgraph methodology (DFM) and the Markov methodology coupled with
the cell-to-cell-mapping technique(CCMT) as the methodologies that rank as the top two with
the most positive features and least negative or uncertain features when evaluated against the
requirements for the reliability modeling of digital I&C systems. The NUREG/CR-6901 also
concluded that benchmark systems should be defined to allow assessment of the
methodologies proposed for the reliability modeling of digital I&C systems using a common set
of hardware/software/firmware states and state transition data.

This report presents a benchmark system that can be used for such a comparison and then
illustrates how the DFM and Markov/CCMT methodologies can be implemented for the
reliability modeling of the benchmark system. The report also describes how the outputs of
these methodologies can be incorporated into an existing probabilistic risk assessment (PRA)
for a nuclear power plant, using the SAPHIRE code as an example ET/FT PRA tool. The
compliance of the procedures proposed with the requirements for the reliability modeling of
digital I&C systems given in NUREG/CR-6901 is discussed.

The benchmark system is based on the steam generator (SG) digital feedwater control system
(DFWCS) of an operating 2-loop pressurized water reactor (PWR). Each DFWCS controls a
feedwater pump (FP), a main feedwater regulating valve (MFV), and a bypass feedwater
regulating valve (BFV). The feedwater control system operates in four different modes,
depending on the power generated in the primary system.

Each digital feedwater controller is comprised of a main computer (MC) and backup computer
(BC), MFV, BFV, and FP controllers which provide both control and fault tolerant capabilities. A
pressure drop indicator (PDI) serves as a backup for the MFV controller by sampling the output
of the MFV controller. If the MFV controller fails, the PDI controller serves as a manual
controller for the MFV. The signals from all the controllers are cross connected to provide
redundancy as well as fault tolerance. The coupling between control hardware,
software/firmware and process variables are described through differential/algebraic equations
for level, compensated level, level error, flow demand, compensated flow error, compensated
power, FP, MFV and BFV demands, FP speed, MFV position and BFV position. The coupling
between the feedwater flow into the SG and steam flow out of the SG is represented through
another set of differential/algebraic equations and steam tables which comprise the 2-region

xvi

SG model. Some challenging properties of the benchmark from a reliability modeling viewpoint
include:

• possible dependence of the control action on system history,
• possible dependence of system failure modes (low SG level, high SG level) on exact

timing of the failures,
• possible introduction of artifacts during power changes,
• functional as well as intermittent failure possibility,
• error detection capability, and
• possible system recovery from failure modes.

A failure data generation procedure using a 3-state Markov model and field data appended with
fault injection is also described.

The implementation of the DFM and Markov/CCMT methodologies is illustrated using the
benchmark system. The DFM combines multi-valued logic modeling and analysis capabilities
to handle systems consisting of components that have multiple degraded states and exhibit
dynamic behavior. In applying DFM, the system of interest is first represented in a digraph
(directed graph) model. Once such a model has been produced, automated deductive/
inductive algorithms that are built into the methodology can be applied to: a) identify how
system level states (which may represent specific conditions of interest, be they success,
anomaly or failure states) can be produced by any combinations and sequences of basic
component states (deductive analysis), and/or, b) determine how a particular basic component
state can produce various possible sequences and system-level states (inductive analysis). The
DFM can provide the multi-state and time-dependent equivalent of both FT analysis and failure
mode and effect analysis (FMEA).

In the reliability model construction using the Markov/CCMT methodology, the system evolution
is represented through a series of discrete transitions within the system state/controlled variable
space. These transitions take into account the natural dynamic behavior of the
controlled/monitored process variables, the control laws, and hardware/firmware/software
states. The discrete transitions for the process variables are modeled using the cell-to-cell
mapping technique which represents the system dynamics in terms of transition probabilities
between computational cells that partition the system state/controlled variable space. System
state for the Markov model is defined in terms of both the system location in the discretized
state/controlled variable space and hardware/software/firmware configurations. Once the
model is constructed, dynamic event trees can be obtained for any initiating event which would
yield the possible event sequences following the initiating event.

A turbine trip initiating event is used to illustrate how the reliability model for the benchmark
system can be incorporated into an existing PRA. For the PRA model, the SAPHIRE model of
a NUREG-1150 (Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants)
plant is used.

The results of the study shows that: a) both the DFM and the Markov/CCMT methodology can
account for all the features of the benchmark system with good agreement in their results, and
b) their results can be integrated into an existing PRA. Possible challenges with the
methodologies include:

xvii

1. analyst skill levels needed for the implementation of the methodologies,
2. computational demand for the correct description of the coupling between failure events,
3. acceptability of the data used for quantification by a significant portion of the technical

community, and
4. the limitation in the capabilities of the existing ET/FT based plant PRA tools to represent

the timing of failure events.

Challenges 1 and 2 originate from the complexity and diverse nature of the phenomena to be
accounted for and are not specific to DFM or the Markov/CCMT methodology. It may be
possible to address the limitations posed by Challenges 1, 2 and 4 by linking the existing ET/FT
based plant PRA tools to dynamic methodologies through user friendly interfaces and using
distributed computing. Challenge 4 may also require post-processing of the results obtained
from the plant PRAs after the integration of the digital I&C system reliability models to remove
timing inconsistencies between minimal cut set events.

Challenge 3 is perhaps the most difficult to address. There is no consensus in the technical
community on how software reliability should be quantified and, in fact, whether such a concept
is appropriate at all. However, the proposed methodologies can be used to obtain qualitative
information on the failure characteristics of digital I&C systems (i.e. prime implicants) as well as
quantitative, and, in that respect, can be helpful in the identification of risk important event
sequences even if the data issue is not resolved.

Finally, the properties of the benchmark system considered in this study may not apply to all the
reactor protection and control systems in nuclear power plants . For digital I&C systems which
may have less complex interaction between the failure events, the conventional ET/FT
approach may be adequate for the reliability modeling of the system. It is also important to note
that the report presents only a proof-of-concept study. Additional work is needed to validate the
practicality of the proposed methods for other digital systems and resolve the challenges
identified.

xviii

ABBREVIATIONS

ACRS
AFW, AFS
AOV
Arb
ATVG
ATWS
BC
BFV
BFVC
Cdf
CL
CMF
Comp
CP
CST
CCMT
COTS
CPU
CVSS
DET
DFM
DFWCS
ECR
EL
ELP
ET
ET/FT
FMEA
FP
Frz
F-S
fSN
FT
FTA
FWCS
HP
HPI
HW
ICE
L
LOCA
LOSP
LP
I&C
MC
MDP

Advisory Committee on Reactor Safeguards
Auxilliary feedwater system
Air operated valve
DFM state for the BFV controller failed in the arbitrary state
Automatic test vector generation
Anticipated transient without scram
Backup computer
Bypass flow valve
DFM node for BFV Controller
Cumulative distribution function
DFM node for compensated level
Common mode failure
DFM node for backup computer
DFM node for compensated power
Cell-to-cell mapping technique
Condensate storage tank
Commercial off the shelf
Central processing unit
Controlled variable state space
Dynamic event tree
Dynamic flowgraph methodology
Digital feedwater control system
Error containment regions
DFM node for level error
DFM node for previous level error
Event tree
Event tree/fault tree methodology
Failure modes and effects analysis
Feed pump
DFM state of the BFV controller failed in the frozen state
DFM state for the BFV failed stuck
DFM Node for steam flow
Fault tree
Fault tree analysis
Feedwater control system
High pressure
High pressure injection
Hardware
In-circuit emulator
DFM node for steam generator level
Loss of coolant accident
Loss of offsite power
DFM node for previous steam generator level
Instrumentation and control
Main computer
Motor driven pump

xix

MEI
MFV
MFVC
MFW
MOV
MS
MSIV
MTBF
NAS
NASA
NATO
NRC
pdf
PDI
PI

PID
PWR
RPS
Sbn
SbnP
SE
SLD
SRV
SG
SW
TDP
Tfk
Ttk

Mutually exclusive implicant
Main flow valve
Main flow valve controller
Main feedwater system
Motor operated valve
Macro-state (see Fig.2.3.2)
Main Steam Isolation Valve
Mean time between failures
National Academy of Sciences
National Aeronautics and Space Administration
North Atlantic Treaty Organization
Nuclear Regulatory Commission
Probability distribution function
PDI controller
Prime Implicant (from deductive DFM Analysis),
Proportional Integral (controller)
Proportional Integral Derivative (controller)
Pressurized water reactor
Reactor protection system
DFM node for the BFV position
DFM node for the previous BFV position
Sensor
Source level debugger
Safety relief valve
Steam generator
Software
Turbine driven pump
Label for transfer box k in the DFM Model
Label for transition box k in the DFM Model

1-1

1. INTRODUCTION

1.1 Purpose of the Report

Nuclear power plants are in the process of replacing and upgrading aging and obsolete
instrumentation and control (I&C) systems. Most of these replacements involve transitions from
analog to digital technology. The current path for licensing of digital I&C upgrades and new
designs relies on the NRC’s deterministic regulations. In 1995, the U.S. Nuclear Regulatory
Commission (NRC) issued the Probabilistic Risk Assessment (PRA) Policy Statement, which
encourages the increased use of PRA and associated analyses in all regulatory matters to the
extent supported by the state-of-the-art in PRA and the data. This policy applies, in part, to the
review of digital systems, which offer the potential to improve plant safety and reliability through
such features as increased hardware reliability and stability and improved failure detection
capability[1]. However, there are presently no universally accepted methods for modeling
digital systems in current-generation PRAs. Further, there are ongoing debates among the
PRA technical community regarding the level of detail that any digital system reliability model
must have to adequately model the complex system interactions that can contribute to digital
systems failure modes.

The purpose of this report is to explain the next step in advancing the state-of-the-art in digital
system risk and reliability modeling. The overall objective of this research program is to
advanced the state-of-the-art to the point where the NRC can develop risk-informed decision
making guidance for digital systems. The goal of this research is to develop an approach that
is acceptable for modeling digital systems, using both traditional and dynamic modeling
methods. This report provides a proof-of concept for the use of dynamic methods (Markov
models and Dynamic Flowgraph Methodology (DFM)) for modeling of digital systems. The
report illustrates how these dynamic models can be developed and integrated into PRAs, using
an example benchmark system and an existing PRA model of a pressurized water reactor
(PWR).

An important feature of digital I&C systems that distinguishes them from analog systems is the
presence of software/firmware, however, even though many activities such as configuration
management, testing, and verification and validation are carried out for digital I&C systems to
ensure a high quality product, processes for quantitatively assessing the risk implications of
digital upgrades have not yet been widely accepted. The results of a recent study whose
findings have been published in NUREG/CR-6901 [2] indicate that the conventional event-tree
(ET)/fault-tree (FT) methodology may not yield satisfactory results when a digital I&C system:

• interacts with a process that has multiple Top Events, logic loops and/or substantial time
delay between the initiation of the fault and Top Event occurrence,

• relies on sequential circuits which have memory,
• has tasks which compete for the I&C system resources, and
• anticipates the future states of controlled/monitored process.

While NUREG/CR-6901 [2] provides a survey of dynamic methodologies that have potential
applicability to the reliability modeling of digital I&C systems relevant to reactor protection and
control systems, it also indicates that a lack of benchmark against which the dynamic

1-2

methodologies (as well as the ET/FT approach) can be evaluated makes comparison difficult.
Using subjective criteria based on reported experience, NUREG/CR-6901[2] has identified the
DFM [3, 4] and the Markov methodology [5, 6] as the methodologies that rank as the top two
with most positive features and least negative or uncertain features when evaluated against the
requirements for the reliability modeling of digital I&C systems (Section 1.2). The NUREG/CR-
6901[2] has also concluded that benchmark systems should be defined to allow assessment of
the methodologies proposed for the reliability modeling of digital I&C systems using a common
set of hardware/software/firmware states and state transition data.

In response to this conclusion of NUREG/CR-6901[2], this report presents a first benchmark
digital feedwater control system (DFWCS) that can be used for such a comparison (Chapter 2)
and then illustrates how the DFM (Chapter 3) and a combination of the Markov methodology
with the cell-to-cell-mapping technique (CCMT) (Chapter 4) can be implemented for the
reliability modeling of the benchmark system. A possible characterization of digital systems is
also given in Section 1.3. Chapters 5 and 6 describe how the outputs of these methodologies
can be incorporated into an existing probabilistic risk assessment (PRA) for a nuclear power
plant, using the SAPHIRE code [7] as an example ET/FT PRA tool. Chapter 7 discusses the
possible sources of uncertainty in the DFM and Markov/CCMT results and some issues in their
quantification. Chapter 8 discusses the compliance of the procedures described in Chapters 3,
4 and 5 with the requirements for the reliability modeling of digital instrumentation and control
systems (Section 1.2). Chapter 9 gives the conclusions of the study. While specification,
design or operation/maintenance errors can be contributors to the risk importance of digital I&C
systems, these types of errors are not within the scope of the study.

At this point it should be reiterated that the main objective of this report is to illustrate the
implementation of the DFM and Markov/CCMT methodology on a system representative of the
digital I&C systems used in nuclear power plants. It does not aim to demonstrate that dynamic
methodologies will identify new failure modes. The fact that they may, has already been shown
in the literature as described in detail in NUREG/CR-6901. The report does show, however,
that the significance of the timing of faults to the system failure mode (Section 2.5) which would
be very difficult to identify through a conventional failure modes and effects analysis. It would
basically involve going though the steps to generate the cell-to-cell-transition probabilities of
Markov/CCMT methodology (Section 4.2.4) or the decision tables of DFM (Section 3.1.1),
except without the systematic organization of the computations and procedures to assess the
consequence of the results on the system failure modes and frequencies. It is also not the
intention of the report to demonstrate that the use of dynamic methodologies such as DFM and
Markov/CCMT methodology will produce significant changes in the predicted Top Event
frequencies. Again, it has already been shown in the literature that they may, as described in
detail in NUREG/CR-6901. Even if the implementation of the methodologies on some selected
upgrades do not produce results significantly different from those that would be obtained from
the conventional ET/FT approach, it would not imply that this conclusion would be necessarily
true for all future upgrades and/or reactors. Another point to keep in mind regarding the
suitability of the conventional ET/FT approach for all digital I&C systems is that the tools to
implement the conventional ET/FT approach (e.g. [8-10] are not designed to handle the non-
coherence that may arise from the multitasking and recuperation capability of digital I&C
systems. Finally, the selection of the DFM and Markov/CCMT methodology for this study is
based on the requirements stated in NUREG/CR-6901 and, in particular, the relevancy of
applications encountered in the available literature to reactor protection and control systems. It
should not imply that they are the only dynamic methodologies available for the reliability

1-3

modeling of digital I&C systems. For example, a combination of unified modeling language
(UML) notation (for pure qualitative analysis), colored Petri nets (for detailed analysis of
behavior and communication patterns) and BBNs for optimization of the Petri nets have been
successfully used for complex software-intensive systems [11-14].

1.2 Background

In 1994, the U.S. Nuclear Regulatory Commission (NRC) Advisory Committee on Reactor
Safeguards (ACRS) recommended and subsequently NRC commissioned a study by the
National Academy of Science (NAS) to study the use of digital systems in nuclear power plants.
Simultaneous with this study the NRC Regulatory staff initiated a revision of Chapter 7 (I&C) of
the Standard Review Plan (SRP) (NUREG-0800)[15]. The primary objective of the revision was
to incorporate review guidance for digital systems used in safety-related and non safety-related
systems in I&C in nuclear power plants. The NAS report published in 1997 [16] recommended
that “The U.S. NRC should strive to develop methods for estimating failure probabilities of
digital systems, including COTS software and hardware for use in probabilistic risk assessment”
and indicated that “These methods should include acceptance criteria, guidelines, and
limitations for use and any needed rationale and justification.” The ACRS issued a Letter
Report in 1997 that supported this recommendation [17].

As part of a cooperative agreement between the NRC and The Ohio State University (OSU), a
study was initiated in 2004 to develop both policies and methods for inclusion of reliability
models for digital systems into current generation nuclear power plant PRAs. The findings of
the study regarding the current state of reliability modeling methodologies for digital systems
were published as NUREG/CR-6901 (Current State of Reliability Modeling Methodologies for
Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments) in
February 2006 [2]. In agreement with

• the conclusion of the NAS report [16] that digital I&C systems (and digital systems in
general) should not be addressed only in terms of hardware or software,

• the findings of the North Atlantic Treaty Organization (NATO) Advanced Research
Workshop on the Reliability and Safety Assessment of Dynamic Process Systems [18],
and,

• the findings of the Department of Energy sponsored workshop on Instrumentation,
Control and Human Machine Interface Technology [19],

NUREG/CR-6901 reviews the state-of-the-art in the reliability modeling of digital I&C systems
as integrated hardware/software/firmware systems whose failure modes may be statistically
interdependent due to coupling through the monitored/controlled process (Type I interactions)
and/or due to communication between different components, multi-tasking and multiplexing
(Type II interactions). Some specific issues relevant to Type II interactions are the following [2]:

• Digital I&C systems rely on sequential circuits which have memory. Consequently,
digital I&C system outputs may be a function of system history, as well as the rate of
progress of the tasks.

Deadlock and starvation occur due to granting exclusive access to shared resources in1

multitasking systems. Deadlock occurs when a set of processes (or tasks) are blocked because
each waits for a resource that can only be released by an already blocked process in the same
set. Starvation occurs when all members of the set run indefinitely, but with no progress.

1-4

• Tasks may compete for a digital controller’s resources. This competition requires
coordination between the tasks and may lead to problems such as deadlock and
starvation .1

• The choice of internal/external communication mechanisms for the digital I&C system
(such as buses and networks) and the communication protocol affect the rate of data
transfer and subsequently the digital I&C system reliability and robustness.

• The ability to coordinate multiple digital controllers directly and explicitly may necessitate
a finer degree of communication and coordination between the controllers.

• A digital controller can remain active and not only react to data, but can anticipate the
state of the system.

• Tight coupling and less tolerance to variations in operation increases the digital I&C
system sensitivity to the dynamics of the controlled physical process and hence its
representation in the digital I&C system reliability model.

The NUREG/CR-6901 presents a characterization of digital I&C systems that is particularly
important to this report. For completeness, this characterization is reiterated and examples
from available industry reports are included in Section 1.2.1. Sections 1.2.2 and 1.2.3 present
overviews of the available methodologies for modeling Type I and Type II interactions,
respectively. Section 1.2.3 presents a subjective assessment of these methodologies with
respect to the requirements a methodology must meet for the reliability modeling digital I&C
systems.

1.2.1 Characterization of Analog and Digital Systems

Digital systems distinguish themselves from other control and instrumentation systems due to
the presence of active hardware and software components, their capabilities and limitations,
and the manner in which they are interconnected. This section summarizes the germane analog
and digital system features in Section 1.4.1. A brief review of operational experience with
digital I&C system failures and their implications on fault modeling are presented in Section
1.4.2.

1.2.1.1 Analog vs. Digital Instrumentation and Control Systems

As presented in NUREG/CR-6901 [2], the available literature focused on nuclear power plant
safety assessment generally describes a watershed associated with the migration from ‘analog’
to ‘digital’ instrumentation and control systems. This section defines and characterizes what this
report considers as analog and digital systems for a meaningful comparative analysis of their
control characteristics and reliability. While the following examples may not capture fully all
salient characteristics of such systems, it is believed the following discussion provides common
definitions and assumptions upon which to base analysis and conclusions throughout the
remainder of this report.

1.2.1.1.1 Characteristics of Analog Instrumentation and Control Systems

1-5

Analog I&C systems may be characterized as ‘hard-coded’ or ‘hard-wired’ systems, that is
“having a direct physical connection, such as by wire or cable” or “controlled by wiring of the
hardware, rather than by software”[20]. Alternatively, hard-coded may be defined as “an aspect
of an electronic circuit which is determined by the wiring of the hardware, as opposed to being
programmable in software or controlled by a switch” [21].

There are several other germane characteristics of analog control I&C systems. Analog I&C
systems contain only combinatorial logic. Combinatorial logic contains no logic loops. In
addition, the output from combinatorial logic depends only on the current value of the
inputs–there is no history kept within the controller. Analog controllers generally contain
“random logic,” that is, there is no regularity to the control logic. Therefore, algorithmic logic, as
exemplified by finite state machines, does not apply to random logic controllers [22]. In this
manner, analog controllers are reactive in that the controllers act on input measured through
sensors. Finally, pure analog I&C systems perform their functions continuously and the data
values and their internal representations are continuous waveforms.

It is noted that analog I&C systems may contain elements that exhibit digital characteristics. For
example, a control valve may have only two positions—open and closed. In analyzing systems
with such characteristics, the analysts are not concerned, in general, whether the valve may be
opened partially or not. In fact, such systems are designed to include components that have
only two positions.

In addition, analog I&C control systems that include electrical components historically have
contained vacuum tubes, relays, transistors, etc. These components are types of electrical
switches whose only states are ‘on’ and ‘off.’ These components have been used to build
combinatorial circuits for many years.

Finally, ‘ladder logic’ control systems have been used for many years for controlling machinery,
pumps, fluid levels, etc. Ladder logic systems are a type of combinatorial circuit built originally
from discrete components such as relays, resistors, transformers, etc. [23]. Ladder logic
systems are still used extensively. However, the mechanisms for realizing ladder logic have
changed dramatically over the years. Currently, ladder logic control systems, traditionally
considered to be analog controllers, are realized in programmable logic controllers (PLCs).
Such devices are actually digital processors masquerading as analog devices.

1.2.1.1.2 Characteristics of Digital Instrumentation and Control Systems

Perhaps the greatest advantages for migration from analog to digital controllers are cost and
flexibility. From their inception, microprocessors demonstrated significant design and fabrication
cost advantages over custom-design random logic systems [24]. In addition, the
programmability of these systems permits the use of standard hardware components while
allowing customization of functionality through programming. Unlike the analog devices
examined in the previous section, digital devices are not limited to single functions that are
determined by the hard-wired connections to the outside world. Digital stored-program control
devices may be specialized to the tasks at hand by loading different programs depending on
the responsibilities required of them. Such programs are actually “codification” of processes
that may have been performed through random logic, human intervention, or a combination
thereof previously.

1-6

Microprocessors and the resulting digital I&C systems constructed from them are not
combinatorial logic machines. Rather, they rely on sequential circuits—they have memory.
Consequently, their outputs may be a function of system history as well as the measured
current state of the world, based on sensor inputs. In addition, sequential circuits have a timing
mechanism (clock) associated with them. The clock determines the rate of progress for a given
task as well as coordinating tasks that may compete for a digital controller’s resources.

The same external sensors and actuators may be connected to a digital controller and an
analog controller through the same sets of wires. However, in the digital universe one must be
careful to insure the sampling rate used for analog to digital conversion is sufficient to
overcome the creation of artifacts that may result from too low a sampling rate [25]. Also, the
sampling rate, algorithm, and processor speed must be selected and matched carefully to
ensure that the response time performance requirements are met.

There exist alternate mechanisms for connecting digital controllers to the outside world, such as
buses and networks. Such options are not available to analog controllers. The selection of
connection mechanism and the communication protocol chosen affect the rate of data
communications as well as its reliability and robustness.

The ability for digital I&C systems to have exclusive access to resources, suspend processing
(waiting) while holding exclusive access resources, inability to preempt another digital I&C
system from holding a resource, and a possibility of circular waiting for resources also implies
the need to analyze the system for potential problems such as deadlock or starvation that may
result.

Digital instrumentation and control systems represent data internally as discrete values. In that
respect, they are approximations of the “real world” (analog) values that exist outside of the
digital elements. Discrete representations of analog values may introduce errors, aliasing, or
artifacts. In addition, digital I&C systems perform their computations based on an internal
clock—the computation process itself is discrete, unlike the continuous computation performed
in analog systems.

Digital instrumentation and control systems comprised of only a one processor are likely to
exhibit only Type I interactions. Digital instrumentation and control systems comprised of
multiple communicating/cooperating processors using networks, shared memory, or other data
communication approaches, may exhibit Type II interactions. Consequently, appropriate
analysis techniques must be developed for and applied to such systems.

1.2.1.2 Digital Instrumentation and Control System Experience

Experience to-date with digital instrumentation and control systems in nuclear power plants has
identified several challenges as a consequence of their digital nature. Industry experience with
digital instrumentation and control systems indicates numerous incidents have been attributed
to the use of digital systems located in various plants [26-32].

For example, [27] discusses an oscillation power range monitor (OPRM) slave module that
randomly reset (causing the module trip channel to be unavailable for one minute) due to a
software watchdog timer trip. The OPRM modules include both a master and slave module

1-7

which monitor individual Local Power Range Monitor (LPRM) signals. These signals originate
at different points within the core and are used by the OPRM modules to detect power
fluctuations within a boiling water reactor (BWR). When the slave module resets, it causes the
master module to reconfigure itself due to the now invalid data from the slave module. The
period in which both the master module reconfigures itself and the slave module resets is 30
seconds. During this time period, no protection monitoring is performed by either the master or
the slave module.

Reference [31] discusses an issue in the James A. FitzPatrick nuclear power plant. In this
incident, one of the modules in the torus temperature monitoring system was running an
incorrect algorithm for validating resistance temperature detector (RTD) readings. The
incorrectly implemented algorithm rejected RTD readings that deviated more than 10% from the
average reading. A correctly implemented algorithm would have rejected those readings which
deviated more than 100% from the average reading. This issue would have affected bulk
temperature readings if localized torus heating had occurred.

Reference [32] presents a situation in which a nuclear power plant was operated at a lower-
than-designed feedwater temperature. The lower-than-designed feedwater temperature could
have caused the plant to exceed its rated power level. A databank constant in the digital
system was set to zero based upon instructions from the vendor after the removal of other
components which used the constant. Neither the vendor nor the operators realized that the
constant was also in use by the feedwater temperature compensation calculation within the 3D
Monicore (core monitoring) system. The change in the constant caused the system to
incorrectly calculate the power level.

These incidents summarized above demonstrate that digital systems may introduce Type II
interactions among the controllers and processes via explicit communication or inter-
dependencies. Additionally, such digital I&C systems may embody types of failures different
than analog systems (Section 2.3). Consequently, digital I&C systems may require increased
model fidelity to capture their significance fully.

There have been several research efforts to create design techniques and tools to address the
unique digital system features within critical systems. Rushby [33] identifies areas of critical
digital system design and implementation, and discusses techniques for designing systems for
dependability, safety, security, and real-time needs of critical systems. These tools and
techniques provide ways to both specify needed properties and to add specific features desired,
such as fault tolerance or self-stabilization. For example, if dependability is desired, one must
include in the design the types of failures that the systems should be able to tolerate (a fault
model). Based on the fault model, different components of the system may be designed to
tolerate different types of faults. By composing the different components appropriately, it is
possible to create a system with the needed fault tolerance capability. These additional system
capabilities may increase confidence in the digital system. However, the additional system
capabilities create the need for higher fidelity modeling to accommodate the new capabilities
introduced in the system. For a more thorough survey and discussion, see [33].

1.2.2 Methodologies for Modeling Type I Interactions

The NUREG/CR-6901 has identified three main categories of methodologies capable of
accounting for Type I interactions in the reliability modeling of digital I&C systems [2]:

1-8

• Continuous-time methods
• Discrete-time methods
• Methods with visual interfaces

While the methods with visual interfaces are also either continuous or discrete time methods,
the reason they are listed separately is because the availability of a visual interface is usually
regarded as rendering them more user-friendly. Continuous-time methods consist of:

• the continuous event tree (CET) method[34]
• the continuous cell-to-cell-mapping (CCCM) method[35]

These methods can use accurate descriptions of system dynamics to yield the probability of
finding the system at a specified location in the system state-space at a specified time in a
specified configuration. The discrete-time methods include the following:

• DYLAM (Dynamical Logical Methodology)[36, 37]
• DETAM (Dynamic Event Tree Analysis Method)[38]
• DDET (Dynamic Discrete Event Tree) [39]
• ADS (Accident Dynamic Simulator)[40]
• ISA (Integrated Safety Assessment) [41]
• DDET/Monte Carlo (MC) hybrid simulation [42]
• CCMT (Cell-to-Cell Mapping Technique)Aldemir[5]

DYLAM, DETAM, DDET, ADS and ISA are dynamic event tree generation techniques. They
use a simulator to model the deterministic dynamic system behavior with a set of branching
rules and associated probabilities to generate and quantify the likelihood of possible scenarios
of system evolution following an initiating event. DDET/MC generates the branchings with a
DDET engine and follows them using Monte Carlo sampling for uncertainty quantification of the
likelihood of possible scenarios. The CCMT is based on a discrete time version of CCCM and
follows the probabilistic evolution of the system using a Markov chain.

Methods with visual interfaces include:

• Petri nets [43, 44]
• DFM [3, 4]
• the event-sequence diagram (ESD) approach[45]
• the GO-FLOW methodology [46, 47]

Petri nets are similar to finite state machines with transitions, arcs and nodes (places). Arcs
connect either transitions to nodes or nodes to transitions. Petri nets also use tokens that can
move when the Petri net is executed. A token is consumed by a transition. When a transition
fires, it produces tokens in places that it connects to and consumes one token in each of the
places that connect to it. In order for a transition to fire it must have at least one token on each
of its input places. Petri nets with the addition of a set of transitions that fire at random times
are called generalized stochastic Petri nets [48, 49]. The DFM is a digraph-based technique. A
process variable is represented by a node discretized into a finite number of states. The system
dynamics is represented by a cause-and-effect relationship between these states. The DFM is

1-9

described in more detail in Chapter 3. The ESD approach uses a 6-tuple of events, conditions,
gates, process parameter set, constraint and dependency rules to represent the probabilistic
system evolution. The events represent transitions between system states. The probabilistic
approach is an extension of the CET approach. The GO-FLOW methodology uses signal lines
and operators. The operators model function or failure of the physical equipment, a logical
gate, and a signal generator. Signals represent some physical quantity or information.

All these methodologies are referred to as dynamic methodologies because they explicitly
account for the time element in system evolution to model the possible coupling of events
through the monitored/controlled process. Subject to given failure data and deterministic
system model accuracy, the techniques that allow the most accurate and comprehensive
modeling of the probabilistic system dynamics are the ones based on the Chapman-
Kolmogorov equation including CET, CCCM, CCMT, and ESD approaches. The main
challenge with these techniques is their computational complexity, both in model construction
and implementation. Another challenge is compatibility with existing PRA structures. The
advantage of the dynamic event-tree generation techniques (such as DYLAM, DETAM, DDET,
ADS and ISA) is that they are compatible with the existing PRA structure and are able to
generate possible scenarios of the system evolution exhaustively. The main disadvantage is
that the number of branches increases according to the power law with the number of branch
points. Most of the methods with visual interfaces can be regarded as semi-dynamic, because
they represent system dynamics qualitatively (e.g.,Petri nets, GO-FLOW) or in a coarse
partitioning of the system state space (i.e., in terms of large, small, medium changes in
controlled process variables such as the case with DFM). The others have similar capabilities
regarding process dynamics, representing it in a semi-quantitative fashion. All the methods
with visual interfaces are capable of scenario and cut set outputs. However, cut sets may
change with system evolution in time. Petri nets can be converted to fault trees. Again, fault-
tree structures may change in time.

1.2.3 Methodologies for Modeling Type II Interactions

While an important feature of feature of digital I&C systems that distinguishes them from analog
systems is the presence of software/firmware, there is no consensus in the reliability community
about how the reliability of software systems should be modeled, measured, and predicted, and
even whether such a concept makes sense for software. In a similar manner to NUREG-
CR/6091[2], this report will also treat digital I&C systems as integrated
hardware/software/firmware systems. We will consider reliability modeling methodologies for
pure software only when they have been applied to mission critical applications or are being
researched in the context of mission critical applications.

The methodologies available for the modeling of Type II interactions systems can be grouped
as follows:

• Markov methodology [50-52]
• Dynamic flowgraph methodology (DFM)[3, 4]
• Dynamic fault trees [11, 53-55]
• Petri net methodologies [14, 43, 44, 48, 56-58]
• Bayesian methodologies [59-62]
• Test based methodologies [63-70]

Fault injection is a process in which deliberate faults are introduced into a system and2

the system response is observed

1-10

• Software metric-based methodologies [71-73]

The references cited above are not exhaustive but are representative of the methodologies
proposed for the reliability modeling of digital I&C systems. It should be also noted that the
following comparative discussion of the methodologies is based only on the examples cited in
literature that may pertain to nuclear power plants. There is no current benchmark system for a
common comparison.

The Markov/CCMT methodology (see Chapter 4) represents system topology in terms of
system states (e.g. hardware/software/firmware configurations) and transitions between states.
Complex Type II interactions can be represented by explicit modeling of software and hardware
through fault injection or as a finite state machine. Markov/CCMT models are widely2

applicable to many types of digital systems, from high availability e-commerce sites to high
reliability systems that are analogous to digital I&C systems in nuclear power plants. Two
challenges are: a) model size for systems with a large number of states, and, b) determining
the transition rates (or probabilities) between states. Some issues regarding the second
difficulty are the following [2]:

• Repair rates are not necessarily appropriate to express the ongoing dynamics of digital
systems.

• If fault injection techniques are used to obtain the state transition rates, simulating
distributed faults and validating their propagation through the system may be difficult
tasks.

• Although software inputs may be classified statistically into equivalence classes, values
that are statistically or semantically "close" may not be "close" with respect to what the
software computes on those inputs.

References [3] and [4] describe how to apply DFM to validate the safety requirements of digital
I&C systems. The approach integrates the digital I&C system and the other physical
components with the process aspects of the system. The DFM models the physical and
software variables by mapping them into a finite number of states. The effects of process,
hardware and software/firmware functional behavior (including failures) on the system
performance are represented by decision tables. Fundamental issues that may have an impact
on the effectiveness of this approach include the difficulty of choosing a proper set of states for
each variable and the accuracy of the constructed decision tables. The trade-off is between the
accuracy of the model and the size and complexity of the model.

Dynamic fault-trees use timed house events [54, 55] or functional dependency gates [53] to
represent the time varying dependencies between basic events. Quantification of dynamic
fault-trees is performed using time dependent Boolean logic [54, 55] or Markov models [53].
Applications of dynamic fault-trees mostly include computer based systems [55], including
mission avionic systems [11]. Dynamic fault-trees are able to model the sequencing of events
in system evolution and have been used to model fault-tolerant systems[11, 54]. However, it is
not clear that they can be used to model the differences in system behavior that depend on the
exact timing of failure events [2].

1-11

Petri nets and their Type I interaction modeling capabilities were described in Section 1.2.1 of
this report. Some applications of Petri nets to model Type II interactions include multiprocessor
systems [48], network routing [56] and safety critical real-time control systems [74]. Logic
gates, including inhibit gates, delay gates and M-out-of-N gates can be modeled using Petri
nets [57]. Also, Markov chains can be generated automatically from Petri nets [56, 57] and Petri
nets can be used to detect faults in a manner similar to that of employing fault trees [57, 75].
The limitations of Petri nets include the following [2]:

• Stochastic Petri nets assume an exponential distribution of timed firings, which may not
be reasonable for certain types of systems.

• Petri nets are limited to systems that can be represented as states and transitions,
which implies that the system has to have a finite number of states. Thus, a Petri net
could not represent a continuous variable directly. However, [76] shows that systems
with continuous variables can be sometimes modeled as fluid or continuous stochastic
Petri nets, which can be represented by integral-differential equations very similar to
those in [34].

• Even simple systems may result in many parameters and many states which may lead
to computational difficulties in processing the Petri net.

A fair number of approaches are encountered in the literature using Bayesian methodologies
for quantifying the reliability of software-based safety critical systems [59-62, 77-83] with some
targeting nuclear applications [59-62, 77, 78, 80-83]. A subset of these Bayesian
methodologies use Bayesian belief networks (BBNs) for better visualization of system topology
as well as simplifying incorporation of data from different sources into the model (e.g.[59, 60]).
A Bayesian network is a graphical model that efficiently encodes the joint probability distribution
for a large set of variables [61] Bayesian methods can be used while testing the system to
increase the reliability accuracy incrementally when new testing data are available. Some other
advantages are the following [2]:

• Bayesian analysis can be used for both forward and backward inference [77].
• Bayesian analysis allows inferences to be based upon a combination of objective and

subjective evidence [61, 77, 81].
• Conservative/optimal stopping rules can be inferred for the operational testing of

safety-critical software [62, 80, 82].
• Bayesian analysis allows combining statistical evidence from disparate operational

environments [60, 81].
• Efficient computational methods and tools are available for exploring model

consequences [59].

In the use of Bayesian methodologies for representing Type II interactions, the choice of priors
is sometimes subjective [78]. Also, it is not clear how Bayesian methods can be used to
account for Type I interactions.

Test-based methodologies generally use either black-box testing or error history (or reliability
growth) models [66]. Software structure can also be represented [63, 71]. Black-box models
(e.g.[63, 65]) consider the software associated with a system or subsystem as one "black box,"
which is characterized by one overall failure rate (referred to a unit of execution time or

1-12

execution cycle), regardless of which subfunction(s) the software may be executing. Error
history models (e.g., [68-70]) analyze the software development process to obtain statistical
models that can predict future failures. Test-based methodologies are relatively simple to
implement and hardware/software/firmware interactions can be accounted for. The main
limitation is that testing is a value-added activity with respect to errors in software, i.e., it can
only inform the tester of the presence of an error under the tested conditions but not necessarily
under untested conditions [2].

Software metric-based methodologies use metrics such as lines of code, function points, defect
density, number of unique or distinct operators for a given implementation and number of
independent paths in a program to approximate the reliability of software [84]. It has been
claimed that software metric-based methodologies can be sufficiently accurate for applications
of failure rates of 10 /year [72, 85]. One advantage of this methodology is that the metrics can-4

be gathered as part of a mature software development process. The main limitation of the
approach is that it is only applicable to software and measures the software development
process, not the end result of the process. It also assumes that there is a high correlation
between the development process and the products resulting from applying the process.

1.2.3 A Subjective Assessment of Available Methodologies

The NUREG/CR-6901 has identified the following requirements a methodology needs to meet
for the reliability modeling of digital I&C systems [2]:

1. The model must be able to predict encountered and future failures well.
2. The model must account for the relevant features of the system under consideration.
3. The model must make valid and plausible assumptions.
4. The model must quantitatively be able to represent dependencies between failure

events accurately.
5. The model must be designed so it is not hard for an analyst to learn the concepts and it

is not be hard to implement.
6. The data used in the quantification process must be credible to a significant portion of

the technical community.
7. The model must be able to differentiate between a state that fails one safety check and

those that fail multiple ones.
8. The model must be able to differentiate between faults that cause function failures and

intermittent failures.
9. The model must have the ability to provide relevant information to users, including cut

sets, probabilities of failure and uncertainties associated with the results.
10. The methodology must be able to model the digital I&C system portions of accident

scenarios to a level of detail and completeness that non-digital I&C system portions of
the scenario can be properly analyzed and practical decisions can be formulated and
analyzed.

11. The model should not require highly time-dependent or continuous plant state
information.

While no single methodology was found to satisfy all the requirements above, NUREG/CR-6901
has identified the DFM and a combination of the Markov methodology with CCMT as the
methodologies with the most potential for near future applications, based on the cases reported

1-13

in the literature. In view of the lack of a benchmark system against which methodologies could
be compared objectively, NUREG/CR-6901 also recommended that:

• Two benchmark problems should be defined that respectively capture important
features of the existing analog I&C systems and their digital counterparts expected to be
encountered in risk important nuclear power plant applications.

• The benchmark problems should be used to compare the DFM and the Markov
methodologies with regard to the modeling of both Type I and Type II interactions using
a common set of hardware/software/firmware states and state transition data.

Chapter 2 describes the first such benchmark problem.

1.3 Review of Current NRC Position on Digital Systems

In response to the Commission PRA policy statement, the NRC staff developed a regulatory
structure for using PRA in risk-informed decision making for plant-specific changes [86, 87].
This regulatory guidance is provided in Regulatory Guide 1.174, which provides guidance on
the use of PRA findings and risk insights in support of licensee requests for changes to a
plant's licensing bases for license amendments and technical specification changes. As part of
this guidance a requirement is imposed that the quality of a PRA analysis used to support a
license amendment or application will be measured in terms of its appropriateness with respect
to scope, level of detail, and technical acceptability. The scope, level of detail, and technical
acceptability of the PRA are to be commensurate with the application for which it is intended
and the role the PRA results play in the decision process. In other words, the PRA, both in
general and for the particular application (digital systems) must adequately model the system
being reviewed. It should be made clear that there is a successful path to licensing of digital
I&C upgrades and new designs that relies on existing deterministic regulations.

Regardless of how a digital system is modeled, for the modeling to be considered acceptable it
must meet certain acceptance criteria. Whatever modeling methods are chosen, they must be
able to model the digital I&C systems and the portions of accident scenarios to such a level of
detail and completeness that the non-digital I&C system portions of the scenario can be
properly analyzed and practical decisions can be made.

1.4 Characterization and Taxonomy of Digital I&C Systems

It has been suggested [33, 88]that by categorizing the various digital systems used in safety
critical applications in nuclear power plants, it would be easier to determine which systems
should be modeled in the analysis and at what level of detail. The reason for developing a
taxonomy or categorization scheme is that digital safety systems often are required to
simultaneously satisfy a number of different functions that are characteristic of two or more
critical system properties. Additionally, the level of complexity of digital system models that
need to be used will depend on the digital system’s connections to the rest of the system. As
discussed in Rushby [33] it is also useful to be able to identify the various aspects of the
systems associated with timing, safety, and fault tolerance requirements.

In Perrrow's analysis [89] of this issue, which is based mostly on safety and system interactions
with the larger plant systems, he chose two attributes, ‘interaction' and ‘coupling', as the basis

1-14

of his categorization. Interaction, which in his model can range from linear to complex, refers
to the extent to which the behavior of one component in a system can affect the behavior of
other components. In a simple, linear system, components affect only other components that
are functionally ‘downstream;' in a more complex system, a single component may participate in
any number of sequences with any number of other components in any order. For example, in
a reactor trip system, if a sensor (or group of sensors) indicates the need to trip the reactor, the
component (the trip system) will provide an actuation signal to the control rod drive system.
However, in a more complex control system, a failure can affect the system it is controlling and
the controlled system can provide complex feedback to the controller. Complex interactions
can also result from internal communications failures as well. For example, voting logic in a
redundant system may need to handshake with redundant channels to avoid timing out a
watchdog timer: a complex interaction resulting in an unanticipated plant state may be the
result.

Perrow's “coupling,” which can range from “loose” to “tight”, refers to the extent to which there
is slack or flexibility in the system. Coupling is not defined as an independent concept; it is
important what the digital system is coupled to. Generally speaking, loosely coupled systems
are usually less time constrained than tightly coupled systems, can tolerate operating
sequences different than those expected, and may be adaptable to different purposes or to
operate under different assumptions than those originally considered. For example, a
navigation system on an airliner would be considered a loosely coupled system because the
operating state of the navigation system must be adaptable to random events and external
operators (the pilot). According to Perrow, the order and exact timing of inputs are not critical to
the accurate functioning of loosely coupled systems.

In Perrow's analysis, systems with complex interactions and tight coupling can promote
accidents because interactions are hard to understand and predict. Perrow advocates the use
of loosely coupled linear systems for safety applications. However, the need for high reliability
for safety critical digital systems in the nuclear industry has led to more complicated fault
tolerant systems. These systems tend to be more internally complicated, with extensive internal
redundancy, error checking, and both internal and external diversity to reduce the potential
effects of common cause failures. Additionally, the design of the overall plant frequently
requires tighter coupling between a control or protection system and the process it is controlling
or monitoring.

Recent research [90] has developed a taxonomy that includes the Perrow coupling attribute
(also see Section 1.2, Chapter 8). This taxonomy more completely defines what is meant by
tightly coupled and loosely coupled systems, and provides an interaction attribute that is defined
based on two sub-attributes, Type I interactions and Type II interactions. As indicated in
Section 1.2, Type I interactions are interactions between digital systems such as the reactor
protection system and control system and the controlled plant physical processes (e.g., heatup,
pressurization) that would produce failure modes that may be statistically interdependent due to
coupling through the monitored/controlled process. Type II interactions are
hardware/software/firmware interactions within a digital system (e.g., communication between
different components, multi-tasking, multiplexing, etc.) which can lead to failure modes that may
originate from communication between different components, multi-tasking, and multiplexing.

1-15

These two interaction attributes are both important to assessing the level of modeling detail
needed to:

1. differentiate between faults that cause function failures and intermittent failures,
2. differentiate between a state that fails one safety feature and those that fail multiple

features,
3. demonstrate that there is no important significance to the differences, and
4. insure that no failure modes are missed by the modeling effort (completeness).

However, these attributes cannot assess whether the digital system modeling is adequate in
terms of its effect on the accuracy of total plant metrics such as core damage frequency.

A three attribute categorization strategy that could be used as the basis of a performance
based requirement on level of modeling detail for digital safety systems is discussed below.
The first attribute, digital system complexity, would be based on Type II interactions and an
overall digital system size and complexity index. The size and complexity index could be a
function point or cyclomatic complexity metric [72, 91]. The attribute would measure be how
critical Type II interactions and system complexity is to the fault free representation of the digital
system.

The second attribute, digital system interactions/inter-conductivity, would be a combination of
coupling and Type I interactions. The attribute measure would be with how the digital system
under study interacts with other systems and process parameters within the plant and how
important accurately assessing these interactions are to the system reliability and plant risk.
Digital systems that are loosely coupled and/or have very few Type I interaction would not
interact dynamically with the overall system and would have a low interactions/inter-conductivity
score.

The third attribute would be digital system importance. This attribute measure would look at
both traditional risk important measures, such as component risk achievement worth [72], and
how important the system is for maintaining defense-in-depth. This measure could be
implemented by use of a plant integrated decision making panel similar to what is currently
done to determine if a system is included in the maintenance rule's (a) 4 requirements [92]. It
should be noted that because many of the digital systems included in this effort have significant
Type I interactions (and will score high on the system interactions/inter-conductivity attribute),
they may not be accurately modeled in the current PRA, so the information associated with their
risk importance measure may need to be adjusted accordingly.

One way to implement this conceptual idea is to develop a ranking system that would look at a
list of attributes that any particular digital system might process, and based on that list, rank the
three attributes. Systems like the reactor protection system (RPS) would have a relatively high
risk importance score but likely a lower system complexity score. Systems such as a digital
feedwater control system (DFWCS) might have a relatively low system importance score but
high system complexity and system interactions/inter-conductivity score (see Fig.1.3.1).

1-16

Figure 1.3.1: Conceptual Model of Digital System Modeling Categorizations

 Figure 1.3.2: Possible Implementation of the Conceptual Model

1-17

Figure 1.3.2 shows a possible set of regions that would provide guidance as to what level of
modeling detail would be needed based on what region a particular system score falls in. For
some systems in Region 1 with relatively low complexity, interaction and importance would
mean any basic model could be used to support risk informed applications; whereas, systems
that fall in Region 3 would need to have complete dynamic models to support their licensing
application. The shape of these regions would not need to be as shown and would not even
need to be able to be drawn. Figure 1.3.2 simply provides a conceptual model that could be
used to explain the concept that, because of their design and function, some digital systems
may need to be modeled with at a much higher level of detail than others.

2-1

2. DESCRIPTION OF THE BENCHMARK SYSTEM

Notation

C
t

xë
P(t)

nx

jV
J
n
N

mn

mN
M

LnE

lnC

FnC

BnS

wnh

,

pnC

BnC

Fault coverage
Time
Failure rate in mode x
Power
SGn level
Cells that partition the CVSS (j=1,...,J)

jTotal number of V
Component state combination index
Number of components state combinations

m mComponent state index (n =1,...,N)

mTotal number of n
Number of components
Level error for SGn
Compensated level for Sgn
Flow demand for SGn
BFV position for SGn
Water flow rate into SGi (i =1,2)
Steam flow rate out of SGi (i =1,2)
Feedwater temperature for SGi (i =1,2)
MFVn (in=1,2) position, MFVn position set by
PDI controller n (n=1,2)

Pump speed for FPn (n=1,2)

Compensated power/flux SGn (n =1,2)

BFVn (n =1,2) demand

Level setpoint for SGn (n =1,2)

Controller parameters for FPn (n =1,2);

Arguments indicate table lookup variables

Controller parameters for MFVn (n =1,2);

Arguments indicate table lookup variables

Controller parameters for BFVn (in=1,2);

arguments indicate table lookup variables

Controller parameters (l=1,…,6)

Controller state (failed or operational)

FPn history (n =1,2) maintained as data base

MFVn history (n =1,2) maintained as data base

BFVn history (n =1,2) maintained as data base

2-2

The benchmark system specification is based on the digital feedwater control system for an

operating PWR. The architecture, systems, and their interconnections of the system described

have evolved from their analog counterparts to digital ones. However, the system described in

the following sections is used for illustrative purposes only. It has been generalized to be more

representative of this class of systems.

2.1 System Overview

The feedwater system serves two SGs (Fig. 2.1.1). Each SG has its own digital feedwater

controller. The purpose of the feedwater controller is to maintain the water level inside each of

the SGs optimally within ± 2 inches (with respect to some reference point) of the setpoint level

(defined at 0 inches). The controller is regarded failed if water level in a SG rises above +30

and falls below -24 inches. Each digital feedwater controller is connected to a feedwater pump

(FP), a main feedwater regulating valve (MFV), and a bypass feedwater regulating valve (BFV).

The controller regulates the flow of feedwater to the steam generators to maintain a constant

water level in the steam generator.

In addition to the FP, FP seal water system, MFV, and BFV, the feedwater control system

contains high pressure (HP) feedwater heaters and associate piping and instrumentation.

In this example, FPs are steam turbine driven, horizontal, double-suction, double volute, single

stage, centrifugal pumps. The pumps have a design output of 15,000 gpm at a suction rate of

318.7 psia and a discharge pressure of 118.9 psia. The normal operating discharge pressure is

approximately 1100 psig at 100%. The FP is driven by a dual admission, horizontal, 9140 HP,

5350 rpm steam turbine. During plant operation with power greater than 5%, the turbine is

aligned to the reheat and main steam system. Steam is supplied from the main steam system

during plant startup until reheat steam pressure is sufficient to supply the turbines. If main

steam is not available or power is less than 5%, steam can be supplied to the feed pump

turbine from the auxiliary steam system. The purpose of the FPs is to pump the feedwater

through the high pressure feedwater heaters into the SGs with sufficient pressure to overcome

both the SG secondary side pressure and the frictional losses between the feed pump and the

SG inlet. The MFV and BFV regulate the amount of feedwater going to the SG in order to

maintain a constant water level in the SG.

The MFV is a 10 inch, air operated, angle control valve with 16 inch end connections. This

valve is made of steel and has a design rating of 2160 psig at 1000EF. The actuator is a piston

type actuator, with separate instrument air supplies to the top and the bottom of the piston. Ball

valves control the admission of operating air to the piston for opening and closing operations.

The BFV is a 6 inch, air operated, steel control valve.

From an operational point of view, the feedwater control system operates in different modes

depending on the power generated in the primary system. These modes are the following:

• Low power automatic mode

A PID controller is a proportional-integral-derivative controller.3

2-3

• High power automatic mode

• Automatic transfer from low to high power mode

• Automatic transfer from high to low power mode

The low power mode of operation occurs when the reactor operates between 2% and 15%

reactor power. In this mode, the BFV is used exclusively to control the feedwater flow. The

MFV is closed and the FP is set to a minimal speed. The control laws use the feedwater flow,

feedwater temperature, feedwater level in the steam generator, and neutron flux to compute the

BFV position. The feedwater level is fed to a proportional-integral (PID) controller using the3

feedwater temperature to determine the gain. Then this value is summed with the feedwater

flow and neutron flux. Essentially, neutron flux and feedwater flow are used to predict required

changes in water levels.

High power mode is used when the reactor power is between 15% and 100% reactor power. In

this mode, the MFV and the FP are used to control the feedwater flow. The BFV is closed in a

manner that is similar to low power mode. The control laws (see Section 2.2) use the feedwater

level in the steam generator, steam flow, and feedwater flow to compute the total feedwater

demand. This computed value is used to determine both the position of the MFV and the speed

of the FP. The FP also uses the other digital feedwater MFV controller’s output to compute the

speed needed. The feedwater flow and steam flow are summed and fed to a set of PI

controller algorithms. The output from these controller algorithms is added to the feedwater

level and that result is fed to a PI controller algorithm that uses the steam flow for the controller

algorithm’s gain.

Each digital feedwater controller is comprised of several components (Fig. 2.1.2) which provide

both control and fault tolerant capabilities. The control algorithms are executed on both a main

computer (MC) and backup computer (BC). These computers produce output signals for the

MFV, BFV, FP and pressure differential indicator (PDI) controllers. The selection of the

appropriate signal to be used (from the MC or BC) is determined by the PDI controller. Each of

these controllers can forward the MC or BC’s outputs to their respective controlled device (i.e.

MFV, BFV or FP), or it can maintain the previous output to that device. If the controllers decide

to maintain a previous output value to a controlled device, it is necessary for operators to

override the controller (Section 2.3).

Transitions between low and high power are controlled by the neutron flux readings. When the

system is in low power mode and the neutron flux increases to a point at which high power

mode is necessary, the MFV is signaled to open while the BFV closes to maintain needed

feedwater flow. The opposite situation occurs when the system is in high power mode and the

neutron flux decreases to a point when low power mode is needed.

2-4

Figure 2.1.1 The Benchmark System Outlay

2-5

Figure 2.1.2 Detailed View of the DFWCS for SG1

2.2 Detailed View of the Benchmark System

This section describes the DFWCS at a greater level of detail. In particular, the physical

connections between the sensors, computers, controllers and actuated devices (i.e., MFV, BFP

and FP) are examined. In addition, the control laws are stated and the fault tolerant features of

the architecture are described.

2-6

2.2.1 Physical Connections for the DFWCS

The DFWCS obtains information about the state of the controlled process through the use of

several sensors that measure feedwater level, neutron flux, feedwater flow, steam flow, and

feedwater temperature (Fig.2.1.2). In an actual conversion from analog to digital I&C,

additional sensors may be employed for redundancy. However, it may not be feasible to

increase the number of sensors if modification to the containment building is needed to run the

additional electrical lines. This challenge may affect the steam flow, feedwater temperature,

and neutron flux sensors. In that respect, the sensors for the companion steam generator may

be used to provide redundancy instead of including two sensors for each of the MC and BC. As

shown in Figs. 2.2.1-2.2.5, the sensor signals are routed to provide information to both the MC

and BC. Setpoint data is delivered from the MFV controller to the MC and BC through an

analog signal.

Figure 2.2.1 Feedwater Temperature Sensor Signals

2-7

Figure 2.2.2 Feedwater Flow Sensor Signals

Figure 2.2.3 Neutron Flux Sensor Signals

2-8

Figure 2.2.4 Feedwater Level Sensor Signals

2-9

Figure 2.2.5 Steam Flow Sensor Signals

The DFWCS components are connected together in several different ways as shown in Figs.

2.2.6 and 2.2.7. First, both the MC and BC provide input signals to the MFV, BFV and FP

controllers through an analog control signal and failure status signals. The MFV, BFV, and FP

controllers are configured within the DFWCS to share status information. The PDI controller

serves as a backup for the MFV controller by sampling the output of the MFV controller. If the

MFV controller output is lost, the PDI will send the last good MFV controller signal to the MFV.

The PDI controller also shares status information with the MFV, BFV and FP controllers.

2-10

Figure 2.2.6 Digital Feedwater Controller Status Interconnections for MC

2-11

Figure 2.2.7 Digital Feedwater Controller Status Interconnection for BC

2.2.2 Control Laws

The control laws for the feedwater controller for SGn (n=1,2; see Fig. 2.1.2) under normal

system operation are taken from the control algorithm of the DFWCS of an operating PWR and

can be expressed as follows:

Rate of level change: (2.2.1)

Flow Demand: (2.2.2)

Compensated Water Level: (2.2.3)

2-12

Compensated Flow Error: (2.2.4)

BFV Demand: (2.2.5)

Compensated Power: (2.2.6)

FP Demand: (2.2.7)

MFV Demand: (2.2.8)

BFV Demand: (2.2.9)

FP Speed: (2.2.10)

MFV Position: (2.2.11)

BFV Position: (2.2.12)

PDI Decision: (2.2.13)

Also, all sensor inputs are averaged before being used by the control laws. For example, the

feedwater level for SG1 is the average of the two feedwater level sensors LV1 and LV2 (see

Fig. 2.1.1).

2-13

Rate of feedwater level change is given by Eq. (2.2.1). In Eq. (2.2.1) the water inflow rate

into SGn (see Fig. 2.1.2) depends on the MFV and BFV positions and FP speed, respectively,

in general. The steam flowrate is determined from the physical process equations

modeling the mass and energy transfer in SGn (see Appendix A). These flow rates are found
from

 (2.2.14)

and

 (2.2.15)

where the subscript i denotes the number of inlets and exits to SGn (n=1,2). The right hand

sides of Eqs. (2.2.14) and (2.2.15) are obtained from the solutions of the equations in Appendix

A for the appropriate upper-lower SGn (n=1,2) combination (also see Section 2.2.3). For the

benchmark system under consideration there is one inlet and one exit for each steam generator

and i=1.

Equations (2.2.2) - (2.2.4) compute the flow demand for high power mode for the feedwater

controller. The dynamic gain and in Eq. (2.2.2) are obtained from a lookup

table on the steam flow rate and BFV opening, respectively. Equations (2.2.5) computes the

BFV demand for low power mode. The dynamic gain and in Eq. (2.2.5) are

obtained from a lookup table on the feedwater temperature and the MFV opening respectively.

The subscripts m and b in Eqs. (2.2.10)-(2.2.15) refer to signals from the main and backup

CPUs respectively. The , and in Eqs. (2.2.10)-(2.2.15) denote history data for the

FP, MFV and BFV positions, respectively. If both of the MC and BC are failed, these data are

used to determine the FP, MFV and BFV positions.

2.2.3 Steam Generator Simulation Package

wn sn As indicted in Section 2.2.2, f and f (see Eqs. (2.2.14) and (2.2.15)) are determined from the

mass and energy transfer in SGn. In that respect, the DFWCS behavior is intimately related to

the physical processes in SGn. The SG simulation package used in NUREG/CR-6465 [4] was

coupled with the control system defined by Eqs. (2.2.1) - (2.2.13) to model the mass and

energy transfer in SGn. This steam generator simulation package, developed as a Borland

C++ project, is based on a vertical U-tube steam generator typical of a two loop PWR. The

simulation package consists of a steam generator model, a main feedwater and auxiliary

feedwater system models and a steam header model. The steam header model is needed to

sn determine f in Eq. (2.2.15). The auxiliary feedwater system model may be needed in

determination of the DFWCS response following loss of main feedwater flow or reactor trip at

2-14

full power. These models will be discussed in greater detail in the following Sections 2.2.3.1 -

2.2.3.3.

The SG simulator package provides the following process parameters to the control system:

• Heat flux

• Steam flow

• Feedwater flow

• Steam generator level

• Feedwater temperature

The control system in turn processes these inputs through the control laws and outputs the

following processor parameters to the SG simulation package:

• Feedpump speed

• Main flow valve position

• Bypass valve position

2.2.3.1 Steam Generator Model

A schematic of the steam generator model is shown in Fig. 2.2.8. Reactor coolant enters the

SG hot leg plenum, flows through the SG tubes to the cold leg plenum, and enters the primary

system cold leg. While flowing through the tubes, heat is transferred from the primary coolant

to the SG secondary (shell) side and boils the secondary coolant.

The shell side of the steam generator consists of an evaporative section and a steam drum.

The evaporative section contains the U-tubes, and is located in the lower shell, while the steam

drum houses the steam separator and dryer equipment. The steam drum section has a larger

overall diameter than the evaporative region. There is a flow restrictor at the top of the steam

drum where the steam line connects to the SG.

The shell side of the steam generator is modeled as two non-equilibrium regions (Appendix A)

separated by a moving boundary which is the SG level (see Fig. 2.2.8). The simulation model

recognizes the different flow areas of the evaporating and steam drum sections. As the level

moves between the two sections, the model accounts for the flow area change when computing

SG level. The governing equations for the shell side of the SG are given in Appendix A and

model the following:

• Conservation of mass in each region

• Conservation of energy in each region

• Equations of state

• Constant volume constraint.

2-15

The SG shell side inventory is normally in a saturated state. There are, however, transients

that may lead to non-equilibrium conditions. The two regions of the non-equilibrium SG model

may be in the following thermodynamic states:

• The lower region (F region) is either subcooled liquid or saturated liquid with bubbles

forming and rising to the surface.

• The upper region (G region) is either superheated steam or saturated steam with liquid

droplets forming and flowing to the liquid region.

The two regions of the steam generator may have four different combinations of

thermodynamic states and there is a different set of governing equations for each combination:

• Upper region (G) superheated steam, lower region (F) subcooled liquid.

• Region G superheated steam, region F saturated liquid with bubbles forming.

• Region G saturated steam with droplets forming, region F subcooled liquid.

• Region G saturated steam with droplets forming, region F saturated liquid with bubbles

forming.

The steam generator model accounts for heat and mass transfer between the two regions.

Mass transfer is modeled in the bubble rise and condensate drop models. The governing

differential equations for each thermodynamic state are derived by first applying the mass and

energy equations as well as the equations of state to each region of the steam generator. The

governing equations for the four possible combinations of states in the steam generator and the

way in which they are solved are given in Appendix A.

2-16

Figure 2.2.8 Schematics of a Steam Generator

2.2.3.2 Main Steam System

The main steam system in this model consists of the system of pipes and valves between the

steam generator and the turbine. The system piping includes the main steam header and main

steam line. Valves include the main steam isolation valve (MSIV), nine safety valves, the

turbine stop valve, and turbine governor valve. A flow restrictor located at the junction between

the steam line and steam generator is also included in the model. The operations of the steam

dump and steam bypass systems are not included in the model.

The Nyquist criterion states that the highest frequency present in a signal must be less4

than half of the sample frequency [93].

2-17

The thermodynamic state of the main steam system is governed by conservation of mass and

energy. Equations of motion are applied to determine the flow rate between the steam

generator and the steam header [4]. The flow model is limited to choked flow conditions. The

flow at the flow restrictor, MSIV, the safety valves, and the turbine valve is also governed by the

equation of motion and limited to choked flow conditions.

During transients which exceed the capacity of the pressure control system, the steam

generator pressure is controlled by a set of nine spring-loaded safety valves. The valve

operations are expressed by a set of bistable actions. The model accounts for different lift

settings between safety valves to simulate lift and reset sequence.

2.2.3.3 Main Feedwater and Auxiliary Feedwater Systems

The main feedwater system (MFWS) is designed to deliver water to the steam generators

during power operations and after reactor trip. For the purpose of this study, feedwater flow

delivered to the feedwater regulating and bypass valves are modeled. The feedwater

regulating and bypass valves are controlled by the DFWCS.

The auxiliary feedwater system (AFWS) is designed to deliver water to the steam generator

upon actuation of the emergency feed signal on low steam generator level. The AFWS flow is

controlled by a bistable controller. Its actuation on low steam generator level is independent of

the MFWS. The SG level instruments associated with the AFWS operation are redundant and

safety related.

2.2.4 Fault Tolerant Features

The benchmark system has a number of fault tolerant features:

• Since the MFV, BFV, FP controllers forward the control signals to the corresponding

control points (the MFV, BFV, and FP, respectively, as well as the PDI controller), they

provide a level of fault tolerance if both the MC and BC fail by allowing the operators

time to intervene by holding the outputs of each to a previously valid value.

• The MC and BC, the MFV, BFV and FP and the PDI controllers are each connected to

an independent power source wired to a separate bus. A single power source failure

can only affect one computer, all of the MFV/BFV/FP controllers, or the PDI controller at

one time.

• Both the MC and BC are set to oversample at 3 times the Nyquist criterion to avoid4

aliasing.

• The MC and BC are able to process the sensor inputs and perform the control

algorithms within one third of the needed response frequency of the physical process. A

Fail over is the process in which a degraded component is removed from control and5

replaced by a healthy component

2-18

failure in the MC or BC can be detected and the fail over to a healthy component can5

occur with enough time to meet the response requirements of the process.

• The water level setpoint is taken from a switch connected to the MFV and is propagated

to both the MC and BC. If the setpoint signal goes out of range, then the computers fall

back on a preprogrammed setpoint value.

• Each computer (MC or BC) is connected to a watchdog timer. A watchdog timer is a

hardware timer and associated connections used to determine if a software error or

other computer failure has rendered a processor unusable. A normally functioning

computer resets the watchdog timer at regular, defined intervals so the timer does not

“go off.” However, in the presence of a software error or another computer failure, the

timer will not be reset by the computer and the timer can go off. For example, a

runaway process, halted (failed) processor, or a sufficiently lengthy computational delay

may result in failure to reset the watchdog timer. As a result, the watchdog timer may

go off. If the timer goes off, all components in the controller connected to the watchdog

timer are notified of the computer failure. In the case of the benchmark system, the

MFV, BFV, and FP controllers are notified and transfer control away from the affected

computer.

• Each computer (MC or BC) verifies and validates its inputs, checking for out range and

excessive rate changes in the inputs that would indicate errors in the sensor readings or

problems with the analog to digital conversion of the values. Each computer will ignore

input that fails these checks if the other inputs are still valid.

• The values of the inputs are averaged across redundant sensors.

• Deviation between the two sensors is detected and, if the deviation is large enough, the

computer can signal a deviation error to the MFV, BFV, and FP controllers so they may

switch to the other computer.

• The PDI controller provides one more level of fault tolerance, in that it holds the MFV to

a needed position if the MFV does not produce output.

• The MFV, BFV and FP controllers also send their outputs to the MC and BC. When the

MC (or BC) is in control, it compares its output to the signals that the MFV, BFV and FP

controllers output signal to the actuators. If the output signal differs, then the computer

indicates to the MFV, BFV and FP controllers that it has failed.

The digital feedwater controller failover logic consists of the following: the MC has control of the

control points initially, with the BC in hot standby. If the MC fails, then the BC takes control. If

the BC fails after the MC has failed, then the MFV, BFV, and FP controllers each use one of

their recent output value from the computer (essentially the last one that the controller can

store) and recycle that value to the control points. Any time a component fails, the operator

console is notified to allow operators to take mitigating actions.

2-19

2.3 Description of System Operation under Abnormal Conditions

This section presents a failure modes and effects analysis (FMEA) of the digitial feedwater

control system. These failure classes include sensor failures, output failures, input failures and

internal failures. Each of the failure classes may contain a large number of faults. For

example, sensor failure may be the result of a physical sensor failure, cut wires, loose

connections, or hardware (such as analog to digital converters) on the receiver failing. While

these failure classes may be general, they are expected to capture the necessary information

about possible failures of the benchmark feedwater control system. Each component type in

the system, MC, BC, MFV controller, BFV controller, FP controller and PDI controller has a

separate FMEA chart associated with that component. Full FMEA is given in Appendix B. In

addition, the actuated devices (i.e. MFV, BFV and FP) may fail to perform their design due to

mechanical failure. The only mechanical failures that will be considered for the benchmark

DFWCS are the valves getting stuck in their current position.

2.3.1 Main and Backup Computer FMEA

Table 2.3.1 summarizes MC failure classes. Sensor failures may occur from many possible

sources, including decaying or broken wires, failed sensors, intermittent transmission failures,

or analog to digital conversion errors. A sensor failure is detected through the use of rate of

change checks, range checks, and comparison to previous values used by both the MC and

BC. For illustration, if the sensor was reading a 1.5 feet water level signal and then it received

a 150 feet signal, then this value is considered to be an invalid sensor reading. Also, an

indicator light illuminates on the operators’ console. The MC and BC each disregard an invalid

sensor reading if there is one sensor of each type that is valid and wait for one computation

interval before indicating their failure. However, a common mode sensor failure that causes

one sensor of a type from both the MC and BC will not cause the MC and BC to fail. Rather,

they will operate using only one sensor. Thus, the controlled process is not affected by a single

sensor failure. However, due to the physical wiring of the sensors, if one sensor fails, its failure

may affect sensor readings for several computers on both steam generators and may lead to a

common mode failure. Even with this type of failure, the digital feedwater system can still

maintain control. As in the case of single sensor failure described above, this event may occur

from many possible sources including decayed or broken wires, failed sensors, and intermittent

transmission failures. Multiple sensor failures are detected in the same manner as the single

sensor failure described earlier. The MA and BC uses previous values to perform their

computations if multiple sensors fail as in the single sensor failure case. Also, the MC and BC

notifies the MFV, BFV, and FP controllers that it considers itself failed if the sensor readings do

not return to normal after a brief delay (which depends on the sampling requirements of the

physical process). This notification forces the MFV, BFV, and FP controllers to switch their input

acquisition device as necessary (i.e. they switch from the MC to BC, BC to MC). In case both

the MC and BF are failed, all the controllers maintain the latest valid value. Power level

changes are disabled in this mode. An indicator light illuminates on the operators’ console.

Control could be affected if the MC and BC have invalid data and the MFV, BFV, and FP

controllers are forced to control the process.

A Byzantine failure is one in which any failed processes are modeled as actively trying6

to disrupt the normal goals of the system. This definition comes from the Byzantine agreement
problem as defined by Lamport [94]

2-20

The MC failure status signal can be activated if the MC takes itself down through sensor validity

checks, through application failures or through a communication problem with the MFV, BFV,

and FP controllers. The MC failure status signal can also be activated if the MC detects that

the output it sent to the MFV, BFV or FP controllers differs from the output actually used by

those controllers. Alternatively, the MC’s watchdog timer may go off. Finally, the MC may fail

and its failure may not be detected due to a communication failure with the MFV, BFV, and FP

controllers. Failure is detected through the use of a watchdog timer and the computer’s internal

validity checks. If the watchdog timer goes off, it signals the MFV, BFV and FP controllers to

notify them that the MC has failed. These are the only components that are affected by a MC

failure. The MC also checks and indicates that it is unreliable if any detectable errors occur.

For instance, the MC indicates that it is unreliable if it can detect that its sensors readings are

invalid. A detected failure causes the MC to signal failure and the system then transfers to

using the BC. If a failure is not detected, then the system continues to use the MC until either

the output goes out of range or the rate of change exceeds what is allowed. Then the BC takes

over. The impact of a detected failure is minimal as the BC takes control due to the watchdog

timer reset. The system can maintain control. However, an undetected failure may act as a

Byzantine failure . For example, if the MC experiences a crash, possibly an arbitrary value may6

be the output to the BFV, MFV and FP controllers. This is one of the possible additional failure

modes of digital I&C systems. Also, the MC’s output may drift or simply fail to send an output

signal. At some point, the output signal may change such that it goes out of range, the rate of

change becomes too high or the output signal is lost. Should this situation occur, the MFV,

BFV, and FP controller(s) will detect the error and switch to the BC. However, there still may be

a loss of control until the failure is detected. It is assumed that the arbitrary value category

includes any Byzantine failures that may occur.

Table 2.3.1 Abbreviated FMEA for the MC

Failure Type Detection of Failure Effects of

Failure on

Controller

Effects on Controlled/Monitored

Process Variables

Loss of one sensor
inputs of a type of
input via computer
diagnostics.

Computer detects loss in
sensor reading.

Computer
ignores failed
sensor. If the
sensor does not
return (to valid
input), computer
indicates it has
failed if the
other computer
is operating
normally.

None. Backup Computer takes
control if the sensor does not
return.

2-21

Loss of both sensor
inputs of a type of
input via computer
diagnostics.

Computer detects loss in
sensor reading.

Computer uses
the old values of
the sensor
reading. If the
sensor reading
do not return,
computer
indicates that it
has failed.

None. At the worst case the Backup
Computer takes control.

Intermittent sensor
failure.

Computer detects out of
range output and physically
impossible rates of change.

Computer
ignores sensor
input and uses
old values. It
fails itself if
sensor does not
return.

None. At the worst case the backup
computer takes control.

Sensor failure. Main and backup computers
detect this via range output
and physically impossible
rates of change.

Computer
ignores sensor
input and uses
old values. It
fails itself if
sensor does not
return.

Both the main and backup
computers will fail themselves if the
sensor does not return.

Both sensors fail. Main and backup computers
detect this via range output
and physically impossible
rates of change.

Computer
ignores sensor
input and uses
old values. It
fails itself if
sensor does not
return.

Both the main and backup
computers will fail themselves if the
sensors do not return.

Loss of an output (0.0
vdc).

Component connected to
computer detects 0.0 vdc
input reading.

Component
signals that this
computer has
failed.

None. The backup computer takes
control.

Loss of Power. Computer failed signal is
tripped.

Continue with
fail over logic.

None. The backup computer takes
control and no effect on water level.

Roundoff/truncation/
sampling rate errors.

Detected by connecting
components if output ever is
out of range or exceeds the
physically possible rate.

Component fails
the computer.

If not detected, water level may
drift.
If detected, the backup computer
takes control and no effect on water
level.

Unable to meet
needed response
requirements.

Watchdog timer detects the
failed computer.

Failover action
occurs.

None. Backup computer takes
control with no effect on water level.

2-22

Watchdog timer fails
to activate.

Detectable when outputs of
computer go out of range or
exceed the physically
possible rate.

Failover action
occurs if
detected.

If not detected, water level may
drift.
If detected, the backup computer
takes control with no effect on
water level.

Watchdog timer
activates when
computer has not
failed.

Not detectable. Failover action
occurs.

None. Backup computer takes
control.

Arbitrary value output. Detectable by connected
component if the computer
does not reset the watchdog
timer.

Component
connected to
output signals
that this
computer has
failed.

If not detected, water level may
increase or decrease.
If detected, the backup computer
takes control and no effect on water
level.

MFV/BFV/FP
controllers do not use
the output that the MC
computed.

Detected by comparing
outputs of MFV/BFV/FP
controllers with MC output

Component
initiates failover
operation.

The valves and feedwater pump will
remain in the same state if the fail
over fails to the MFV/BFV/FP
controllers. Thus the effect on the
process variables depends on the
event in consideration.

Setpoint drift. Detectable by the computers
once the setpoint has drifted
out of range.

Computers
revert to using a
preprogrammed
value.

Water level will increase or
decrease until it reaches the
setpoint that has drifted out of
range, then water level will settle to
the preprogrammed value.

Table 2.3.2 shows BC failure modes. A simultaneous MC and BC failure is detected through

the use of watchdog timers. If the watchdog timers go off, the MFV, BFV and FP controllers

are notified of the computer failures. The MFV, BFV, and FP controllers are the only

components that are affected directly by this failure. An indicator light illuminates on the

operators’ console. The failure is mitigated by the action of the MFV, BFV, and FP controllers

to hold the outputs at their old values. The impact of these failures is, as expected, quite

significant. In this case, the digital control system has failed and the operators must intervene

to take manual control of the process as the MFV, BFV, and FP controllers continue to output

old values to the MFRV, BFRV, and FP controllers. The problems resulting from a MC and BC

failure get worse if the failures are not detected, as the MFV, BFV, and FP controllers will take

more time before they take over.

Table 2.3.2 Abbreviated FMEA for the BC

Failure Type Detection of Failure Effects of

Failure on

controller

Effects on process variables

2-23

Loss of one sensor
inputs of a type of
input via computer
diagnostics.

Computer detects loss in
sensor reading.

Computer
ignores failed
sensor; if the
sensor does not
return, computer
indicates it has
failed.

None.

Loss of both sensor
inputs of a type of
input.

Computer detects loss in
sensor reading.

Computer uses
the old values of
the sensor
reading; if the
sensor reading
does not return,
computer
indicates that it
has failed.

The valves and feedwater pump
will remain in the same state if the
failover to the MFV/BFV/FP
controllers. Thus the effect on the
process variables depends on the
event in consideration.

Intermittent sensor
failure.

Computer detects out of
range output and physically
impossible rates of change.

Computer
ignores sensor
input and uses
old values; fails
itself if sensor
does not return
to valid input.

The valves and feedwater pump
will remain in the same state if fail
over to the MFV/BFV/FP
controllers. Thus the effect on the
process variables depends on the
event in consideration.

Sensor failure. Main and backup computers
detect this via range output
and physically impossible
rates of change.

Computer
ignores sensor
input and uses
old values. It
fails itself if
sensor does not
return.

Both the main and backup
computers will fail themselves if
the sensor does not return.

Both sensors fail. Main and backup computers
detect this via range output
and physically impossible
rates of change.

Computer
ignores sensor
input and uses
old values. It
fails itself if
sensor does not
return.

Both the main and backup
computers will fail themselves if
the sensors do not return.

Loss of Power. Computer failed signal is
tripped.

Continue with fail
over logic (no
effect if MC is in
control of the
process).

The valves and feedwater pump
will remain in the same state if fail
over fails to the MFV/BFV/FP
controllers. Thus the effect on the
process variables depends on the
event in consideration.

2-24

Roundoff/Truncation/
Sampling rate errors.

Detected by connecting
components if output ever is
out of range or exceeds the
physically possible rate.

Component fails
the computer.

If not detected, unknown.
If detected, the valves and
feedwater pump will remain in the
same state if fail over fails to the
MFV/BFV/FP controllers, thus the
effect on the process variables
depends on the event in
consideration.

Unable to meet
needed response
requirements.

Watchdog timer detects this
and fails the computer.

Fail over action
occurs.

The valves and feedwater pump
will remain in the same state if fail
over fails to the MFV/BFV/FP
controllers. Thus the effect on the
process variables depends on the
event in consideration.

Watchdog timer fails
to activate.

Detectable when outputs of
computer go out of range or
exceed the physically
possible rate.

Fail over action
occurs if
detected.

If not detected, unknown.
If detected, the valves and
feedwater pump will remain in the
same state if fail over fails to the
MFV/BFV/FP controllers, thus the
effect on the process variables
depends on the event in
consideration.

Watchdog timer
activates when
computer has not
failed.

Not detectable. Failover action
occurs.

The valves and feedwater pump
will remain in the same state if fail
over fails to the MFV/BFV/FP
controllers. Thus the effect on the
process variables depends on the
event in consideration.

Arbitrary value output. Detectable by connected
component if the computer
does not reset the watchdog
timer.

Component
connected to
output signals
that this
computer has
failed.

If not detected, unknown.
If detected, the valves and
feedwater pump will remain in the
same state if fail over fails to the
MFV/BFV/FP controllers. Thus the
effect on the process variables
depends on the event in
consideration.

MFV/BFV/FP
controllers do not use
the output that the BC
computed.

Detected by comparing
outputs of MFV/BFV/FP
controllers with BC output

Component
initiates failover
operation.

The valves and feedwater pump
will remain in the same state if the
fail over fails to the MFV/BFV/FP
controllers. Thus the effect on the
process variables depends on the
event in consideration.

Setpoint drift. Detectable by the computers
once the setpoint has drifted
out of range.

Computers
revert to using a
preprogrammed
value.

Water level will increase or
decrease until the setpoint has
drifted out of range, then water
level will settle to the
preprogrammed value.

2-25

2.3.2 The FMEAs for MFV, FP, BFV and PDI decision Controllers

The abbreviated FMEA for MFV, BFV and FP controllers are given in Tables 2.3.3, 2.3.4, and

2.3.5, respectively. The MFV may fail due to a power loss or an internal program crash

(possibly from hanging, hard crash, or output failure). This event can only be detected if the

MFV output drops to 0.0 volts. In this case, the PDI controller senses the drop in output and

asserts the old value of the MFV controller’s output to the MFV. The PDI controller acts as the

MFV would, outputting the old output to the MFV. At best, the digital feedwater control system

reverts to a manual mode (and fails). At worst, the MFV controller does not output the correct

signals to the MFV and can cause loss of control of the process. The BFV controllers may fail

because of a power loss or a program crash. This event cannot be detected by the digital

feedwater control system. The BFV controller does not output the correct signals to the BFV

and may cause loss of control of the process. The MFV/BFV/FP controllers may disagree as to

the failure states of each computer. It is then possible for the MFV controller to be accepting

different signals than the FP and BFV controllers. This event cannot be detected. The impact

of this failure is that the SG water level may increase or decrease depending on the failure of

the MC/BC and the MFV/BFV/FP controller’s indication of those failures. Communication

between the MC and BC and the MFV controller is accomplished simply by the analog outputs

between them. Also, communication between the MFV, BFV, FP and PDI controller occurs only

to coordinate failure detection. This communication type of failure is captured by the computer

erroneously reported failed or not failed. Finally, it is noted that the MFV, BFV, PDI and FP

controllers are all digital also, and as such may experience crashes that may cause them to be

unable to detect failures or output arbitrary values.

Table 2.3.3 Abbreviated FMEA for MFV Controller

Failure Type Detection of Failure Failure Effects Failure Effects on

Process Variables

Loss of power. Detected by PDI. PDI uses old signal for
the MFV.

The MFV will remain in
the same state. Thus the
effect on the process
variables depends on the
event in consideration.

Loss of output signal. Detected by PDI. PDI uses old signal for
the MFV.

The MFV will remain in
the same state. Thus the
effect on the process
variables depends on the
event in consideration.

Computer erroneously
reported failed.

Not detected. Component initiates
failover operation.

The MFV will remain in
the same state if the fail
over fails to the
MFV/BFV/FP controllers.
Thus the effect on the
process variables
depends on the event in
consideration.

2-26

Computer erroneously
reported not failed.

Can be detected if
computer fails and output
of computer is out of
range, the rate of change
is too great, or the
watchdog timer goes off.

Component initiates
failover if detected.

If detected the MFV will
remain in the same state
if the fail over fails to the
MFV/BFV/FP controllers,
thus the effect on the
process variables
depends on the event in
consideration.
Otherwise, unknown.

MFV, BFV, FP controllers
do not agree from which
computer to accept input.

Cannot be detected. MFV, BFV, and FP may
receive inconsistent input.

Unknown effect, may
increase or decrease
water level.

High output. Cannot be detected. MFV will be driven open. Feedwater flow will
increase, causing the
water level to increase.

Low output. Cannot be detected. MFV will be driven shut. Feedwater flow will
decrease unless the
computer is operating in
low power mode. In low
power mode, there will be
no effect.

Arbitrary value output. Cannot be detected. MFV will open/close
according to the output.

Unknown effect; may
increase or decrease
water level.

Table 2.3.4 Abbreviated FMEA for BFV Controller

Failure Type Detection of Failure Failure Effects Failure Effects on

Process Variables

Loss of power. Not detected. Nothing. Unknown effect on water
level.

Loss of output signal. Not detected. Nothing. Unknown effect on water
level.

Computer erroneously
reported failed.

Not detected. Component initiates
failover operation.

The valves and feedwater
pump will remain in the
same state if the fail over
fails to the MFV/BFV/FP
controllers. Thus the
effect on the process
variables depends on the
event in consideration.

2-27

Computer erroneously
reported not failed.

Can be detected if
computer fails and output
of computer is out of
range, the rate of change
is too great, or the
watchdog timer goes off.

Component initiates
failover if detected.

If detected the valves and
feedwater pump will
remain in the same state
if the fail over fails to the
MFV/BFV/FP controllers.
Thus the effect on the
process variables
depends on the event in
consideration.
Otherwise, unknown.

MFV, BFV, FP controllers
do not agree from which
computer to accept input.

Cannot be detected. MFV, BFV, and FP may
receive inconsistent input.

Unknown effect, may
increase or decrease
water level.

High output. Cannot be detected. BFV will be driven open. Feedwater flow will
increase, causing the
water level to increase.

Low output. Cannot be detected. BFV will be driven shut. Feedwater flow will
decrease unless the
computer is operating in
low power mode. In high
power mode, there will be
no effect.

Arbitrary value output. Cannot be detected. BFV will open/close
according to the output.

Unknown effect; may
increase or decrease
water level

The FP controller may fail because of a power loss or a program crash as the MFV or BFV

controller could. This event cannot be detected by the DFWCS. The FP controller would not

output the correct signal to the feedwater pump and thus would be unable to control the

feedwater pump.

Table 2.3.5 Abbreviated FMEA for FP Controller

Failure Type Detection of Failure Failure Effects Failure Effects on

Process Variables

Loss of power. Not detected. Nothing. Unknown effect on water
level.

Loss of output signal. Not detected. Nothing. Feedwater flow will
decrease to the minimal
value, possibly
decreasing the water
level.

2-28

Computer erroneously
reported failed.

Not detected. Component intitiates
failover operation.

The valves and feedwater
pump will remain in the
same state if the fail over
fails to the MFV/BFV/FP
controllers. Thus the
effect on the process
variables depends on the
event in consideration.

Computer erroneously
reported not failed.

Can be detected if
computer fails and output
of computer is out of
range, the rate of change
is too great, or the
watchdog timer goes off.

Component initiates
failover if detected.

If detected the valves and
feedwater pump will
remain in the same state
if the fail over fails to the
MFV/BFV/FP controllers,
thus the effect on the
process variables
depends on the event in
consideration.
Otherwise, unknown.

High output. Cannot be detected. FP will be driven to
increased pressure.

Feedwater flow will
increase, causing the
water level to increase.

Low output. Cannot be detected. FP will be driven to
decreased pressure.

Feedwater flow will
decrease, causing the
water level to decrease.

Arbitrary value output. Cannot be detected. FP will speed up/slow
down according to the
output.

Unknown effect. May
increase or decrease
water level.

MFV, BFV, FP controllers
do not agree from which
computer to accept input.

Cannot be detected. MFV, BFV, and FP may
receive inconsistent input.

Unknown effect. May
increase or decrease
water level.

The PDI controller may also fail because of a power loss or a program crash as the MFV, BFV

and FP controllers and event will not be detected by the digital feedwater control system. If the

PDI controller fails by loss of output, then a failed MFV controller will not be detected. If the PDI

fails by sending a spurious signal to the MFV when the MFV controller has not failed, then the

MFV and PDI controller outputs will sum and give an increased signal to the MFV, causing the

MFV to open more than it should.

Table 2.3.6 Abbreviated FMEA for PDI Controller

Failure type Detection of Failure Failure Effects Failure Effects on

Process Variables

Loss of inputs (0.0 vdc). PDI detects a 0.0 vdc
input.

PDI outputs an old value
of the MFV controller
output to the MFV.

The MFV valve will
receive a signal that is the
sum of the PDI and MFV
controller signals, thus
increasing feedwater flow.

2-29

Loss of power. Not detected. None. None directly, unless the
MFV controller has
failed, then resulting
effect is unknown.

Loss of Outputs. Not detected. None. None directly, unless the
MFV controller has
failed, then resulting
effect is unknown.

Arbitrary failure. Not detected. PDI can output any value
to MFV.

The MFV valve will
receive a signal that is the
sum of the PDI and MFV
controller signals, thus
increasing feedwater flow.

2.3.3 Communication in I&C Systems and Related Problems

Communication failures are being implicitly rather than explicitly considered in the FMEA charts

presented in Sections 2.3.1 and 2.3.2 due to the difficulty of obtaining communication specific

failure data. This section presents an overview of the state-of-the-art of communications in I&C

systems and its potential impact on the design of future digital I&C systems.

Network-based control of factories and automation systems has been in place for decades. The

enabling technologies developed for such systems ensure guaranteed transmission of

messages within bounded time [95, 96]. A simple way of guaranteeing delay in communication

is to connect individual devices to each other directly, leading to fully connected device

topologies. While fully connected topologies provide minimum delays and high robustness

against individual link failures, the setup and maintenance cost of such systems are high and

they scale very poorly even to modest number of nodes. The local area network standards

used for control systems aim to provide flexibility in connecting different devices to each other

without relying fully-connected topologies. These protocols achieve bounded delay goal by

regulating the channel access. One of the most widely known examples of controlled channel

access is the use of tokens, which has led to IEEE 802.4 (token bus - currently inactive) and

IEEE 802.5 (token ring) [97] standards. Token bus is an extension of IEEE 802.3 (Ethernet)

[98] standard to limit the channel access time. A token passed between nodes in a

predetermined order determines the right to channel access. In the token ring standard, the

same idea is applied to a number of nodes connected in a ring topology.

Hardware-related problems affect the reliability of control networks. Ideally, operation of the

network needs to be minimally affected when a network element (a node, an interface, or a link)

becomes unavailable. The physical disconnection of network elements due to physical link

failures is a relatively common problem, especially in environments where the connections are

in close proximity of heavy machinery. In general, protocols are designed to recover from such

failures as long as the remaining resources allow this. The resilience to hardware failures is

directly connected with the redundancy of resources in the network. As an example, a severed

communication link may have a minimal effect of a fully connected network. The same may

disrupt all communication on a bus system. Obviously, the partial or full operation disruption

2-30

needs to be incorporated into reliability models. Another important aspect to consider in such

models is the response time of the communication protocol to such changes. Depending on

the protocol details and the severity of the hardware problem, the transient behavior during

recovery may result in sub-par performance of the system, potentially leading undesired

behavior of the entire system. Therefore, reliability models should include recovery models and

their properties, as well.

Another important set of events is the errors in communication. Signals sent over

communication links can be corrupted due to EM interference and other noise sources. While

shielding techniques are developed to combat interference and noise and there is regulatory

guidance to reduce the likelihood of EM interference [99], completely error-free communication

is virtually impossible. The use of fiber-optical cables solve problems related to interference

and noise, but suffer from high setup and maintenance costs as well as from fragility and

inflexibility in laying the cables. Software/protocol-based error detection and correction

mechanisms are required to minimize the effect of such errors. Depending on the protocol

details, the behavior of the network in terms of availability and delay may change in the face of

communication errors. As these bit-level errors are the most frequently occurring problems,

they need to be modeled together with the behavior of the protocols, as well.

Due to its wide market penetration, IEEE 802.3 products are also considered for such systems

with greater caution. Although IEEE 802.3 standard does not provide delivery or delay

guarantees, they can be used safely only at very low loads, where the system behaves almost

like a point-to-point link. The unreliable nature of loosely-controlled and shared communication

media is more pronounced in the wireless local area networks (WLAN). IEEE 802.11 [100]

standard is the most widely accepted standard for WLAN implementations. Recently, the use of

WLANs has also been considered for communication between components of control systems

[101].

Distributed control technology has also been used to control processes in many power

generation facilities. The information exchange in such systems has been performed over wired

networks that require long cables to be run between devices. Especially in coal-based power

generation plants, the long distances covered and the exposure of communication hardware,

especially cables, cause significant risks of communication disruption. As such disruptions take

sometimes days to fix, wireless communication between locations with line-of-sight is

considered as a plausible alternative to cables.

In nuclear power plants, the traditional method of communication is direct and wired

connections between devices. Direct and wired connections have distinct advantages in terms

of security and reliability. However, the rigidness of the wiring generally does not allow

reconfigurations. Furthermore, system setup and expansion are costly operations when wiring

is involved. In terms of flexibility of deployment and reconfiguration, wireless networks have

many advantages. While recognizing these advantages, one should also keep in mind the

following aspects:

2-31

! Availability: Wireless communication systems share wireless resources among multiple

contenders. In addition to traffic-based queuing delays, environmental factors such as

shadowing, fading, and interference from nearby devices, etc., may hinder the

availability of the communication service.

! Reliability: Sharing of wireless resources can occur in various domains including time,

frequency, code, space, and any combination thereof. The coordination generally

increases the system complexity, and potentially reduces the utilization of scarce

wireless resources. COTS hardware and associated standards, such as IEEE 802.11

[100], rely on loosely-controlled sharing of resources. Consequently, the information

delivery between two points in the network is not always guaranteed.

! Delay: Due to the reasons listed for reliability considerations, the delay in such networks

is not upper-bounded, either. However, medium access control mechanisms such as

the ones used in cellular networks overcome delay uncertainty through hard allocation of

resources at the expense of low utilization.

While it is technically possible to guarantee all four measures listed above in a wireless network

for control, it is very unlikely to achieve these goals with COTS products. We also acknowledge

the importance of security related reliability issues in network-based control systems. However,

these issues are beyond the scope of this work and the above discussion focuses solely on

reliability problems in a secure networking environment.

2.3.4 Discrete-State Representation of the Benchmark System

A discrete-state representation of the benchmark DFWCS is more convenient for both the

Markov and DFM methodologies under consideration in this report. For such a representation,

the DFWCS topology can be regarded as consisting of three layers of interactions based on

Sections 2.3.1-2.3.6:

! intra-computer interactions

! inter-computer interactions

! computer-controller-actuated device interactions

The intra-computer interactions layer consists of 5 states (see Fig.2.3.1). These interactions

can be regarded as transitions between the possible states of a single computer. In State A,

the computer is operating correctly and nominally. In State B, the computer detects loss/invalid

output for 1 sensor of any type (e.g. water level). State C represents loss/invalid output for 2

sensors of any one type. In state D the computer has detected an internal problem and is

signaling that it has to be ignored. In State E, either the sensor output is invalid or there is an

internal processing error in the computer; however, the computer does not detect the fault and

is transmitting the wrong information to the controllers. These states capture the possible

failures in the FMEA’s in Section 2.3.1 and 2.3.2 that occur within both the MC and BC.

2-32

Figure 2.3.1 Intra-computer interactions of the
DFWCS

The inter-computer interaction layer in Fig. 2.3.2 can be thought of as including the possible

transfers of control of the actuated devices among the MC, BC and controller as identified in the

FMEA’s in Section 2.3.1 and 2.3.2. For example, the transfer of control from the MC to the BC

would be represented here. There are 3 such computer-computer macro-states (MSs) shown

in Fig.2.3.2. In State 1 both MC and BC are operating normally. In State 2, one computer is

operating correctly and the other is down but can be recovered. In State 3, again one computer

is operating correctly and the other is down but it is not recoverable. Transitions between the

MSs depend upon the state of the controlling computer. Primary and secondary computers

correspond, respectively, to the computer that is sending data to the controller and to the

computer that is waiting in hot standby. Either the MC and BC can be the primary or the

secondary computer. Recoverable and non-recoverable failures are defined as the following:

! Recoverable failure corresponds to the inability for the computer (which is still operating

correctly) to send valid data to the controller (e.g. due to a loss of input from one couple

of sensors)

! Non-recoverable failure corresponds to an internal failure of the computer (e.g. the trip

of the watchdog timer) or to a loss of output of the computer itself

2-33

If the secondary computer (i.e. the computer that is not in control) fails and it is still recoverable,

a transition from MS 1 to MS 2 occurs. These transitions simply take each state in MS 1 to the

corresponding state in MS 2. For example, State A (or operational) in MS 1 would have a

transition to State A in MS 2. When the secondary computer recovers, the opposite transitions

occur (from MS 2 to MS 1). Again, for example, if the operating computer is in State A, MS 1,

then the transition would start there and end in State A in MS 1.

From the State D in MS 1 the possible transitions represent the takeover of control of the

process by the secondary computer (which from now on will be regarded as the primary

computer). The transitions from this state go to all states except for State D in MS 2. The

rationale behind these transitions is that the secondary computer was operating and may have

transitioned to states other than State A in MS 2. The reason that State D in MS 2 is not a

possible destination is that if State D is reached by the secondary computer, then another

transition from MS 1 to MS 2 must have already taken that into account.

The fail-over action from MS 1 to MS 3 is a result of controller action via the watchdog timer or

detecting the output failure from the computer. This action takes down the failed computer

permanently and can occur to both the primary and secondary computer. If it occurs to the

secondary, the transitions mimic the action of the secondary failure transitions from MS 1 to MS

3 by simply transitioning from a state in MS 1 to the respective state in MS 3. For example,

State A in MS 1 would have a transition to State A in MS 3. If the primary computer fails in a

non-recoverable manner when both MC and BC are operating (i.e. when the DFWCS is in

MS1), then the DFWCS can go to any state in MS 3 except State D by the same rationale for

transitions between MS1 and MS2 . The transitions must take into account that the secondary

computer may have already entered different states and these must be represented in the

transitions to MS 3.

2-34

Figure 2.3.2 Inter-computer interactions of the DFWCS and definition of the macro-states
(MSs)

Figure 2.3.3 shows all the possible controller-computer-actuated device interactions according

to the FMEA charts presented in Section 2.3.1 and 2.3.2. The shaded circles represent signals

to the actuated devices (e.g. MFV, BFV, FP) upon computer/controller failure, as well as the

mechanical failure of the actuated device (Device Stuck). As indicated in the beginning of

Section 2.3, mechanical failure of the actuated device leads to the device maintaining its current

position for MFV and BFV or to zero flow for FP. The planes represent the communication

status between the controller and actuated devices. The two-way transitions between Planes I

and II are necessary to keep track of the computer from which the controller is receiving data

when the communications between controller and actuated device are restored.

As presented in Fig.2.3.3, the following types of controller failures are under consideration:

! Arbitrary output: random data are generated and sent to the actuated device (i.e. pump

or valves)

! Output high: output value is stuck at the maximum value (i.e. valve totally open or pump

at the maximum speed)

2-35

! Output low: output value is stuck at the minimum value (i.e. valve totally closed or pump

stopped)

! 0 vdc output: loss of communications between controller and actuated device

Figure 2.3.3 Computer-Controller-Actuated Device Interactions

Moreover, as a result of the failure of both computers, the controller can recognize the failure

and send to the actuated devices (i.e. pump or valves) the old valid value (i.e. Freeze). If the

controller does not recognize the failure, then it will simply pass on false information (Arbitrary

Output) to the actuated device. Figure 2.3.3 also shows how the computer-computer

interactions (presented in Fig. 2.3.2) integrate with computer-controller and controller-actuated

device interactions. Device Stuck refers to mechanical failures and is independent of the failure

modes of the computers and controllers. The behavior of the controller under normal and failed

operation can be described as follows:

! When both MC and BC are down, the controller transits to the Freeze state. The

actuated device remains in the position corresponding to the last valid value.

! If the controller is operating and an Output High or an Output Low or an Arbitrary Output

failure occurs, the controller transits to the corresponding state and the actuated device

assumes the highest, the lowest or an arbitrary position, respectively.

2-36

! If the controller is in the Freeze state and an Output High, Output Low or Arbitrary

Output failure occurs, the controller transits to the corresponding state and the actuated

device assumes the highest, the lowest or an arbitrary position, respectively.

! If a loss of output occurs when the controller is failed (i.e. the controller is sending

Arbitrary Output, Output High or Output Low state), then the actuated device receives a

0 vdc as input which correspond to the lowest position.

Explanation of state transitions and groupings of transition by event type are given in Tables

2.3.7 and 2.3.8, respectively, for transitions in both Planes I and II in Fig. 2.3.3. The notation

used is Start State-End State with states that include the macro-state followed by the state

letter (see Fig. 2.3.2). For example, the transition in which both computers are operational and

continue to function normally is denoted 1A-1A.

Table 2.3.7: Explanation of State Transitions

Transition Event

1A-1A Primary Computer continues to operate normally

1E-1E Primary Computer continues to operate abnormally

2A-2A Primary Computer continues to operate normally

2E-2E Primary Computer continues to operate abnormally

3A-3A Primary Computer continues to operate normally

3E-3E Primary Computer continues to operate abnormally

1A-3A Secondary Computer watchdog timer trips or loss of output to controller

1A-3A Primary Computer watchdog timer trips or loss of output to controller

1A-3B Primary Computer watchdog timer trips or loss of output to controller

1A-3C Primary Computer watchdog timer trips or loss of output to controller

1A-3E Primary Computer watchdog timer trips or loss of output to controller

1A-1B Primary Computer loses one input

1A-1D Primary Computer detects an internal failure via self-diagnostics and takes itself down

1A-1E Primary Computer does not detect internal failure and produces arbitrary output

1B-1A Primary Computer’s input returns

1B-1C Primary Computer loses second input

1B-1D Primary Computer’s input does not recover in one processing cycle

1B-1E Primary Computer does not detect internal failure and produces arbitrary output

1B-2B Secondary Computer detects an internal failure via self-diagnostics and takes itself down

1B-3B Primary Computer watchdog timer trips or loss of output to controller

2-37

1B-3A Primary Computer watchdog timer trips or loss of output to controller

1B-3B Primary Computer watchdog timer trips or loss of output to controller

1B-3C Primary Computer watchdog timer trips or loss of output to controller

1B-3E Primary Computer watchdog timer trips or loss of output to controller

1B-F Common Cause sensor failure

1C-1B One input for Primary Computer returns

1C-1E Primary Computer does not detect internal failure and produces arbitrary output

1C-2C Secondary Computer detects an internal failure via self-diagnostics and takes itself down

1C-3A Primary Computer watchdog timer trips or loss of output to controller

1C-3B Primary Computer watchdog timer trips or loss of output to controller

1C-3C Primary Computer watchdog timer trips or loss of output to controller

1C-3E Primary Computer watchdog timer trips or loss of output to controller

1C-1D Primary Computer inputs do not recover in 1 processing cycle

1C-3C Primary Computer watchdog timer trips or loss of output to controller

1C-F Common Cause sensor failure

1D-2A Primary Computer releases control of process, Secondary computer is now the primary computer

1D-2B Primary Computer releases control of process, Secondary computer is now the primary computer

1D-2C Primary Computer releases control of process, Secondary computer is now the primary computer

1D-2E Primary Computer releases control of process, Secondary computer is now the primary computer

1E-3E Secondary Computer detects an internal failure via self-diagnostics and takes itself down

1E-3A Primary Computer watchdog timer trips or loss of output to controller

1E-3B Primary Computer watchdog timer trips or loss of output to controller

1E-3C Primary Computer watchdog timer trips or loss of output to controller

1E-3E Primary Computer watchdog timer trips or loss of output to controller

2A-2B Primary Computer loses one input

2A-2D Primary Computer detects an internal failure via self-diagnostics and takes itself down

2A-2E Primary Computer does not detect internal failure and produces arbitrary output

2A-1A Secondary Computer becomes operational

2B-2A Primary Computer input returns

2B-2C Primary Computer loses one input

2B-2D Primary Computer input does not recover in 1 processing cycle

2B-1B Secondary Computer becomes operational

2-38

2B-2E Primary Computer does not detect internal failure and produces arbitrary output

2C-2B One input for Primary Computer returns

2C-2E Primary Computer does not detect internal failure and produces arbitrary output

2C-2D Primary Computer inputs do not recover in 1 processing cycle

2C-1C Secondary Computer becomes operational

2A-F Primary Computer watchdog timer trips or loss of output to controller

2B-F Primary Computer watchdog timer trips or loss of output to controller

2C-F Primary Computer watchdog timer trips or loss of output to controller

2E-F Primary Computer watchdog timer trips or loss of output to controller

2D-F Controller freezes output

2E-1E Secondary Computer becomes operational

3A-3B Primary Computer loses one input

3A-3D Primary Computer detects an internal failure via self-diagnostics and takes itself down

3A-3E Primary Computer does not detect internal failure and produces arbitrary output

3B-3A Primary Computer input returns

3B-3C Primary Computer loses one input

3B-3D Primary Computer’s input does not recover in one processing cycle

3B-3E Primary Computer does not detect internal failure and produces arbitrary output

3C-3B One input for Primary Computer returns

3C-3D Primary Computer inputs do not recover in 1 processing cycle

3C-3E Primary Computer does not detect internal failure and produces arbitrary output

3A-F Primary Computer watchdog timer trips or loss of output to controller

3D-F Controller freezes output

3B-F Primary Computer watchdog timer trips or loss of output to controller

3C-F Primary Computer watchdog timer trips or loss of output to controller

3E-F Primary Computer watchdog timer trips or loss of output to controller

1A-DS Actuated Device stuck

2A-DS Actuated Device stuck

3A-DS Actuated Device stuck

1B-DS Actuated Device stuck

2B-DS Actuated Device stuck

3B-DS Actuated Device stuck

2-39

1C-DS Actuated Device stuck

2C-DS Actuated Device stuck

3C-DS Actuated Device stuck

1D-DS Actuated Device stuck

2D-DS Actuated Device stuck

3D-DS Actuated Device stuck

1E-DS Actuated Device stuck

2E-DS Actuated Device stuck

3E-DS Actuated Device stuck

AO-DS Actuated Device stuck

OH-DS Actuated Device stuck

OL-DS Actuated Device stuck

1A-OH Controller fails by outputting only high value

2A-OH Controller fails by outputting only high value

3A-OH Controller fails by outputting only high value

1B-OH Controller fails by outputting only high value

2B-OH Controller fails by outputting only high value

3B-OH Controller fails by outputting only high value

1C-OH Controller fails by outputting only high value

2C-OH Controller fails by outputting only high value

3C-OH Controller fails by outputting only high value

1D-OH Controller fails by outputting only high value

2D-OH Controller fails by outputting only high value

3D-OH Controller fails by outputting only high value

1E-OH Controller fails by outputting only high value

2E-OH Controller fails by outputting only high value

3E-OH Controller fails by outputting only high value

1A-OL Controller fails by outputting only low value

2A-OL Controller fails by outputting only low value

3A-OL Controller fails by outputting only low value

1B-OL Controller fails by outputting only low value

2B-OL Controller fails by outputting only low value

2-40

3B-OL Controller fails by outputting only low value

1C-OL Controller fails by outputting only low value

2C-OL Controller fails by outputting only low value

3C-OL Controller fails by outputting only low value

1D-OL Controller fails by outputting only low value

2D-OL Controller fails by outputting only low value

3D-OL Controller fails by outputting only low value

1E-OL Controller fails by outputting only low value

2E-OL Controller fails by outputting only low value

3E-OL Controller fails by outputting only low value

1A-AO Controller fails by outputting arbitrary value

2A-AO Controller fails by outputting arbitrary value

3A-AO Controller fails by outputting arbitrary value

1B-AO Controller fails by outputting arbitrary value

2B-AO Controller fails by outputting arbitrary value

3B-AO Controller fails by outputting arbitrary value

1C-AO Controller fails by outputting arbitrary value

2C-AO Controller fails by outputting arbitrary value

3C-AO Controller fails by outputting arbitrary value

1D-AO Controller fails by outputting arbitrary value

2D-AO Controller fails by outputting arbitrary value

3D-AO Controller fails by outputting arbitrary value

1E-AO Controller fails by outputting arbitrary value

2E-AO Controller fails by outputting arbitrary value

3E-AO Controller fails by outputting arbitrary value

1A-0V Controller fails by outputting 0 vdc output

2A-0V Controller fails by outputting 0 vdc output

3A-0V Controller fails by outputting 0 vdc output

1B-0V Controller fails by outputting 0 vdc output

2B-0V Controller fails by outputting 0 vdc output

3B-0V Controller fails by outputting 0 vdc output

1C-0V Controller fails by outputting 0 vdc output

2-41

2C-0V Controller fails by outputting 0 vdc output

3C-0V Controller fails by outputting 0 vdc output

1D-0V Controller fails by outputting 0 vdc output

2D-0V Controller fails by outputting 0 vdc output

3D-0V Controller fails by outputting 0 vdc output

1E-0V Controller fails by outputting 0 vdc output

2E-0V Controller fails by outputting 0 vdc output

3E-0V Controller fails by outputting 0 vdc output

F-0V Controller fails by outputting 0 vdc output

AO-0V Controller fails by outputting 0 vdc output

OH-0V Controller fails by outputting 0 vdc output

OL-0V Controller fails by outputting 0 vdc output

OL-OL Controller remains in the same state

OH-OH Controller remains in the same state

F-F Controller remains in the same state

0V-0V Controller remains in the same state

DS-DS Controller remains in the same state

AO-AO Controller remains in the same state

Table 2.3.8: Grouping of Transitions by Event Type

Transition Event

1A-3A, 1B-3B, 1C-3C, 1E-3E Secondary Computer failed via watchdog timer trip or loss of output

to controller

1A-3A, 1A-3B, 1A-3C, 1A-3E, 1B-3A, 1B-3B,

1B-3C, 1B-3E, 1C-3A, 1C-3B, 1C-3C, 1C-3E,

1E-3A, 1E-3B, 1E-3C, 1E-3E, 3A-F, 3B-F, 3C-F,

3E-F, 2A-F, 3B-F, 3C-F, 3E-F

Primary Computer watchdog timer trips or loss of output to

controller

1A-1B, 2A-2B, 3A-3B Primary Computer loses one input

1A-1D, 2A-2D, 3A-3D Primary Computer detects an internal failure via self-diagnostics and

takes itself down

1A-1E, 1B-1E, 1C-1E, 2A-2E, 2B-2E, 2C-2E,

3A-3E, 3B-3E, 3C-3E

Primary Computer does not detect internal failure and produces

arbitrary output

1B-1A, 2B-2A, 3B-3A Primary Computer's input returns

2-42

1B-1C, 2B-2C, 3B-3C Primary Computer loses other input

1B-1D, 2B-2D, 3B-3D Primary Computer input does not recover in 1 processing cycle

1A-2A, 1B-2B, 1C-2C, 1E-2E Secondary Computer detects an internal failure via self-diagnostics

and takes itself down

1B-F, 1C-F Common cause sensor failure

1C-1B, 2C-2B, 3C-3B One input for Primary Computer returns

1C-1D, 2C-2D, 3C-3D Primary Computer inputs does not recover in 1 processing cycle

1D-2A, 1D-2B, 1D-2C, 1D-2E Primary computer releases control of process, Secondary Computer

now is the primary computer

2A-1A, 2B-1B, 2C-1C, 2E-1E Secondary Computer becomes operational

2D-F, 3D-F Controller freezes output

1A-DS, 1B-DS, 1C-DS, 1D-DS, 1E-DS, 2A-DS,

2B-DS, 2C-DS, 2D-DS, 2E-DS, 3A-DS, 3B-DS,

3C-DS, 3D-DS, 3E-DS, AO-DS, OH-DS, OL-DS

Actuated Device stuck

1A-OH, 1B-OH, 1C-OH, 1D-OH, 1E-OH, 2A-OH,

2B-OH, 2C-OH, 2D-OH, 2E-OH, 3A-OH, 3B-OH,

3C-OH,3D-OH, 3E-OH

Controller fails by outputting only high value

1A-OL, 1B-OL, 1C-OL, 1D-OL, 1E-OL, 2A-OL,

2B-OL, 2C-OL, 2D-OL, 2E-OL, 3A-OL, 3B-OL,

3C-OL, 3D-OL, 3E-OL

Controller fails by outputting only low value

1A-AO, 1B-AO, 1C-AO, 1D-AO, 1E-AO, 2A-AO,

2B-AO, 2C-AO, 2D-AO, 2E-AO, 3A-AO, 3B-AO,

3-CAO, 3D-AO, 3E-AO

Controller fails by outputting arbitrary value

1A-0V, 1B-0V, 1C-0V, 1D-0V, 1E-0V, 2A-0V,

2B-0V, 2C-0V, 2D-0V, 2E-0V, 3A-0V, 3B-0V,

3C-0V, 3D-0V, 3E-0V,

F-0V, AO-0V, OH-0V, OL-0V

Controller fails by outputting 0 vdc output

1A-1A, 2A-2A, 3A-3A Primary Computer remains operational

1E-1E, 2E-2E, 3E-3E Primary Computer remains operating incorrectly

OL-OL, OH-OH, F-F, DS-DS, AO-AO Controller remains in the same state

2.4 Application of a Safety Quantification Methodology to the Digital Feed

Water Control System for Failure Data Generation

2.4.1 Background

As indicated in Section 1.2, digital I&C systems are functionally different from traditional analog

and discrete designs, and almost always include the use of microprocessors, programmable

2-43

logic devices, A/D and D/A conversion electronics, displays, power conditioning electronics,

real-time data buses, and multiplexing. Furthermore, these systems employ different fault

isolation and containment techniques to achieve sufficient independence and fault tolerance

than their predecessors (Section 2.3). Taken together, the introduction or consideration of new

digital I&C systems into nuclear power plants raises concerns regarding the possibility that the

fielding of these I&C systems may introduce unknown or unanticipated failure modes, or design

errors in the software in the redundant channels of a safety system that could lead to a

common mode failure of the safety system function (Section 1.2).

In order to prevent such situations from arising, there is a need for digital I&C systems to be

dependable across a wide spectrum of perceived threats, faults, and failures; that is, these

systems must be able to detect faults and initiate appropriate mitigation actions upon the

detection of these faults to ensure overall safety of the I&C system. In recent years, significant

effort has gone into improving design methodologies for safety critical systems, assessment

methods, and updating regulatory industry standards and regulatory guidelines (e.g. RG 1.152

[102], IEC 61508 [103], RTCA-DO-254 [104] to ensure that digital I&C systems can be

designed and assessed to the high safety requirement levels required for highly critical

applications. The goal of a quantitative safety assessment methodology is to provide a generic

systematic way of characterizing the dependability behavior of embedded systems (e.g. I&C

systems) in the presence of faults [105-107]. We recognize that the key features of this

methodology should state the safety metrics that are pertinent for a given domain, how those

metrics are quantified with supporting data, the way the data for the metrics are obtained, and

the domain in which the measures and metrics are valid and meaningful. In the Section 2.4.2,

we introduce and discuss some preliminary concepts of dependable systems to set the context.

Section 2.4.3 shows how fault injection can be used as dependability assessment method and

Section 2.4.4 overviews of the quantification of this dependability assessment. The

experimental setup for the design and implementation of the fault injection environment is

described in Section 2.4.5. Section 2.4.6 gives example results from a fault injection campaign,

including error classification and handling of common cause failures. Section 2.7 describes

how the results of the injection experiments along with hardware failure data can be used to

estimate the failure rates and/or failure probabilities on demand for specific failure modes for

use with the DFM and the Markov/CCMT method.

2.4.2 Concepts of Dependable Systems

A dependable real-time system has the ability to provide its intended, expected and agreed

upon functions, behavior, and operations in a correct and timely manner. Dependability may be

defined as the trustworthiness of a system such that reliance can justifiably be placed on the

service it delivers [106]. A service delivered by a system is its behavior, as it is perceived by its

users. A user is another system (human or technical) which interacts with the former.

2-44

2.4.2.1 The Attributes of Dependability

The attributes of dependability are the primary means by which we specify the quantitative and

qualitative requirements of a system. We define some basic terms and concepts related to

dependability attributes [105]:

Definition 1: Dependability, the property of a computer system such that reliance can

justifiably be placed on the service it delivers, which is a qualitative system attribute that

is quantified through the following terminologies.

Definition 2: Reliability, a conditional probability that the system will perform correctly

0 0throughout the interval [t , t], given that the system was performing correctly at time t ,

which is related to the continuity of service.

Definition 3: Availability, a probability that a system is operating correctly and is

available to perform its functions at the instant time t, which is related to readiness for

usage.

Definition 4: Safety, a probability that a system will either perform its functions correctly

or will discontinue its functions in a manner that does not disrupt the operation of other

system or compromise the safety of any people associated with the system, which is

related to the non-occurrence of catastrophic consequences on the environment.

2.4.2.2 Impairments to Dependability

Faults, errors and failures affect the system’s ability to deliver its dependability attributes(e.g.

safety, reliability, performance). Hence, they are called the impairments of dependability. From

our experience, there are important reasons to establish and evaluate the hierarchal, causal

relationships between impairments, together with their origins and effects. First, it enables

systematic quantitative and qualitative modeling and analysis of the reliability and safety of the

system. Second, it serves as a basis for specification and requirements of an assessment of a

dependability metric. We begin by defining the meaning of these expressions more precisely

[105]:

Definition 5: A fault is a physical defect, imperfection, or flaw that occurs within some

hardware or software component. A fault is the adjugated cause for an error.

Definition 6: An error is the manifestation of a fault. Specifically, an error is a deviation

from accuracy or correctness.

Definition 7: A failure is the nonperformance or inability of the system or component to

perform its intended function for a specified time under specified environmental

conditions.

Implicit in the definitions of the above terms is a cause-effect relationship. The well known 3-

universe model depicted in Fig. 2.4.1 shows the relationship between faults, errors, and

failures.

2-45

Figure 2.4.1 Cause-Effect Relationship Among Faults, Errors, and Failures using
the 3-Universe Model

Essentially, Fig. 2.4.1 expresses a relationship that shows that failures are caused by errors,

which are caused by faults. Associated with each term is a domain of effect; for example, faults

are associated with the physical universe. Two categories of faults are possible in the physical

universe: operational faults and design faults. Operational Faults include faults associated with

semiconductor devices, mechanical elements, power supplies, and other physical entities that

make up a system. These types of faults usually include fault types such as signal crosstalk in

IC’s, transistor failures in IC’s, wear-out, oxidation, etc.

On the other hand, design faults include hardware and software flaws that are usually due to

the inability to anticipate or fully consider certain interactions in hardware and software during

system specification, design and implementation [105]. Design flaws or faults are activated

when specific input stimulus and computer states are present, e.g. a unique execution path is

taken by the computer-based machine element. Design flaws are not randomly occurring

actions per se; they are deterministic events since they occur every time the same input and

state conditions happen.

Errors are associated with the information universe, which contains units of information [105].

More precisely, information in a computer is characterized by symbols, and the interpretation

and manipulation of those symbols. Errors can corrupt symbols, rendering them into different

symbols, non-symbols or reconstitute the interpretation of symbols. Errors in the information

universe are usually manifested as bit flips in the data and/or instruction symbols. Finally, Fig.

2.4.1 shows that failures are associated with the external universe, which is where the user of

the system eventually sees the effects of faults and errors.

The linkages between physical, information, and external universe is an abstract point of view.

Basically, the physical represents the hardware of the system, such as semiconductors,

microelectronic devices, power supplies, data distribution networks, etc. Thus, a fault is

physical defect or alteration of a component. The second universe basically represents the

execution behavior of the digital system. Because execution of the digital system is carried out

on units of information, we call it the information universe. Errors occur on data words within

the computer, instructions, or transmission of information from place to another. The external

2-46

universe (or users universe) is where the user or another system see’s the effect of faults and

errors. This is where failures manifest. Failure is any deviation from the expected or desired

service/behavior of the system.

2.4.3. Fault Injection as Dependability Assessment Method

2.4.3.1 Introduction

I&C systems in which safe operation and high reliability is required, demands strong verification

of the fault tolerance and safety protection aspects of the I&C system in the presence of faults.

This is necessary because the failure of the fault tolerance mechanisms could lead to failures of

an I&C system. Fault Injection is defined as the dependability validation technique that is based

on the realization of controlled experiments where the observation of the system behavior in the

presence of faults is explicitly induced by the deliberate introduction (injection) of faults into the

system [107]. Fault injection stresses the fault handling and management aspects of the

system under assessment to ultimately collect crucial data via fault injection campaigns. These

typically include, coverage of faults, error latency, recovery time. In most fault tolerant systems,

the FDIR (Fault Detection, Isolation and Recovery) software or online diagnostic functions may

account for as much as 40%-50% of the executable system software code [108]. This code is

rarely exercised in the real world because faults are infrequent occurrence. This FDIR code is

vital for system compliance to dependability, and can only be effectively tested and validated by

realistic fault injection campaigns.

We should state clearly, that fault injection is but one crucial technique in a comprehensive

framework for dependability assessment. Fault injection has it’s limitations. It does not

represent design flaws, specification flaws very well, or at all. For these impairments, the use of

contemporary design assurance and fault avoidance methods, such as, formal specifications

analysis, model checking, and dynamic code analysis methods can be used to minimize the

impact of design faults. However, it is generally accepted and demonstrated that fault injection

methods are useful in finding design flaws in fault tolerant systems. Fault injection is

specifically designed to exercise and stress the FDIR mechanisms of the system under a

variety of conditions – both nominal and off-nominal. A number of experience reports from

academia, industry, and government where fault injection has found design flaws in the fault

tolerance mechanisms of computer based safety critical systems [109]. While fault injection

has its limitations, and these are well-known, we view it as a natural partner to contemporary

design assurance techniques, testing and fault avoidance methods.

Fault injection techniques can be divided into three general categories; (1) fault injection at the

hardware level on an operational prototype, (2) fault injection at the software level on an

operational prototype, and (3) fault injection into a simulation of the system [110]. See [110] for

detailed review of fault injection methods. The type of fault injection used in this effort is of type

2: fault injection at the Instruction Set Architecture of microprocessor based computer. Section

2.4.6 of this report describes the design and operation of the fault injection environment. The

faults to inject for these fault injection mechanisms are typically selected at random from the

2-47

total fault space of the system. The data collected during fault injection is used to statistically

and accurately estimate the crucial parameters of the analytical safety and reliability models.

Selecting the appropriate fault model is a crucial decision. It is frequently estimated that 80% or

more of all hardware faults which occur on ground based computer applications are transient in

nature [111]. The effects may last for milliseconds, or they may persist until the system is re-

booted or refreshed. This number is increasing each year as semiconductor technology scales

downward [112]. In recent years, the impact of Single Event Upset (SEU’s) due to neutron

particles and high intensity radiation fields on digital systems has become even more significant

due to the aggressive scaling of the semiconductor manufacturing processes. Lower transistor

features and lower voltages, high performance circuit designs, have led to higher performance

and, also, have increased circuit sensitivity to particle and radiation induced errors.

Contemporary deep sub-micron technology processes are much more sensitive to particle

induced upsets than the previous generation of process technology. Thus, for this effort, the

use of the transient fault model was selected based upon these facts and based upon historical

and contemporary failure data (including operational data from the plant) of ground based

systems. The other fault model that is of importance is the permanent fault model. The

permanent fault model represents a physical defect in the hardware that always is present and

is activated when certain input and state conditions arise. The use of the permanent fault

model is limited in this effort.

2.4.3.2 Fault Injection Space

The purpose of this section is to describe the parameter space that characterizes fault injection.

A fault is injected into a system by defining five parameters of the system fault. The external

input and current system state is one fault injection parameter which is implied in most fault

injection experiments. The external input is typical called the operational profile or simply the

environment domain of the system. For instance, in a control system the plant is controlled by

an active controller, the state of the plant is fed back to the controller at every sample instance.

In this example, the space of the sensor inputs is what we call the operational profile of the

controller. The controller uses this sensor information to computer the next command according

to a control objective. The current external input and internal system state is represented by

the variable ó. Another parameter which affects the definition of a fault injection experiment is

the fault occurrence time (or fault start time) which is represented by the variable t. The

duration of a fault, given by Ä, is another fault injection parameter. The location of the fault and

fault type are the last two parameters which define a fault injection experiment. The fault type

mis given by the variable f , while the fault location is given by the variable l.

One of the main goals of fault injection is evaluate the error and fault handling mechanisms of a

fault tolerant system. An extremely important parameter in the design and assessment of fault

tolerant systems is fault coverage, C. The fault coverage available in a system can have

tremendous impact on the reliability and safety of a system [113-115]. The intuitive definition of

fault coverage is that it is a measure of the systems ability to perform fault detection, fault

isolation, and fault recovery. In that respect, Type II failure events such as communication

2-48

failures and failures arising from competition for resources are captured in fault coverage. Fault

coverage is mathematically defined as the conditionally probability that given the existence of a

fault, the system detects and recovers. Thus,

C= Pr(fault detected|fault existence) (2.4.1)

Common cause software failures in redundant systems (e.g. platform based) can be captured

with coverage since system failure due to common cause is also part of uncoverage, 1-C. A

general mathematical expression for the system coverage as a function of the above fault

injection parameters can now be derived as

(2.4.2)

where Y is a random variable which is 1 if the fault is covered and 0 if it is not, C is the fault

coverage, and is the probability of a covered fault over the entire fault activation space. This

probability can also be derived by taking the expected value of for the entire fault activation

space. Unfortunately, it is difficult if not impossible to derive c(!) through analytical techniques.

The coverage of the system is typically obtained by sampling this five dimensional space and

obtaining a statistical point estimate. The evaluation of each sampled data point in this space

via fault injection results in either a 1 or 0 value for C. The binomial function is used to

represent the system response. The point estimate for the system fault coverage is obtained

(2.4.3)

where � is the point estimate for the system fault coverage, and n is the number of fault

injection experiment.

From Eq. (2.4.3) we can see that the estimation of fault coverage via fault injection is

dependent on five parameters. Thus, in a well designed fault injection tool environment,

support for controllability and observability of these parameters needs to be available. We

address this requirement in the design and implementation of our fault injection environment.

The next section describes the methodology used to estimate the important parameters needed

quantify a dependability metric such as safety, probability of system failure, reliability, and

coverage. The methodology is driven in large part by the needs of Eq. (2.4.3). Specifically, the

methodology addresses the representation and characterization of each parameter (among

others) in a operational fault injection scenario.

2.4.4 Overview of the Quantitative Dependability Assessment Methodology

A distinguishing feature of the assessment methodology is the synergistic relationship between

fault injection process and analytical dependability models. Dependability models allow for

formal (meaning mathematical) tractable assessment of the I&C system based upon

2-49

measurable and observable parameters of the system under evaluation. The essence of the

dependability model is to allow quantification (e.g. calculation) of safety or reliability based upon

observable and measurable parameters of the system under assessment. Fault Injection is

used to estimate certain crucial parameters, like coverage. As stated earlier, fault injection

stresses the fault handling and management aspects of the I&C system under assessment to

ultimately collect crucial data (e.g. such as error detection coverage) via fault injection

campaigns. The general approach is to inject randomly selected faults into the system (on a

working prototype, for example) to determine if the fault processing capabilities of the I&C

system detect and mitigate the effects of the faults. This data collected during fault injection

campaigns is used to statistically and accurately estimate the crucial parameters of the

analytically safety model. These parameters typically include, fault class coverage, recovery

and repair time, fault latency, error detection mechanism coverage, and error detection time

[107]. Once these parameters have been accurately estimated, then they are instantiated into

the dependability models to calculate the safety, reliability, or probability of failure of the system.

A detailed report of the model based safety assessment process can be reviewed in [115].

Figure 2.4.2 shows the flow of the methodology. We present this methodology in a step by step

basis to give the reader and practitioner a feel for the methodology.

Figure 2.4.2 Operation of the Quantitative Dependability Assessment Process

Step 0: Defining or Selecting a Dependability Metric. The assessment process begins with

defining or selecting the dependability metric of interest. The metrics that can be used in I&C

systems include but are not limited to, system reliability, probability of coincident failure, system

safety, probability of failure on demand, mean time to system failure, mean time to unsafe

2-50

system failure, and steady state unsafe system failure. For instance, an actuation system

would be probably be more accurate characterized by probability of failure on demand, and a

instantaneous availability metric rather than a MTTF metric. So, how the system is employed in

the context of the plant is very important to the selection of an appropriate metric. In the case

of the DFWCS, it is a control system that operates continuously and should have a significant

degree of reliability over it’s mission time. From the DFWCS requirements documents, the

stated reliability requirement is 99.9% operational capability over a unstated operational mission

time. The presumed operational mission time is 11 months (e.g. allowing for 1 month for

outage). Since the DFWCS is continuously operating 24 hours a day, 7 days a week, 365 days

a year, the metric that best characterizes the dependability of this system is probability of

system failure over the mission time (e.g. 11 months).

Probability of system failure = 1 - R(t) = 1-.999 =.001 failures/11 months

On a hourly scale.

.001 system failures/(1)(8000 hours) =1.2x10-7 system failures/hour.

This is a very low probability of system failure, as it should be. A very low probability of system

failure infers a high degree of fault detection and recovery coverage by the system. In the

DFWCS documentation there were no quantitative requirements for the fault coverage

capabilities of the various fault detection mechanisms of the DFWCS. Only qualitative FMEA

information was available and this is most typical of current I&C systems. However, it is

possible to deduce how effective each fault detection mechanism or component needs to be in

order to meet the stated unreliability requirement of .001 system failure per year. In this case,

we have inferred the coverage numbers by modeling the system via Markov methods and

calculating the minimum fault coverage required for each component, given the desired

unreliability requirement of 0.001 failure/year. The result is that the minimum coverage required

to meet the unreliability requirement is about .99995 for each component. This value will be

used later to help estimate the number of fault injections trials needed for a narrow interval

estimate of coverage.

Step 1: Development of the Analytical Dependability Model of the System. An analytical

safety or reliability model is developed from the system architecture and inter-component

dependencies. The input to the model development process comes from a variety sources.

These include architectural specifications, software specifications, fault tolerance specifications,

operating systems specifications, control laws, and hazards analysis documents. In fact, this

methodology may use several models to determine the compliance of a system with respect to

its dependability requirement. These models are typically represented as dynamic fault trees,

Markov models, dynamic flow graph models, finite state models to model functional behavior

(Section 1.2.2), or combinatoric models.

The dependability metric of interest (such as probability of a unsafe failure) influences the

critical parameters of the model. These model parameters often include fault coverage values

2-51

for components, recovery rates, and critical failure rates for the various components of the

system. Equally important is stating the assumptions the models make in light of incomplete

knowledge of the systems. These assumptions must be assessed in regard to the model and

the parameters of the model for the purpose of exploring the sensitivity of the model predictions

to the stated assumptions. See [116] for more details.

The development of the analytical models of the DFWCS are found in Section 2.3 of this report.

As an example of an analytical model, is the main computer of the DFWCS. This model is a

Markov process model showing several modes of failure (see Fig. 2.4.3 below). The model is

intended to be illustrative of the typical parameters used in a analytical model.

Figure 2.4.3 Markov model of main computer of the
DFWCS.

State FD1 represent the failure of the computers (both main and back up) in such away that the

loss or inappropriate control command from the was detectable by the PID Controllers. In this

case, the remaining functioning system (e.g. the PID controllers) reach a “fail-safe state” by

switching to a manual mode and setting the outputs of the PID controllers to nominal output

levels and annunciating the failure to the operator. State FD2 represents the failure of the

controllers to establish proper feedback through the analog input backplane. Again, switch over

to manual mode is the proper fail-safe corrective action.

State FU1 represents a failure where the loss of set point or inappropriate control action is

undetected for substantial period of time resulting in the improper control of the valves or

pumps. FU2 is a failure where the loss of feedback, improper measurement is not detected

resulting in improper or loss of control of the valves and pumps for unacceptable amount of

time.

2-52

The important parameters in this model are the following:

në : The rate of failure for the component as given in failures/hour

nC : The coverage of a specific fault by the fault detection mechanisms of the DFWCS

We have previously defined the parameters that characterize coverage in Eq. (2.4.3).

nHowever, ë is a empirical parameter typically based on failure data from the plant, commercial

device failure rate databases, and proprietary vendor databases. It can not be estimated by a

fault injection campaign. There are other means to estimate the device failure rate based upon

accelerated life testing methods where the component is placed in a stressful environment and

forced to fail prematurely. These methods are expensive and typically only conducted by the

manufacturer of the device. In the next section we will examine the issues of gathering failure

rate data for components.

Step 2: Statistical Model development. The purpose of the statistical model is to provide a

formal basis for a estimating the critical model parameters that are required by the analytical

model. Once the critical parameters have been identified in Step 1, a sound mathematical

basis for estimating these parameters must be used to gain confidence in the model prediction

capability. This statistical model supports four specific needs of the methodology:

1 Quantify and characterize the uncertainty of model parameters.

2 Characterize and define the assumptions of model parameters.

3 Statistically estimate based on the assumptions of the model and model parameters the

number of observations are required to estimate a parameter to a known confidence

level.

4 Calculate the number of fault injection trials in a fault injection campaign required to

calculate the coverage estimate of the component

Generally speaking, safety and reliability analyses are often confronted with limited or no

historical “hard data” on the failure rates of components. In these cases, engineering

judgement needs to be used. How to use such judgement depends, however, on incorporating

uncertainty in our engineering judgement. It is a fact of life that failure data has measure of

uncertainly associated with it. Estimating the degree of this uncertainty is largely based on how

much data is available to the engineers, and what methods the engineers to estimate

uncertainty. In recent years, Bayesian approaches that allow the use of engineering judgement

to establish subjective uncertainty measures related to what the true values of the statistical

quantities are have become more mainstream. Some methods combine the frequentist and the

Bayesian approach. The combined classical and Bayesian approach is also referred to as the

probability of frequency framework [117]. With this approach, combined uncertainty is related

to two levels, i.e. the prediction of events by the model and the values of the probabilities and

failure rates. In this effort we used a combination of methods to reach a consensus on the

failure rate data. Below we describe the process we used in this methodology to estimate the

failure rates of the various components of the DFWCS. This process is not be inferred as the

2-53

only way, or the preferred way, but it represents a way to deal with information when it there is

uncertainty involved.

Our approach to acquiring the hardware failure rate of the components was to use three key

pieces of information:

1 Acquire and analyze the actual failure data from the DFWCS.

2 Use a commercial failure data base.

3 Conduct interviews with selected vendors to acquire “off-the record” failure data

information.

Failure data was supplied to us by the plant engineers on all of the observed permanent failures

of the system since its installation in the plant 13 years ago. Overall, the component failure

records are very robust. Several key components of the DFWCS had not failed at the time of

this study (namely the PID controllers). In that respect, the next step was to use a high quality

commercial data bases of hardware failure data information (e.g. the PRISM database[118])

and utilize this collected information to set the base failures rates of the components of the

DFWCS. Where real DFWCS failure data exists from plant failure logs, the use of a Bayesian

updating method to adjust the failure rates to the observed failures in the benchmark I&C

system was employed. The following assumptions are made with this process:

1 The data contained in the RAC database and the field data are beyond the infant

mortality part of the failure.

2 The failure rate data contained in the databases represents the stable failure period of

the failure curve.

Final step was to interview key vendors about their equipment reliability in order to obtain more

credible information about the failure rate calculations. It should be noted that vendors are

often reluctant to share actual failures with clients, and when they do, it is usually on an off-the-

record basis. Based on our conversations with two vendors, the failure rates of the CPU’s

closely matched the observed failures at the plant. No hard data was forthcoming on the PID

controllers, but we were told that a failure rate of 10e-6/hour was not unreasonable. All failures

were permanent failures, and did not include transients in the reports and failure logs.

Transient failures were noted on the CPU and watchdog timer modules of the DFWCS. That is,

failures for which a reboot or re-start would correct the problem. There were at least 10 such

events noted in the event logs. All vendors told us that they recommended assigning a

uncertainty factor of 10 to nominal failure calculations.

Table 2.4.1 shows the failure rate estimation for key components of the benchmark DFWCS.

At this point time we have not conducted an uncertainty analysis on the variability of the failure

rate as a function of system failure.

2-54

Table 2.4.1 Failure Rate Estimations for DFWCS Main Components

Another important parameter that must be estimated in the analytical models is coverage.

Coverage represents the ability of the I&C fault detection mechanisms to detect a fault, given a

fault is present. Coverage is very important parameter in estimating the system safety,

reliability, unreliability, and other safety related metrics. Thus, to accurately estimate the

coverage of a system, a fault injection statistical experiment must be designed to estimate the

parameter based on finite number of fault injection trials. Several statistical approaches to

estimating the number of fault injections required to obtain an accurate coverage estimate and

confidence level is discussed in[116]. In this work we use a single sided confidence interval to

estimate the upper bound on the number fault injection trials needed to accurately estimate the

coverages.

iThe estimation of the fault coverage can be modeled as a binomial random variable X ,

where

2-55

1 n iThe fault injection experiments are performed to generate X , ……X , where each X is

assumed to be independent and identically distributed. The expected value of the random

variable is E (X) = C, and the variance of the random variable is Var (X) = C(1-C).

Given the statistic

(2.4.4)

the probability of is

(2.4.5)

nIf S out of n faults are observed to be covered, then C, the lower side of the confidence interval,

satisfies the following equation

n nP(S > s) = 1-g (2.4.6)

n n n nwhere P(S > s) is the probability S is greater than or equal to s , given that the fault coverage

lvalue equals C , and g is the confidence coefficient. The single-sided confidence interval is

calculated as

 (2.4.7)

Now, consider the case where all the faults are covered. In this case,

(2.4.8)

Rearranging Eq. (2.4.13) and solving for n

 (2.4.9)

where n defines the number of fault injections needed to satisfy a given confidence level.

For instance, for the DFWCS estimating the number of fault injections to establish a coverage

2-56

factor of .99995 at a 99% confidence level, then using Eq. (2.4.9)

n = 92,101 fault injections are required.

As the coverage value increases (e.g. 1- C = 10) an extremely large number (millions) of faults-7

need to be injected in order to obtain an estimate at a high confidence level. It is not possible to

carry out this large a number of fault injections within a practical time constraint without some

form variance reduction methods. Therefore, methods that reduce the sample size have to be

explored. Fault expansion is one technique that has emerged in an attempt to achieve such a

goal [114]. The key idea of fault expansion technique is to identify the equivalence class to

which an injected fault belongs after the fault is injected and the outcome is determined. The

faults in the same class are “equivalent” because they affect the system in an identical way.

Therefore, if the injected fault is detected, all faults in its equivalence class will be detected

when injected. As a consequence, we only need to inject one fault per equivalence class.

Thus, the fault expansion method intends to yield the desired fault coverage interval estimate

with a smaller number of fault injections. With fault expansion methods employed 92,000 fault

injections is easily obtainable over a reasonable period of time (e.g. weeks).

Step 3: Development of a High Level Processor Fault Model. In Eq. (2.4.3) (the coverage

mequation) the parameters Ä, f and l are respectively defined earlier as the fault duration, fault

mtype, and fault location. The parameter f , is crucial parameter because it represents the type

of fault(s) that are representative of the faults that the systems is expected to encounter, and

tolerate. Selecting the appropriate fault model is a crucial decision. It is frequently estimated

that 80% or more of all hardware faults which occur on ground based computer applications are

transient in nature. For this task, we developed a high level processor fault model to represent

both transeunt and permanent faults. The purpose of this model is to accurately represent the

types of faults that can occur in a computer based I&C system. The fault model is used to

generate the fault space, F. F is usually a multi-dimensional space whose dimensions can

include fault characteristics such as location, time, and value, as shown in Fig. 2.4.4. Here,

time represents the time of occurrence and duration, location is where the fault occurs within

the system under analysis, and value represents the form of the corruption. Note that value

can be something as simple as a mask (e.g. corrupting a memory or register location with a

overwrite operation), or something more complex that is state dependent.

2-57

Figure 2.4.4 Fault Space Characterized by Location, Value, and Time

In general, completely proving the sufficiency of the fault model used to generate and
characterize F is usually very difficult. The fault modeling of the applied processor is obviously
the most problematic, due to the large fault space of a complex processor and the interactions
with software. It is more traditional to assume that the fault model is sufficient, justifying this
assumption to the greatest extent possible with experimental data, historical data, or results
published in literature. This is the approach we took, and we used in house processor modeling
and simulation to support the justification of our proposed processor fault model used in this
research effort.

In support of this task, we developed a behavioral-level generic processor fault model that
represents the faulty behavior of a general-purpose, implementation-independent
microprocessor. This work builds on at least 20 years of research to develop a behavioral-level
fault model that accurately represents the faulty behavior of a generic RISC like processor. In
the past early research focused on using the fault models for developing test scenarios for
detecting the various faulty behaviors defined by the fault model. Our efforts to develop a
generic processor fault model builds on [114].

The generic processor model considered performs a basic fetch-execute instruction cycle
typical of a von Neumann architecture. As such, it contains a control unit, which operates as a
synchronous finite state machine, and a data-path, consisting mainly of combinational logic and
some storage elements, which performs the information processing within the processor. The
data-path contains a register file that contains general-purpose and special-purpose registers, a
program counter, an arithmetic and logic unit (ALU), and a fetch and decode logic block. In
addition, the processor contains an interface that allows for communication with entities
external to the processor. And finally, the processor contains internal signals that allow for
communication between the data-path and control unit.

The effectiveness of the generic processor fault model was demonstrated by developing
another processor model, a gate-level model of an actual 32-bit RISC processor (with a
structure similar to the generic processor) and performing simulation-based fault injection

2-58

experiments to demonstrate that all faulty behaviors that are produced by gate-level faults in the
gate level processor model (for instance, stuck-at faults, bridging faults, open faults, etc.) can
be represented by the higher level behavioral fault model. Any unusual faulty behavior
discovered as a result of these fault injection experiments was used to augment the behavioral-
level generic processor fault model.

Once the generic processor fault model was developed, an analysis was performed to ensure
that the experimental environment that is used to perform the fault injection experiments fully
supports the fault model. The fault model we verified is shown below in Fig. 2.4.5. The model
follows the basic premise of a programmers model. That is, the fault model involves the
modification of the software executing on the I&C system under analysis in order to provide the
capability to modify the system state (both processor registers and memory) according to the
programmer's model view of the system. The experimental fault injection environment we
developed to inject faults into the processors of the DFWCS is based on a software
implemented fault injection method employing a in-circuit emulator to control and trace the
execution flow of the processor. The details of the implementation of the fault injection
environment are in Section 2.4.6. In addition, we compared the generic behavioral level
processor to the Intel 486-DX5 which is the resident processor in the benchmark digital feed
water control system. The purpose of this exercise was to determine how functionally
equivalent the 486 processor was to our generic behavioral processor model. We found that
the two processors had strong functional equivalence, and therefore the generic processor fault
model could apply to the 486 processor. See [119] for more details.

Figure 2.4.5 Instruction Set level Behavioral Fault Model

Step 4: Selection of the Operational Profile. Referring to Eq. (2.4.3) again, the last
parameter in the coverage equation is ó. The ó represents the input and state space of the
system under fault injection or the input operational domain of the system. We also call ó the

2-59

operational profile – the input space of a target system. Operational profiles to be used in the
fault injection experiments must be selected to be representative of the system under various
modes of operation and configuration. System configurations may invoke different hardware
and software modules, and it is important that the experiments include sufficient combinations
of these to ensure a thorough evaluation of their behavior in the presence of faults. Similarly,
each configuration will generally have many modes of operation, and not all of these provide
appropriate times during which to perform fault injection experiments. For example, a typical
fault injection scenario would include a startup sequence used to bring the system to a well
defined state prior to the period during which faults may be injected. From a statistical point of
view, since the startup time is negligible compared to the operational time, the system startup is
not a representative operational profile.

Most real-time hardware/software systems operate on an event-triggered basis; that is, when
an event occurs, it is immediately serviced by the system. Of course, the event itself can
generate other events to service. If there is no event from the outside environment, only a
reduced set of software and hardware resources may be used (cyclic idle tasks, diagnostics,
and so forth). This portion of the operational profile will be referred to as a system light
workload. A transient fault that occurs during a system light workload has a high probability of
not being activated as an error. If activated as an error it may not produce a failure until an
input/output activity starts. Also a permanent fault that occurs during a system light workload
has a high probability of not being activated as an error by the idle tasks, but it has a high
probability of being activated as an error and detected by the system diagnostics. This
assumes that the observation interval is longer than the time in which diagnostics are
completed. Therefore, a system light workload, followed by some input/output, has to be in the
selected operational profiles to properly exercise the system.

If there are many events from the outside environment, a majority of the software and hardware
resources are used. This portion of the operational profile will be referred to as a system heavy
workload. In general, when testing the functionality of a given system, the operational profiles
should be selected to exercise as much of the system as possible (assuming that exhaustive
testing is infeasible due to time and resource limitations). This becomes especially important in
a safety evaluation effort using fault injection since it has been shown that certain operational
profiles can mask faults within the system [120]. A transient fault that occurs during a system
heavy workload has a high probability of being activated as an error, and it could quickly
produce (if not detected) a failure due to the high input/output activity. Also, a permanent fault
that occurs during a system heavy workload has a high probability of being activated as an
error before being detected by some diagnostic. It also has a certain probability of being
activated as an error and detected by the system diagnostics, assuming that the observation
interval is longer than the time in which diagnostics are completed.

In summary, the operational profile shown in Fig.2.4.6 is considered to be representative of the
types of operational profiles that need to be used for the fault injection experiments in order to
properly exercise complex hardware/software systems. As such, operational profiles like the
one shown in Fig. 2.4.6 are used during the fault injection experiments, the results of which are

2-60

then used to statistically estimate the fault coverage for the various system components.
Figure 2.4.6 operational profiles consist of the following phases:

1. A system start-up (Phase 1)

2. A system light workload (Phase 2)

3. A system heavy workload (Phase 3)

4. A short system light workload (Phase 4)

Figure 2.4.6 Typical Operational Profiles Applied During Fault Injection

Faults are injected only during Phase 2 and Phase 3, but not during Phase 1 and Phase 4 due
to the justifications presented above. It is worth noting that the window shown in Fig. 2.4.6 can
be seen as the operational profile to be applied for a given fault injection experiment. Sliding
the window left and right, produces a set of operational profiles with many different stress
conditions.

The operational profile selection for the benchmark DFWCS is based upon actual plant data
collected over a period of time. At present our profile on the benchmark DFWCS is more
representative of a light to heavy workload, a transition from low to high power operation. This
mode of operation invokes a substantial amount of the control processing.

Step 5: Creation of Fault free Execution Traces. For each operational profile that is selected,
a fault-free execution trace must be created to support the analysis efforts in the safety
evaluation process. The fault free trace is considered the correct operation of the system in the
presence of no faults. The trace will contain information, such as the sequence of instructions

2-61

that are executed during a given period of observation, as well as the process state information
that is visible (that is, the information that is accessible by a programmer using the
programmer's model view of the processor). The fault free trace is compared to the faulted
trace after fault injection to determine if the fault was detected and properly mitigated by the
system. The experimental environment that will be used to perform the fault injection
experiments is constructed in such a manner as to support the creation of the fault-free
execution traces as well. In general, an execution trace requires information that is typically
accessible using tools such as data loggers, software debuggers, or in this case, in-circuit
emulators (ICE). In the assessment of the DFWCS we use three types of data logging to
create fault free traces. The first is a data dump routine that executes on the main and backup
computers of the DFWCS. This level of information contains the status of all process variables
and set points used in the application control laws. The second type of data collection is an
external data logger that tracks selected sensor inputs and actuator commands. The third type
of data collection is a assembly level instruction trace stored by the ICE machine.

Step 6: Fault List Construction. One of the main issues when setting up fault injection
experiments is how to build the list of faults to be injected. Solutions depend on the goal of the
experiments: if they aim at measuring the fault coverage attained through detection
mechanisms, the list has to be representative of the whole set of possible faults which can
occur in the system. On the other side, if the experiments aim at locating faults which could be
critical for the system behavior, special techniques have to be used to target only these faults.
In our case, we needed to identify faults that were tied to failure modes of interest, like
computer output fails high. These failure modes were derived from the information in Section
2.3, and by analyzing the results of the FMEA presented in Chapter 2.

Our fault injection experiments are shown in Fig. 2.4.7 as a Set of Experiments. The set of
experiments will not be an exhaustive set due to the size of the fault space (which is assumed
to be infinite), but it is assumed that the set of experiments is a representative sample of the
fault space to the extent of the fault model and to the confidence interval established by the
number of samples each fault injection experiment that is performed, there are three possible
outcomes, or events, that can occur as a result of injecting the fault into the system under
analysis. First, the fault could be covered or detected. A fault being covered means that the
presence and activation of the fault (which produces an error) has been correctly mitigated by
the system. The second possible outcome for a given fault injection experiment is that the fault
is uncovered or undetected. An uncovered fault is a fault that is present and active as with a
covered fault (and thus producing an error). However, the fault detection mechanisms in the
I&C system is somehow insufficient and cannot identify the incorrect system behavior. As such,
any discrepancies that are produced as a result of the fault are not identified by the onboard
fault detection mechanism or diagnostics, and thus the fault is uncovered.

2-62

Figure 2.4.7 Generation of the Fault Experiments from the Fault Space

The final possible outcome for a given fault injection experiment is that the fault causes no
response from the system. A no-response fault is one that is present, but is not active. For
instance, a fault could be present in a given portion of memory that is never accessed by the
system. Or, if it is active, it is not producing an error due to the fact that its effect is being
masked by the system. For instance, a stuck-at-1 fault could be present on a given signal line
whose value is always a logic one. These no-response faults are typically referred to as latent
or dormant faults. During a system evaluation using fault injection, it is desirable to reduce or
eliminate no-response faults. No-response faults provide no additional information with regard
to computing the system coverage. In essence, the results from fault injection experiments for
no-response faults can be discarded without affecting the coverage estimate. Note that in order
to discard the fault, it must be shown that the fault is truly a no-response fault.

In addition, no-response faults require the maximum amount of time to perform the fault
injection experiment. This is due to the fact that the experiment is not terminated prematurely
by a fault mitigation mechanism (such as a hardware watchdog timer or a software diagnostic)
in response to an active fault. In general, reducing, or ideally eliminating, the number of fault
injection experiments involving no-response faults will help to minimize the time and effort
needed to perform the fault injection-based evaluation, which in general is a very resource-
intensive process.

To this end, several researchers have addressed the problem of no-response faults by
constraining the fault space from which the set of experiments is generated by performing some
sort of algorithmic processing of the fault space (using the fault-free execution trace that was
mentioned above) [51]. By pre-processing the fault list, it is possible to eliminate wasteful no-
response faults. The faults that remain after preprocessing the fault list are guaranteed to be
response faults. Finally, these faults are used to generate the set of experiments by randomly
selecting from the portion of the reduced fault space to ensure that every fault that is injected
will produce an error. Thus, no unnecessary fault injection experiments are performed, and the
efficiency of the evaluation procedure is improved significantly, even when taking into account
the overhead associated with the extra processing required to identify the portion of the fault
space that does not contain any no-response faults. In our work with the benchmark DFWCS,
the entire list of faults was pre-processed to ensure that they were no-response faults.

2-63

Fault Expansion.

As indicated earlier, the concept of fault equivalence and expansion plays a critical role in the
fault list generation process. The concept of fault equivalence and it’s role in fault injection can
best be described by Fig. 2.4.8. First, consider a program running on a computer. For each

ivariable s used by the program, and for each write operation on it, we can define a window
period the longest period starting with the write operation on the variable, ending with a read
operation on the same variable, and not including any other write operation apart from the initial
one. Referring to Fig. 2.4.8, the number of faults contained in the window period of
opportunity is infinite if one considers time as a continuous variable. Digital systems, however,
are designed based on the concept of discrete time units. Thus, the number of faults contained
in the window of opportunity is measured based on this fundamental discrete unit of time. The
discrete unit of time is derived from the minimum time required for the system to reach the next
system state. This fundamental time unit is referred to as a system clock cycle. In most cases,
this discrete unit of time is the inverse of the processor clock frequency. Some systems,
however, update the state of the system faster than the processor clock frequency. Thus, the
system clock cycle may or may not be equivalent to the duration of the system processor clock.
The number of system cycles contained in the window of opportunity is the number of
equivalent faults for this particular fault injection experiment. This quantification assumes that
the fault occurrence is an independent event which can occur at any time independent of the
system clock. The effects of a fault occurrence event, however, are observed and propagate
through the system based on the system clock.

Figure 2.4.8 Fault Equivalence concept.

iAs example of fault expansion, if there were 1000 clock ticks between the write of variable s ,

iand the read of variable s , then there would be the possibility of 1000 faults in the window
period that would be equivalent. We only have to select one fault from the fault set of 1000 to

2-64

count all 1000 faults. This is the power of the expansion concept. Stating this concept
mathematically,

 (2.4.10)

s aWhere C is the number of equivalent faults, t is the time instance of the first write operation in

bthe window, and t is the last read/write operation in the window and Tc is the time period
associated with one system clock of the system under test. See reference [121] for complete
description of fault expansion and coverage estimation using expanded faults sets.

2.4.5 Experimental Setup: Design, Implementation of the Fault Injection Environment

2.4.5.1 Overview

This section describes the experimental setup used to perform the fault injection experiments
for the purpose of evaluating the fault detection mechanisms and responses of the DFWCS.
The fault injection tool was developed specifically to support precise controllability of the fault
injection parameters given Eq.(2.4.3). That is, fault type, fault locations, fault time, fault value,
and fault duration. Furthermore, the environment for designed to support the processor fault
models described in Section 2.4.4. Recall that the fault model adopted for this project is a bit
flip model. Faults are emulated by injecting single or multiple bit flip error patterns into the
memory maps, registers, busses, and I/O registers of the microprocessor of the DFWCS
computer modules. There are many different methods and techniques for implementing fault
injection [110]. For this work, we developed a unique method for fault injection that employs an
ICE as the heart of the fault injection environment. We found that the ICE has the potential to
provide very high controllability and observability, approaching that of detailed simulation based
fault injection.

An ICE machine is a tool used by designers of embedded systems to debug embedded
software. Debugging embedded system software is particularly challenging because
embedded systems usually lack suitable user-interface devices such as keyboards and
displays. Under such circumstances, ICE machines provide a ‘window’ into the system through
which the designer can effectively control and observe an embedded system at a very low level.
In-circuit emulators usually have a pod that plugs directly into the socket where a CPU chip is
inserted. There is interface circuitry which provides a connection between an ICE machine and
a terminal PC. This terminal can be used to run an interactive user interface application using
which a designer can monitor the embedded system being designed. For the rest of this
discussion, this PC or terminal which runs the user interface application will be referred to as
the host machine. The machine which the ICE emulates will be referred to as the target
machine. The execution of the target machine can almost completely be controlled and
observed from the host machine. This feature is particularly attractive for using ICE machines
for fault injection purposes. A few significant capabilities of most in-circuit emulators when used
with an interfacing application are described below.

2-65

Memory and register view: When the emulator is halted, the processor state (contents of CPU
registers, memory, memory management status registers, bus state, timing details, and status
flags) can be viewed in the interface application running on the host machine.

Software execution breakpoints: Breakpoints can be defined anywhere in the code where the
designer wants to halt the execution to look at the contents of the processor state.

Hardware breakpoints: This is more of a feature of the processor that is being emulated than
of the emulator. These are registers used by the processor for allowing the programmer to
enable various debug conditions. They are usually used by storing a memory address in them,
which when accessed by an application causes the emulator to halt. These registers can be
enabled or disabled from the interface application running on the host machine. For instance,
the Intel 486 processor of the DFWCS has 6 debug registers that can store “state” information
at time during the execution of the program.

Disassembly: The interface application is capable of disassembling machine code and
matching it to source level symbolic information (variable and function names) while stepping
through code. This gives the designer a layer of abstraction, giving an effect of stepping
through source code as opposed to machine or assembly code.

Trace collection: Execution times of each instruction can be logged in terms of either clock
ticks or absolute time (nanoseconds/microseconds).

Script execution: This is a capability that is usually built into the interface application running
on the host machine. There is usually a shell prompt where the programmer can give shell
commands for various operations such as for halting the processor, restarting it, and so on. A
sequence of shell commands could be executed to attain a complex operation. These
commands can be saved in a script file and executed at once giving rise to a very useful
automation tool.

The main advantage of ICEs for fault injection is the capability to alter processor and memory
state easily and view the results of the alteration which is the main motivation behind using
them for fault injection experiments. When the processor is halted, the memory values and
register contents can be viewed and altered as desired by the user. This ability has been made
use of for implementing a fault injection environment. The processor execution halted at a
desired time, followed by an alteration to processor state (memory, registers, or status flags),
followed by resumption of execution can be considered a fault injection. Given the script
execution capability, it is possible to automate injection of a larger number of faults.
Accordingly, this capability to alter the process state of a executable program conforms nicely
with the generic processor fault model that was described in Section 2.4.4.

2-66

Collecting information regarding response of the system after fault injection is to be done at an
abstraction level that is far above than that of the processor. This is because we need to
observe how the whole system responds to a fault. Hence, the ability to collect data at regular
intervals after each fault injection is a capability the emulated target machine would need to
have. Information available at the level of the in-circuit emulator is very low level and global
effects may not be noticeable from the (emulated) processor level. Consider for example a
variable in a control system for a heating unit called temperature. If the fault injection reduced
its value down to 0 degree Celsius, it could respond in a way that resets some variables in
memory. From the view of a processor it may not have any semantic meaning, but to the whole
system it might show up as a response which (say) turns on the heating system. Hence it is
important that there is capability to know the response of a fault injection that ‘reduced the
temperature down to 0’ (variable/CPU level) gave a response which ‘turned on heating’
(system/global level).

2.4.5.2 The DFWCS Experimental Test Bed

All experiments were conducted on a duplicate lab version of the DFWCS application that was
installed at the power plant. Figure 2.4.9 shows the architectural configuration of the DFWCS.
It consists of two identical industrial PC based computers called the main and backup machines
(e.g. CPU’s). They run Intel 80486 DX4 processors at 120 MHz. These machines are
equipped with plasma display units (PDUs) which act as status display monitors. They are
touch screens which display status information about the DFWCS application and can be used
to give commands to it through an interactive menu it displays. The main and backup machines
are connected to an interface backplane. The controllers are devices that take as their input
the position commands from the main and backup CPU’s and produce outputs to the main feed
regulator valves and bypass valves.

2-67

Figure 2.4.9 Architectural View of the Benchmark DFWCS.

The DFWCS needs an elaborate reset sequence for startup, only after which the system is
available for use and for fault injection. This reset sequence is strictly time constrained, and is
handled by another terminal which is called the sequencer. This terminal gives ASCII
commands to the CPU at the specific times defined by the reset sequence. The CPU
transforms them into plant parameters and connects to various elements of the system through
the back plane.

The Microtek Powerpack In-Circuit Emulator EA-486 was the emulator used for fault injection
experiments. It is an emulator for Intel 80486 processors. Its main component is a plug that
can be inserted into the pin grid array (PGA) socket of the 486. This is connected to interface
circuitry which can be connected to a terminal host over the serial port. The host machine is a
Windows 2000 machine running on an Intel Pentium III processor. This runs the interface
application and is referred to as the source level debugger (SLD).

In all experiments that were conducted, the main CPU was used as the target. The ICE
machine was plugged into the CPU socket of the main machine. This was interfaced to the
host machine through the serial port COM 2 in the main CPU. A trigger line was connected
between the sequencer and the ICE machine. This is the line used by the sequencer to inform
the emulator that the system is ready for fault injection. Fig. 2.4.10 below summarizes the
integration of the emulator into the DFWCS environment.

2-68

 Figure 2.4.10 Integration of the In-circuit Emulator into DFWCS Lab

2.4.5.3 Identifying Potential Fault Injections Locations and Values for the DFWCS Application

The approach we take for the first set of fault injection campaigns is to replicate as best as
possible the conditions of failure modes given by the models in Section 2.3, and listed Table
2.3.1 for the main computer. We applied the malicious fault list generation method [121] to
select faults that would have specific impact on the operation of the DFWCS. The application
source code was manually searched for identifying variables that could be potential candidates
for fault injection according to the malicious fault list generation criteria. Namely, variables in
modules that corresponded to input processing, output processing, control law, and acceptance
tests were the ones mainly chosen. A compiler generated memory map was then used to find
out memory addresses of each of these variables. This had to be done manually because the
SLD was not capable of matching symbolic information for 16 bit applications. This process
gave a list of memory addresses used by the application for which a corruption could bring
about significant consequences. A fault list was compiled based on the address of each

2-69

variable together with a masking bit pattern for the corruption. The fault types that were created
for the list typically include:

Fault types:

• Force the contents of a memory location(s) or CPU register(s) where critical program
variables reside to a all zero state = 0000h

• Force the contents of a memory location(s) or CPU register(s) where critical program
variables reside to a all one’s state = FFFFh

• Force the contents of a memory location(s) or CPU register(s) where critical program
variables reside to a random assignment state = random bit vector assignment

• Force the contents of a memory location(s) or CPU register(s) where critical program
variables reside to invert state = Corrupted Contents Inverted from original contents.

• PC and Stack registers corrupted.

• Memory management registers corrupted to any value desired.

Fault Duration:

The different fault types listed above can be activated for different periods of time. The
smallest period of time is 2 instruction cycles (~300 ns). The largest period of time (tested to
date) is about 5 seconds.

Fault location:

Any of the fault types listed above can be activated at any writable location in the state of the
processor. This includes process memory, code segments, data segments, registers, status
registers, heap memory, OS code and data segments, process state locations, etc.

Fault Injection Timing:

Since the ICE machine can halt on any instruction boundary, data or variable reference the
timing of the fault placement can be very precise. The time granularity is measured in either
clocks cycles or instruction cycles, both of which are in the nanosecond time scale.

2.4.5.4 Fault Injection Automation

A small C application was written to generate a script containing SLD commands based on the
fault list. This script runs on the SLD application, and handles the automation of fault injections.
The sequencer machine goes through the elaborate reset sequence of the various components
of the system, and signals the ICE machine when the system is ready for a fault injection. This
is accomplished by sending a trigger to the trigger in pin of the ICE machine. This event is

2-70

detected by the SLD script that is running on the host machine. The SLD script has been
configured to halt the target machine and prepare for injection of a fault from the fault list. A
fault in the fault list contains information such as the segment and offset address of the location
to be corrupted, number of bytes to be corrupted and a masking bit pattern to be logically
applied to the contents of the memory location. These pieces of information are used to define
an event on the host machine that causes the emulator to halt when a write occurs at the
memory location defined by the event. After this, execution of the target is resumed which
causes the main CPU to execute normally. This eventually causes an event of ‘write to the
memory location’ to occur at some point of time in the near future. This implies that the code
has written (possibly) a new value to the location.

2.4.5.5 Data Collection

Figure 2.4.10 shows a data dump interconnection (serial link) between the sequencer and the
backup machine. The sequencer sends a command to request a data dump to the backup
machine, and it responds by sending the data dump back on the same serial connection. This
functionality is exercised once before the fault injection and once after the fault injection. It has
been configured so that each data dump is stored as a separate file with filenames defined by
time stamps. The data dump also contains information regarding the fault that was injected.
This piece of information is extracted from the fault list and inserted into the file that is logged.
Discrepancies between the pre fault injection data dump and post fault injection data dump can
be analyzed for generating statistical data after a large amount of data has been collected.

2.4.6 Results From a Fault Injection Campaign

Fault injection campaigns were performed on the DFWCS to ascertain the effectiveness of the
fault tolerance mechanisms, classify the error responses of the systems to injected faults, and
in general exercise the methodology presented to find its strengths and weaknesses. Referring
to Fig. 2.4.10, the process of fault injection begins with the system being reset so that the
experiment starts from a “good” state. Once the DFWCS main processor is running in known
good state, we collect operational data from the DFWCS for the fault free run. This data is
used for comparison against the operational data collected during fault injection trial. Once the
faulted data is collected and stored by the sequencer computer in Fig. 2.4.10 the DFWCS is
reset again to start a new fault injection trail.

Once the response was logged and found to be a detected fault. We can compute the fault
equivalence coverage of the detected fault. For this fault the time between the first write to the
I/O memory register for the variable FW flow and the last read from the register containing the
variable FW flow was 5720 system clock cycles. Thus, the expansion factor of this fault is
5720.

2-71

2.4.6.1 Error Classification

The fault injection environment along with the data acquisition software is able to observe a
wide variety of errors. We currently classify the errors into four categories:

1. Detected errors: Errors that are detected by the DFWCS fault tolerance mechanisms
and correct runtime recovery was initiated.

2. Other errors: Errors that were detected by the DFWCS, but caused the processor to
hang or crash. Recovery was not possible until the processor was rebooted.

3. Sustained Undetected errors or uncovered errors: Errors that were not detected by
the fault tolerance mechanisms causing a failure to occur, that is the DFWCS produces
an incorrect control signal.

4. Spurious undetected errors: Errors that temporarily cause the system outputs to
deviate from expected performance, but the system eventually stabilizes, or detects the
error and corrects it.

2.4.6.2 Common Mode Failures

A possible approach to quantify the likelihood of CMFs from an integrated hardware/software
perspective is described in [122]. This modeling scheme represents the system in the
information universe to obviate the need to distinguish between hardware and software when
developing the system model. One key contribution of this research was to recognize that
dependable embedded digital systems often employ error containment regions (ECR's) for fault
tolerance. An ECR is defined as a collection of data produced by either hardware or software,
which is unaffected by any arbitrary error outside that given region. Conversely, errors that
originate outside a given ECR cannot affect that ECR. Two existing modeling methodologies,
the DFM [3] and the data flow [122] were used to represent and to analyze the system's
information universe. The DFM derives the test vectors, the location for error injection and the
partitioning of the ECR's. Data flow provides the simulation environment for the model that
determines the effect that the various errors have on the system and provides the data to derive
the coverage estimate for CMF.

The basic idea for quantification is to use multiple fault injections across a span of ECR's in an
embedded systems. The method of using fault injection for analysis CMF coverage is an
extension of the basic single point fault injection methods described earlier. The CMF fault
injection includes injecting faults into multiple redundant channels at key times of execution, or
multiple faults into a single channel at key times of execution. Deriving the list of potential CMF
requires analysis of the hardware/software system, specifically the interactions between the
various components inside a single channel, and across different channels. The methods used
for the estimation of coverage for CMF are no different than for single mode fault injection. The
one requirement that is crucial is the need for precise timing measurement which requires the
establishment of a global clock on an operational platform. Establishing such a global clock is

2-72

not a difficult task since most fault injection environments have a precision clock that can be
used as a global clock.

2.4.7 Estimation of Failure Mode Rates and Failure Mode Probabilities on Demand

The failure rate data for the DFWCS listed in Table 2.4.1 are for the failure rates of the DFWCS
components irrespective of their failure modes. The failure data also do not take into account
the fault detection, detection or or remediation capability of digital systems. In that respect, the
data in Table 2.4.1 or data hardware data from existing data bases (e.g. [118]) cannot be used
directly either by the Markov/CCMT method or the DFM. A possible way to estimate the
needed data for these methods would involve the following steps:

1. Construct a list of faults that are known to cause the system. For example, suppose we

12want to estimate ë in Table 2.4.1 as it relates to the specific DFWCS under
consideration. Then, we would construct a list of faults that are known to cause the
system to lose input. This process is called malicious fault list generation [121]. The
malicious fault list should include faults that the system is expected to detect which may
include, permanent, transient, and common mode failures.

2. Inject each fault on the malicious fault list into the system and observe the system
response to the fault. The ratio of the detected faults to the total fault injection set

fm mdefines the coverage C for device f in the failure mode f (see Eq.(2.4.2)). The
injection set will include injections at different times t, with different durations Ä,

fmlocations l, and internal and external system states ó. The uncoverage (1-C) is then
the probability that the system will not detect the fault m in device f so that the fault will

fm fmpropagate though the system and ë (1-C) is the failure rate of device f in the mode m.

12 12Using the example of Step 1 above, ë (1-C) will be the failure rate for loss of input.

fmFor digital systems which are activated/de-activated upon demand1-C will be the
probability of failure upon demand.

m3. Repeat Steps 1 and 2 for all the failure modes f .

Step 2 is performed under the assumption that all the injection set parameters are equally likely
to occur. Since is the failure rate is irrespective of the failure mode, the frequency of occurrence

mof any one failure mode from the set of all possible failure modes f is less than total failure rate
of the device f, and subsequently the approach is conservative.

Another possible approach is based on a new metric called Mean Time To Unsafe Failure
(MTTUF) [123]. This metric and it's mathematics were developed in response to the concern
about using failure rate data when there is sparse component failure data to make a credible
basis for predicting overall system failure. The MTTUF metric represents the average or mean
time that a system or component will operate safely before a failure occurs, and produces an
unsafe or undetected system state. The MTTUF represents the evaluation of safety or
coverage of component as a function of time in the limiting case as time approaches infinity.
Thus, it is a steady state metric. The use of the metric in this case would be to estimate the rate

2-73

of undetected failure from a operational state to a failure mode state. This approach would
require knowing the Mean Time To Failure (MTTF) of a specific failure mode of the system.
MTTF information is more likely to be available for the system and it's components rather than
failure rate information. However, obtaining MTTF information on specific failure modes would
present a challenge.

2.4.8 Initial Conclusions

This section has summarized the quantitative safety assessment process, and more specifically
the key steps in the numerical quantification process - the development of analytical models by
which safety and reliability can calculated from, the acquisition and generation of data for the
key parameters in the models to be introduced in latter sections. The application of this
methodology to an actual I&C system (e.g. the benchmark DFWCS) has shown the viability of
the approach. Significant findings to this point are summarized below:

1. Careful attention to model parameter uncertainty is required, especially with parameters
where data is scarce, such as new device failure rates. The use of modern uncertainty
analysis techniques could help to quantify the uncertainty in relation to a model’s
predictive capability (Section 2.4.5).

2. Data acquisition from the target system should be designed to collect data to support
model parameters at different lvels of information. This ensures that subtle failures,
whose effects might not be visible at one level of data collection, may be visible at
another level of information flow (Section 2.4.7).

3. The development and design of the generic processor fault model was found to be
compliant with the DFWCS CPU architecture (e.g. the Intel 486 and the AMD 586) thus
the generic processor fault model was representative of the behavioral fault model we
used for fault injection on the DFWCS (Section 2.4.4).

4. The operational profile model developed for fault injection was compliant with the
operational profile used in the DFWCS fault injection campaigns (Section 2.4.4).

5. Failure data needed for the DFM and Markov/CCMT method can be estimated by fault
injection experiments (Sections 2.4.6.2 and 2.4.7)

6. Statistical models can be developed to estimate with narrow confidence intervals the key
coverage parameters of specific failure modes (Section 2.4.4)

7. Malicious fault lists can be generated to include a comprehensive list of faults that cause
a specific failure mode to occur on the target system (Section 2.4.4)

8. Fault equivalence models can be applied to capture a large set of equivalent faults,
reducing the variance of the estimate of fault coverage

9. Novel fault injection techniques can use commercially available test equipment to
emulates both transient and permeant faults (Section 2.4.6)

10. Failure mode specific faults can be injected into the target system to successfully collect
key data.

2-74

2.5 An Example Initiating Event For Illustration

The PRA models that are used in this study (see Section 5.2) are taken from NUREG-1150
[124]. Since these models are directed to Level 2 PRA, they assume that the reactor is
shutdown in all the initiating events. In that respect, the following initiating event is used to
illustrate how the reliability models constructed with the DFM (Section 3) and the Markov
methodology (Section 4) can be incorporated into an existing PRA:

1. Turbine trips

2. Reactor is shutdown

3. Power P is generated from the decay heat

th th4. Reactor power and steam flow rate reduce to 6.6% of 3000 MW (or 1500 MW /SG) 1
second after reactor shutdown

5. Feedwater flow is at nominal level

6. Off-site power is available

7. Main computer is failed.

Assumption 1 represents the initiating event. Assumptions 2 and 3 are necessitated by the

thavailable PRA models in NUREG-1150. Assumption 4 implies that a 3000 MW plant is being
considered that has operated at this power level for more than 1 year (within 3% of actual
values using shutdown heat generation relations given in [125]) and Assumption 5 implies that
the reactor was at full power at the time of shutdown. Assumption 6 allows modeling of the
actuation (or failure upon demand) of motor operated valves. Assumption 7 reduces the
system state space for reliability model construction to provide clarity in illustrations.

Since we are in the low power mode following the plant trip, the BFV is being utilized. Then
from Section 2.2.2, we have the following equations as the control laws for SGn (n = 1,2):

Level: (2.5.1)

Level error : (2.5.2)

2-75

Compensated water

level : (2.5.3)

Compensated power: (2.5.4)

BFV demand (2.5.5)

BFV position(%) (2.5.6)

wn wn In Eq.(2.5.1), f = 0 if BFV is failed closed. Otherwise, f is obtained from the solution of

(2.5.7)

wnwhere D is the diameter of inlet pipe to the BFV (in feet) and f is in ft /s. The L is a fitting3

parameter. Equation (2.5.7) uses the pump and valve models given in NUREG/CR-6465 [4]
and assumes that pump head is equal to the head loss in the valve. In general, the steam

swflowrate f is obtained from the solution of Eqs. (A.29) through (A.41a) in Appendix A along
with Eqs. (2.2.14) and (2.2.15). For the example initiating event, it is assumed that steam

sngeneration rate f follows the primary system decay heat generation rate, i.e.

(2.5.8)

Equation (2.5.8) is taken from [125] and time t is in seconds. In addition to Assumption 1

snthrough 7 above, Eq. (2.5.8) assumes that: f (0) = 2102.8 ft /s, the reactor has operated for 13

year and stating point of the analysis is 10 seconds after the turbine trip. Table 2.5.1 shows the
data used for this example initiating event.

For the data in Table 2.5.1, Eqs. (2.5.1) through (2.5.8) become

2-76

(2.5.9)

(2.5.10)

(2.5.11)

(2.5.12)

(2.5.13)

(2.5.14)

Table 2.5.1 Data Used for the Example Initiating Event

Variable Value

sf (0) 0.066*2102.8 ft /s3

x(0) 0 ft

LnE (0) 0 ft

LnC (0) 0 ft

pn thC (0) 0.066*1500 MW

thP(0) 0.066*1500 MW

BnS 0 %
L/D 2
C 140

2-77

D 0.5 ft

Bnì 1/15

Bna 0

nr 0

Bnb 100X12/54
A 1/109.0 ft-2

wnFigure 2.5.1 shows that the solution of f as a function of is practically indistinguishable

from its quadratic function representation through

. (2.5.15)

Also, since

(2.5.16)

we have

(2.5.17)

(2.5.18)

(2.5.19)

(2.5.20)

(2.5.21)

2-78

wnFigure 2.5.1 The Solution of f from Eq.(2.5.15) as a Function of

Laplace transform of Eqs. (2.5.17)-(2.5.20) following linearization around normal operating
conditions shows that the transfer function has one real (Root 1) and two complex conjugate
roots (Root 2 and Root 3). Figures 2.5.2 and 2.5.3 show that the system is unconditionally

1 2stable for 10#ô #100 s and 10#ô #100 s.

2-79

Figure 2.5.2 Real Part of Root 1 of the Transfer function of
Eqs.(2.5.17), (2.5.18) and (2.5.19) Following Linearization Around

LnE = 0

Figure 2.5.3 Real Part of Root 2 or Root 3 of the Transfer
Function of Eqs.(2.15.17), (2.15.18) and (2.15.19) Following

LnLinearization Around E =0

2-80

i Figures 2.5.4 - 2.5.6 show the behavior of Eqs. (2.5.17) - (2.5.20) for ô =10 seconds (i=1,...,5),

n Ln Ln n Lnx (0) = C (0) = E (0) =0 and =100. Both level x and compensated level C stabilize

Lnaround their nominal value within 100 seconds following the initiating event, while level error E
shows a steady decrease after 100 seconds. This behavior is consistent with Eq. (2.5.10)

Ln n Lnwhich determines E (t) from the difference between the setpoint r and C (t) (see Eq. (2.5.2)).

LnThe compensated level C (t) anticipates the behavior of the difference between steam outflow
and feedwater inflow into the SG (see Eq. (2.5.11). Since steam outflow follows the power
generated in the primary system and power decreases with time (see Eq. (2.5.8)) so does the

n Lndifference between the actual level x and compensated level C (t).

Figure 2.5.4 Variation of Actual level with Time for the Example Initiating Event

2-81

Figure 2.5.5 Variation of Compensated Level with Time for the Example Initiating
Event

The anticipation of the behavior of the difference between steam outflow and feedwater inflow

Ln ninto the SG is also the reason why the magnitude of variation of C (t) is different from x (t)

wn sn Ln ninitially. The difference decreases as f approaches f and subsequently both C (t) and x (t)
approach their target value of zero.

Figure 2.5.6 Variation of Level Error with Time For the Example Initiating Event

2-82

Figure 2.5.7 shows that the exact timing of the failure of a system component can have
an impact on the resulting system failure. In particular, Fig. 2.5.7 depicts the evolution
of the level variable under two distinct scenarios starting both from the same initial
conditions as those in Figure 2.5.4. In one case, the BFV fails stuck at the current
position at time t = 43 sec. In the other case, the BFV fails stuck at time t = 44 sec.

nThe first scenario results in the level failing low (x < - 2.0 feet), while the second

nscenario results in the level failing high (x > 2.5 feet). This example is important
because, for a system similar to the digital feedwater control system in an operating
PWR, it illustrates:

• what has been reported in the literature on the possible sensitivity of the system failure
mode to the exact timing of component failures [126], and,

• that an analysis that considers only the order of events and ignores their exact timing
may result in the failure to identify possible failure modes.

It is also important to note that while such sensitivity of the system failure mode to the
exact timing of component failures may be also true for the traditional analog I&C
systems and is usually not considered under the current ET/FT approach to PRA, it is
not clear that this approach is still allowable under the discrete time nature of digital I&C
systems. For example, the position of the level and the magnitude of the other
variables used by the controller (e.g. compensated level, level error) at a sampling point
in time are no longer the same at the next sampling point. The DFM and the
Markov/CCMT methodology both account for such uncertainties by representing the
system dynamics in terms of mappings between process variable intervals in discrete
time (see Chapters 3 and 4, respectively).

2-83

Figure 2.5.7 Different Failure Modes as Result of Timing of BFV
Failure

Figures 2.5.8 - 2.5.10 present another interesting issue. These figures display the same data
shown in Figures 2.5.4 - 2.5.6 except that they include a longer time interval (t = 0..1200
seconds). The system seems to exhibit instability around time t = 880 seconds where the three
variables start oscillating again. The level and the compensated level quickly settle again
around their nominal value, and the level error seems to make a jump before resuming its slow
descent. It is important to note that while, in principle, such a dependence of the nature of the
Top Event on the timing of failure could be found by a careful FMEA, the FMEA would amount
to going though the steps to generate the cell-to-cell-transition probabilities of Markov/CCMT
methodology (Section 4.2.4) or the decision tables of DFM (Section 3.1.1) since it would still
require considering possible locations of the system in the discretized state-space of Eqs.
(2.5.1) - (2.5.7) with respect to the example initiating event transitions (Section 2.5.1).

2-84

Figure 2.5.8 Variation of Level with Time with Artifact

Figure 2.5.9 Variation of Compensated Level with Time with Artifact

Neutron flux oscillations with scram following recirculation pump trip in La Salle 2,7

Illinois on 3/9/1988. Power oscillations after a turbine trip with pump runback in Oskarshamn 2,
Sweden on 2/25/1999. Feedwater oscillations in Harris plant, North Carolina during start-up at
7% power on 1/2/2002. Also see [127].

2-85

Figure 2.5.10 Variation of Level Error with Time with Artifact

This behavior may be caused by an actual instability in the system and its corresponding model.
Such instabilities have been observed in nuclear plants . However, in this case, it is an artifact7

that is the result of a numerical error in the digital control algorithm simulator. The algorithm
uses Gauss-Legendre quadrature to evaluate the integral in Eq. (2.5.20). The integral is
computed repeatedly with an increasing number of points until the absolute value of the
difference between two consecutive estimates of the integral is below a given threshold (10). -6

At time t = 880 seconds, the first two estimates of the integral are both below the threshold itself,
so that the absolute value of their difference is also below the threshold. This causes the
algorithm to stop its iteration and return the wrong value for the integral. Figures 2.5.11 and
2.5.12, respectively, show the correct integral in the range 0#t#1200 seconds, and the integral
calculated by the faulty algorithm in the same time interval. The numerical problem presented
here would probably be avoided by an experienced, qualified programmer. However, this
example is important because it illustrates the kind of pitfalls that can arise in the presence of
digital systems and software control algorithms.

It should be reiterated at this point that this example initiating event is chosen for ease of
illustrating the implementation of the dynamic methodologies under consideration and is
not indicative of the limitations of the Markov/CCMT methodology or DFM, as well as

2-86

being representative of the possible types of interactions relevant to the benchmark
DFWCS which may lead to errors not easily identifiable by conventional methods. For
example, power is not assumed to be constant in time which leads to the artifact
described above. Similarly, the BFV position is a function of the BC and BFV controller
states and may reflect history dependence which again is not representable by the
conventional ET/FT methodology. As also indicated earlier, another reason for the
choice of the initiating event is to achieve a reduction of the system state space for
reliability model construction to provide clarity in illustrations. All the features of the
benchmark system can be modeled by both the Markov methodology and the DFM (see
Sections 3 and 4). Section 2.5.1 below reduces the state transitions of the DFWCS
described in Section 2.3 to those relevant to the example initiating event.

Figure 2.5.11 Correct Evaluation of the Integral in Eq. (2.5.20)

2-87

Figure 2.5.12 Incorrect Evaluation of the Integral in Eq. (2.5.20)

2.5.1 Example Initiating Event Transitions

As presented above, the components involved in the example initiating event are BC, BFV and
BFV controller. In order to simplify the overall system presented in Fig. 2.3.3 to clarify the
illustration of reliability model construction with the Markov/CCMT methodology and DFM, the
following assumptions have been made:

1. Loss of both inputs only (and not possibly one).

2. Only the BFV controller failure can generate arbitrary output. If BC generates arbitrary
output due to internal failure, it is recognized by the BC and BC transits to State D.

3. Loss of communications between the sensors and BC and between BC and BFV
controller cannot be recovered.

4. The BFV controller cannot fail in Output High mode.

5. FP cannot fail.

2-88

The BFV controller Output Low mode failure is included in 0 vdc Output in Fig. 2.5.13 since they
have the same effect on the actuated device (i.e. valve totally closed). Also, since the MC has
failed (not recoverable) and only the BC computer is operating, the computer-computer
connections (see Fig. 2.3.2) are reduced to the one presented in MS 3 only. Moreover, due to
Assumptions 1 and 2, Loss of One Input and Arbitrary Output (Fig. 2.3.1) are not considered in
intra-computer interactions .

From Assumption 3, the Plane 2 that represent the loss of output of the controller in Fig. 2.3.3 is
no longer needed. Subsequently, Loss of Output leads the controller to transit to the 0 vdc
Output directly. Figure 2.5.13 shows the possible states of the DFWCS components for the
example initiating event which are defined more explicitly below:

Figure 2.5.13 Example Initiating Event Transitions

• Controller/Device Communicating: This state specifies that the combined BFV
controller and BFV are operating correctly and contains the following BC states:

• State A: BC operating correctly

• State B-C: BC does not receive any signals from the sensors (BC detects
0.0 vdc in the sensor reading)

• State D: BC down

2-89

• Freeze: BFV controller recognizes that BC is down and maintains the position of the
BFV.

• Stuck: BFV remains stuck in the same position due to mechanical failure.

• Arbitrary Output: BFV controller is sending random data to the BFV due to internal
failure (software/firmware/hardware).

• 0 vdc Output: 0.0 vdc on the line which connects controller and valve. This can be due
to both a loss of communication between BFV controller and BFV or also due to the Low
Output mode failure of the BFV controller.

A list of the possible transitions between these states are presented in Table 2.5.2.

Table 2.5.2 Possible Transitions for the Example Initiating Event

Failure mode Transitions

BFV stuck due to mechanical failure 3, 5, 6, 7

BFV controller drifts low or 0 vdc on the
line

1, 9, 10

BC down due to internal failure (e.g.
watchdog timer), power loss or loss of
output

2

Random output from the BFV controller
to the BFV

4, 8

The BFV position is a function of the BC and BFV controller states and may reflect
history dependence. In this respect, the allowed possible combinations of the
component states are as presented in Table 2.5.3.

2-90

Table 2.5.3 BFV Position as Function of the System State for the Example Initiating
Event

n BFV Controller BC BFV Position

1 Controller/Device
Communicating

State A Calculated from
Eqs. (2.5.17)-

(2.5.21)

2 Controller/Device
Communicating

State B-C Maintained

3 Controller/Device
Communicating

State D Maintained

4 Freeze --- Maintained

5 Arbitrary Output --- Random in the
range 0-100%

6 0 vdc Output --- Closed

7 Stuck --- Maintained

3-1

3. DESCRIPTION OF THE DYNAMIC FLOWGRAPH METHODOLOGY

This chapter presents the features of the DFM. Section 3.1 discusses the modeling features,
Section 3.2 presents the analytical modules, and Section 3.3 outlines the quantification element.
Section 3.4 uses the benchmark system to illustrate the model construction, analysis and
quantification processes. Section 3.5 discusses the application of DFM to the example initiating
event discussed in Section 2.5.

The DFM is a software analytical toolset developed to support PRA. It has been demonstrated
in pilot U.S. NRC and NASA applications [4, 128-130]. DFM combines multi-valued logic
modeling and analysis capabilities that are well suited for systems constituted of components
that have multiple degraded states and exhibit dynamic behavior. The multi-valued logic
algorithms implemented in DFM is especially suited to analyze non-coherent logic structures. An
example of a non-coherent logic structure is a fault tree with "NOT" gates. Three DFM features
of note enable it to support the modeling and analysis of dynamic systems:

• The capability to model and analyze feedback loops and time transitions,

• The ability of the deductive and inductive modules to analyze detailed multi-valued logic
models to find interactive failure modes.

• The capability to quantify the Top Events analyzed by the deductive analysis module.

The essential steps in applying DFM in a PRA framework are:

1. Construct a DFM model to represent the system of interest.

2. Analyze the DFM model.

3. Quantify the results.

In applying DFM, the system of interest is first represented in a digraph (directed graph [131])
model. The DFM model is enriched with the explicit identification of the cause-and-effect and
timing correspondences among the significant states of the parameters that are best suited to
describe the system behavior. Once such a model has been produced, automated deductive or
inductive algorithms that are built into the methodology can be applied to it. The deductive
procedures are applied to identify how system level states (which may represent specific
conditions of interest, be they success, anomaly or failure states) can be produced by any
combinations and sequences of basic component states. This is accomplished by backtracking
through the DFM model of the digital control system in a systematic, specified manner, and by
expressing the conditions that cause the system events of interest in the form of timed
prime-implicants. Conversely, inductive procedures can be applied to the same model, to
determine how a particular basic component state can produce various possible sequences and
system-level states. If a deductive analysis was executed, the quantification module can

3-2

estimate the probability of the Top Event from the probability of the events identified in the prime
implicants. Thus, DFM can provide the multi-state and time-dependent equivalent of both fault
tree analysis (FTA) and failure mode and effect analysis (FMEA), with the advantage that, once
the DFM model of a system has been developed, the DFM system model already contains all
the information necessary for the automated execution of these analyses for any system
condition of possible interest. This can be compared, for example, with the execution of FTA, in
which each system Top Event requires a separate manual input of AND/OR gate information.

3.1 DFM Model Construction

A DFM model is a graphic network that links key process parameters to represent the
cause-and-effect and the time-dependent relationships. In particular, for a digital control system,
both the controlled/monitored process and the controlling software itself are represented in the
DFM model. A DFM model is an integration of a "time-transition network", a "causality network"
and a "conditioning network", which is built by using detailed multi-state representations of the
cause-and-effect and time-varying relationships that exist among the key system and software
parameters.

The networks mentioned above are constructed from the DFM modeling elements. These
modeling elements, as well as the manner in which they are assembled to form the three
networks of a DFM model, are discussed below.

3.1.1 DFM Modeling Elements

A DFM model makes use of certain basic modeling elements to represent the temporal relations
and the logical relations that exist in the system and the associated software. More specifically,
a DFM model integrates a "time-transition network" which describes the sequence in which
software subroutines are executed and control actions are carried out, a "causality network" that
shows the functional relationships among key hardware and software parameters, and a
"conditioning network" which models discrete software behavior due to conditional switching
actions and discontinuous hardware performance due to component failures.

3-3

Figure 3.1.1 DFM Model Elements

The building blocks of these three types of networks are process variable nodes, condition
nodes, causality edges, condition edges, and transfer/transition boxes and their associated
decision tables. These basic modeling elements are shown in Figure 3.1.1.

3.1.1.1 Process Variable Nodes

Process variable nodes represent physical and software variables that are required to capture
the essential functional behavior, continuous or discrete, of the digital control system. A variable
represented by a process variable node is discretized into a number of states. The reason for
the discretization is to simplify the description of the relations between different variables. The
choice of the states for a process variable node is often dictated by the logic of the system. For
instance, it is natural to set a state boundary at a value that acts as a trigger point for a switching
action or a value that indicates the system is progressing towards failure. The number of states
for each variable must be chosen on the basis of the balance between the accuracy of the model
and the complexity introduced by higher numbers of variable states.

3.1.1.2 Causality Edges

Causality edges are used to connect process variable nodes to indicate the existence of a
cause-and-effect relationship between the variables described by the nodes. The precise nature
of the functional relationship (or the transfer function) is described by a transfer box that is
always directly associated with each causality edge (please see discussion in Section 3.1.1.3
below).

3-4

3.1.1.3 Transfer Boxes and Associated Decision Tables

A transfer box represents a transfer function between process variable nodes. The
quantification of the transfer function, i.e., the manner in which the states of the input process
variable nodes are correlated with those of the output process variable nodes, is described by
decision tables associated with each transfer box.

A decision table is associated with each transfer box and is used to quantify the relationships
between its input and output process variable nodes. This table is a mapping between the
possible combinations of the states of the input process variable nodes and the possible states
of the output process variable nodes. Decision tables are an extension of truth tables in that
they allow each variable to be represented by any number of states. These tables have been
used in earlier developments to model components of engineering systems [132-134].

Because each transfer box input or output variable is a vector of states, and each combination of
input states maps to a state of each of the output variables, each decision table is actually a
multi-dimensional matrix whose dimension is equal to one plus the number of its inputs. For
simplicity and convenience of representation, all decision tables can be reduced to a
two-dimensional form. In this simplified form, there will be a column for each input variable and
a column for each output variable of interest.

Decision tables can be constructed from empirical knowledge of the system, from physical
equations that govern the system behavior, or from available software code and/or pseudo code.
Building decision tables with empirical knowledge and/or the pseudo code provides a means of
modeling the intended behavior of a system, and thus allow analysis to be performed on the
specifications or the design concept, even before the system exists. On the other hand, using
physical equations and running module testing to fill the decision table rows with detailed
input/output state mappings creates a model reflecting the actual behavior of the system, thus
enabling the actual system to be verified. The accuracy of the decision tables is crucial for the
analysis because it directly correlates to the fidelity of the model (its ability to predict system
behavior). Hence, to keep decision tables from growing too big, a judicious selection of the
number of states into which each node is discretized should be made, without at the same time
losing too much of the more detailed system-behavior information.

3.1.1.4 Condition Edges

Unlike causality edges, condition edges are mostly used to represent true discrete behavior in
the system. They link parameter nodes to transfer boxes, indicating the possibility of using a
different transfer function to map input variable into output variable states.

3-5

3.1.1.5 Condition Nodes

Condition nodes, like process variable nodes, represent physical or software parameters.
However, condition nodes are used in DFM to more explicitly identify component failure states,
changes of process operation regimes and modes, and software switching actions. Condition
nodes represent variables that can affect the logic superstructure of the digital control system by
modifying the causal relations between the process variable nodes. Condition nodes that are
linked to causality edges and upstream process variable nodes are at the same time process
variable nodes as well as condition nodes, but condition nodes whose states are not determined
by other upstream process variable nodes are treated in DFM as "random variables", i.e., as
variables that can be assumed to be in any of their possible states. In the latter case, a
distribution of "relative frequency" of the associated states could also be assumed, for purposes
of probabilistic quantification. It should be noted that the effect of a condition node on an output
variable is modeled through a decision table, as is the case for a process variable node. The
reason for having the added modeling elements of condition nodes and condition edges is to
offer a clear distinction between continuous and discontinuous behavior in a system.

3.1.1.6 Transition Boxes and Associated Decision Tables

Transition boxes are similar to transfer boxes in that they connect process variable nodes to
indicate cause-and-effect relationships. Condition nodes can be associated with transition boxes
to represent discontinuous behavior between the input and output process variable nodes.
Decision tables are again used to describe the relationships between the input and output
process variable nodes. However, transition boxes differ from transfer boxes in the essential
aspect that a time lag or time transition is assumed to occur between the time when the input
variable states become true and the time when the output variable state(s) associated with the
inputs is(are) reached. This time delay is a characteristic of the transition which is being
modeled and is treated as an attribute of the transition box. Transition boxes are routinely used
to model the execution of software routines and the handling of interrupts, which often play an
important role in the execution flow of digital control systems software. They can, of course,
also be used to model hardware time transitions..

3.1.1.7 DFM Model Construction and Integration

To construct a DFM model for a digital control system, the first step is to select the hardware
components and the software/firmware functions that are to be included in the model. Following
that, the controlled/monitored process parameters and software variables that capture the
essential behavior of these components and software/firmware functions are identified and
represented as process variable nodes. These process variable nodes are then linked together

3-6

by causality edges through transfer boxes or transition boxes to form an integrated "causality"
and "time-transition" network. Discrete behaviors such as component failures and logic
switching actions are then identified and represented as condition nodes, which are tied to
transfer boxes and transition boxes expressly to show how a "conditioning network" of discrete
actions and events actually interacts with and affects the integrated "causality" and
"time-transition" network. The parameters represented by the process variable nodes and
condition nodes are discretized into meaningful states, and decision tables are constructed to
relate these states. The decision tables can be constructed by empirical knowledge of the
system, from the equations that govern the system behavior, or from available software code
and/or pseudo code. In particular, when modeling a system that includes actual software,
module testing (which itself constitutes the basic first step of standard software testing
procedures) becomes an integral part in the creation of the decision tables that mimic the actual
behavior of the software. The completed DFM model then reflects the essential causal,
temporal, and logical behavior of the digital control system. The example discussed in Section
3.4 will illustrate how these steps are carried out.

For typical control systems, the associated DFM model is complex in general. However, the
complexity does not make the tasks of quality assurance and quality control for the model
particularly difficult. This is because the model can be checked piece-wise. The model that
represents the whole system can be first partitioned into subsets, each subset representing a
specific function of the system. These subsets can be further partitioned if necessary. Model
checking can be done for these partitions to ensure the accuracy in the model construction
process.

Additionally, for a complex system, modularization of the modeling step can be used to manage
complexity. Conceptually, the modularization step is analogous to having transfer gates in fault
trees. For instance, to model a system with N major sub-systems, it is useful to develop a
top-level DFM model to represent the causal and temporal relationships between these major
sub-systems. The parameters in the top-level model corresponding to these major sub-systems
are then expanded in second level DFM models to characterize their detailed behavior. If these
sub-systems are made up of components that can be decomposed, the model hierarchy can be
further expanded into lower levels. It is important to point out that the modularization step is
desirable but not essential. The user can construct a single model to represent the full
complexity of the system. However, a model hierarchy that represents complexity progressively
is generally easier to construct, follow and analyze.

3.2 DFM Model Analysis

The analysis of a DFM system model constructed according to the rules described above can be
conducted by tracing sequences of events either backward from effects to causes (i.e.,
"deductively"), or forward from causes to effects (i.e., "inductively") through the model structure.
Inductive and deductive analyses can be combined to analyze the system within the context of
1) design verification, 2) fault analysis, or 3) automated test sequence generation. These

3-7

analysis techniques will be discussed in Sections 3.2.2 to 3.2.4. Section 3.2.1 presents an
overview of the DFM deductive and inductive analysis procedures.

3.2.1 Deductive Analysis and Inductive Analysis

Once a DFM model is constructed, deductive analysis can be carried out to identify root causes
for different Top Events, and inductive analysis can be executed to visualize event sequences as
a result of different initial conditions.

3.2.1.1 Deductive Analysis

The deductive engine backtracks the time and causality of the DFM model to identify timed
prime implicants for Top Events of interest. These time prime implicants, characterized by the
combinations and sequences of basic variable states, represent the full set of minimal conditions
that could lead to the Top Event. Prime implicants are the multi-valued logic equivalent of
minimal cut sets in traditional fault tree analysis. The DFM prime implicants are logically
compatible with cut sets generated by automated PRA tools such as SAPHIRE. Hence, DFM
results can be exported into the SAPHIRE environment.

3.2.1.1.1 Multi-Valued Logic and Prime Implicants

Deductive DFM analysis can be thought of as multi-valued logic extension of fault tree analysis.
As DFM models represent physical variables (e.g., pressure, temperature, voltage, etc.), binary
logic (in which only two states may be used to characterize each variable space) is, in general,
not sufficient for an adequate representation of the behavior of the system. DFM models thus
employ Multi-Valued Logic, wherein each variable space may be discretized into an arbitrary
number of states. A DFM deductive analysis expansion, therefore, would contain non-binary
primary events (or certain equivalent binary expressions containing groups of mutually exclusive
binary primary events, which may be defined ad-hoc to signify whether the assertion that a given
multi-valued variable is in any one of its states is true or false). The DFM prime implicants
derived as a result of deductive analysis are, in general, non-coherent. An intuitive, rather than
formal way, of understanding this is by noting that DFM variable states are not ordered in such a
way that higher states always indicate "increasingly-faulted" conditions and lower states always
indicate "increasingly-nominal" conditions. Thus, as a basic variable changes from a lower to a
higher state, the system-state indicator variable of choice for the particular analysis of interest
may be going in the opposite direction, i.e., from a higher to a lower state.

The Top Event of a deductive DFM analysis can still be expressed in disjunctive form (the form
of a disjunction of conjunctions of primary events), but the multi-valued logic analogue of the
minimal cut sets encountered in binary fault trees are known as prime implicants [135, 136]. A
prime implicant is any monomial (conjunction of primary events) that is sufficient to cause the

3-8

Top Event, but does not contain any shorter conjunction of the same events that is sufficient to
cause the Top Event. The prime implicants of a function are unique and finite; however, finding
them is a more challenging task than finding binary logic minimal cut sets.

DFM uses decision tables to map the combinatorial states of transfer box inputs to their outputs.
Decision tables allow each variable to be represented by any number of states, and they have
been applied in fault tree analysis in the past to model component behavior. Given the state of a
transfer box output node, the decision table gives the complete sets of inputs that could have
caused it. Since a decision table is, itself, essentially a disjunction of conjunctions of states, it is
possible to generate prime implicants from the table.

When referring to prime implicants in the context of a DFM analysis, another important
observation is that the presence of the time element in the DFM modeling framework introduces
the possibility of prime implicants that would not be possible in ordinary time-invariant logic. In
the latter, in fact, a prime implicant of the form:

 <variable A = 2 AND variable A = 3>

would not be possible, and, if found in the course of a time-invariant analysis, would have to be
eliminated by application of explicit "physical consistency rules." In the application of DFM to
time-dependent systems, however, if a time-transition has been encountered and the prime
implicant is thus "time-stamped" to indicate:

<variable A = 2 @ time t = T1 AND variable A = 3 @ time t = T2>,

then the logical inconsistency no longer exists, and the prime implicant can be considered
possible (unless of course it violates a "dynamic consistency rule," which still applies in
time-dependent logic; please refer to Section 3.2.1.1.3). All prime implicants identified in a DFM
analysis are conjunctions of primary events with associated time stamps.

DFM, therefore, represents a significant advancement beyond conventional fault tree analysis.
In particular, a conventional fault-tree produces cut-sets for one, and only one, binary Top Event,
with no associated time dependent information. The DFM representation is one or two orders of
magnitude more powerful, because it produces multi-valued logic and time-dependent prime
implicants for a very large number of possible Top Events. A DFM Top Event can in fact be
chosen to be any state among all the possible states of any of the variables, or even any
combination of states of separate variables. This is in addition to the fact that, once a DFM
system model has been constructed, it can be used repeatedly to investigate many different Top
Events.

3-9

In many digital control systems, there are feedback or feedforward characteristics. This can
cause a node to be traced back to itself in the fault tree construction. Consistency rules must be
applied when these situations are encountered. Inconsistent rows are then pruned from the
transition tables. Two major classes of consistency rules have been identified which are the
"physical" consistency rules and the "dynamic" consistency rules.

3.2.1.1.2 Physical Consistency Rules

Physical consistency rules are applied to eliminate physically impossible conditions from the
deductive analysis. An example of this would be a system parameter taking on two different
values at the same time step in the timed fault tree. This class of consistency rule is similar to
the consistency rules applied in conventional static fault tree analysis. If the same variable
appears twice in the same row of a transition table, but in different states at the same time step,
then that particular row must be pruned from the transition table due to physical inconsistency.

3.2.1.1.3 Dynamic Consistency Rules

In a deductive analysis, it is sometimes advantageous to define dynamic consistency rules to
prune out conditions that are not compatible with the dynamic constraints of the system of
interest. Eliminating the incompatible conditions will reduce the number of intermediate events
and prime implicants generated, thus, making the analysis more efficient. For instance, dynamic
consistency rules can be defined to constrain:

• The direction of change of certain parameters. For example, if repair is not available, a
component, once it enters into a failed state, remains in that state, or

• The rate of change of certain parameters.

3.2.1.2 Inductive Analysis

In addition to the deductive engine, the inductive engine can be executed to determine how a
particular set of basic variable states (the initial condition) produces various sequences and
system level states. Starting from a set of initial conditions, the inductive engine follows the
causality and timing represented in the model to determine the resulting sequence of events.

Thus, in the deductive and inductive engines, DFM provides the multi-state and time-dependent
equivalent of ET/FT analysis and failure mode and effect analysis. The substantial advantage is
that once the DFM system model has been developed, the same model can be analyzed
deductively and inductively an unlimited number of times by automated execution. This is more
efficient compared to the integration of the former classical techniques.

3-10

3.2.2 Design Verification

Deductive and inductive DFM analysis techniques can be applied to verify a system design
against system level requirements. In this type of design verification analysis, the goal is to
show that the system designed satisfies requirements that describe desirable system properties.
Deductive analysis or inductive analysis can be carried out, depending on the characteristics of
the requirement statements being checked. If the requirement statements specify desirable
system properties, such as a particular condition must occur as a result of some triggering
conditions, an inductive analysis can be executed to show whether this is indeed the case. The
initial condition is defined to be the triggering condition, and the subsequent conditions identified
by the Analysis Engine through a propagation of the system model are checked to see if the
condition that is specified in the requirements can be reached. On the other hand, if the
requirement statements specify undesirable system properties, such as certain conditions that
must not occur after some prior conditions, these type of statements can be easily verified by a
deductive DFM analysis. The Top Event condition is defined as the conjunction of the
undesirable condition and the prior condition, separated by a number of time steps specified in
the requirements. If the Analysis Engine does not find any prime implicant for this Top Event,
this means that no pathway exists by which the undesirable condition can result from the prior
condition, and hence the requirement is satisfied.

3.2.3 Failure and Fault Analysis

Besides as tools for system design verification, deductive and inductive DFM analysis
techniques can also be applied to identify potential faults in the system or investigate the effects
of basic component failure modes on the system performance. The first type of failure and fault
analysis uses the deductive analysis technique. A Top Event is defined as an undesirable
system level condition, and the prime implicants identified by the Analysis Engine represent the
potential faults that could lead to this system level condition. The second type of failure and fault
analysis uses the inductive analysis technique, and can be referred to as an automated FMEA.
Combinations of basic component failure modes are defined in the initial condition and the
boundary condition, and the Analysis Engine propagates these through the system model to see
their effects downstream in subsequent time steps. The reader should note that if a combination
of basic failure modes is being investigated, the individual failure modes do not need to occur in
the same time step. The initial condition and the boundary condition can be defined to represent
special failure profiles, where the failure events follow in sequential order. Examples of DFM
being applied in failure and fault analysis will be provided in Section 3.5.2.

3.2.4 Automated Test Vector Generation

Testing is traditionally one of the most important activities carried out to assure that a given
design, in its actual implementation, complies with certain assigned constraints and

3-11

specifications in the areas such as peak performance, safety and reliability. In relation to
software, testing is often performed by feeding inputs, generated randomly or according to some
pre-ordained scheme, into the software and observing the produced outputs to verify correct
behavior, or to uncover faults and errors. In practice, to achieve some minimum level of
assurance, a large number of input cases are needed, making testing both expensive and time
consuming. For the more complex systems in existence today, the monetary and time cost of
testing has skyrocketed and assurance by testing alone is already impossible to achieve in true
quantitatively defensible terms. Thus, although in all likelihood testing will remain an important
pillar in ensuring system and software dependability, it is already clear that analytical tools
should be developed and used to complement and guide the testing process in more effective
and efficient ways than afforded by the random or heuristic input generation techniques
commonly employed today.

In this regard, DFM can be used to analyze the software and system design and to identify
special input combinations that can distinguish between the normal states and the faulted states
of specific components. The automated test vector analysis procedure in DFM is an extension
of the Automatic Test Vector Generation (ATVG) procedures used in the testing of digital
circuits. More specifically, this DFM procedure is the multi-valued logic equivalent of the
Boolean Difference based procedures formulated for binary circuit ATVG. The goal of the digital
circuit ATVG procedure is to identify special test input combinations, such that changing these
inputs in specific ways will cause the observable circuit output to change only if the circuit is free
of faults. On the other hand, if the specific type of fault for which the test is carried out is
present, the observable output will remain unchanged. The DFM automated test vector analysis
procedure is capable of handling multi-valued logic functions modeled with DFM, enabling the
procedure to be applied to test complex software and control systems which exhibit
analog-equivalent behavior. In this DFM-based ATVG procedure, the Boolean Difference
method for binary logic is reformulated, and is translated into a procedure for reducing the prime
implicants associated with specially defined Top Events. The reduced set of prime implicants
defines the special input combinations which can be used to test for specific faults. Like their
binary circuit counter parts, these inputs have the characteristic of causing the observable
outputs to change if a specific fault is absent, but to remain constant if that fault is present.

3.3 Quantification of Deductive Analysis Results

The quantification module is used to quantify results obtained in a deductive analysis. It
estimates the probability of the Top Event based on the probability estimates of the basic events
that make up the prime implicants. Suppose a deductive analysis yields n prime implicants, PI#1
through PI #n, as shown in Eq. (3.1):

Top Event = PI #1 w ... w PI #n (3.1)

PI #I ç PI #j, for any I � j

3-12

This set of prime implicants is first converted into a set of m mutually exclusive implicants, MEI
#1 through MEI #m, as shown in Eq. (3.2). These mutually exclusive implicants can be thought
of as the multi-valued logic equivalent of cut sets that do not yield any cross product term. Thus,
the sum of the probabilities of these mutually exclusive implicants yields the probability of the
Top Event, as shown in Eq. (3.3).

Top Event = MEI #1 w ... w MEI #m (3.2)

where MEI #I v MEI #j = i for any I � j and

P(Top Event) = P(MEI #1) + ... + P(MEI #m). (3.3)

The current toolset is able to process point estimate inputs, i.e., if the probabilities of the basic
events are point estimates. The extension of the quantification module to incorporate failure
rates and uncertainty is currently under development.

3.4 Benchmark System Application

This section describes the application of DFM to model and analyze the benchmark system.
Section 3.4.1 presents the DFM model construction process. Section 3.4.2 discusses the
analyses performed and the results obtained.

3.4.1 Benchmark System DFM Model

The DFM model of the benchmark DFWCS (see Fig. 2.1.2) encompasses both the digital
controllers and the process being controlled (i.e., the steam generator and the feedwater
system). This DFM model is shown in Fig. 3.4.1. In this figure, the sub-model for the digital
control system is shown as a black box. It is expanded in its full detail in Fig. 3.4.2.

The process variable nodes represent the key process variables for the controller and the
controlled process, and the condition nodes represent the components with the different failure
modes. These process variable nodes and condition nodes are explained in Table 3.4.1.

These process variables nodes are each discretized into a finite number of states. The process
variable nodes are linked together to model the temporal and causal behavior of the coupled
system. The condition nodes are next linked to represent the discrete jump in behaviors when
components fail. For example, transfer box 26 on the top right portion of Fig. 3.4.1 shows that
LM, the measured SG level is a function of L, the actual steam generator level. The relationship
is conditioned upon LS, the state of the level sensor. When LS is normal, the relationship is
nominally proportional. However, if LS failed high, LM will be in a high state regardless of L.

3-13

The decision tables corresponding to the process portion are constructed by executing the
simulator, and those corresponding to the controller portion are developed by executing the
software modules.

Figure 3.4.1 DFM Model of the Benchmark System

3-14

Figure 3.4.2 DFM Model of the Digital Feedwater Control System

Table 3.4.1 Description of the Nodes in the DFM Model

Node Description

3-15

AFWS

AUXF

BVC

BVX

BVXP

CL1

CL1P

CP1

CP1P

EL1

EL1P

FEEDM

FFM

FPC

FPH

FPHP

FS

FWF

HDP

HG

L

LD

LM

LP

LS

MIN

MSIVP

MVC

MVS

MVX

MVXP

QR

SF

Auxiliary feedwater system command

Auxiliary feed flow

Bypass valve command

Bypass valve position

Bypass valve position in the previous cycle

Compensated water level

Compensated water level in the previous cycle

Compensated power

Compensated power in the previous cycle

Level error

Level error in the previous cycle

Software representation of the measured feed flow

Measured feed flow

Feed pump command

Feed pump head pressure

Feed pump head pressure in the previous cycle

State of the feed flow sensor suite

Feed flow

Steam header pressure

Vapor state at the top of the steam generator

Steam generator level

Change in the steam generator level

Measured steam generator level

Steam generator level in the previous cycle

State of the steam generator level sensor

Total mass flowrate into the steam generator

Main steam insolation valve position

Main feed valve command

State of the main feed valve

Main feed valve position

Main feed valve position in the previous cycle

Reactor power

Steam flow

3-16

3.5 Example Initiating Event Application

This section will illustrate the DFM model construction and analysis steps using the example
initiating event discussed previously in Section 2.5.

3.5.1 DFM Model for the Example Initiating Event Application

The DFM model of the example initiating event encompasses the backup computer, the bypass
flow valve, the bypass flow valve controller, the inputs and outputs for the backup computer, and
the control law and logic for maintaining the steam generator level. This DFM model is shown in
Figure 3.5.1. The process variable nodes represent the key components in the simplified
system. These process variable nodes are explained in Table 3.5.1.

Figure 3.5.1 DFM Model for the Example Initiating Event

These process variable nodes are each discretized into a finite number of states. The
discretization of these process variable nodes are shown in Table 3.5.2 to Table 3.5.12. In
constructing this DFM model, it was assumed that once the BFV + Controller or the computer
enters a failure state, it will remain in that state. Hence, the states F-S, Frz, Arb and Zero for

3-17

node BFV (in Table 3.5.2) and the states LossIn and Down for the node Comp (in Table 3.5.4)
were assumed to be sink states.

The process variable nodes defined are linked together to model the temporal and causal
behavior of the system under the example initiating event condition. For example, the transfer
box Tf1 on the bottom center portion of Figure 3.5.1 shows that with the main computer out of
commission, the bypass flow valve position is a function of the backup computer, the BFV, the
BFV controller, the compensated power, the compensated level error and the previous BFV
position. The relationship between the nodes are summarized in the decision tables. The
decision tables for the transition boxes TT9 and TT10, and the transfer boxes Tf1, Tf2 and Tf3
are developed from the control equations in Eqs. (2.5.1) to (2.5.8). The decision tables for the
other transfer boxes and transition boxes are developed based on the logic behavior of the
system.

Table 3.5.13 and Table 3.5.14 show examples of the decision tables developed for this model.
Table 3.5.13 is the decision table for transfer box Tf2. It shows how the BFV position (Node
Sbn), the steam flow (Node fSN) and the steam generator level (Node LP) at the previous time
step will influence the steam generator level (Node L) at the current time step. On the other
hand, Table 3.5.14 is the decision table for transition box TT7. It updates the state of the steam
generator level. Thus, the decision tables for the transfer boxes and the transition boxes can
model the dynamic behavior of parts of the system.

The reader should note that one time step in the DFM model is meant to represent a number of
clock cycles sufficient to see changes in the states of the process variables. Hence, the DFM
model compresses time when it undergoes the deductive and inductive analyses. When the
analysis determine that a process variable will change in 1 time step, the DFM tool does so
without keeping track of the detail evolution millisecond by millisecond. This makes the analysis
very efficient and preempts any combinatorial explosion of states. It is also important to point
out that time is an implicit variable rather than a explicit variable in this DFM model. Time is
implicitly related through the nodes that correspond to the steam flow.

Table 3.5.1 Description of the Nodes in the Simplified DFM Model

Node Description

BFV State of the bypass flow valve and controller

CL Compensated level

Comp State of the backup computer

CP Compensated power

EL Level error

ELP Previous level error

3-18

fSN Steam flow

L Steam generator level

LP Steam generator level in the previous time step

Sbn Bypass flow valve position

SbnP Previous bypass flow valve position

Table 3.5.2 Discretization of the Node BFV

State Description

OP Bypass flow valve/controller is operating

F-S Bypass flow valve failed stuck

Frz BFV controller is frozen

Arb BFV controller fails in the arbitrary state

Zero BFV controller fails in the zero state

Table 3.5.3 Discretization of the Node CL

State Description

-1 [-500, -100)

0 [-100, 100)

+1 [100, 500]

Table 3.5.4 Discretization of the Node Comp

State Description

OP Backup computer is operating

LossIn Loss of inputs to the backup computer

Down Backup computer is down

3-19

Table 3.5.5 Discretization of the Node CP

State Description

0 [0, 40)

1 [40, 80)

2 [80, 150]

Table 3.5.6 Discretization of the Node EL

State Description

-1 [-1000, -1.587)

0 [-1.587, 4.203)

+1 [4.203, 1000]

Table 3.5.7 Discretization of the Node ELP

State Description

-1 [-1000, -1.587)

0 [-1.587, 4.203)

+1 [4.203, 1000]

Table 3.5.8 Discretization of the Node fSN

State Description

0 [0, 38)

1 [38, 94)

2 [94, 140]

Table 3.5.9 Discretization of the Node L

State Description

-2 < -2.0

-1 [-2.0, -0.17)

3-20

0 [-0.17, 0.17)

+1 [0.17, 2.5]

+2 > 2.5

Table 3.5.10 Discretization of the Node LP

State Description

-2 < -2.0

-1 [-2.0, -0.17)

0 [-0.17, 0.17)

+1 [0.17, 2.5]

+2 > 2.5

Table 3.5.11 Discretization of the Node Sbn

State Description

0 [0, 30)

1 [30, 70)

2 [70, 100]

Table 3.5.12 Discretization of the Node SbnP

State Description

0 [0, 30)

1 [30, 70)

2 [70, 100]

Table 3.5.13 Decision Table for the Transition Box Tf2

Sbn fSN LP L

0 0 -2 -2

0 0 -1 -1

3-21

0 0 0 0

0 0 +1 +1

0 0 +2 +2

0 1 -2 -2

0 1 -1 -2

0 1 0 -1

0 1 +1 0

0 1 +2 +1

: : : :

Table 3.5.14 Decision Table for the Transition Box Tt7

L@

current t

LP@

next t

-2 -2

-1 -1

0 0

+1 +1

+2 +2

3.5.2 Example Initiating Event DFM Analysis

Once the DFM model of the example initiating event is laid out and the decision tables
constructed, the different kinds of analyses described in Section 3.3.2 to Section 3.3.4 can be
carried out. Failure and fault analysis procedures are illustrated in the following sub-sections.
When more information become available, such as the design specifications and/or the control
software, the other two types of analyses, design verification and automated test vector
generation for the software modules, can also be executed. Two deductive analysis examples
are provided in Section 3.5.2.1, and two inductive analysis examples are presented in Section
3.5.2.2.

3-22

3.5.2.1 Example of Deductive DFM Analysis

For the example initiating event, failure and fault analyses using the deductive technique was
carried out to find out the combination of component states that could lead to desirable or
undesirable events of the Main Feedwater System.

For the failure and fault analysis example, to find out the prime implicants for a high steam
generator level, the following Top Event was defined:

L = +2 @ t = 0 ^

L = +1 @ t = -1 ^

L = 0 @ t = -2 ^

ELP = 0 @ t = -2 ^

CL = 0 @ t = -2

This Top Event specified the progression of the steam generator level from 0 to 2, given nominal
values of the level error and compensated level in the control software. In the deductive analysis
of this Top Event, the Top Event is expressed as a transition table shown in Table 3.5.15. The
header row shows the nodes and their associated time stamp and row 1 shows the combination
of the states for the nodes of interest.

Table 3.5.15 Transition Table for the Top Event

L

t = 0

L

t = -1

L

t = -2

ELP

t = -2

CL

t = -2

+2 +1 0 0 0

In this deductive analysis, the model was tracked backwards in time and causality. With the
analysis time set to 0, the decision table for transition box TT7 was used to expand the transition
table shown in Table 3.5.15. In particular, this expansion spelled out the combinations of fSN,
Sbn and L @ t = -1 that give rise to L = 2 @ t = 0. The result of the expansion was the transition
table shown in Table 3.5.16.

Table 3.5.16 Transition Table for after the first expansion

Sbn

t = -1

fSN

t = -1

LP

t = 0

L

t = -1

L

t = -2

ELP

t = -2

CL

t = -2

3-23

- 0 +2 +1 0 0 0

1 0 +1 +1 0 0 0

2 0 +1 +1 0 0 0

1 1 +2 +1 0 0 0

2 1 +1 +1 0 0 0

2 - +2 +1 0 0 0

To continue the deductive analysis, the causality shown in the model is backtracked. For the
transition table shown in Table 3.5.16, the column corresponding to Sbn @ t = -1 was next
expanded with the decision table for transfer box Tf1. This process was repeated after the
whole model was traversed backwards for 2 time steps. The prime implicants shown in Table
3.5.17 were identified. In formal logic terms, these prime implicants describe the combinations
of basic events that could cause the Top Event, but none of these prime implicants is contained
in another. These prime implicants can be thought of as multi-valued logic equivalent of minimal
cut sets in a fault tree analysis.

Top Event = Prime Implicant #1 w ... w Prime Implicant #10,

and Prime Implicant #I é Prime Implicant #j

For the Top Event of interest, prime implicants #1 to #4 and prime implicants #6 to #9 identified
the conditions that the BFV failed stuck, loss of inputs of the computer, the downing of the
computer, or the freezing of the BFV controller, together with a steam flow-feed flow mismatch
(feed flow > steam flow) will cause the steam generator level to rise. This is due to the fact that
any of the failure will cause the feed flow to remain the same, while the steam flow gradually
decreases. In particular, the BFV stuck at 44 s condition described in Section 2.5 falls under
prime implicant #1. On the other hand, prime implicants #5 and #10 identified the condition
corresponding to the BFV failure in the arbitrary state.

Table 3.5.17 Prime Implicants for High Steam Generator Level

Prime Implicant

3-24

1 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 0 @ t = -2

BFV = F-S @ t = -2

2 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 0 @ t = -2

Comp = LossIn @ t = -2

3 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 0 @ t = -2

Comp = Down @ t = -2

4 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 0 @ t = -2

BFV = Frz @ t = -2

5 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 0 @ t = -2

BFV = Arb @ t = -2

3-25

6 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 2 @ t = -2

fSN = 1 @ t = -2

BFV = F-S @ t = -2

7 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 2 @ t = -2

fSN = 1 @ t = -2

Comp = LossIn @ t = -2

8 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 2 @ t = -2

fSN = 1 @ t = -2

Comp = Down @ t = -2

9 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 2 @ t = -2

fSN = 1 @ t = -2

BFV = Frz @ t = -2

10 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 2 @ t = -2

fSN = 1 @ t = -2

BFV = Arb @ t = -2

If the probabilities for the basic event nodes (those that are not downstream of transfer boxes) in
Figure 3.5.1 are defined, the Top Event can be quantified using the procedure outlined in

3-26

Section 3.3. The set of prime implicants is first converted into a set of mutually exclusive
implicants. These mutually exclusive implicants can be thought of as the multi-valued logic
equivalent of a cut sets that do not yield any cross product term. Thus, the sum of the
probabilities of these mutually exclusive implicants yields the probability of the Top Event.

Top Event = MEI #1 w ... w MEI #m,

where MEI #I v MEI #j = i

P(Top Event) = P(MEI #1) + ... + P(MEI #m)

It is important to note that once a single DFM model is constructed, it can be analyzed for many
different Top Events. For example, the same DFM model can be analyzed for the Top Event:

L = -2 @ t = 0 ^

L = -1 @ t = -1 ^

L = 0 @ t = -2 ^

ELP = 0 @ t = -2 ^

CL = 0 @ t = -2

This Top Event specified the progression of the steam generator level decreasing from 0 to -2,
given nominal values of the level error and compensated level in the control software. For this
particular Top Event, the 11 prime implicants shown in Table 3.5.18 were identified. Prime
implicants #1 to #4 and prime implicants #7 to #11 identified the conditions that the BFV failed
stuck, the computer loss of inputs, the downing of the backup computer, or the freezing of the
BFV controller, together with a steam flow-feed flow mismatch (steam flow > feed flow) will lead
to low level in the SG. This is due to the fact that any of these failures will cause the feed flow to
remain the same, while the steam flow slowly decreases. In particular, the BFV stuck at 43 s
condition described in Section 2.5 falls under prime implicant #1. On the other hand, prime
implicants #5 and #11 identified the condition corresponding to the BFV controller failing in the
arbitrary state, whereas prime implicant #6 identified the condition corresponding to the BFV
controller failing in the zero state.

Table 3.5.18 Prime Implicants for Low Steam Generator Level

Prime Implicant

3-27

1 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 0 @ t = -2

fSN = 1 @ t = -2

BFV = F-S @ t = -2

2 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 0 @ t = -2

fSN = 1 @ t = -2

Comp = LossIn @ t = -2

3 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 0 @ t = -2

fSN = 1 @ t = -2

Comp = Down @ t = -2

4 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 0 @ t = -2

fSN = 1 @ t = -2

BFV = Frz @ t = -2

5 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

fSN = 1 @ t = -2

BFV = Arb @ t = -2

3-28

6 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

fSN = 1 @ t = -2

BFV = Zero @ t = -2

7 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 2 @ t = -2

BFV = F-S @ t = -2

8 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 2 @ t = -2

Comp = LossIn @ t = -2

9 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 2 @ t = -2

Comp = Down @ t = -2

10 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

SbnP = 1 @ t = -2

fSN = 2 @ t = -2

BFV = Frz @ t = -2

3-29

11 L = 0 @ t = -2

ELP = 0 @ t = -2

CL = 0 @ t = -2

fSN = 2 @ t = -2

BFV = Arb @ t = -2

3.5.2.2 Example of Inductive DFM Analysis

Besides the deductive analysis, inductive failure and fault analyses were executed for the
example initiating event. These inductive analyses identified the progression of the system
states from different combinations of initial component states.

For the failure and fault analysis example, to find out the event sequence as a result of the stuck
BFV, the following initial condition was used:

At time 0, BFV = F-S and remains in the same state AND

At time 0, CL = 0 AND

At time 0, CP = 0 AND

At time 0, Comp = OP and remains in the same state AND

At time 0, ELP = 0 AND

At time 0, LP = 0 AND

At time 0, SbnP = 0 AND

At time 0, fSN = 1 AND

At time 1, fSN = 1 AND

At time 2, fSN = 1 AND

At time 3, fSN = 1

This initial condition corresponds to the failure of the BFV in the stuck position while there is a
mismatch between the steam flow and the feed flow (steam flow > feed flow). The inductive
analysis engine was used to trace through the causality of the model. First, the states of the
nodes included in the initial condition were used to determine the states of the nodes
immediately downstream. After that, the states of these immediately downstream nodes were
used to determine the states of the nodes further downstream. When the forward tracing was
completed for 1 time step, the nodes were updated and the process was repeated for the next

3-30

time step. The complete set of intermediate steps for this inductive analysis was summarized in
Table 3.5.19 to Table 3.5.29. In these tables, the columns in normal face represent the inputs to
the transfer box/transition box in question, and the column in bold face represents the output for
the same box. The first row indicates the time stamp associated with the input and output
nodes. A time stamp of 0 indicates the initial time step, and it increases by 1 after a complete
traversal of the loop. For example, Table 3.5.19 shows the result of tracing through transfer box
Tf3 in Figure 3.5.1. Given the input states (from the initial condition) ELP = 0 and CL = 0, the
decision table for Tf3 was consulted to determine that the output state is EL = 0. This newly
derived state of EL, together with the states of the nodes Comp, BFV, SbnP and CP (defined in
the initial condition) were used to determine the state of Sbn from the decision table associated
with the transfer box Tf1. This step is summarized in Table 3.5.20. Next, the forward tracing
progresses through transfer box Tf2. After this, the inductive analysis has traced through all the
transfer boxes. This completes the forward tracing for time step 0. Table 3.5.22 to Table 3.5.26
shows the results of forward tracing through the transition boxes and update the states of the
nodes for the next time step. In particular, Table 3.5.22 shows that Sbn = 0 @ time step 0 is
equivalent to SbnP = 0 @ time step 1. The latter state was used in time step 1 to determine the
new state of Sbn, as shown in Table 3.5.28. In summary, this inductive analysis showed that the
BFV failure in the stuck position, together with an initial steam flow feed flow mismatch (steam
flow > feed flow), will cause the steam generator level to drop from the normal state (L = 0), to
the lowest state (L = -2) in 2 time steps. From LP = 0 @ time step 0 (equivalent to L = 0 @ time
step -1) to L = -2 @ time step 1. The final state of the steam generator level is shown in Table
3.5.29.

Table 3.5.19 Forward Tracing through Transfer Box Tf3

Time 0 0 0

Node ELP CL EL

State 0 0 0

Table 3.5.20 Forward Tracing through Transfer Box Tf1

Time 0 0 0 0 0 0

Node Comp BFV SbnP CP EL Sbn

State OP F-S 0 0 0 0

Table 3.5.21 Forward Tracing through Transfer Box Tf2

Time 0 0 0 0

Node Sbn fSN LP L

3-31

State 0 1 0 -1

Table 3.5.22 Forward Tracing through Transition Box Tt6

Time 0 1

Node Sbn SbnP

State 0 0

Table 3.5.23 Forward Tracing through Transition Box Tt10

Time 0 1

Node fSN CP

State 1 1

Table 3.5.24 Forward Tracing through Transition Box Tt9

Time 0 0 0 0 1

Node L fSN Sbn CL CL

State -1 1 0 0 0

Table 3.5.25 Forward Tracing through Transition Box Tt8

Time 0 1

Node EL ELP

State 0 0

Table 3.5.26 Forward Tracing through Transition Box Tt7

Time 0 1

Node L LP

State -1 -1

3-32

Table 3.5.27 Forward Tracing through Transfer Box Tf3

Time 1 1 1

Node ELP CL EL

State 0 0 0

Table 3.5.28 Forward Tracing through Transfer Box Tf1

Time 1 1 1 1 1 1

Node Comp BFV SbnP CP EL Sbn

State OP F-S 0 1 0 0

Table 3.5.29 Forward Tracing through Transfer Box Tf2

Time 1 1 1 1

Node Sbn fSN LP L

State 0 1 -1 -2

It is important to note that once a single DFM model is constructed, it can be analyzed for many
different initial conditions. For example, the same DFM model can be analyzed for the initial
condition:

At time 0, BFV = Frz and remains in this state AND

At time 0, CL = 0 AND

At time 0, CP = 0 AND

At time 0, Comp = OP and remains in this state AND

At time 0, ELP = 0 AND

At time 0, LP = 0 AND

At time 0, SbnP = 2 AND

At time 0, fSN = 1 AND

At time 1, fSN = 1 AND

At time 2, fSN = 1 AND

At time 3, fSN = 1

3-33

This initial condition corresponds to the failure of the BFV controller in the frozen state while
there is a mismatch between the steam flow and the feed flow (steam flow < feed flow).

As in the previous inductive analysis example, the states of the nodes included in the initial
condition were first used to determine the states of the nodes immediately downstream. After
that, the states of these immediately downstream nodes were used to determine the states of
the nodes further downstream. When the forward tracing was completed for 1 time step, the
nodes were updated and the process was repeated for the next time step. The complete set of
intermediate steps for this inductive analysis was summarized in Table 3.5.30 to Table 3.5.40.
In summary, this inductive analysis showed that the BFV controller failure in the frozen state,
together with an initial steam flow feed flow mismatch (feed flow > steam flow), will cause the
steam generator level to rise from the normal state (L = 0), to the highest state (L = +2) in 2 time
steps, from LP = 0 @ time step 0 (equivalent to L = 0 @ time step -1) to L = +2 @ time step 1.
The final state of the steam generator level is shown in Table 3.5.40.

Table 3.5.30 Forward Tracing through Transfer Box Tf3

Time 0 0 0

Node ELP CL EL

State 0 0 0

Table 3.5.31 Forward Tracing through Transfer Box Tf1

Time 0 0 0 0 0 0

Node Comp BFV SbnP CP EL Sbn

State OP Frz 2 0 0 2

Table 3.5.32 Forward Tracing through Transfer Box Tf2

Time 0 0 0 0

Node Sbn fSN LP L

State 2 1 0 +1

Table 3.5.33 Forward Tracing through Transition Box Tt6

Time 0 1

3-34

Node Sbn SbnP

State 2 2

Table 3.5.34 Forward Tracing through Transition Box Tt10

Time 0 1

Node fSN CP

State 1 1

Table 3.5.35 Forward Tracing through Transition Box Tt9

Time 0 0 0 0 1

Node L fSN Sbn CL CL

State +1 1 2 0 0

Table 3.5.36 Forward Tracing through Transition Box Tt8

Time 0 1

Node EL ELP

State 0 0

Table 3.5.37 Forward Tracing through Transition Box Tt7

Time 0 1

Node L LP

State +1 +1

Table 3.5.38 Forward Tracing through Transfer Box Tf3

Time 1 1 1

Node ELP CL EL

State 0 0 0

3-35

Table 3.5.39 Forward Tracing through Transfer Box Tf1

Time 1 1 1 1 1 1

Node Comp BFV SbnP CP EL Sbn

State OP Frz 2 1 0 2

Table 3.5.40 Forward Tracing through Transfer Box Tf2

Time 1 1 1 1

Node Sbn fSN LP L

State 2 1 +1 +2

4-1

4. MARKOV/CCMT METHODOLOGY

Notation

P(t) Power

t Time

n nx SG Level (see Section 2.1)

jV Cells that partition the CVSS (j=1,...,J)

jJ Total number of V

n Component state combination index

N Number of components state combinations

m m mn Component state index (n =1,...,N)

m mN Total number of n

M Number of components

Ln nE SG level error (see Section 2.1)

ln nC SG compensated level (see Section 2.1)

Bn nS SG BFV position (see Section 2.1)

ã Top Event

Ã Number of Top Events

Ät Cell-to-cell mapping time step

n’m nm ’m nm m më , ,ì , Transition rates from component state n’ to n

m m m m mc (n |n' ,j'6j) Pr{Component m is in state n at time t=(k+1)Ät |Component m is in state n’ at
time t=k Ät and controlled/monitored variables move from cell j’ to cell j during kÄt
#t#(k+1)Ät }

g(j|j',n',k) Pr{Controlled/monitored variables are in cell j at time t=(k+1)Ät
|Controlled/monitored variables are in cell j’ at time t=kÄt }

h(n|n',j'6 j) Pr{Hardware/software/firmware in state n at time t=(k+1)Ät
|Hardware/software/firmware in state n’ at time t=k Ät and controlled/monitored
variables move from cell j’ to cell j during kÄt #t#(k+1)Ät }

n,jp (k) Pr{Controlled variables are in cell j and hardware/software/firmware is in state n at
time t=kÄt

ãF (k) Cdf of Top Event ã at time k

n,ãw (k) pdf of Top Event ã at time k

q(n,j|n',j',k) Elements of the transition matrix for the Markov chain

4-2

4.1 Example Initiating Event

As stated in Section 2.5, the example initiating event under consideration assumes the following:

1. Turbine trips

2. Reactor is automatically shutdown (tripped)

3. Power P is generated from the decay heat

th4. Reactor power and steam flow rate reduce to 6.6% of 3000 MW 10 seconds after the
turbine trip/reactor trip

5. Feedwater flow is at nominal level

6. Off-site power is available

7. Main Computer (MC) is failed

In high power mode, the pump demand of SG1 is a function also of the feedwater demand of
SG2. Thus, from a modeling view point, the DFWCS of each of the two SG are coupled to each
other. However, since the reactor is shutdown (Assumption 2 above), any thermodynamic
variation in the secondary circuit (which contains the SGs, turbine, and condenser) and the
primary circuit (which contains the reactor vessel, pumps, SGs, and the pressurizer) do not
affect the power generated in the core due to decay heat (Assumption 3). Then by Assumption
4, power decays rapidly to 6.6% of the power before the shut down [125]. In particular, the

0power P(t) generated from a reactor core which operated previously at maximum power P

th s(3000 MW) for a time ô (in seconds) will be [125]

(4.1.1)

Since the SGs are decoupled from the primary system, the power generated P(t) will be equally

ndischarged by the two SGs, and the power P (t) transferred from the primary circuit to each SG
will be

(4.1.2)

Following these assumptions, the system under consideration here involves only one SG with its
own feedwater control system. Thus, the control system operates under the following
conditions:

• FP fixed at minimum flow

4-3

• MFV closed

• Feedwater flow controlled by the BFV

• Measured quantities are power, level, and feedwater temperature (Fig.2.1.1).

In the reliability model construction of digital I&C systems using the Markov methodology, the
system failure probability (i.e., the probability that Top Events are reached) is evaluated through
a series of discrete transitions within the system state or the controlled variable state space
(CVSS). These discrete transitions take into account:

1. the dynamic behavior of the system (i.e., mass and energy conservation laws),

2. the control laws, and

3. hardware/firmware/software states and their effect on the controlled/monitored process
variables.

Items 1 and 2 above are modeled using the CCMT [137]. Item 3 uses the FMEA charts from
Section 2.4.1 to define the hardware/firmware/software states (Section 4.2.3). It should be
emphasized at this point that the purpose and implementation of the Markov methodology
described in Section 4.2 and then illustrated in Section 4.3 using the example initiating event is
quite distinct from the purpose and implementation of the Markov models in Section 2.4. Section
2.4 uses the Markov models to obtain a better understanding of the hardware/software/firmware
structure of the system to plan for fault injection experiments for failure data generation. The
Markov methodology of Section 4.2 utilizes the data generated by these fault injection
experiments, as well as obtained from other databases (e.g., PRISM [118]) and CCMT to
quantify the likelihood of Top Event occurrence.

4.2 The Markov Approach Coupled with CCMT: Markov/CCMT Methodology

The CCMT [137] is a systematic procedure to describe the dynamics of both linear and
non-linear systems in discrete time and discretized system state space (or the subspace of the
controlled variables only). The CCMT first requires a knowledge of the Top Events (Section

j4.2.1) for the partitioning of the state space or the CVSS into V (j=1,...,J) cells (Section 4.2.2).
The evolution of the system in discrete time is modeled and described through the probability

n,j jp (k) that the controlled variables are in a predefined region or cell V in the state space at time
t=kÄt (k=0, 1,...) with the system components (such as pumps, valves, or controllers) being in a
component state combination n=1,...,N (Section 4.2.5). The state combination represents the
system configuration at a given time and contains information regarding the operational (or
failure) status of each component (Section 4.2.3). Transitions between cells depend on (Section
4.2.4):

• the dynamic behavior of the system,

4-4

• the control laws, and

• the hardware/firmware/software states.

The dynamic behavior of the system is usually described by a set of differential or algebraic
equations, as well as the set of control laws (Sections 2.2 and 2.5). The operating/failure states

mof each component are specified by the user. A system state n (n=1...,N) is an array of n

m m(m=1,..,M; n =1,...,N) variables each of which defines a state of component m. The direct
coupling between operating/failure states of each component can be determined from the
FMEA tables (Section 2.3). Both direct and indirect coupling between operating/failure states
through the controlled/monitored process can be accounted for in the quantification of
component state transitions (see Section 4.2.5).

The methodology is based on the following assumptions [6, 126]:

1. Components of the system (e.g., pumps, valves, or processors) do not change state
during the time interval [k, k+Ät) but possibly at k+Ät;

j n,j2. For a given component state combination n and cell V, p (k) is uniformly distributed over

jV ;

3. If the modeling is conducted in the CVSS, no two controlled variable trajectories arrive at
the same point in state space at the same time and move in different directions for the
same component state combinations.

Both Assumptions 1 and 2 lead to an approximation of the probabilistic system dynamics.
Assumption 1 also leads to an approximation of the failure characteristics of the components.
Assumption 2 reflects epistemic uncertainties in the deterministic system model (e.g., Eqs.
(2.2.1) - (2.2.15) or Eqs.(2.5.1) - (2.5.8) for the benchmark system) as well as measurement
uncertainties. Violation of Assumption 3 leads to the loss of the Markov property when following
probabilistic system trajectories in the CVSS. However, Assumption 3 can be satisfied for most
systems by choosing sufficiently refined partitioning of the CVSS (i.e., choosing adequately

jsmall V). The procedure to determine the Cdf (cumulative distribution function) and the pdf
(probability distribution function) of each Top Event follows several steps [126]. These steps are
explained in the following sections Section 4.2.1 to 4.2.6.

4.2.1 Definition of the Top Events

As indicated in Section 2.1, the purpose of the feedwater controller is to maintain the water level

nx (n=1,2) inside SGn optimally within ± 2 inches (with respect to some reference point) of the
setpoint level (defined at 0 inches). The controller is regarded as failed if water level in SGn
rises above +30 inches and falls below -24 inches (Section 2.1). Consequently, there are two
Top Events:

n1. x < -24 in (Low Level)

4-5

n2. x > +30 in (High Level)

The cells that correspond to Top Events are modeled as absorbing cells or sink cells, i.e., the
system can not move out of these cells and thus the transition probabilities from these cells to
other cells in the state space are equal to 0.

4.2.2 Partitioning of the State Space or the CVSS into Computational Cells

jThe dynamics of the system are modeled as transitions between cells V (j=1,...J) that partition
the state space or CVSS. For the example initiating event defined in Section 2.5, Eqs. (2.5.17) -
(2.5.20) show that the state space is 4-dimensional and is comprised of

n• level x

Ln• level error E

ln• compensated level C

Bn• BFV position S

jThe partitioning needs to be performed in such a way that, other than cells V being disjoint and
covering the whole space (definition of partitioning), values of the controlled variables defining

n jthe Top Events (in our case x) and the setpoints must fall on the boundary of the cells V and

j’not within any cell. If this requirement is not satisfied for some V , then the system state

j’becomes ambiguous when the state variables are within V since the methodology assumes that

n,j j’ p (k) is uniformly distributed over V (Assumption 2 stated earlier in Section 4.2). Figure 4.2.1
shows the 3-dimensional projection of CVSS based on Eqs (2.5.17) - (2.5.20) in terms of level,
level error, and BFV position. It should be also indicated that the choice of the discretization
scheme for the CVSS and the time step (i.e., Ät) of the simulation are not independent of each
other. For a given partitioning of the CVSS, too low a value of Ät could lead to the system being
unable to exit the cell it is in at time t.

4-6

Figure 4.2.1 The CVSS for the Benchmark System based on Eqs
(2.5.17) - (2.5.20)

4.2.3 Markov Modeling of Components

The construction of a Markov model for the components assumes that:

m m m• a set of mutually exclusive and exhaustive states n (m=1,...,M; n =1,...,N) has already
been defined for component m, i.e.,

 (4.2.1)

• probability of transitions between states has been determined.

The choice of the failure states is based on the FMEA tables presented in Section 2.3.
Regarding software common cause failure, software is not being treated separately but as
embedded in hardware as indicated in Sections 1.2, 8, and throughout Section 2.4. In that
respect, conventional common caused failure methods are applicable[138]. For example,
platform commonality can be accounted for using the beta factor method if data are available for
system failure due to platform based failure modes. Section 2.4 describes how data for the
component state transitions can be obtained. Modeling of each benchmark system component
(see Section 2.1) is presented in Sections 4.2.3.1 through 4.2.3.6. Section 4.2.3.7 shows how

4-7

the grouping of several components into macro-components can be useful to simplify modeling
and reduce the computational effort. It should be noted that although the classical ET/FT
approach also uses similar FMEA tables and the concept of macro-components, the Markov
methodology has the capability to represent statistically dependent failure events while the
classical ET/FT approach does not. The repair of components is not considered in this report.
Mechanical failures(e.g. inadvertent FP trip) are modeled through the relevant controller failing
high or low (see Section 4.2.3.5).

4.2.3.1 MFV and BFV

The behavior of MFV and BFV based upon the FMEA tables in Section 2.3.1 can be described
by two states as shown in Fig. 4.2.2:

1. Valve operating correctly (Operating)

2. Valve stuck at the previous position (Stuck)

While it is possible for the valve to fail without reaching its target position after it is actuated, this
situation is not considered due to lack of data. State 2 or the Stuck state partially accounts for
such a situation.

Figure 4.2.2 Failure States for the MFV and BFV

4.2.3.2 FP

From the FMEA table presented in Section 2.3.1, the description of the FP follows a
configuration determined by two states as shown in Fig. 4.2.3:

1. FP operating

2. FP stuck at the previous speed

4-8

Figure 4.2.3 Failure States for the FP

The FP may fail to reach the determined speed after it is actuated. Again, this situation is not
considered due to lack of data. State 2 (Stuck) partially accounts for such a situation.

4.2.3.3 Main (MC) and Backup Computers (BC)

Identification of failure states for these kinds of components strictly depend on their internal
structure. In principle, a Markov model should be built for each of the constituent components
(e.g., control unit, internal memory, register or buses) in such a way as to consider all the
possible internal failure modes.

In this report each computer is considered as a single component and failure states are
determined following the FMEA chart presented in Section 2.3.1. The failure states involve three
elements (see Tables 2.3.1 and 2.3.2) :

1. Failure to read the data coming from the sensors

1. Failure in the processing of the data and internal errors

2. Failure in the communication between computers and controllers

Since the effects of these failures on the system are different if the computer is the main
computer (MC) or the backup computer (BC) (see FMEA tables in Section 2.3.1), transitions
between system configurations (i.e., transition from the general configuration n to n’) affect in
different ways the cell-to-cell transitions. Thus, a separate Markov model for each computer will
be considered.

The Markov modeling of each computer starts by introducing the two states which define:

• the computer which is operating correctly (Operating state), and

• the computer which is down and not sending any data to the controllers (Down state).

Element 1 involves an error in the communication between each pair of sensors for

4-9

each measured variable (e.g., SG level and FW flow) and the computer. The computers can
detect the following types of communication failures (see Tables 2.3.1 and 2.3.2):

1. Loss of input from one sensor (i.e., the computer detects 0.0 vdc in the sensor reading)

1. Loss of input from both sensors

2. A value which is out of range for the measured variable or a physically impossible rate of
change (intermittent failure)

If a loss of input failure occurs, the MC uses the old value of the measured variable or, in case
the input signal does not return, the control system switches to the BC. However, if the loss of
input affects the BC, then MFV, BFV, and FP freeze the output value to the actuated device.

In the Markov modeling of each computer the loss of input from one sensor and the intermittent
failure of one sensor will be modeled together since the consequences are the same. Thus, two
states will be considered as failure states of the Markov model for both the MC and BC:

• Loss of one input: Computer detects 0 vdc from one sensor or it recognizes that the
output value of a sensor is out of range or physically impossible

• Loss of both inputs: Computer detects 0 vdc from both sensors or it recognizes that the
output values of both sensors are out of range or physically impossible

From these failure states, it is possible to return to the Operating state if the failure is recovered.
Otherwise the computer goes to the Down state.

Element 2 involves errors during the processing of the data received from the sensors. We
consider the following errors (see Tables 2.3.1 and 2.3.2):

• Roundoff/truncation/sampling rate errors

• Failure in the response requirements

• Failure of the watchdog timer

As described in Tables 2.3.1 and 2.3.2, the computer takes itself down as a consequence of
these failures. In that respect, these failure modes are modeled as direct transitions of the
computer to the Down state.

Finally, Element 3 involves errors in the communication between the computers and the
MFV/BFV/FP controllers:

1. Failure to send data to the controller (i.e., loss of one output).

2. Controller output different from the computer output

4-10

3. Arbitrary value output

Error 2, if detected, is regarded as transition to the computer Down state (see Tables 2.3.1 and
2.3.2). If not detected, it is regarded as Error 3. In this state, the computer is sending random
data to the controllers.

The loss of power failure for the computer (see Tables 2.3.1 and 2.3.2) results in the shutting
down of the computer itself. Thus, this failure is implemented as a direct transition to the Down
state of the computer.

In this report, setpoint drift is not considered since the level setpoint of each steam generator is
not affected by any other component of the benchmark system.

Thus, from the FMEA chart for the computers, a five-state chain has been identified for each
computer (see Fig. 4.2.4 and Fig. 4.2.5) :

1. Computer operating

2. Loss of one input

3. Loss of both inputs

4. Arbitrary value

5. Computer down

Figure 4.2.4 Failure States for the Main Computer (MC)

4-11

Figure 4.2.5 Failure States for the Backup Computer

The BC model that is used for the example initiating event (see Section 2.5) presents fewer
number of states. Following Assumptions 1, 2, and 3 of Section 2.5.1 these states are the
following:

• Computer operating

• Loss of both inputs

• Computer down

The Markov model of the computer hardware/software/firmware transitions for the example
initiating event is presented in Fig. 4.2.6.

Figure 4.2.6 Failure states for the Example Initiating Event
of the BC

4-12

4.2.3.4 Sensors

The control system uses several sets of sensors to measure different parameters (i.e., level,
feedwater temperature, and power). Each of these parameters is measured by a pair of sensors
and the final value of the parameters themselves is obtained averaging the two measured values.
The information generated by these sensors is sent directly to both MC and BC. From the FMEA
charts presented in Section 2.3.1, two failure modes involve sensors:

1. Loss of output: The sensor is not sending any data to the computer

1. Out of range: Value received by the computer from the sensor is out of range or it has an
impossible rate of change

Since the FMEA charts presented in Section 2.3 regard sensor failure as a failure mode of the
components sensor data are being transmitted to, sensor failures are not explicitly modeled, but
rather directly implemented in the computer Markov model presented in Section 4.2.3.3 as loss of
input or arbitrary input. Figure 4.2.7 shows the state transition diagram for the sensors.

Figure 4.2.7 Failure States for the Sensors

4.2.3.5 FP, MFV and BFV Controllers

Signals generated from the MC and BC travel to the pump and valves through controllers which
communicate continuously with the computers. The possible failures are (see Section 2.3.2):

1. Loss of power

4-13

2. Erroneous communication between controllers and computer

3. Loss of output to MFV/BFV/FP

4. High value output

5. Low value output

6. Arbitrary value output

The modeling of the controller starts by defining the Operating state in which the controller is
receiving data from the computer and is able to send data to the actuated device (i.e., BFV, MFV,
or FP). Upon a loss of input from both computers (here it is assumed that a loss of output of the
computer is logically equivalent to a loss of input of the controller), the controller maintains as
output the old valid value to the actuated device (i.e., the controller “freezes” the output).

Erroneous communication between controllers and the computer that lead to high, low, or
arbitrary output are considered equivalent to Failures 4, 5, and 6, respectively. Loss of
communications between the controller and the actuated device or loss of power are modeled as
0 voltage on the line which connect these two components.

In summary, five states have been identified for each of the MFV, BFV, and FP controllers (see
Fig. 4.2.8 for the BFV controller; the others are similar):

1. Controller is in operating state and is communicating with the actuated device

2. Controller is in operating state and is not communicating with the actuated device

3. Freeze

4. Output high

5. Output low

6. Arbitrary output

7. 0 vdc output

States 4 and 5 are also modeling mechanical failures such as inadvertent device actuation and
inadvertent disengagement (e.g. FP inadvertently turns on or trips).

4-14

Figure 4.2.8 Failure States for the BFV Controller

4.2.3.6 PDI Controller

The benchmark DFWCS also contains a PDI controller (Section 2.1) which is used as backup to
the MFV controller in case a loss of output of the MFV controller occurs. In this case, the PDI
controller outputs the old valid value to the MFV. Following the FMEA chart of Section 2.3.2, it is
possible to identify the following failure modes for the PDI controller:

1. Loss of inputs

2. Loss of power

3. Loss of outputs

4. Arbitrary failure

The modeling of the PDI controller (see Fig. 4.2.9) starts by introducing the state in which the PDI
controller is operating correctly. Secondarily, the loss of inputs and Arbitrary failure define the
other two states where the PDI controller send the last valid value or random data to the MFV.

As implemented in Section 4.2.3.5, a loss of communication between the PDI controller and the
MFV controller can be recovered. The PDI controller can recover communications between MFV
and itself. On the contrary, the Arbitrary failure lead to a sink state where the PDI controller is
sending random data to the MFV controller. For the Markov modeling of the PDI controller this
situation implies:

• Two-way connection between Operating state and Loss of Inputs state

• One-way connection between Operating state and Arbitrary Failure state

4-15

• One-way connection between Loss of inputs state and Arbitrary Failure state

Again, the PDI controller and MFV can recover communications between MFV controller and
itself. This requires three additional states (i.e., Operating, Loss of inputs, and Arbitrary failure),
which describe the state of the controller when MFV and PDI controller are not communicating
(Fig. 4.2.9). Figure 4.2.9 also assumes that two events cannot occur at the same time in the
spirit of Markov models. In that respect, connections between the two sets of states exist only
among the similar PDI controller states.

Figure 4.2.9 Failure States for the PDI Controller

4.2.3.7 System State Reduction Through Macro-Components

In summary, the benchmark system consists of the following M =14 components and N =
3 x2x2 x7 x6x5 = 100,018,800 combination of component states (equal to the number of system5 2 3 2

states):

• 5 sensors (3 states each)

• 1 pump (2 states)

4-16

• 2 valves (2 states each)

• 3 controllers, one for the pump and one for each valve (7 states each)

• 1 PDI controller (6 states)

• 2 computers, BC and MC (5 states each)

Each combination can be represented as an array with M = 14 columns where each column
corresponds to a specific component listed above. Table 4.2.1 shows some example of these
combinations.

Table 4.2.1 Examples of State Combinations (m=1,...,M; n=1,...,N)

FP

(Fig. 4.2.2)

MFV

(Fig. 4.2.3)

BFV

(Fig. 4.2.3)

MFV
Controller

(Fig. 4.2.8)

BFV Controller

(Fig. 4.2.8)

FP Controller

(Fig. 4.2.8)

MC

(Fig. 4.2.4)

BC

(Fig. 4.2.5)

PDI

(Fig. 4.2.9)

Level
sensor

(Fig. 4.2.7)

Power
sensor

(Fig. 4.2.7)

FW flow
sensor

(Fig. 4.2.7)

Steam
Flow

sensor

(Fig. 4.2.7)

FW temp
sensor

(Fig. 4.2.7)

m
/n

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 3 3

1 1 1 1 1 1 1 1 1 1 1 1 2 1 4

1 1 1 1 1 1 1 1 1 1 1 1 2 2 5

...

It is important to note that the computational costs are proportional to the number of state
combinations. Therefore, a reduction in the number of combinations can have substantial
computational benefits. The following considerations can be made towards this objective:

• Sensor failure states can be merged into the computer models since both the MC and BC
can recognize physically impossible data from the sensors. In case MC and BC don’t
recognize these failures of the sensors, they can be regarded as being in the Arbitrary
Output state.

• Since there is a direct connection between BFV and FP and their controllers, it is possible
to merge the actuated devices with their controllers. The Markov model for this kind of
macro-components is represented in Fig. 4.2.10. The macro-component consists of the
BFV and the BFV controller and transition rates take into account both the BFV and the
BFV controller behavior.

4-17

Figure 4.2.10 Failure States for the Combined BFV and BFV Controller

As a result, the number of components can be reduced to M = 6 as follows:

• 3 controllers, one for the pump and one for each valve (8 states each)

• 1 PDI controller (6 states)

• 2 computers, MC and BC (5 states each)

Thus, the final number of component state combinations is reduced to N = 5x5x6x8x8x8=76,800
states. Table 4.2.2 shows examples of ordering of state combinations after grouping (m=1,...,M;
n=1,...,N).

Table 4.2.2 Examples of Ordering of State Combinations After Grouping (m=1,...,M; n=1,...,N)

MFV+

controller

(Fig.4.2.10)

BFV+

controller

(Fig.4.2.10)

FP+

controller

(Fig.4.2.10)

PDI

(Fig.4.2.9)

BC

(Fig.4.2.5)

MC

(Fig.4.2.4)

m/n

1 1 1 1 1 1 1

1 1 1 1 1 2 2

1 1 1 1 1 3 3

4-18

1 1 1 1 1 4 4

1 1 1 1 1 5 5

1 1 1 1 2 1 6

...

4.2.4 Determination of the Cell-to-Cell Transition Probabilities

As indicated earlier in Section 4.2, the dynamic evolution of the system depends on:

• the dynamic equations of the system,

• the control laws of the control system, and

• the state of each component.

j' jConsequently, the probability of the system to transit from a cell V to cell V also depends on
these three factors. In the Markov/CCMT methodology, the first two factors are accounted for in
the transition probability g(j|j',n',k) while the third one is captured by the transition probability
h(n|n',j'6 j).

The cell-to-cell transition probabilities g(j|j',n',k) are conditional probabilities that the controlled

jvariables are in the cell V at time t = (k+1)Ät given that:

j'• the controlled variables are in the cell V at time t = kÄt, and,

• the system components are in component state combination n(k) = n' at time t.

It can be shown that [5] the g(j|j',n',k) can be found from

(4.2.2)

where:

j' j’• v is the volume of the cell V

4-19

• is the arrival point in the state space/CVSS at time t = (k+1)Ät

j’ • is the starting point in the cell V at time t = kÄt

• n' is the component state combination at time t = kÄt.

For the example initiating event in Section 2.5, the integral in Eq. (4.2.2) can be evaluated by the
following quadrature scheme:

p• Partition a cell j’ in Fig. 4.2.1 into N subcells.

• Choose the midpoint of each subcell as initial conditions of Eqs. (2.5.17) - (2.5.19),
integrate Eqs. (2.5.17) - (2.5.19) over the time interval kÄt#t#(k+1)Ät under the
assumption that the component state combination remains n’ at all times during
kÄt#t#(k+1)Ät.

p+1• Observe the number of arrivals in N at time t = kÄt (i.e.,).

p p+1• Obtain g(j|j',n',k) as g(j|j',n',k) = N / N .

4.2.5 Determination of the Component State Transition Probabilities

The stochastic behavior of hardware/software/firmware is represented through h(n|n',j'->j), which
is the probability that the component state combination at time t = (k+1)Ät is n, given that:

1. n(k) = n' at t = kÄt, and

j' j2. the controlled variables transit from cell V to cell V during kÄt#t<(k+1)Ät.

For components with statistically independent failures, the probabilities h(n|n',j'->j) are the
products of the individual component failure or non-failure probabilities during the mapping time
step from kÄt to (k+1)Ät, i.e.,

(4.2.3)

m m m m mwhere c (n |n' ,j'->j) is the transition probability for component m from the combination n' to n

j' jwithin [kÄt, (k+1)Ät] during the transition from the cell V to V .

As an example, suppose that m in Eq. (4.2.3) corresponds to the combined BFV and BFV

m mcontroller (see Fig. 4.2.10) and that the transition from the configuration n' to n involves the
transition from the “Controller/Device Communicating” state to the “Stuck” state. Then from

m m m 18 Fig.4.2.10 the value of c (n |n' ,j' ->j) is equal to ë Ät.BFV

4-20

n,j jThe probability p (k+1) that at t = (k+1)Ät the controlled variables are in cell V and the
component state combination is n is the sum of N×J terms where each of these includes two
factors:

j’• the probability for the system to transit from the cell V and component state combination

jn' to cell V and component state combination n (i.e., q(n,j|n',j',k)) and

j’ n,j• the probability that the system is in the initial cell V and state combination n’ (i.e., p (k)).

In general:

(4.2.4)

The elements of the transition matrix q(n,j|n',j',k) are functions of both

• the cell to cell transition probability g(j|j',n',k) (see Section 4.2.4), and

• the component state transition probabilities h(n|n',j',j) (see Section 4.2.5).

Thus

(4.2.5)

jSince cells V cover the whole CVSS and N includes all the possible state combinations:

 (4.2.6)

The grouping of several components into macro-components (as seen in Section 4.2.3) can be
useful to decrease the number of possible state combinations, which can be very large for
systems that involve a large number of components. Note that for autonomous processes the
transition matrix q(n,j|n',j',k) has to be constructed only once and not at each step throughout the
duration of the mission of the system.

4.2.6 Determination of the pdf and Cdf for the Top Events

n,j ã n,ãAfter computing p (k) at the end of each time step k, the Cdf F (k) and pdf w (k) for the Top
Event ã (ã = 1,..., Ã) can be calculated as presented in Eq. (4.2.7):

4-21

(4.2.7)

Each Top Event ã is a set of cells in the CVSS (see Section 4.2.1). Statistical importance of
hardware/software/firmware configuration n to failure event ã at time t= kÄt can be determined
from [6]:

 (4.2.8)

nwhere S is the set of system states containing the hardware/software/firmware configuration n.

4.3 Implementation with the Example Initiating Event

In order to illustrate the methodology presented in Section 4.2, the example initiating event
presented in Section 2.5 will be used. As indicated in Section 4.2.2, the CVSS of the system
consists of level, level error change, compensated level, and BFV position, and the benchmark
system is reduced essentially to only two components (M = 2), i.e., the BC and the BFV valve.

4.3.1 Definition of the Top Events

The two Top Events are:

n1. x < -2.0 feet (Low Level)

n2. x > +2.5 feet (High Level)

4.3.2 Partitioning of the CVSS

The CVSS consists of 4 variables:

• level x

L• level error E

L• compensated level C

B• BFV position S

4-22

For illustration purposes, each of these variables has been partitioned in three intervals. Then
the CVSS consists of 3 =81 cells plus the two cells which represent the Top Events. The partition4

of the four variables are presented in Table 4.3.1. The partition follows the guidelines given in
Section 4.2.2.

Table 4.3.1 Partitioning Scheme of the 4 Variables of the CVSS

Interval for x Value

0 -2.0 <= x < -0.17

1 -0.17 <= x < 0.17

2 0.17 <= x <= 2.5

Low x < -2.0

High x > 2.5

LInterval for E Value

L0 -1000 <= E < -1.587

L1 -1.587 <= E < 4.203

L2 4.203 <= E <= 1000

LInterval for C Value

L0 -500 <= C < -100

L1 -100 <= C < 100

L2 100 <= C <= 5000

BInterval for S Value

B0 0 <= S < 30

B1 30 <= S < 70

B2 70 <= S <= 100

4-23

4.3.3 Markov Modeling of the Components and the Determination of the Elements
h(n|n’,j’->j)

The Markov models for the BC and the combined BFV-BFV controller are presented in Section
4.2. As presented in Section 2.5, several simplifications occur for both components for the
example initiating event. For this event, the BC can be represented by 3 states instead of 5 (see
Section 4.2.2.3) which are:

• BC Operating

• Loss of both inputs

• BC Down

For the combined BFV-BFV the 8 states presented in Fig. 4.2.10 have been reduced to 5 (see
Section 4.2.3.7):

• Controller operating and communicating correctly with the BFV

• Freeze

• 0 vdc output

• Arbitrary output

• Stuck

These states are shown in Fig. 4.3.1.

4-24

Figure 4.3.1 Markov Modeling of the Example
Initiating Event

Thus, the total number N of component state combinations is 7 and each state combination is
determined by an array of 2 elements (one element for each component) as presented in Table
4.3.2.

Table 4.3.2 Component State Combinations for the Example Initiating Event

BFV Controller BC n

Communicating Operating 1

Communicating. Loss of input 2

Communicating Down 3

Freeze - 4

Arbitrary output - 5

0 vdc output - 6

Stuck - 7

4-25

Transitions between state combinations are shown in Table 4.3.3, which contains the elements
h(n|n’,j’->j).

Table 4.3.3 Allowed Component States Combination Transitions

n’\n 1 2 3 4 5 6 7

1 11 12 13 14 15 16 17ì Ät ë Ät ë Ät ë Ät ë Ät ë Ät ë Ät

2 23 24 25 26 270 0 ë Ät ë Ät ë Ät ë Ät ë Ät

3 34 35 36 370 0 0 ë Ät ë Ät ë Ät ë Ät

4 44 45 46 470 0 0 ì Ät ë Ät ë Ät ë Ät

5 55 56 570 0 0 0 ì Ät ë Ät ë Ät

6 66 650 0 0 0 0 ì Ät ë Ät

7 770 0 0 0 0 0 ì Ät

4.3.4 Determination of the Cell-to-Cell Transition Probabilities

The determination of the cell-to-cell transition probabilities g(j|n’,j’,k) takes into account the
dynamic laws presented in Section 2.5, which describe the process and the state of each
component at time t = kÄt or t = (k-1)Ät. As presented in the FMEA analysis in Section 2, in case
a loss of input or a loss of output occurs, the last value of the BFV position must be taken into
account. In this respect, Table 4.3.4 shows which value of the BFV position must to be taken into
account for each of the 7 component state combinations (see also Table 2.5.3). The possible
values are:

• the current value determined by the set of equations presented in Section 2 (CV),

• the old value determined in the previous time step (OV), or,

• a value that is not possible to predict (i.e., any value) due to a particular component state
combination.

Table 4.3.4 BFV Position for Different Component State Combinations

n BFV BC BFV Position

1 Communicating Operating CV

2 Communicating Loss of input OV

3 Communicating Down OV

4 Freeze - OV

5 Arbitrary output - Any

4-26

6 0 vdc output - Closed

7 Stuck - OV

Note: OV - BFV position determined in the previous time step

CV - BFV position determined from the set of equation presented in Section 2

Any - BFV position can be any value (in the 0-100 range).

It is important to note that, for the example initiating event, the transition between cells depends
on both the starting cell and the component state combination. However, a coupling in the
opposite direction (i.e., a dependence of the component state combinations on the CVSS cells) is
not relevant for this example initiating event since the failure rates are not assumed to be affected
by controlled process variables and there are no on-off controllers whose actuation depends on
setpoint crossings. The setpoint dependence of the control process is described by Eq. (2.5.2) or
Eq. (2.5.10).

Figure 4.3.2 shows a small portion of the overall matrix which contains the elements g(j|n’,j’,k).
The first column defines the components state combination n’ while the second one defines the

j’ jcell V the system is in at time t. The first row of the rest of the columns indicates the cell V the

j j’system is in at time t+Ät. Each cell V and V is represented as an array of four elements (i.e.,
one for each variable of the CVSS), where each element contains an integer number
corresponding to the intervals of the continuous process variables as defined in Table 4.3.1.

Figure 4.3.2 Small Portion of the Matrix which Contains the Elements g(j|n’,j’,k)

4-27

4.3.5 Determination of the Elements q(n,j|n’,j’,k)

As presented in Section 4.2.5, the product of the terms g(j|n’,j’,k) and h(n|n',j'->j) gives the
transition probabilities q(n,j|n',j',k). Figure 4.3.3 shows a small portion of the matrix containing the
elements q(n,j|n',j',k). Since we have:

• 7 components state combinations

• 81 cells of the CVSS

• 2 cells which represent the Top Events

the overall matrix has 7*81+2= 569X569 elements.

Figure 4.3.3 Small Portion of the Matrix which Contains the Elements q(n,j|n’j’,k)

It is important to note that the matrix presented in Fig. 4.3.3 is time dependent due to the time-
dependence of decay heat power (see Eq. (2.5.8)) and thus has to be calculated for each time

n,jstep. Once the matrix is generated, the determination of the state probabilities p (k) is made
recursively through Eq. (4.2.4) for each time step. The determination of the state probabilities for
each Top Event is made through Eq. (4.2.7).

5-1

5. INCORPORATION OF THE DFM AND MARKOV/CCMT MODELS INTO
THE EXAMPLE PLANT PRA

Notation

P(t) Power

t Time

n nx SG level (see Section 2.1)

Ät Simulation time step

S, S’ System states; they include both the state of all the process
variables and the configuration of all system components

P, P’ Probabilities

N = (S, P) Node in Algorithm 1

Prob[S,S’] Probability of transition from state S to state S’ in time Ät

N = <(S1,P1),...,(Sk,Pk)> Node in Algorithm 2

Conf(S) Configuration of system components in state S

Ln nE SG Level error (see Section 2.1)

Ln nC SG Compensated level (see Section 2.1)

Bn nS SG BFV position (see Section 2.1)

5.1 Introduction

This chapter describes how the models generated according to the DFM and Markov/CCMT
methodologies discussed in Chapters 3 and 4, respectively, can be integrated into the PRA for an
existing, operational nuclear power plant as exemplified by a NUREG-1150 [66] plant. Then the
risk significance of each failure mode listed in Tables 2.3.1 through 2.3.6 or their combinations can
be determined using different measures (e.g. Fussel-Vesely, Birnbaum) through the standard
features of the PRA quantification tools.

5.2 Description of Example Plant PRA

The model PRA to be used represents a simplified model of the example two-unit nuclear power
plant (Fig. 5.2.1). Both units are PWRs, each with a three loop design. Both units are rated at
2441 MW(th), or 788 MW(e). The Unit 1 reactor first started commercial operation in 1972. The
PRA to be used was modeled using the SAPHIRE PRA code, which uses the ET/FT methodology
and is further explained in Section 6.

The example plant PRA models include a loss of offsite power (LOSP), loss of coolant accidents
(LOCA), and fire and seismic events. Some of these initiating events are listed below in Table

5-2

5.2.1. Each initiating event leads to an ET modeling how various plant systems attempt to
respond to the initiating event. A sample ET from the example plant PRA is also given below, as
Fig. 5.2.2 and continued in Fig. 5.2.3, which models the plant’s response to a turbine trip. A
turbine trip could occur for several reasons, such as a loss of vacuum in the main condenser or if
the turbine experiences overspeed. As can be seen by the ET, the plant’s first response would be
to scram the reactor through the reactor protection system (RPS). Failure of the RPS to scram
the reactor will lead to an anticipated transient without scram (ATWS), and is modeled in a
separate ET. After a successful reactor scram, the primary and secondary system safety relief
valves (SRVs) must close (failure to do so leads to another ET modeling further plant actions in
this scenario). With both the reactor scrammed and the SRVs closed, the Auxilliary Feedwater
System (AFW) must then provide water to the SGs, maintaining a heat sink for the reactor. If the
AFW system is unable to provided adequate water to the SGs, then the Main Feedwater (MFW)
system is brought back online to provide cooling water to the SGs. Failure of both of these
systems (Fig 5.2.3) will require High Pressure Injection (HPI), and opening of the relief valves for
feed and bleed, and could possibly lead to core damage. Successful operation of the auxiliary or
MFW system will result in a safe condition for the plant. The turbine trip ET represents an ideal
model to incorporate a model for a digital feedwater controller, as the SG water level is critical to
the safety of the plant and water is added from either the AFW or the MFW system.

As previously stated, the benchmark system to be incorporated into the example plant PRA
models a DFWCS. Feedwater control monitors the water level in the plant SGs, and thus is tied to
the MFW and AFW systems, which supply water to the SG. By ensuring an appropriate water
level in the SGs, the DFWCS will maintain a steady heat sink for the reactor and allow for safe
operation of the plant. The DFWCS monitors parameters such as steam flow out of the SG and
feed flow into the SG, as well as the water level itself in the SG. Other parameters are also
monitored, including system temperature and pressure, reactor power, FP speeds, and valve
positions. The DFWCS will attempt to maintain water level in the SGs between certain setpoints,
as well as maintain a balanced steam flow out and feedwater flow into the SG. This is
accomplished primarily by controlling the speed of FPs and the position of flow control valves to
adjust the rate of feedwater flow into the SG. This control was traditionally managed using analog
systems; however, many plants are now upgrading their systems to incorporate DFWCSs.

5-3

Figure 5.2.1 Schematic of Example Plant Unit 1 [124]

5-4

Table 5.2.1 Selected Example Plant PRA Initiating Events

SAPHIRE
Name

Initiating Event Description

EQ SEISMIC EVENT TREE WITH EARTHQUAKE INITIATING EVENT
FA LARGE LOCA EVENT TREE

FAUX FIRE EVENT TREE FOR AUXILIARY BUILDING
FCR FIRE EVENT TREE FOR CONTROL ROOM

FCSR FIRE EVENT TREE FOR CABLE VAULT/TUNNEL
FPR FIRE EVENT TREE FOR CHARGING PUMP SERVICE WATER ROOM
FS1 MEDIUM LOCA EVENT TREE
FS2 SMALL LOCA EVENT TREE
FS3 VERY SMALL LOCA

FSWGR FIRE EVENT TREE FOR EMERGENCY SWITCHGEAR ROOM
FT1 LOSS OF OFFSITE POWER

FT1S STATION BLACKOUT AT UNIT 1
FT1SB STATION BLACKOUT AT BOTH UNITS

FT2 LOSS OF MAIN FEEDWATER
FT3 TURBINE TRIP WITH MFW

FT5A LOSS OF DC BUS A
FT5B LOSS OF DC BUS B
FT7 SG TUBE RUPTURE

FTKT ANTICIPATED TRANSIENT WITHOUT SCRAM (IE-T)
SE2 SEISMIC INDUCED LARGE LOSS OF COOLANT ACCIDENT (S-

ALOCA)
SE3 SEISMIC INDUCED MEDIUM LOSS OF COOLANT ACCIDENT (S-

MLOCA)
SE4 SEISMIC INDUCED SMALL LOSS OF COOLANT ACCIDENT (S-

LOCA)
SE5 SEISMIC INDUCED SMALL LOSS OF OFFSITE POWER (S-LOSP)
SE6 SEISMIC INDUCED GENERAL TRANSIENT (S-GT)

In order to incorporate the DFWCS into the example plant PRA, it must be appropriately
connected to the existing model. Since the reactor is shutdown following the turbine trip, the
power is less than 15% and the DFWCS is in the low power mode, with BFV regulating the water
inflow into the SG. With both the reactor scrammed and the SRVs closed, the AFW will then
provide water to the SGs. Note that the available PRA model for the example plant does not
contain any information on the MFW system. For the purposes of this proof-of-concept study, we
will assume that the DFWCS is controlling the AFW system, and map the DFWCS equipment to
the corresponding equipment in the AFW system (e.g. valves) for the ET in Fig. 5.2.2.

The AFW system for the example plant, shown in Fig. 5.2.4, consists of three trains that draw
water from a single tank, the plant Condensate Storage Tank (CST). Each train can supply water
to any of the three SGs. Water for two of these trains is pumped from the CST by Motor Driven
Pumps (MDP), while the third train uses a Turbine Driven Pump (TDP), using steam produced
from the SGs. The flow rate of the water sent to the SGs is controlled by a Motor-Operated Valve

5-5

(MOV). Each water line to the SGs has two such MOVs for redundancy. Two Air-Operated
Valves (AOV) control the steam flow from the SGs to a turbine, which drives the AFW’s Turbine
Driven Pump. Therefore, the components controlled by the new DFWCS include the three FPs,
six MOVs, and three AOVs, as all these components affect the water flowrate to the SGs. For
modeling purposes, it is assumed that the DFWCS is being used for steam generator A, and that
MOV-151-E and MOV-151-F, shown in Fig. 5.2.4, are the same MFV and BFV components
contained in the DFWCS model. For demonstration purposes, the DFWCS is only connected to
one steam generator, and the other two remain under analog control.

It should also be noted that this AFW system is cross-tied to the AFW system for the plant’s Unit 2
reactor. Two additional MOVs, under the control of Unit 1, are used to control the flow rate from
Unit 1 to Unit 2. Similarly, two MOVs controlled by Unit 2 can direct water from the Unit 2 AFW to
Unit 1.

5-6

Figure 5.2.2 Example Plant Event Tree for Turbine Trip

5-7

Figure 5.2.3 Example Plant Event Tree for Turbine Trip (continued)

5-8

Figure 5.2.4 P&ID for Example Plant Simplified AFW System

Figures 5.2.5 to 5.2.20 below detail the FT for the simplified example plant AFW system. Due to
the large number of valves and other components in the system, the model is quite large and has
been broken up using transfer gates. The transfer gates (triangular elements) in the figures
transfer to the FT with the name indicated. The top event, AFW-1 in Fig.5.2.5, occurs if there is
insufficient flow to at least one of example plant’s three SGs. Insufficient flow to any one of the
three SGs will occur if either a check valve fails to open, or if there is insufficient flow due to
upstream failures in the piping. Figure 5.2.5 shows that such insufficient flow may result from a
stuck motor operated valve, or again by upstream failures.

The possible failures upstream of AFW-1 are modeled in FTs AFW13 (Fig. 5.2.6) and AFW14
(Fig. 5.2.7). By following the transfer gate to FT AFW13, insufficient flow could result from failure
of one of two check valves or by further upstream failures. Insufficient flow may also occur if
some of the water has been diverted to the Unit 2 system. The logic for AFW14 is modeled
similarly. Upstream failures from AFW13 and AFW14 are both modeled in FT AFW15 (Fig. 5.2.8).
Insufficient flow at AFW15 could occur due to undetected leakage in the system, insufficient water
available in the condensate storage tank, no actuation signal sent to the system, or if backflow
occurs due to either the motor driven FP 3A fails to start and backflow occurs in the nearby piping,
or if the turbine driven FP fails to start and backflow occurs in nearby piping. Failure could also

5-9

result from the loss of electrical power, further modeled in FTs E1B (Fig. 5.2.14) and 4KV1J. In
addition to these events modeled in AFW15, further events modeled in AFW17 (Fig. 5.2.9) and
AFW18 (Fig. 5.2.10) must occur in order for AFW15 to indicate insufficient flow. The logic for
AFW17 is similar to that in AFW15, but accounts for motor driven FP 3B failing to start, along with
backflow, and draws power from electrical systems E1A (Fig. 5.2.13) and 4KV1H. Again, no
actuation signal received, undetected leakage in the system piping, or insufficient water available
in the condensate storage tank will also lead to insufficient water flow. FT AFW18 includes both
motor driven FPs A and B, along with any associated backflow, but also accounts for insufficient
steam flow to the turbine driven FP. Insufficient steam flow occurs if both events detailed in FT
AFW21 (Fig. 5.2.11) and if air operated valve (AOV) A fails to open or is otherwise plugged, no
actuation signal is received to the AOV, or if events in FT AFW22 (Fig. 5.2.12) occur.

Figure 5.2.11, which gives FT AFW21, shows that insufficient steam flow can result if air operated
valve B fails to open, is plugged, or if no actuation signal is received. AFW21 will also show
insufficient steam flow if the events in AFW22 occur. AFW22, given in Fig. 5.2.12, shows that
insufficient flow will result if flow from all three pipe segments is blocked, due to either check
valves failing to open or manual valves plugged.

Figure 5.2.13 and Figure 5.2.14 model the loss of electrical power to 125 V DC buses 1A and 1B,
respectively. Recall that these FTs are entered from AFW17 or AFW15 and can account for
insufficient flow to the SGs. For bus 1A, electrical power can be lost if the 480 V AC MCC 1H1-1
(modeled in Fig. 5.2.15) fails or its respective circuit breaker is open, and if the 480 V AC MCC
1H1-2 (modeled in Fig. 5.2.16) fails or its respective circuit breaker is open, and a battery failure
occurs. Similarly, for bus 1B, electrical power can be lost if the 480 V AC MCC 1J1-1 (modeled in
Fig. 5.2.17) fails or its respective circuit breaker is open, and if the 480 V AC MCC 1J1-2 (modeled
in Fig. 5.2.18) fails or its respective circuit breaker is open, and a battery failure occurs. Electrical
power to either system will also be lost if the bus itself has failed. Figure 5.2.15 shows that
electrical power to the MCC 1H1-1 is lost if either buswork failure occurs, the circuit breaker is
open, or if a failure occurs to the 4kV AC electrical bus 1H (modeled in Fig. 5.2.19). MCC 1H-1
will also lose power due to buswork failure, an open circuit breaker, or loss of bus 1H. Similarly,
MCC 1J-1 and 1J-2 lose power due to buswork failure, an open circuit breaker, or a failure due to
the 4kV AC electrical bus 1J (modeled in Fig. 5.2.20). These two buses will fail to provide power if
either buswork failure occurs, or if offsite power is lost and backup power provided by emergency
diesel generators is unavailable. Diesel generator #1 provides power to the 4kV bus 1H, and the
#3 diesel generator provides power to bus 1J. Either diesel generator will fail to provide power if it
fails to start or run for at least an hour, if it is out for testing and maintenance, or if a respective
circuit breaker has failed.

To summarize, the FT models show that the AFW system will fail to provide sufficient water to the
three SGs if the appropriate valves fail to open, FPs fail to start or insufficient steam is sent to
power the turbine driven FP, pipe leakage occurs, or there is insufficient power provided to
motorized components. Electrical power can be lost if offsite power is lost and emergency diesel
generators fail to run, or by a buswork failure in the plant’s electrical system.

5-10

Figure 5.2.5 Example Plant AFW Top Event - Insufficient Water Flow to SGs

5-11

Figure 5.2.6 AFW13 - Subtree for Example Plant AFW System

Figure 5.2.7 AFW14 - Subtree for Example Plant AFW System

5-12

Figure 5.2.8 AFW15 - Subtree for Example Plant AFW System

5-13

Figure 5.2.9 AFW17 - Subtree for Example Plant AFW System

5-14

Figure 5.2.10 AFW18 - Subtree for Example Plant AFW System

5-15

Figure 5.2.11 AFW21 - Subtree for Example Plant AFW System

Figure 5.2.12 AFW22 - Subtree for Example Plant AFW System

5-16

Figure 5.2.13 E1A - Failure of 125V DC Bus 1A

5-17

Figure 5.2.14 E1B - Failure of 125V DC Bus 1B

5-18

Figure 5.2.15 EH1 - Failure of 480 V AC MCC

5-19

Figure 5.2.16 EH2 - Failure of 480 V AC MCC

5-20

Figure 5.2.17 EJ1 - Failure of 480 V AC MCC

5-21

Figure 5.2.18 EJ2 - Failure of 480 V AC MCC

5-22

Figure 5.2.19 4KV1H - Failure of 4kV AC Bus 1H

5-23

Figure 5.2.20 4KV1J - Failure of 4kV AC Bus 1J

Incorporation of the DFWCS model into the example plant PRA can be performed using the plant
models present in the SAPHIRE database and SAPHIRE’s MAR-D feature. The MAR-D feature
allows FT logical information, ETs, basic event failure data, and other information to be imported
to or exported from the SAPHIRE database. By composing the model for the DFWCS into an

5-24

appropriately formatted text file, the model can be loaded into the SAPHIRE database and
connected to the rest of the plant PRA.

In order for SAPHIRE to recognize an imported file, the file must use the proper format. While the
file may have any name desired, the file extension to be used will vary based on the type of
information to be entered into SAPHIRE. To enter an ET, the extension .ETL (event tree logic) or
.ETG (event tree graphics) must be used. To enter a FT, the extension .FTL (fault tree logic) or
.FTG (fault tree graphics) must be used. The format for the ET files, as well as the FT graphics
file, all contain information pertaining to the graphics as displayed in the SAPHIRE editors.
Therefore, the format for these files is complex. However, the format for the FT logic file, .FTL,
contains only the logic information of the FT, and is therefore very simple. If desired, the FT logic
may be converted into a graphical format once it has been entered into the SAPHIRE database.
To illustrate the format to be used for a .FTL file, a sample FT is given below. The text gives the
logic information from the small AFW22 FT, given above in Fig. 5.2.12, for insufficient flow.

Example plant-NUREG-1150, AFW22 =

AFW22 AND AFW32 AFW33 AFW34

AFW32 OR AFW-CKV-FT-CV182 AFW-XVM-PG-XV87

AFW33 OR AFW-CKV-FT-CV178 AFW-XVM-PG-XV120

AFW34 OR AFW-CKV-FT-CV176 AFW-XVM-PG-XV158

In the top line, example plant-NUREG-1150 represents the project database this file was exported
from. When importing a new file, any name may be used here (it need not match the project
name the file is to be imported into in SAPHIRE). AFW22 is the name of the FT being imported.
This name should match the first name given on the second line, which represents the top event
of the FT. Twenty four spaces are allotted for the top event name, followed by one more space
before the description of each daughter of the top event. A total of six spaces is used to describe
what type of gate is used for the gate (OR, AND, or TRAN for transfer gates). The name of each
daughter follows the gate type. Up to 24 spaces can be used for each daughter, and there must
be a space between each daughter. Note that it is not necessary to state whether daughters are
gates or basic events. Every line after the second describes a gate, using the same format as for
the top event on the second line. At the end of the tree, any daughters that have not been
described as gates will be assumed to be basic events. If the name of any gate or basic event
does not appear in the SAPHIRE project, SAPHIRE will create that gate or event.

If the name of a gate or event does appear, SAPHIRE will assume them to be the same and use
any descriptions or basic event data already present. If a FT of the same name as the one being
imported already exists, SAPHIRE will replace the old FT with the new one being imported. Thus,
any FT generated may be incorporated into the database of an existing PRA modeled in
SAPHIRE, allowing for the new model to be added to existing plant data.

5-25

5.3 Incorporation of DFM Output into the Example Plant PRA

Event tree/fault tree models, implemented with automated PRA tools such as SAPHIRE[7],
CAFTA[8] and RISKMAN[9] will likely remain the tool of choice for generating nuclear power plant
PRAs. It is known that this well-accepted tool has some shortcomings in handling dynamic
systems and non-coherent logic structures. The DFM, being a multi-valued logic dynamic analysis
tool with quantification capability, is a natural extension of ET/FT analysis to augment the
capability to analyze dynamic systems and non-coherent logic structures. In that respect, it is
feasible to integrate the DFM analysis of the benchmark feedwater control system into the master
structure of the example plant PRA developed with SAPHIRE. Section 5.3.1 outlines the
conceptual steps for using DFM to augment an ET/FT PRA structure and integrating the DFM
outputs back into the master PRA. Section 5.3.2 presents an example from the benchmark
system analysis to illustrate the procedures. Section 5.3.3 identifies some of the technical issues
and potential resolutions to bring about a practical integration solution.

5.3.1 Augmentation of the ET/FT Structure with DFM

The example plant PRA contains a large set of ETs for modeling accident progression as a result
of many different initiating events. Some of these ETs contain pivotal events that are tied to the
failure of the feedwater control system. Instead of expanding these feedwater control system
related pivotal events with FT models, the DFM model of the benchmark system will be solved.
The feedwater control system related pivotal events in the ETs will be defined as the top events in
a set of deductive analyses. The sets of prime implicants identified in these deductive DFM
analyses are logically equivalent to the cut sets for the pivotal events and can be used to quantify
them.

In the simplest scenario, when the feedwater control system model is not coupled with the other
systems modeled in the PRA, the prime implicants of the feedwater control system will not contain
basic events that correlate to the rest of the PRA model. This allows the prime implicant sets to
be quantified independently from the master PRA model. The point estimates outputs from DFM
quantification can be used as point estimates for the pivotal events in the ET model to calculate
the base case results.

For a coupled scenario, when the feedwater control system prime implicants are correlated with
the PRA model cut sets, such as common basic events in the ET/FT model and the DFM model,
quantification of the final results will be complicated. One possible solution will be to convert the
prime implicants identified by the DFM analyses to cut sets in the ET/FT model and then use
SAPHIRE to quantify the results. However, this has the potential of introducing errors into the
calculation. The reason is that the cut sets converted from the DFM prime implicants are very
likely to contain dynamic information and a non-coherent logic structure, and that SAPHIRE is
known to produce erroneous results when the cut sets have these time dependent and non-
coherent characteristics. As a simple example, assume that the DFM analysis yields a single
prime implicant:

5-26

A = 1 @ time = -1 and B = 1 @ time = 0,

with A being a process parameter that is discretized into 3 states, 1, 2 and 3, and B being a
process parameter that is discretized into 2 states, 1 and 2.

This prime implicant means that the top event can be brought about by process variable A
entering state 1 followed by process variable B entering state 1. This prime implicant contains
both dynamic information and a non-coherent logic structure. In particular, event A=1 has to occur
prior to event B=1, and A is not a binary variable.

To convert this prime implicant into a cut set recognized by SAPHIRE, the multi-state basic event
A=1 needs to be decomposed into 3 binary basic events A1 (A in state 1) = true AND A2 = false
AND A3 = false, with the additional dependency between A1, A2, and A3 (no more than one of
them can be true). The cut set then becomes:

A1 ^ ¬A2 ^ ¬A3 ^ B

Also, note that the dynamic information regarding A happening before B is no longer available.
However, converting the DFM prime implicants into cut sets will allow SAPHIRE to solve the ET/FT
model with the dependency accounted for.

For beyond base case point estimate analyses, such as sensitivity analysis, importance measures
and uncertainties, the conceptual framework would apply. However, some automation capabilities
need to be developed to allow SAPHIRE and DFM to exchange information regarding basic events
in cut sets/prime implicants. Some technical issues in this regard are identified in Section 5.3.3.

5.3.2 Example of Integrating DFM Results into the Master PRA

For example, using the Turbine Trip initiating ET (Fig. 5.2.2) as an example, the pivotal event
MFW, corresponding to the failure of the Main Feedwater System to maintain steam generator
level, is analyzed with DFM. The analyses for steam generator level high and steam generator
level low are carried out as described in Section 3.5.2. Depending on the ease of integration with
SAPHIRE, the prime implicants or the mutually exclusive implicants identified by DFM can be
exported back to the SAPHIRE ET model, as shown in Fig. 5.3.1.

5-27

For the analysis of this simplified benchmark problem, the prime implicants do not show any time
dependency among the conditions in the prime implicants. However, with the DFM model of full
benchmark system, it is expected that dynamic behavior will be associated with the prime
implicants, i.e., prime implicants will contain conditions across different time steps. Under such
conditions, the prime implicants and the probability estimated cannot be exported as is to
SAPHIRE. Some post-processing is required. These are further discussed in Section 6.

5.3.3 Technical Issues and Potential Resolution for Integrating DFM into the Master PRA

It is recognized that augmenting the SAPHIRE ET/FT analysis capability with DFM will be
beneficial in terms of accounting for dynamic and non-coherent logic behavior. As discussed
previously in Section 5.3.1, the concept is feasible. However, to make this practically applicable,
several technical issues need to be addressed. These technical issues are associated with
quantification and integration of results beyond point-estimate outputs.

• Sensitivity Analysis: Is there anything not straightforward in the quantification of the
alternate cases, when a parameter value in the DFM portion of the models is the object of
the sensitivity question? If not, then the answer would be that those prime implicants for
the alternate case that contain the variable of interest be identified and tagged in the post-
processing, so that the SAPHIRE main module can be used to produce the desirable
sensitivity analysis results.

Figure 5.3.1 Integration of DFM Results into SAPHIRE

5-28

• Importance Measures: How should the importance measures be calculated? Is this simply
a variation of the "sensitivity analysis" question or is there some hidden issue that we need
to investigate better? If not, the computational process can follow what is outlined above
for the sensitivity analyses. To address the question, a better understanding of how the
importance measure results are derived in the current SAPHIRE version is required.

• Uncertainty Analysis: How should a full uncertainty analysis be carried out? One general
question concerns the control mechanism of the Monte Carlo (or Latin hypercube)
sampling scheme when parameters on both sides of the SAPHIRE/DFM interface are
sampled. An important corollary of the question is how to accurately estimate the
uncertainty if some basic events are present in both the coherent (i.e., SAPHIRE) portion
of the model and the non-coherent (i.e., DFM) portion of the model. In such a case the
SAPHIRE "control engine" needs to "know" that the event probability has to be sampled
only once and the same input value needs to be used on both the SAPHIRE and DFM
sides to quantify the logic structure. If the event were to be sampled separately on either
side, this would be equivalent to erroneously consider each instance as a separate,
statistically independent event. A possible approach is to identify and tag those prime
implicants that contain variables common to the coherent and non-coherent portions in the
post-processing, so that the SAPHIRE main module can be used to produce the desirable
Monte Carlo simulation results.

5.4 Incorporation of Markov/CCMT Methodology Output into the Example Plant PRA

The integration of any model of digital I&C systems into existing PRAs currently requires the ability
to link the output of these models to the standard event tree/fault tree models used by PRA tools
such as SAPHIRE. Very few attempts have been encountered in the reliability literature to
generate ETs or FTs from Markov models [139]. As described in Chapter 1, dynamic event trees
(DETs) have been used in methodologies capable of accounting for at least Type I interactions in
the reliability modeling of digital I&C systems. The DETs are similar to conventional event trees
except that the branching times are determined from the system simulator through user specified
branching rules [37, 38, 40, 41]. This section describes an approach based on dynamic event
trees to integrate the output of a Markov model of a system into an existing PRA. Section 5.4.1
describes two algorithms for the generation of dynamic event trees from a Markov model of the
system [140]. Section 5.4.2 presents a sample analysis of one failure scenario for the benchmark
system using the DETs generated from a Markov model. Section 5.4.3 shows how the DETs can
be incorporated into an existing PRA developed in SAPHIRE. Section 5.4.4 discusses some
outstanding issues.

5.4.1 DET Generation from Markov Model [140]

This section describes an approach to generate the DET for a given system once a Markov model
has been built using the CCMT described in Chapter 4. The basic idea of this approach is to use
the transition matrix of the Markov model of the system as a graph representation of a finite state
machine (a discrete process model of the stochastic dynamic behavior of the system). With this
representation and standard search algorithms [141] it is possible to explore all possible paths to

5-29

failure (scenarios) with associated probabilities and to construct dynamic event trees of arbitrary
depth.

The DET generated by this approach has a somewhat unusual structure because instead of
simply describing some failure scenario, it captures all possible failure scenarios for the system
under consideration. Assuming the system starts in an operational state where all process
variables are in the nominal range and all system components are operational, the algorithm starts
branching through discrete time steps such that each level of branching in the tree represents all
the possible states in which the system may be after a given time interval. Branching stops any
time a branch reaches a "sink" state (i.e., a state from which the system cannot move out) or the
probability associated with the branch is below a chosen threshold. It is also possible to stop after
a certain amount of system time has elapsed or, equivalently, once the branching has reached a
chosen depth in the tree.

Figure 5.4.1 Event Tree vs. Tree Data Structure

The DET is represented by a tree data structure. A tree data structure is composed of "nodes"
(where information is stored) and "links" that connect the nodes. The nodes in the tree data
structure correspond to the branching points in the DET and the links represent the branches.
Figure 5.4.1 shows a simple event tree for a simplified view of the level controller and a tree data
structure that might be used to represent it. In the example, the tree nodes hold the information
about the system component states: Main Computer (MC), Backup Computer (BC), and Backup
Flow Valve (BFV). The event corresponding to a specific branch in the tree can be deduced by
comparing the configurations at the beginning and at the end of the branch.

Sections 5.4.1.1 and 5.4.1.2 present two algorithms for the generation of DETs from the transition
matrix of the Markov model of a system.

5.4.1.1 Algorithm 1

The nodes in the tree data structure used in the first DET generation algorithm (see Fig. 5.4.2)
store the state S of the system and the probability P that the system will have followed the specific
path in the DET from the initial state to state S. In the current discussion, a state of the system is

5-30

always meant to include both the state of all the process variables and the configuration of all
system components.

initialize DET root node to initial state and probability 1
add DET root node to queue Q of nodes to process
while Q is not empty

remove next node N = (S,P) from Q
if S is not a sink state

for each possible state S'
if Prob[S,S'] > 0

compute probability P' for this branch as Prob[S,S'] * P
if P' > epsilon

create new node N' = (S',P')
add N' to the list of children of N in the DET
add N' to queue Q of nodes to process

end if
end if

end for each
end if

end while

Figure 5.4.2 Dynamic Event Tree Generation–Algorithm 1

The algorithm uses a queue (first-in, first-out behavior) to hold the nodes in the tree before they
are processed by the algorithm. It starts by creating the top node in the tree (the root) containing
the initial state of the system (usually the state in which the process variables are all in the nominal
range and all the system components are operational) and a probability equal to 1. This node is
added to the initially empty queue. Then the algorithm repeatedly goes through the steps of
removing and processing the first node in the queue. The algorithm terminates when the queue
becomes empty, or it could easily be modified to terminate when a certain number of levels in the
tree have been generated. Each node N = (S, P) extracted from the queue is processed as
follows. If S is a sink state, there is nothing more to be done. Otherwise, by consulting the
transition matrix generated by the Markov model, we find all the states S' in which the system can
evolve from state S in time)t. For each state S' we compute the probability P' of entering that
state, at the given time, and having followed the given path through the tree, by multiplying the
probability P of being in node N by the probability of going from S to S' (i.e., Prob[S, S']). If P' is
below a chosen threshold, we do not need to expand that path any further. Otherwise, we create
a new node N' = (S', P'), add it to the list of children of N in the tree, and append it to the queue to
be processed at a later time.

The basic DET generated by this algorithm can be quite large due to the many branches
emanating from most nodes. However, note that the problem complexity is not NP because the
DETs are terminated if: a) scenario time exceeds system mission time, b) controlled/monitored
variables fall outside allowed ranges (i.e. system fails), c) scenario probability falls below a user
specified number, and, d) if the system is restored to its nominal state. Also, at the cost of a little
extra complexity in the algorithm, we can group the DET paths by configuration changes. The
states at each level in the tree are grouped by common configuration of system components.
Each branch in the DET corresponds to failure of 0 or more of the system components.

5-31

5.4.1.2 Algorithm 2

The algorithm in Fig. 5.4.3 shows how we can construct this new DET. In this case, each node in
the event tree representation corresponds to a specific configuration of the system components at
a specific time. Each node contains a list of all the states in which the system could be at that
time and in the particular scenario (path) in the tree and, for each state, the probability of being in
that state at that time. All the states in a node share the same configuration of the system
components. Two nodes in the tree are linked if it is possible for the system under consideration
to go from one of the states in the first node to one of the states in the second node in the time)t.

initialize DET root node to initial state(s) and probability 1
add DET root node to queue Q of nodes to process
while Q is not empty

remove node N = <(S1,P1),…,(Sk,Pk)> from Q
initialize A: array [1..number of configurations] of nodes
for each pair (S,P) in the list of pairs in N

if S is not a sink state
for each possible state S'

if Prob[S,S'] > 0
compute probability P' for this branch as Prob[S,S'] * P
if P' > epsilon

if S' is not in the list of states in node A[Conf(S')]
add (S',P') to the list of states in node A[Conf(S')]

else
add P' to the current probability value associated with S'
 in the list of states in node A[Conf(S')]

end if
end if

end if
end for each

end if
end for each
add all the nodes in A that contain at least one pair
 to the list of children of N in the DET and to queue Q

end while

Figure 5.4.3 Dynamic Event Tree Generation–Algorithm 2

Just like Algorithm 1, Algorithm 2 employs a queue to hold the nodes in the tree before they are
processed. In addition, Algorithm 2 uses an array of nodes to keep track, at each iteration, of
which configurations have already been generated and which states in each configuration can be
reached at that point in time. It starts by creating the root node of the DET containing one or more
initial states where all the process variables are in the nominal range and all system components
are operational. If there is more than one initial state, each state is assigned a probability so that
the sum of the probabilities is 1. The root node is inserted in the initially empty queue. Just like
the first, Algorithm 2 repeatedly goes through the steps of removing and processing the first node
in the queue, and terminates when the queue becomes empty. The processing of each node,
however, requires some extra complexity. It starts by initializing an array of nodes containing one
node for each distinct configuration of system components. Then for each state, probability pair
(S, P) in the current node for which S is not a sink state, it finds all the states S' in which the
system can evolve in the time increment)t. For each state S', it computes the probability P' of
entering that state, at the given time, and having followed the given path through the tree, by
multiplying the probability P of being in state S by the probability of going from S to S' (i.e., Prob[S,

5-32

S']). If P' is below a chosen threshold, that path is ignored. Otherwise, the algorithm adds the pair
(S', P') to the node in array A corresponding to the configuration of system components in state S'
(A[Conf(S')]). If a pair with state S' is already present, it simply adds P' to the current probability
associated with S'. When all the pairs in the current node have been processed, the algorithm
adds all nodes in array A that contain at least one state, probability pair to the list of children of N
in the tree, and adds the same nodes also at the end of the queue to be processed at a later time.

5.4.2 DET Analysis of a Failure Scenario for the Benchmark System

This section describes the DET analysis of the failure scenario detailed in Section 2.5 and Section
4.3 and presents some results. Here is a summary of the assumptions made on the scenario
under consideration:

• Turbine trips

• Reactor is shutdown

• Power P(t) is generated from the decay heat

• Reactor power and steam flow rate reduce to 6.6% of 3000 MW 10 seconds after the
turbine trip

• Feedwater flow is at nominal level

• Off-site power is available

• Main Computer is failed and Backup Computer is in control

• FP fixed at minimum flow and does not fail

• MFV closed and feedwater flow is controlled by the BFV

• There are two Top Events: Low Level and High Level

There are three process variables: level, level error, and compensated level. The two system
components controlling the process are the Backup Computer (BC) and the combined BFV-BFV
controller. The BC can be in one of three distinct states (see Fig. 4.2.6):

• Operating (OK)

• Loss of inputs (LOSS/IN)

• Down (DOWN)

The combined BFV and BFV controller can be in one of five distinct states (see Fig. 4.3.1):

• Operating (OK)

• Freeze: when it recognizes that BC is down (FREEZE)

• Arbitrary output: an failure occurs inside the controller (ARB/OUT)

5-33

• 0 vdc output: the signal from controller to valve is 0.0 (ZVDC/OUT)

• Stuck: a mechanical failure of the valve occurs (STUCK)

In addition, it is necessary to include the BFV position in the model to keep track of the position at
which the BFV may be when/if it becomes stuck.

For the purpose of this analysis, the following parameters were used:

n• The water level x is partitioned into 5 intervals (all measures are expressed in feet):

n -2: x < -2.0 (Low Level)

n -1: -2.0 # x < -0.17

n 0: -0.17 # x < 0.17

n+1: 0.17 # x # 2.5

n+2: x > 2.5 (High Level)

Ln• The level error E is partitioned into 3 intervals (all measures are expressed in feet):

Ln -1: -1000.0 # E < -1.587

Ln 0: -1.587 # E < 4.203

Ln+1: 4.203 # E # 1000.0

Ln• The compensated level C is partitioned into 3 intervals (all measures are expressed in
feet):

Ln -1: -500.0 # C < -100.0

Ln 0: -100.0 # C < 100.0

Ln+1: 100.0 # C # 500.0

Bn• The BVF position S is discretized into 3 intervals (percentage open):

Bn 0: 0.0 # S < 30.0

Bn+1: 30.0 # S < 70.0

Bn+2: 70.0 # S # 100.0

• The time increment Ät used is Ät = 1 second

5-34

The number and size of the intervals to partition each process variable and the choice of the time
increment Ät are bound by constraints described in Section 4.2.2. Essentially, a finer partition
(with a larger number of smaller intervals) can yield a better approximation of the system at a cost
of extra computational resources. Furthermore, the time increment is dependent on the size of the
cells: too small a time increment may result in the CCMT (Section 4.2.4) not producing useful
results if most of the sample points and trajectories fail to leave the starting cell; too large an
increment may cause some CCMT trajectories to cross multiple setpoint boundaries. Therefore, it
is necessary to determine the partitioning scheme and the time interval by analyzing the actual
system.

The partitioning chosen for the level variable is based on the following observations:

• the LOW and HIGH points and intervals were identified in Section 4.2.1

• Section 4.2.1 also points out that it is desirable to keep the level between ± 2 inches of the
setpoint, i.e., ± 0.17 feet

• the other intervals for the level variable were added to provide a finer description of the
behavior of the variable of primary interest

The partitioning chosen for the BFV position is based on NUREG/CR-6465 [4]. The range of this
variable is naturally 0%-100%. The range for level error and compensated level were determined
experimentally through simulation of the system. The middle interval of the level error captures
the entire range of values of the BFV position variable (which is computed as a function of level
error). Finally the partitioning for the compensated level was chosen to minimize the number of
intervals while still modeling nominal, low, and high levels for this variable.

Given the partitioning of the process variables, Ät = 1 second was chosen experimentally as a
reasonable time increment relative to the size of the process variables intervals.

5-35

Figure 5.4.4 Display of Part of the Dynamic Event Tree

Figure 5.4.4 shows part of a DET generated for the system. The tool used to generate and
display DETs starts from a normal state in which all the system components are operational and
the process variables are within their nominal range. It then generates (employing a variant of
Algorithm 2 from Section 5.4.1) all possible configurations at the next time step (in this case 1
second), keeping track of all the possible states the process variables may be in at that point in
time and in that configuration of the system components.

Figure 5.4.4 shows the tool window: the left pane shows a primitive representation of the event
tree and the right pane shows the possible process states for the configuration and time step
currently selected in the left pane. Instead of showing the events between branching points (as it
is usually done when displaying event trees), the representation of the event tree in the left pane
shows the configuration of the control units at each branching point. The event(s) corresponding
to a specific branch in the tree can be deduced by comparing the configurations to the left and to
the right of the branch. For instance, if in the configuration at the left of a branch both the BFV
and the BC are operational (OK-OK) and in the configuration to the right the BC is down (OK-
DOWN), the event that has occurred along that branch must be that the BC had a problem and
took itself down. At each branching point (or node) in the event tree, the node label shows the
state of both the BFV and the BC.

The event tree in the left pane is generated on demand. The top of the tree (displayed in the
top-left corner of the left pane in Fig. 5.4.4) represents the normal configuration where all the
system components are operational (OK-OK, i.e., the ensemble BFV and BFV controller and the
BC are both operating correctly). Whenever the user clicks one of the displayed nodes (branching

5-36

points), the program generates all the possible configurations in which the system may evolve in
the given time step. For example, there are 7 such possible distinct configurations after the first
time step because from the OK-OK state the system can evolve into any of the 7 states (see Fig.
2.5.13). By repeatedly clicking and expanding the tree nodes, the user can explore any possible
scenario in the tree. For instance, the (partial) event tree shown in Fig. 5.4.4 corresponds to one
possible path (or failure scenario) leading to the level going below the LOW setpoint (dryout).

Boxes in the left pane of Fig. 5.4.4 highlight a possible failure scenario presented in detail in Table
5.4.1. The rounded box in the right pane shows the final failed state for this scenario: the value of
each process variable (i.e., level, error level, compensated level, and BFV position) and the value
of the steam flow rate (SFR) and feedwater flow rate (WFR). Note that in going from t=2 to t=3 s,

Bna minimum BFV aperture change of 40%/s (difference in the high BFV position of S =30% at t=2

Bns vs. low BFV position of S =30% at t=3 s in Table 5.4.1) occurs. While this rate of change may
be high, no inertia in the valve response was directly taken into account due to the lack of reliable
data, and also because it does not impact the ultimate outcome of the scenario. The valve inertia
in somewhat indirectly accounted for in the rate of level change which from Table 2.5.1 and Fig.
2.5.1 is 140/109.0 = 1.28 ft/s when the BFV is fully open.

Table 5.4.1 Example Failure Scenario

Time
(s)

System Configuration Process State Explanation

t = 0 BFV: OK

BC: OK

n-0.17 # x < 0.17

Ln -1.587 # E < 4.203

Ln -100.0 # C < 100.0

Bn 0.0 # S < 30.00

Both BFV and BC are in their
operational state, and all process
variables are in their nominal
range

t = 1 BFV: OK

BC: OK

n-0.17 # x < 0.17

Ln 4.203 # E # 1000.0

Ln -100.0 # C < 100.0

Bn 70.0 # S # 100.0

Level error is high, so BFV opens
more

t = 2 BFV: ARB/OUT

BC: OK

n0.17 # x < 2.5

Ln 4.203 # E # 1000.0

Ln -100.0 # C < 100.0

Bn 0.0 # S < 30.0

BFV controller fails and starts
generating arbitrary outputs to the
valve, in this case a low value.
The level is higher than the
nominal level interval.

t = 3 BFV: ARB/OUT

BC: OK

n-2.0 # x < -0.17

Ln 4.203 # E # 1000.0

Ln -100.0 # C < 100.0

Bn70.0 # S # 100.0

BFV controller is still generating
arbitrary outputs, in this case a
high value. The level is lower than
the nominal level interval..

5-37

t = 4 BFV: ARB/OUT

BC: OK

n0.17 # x < 2.5

Ln 4.203 # E # 1000.0

Ln -100.0 # C < 100.0

Bn0.0 # S < 30.0

BFV controller is still generating
arbitrary outputs, in this case a
low value. The level is higher
than the nominal level interval.

t = 5 BFV: ZVDC/OUT

BC: OK

n-2.0 # x < -0.17

Ln 4.203 # E # 1000.0

Ln -100.0 # C < 100.0

Bn 0.0 # S < 30.0

Communication between the BFV
controller and the valve is lost;
this effectively tells the valve to
close completely, and the level is
already lower than the nominal
level interval

t = 6 BFV: ZVDC/OUT

BC: OK

n-2.0 # x < -0.17

Ln4.203 # E # 1000.0

Ln-500.0 # C < -100.0

Bn0.0 # S < 30.0

The valve remains closed and the
level keeps decreasing

t = 7 BFV: ZVDC/OUT

BC: OK

nx < -2.00 (LOW)

Ln4.203 # E # 1000.0

Ln-500.0 # C < -100.0

Bn0.0 # S < 30.0

The level falls below the LOW
setpoint and the system fails

The event trees constructed for this analysis use a modified version of Algorithm 2. The CCMT
employed to determine the possible behaviors of the system starts with a set of sample points (27
in this specific case) located on a regular grid inside the process state space cell representing all

n Lnthe variables being in their nominal range, i.e., -0.17 # x < 0.17, -1.587 # E < 4.203, and

Ln-100.0 # C < 100.0. The algorithm then follows the evolution of the system through time and
through changing configurations of system components (BFV and BC) by always starting the next
cell-to-cell mapping from the locations within a cell where it landed at the previous time step. This
allows the event tree display tool shown in Fig. 5.4.4 to display not only the intervals in the state
space within which each variable is contained at any point in time for a given scenario, but also
information about the exact values of the variables. This information is displayed in the left pane
below each variable interval (the number in parentheses in Fig. 5.4.4). Note that the tool displays
also the current values of the feedwater inflow rate and of the steam outflow rate (the last column
in the left pane in Fig. 5.4.4). This allows the user to know at once whether the level is going up
(when WFR > SFR) or down (when WFR < SFR).

In addition to generating DETs with the tools described, it is also possible to use the same variant
of Algorithm 2 to compute complete DETs to a given depth. Table 5.4.2 summarizes the number
of failure scenarios exhibited by the system as a function of the depth of the tree, i.e., the length of
time for which the system is analyzed. The percentage of the total number of scenarios for a
given depth that lead the system to fail LOW, fail HIGH, and not fail is included in parentheses. 27
sample points on a regular grid within the process state space cell where each variable is in its

5-38

nominal range were used in this analysis. The number of possible scenarios grows with the
number of sample points employed.

Table 5.4.2 Number of Failure/Non-Failure Scenarios

Time (in seconds)

(Depth of DET)

Number of LOW

failure scenarios

Number of HIGH

failure scenarios

Number of scenarios

without failure

1 0 (0.0%) 0 (0.0%) 243 (100.0%)

2 0 (0.0%) 0 (0.0%) 1,242 (100.0%)

3 530 (10.8%) 0 (0.0%) 4,384 (89.2%)

4 1,480 (9.3%) 0 (0.0%) 14,439 (90.7%)

5 4,999 (10.2%) 186 (0.4%) 43,727 (89.4%)

6 14,811 (10.2%) 2,518 (1.7%) 127,292 (88.0%)

7 47,881 (11.5%) 6,531 (1.6%) 362,153 (86.9%)

8 140,644 (11.9%) 18,559 (1.6%) 1,022,695 (86.5%)

9 411,240 (12.3%) 50,259 (1.5%) 2,871,468 (86.2%)

10 1,126,498 (12.0%) 143,922 (1.5%) 8,091,530 (86.4%)

As can be seen from Table 5.4.2, there are a large number of possible scenarios. The majority of
scenarios for each DET depth fail to lead the system to failure within the chosen time limit.
However, there is still a substantial number of scenarios leading to failure. This is due in part to
the presence in the model of a state (ARB/OUT) of the system where the BFV can receive an
arbitrary signal from the controller. This is modeled by exploring scenarios for 3 different values of
the BFV position, one for each of the 3 intervals in which the BFV position has been partitioned.
Another observation is that the number of LOW failure scenarios is always much larger than the
number of HIGH failure scenarios. This is due to the existence in the model of a state
(ZVDC/OUT) in which the BFV is closed. Whenever the system enters this state, the valve is
forced to close and never reopens. Thus the system is bound to fail LOW. Finally, Table 5.4.2
shows that, given the stated initial conditions, the minimum time necessary for the system to fail
LOW is 3 seconds and the minimum time for the system to fail HIGH is 5 seconds.

Given the large number of failure scenarios, it is unrealistic to examine them directly. Also, the
user may or may not choose to use all these scenarios depending on how the system under
consideration is connected to the other plant systems. For example, if the level information for the
example DFWCS is not being used by other plant systems, then only the
hardware/software/firmware states are relevant. Then it is possible to remove exact timing
information and detailed information about the evolution of the process variables to reduce the
large number of failure scenarios to a more manageable set of sequences of component failure

5-39

events leading to a failure of the system using Algorithm 2 in Section 5.4.1.2. For the model being
considered, there are only 64 distinct sequences of component failures that are possible. Table
5.4.3 shows for each sequence and for different lengths of failure scenarios up to 10 seconds the
number of failure scenarios that follow the given sequence of component failures.

Table 5.4.3 Classification of Failure Paths

Scenario Low 3 Low 4 Low 5 Low 6 Low 7 Low 8 Low 9 Low 10 High 5 High 6 High 7 High 8 High 9 High 10

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1-2-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1-2-3-4 8 9 9 9 13 26 34 39 2 21 23 24 36 54

1-2-3-4-5 0 3 3 3 51 321 1,116 3,573 9 138 243 462 1,047 2,577

1-2-3-4-5-6 0 0 0 0 32 223 903 3,127 1 25 58 130 313 805

1-2-3-4-5-6-7 0 0 0 0 26 198 889 3,296 0 0 0 0 0 0

1-2-3-4-5-7 0 0 0 0 31 179 667 2,236 1 33 76 204 581 1,658

1-2-3-4-6 0 1 1 1 15 50 101 165 2 21 23 24 36 54

1-2-3-4-6-7 0 0 0 0 29 86 192 388 0 0 0 0 0 0

1-2-3-4-7 0 1 1 1 4 21 41 57 3 46 52 56 98 164

1-2-3-5 24 30 36 87 306 1,044 3,441 10,119 6 63 189 552 1,434 3,957

1-2-3-5-6 0 2 5 46 229 886 3,009 9,190 2 21 63 184 478 1,319

1-2-3-5-6-7 0 0 1 33 206 908 3,158 10,092 0 0 0 0 0 0

1-2-3-5-7 0 2 4 42 174 652 2,156 6,440 3 46 124 405 1,076 3,111

1-2-3-6 8 9 10 23 35 69 101 130 0 0 0 0 0 0

1-2-3-6-7 0 1 2 36 65 164 260 387 0 0 0 0 0 0

1-2-3-7 8 9 9 9 13 26 34 39 2 21 23 24 36 54

1-2-4 8 9 9 9 13 26 34 39 2 21 23 24 36 54

1-2-4-5 24 33 39 90 357 1,365 4,557 13,692 15 201 432 1,014 2,481 6,534

1-2-4-5-6 0 2 5 46 261 1,109 3,912 12,317 3 46 121 314 791 2,124

1-2-4-5-6-7 0 0 1 33 232 1,106 4,047 13,388 0 0 0 0 0 0

1-2-4-5-7 0 2 4 42 205 831 2,823 8,676 4 79 200 609 1,657 4,769

1-2-4-6 8 10 11 24 50 119 202 295 2 21 23 24 36 54

1-2-4-6-7 0 1 2 36 94 250 452 775 0 0 0 0 0 0

1-2-4-7 8 10 10 10 17 47 75 96 5 67 75 80 134 218

1-2-5 24 63 225 624 1,962 5,466 15,750 42,654 6 63 273 939 2,670 7,908

1-2-5-6 8 31 151 476 1,602 4,657 13,614 37,724 2 21 91 313 890 2,636

1-2-5-6-7 0 10 96 381 1,469 4,557 13,693 39,041 0 0 0 0 0 0

1-2-5-7 8 23 118 355 1,158 3,263 9,455 25,920 5 67 249 817 2,296 6,859

1-2-6 8 10 27 38 65 100 137 151 0 0 0 0 0 0

1-2-6-7 8 11 54 95 180 292 422 470 0 0 0 0 0 0

1-2-7 8 9 9 9 13 26 34 39 2 21 23 24 36 54

1-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1-3-4 8 9 9 9 13 26 34 39 2 21 23 24 36 54

1-3-4-5 24 33 39 90 357 1,365 4,557 13,692 15 201 432 1,014 2,481 6,534

1-3-4-5-6 0 2 5 46 261 1,109 3,912 12,317 3 46 121 314 791 2,124

1-3-4-5-6-7 0 0 1 33 232 1,106 4,047 13,388 0 0 0 0 0 0

1-3-4-5-7 0 2 4 42 205 831 2,823 8,676 4 79 200 609 1,657 4,769

1-3-4-6 8 10 11 24 50 119 202 295 2 21 23 24 36 54

1-3-4-6-7 0 1 2 36 94 250 452 775 0 0 0 0 0 0

5-40

1-3-4-7 8 10 10 10 17 47 75 96 5 67 75 80 134 218

1-3-5 24 63 225 624 1,962 5,466 15,750 42,654 6 63 273 939 2,670 7,908

1-3-5-6 8 31 151 476 1,602 4,657 13,614 37,724 2 21 91 313 890 2,636

1-3-5-6-7 0 10 96 381 1,469 4,557 13,693 39,041 0 0 0 0 0 0

1-3-5-7 8 23 118 355 1,158 3,263 9,455 25,920 5 67 249 817 2,296 6,859

1-3-6 8 10 27 38 65 100 137 151 0 0 0 0 0 0

1-3-6-7 8 11 54 95 180 292 422 470 0 0 0 0 0 0

1-3-7 8 9 9 9 13 26 34 39 2 21 23 24 36 54

1-4 8 9 9 9 13 26 34 39 2 21 23 24 36 54

1-4-5 48 96 264 714 2,319 6,831 20,307 56,346 21 264 705 1,953 5,151 14,44 2

1-4-5-6 8 33 156 522 1,863 5,766 17,526 50,041 5 67 212 627 1,681 4,760

1-4-5-6-7 0 10 97 414 1,701 5,663 17,740 52,429 0 0 0 0 0 0

1-4-5-7 8 25 122 397 1,363 4,094 12,278 34,596 9 146 449 1,426 3,953 11,62 8

1-4-6 16 20 38 62 115 219 339 446 2 21 23 24 36 54

1-4-6-7 8 12 56 131 274 542 874 1,245 0 0 0 0 0 0

1-4-7 16 19 19 19 30 73 109 135 7 88 98 104 170 272

1-5 42 222 783 2,310 7,158 20,103 57,354 148,269 6 90 456 1,716 5,241 16,04 7

1-5-6 24 162 637 1,949 6,055 17,100 48,680 128,251 2 30 152 572 1,747 5,349

1-5-6-7 10 114 551 1,821 5,798 16,558 47,290 126,897 0 0 0 0 0 0

1-5-7 24 129 467 1,380 4,237 11,829 33,505 87,206 7 121 496 1,708 5,019 15,08 9

1-6 14 32 54 67 93 134 163 180 0 0 0 0 0 0

1-6-7 24 73 134 181 264 399 491 547 0 0 0 0 0 0

1-7 8 9 9 9 13 26 34 39 2 21 23 24 36 54

Total 530 1,480 4,999 14,811 47,881 140,644 411,240 1,126,498 186 2,518 6,531 18,559 50,259 143,922

For instance, let us consider LOW failure scenarios of length 10 seconds. In Table 5.4.2, it was
stated that there are 1,126,498 such scenarios. The column labeled “Low 10” of Table 5.4.3
shows how many of these scenarios follow each possible sequence of component failures. In
particular, the most common sequence is “1-5” (148,269 different scenarios!) . This means that
there are 148,269 LOW failure scenarios that result simply from the system going through
configurations 1 and 5. Configuration 1 refers to the state in which both the BFV and the BC are
operating normally, and it is the initial configuration in all scenarios analyzed. Configuration 5 is
the one where the BFV controller has failed and it is essentially sending arbitrary signals to the
valve.

As can be seen from Table 5.4.3, there are 64 possible distinct sequences of system
configurations that can occur. Of these, 4 sequences (“1”, “1-2”, “1-2-3”, and “1-3”, identified in
bold in Table 5.4.3) do not result in the system failing (either HIGH or LOW) within the 10 second
time interval considered in the analysis. The fact that the system does not fail when everything
remains operational (degenerate sequence “1” in Table 5.4.3) is consistent with our expectations:
as long as the controller is functional, the system behaves properly. The fact that the system does
not fail within 10 seconds when events follow the other three sequences is due to the fact that, in
the model (see Fig. 2.5.13), States 2 and 3 do not have self-loops, i.e., they are transitory:
whenever the system enters either of these states, it is guaranteed to abandon them at the next
time step. Therefore, for sequences that terminate in State 2 or 3, the system must have been in
State 1 (and operational) up until the last time step. It is conceivable that at some point in time,
the system could fail (HIGH or LOW) within one time step after having transitioned from State 1 to

5-41

States 2 or 3. But this seems unlikely, and, as noted, it does not happen within the time interval
considered here.

Of the remaining 60 sequences of system configurations that can occur, 40 can result in the
system failing HIGH or LOW depending on the exact timing of the events, and 20 can only result
in the system failing LOW. The 20 sequences that cannot result in a HIGH failure (identified in
italics in Table 5.4.3) have all one thing in common: they represent scenarios in which State 6
(ZVDC/OUT) is reached when the level is still below the high setpoint. If that happens, the system
cannot fail high because the BFV valve is closed entirely and the level immediately starts to go
down. So all the sequences containing State 6 cannot lead to a HIGH failure, except for
sequences that end with State 6 by reaching that configuration once the level has already risen
above the high setpoint. On the other hand, any sequence where State 6 (ZVDC/OUT) is reached
while the level is below the high setpoint is bound to result in the system failing LOW exactly
because the BFV valve is closed entirely.

The 40 sequences of system configurations that do not include State 6 (except possibly as the last
configuration, reached once the system has already failed) can result in the system failing HIGH or
LOW depending on the exact timing and BFV position at the time of failure. If the controller fails in
any way, the valve ends up either being stuck at its old value (states OK-LOSS/IN, OK-DOWN,
FREEZE, and STUCK) or it can take on arbitrary values (state ARB/OUT). In either case, if the
resulting water inflow is greater than the steam outflow, the system will fail HIGH, and if the water
inflow is lower than the steam outflow the system will fail LOW (except for the case where the
steam outflow manages to go below the water inflow before the system fails LOW–in that case,
again, the system will end up failing HIGH). In principle, it could be possible for the system to hit
State 5 (ARB/OUT) and go on without failure for an arbitrary amount of time. But this is unlikely
and would have to rely on the arbitrary output produced by the controller actually working to
control the level successfully, a highly unlikely event. In any case, the analysis summarized in
Table 5.4.3 clearly shows that both HIGH and LOW failures can occur whenever the system fails
in State 5 (ARB/OUT).

The sample analysis presented in this section shows that it is possible to construct DETs from a
Markov model of the system. The analysis can also produce qualitative information such as failure
paths with exact timing information or ordered sequences of failure events where time information
has been removed. Given appropriate failure data for the system components, the analysis of the
system based on a Markov model can generate quantitative information such as probabilities for
the various scenarios.

5.4.3 DET Incorporation into an Existing PRA

The DET generated from the Markov model can be inserted into a PRA event tree by replacing the
appropriate branch in the existing tree.

5-42

5.4.4 Outstanding Issues

The main issue is that DETs are generated with exact timing information attached to all paths and
nodes, but existing PRA tools such SAPHIRE do not support dynamic methodologies and are not
equipped to deal with timing information beyond simple ordering of events. One possible
approach to deal with this problem is to time-tag the events in the DET. The DET can then be
incorporated into the existing PRA using standard tools (see Chapter 6), and the necessary
analysis can be run. Because the PRA tool is unaware of timing and or time-tagging, the prime
implicants resulting from the analysis may need to be post-processed to eliminate outputs that
violate the timing constraints.

5.5 Comparison of DFM and Markov/CCMT Methodology Results to be Incorporated
into the Example Plant PRA

In this section we compare the results of the analyses of the example initiating event (Section 2.5)
using the DFM (Section 3.5) and the Markov/CCMT methodology (Section 5.4) for incorporation
into SAPHIRE.

5.5.1 Example Initiating Event

For convenience, here is a summary of the assumptions made on the scenario analyzed in
Sections 3.5 and 5.4.

• Turbine trips

• Reactor is shutdown

• Power P(t) is generated from the decay heat

• Reactor power and steam flow rate reduce to 6.6% of 3000 MW 10 seconds after the
turbine trip

• Feedwater flow is at nominal level

• Off-site power is available

• Main Computer is failed and Backup Computer is in control

• FP fixed at minimum flow and does not fail

• MFV closed and feedwater flow is controlled by the BFV

• There are two Top Events: Low Level and High Level

There are three process variables: level, level error, and compensated level. The two system
components controlling the process are the Backup Computer (BC) and the combined BFV-BFV
controller. The BC can be in one of three distinct states (see Fig. 2.5.13):

5-43

• Operating

• Loss of inputs

• Down

The combined BFV and BFV controller can be in one of five distinct states (see Fig. 2.5.13):

• Operating

• Freeze: when it recognizes that BC is down

• Arbitrary output: an failure occurs inside the controller

• 0 vdc output: the signal from controller to valve is 0.0

• Stuck: a mechanical failure of the valve occurs

In addition, it is necessary to include the BFV position in the model to keep track of the position at
which the BFV may be when/if it becomes stuck.

5.5.2 DFM Analysis Results

The DFM methodology was used for two separate analyses: a deductive (or backward) analysis
and an inductive (or forward) analysis.

The deductive analysis resulted in two sets of prime implicants that could cause one of the two
Top Events (level fails high or low). Examination of the prime implicants showed that for the
system and scenario under consideration, any failure of the backup computer or of the combined
BFV-BFV controller could result in failure of the system. In particular, any system failure except 0
vdc output of the combined BFV-BFV controller could result in a high level failure if the failure
occurs when the feed flow is greater than the steam flow, and any system failure could result in a
low level failure if the failure occurs when the feed flow is smaller than the steam flow.

The inductive analysis showed how the DFM model can be used to investigate the behavior of the
system once a certain combination of initial component states has been defined. The two sample
sequences generated simply confirmed the results predicted by the deductive analysis, i.e, that if
the system starts in a state where BFV is stuck, the system could fail high if the position of the
BFV is such that the feed flow is lower than the steam flow, and could fail low if the position of the
BFV is such that the feed flow is greater than the steam flow.

5-44

5.5.3 Markov/CCMT Analysis Results

The Markov/CCMT methodology was used to perform a forward analysis of the example initiating
event. A Markov/CCMT model of the system was employed to generate all possible failure
scenarios within 10 time steps (10 second) from the initiating event. This analysis revealed the
large number of ways in which the system can evolve leading to failure (level high or low). It
showed all the sequences of component failure events that can lead to each kind of failure. It also
showed that any failure of a system component (backup computer or combined BFV-BFV
controller) can result in failure of the whole system and that the exact timing of the component
failure, in addition to the kind of failure, is what determines whether the overall system will fail high
or low.

5.5.4 Comparison

Although the two methodologies currently present the results of their respective analyses in
different forms so that a direct comparison cannot be performed, they clearly agree on the high
level, summary assessment of the system failure modes. From both analyses it follows that the
example benchmark system can fail as a result of any system component failure. The DFM
results emphasize the relative magnitude of feed flow vs. steam flow at the time of the system
component failure as the discriminant to decide what kind of failure will occur (high or low); the
Markov/CCMT analysis emphasizes that exact timing of the system component failure events will
determine the kind of system failure.

These two characterizations of the results coincide with each other in all cases except for two
scenarios:

1. A system component can fail when the feed flow is lower than the steam flow, but before
the system can fail low, the steam flow (which decreases with time) falls below the now
constant feed flow resulting in the system actually failing high.

2. The BFV controller fails in the arbitrary output state when the feed flow is lower than the
steam flow, but because of the potentially erratic nature of the BFV controller signal, the
feed flow becomes greater than the steam flow before the system fails low and the system
ends up failing high.

Neither of these two scenarios is expressed explicitly by the prime implicants resulting from the
DFM analysis. However, the Markov/CCMT model can generate failure scenarios that capture
these behaviors of the system. The reason why these two scenarios were not identified explicitly
by DFM is that the deductive analysis looks for the shortest path, in terms of time steps, that leads
to the Top Event. It should be pointed out that the two scenarios of interest would eventually
evolve into the conditions expressed in the prime implicants.

5-45

It is worthwhile pointing out that there are some differences in the modeling of the initiating event
employed by the analyses in the two approaches.

• The DFM model included the steam flow as a modeled, independent variable. This allowed
for “time compression”, i.e., a time increment in the DFM analysis can represent an
arbitrary large time interval that is determined by the time needed for the system to
transition from one level interval to the next. The Markov/CCMT model, instead, used “real
time” and considered steam flow a dependent variable determined by Eq. (2.5.8) as a
function of time. Time compression allows DFM to analyze the system for a potentially
longer time interval, while the number of possible scenarios limits the depth of the DET
generated by the Markov/CCMT approach and therefore the length of the time interval that
can be explored with this model. However, time compression also eliminates the details of
the many scenarios that are possible and thus may remove potentially useful information.

• The DFM model assumed that all failure states of the BC and combined BFV-BFV
controller are sink states for these components, while Markov/CCMT used the state
transition diagram in Fig. 2.5.13. This caused some discrepancies in the results. For
example, DFM generated prime implicants state that the BC experiencing loss of input or
going down can result in failure. Markov/CCMT, however, only generated failure paths that
must include at least one more configuration change (failure) after the BC experiences loss
of input or goes down. That is because in the model described by Fig. 2.5.13, the BC
states for loss of input and down are transitory states with no self-loop and the model
forces the system to transition to some other state at the very next time step. This explains
why failure paths such as [BC and BFV both OK]–>[BC down] are not included in the
Markov/CCMT analysis results, but are captured by the DFM analysis prime implicants.

In conclusion, the DFM backward analysis produces a more concise description of the high-level
failure behavior of the system. For certain systems, such description may be entirely satisfactory
and more manageable than the much more detailed results produced by the Markov/CCMT
approach forward analysis. In those cases, the DFM may be the best choice. For other systems
or for particular initiating events it may be necessary to obtain detailed information about all
possible failure paths and exact timing of the events. In such cases, one may need to appeal to
the full power of the Markov/CCMT approach.

6-1

6. INTERFACING WITH SAPHIRE

As mentioned in Section 1.2.3, one requirement for a methodology for digital I&C system reliability
model construction is that “The methodology must be able to model the digital I&C system
portions of accident scenarios to such a level of detail and completeness that non-digital I&C
system portions of the scenario can be properly analyzed and practical decisions can be
formulated and analyzed” (Requirement 10). From a practical viewpoint, this requirement implies
that it should be possible to incorporate the reliability model into an existing PRA.

This chapter illustrates the mechanics of incorporating initiating events of interest for the digitial
I&C system under consideration to the existing PRA model. If there are dependencies between
the elements of these events and the rest of the plant PRA model, such dependencies will be
automatically resolved though the use of a similar naming convention for basic events (see
Section 6.3) and Boolean algebra rules by the PRA quantification tool used. If the dynamic control
system has no input from other parts of the PRA and has not output to other parts of the PRA,
then the control system can be treated as a standalone component and there is no need to insert
the dynamic reliability model into the PRA.

The plant model chosen in this report to illustrate how the Markov and DFM model results can be
incorporated into an existing plant PRA is a PRA model for a PWR from NUREG-1150 [124]. This
PRA has been modeled using the SAPHIRE code [10]. The SAPHIRE code (or the Systems
Analysis Programs for Hands-on Integrated Reliability Evaluations), has been developed by the
U.S. NRC and the Idaho National Laboratory (INL). SAPHIRE utilizes both graphical and textual
interfaces to model PRAs using the ET/ FT method. The code was first developed by INL in the
1980's in order to create a software PRA code for personal computers. The first version was
known as the Integrated Risk and Reliability Analysis System, or IRRAS code [142]. Later,
several modules were written to complement IRRAS. These modules include Models And Results
Database (MAR-D), System Analysis and Risk Assessment (SARA), and Fault Tree, Event Tree,
and Piping and Instrumentation Diagram (FEP). These modules were later all integrated into a
single package, forming the SAPHIRE code. Several revisions have been performed on
SAPHIRE, with the latest release being Version 7. The work detailed in this section has been
performed using SAPHIRE, Version 7.26S [7]. While the examples given in this chapter are
specific to SAPHIRE, other PRA quantification tools (e.g. such as CAFTA [8] and RISKMAN [9])
have similar graphical and textual interfaces which would allow input in an analogous fashion.

6.1 Description of SAPHIRE

The SAPHIRE code possesses several capabilities. The code allows a user to enter initiating
events, such as a loss of coolant accident, and then model the plant’s (or other facility or system’s)
response to these events, calculating a core damage frequency using the ET/FT method.
SAPHIRE uses both graphical and logic editors to construct and modify fault trees. After creating
a new fault tree with either the graphical or logical method, SAPHIRE will construct this tree using
the other method. Thus a tree may be viewed and edited in either graphical or logical format,

 Fussell-Vessely Importance gives the contribution of a basic event to the minimum cut8

set frequency.

 Risk Increase Ratio gives an indication of how much the minium cut set frequency9

would increase if the basic event were assumed to occur (probability = 1.0).

 Risk Reduction Interval gives an indication of how much the minium cut set frequency10

would decrease if the basic event were assumed to not occur (probability = 0.0).

 The Birnbaum Method gives an indication of the sensitivity of the mimimum cut set11

frequency to changes in event probability.

6-2

irrespective of the method used to model the tree initially. Fault trees may be solved individually,
yielding the minimal cut sets for the specified fault tree. The minimum cut sets represent the
minimum number of failures that must occur in order for a fault tree top event to occur. In order to
quantify an event tree, SAPHIRE must perform a linkage operation in order to connect the event
tree to each specified fault tree. When performing the linkage operation, SAPHIRE will internally
construct a large fault tree based on the event trees and fault trees used. This fault tree will then
be solved to generate the minimum cut sets for each end state in the event tree.

In order to quantify the minimum cut sets, the user must supply failure data for each basic event in
the model. Basic events represent events such as motors failing to start or valves failing to open
or close as needed. SAPHIRE allows for multiple calculation types to be entered, based on
available data (simple probability, mean failure rate, repair rate, etc.). Regardless of what
information is entered, SAPHIRE will then calculate a simple probability for the event, and use this
number for all other calculations (cut set and end state frequencies). Using the entered failure
data, SAPHIRE can then generate and quantify minimum cut sets for fault trees and event tree
end states. Quantification will give a failure frequency for a fault tree top event or event tree end
state.

Once minimum cut sets have been quantified, additional analyses may be performed using
SAPHIRE. These analyses include uncertainty, importance, and sensitivity analysis. An
uncertainty analysis allows Monte Carlo and Latin Hypercube methods to be performed, giving a
cumulative distribution or probability density curve for the cut set frequency. This analysis is
dependent on failure distributions entered by the user for each basic event. Importance analysis
uses methodologies including Fussell-Vessley , Risk Increase Ratio , Risk Reduction Interval ,8 9 10

and Birnbaum Method . Importance analysis gives the contribution from each event to the overall11

frequency of the cut set. Finally, a sensitivity analysis may be performed, showing how sensitive a
cut set frequency is to changes in a specific basic event [7].

One final feature of SAPHIRE is the ability to import and export virtually any piece of information
into or from SAPHIRE using the MAR-D (Models And Results Database) feature. Importable/
exportable information includes fault tree and event tree logic and graphics, basic event
information, and cut sets. This feature will enable event trees generated from other sources,
such as the DFM and Markov Model methods described previously in Sections 5.3 and 5.4,
respectively, to be imported into an existing PRA in SAPHIRE. This feature can also be used to
extract cut set information for other uses. The MARD-D window is shown below as Fig. 6.1.1.

6-3

Figure 6.1.1 SAPHIRE MAR-D window

6.2 Model Input Format

As discussed in Section 5.2, output from other models can be entered into SAPHIRE using the
MAR-D feature. To reiterate, a file must be created as a text file using a specific format. The file
extension will vary based on the type of information to be entered into SAPHIRE. Event tree logic
or graphical information is entered using the extension .ETL or .ETG, respectively. To enter
fault tree logic information, the extension .FTL is used. The .FTG extension is used to enter fault
tree graphical information.

Although the methodologies described in Sections 5.3 and 5.4 result in dynamic event trees,
these trees represent a series of AND events, which may be modeled as fault trees.
Furthermore, the format for importing fault tree logical information is quite simple, and fault trees
may also be easily connected to the existing model through appropriate placement of the model
top event. By using the sample fault tree logic format given in Section 5.2 and applying it to an
example failure sequence for the digital feedwater controller (recall the sequence presented in
Table 5.4.1), a text file (using a .FTL extension) can be created to import the model directly into
SAPHIRE:

BENCHMARK-DEMO, EXAMPLE-D0 =

EXAMPLE-D0 AND /BFV-FAILED-T0 /BC-LOSS-OUT-T0

 CONT /BFV-FAILED-T1 /BC-LOSS-OUT-T1

6-4

 CONT BFV-FAILED-T2 /BC-LOSS-OUT-T2

 CONT BFV-FAILED-T3 /BC-LOSS-OUT-T3

 CONT BFV-FAILED-T4 /BC-LOSS-OUT-T4

 CONT BFV-STUCKCLOSED-T5 /BC-LOSS-OUT-T5

 CONT BFV-STUCKCLOSED-T6 /BC-LOSS-OUT-T6

 CONT BFV-STUCKCLOSED-T7 /BC-LOSS-OUT-T7

As stated in Section 5.2, BENCHMARK-DEMO is the project database name, which is arbitrary
when importing a new file. The model name, DET-D0 in this case, should match the first name
given on the second line, which represents the top event of the fault tree. In this example,
‘CONT’ is used to break up a long sequence of daughter events. Furthermore, a slash (‘/’) is
used to identify complement events, i.e., basic events which must not occur in order for the given
sequence to occur. Also note that in this example, the basic events are all time-tagged.

Special recovery rules will need to be written in order to relate these basic events with any non-
time-tagged events of the same components already present in the PRA. By using the input
format described above, the example failure sequence was successfully entered into SAPHIRE,
which then created a graphical representation of the tree, as shown below in Fig. 6.2.1.

Figure 6.2.1 A Sample Fault Tree Imported into SAPHIRE

The example described above may be expanded to incorporate multiple failure pathways (see
Fig. 5.4.4 for some additional failure pathways). To do this, the top event should be replaced as

6-5

an OR gate, since any one pathway is enough to lead to a failure of the overall system. Each
failure pathway may then be added, following the format described in Section 5.2. While this
format works well for small trees, special care must be taken with larger trees, such as those
generated through the Markov model approach (discussed in Section 5.4). Such files may
contain hundreds of daughters per gate, and will exceed the limits of SAPHIRE’s MAR-D format.
If the top event (or any other gate) is to have over 50 daughters, it is recommended to break
them up using transfer gates. For example, consider the fault tree with 100 daughters, described
below:

MODEL1, EXAMPLE1 =

EXAMPLE1 OR EVENT1 EVENT2 EVENT3 EVENT99 EVENT100

SAPHIRE would be unable to read in all of the daughters, resulting in an incorrect fault tree being
imported into the database. By utilizing transfer gates, this fault tree may instead be broken
down and imported into SAPHIRE by using multiple files:

MODEL1, EXAMPLE1 =

EXAMPLE1 OR EX-TRAN-A EX-TRAN-B

EX-TRAN-A TRAN

EX-TRAN-B TRAN

MODEL1, EX-TRAN-A =

EX-TRAN-A OR EVENT1 EVENT2 EVENT3 EVENT49 EVENT50

MODEL1, EX-TRAN-B =

EX-TRAN-B OR EVENT51 EVENT52 EVENT53 EVENT99 EVENT100

Importing these three files will result in the correct logic appearing in the SAPHIRE database.
Fault trees with over 9000 gates and events per file have been successfully loaded into SAPHIRE
projects using the MAR-D tool.

6.3 Integrating the Model to the Plant PRA

Once the fault tree (representative of the event trees generated in Section 5.3) has been
imported into the PRA, it must be “connected” to the rest of the model. This may be as simple as
inserting the top event of the model into the appropriate place in the PRA. It is up to the user to
have sufficient understanding of the system to know where the new model fits into the overall
system. Care must also be taken to ensure that the newly imported model does not accidentally
include names of existing basic events, unless this is explicitly desired. Improperly named events
could cause incorrect cut sets to be generated. On the other hand, some events in the new

6-6

model may reflect equipment or other events in the plant PRA that are also used by the new
model. In this case, it is necessary to ensure that the basic event names used in the new model
are exactly the same as those in the old PRA to ensure that the model is appropriately integrated
with the PRA.

Figure 6.3.1, below, shows the newly imported DFWCS model appended to an existing fault tree
in the model PRA. This figure is identical to Fig. 5.2.5 with the exception of a transfer gate linking
to the benchmark DFWCS. As has been mentioned in Section 5.2, two motor-operated valves
(MOV-151-E and MOV-151-F) have been assumed to be the same as the MFV and the BFV
present in the DFWCS model for the purpose of this proof-of-concept study. In an actual PWR,
the AFW control system would be modeled. In Fig. 5.2.5, the DFWCS is actively in control of
steam generator A, but SGs B and C are left under analog control. Again, this is done for
demonstration purposes due to available data for both the DFWCS (a one SG system) and
available PRA models (a 3 SG system). Through the careful naming convention, all components
assumed to be identical in both the existing PRA model and the imported DFWCS will be
recognized as such by the new model.

 Figure 6.3.1: Appended Fault Tree to Include Imported DFWCS

In coupling quantitative information regarding plant dynamics to a qualitative event in PRA would
be to branch out the qualitative event in terms of the conditionals present in the dynamic analysis.
For example, the trajectory bifurcation in Fig. 2.5.7 could be possibly represented as a
conventional 2-branch ET, with the branches conditional upon the timing of BFV failure, as shown
in Figure 6.3.2, below. If the level location is not known, a partitioning similar to that given in Fig.

6-7

4.3.1 can be used to represent the level and branchings similar to Fig. 6.3.2 can be constructed
for the other level intervals. Note that the timing of the branches is represented with respect to
the initiating event. Also, note that the branches are defined in such a way so as to preserve the
structure of the conventional ET and the bi-valued logic of the Boolean algebra used in the
conventional PRA tools, as opposed to defining three branches originating from the initiating
event (i.e. BFV does not fail, BFV fails stuck at t=43 s, BFV fails stuck at t=44 s).

Figure 6.3.2 Incorporation of the trajectory bifurcation
in Fig. 2.5.7 into a conventional PRA. Level Normal

corresponds to -0.17<x<0.17 ft (see Fig. 4.3.1)

With the model appropriately placed in the plant PRA, minimum cut sets may then be generated
as normal in SAPHIRE. However, note that, because some timing or other information pertaining
to the dynamic model may be present, the term implicants may be more accurate in describing
the output cut sets. Since SAPHIRE would generate the cut sets without regard to the timing
information present in the elements of the cut sets and timing inconsistencies may be present in
the implicant. In that respect, it may be desirable to export these implicants for post processing
using other software or tools. The export can be performed simply by using the MAR-D feature of
SAPHIRE as follows: Select the MAR-D feature under Utilities, and extract the desired fault tree,
end state, or sequence cut sets to be exported. As with other files associated with the MAR-D
feature, this process will create a text file with a .FTC extension (.ESC for event tree end state cut
sets, or .SQC for sequence cut sets). The timing inconsistencies can be removed by searching
the text file with regard to the impossible changes in the process variables and/or
hardware/software/firmware states. For example, if BFV state is ZVDC/OUT at a given time step
(i.e. 0 vdc out, see Section 5.4.2) then it cannot be OK in the next time step by Fig. 4.2.8. Since
such impossible change information is contained in the state transition matrix of the
Markov/CCMT methodology (e.g. Fig. 4.3.2) or the decision tables of DFM (e.g. Table 3.5.13 and

6-8

3.5.14) , the search process can be mechanized. A similar search process may be needed to
reduce the implicants to prime implicants. It should be noted that the generated minimum cut
sets/prime implicants will not be quantified unless failure data for all basic events are entered into
SAPHIRE. However, quantification at this stage may not be desired if the prime implicants
require post-processing. It is also possible to process the prime implicants and re-import them
back into SAPHIRE as cut sets, and then quantify them, using appropriate failure data.

7-1

7. UNCERTAINTY QUANTIFICATION

Uncertainties in PRA are classified either epistemic or aleatory [143]. Aleatory uncertainties are
uncertainties associated with the stochasticity of events. Epistemic uncertainties are those
originating from the imprecise knowledge or modeling of phenomena under consideration.
Aleatory uncertainties cannot be reduced through experimentation while epistemic uncertainties
can. It is often difficult to distinguish between these two types of uncertainties. Within the
context of static ET/FT approach to PRA, the probabilities associated with the branches on the
ETs (which depend on failure rates or failure-per-demand) have been usually considered as
originating from aleatory uncertainties since failure rates reflect the stochasticity in plant
component behavior and the uncertainty in the sequencing of branch points or the tree itself has
been regarded as epistemic [144, 145]. However, some works regard uncertainties in failure
rates as epistemic [146], since: a) they are parameters of the ET/FT model, and, b) the
uncertainty on the failure rates can be reduced by experimentation. According to the latter
interpretation [146], the other two types of epistemic uncertainties are the model and
completeness uncertainties. Model uncertainty originates from competing models, each of which
produces a different approximation of the same reality. Completeness uncertainty represents the
uncertainty due to the portion of risk that is not explicitly included in the PRA (e.g., safety culture
and organizational behavior) and risks that have not been identified.

For the PRA of digital I&C systems, the distinction between aleatory and epistemic uncertainties
is more difficult. For example, in determining the coverage parameters using fault injection
(Section 2.4.3), the uncertainty of the coverage parameters can be regarded as epistemic within
the interpretation of [146] since:

• a Markov model is used to select the injection points (Section 2.4.5) which may not truly
represent the actual operation of the benchmark DFWCS (modeling uncertainty),

• the uncertainty of the coverage parameters can be reduced by increasing the number
injections (parametric uncertainty), and,

• the faults injected may not represent all the conditions that may be experienced in actual
operation (completeness uncertainty).

On the other hand, the failure rates obtained from the coverage parameters involve using
operational plant data or data from data bases (Section 2.4.4) that will at least be affected by the
stochasticity in the phenomena leading to hardware failure and, in that respect, will have an
aleatory component.

Whether regarded as aleatory or epistemic, common measure of uncertainty is probability and
“...probability is fundamentally the same concept regardless of whether it appears in the model of
the world or in the subjective distributions for the parameters” [147]. That is why this report will
not attempt to classify uncertainties associated with the methods described in Sections 2 through
5 as aleatory or epistemic, but delineate them and discuss how they may be addressed.

For both the DFM or Markov/CCMT methodology, a modeling uncertainty occurs in the
representation of the digital I&C system as a finite state machine. This process requires

7-2

partitioning the continuous variables such as temperature, pressure, valve aperture and pump
speed into mutually exclusive magnitude intervals (cells) and the abstraction of interactions
between components, as well as discretizing time. Both the DFM and Markov/CCMT
methodology represent the system dynamics as mappings of these cells onto each other in
discrete time. In DFM, the mapping is described through decision tables (Section 3.5). The
Markov/CCMT methodology describes the mapping through the cell-to-cell-transition probabilities
(Section 4.2.4). In that respect, the partitioning has to be such that it is representative of the
point(s) selected in the cell to define the mapping. To define the mapping, the DFM uses one or
more rows in a decision table to determine the outputs corresponding to the same combination of
inputs (Section 3.5.1). However, unlike the Markov/CCMT method, probabilities are not assigned
for these multiple outputs. The Markov/CCMT method uses multiple departure point to
accomplish the same objective and assigns probabilities for the arrival points to be contained
within a given cell (Section 4.2.4 and 4.3.4). For both the DFM and Markov/CCMT method a
misrepresentative partitioning may occur when the setpoints and/or Top Event boundaries (see
Section 4.2.1 and 4.3.1) do not fall on the boundaries of the cells but on the inside. If the
setpoints fall within the cell, then parts of the cells may be representing different dynamics and
subsequently the mapping may not reflect the correct behavior of the system. If the Top Event
boundaries fall within the cell, then the mapping may incorrectly indicate safe operation when it
should indicate failure (or vice versa). Also, if the cells are too large with respect to the time
discretization chosen, the system may never leave the cell within the mapping time step (i.e. t in
Section 3.5 and Ät in Section 4). In most cases, the impact of the modeling uncertainties of this
nature on the PRA can be investigated by progressively refining the time-space partitioning until
the predicted system failure characteristics (e.g. Top Event pdfs or Cdfs) do not change with
further refinement, at the expense of increased computational demand. In cases where the
system dynamics lead to non-compact trajectories in its state space [148], a more effective way
for the Markov/CCMT methodology would be to choose the departure points from a cell as arrival
points into the cell in the determination of cell-to-cell transition probabilities (Section 4.2.4).

Regarding the abstraction of interactions between components, the communication (or signaling)
links between directly connected components are generally modeled as "up" or "down". However,
even this simple classification may be hard to determine in actual operation. As an example,
consider a digital communication link between the computer and the BFV controller as shown in
Fig. 2.1.2. If the encoding scheme used on the digital connection is uni-polar encoding (where, as
an example, logic "1" is represented by a non-zero voltage and logic "0" by zero voltage), a
continuous level of zero volts may be either due to a failure on the driver side or a long sequence
of zeros. An analog connection, such as the connection between the sensor and the computer in
the same figure, suffers from similar problems. Assume that a feasible range of voltage values on
the analog line is between zero and positive five volts. If the received voltage is zero over a long
period of time, it is not possible to classify this as a failure or an actual reading. The detection of
failures requires the usage of more advanced solutions, such as adopting return-to-zero encoding
for digital or using a valid range of voltages excluding zero volts in the analog connections.
Without the knowledge of these details, assumptions about the detectability of failures remain a
source of uncertainty. This problem is further exacerbated by the use of communication
protocols. Modeling of protocols is a sizable problem in itself. Their incorporation into the
reliability modeling can only be done with simplifications hiding numerous details, which
contributes to the modeling uncertainty. Similar cases are also observed for the modeling of the
computers and other decision points with non-trivial operation. In such devices, critical and
well-defined states of operation are explicitly modeled and accounted for in computations. All

7-3

other modes of operation, including unforeseen behavior of the hardware and the software, are
represented by a common state. In Fig. 2.3.1, the state "E - Arbitrary Output" accounts for all
operation modes not accounted for by the other states. Hence, any failure or unexpected
operation of the computer, be it benign or disastrous, is represented by this state. Similar
arguments can be made about time discretization. Section 2.2. describes the MC and BC waiting
for a fixed but unspecified period of time to inform the MFV, BFV and FP controllers when a
sensor goes down. This was translated into a single-state waiting period in the state-based
model. If longer periods were specified/desired, then more states would be needed to represent
the period length (i.e., 2 states for 2 time steps). For the Markov/CCMT methodology, it is
necessary to create and use a computer program for the determination of the cell-to-cell-
transition probabilities. As such, many issues of the techniques for solving the resulting systems
of equations may include numerical precision issues, which can lead to wrong predictions by the
model as demonstrated in Section 2.5. Inevitably, time-state discretization increases the
uncertainty of the system model. It is worth noting that accounting for all details results in an
extremely high number of states and may render the PRA impractical. Therefore, modeling and
abstractions must achieve a good balance for realistic representation.

The discussion above on modeling uncertainties assumes that the description of system
dynamics that goes as input to both the DFM and Markov/CCMT methodology (simulator) is
correct. In practical applications, almost all simulators will contain modeling uncertainties
themselves. Both the DFM and Markov/CCMT methodology implicitly account for such
uncertainties through representation of probabilistic system dynamics in a discretized state space
whose cells can be chosen as bounding covers for the uncertainties.

Once the prime implicants are obtained (Section 5) and been imported into SAPHIRE (Section
6), SAPHIRE can be used to perform both Monte Carlo and Latin Hypercube sampling for
uncertainty analysis in the quantification process. In data generation through the approach
described in Section 2.4, the sources of uncertainty are:

• Hardware failure data uncertainty

• Modeling uncertainty

• Operational profile uncertainty

• Fault injection experiment uncertainty

The issues associated with hardware failure data uncertainty and their remediation are well
known (e.g. see [149, 150]) and will not be addressed here. The other three sources of
uncertainty are discussed in Sections 7.1 through 7.3. While some form of uncertainty analysis
that accounts for epistemic and aleatory uncertainty such as that in [149, 150] would highlight
those areas that need attention, currently we mitigate levels of epistemic uncertainty through trial
and error analysis and more conservative assumptions.

7-4

7.1 Modeling Uncertainty

In the modeling of complex systems, uncertainty manifests at several levels. At the highest level,
there may be uncertainty in the representation of the model. Model uncertainty occurs because
models are not perfect representations of the real world. Models make assumptions that are not
valid for all situations and conditions. There is no correct model for anything, there is only
appropriateness of a model for a given condition and set of circumstances. Each model only
represents or predicts the property of interest (in our case the probability of system failure). One
interest is the accuracy of the model given the specification of the system. The system may be
under-modeled where specific states and transitions are left out. In this case, measures of
interest may be insufficiently conservative. Conversely, the system may be over-modeled
including system states and transitions that make model solution intractable or model size too
large. Additional uncertainty may be due to the practicality of the modeling assumptions. Some of
these assumptions may not hold in real-world scenarios. There may also be uncertainty at the
parameter level. In many cases, parameters are estimated based on field data or operational
profile, expert opinion, or by “good” guessing [151, 152]. The resulting uncertainty at this level
complicates model solution and adds to the inaccuracy of the desired measure. Finally, it is to be
realized that accounting for model uncertainty is still an emerging and growing field. A universally
accepted methodology or method has yet to emerge.

This section addresses the various areas of uncertainty that exist in the quantitative assessment
process. Specifically, we discuss uncertainty in the analytical, statistical, and the operational
profiles, and the fault injection process. We discuss the epistemic (or reducible) and aleatory
(irreducible) uncertainties that manifest in these areas. Some discussion regarding the handling
of this uncertainty is presented.

7.1.1 Analytical Model

There are several types of uncertainty that can manifest in the models we have developed. The
analytical models presented in Chapter 4 are developed from the system architecture and inter-
component dependencies to represent the system failure modes that are of concern. We
enumerate the categories of potential uncertainty in these models and address potential methods
the uncertainty can analyzed :

1. Representation of sufficient failure modes. The failure mode models developed in Chapter
4 were developed by performing a detailed review of the system hazard analysis
documents, expert opinion on system of failure modes of the DFWCS, and finally detailed
analysis of component interactions under different failure scenarios. However, there may
exist some uncertainty in the sufficiency of the failure modes, that is, do they represent a
comprehensive set of the classes of failure modes that are of concern? We addressed
this problem on several levels. First, we use different models and methods to assess the
validity of the failure modes. We use different models using different assumptions. Taken

7-5

all together, this allows us to view the problem from several perspectives to ensure that
we have appropriately modeled system in it environmental or plant context.

2. Parameter Data: Hardware Failure Rates. Failure rate data has uncertainity associated
with by it’s vary nature. Most failure rate data is collected in one of two ways: (1) from the
field or actual operational failure data from the plant, (2) from the failure data of similar
devices found in databases. These numbers represent some form of point estimate (e.g.
maximum likelihood) and the variance or uncertainty factors associated with the point
estimate are usually not given. If they are given they are more a qualitative measure like
the uncertainty factor. In contest to this work, we had actual plant data on failures of the
components of the DFWCS. We also had access to a commercial database of component
failure that helped fill in the gaps where we could not get plant failure data. Finally, we
conducted interviews with a vendors to get information on the MTBF of certain
components. With this information, we used a Bayesian updating method to estimate the
failure rates of the components. What the next step should be in our methodology is to
conduct an uncertainty analysis on the failure rates of the models by the method
suggested in [152].

3. Fault Coverage Estimation. Fault coverage is determined by a statistically controlled
experiment. Therefore the uncertainty in the estimate is governed by the statistical
methods and the statistics used. Uncertainty in coverage estimates usually comes from
several sources. The first is insufficient number of fault injection trials to provide a narrow
interval estimate. An narrow confidence interval is required to ensure that the probability
that the experiment has mislead you is very low. This uncertainty can be controlled by
performing the requisite number of trials as stated in Eqn.(2.4.9). The second type of
uncertainty is fault selection. Normally, we select faults that are representative of the
faults that would be experienced in the real world. If our fault model is not inclusive of
faults that would be experienced in the real world, then coverage estimate is incomplete.
We addressed this in our model by considering the set of possible faults from a variety of
sources, including our own detailed fault simulation of microprocessors, legacy field data,
experience reports, and other research on fault modeling of microelectronic devices. The
result is fault model that is comprehensive to the best our ability for the given application

7.1.2 Statistical Model

The statistical model is developed based on those found in published literature and is used to
estimate the aforementioned critical model parameters required by the analytical safety model.
This statistical model is also used to calculate the number of fault injection experiments required
to meet the numerical safety target for a given confidence level. There are limitations to this
model. It is well known that exhaustive testing of a system will lead to an exact value for fault
coverage. However, this is impractical and infeasible for real I&C systems. Instead, a large
number of fault injection experiments are performed to achieve a sufficient level of precision and
confidence determined by knowledge of fault occurrence in the system. A greater level of
confidence is given to parameter estimates from models that have a strong mathematical
foundation and validity. In the past, the method we chose for determining this robustness was
through comparison of numerical results from several different statistical models [153]. There is a
level of irreducible uncertainty when considering model appropriateness and validation. A

7-6

judgment may be made on the accuracy and precision of estimates in an inter-model sense, i.e.
one model versus another.

7.1.3 Generic Processor Fault Model

A high-level generic processor fault model is defined to specify the types of faults (and their
associated probabilities) that will be injected into the system under analysis. This process builds
upon 20 years of research and is undertaken with the goal of characterizing low-level internal
processor faults at the higher register-transfer level, in order to demonstrate that faults injected
on the actual hardware are representative of the low-level processor faults of concern.

A model is developed that accurately represents the fault-free operation of the system and then
tested against the actual system for validity. Once this has been established, fault injection
experiments are performed using the model. These results are compared to those obtained from
fault injections on the real system. The primary area of concern regarding uncertainty is how well
the model represents the real system. Since, in most cases, simulation models for actual
processors are not publicly available, an available model that closely resembles the operation of
the processor of interest is used to develop the generic model. So the uncertainty issue here is
how well is the representativeness and completeness of the generic fault model to the actual fault
behavior of the real processor. In [119], we addressed these issues by comparing actual faults on
a lower level processor model to a higher level processor and confirming that a large percentage
of lower level faults can be represented by a higher level fault model.

7.2 Operational Profile Uncertainty

Operational profiles are used to drive the inputs to the system under analysis during the fault
injection process. The operational profiles must be representative of the different system
configurations and workloads that would be experienced in actual field operation. Coverage
estimation is directly affected by the operational profile of the system. We want to establish
baseline coverage for the most used profile (e.g. High Power) and then alter the profiles to
represent the different modes of operation and obtain their particular coverage factors.
Uncertainty arises when we consider abnormal operational profiles corresponding to irregular
system and fault-handling mechanism behavior. These random events are unpredictable and are
due to unforeseen system demands, for example. It may be mitigated using sampling of historical
plant data. This is a good representation of modes and mode changes. We must assume some
variability exists in this data, however, and sample from a known distribution that contains the
point data. When the distribution is not known, we may apply Statistics of the Extremes Theory
[154, 155].

In [153], it is pointed out that fault coverage estimation was possible if there was precisely
detailed knowledge of the fault distribution. Otherwise, one would have to assume that the fault
tolerance mechanism was equally fair with faults occurring as they would in the real system and
during the fault injection process. The occurrence of a fault may be a rare event, not showing up

7-7

during the operational lifetime of the system. Again, this may be due to variable operating
environment conditions, failures in the fault-handling mechanisms, or fluctuations in their
behavior. Statistics of the extremes theory studies the statistical distribution of the extreme values
(corresponding to rare events) found in a sample extracted from a population with a generic
distribution. It relaxes the two assumptions that are typically made when estimating coverage in a
classical sense: (1) that fault tolerance mechanisms behave deterministically for a given fault,
and (2) that the fault distribution is a well-defined characteristic of the system. The non-
deterministic behavior of the fault tolerance mechanism is related to the randomness of the
operational state of the system at the moment of occurrence of the fault. Thus, by reproducing
the typical activities that will be performed by the system in the experimental process during its
operational lifetime, one is able to isolate the dimension of the fault space describing the system’s
operational profile and account for the associated randomness thereby minimizing aleatory
uncertainty.

7.3 Fault Injection Experiment Uncertainty

The fault injection process assumes that (1) the faults to be injected into the system are
representative of the actual faults that occur within the system and (2) the additional software
required to inject the faults does not affect the functional behavior of the system in response to
the injected fault. Essentially, the assumption states that the software that is used to inject the
fault is independent of the rest of the system, and that any faults present in the fault injection
software will not affect the system under analysis. In our actual setup, we have found these
assumptions to be somewhat valid. Our fault injection environment consists of:

• An ICE

• A host computer which runs control software for the ICE machine

• A sequencer, implemented in software, that controls the fault injection process and data
collection

• The target machine (DFWCS prototype)

While this configuration is simple, there are several layers of timing complexity and several entry
points of random (aleatory) uncertainty. One of the advantages to software-based fault injection is
that experiments can be run in near real-time, allowing for the possibility of running a large
number of fault injection experiments. We have found that this is not the case. There are
limitations at the hardware level (e.g. ICE machine) that prohibit true real-time execution. Early in
the development of the FI environment, it was difficult to determine if the injected faults were
really being exercised. Corruptions of specific memory addresses were expected to yield
predictable results; however, in many cases, there was no response from the system. It was
finally determined that memory and register corruptions needed to take place immediately after
those locations were accessed (i.e. written to or read from). This would ensure that the fault
would take effect. This form of fault injection requires the system (or processor) to be halted so
that the corruption can be made and then restarted. Although this adds some time to the
execution of instructions, it is negligible and does not wholly corrupt the results.

7-8

7.4 Summary

We have addressed several forms of uncertainty in this chapter. In the literature there appears to
be mature methods to deal with parameter uncertainty and are considered in this study[151, 152].
Model uncertainty is a more difficult endeavor. Techniques suggested in [149, 150] also seem to
offer some promise to account for epistemic and aleatory.

8-1

8. PROPOSED BENCHMARK, PROCEDURES AND THE
REQUIREMENTS FOR THE RELIABILITY MODELING OF DIGITAL

INSTRUMENTATION AND CONTROL SYSTEMS

The benchmark problem in Section 2 was defined such that it satisfies most of the requirements
given in Fig.8.1 below [90], as well as being representative of the digital SG feedwater control
systems used in operating PWRs. In Fig.8.1, loosely-control coupled systems are defined as
those systems with no direct dependency among different events occurring among the system
constituents, including software/firmware but in which hardware/software/firmware may
communicate only indirectly, through the physical process variables (such as temperature or
pressure) and may not compete for resources. For example, Eqs. (2.2.2), (2.2.3), (2.2.8) and
(2.2.11) in Section 2.2.2 show how the MFV and BFV communicate through the SG level.

8-2

Figure 8.1 Digital I&C Benchmark System Requirements Given in [90]

For example, the MFV position (Eq. (2.2.11)) depends on flow demand (Eq. (2.2.2)) through Eq.
(2.2.8) which in turn depends on compensated water level through Eq. (2.2.3) as well as the BFV
demand through Eqs. (2.2.2) and (2.2.5). Similarly, FP speed (Eq. (2.2.10)) depends on the flow
demand (Eq. (2.2.2)) which in turn affects the MFV position through Eqs. (2.8) and (2.2.11).
Tightly-control coupled systems include loosely-control coupled system requirements, and, in
addition, have direct communication between different events in the overall system. For example,
Table 2.3.1 shows that if roundoff/truncation/sampling rate errors occur in the MC, it can be
detected by connecting components (e.g. MFV and BFV controller) if output is out of range or
exceeds the physically possible rate and the connecting component fails the MC and switches the
control to BC. The requirements in Fig. 8.1 originating from the features of the digital I&C
systems found in practice but not relevant to those used in the current nuclear reactor protection
and control systems are not represented by the benchmark system (e.g. networking, shared
external resources). One particularly challenging feature of the benchmark system from a

8-3

reliability modeling viewpoint is that modeling of some of its fault tolerance capabilities requires
consideration of the system history. For example, when both the MC and BC have failed, FP
speed as well as MFV and BFV positions are determined from system history data (see Section
2.2.2). Also, Fig. 2.5.7 shows that system failure mode may depend on the exact timing of failure
events, and not just the order of failure events.

Regarding how the Markov methodology and the DFM meet the requirements listed in Section
1.2.3, they both clearly satisfy Requirements 1, 2, 3, 4, 7, 8, 9 and 10:

• Neither methodology is based on purely operating experience and both have been tested
on both loosely and tightly control-coupled systems (e.g. [4, 126, 129, 130, 156]). In that
respect, both methodologies predict encountered and future failures well (Requirement 1).

• Both models can account for all the features of the benchmark system which is
representative of the digital SG feedwater control systems used in operating PWRs as
well as containing the features of digital I&C systems used in nuclear power plants, in
general (Requirement 2).

• Both models make valid and plausible assumptions (Requirement 3). For example, the
assumption that process dynamics can be represented through a Markov transition matrix
or a decision table (of DFM) has been demonstrated through previous work [2, 6].
Similarly, the normal operation of the benchmark system and its assumed failure modes
were based on operating PWRs as well as other digital I&C systems encountered in
practice. Both methodologies can account for all the features of the benchmark system
(Sections 3 and 4).

• Sections 3 and 4 show that both models can quantitatively represent dependencies
between failure events accurately (Requirement 4).

• Sections 3 and 4 show that both methodologies can differentiate between a state that fails
one safety check and those that fail multiple ones (Assumption 7), as well as between
faults that cause function failures and intermittent failures (Requirement 8).

• Sections 5 shows that both methodologies have the ability to provide relevant information
to users, including cut sets, probabilities of failure and uncertainties associated with the
results (Requirement 9).

• Section 6 shows that both methodologies can model the digital I&C system portions of
accident scenarios to such a level of detail and completeness that non-digital I&C system
portions of the scenario can be properly analyzed and practical decisions can be
formulated and analyzed (Requirement 10).

The challenges that need to be addressed with the methodologies are reflected in Requirements
5, 6 and 11. Both methodologies have substantially steeper learning curves and are more labor
intensive (currently, Markov methodology may be somewhat more so than DFM) than the
conventional ET/FT methodology. So it is not so simple for an analyst to learn the concepts and
implement the methodologies in a straightforward manner (Requirement 5). On the other hand,
the conventional ET/FT methodology cannot correctly represent the complex interactions and
time dependent behavior of some of the digital reactor protection and control systems as
exemplified by the benchmark system.

8-4

Another challenge with the proposed methodologies is that the failure data used by either
methodology for quantification is not necessarily credible to a significant portion of the technical
community (Requirement 6). This challenge is endemic to the nature of the digital systems rather
than being specific to the proposed methodologies. There is no consensus in the technical
community on how software reliability should be quantified and, in fact, whether such a concept is
appropriate at all [2]. The proposed methodologies try to address this challenge by regarding the
digital system as a whole and not as a sum of separate hardware and software, consistent with
the conclusion of the National Research Council [16]. A similar philosophy is used in the failure
data generation procedures described in Section 2.4. Chapter 7 indicates some techniques that
may be used to quantify the uncertainty in failure data acquisition using the approach described
in Section 2.4. It should be mentioned that the proposed methodologies can be used to obtain
qualitative information on the failure characteristics of digital I&C systems (i.e. prime implicants)
as well as quantitative as shown in Chapter 5. In that respect, they can be helpful in the
identification of risk important event sequences even if the data issue is not resolved and their
quantitative results may not have universal acceptability.

Finally, whether the proposed methodologies require highly time-dependent or continuous plant
state information or not (Requirement 11) depends on the problem under consideration. For the
benchmark system, such information seems to be necessary for correct reliability modeling of the
system. Section 2.5 shows that system failure mode depends on the exact timing of BFV getting
stuck. On the other hand, Chapters 3 and 4 show that both methodologies can be also used for
simple description of the connectivity between events if the correct system behavior under normal
and abnormal operation can be inferred from qualitative arguments only.

9-1

9. SUMMARY AND CONCLUSION

As follow up to NUREG/CR-6901 [2], this report

• presents a benchmark system that can be used to assess the methodologies proposed for
the reliability modeling of digital I&C systems using a common set of
hardware/software/firmware states, and,

• illustrates how DFM and the Markov/CCMT methodology can be used for the reliability
modeling of the benchmark system.

The benchmark system specification includes procedures for system component failure mode
identification and failure data acquisition. The benchmark problem contains all the features of the
digital I&C systems relevant to those used in nuclear power plants, as well as being
representative of the digital SG feedwater control systems used in operating PWRs. The DFM
and the Markov/CCMT methodology were identified by NUREG/CR-6901 as the methodologies
that rank as the top two with most positive features and least negative or uncertain features when
evaluated against the requirements for the reliability modeling of digital I&C systems.

Using an example initiating event, it is shown that the DFM and Markov/CCMT methodologies
can account for all the features of the benchmark system and that the results can be integrated
into an existing PRA. Possible challenges with the methodologies include:

1. analyst skill levels needed for the implementation of the methodologies,

2. computational demand for the correct description of the coupling between failure events,
and,

3. acceptability of the data used for quantification by a significant portion of the technical
community.

These challenges originate from the complexity and diverse nature of the phenomena to be
accounted for and are not specific to DFM or the Markov/CCMT methodology. Another challenge
is the limitation in the capabilities of the existing ET/FT based plant PRA tools. Currently, most
plant PRA tools cannot distinguish between the timing of events. As indicated in Chapter 6, this
limitation may require post-processing of the results obtained from plant PRAs after the
integration of the digital I&C system reliability models to remove timing inconsistencies between
minimal cut set events.

It may be possible to alleviate limitations posed by Challenges 1 and 2 by appending/modifying
the existing ET/FT based plant PRA tools. For example, the Markov/CCMT methodology
described in Chapter 4 and the procedure described in Section 5.3 can be implemented on the
SAPHIRE (or other automated ET/FT tools) platform to reduce, respectively, the analyst’s burden
of constructing the Markov model and converting the results to DETs. Software already exists

9-2

for mechanized construction of such Markov models (e.g. [85]). Post-processing of the minimal
cutsets could be also part of this appended package. Similar arguments can be made for DFM.
The limitation posed by Challenge 2 may be alleviated using distributed computing environments.

Challenge 3 is perhaps the most difficult to address. As discussed in some detail in NUREG/CR-
6901 [2] there is no consensus in the technical community on how software reliability should be
quantified and in fact whether such a concept is appropriate at all. Also as discussed in
NUREG/CR-6901, the data challenge is not specific to the methods described in this report but to
all existing methods. However, the proposed methodologies can be used to obtain qualitative
information on the failure characteristics of digital I&C systems (i.e. prime implicants) as well as
quantitative, and, in that respect, can be helpful in the identification of risk important event
sequences even if the data issue is not resolved.

One other challenge is that both the Markov/CCMT methodology and the DFM may require highly
time-dependent or continuous plant state information for correct reliability modeling of the system
failure modes if the system failure modes depend on the exact timing of the events. Since an
existing plant PRA is often based on the ET/FT approach (and has no time information), such
highly time-dependent plant states may make the integration of the digital I&C system reliability
model into the existing PRA difficult. For example, several initial conditions may need to be
considered in the form of an event tree with each branch providing the starting point for a Markov
of DFM analysis (e.g. see Fig.6.3.2). On the other hand, as indicated in Section 7, both
methodologies can be also used for simple description of the connectivity between events if the
correct system behavior under normal and abnormal operation can be inferred from qualitative
arguments only.

Finally, the properties of the benchmark system considered in this study may not apply to all the
reactor protection and control systems in nuclear power plants. For digital I&C systems which
may have less complex interaction between the failure events, the conventional ET/FT approach
may be adequate for the reliability modeling of the system. It is also important to note that the
report presents only a proof-of-concept study. Additional work is needed to validate the
practicality of the proposed methods for other digital systems and resolve the challenges
identified.

Research to resolve these challenges to the practical implementation of dynamic methods would
involve the following:

1. A stand-alone reliability modeling of the full benchmark system using the DFM,
Markov/CCMT methodology and the conventional ET/FT approach.

2. Qualitative comparison of the event combinations that lead to the benchmark system
failure as obtained by the DFM, Markov/CCMT methodology and the conventional ET/FT
approach.

3. Quantitative evaluation of the models in Item 1 using data obtained through the procedure
described in Section 2.4. as well as other means (e.g. field data, data libraries).

9-3

4. Incorporation of models in Item 1 into an existing PRA for selected initiating events (e.g.
turbine trip, station blackout, loss of main feedwater).

5. Specification of another benchmark problem reflecting the operation of the reactor
protection system.

6. Performing Items 1 through 4 for the new benchmark problem.

7. Software development for mechanized construction of Markov models and dynamic
flowgraphs.

8. SAPHIRE extension for in-line post-processing of the minimal cutsets.

9. Implementing Items 7 and 8 using distributed computing environments.

10-1

10. REFERENCES

[1] Guideline for Performing Defense-in-Depth and Diversity Assessments for Digital I&C
Upgrades - Applying Risk-Informed and Deterministic Methods, 1002835, EPRI, Palo Alto, CA
(2004)

[2] T. ALDEMIR, D. W. MILLER, M. STOVSKY, J. KIRSCHENBAUM, P. BUCCI, A. W.
FENTIMAN, and L. M. MANGAN, Current State of Reliability Modeling Methodologies for Digital
Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments, NUREG/CR-6901,
U. S. Nuclear Regulatory Commission, Washington, D.C. (2006)

[3] C. J. GARRET and G. E. APOSTOLAKIS, "Automated Hazard Analysis of Digital Control
Systems", Reliab.Engng & System Safety, 77, 1-17 (2002).

[4] S. GUARRO, M. YAU, and M. MOTAMED, Development of Tools for Safety Analysis of
Control Software in Advanced Reactors, NUREG/CR-6465, U.S. Nuclear Regulatory
Commission, Washington, D.C. (1996)

[5] T. ALDEMIR, "Utilization of the Cell-To-Cell Mapping Technique to Construct Markov
Failure Models for Process Control Systems", G. APOSTOLAKIS (Ed.), Probabilistic Safety
Assessment and Management: PSAM1, 1431-1436, Elsevier, New York (1991).

[6] T. ALDEMIR, "Computer-Assisted Markov Failure Modeling of Process Control Systems",
IEEE Transactions on Reliability, R-36, 133-144 (1987).

[7] C. L. SMITH, J. KNUDSEN, M. CALLEY, S. BECK, K. KVARFORDT and S. T. WOOD,
SAPHIRE Basics: An Introduction to Probability Risk Assessment Via the Systems Analysis
Program for Hands-on Integrated Reliability Evaluations (SAPHIRE) Software, Idaho National
Laboratory, Idaho Falls,ID (2005).

[8] CAFTA For Windows, Version 3.0c, SAIC, Los Altos, California (1995)

[9] RISKMAN 7.1 for Windows, ABS Consulting, Irvine, California (2003)

[10] K. D. RUSSELL, C. L. HOFFMAN, K. J. KVARFORDT, E. LOIS, C. L. SMITH, and S. T.
WOOD, Systems Analysis Programs for Hands-on Integrated Evaluations (SAPHIRE) Version
6.0, System Overview Manual, NUREG/CR-6532, U.S. Nuclear Regulatory Commission,
Washington, D.C. (1999)

[11] G. J. PAI and J. DUGAN, "Automatic Synthesis of Dynamic Fault Trees From UML System
Models", Proceedings of the 13th International Symposium on Software Reliability Engineering
(ISSRE '02), 243-254, IEEE Computer Society, Washington, D.C. (2002).

[12] N.ADDOUCHE, C.ANTOINE and J MONTRAIN, "Combining Extended UML Models and
Formal Methods to Analyze Real Time Systems", R.WINTHER, B.A.GRAN and G.DAHL (Eds.),
SAFECOMP 2005, 24-27, Springer-Verlag, Berlin, Germany (2005).

10-2

[13] S.BERNARDI, S.DONATELLI and J.MERSEGUER, "From UML Sequence Diagrams and
Statecharts to Analysable Petri Net Models", S.BALSAME, P.INVERARDI and B.SELIC (Eds.),
Proceedings of the 3rd international workshop on Software and performance, 35-45, ACM Press,
New York (2002).

[14] L.BARESI and M.PEZZE, On Formalizing UML with High-Level Petri Nets, p 276,
G.A.AGHA., F DECINDIO and G.ROZENBERG, Eds., Springer-Verlag, Berlin, Germany (2001).

[15] Update of Chapter 7 (I&C) of NUREG-0800, Standard Review Plan, U.S. Nuclear
Regulatory Commission, Washington, D.C. (1997).

[16] NATIONAL RESEARCH COUNCIL, Digital Instrumentation and Control Systems in Nuclear
Power Plants: Safety and Reliability Issues, National Academy Press, (1997)

[17] ACRS Letter Report to L. Joseph Callan, "Regulatory Guidance on the Implementation of
Digital I&C Systems (1997).

[18] T. ALDEMIR, N. SIU, A. MOSLEH and P. C. CACCIABUE, Reliability and Safety
Assessment of Dynamic Process Systems, Springer-Verlag, Heidelberg (1994).

[19] D. W. MILLER, E. L. QUINN, S. A. ARNDT, L. J. BOND, D. B. JARRELL, OHARE, J. M.
and R. T. WOOD, Instrumentation, Controls and Human-Machine Interface (IC&HMI)
Technology Workshop, U. S. Department of Energy, Gaithersburg, Maryland (2002).

[20] Hard-Coded (2007).

[21] Hard-Coded (2007).

[22] R. L. CAMPBELL, What Is Built-In Self Test And Why Do We Need It?, Nelson Publishing,
Unc. (1996).

[23] J. BULLOCK, Ladder Logic, Seattle Robotics Society, Seattle, WA (1997).

[24] R. WALKER, Intel 8088 Central Processing Unit (1980).

[25] D. JOHNSON, The Sampling Theorem (2004).

[26] Part 21 Reports, LD-99-036, (1999)

[27] Part 21 1999-34-1, (1999)

[28] Event Number 39392, (2002)

[29] Part 21 2002-32-0, (2002)

[30] EA-96-442, (1996)

[31] Information Notice 93-49, (1993)

10-3

[32] Power Reactor Event Number 36518, (1999)

[33] J. RUSHBY, Critical System Properties: Survey and Taxonomy, pp 189-219 (1994).

[34] J. DEVOOGHT and C. SMIDTS, "Probabilistic Reactor Dynamics I: The Theory of
Continuous Event Trees", Nuclear Science and Engineering, 111, 229-240 (1992).

[35] B. TOMBUYES and T. ALDEMIR, "Dynamic PSA of Process Control-Systems Via
Continuous Cell-To-Cell-Mapping", 1541-1546, Elsevier, New York (1996).

[36] A. AMENDOLA and G. REINA, DYLAM-1, A Software Package for Event Sequence and
Consequence Spectrum Methodology, EUR-924, CEC-JRC, ISPRA, Commission of the
European Communities, (1984)

[37] G. COJAZZI, "The DYLAM Approach to the Dynamic Reliability Analysis of Systems",
Reliab.Engng & System Safety, 52, 279-296 (1996).

[38] C. ACOSTA and N. SIU, "Dynamic Event Trees in Accident Sequence Analysis: Application
to Steam Generator Tube Rupture", Reliab.Engng & System Safety, 41, 135-154 (1993).

[39] C. SMIDTS and S. SWAMINATHAN, "Improvements to Discrete Dynamic Methodologies",
PSA-96, 159-166, American Nuclear Society (1996).

[40] H. KAE-SHENG and A. MOSLEH, "The Development and Application of the Accident
Dynamic Simulator for Dynamic Probabilistic Risk Assessment of Nuclear Power Plants",
Reliab.Engng & System Safety, 52, 297-314 (1996).

[41] J. M. IZQUIERDO, J. HORTAL, J. SANCHES-PEREA and E. MELENDEZ, "Automatic
Generation of Dynamic Event Trees: A Tool for Integrated Safety Assessment", T. ALDEMIR, N.
SIU, A. MOSLEH, P. C. CACCIABUE and B. G. GOKTEPE (Eds.), Reliability And Safety
Assessment of Dynamic Process Systems, 120, 135-150, Springer-Verlag, Heidelberg (1994).

[42] S. MARCHAND, B. TOMBUYES and P. LABEAU, "DDET and Monte Carlo Simulation to
Solve Some Dynamic Reliability Problems", PSAM 4, 3, 2055-2060, New York (1998).

[43] Y. DUTUIT, "Dependability Modeling and Evaluation by Using Stochastic Petri Nets:
Application to Two Test Cases", Reliab.Engng & System Safety, 55, 117-124 (1997).

[44] J. L. PETERSON, "Petri Nets", ACM Computing Surveys, 9, 223-252 (1977).

[45] S. SWAMINATHAN and C. SMIDTS, "The Mathematical Formulation of the Event
Sequence Diagram Framework", Reliab.Engng & System Safety, 65, 103-118 (1999).

[46] T. MATSUOKA and M. KOBAYASHI, "An Analysis of a Dynamic System by the GO-FLOW
Methodology", P. C. CACCIABUE and I. A. PAPAZOGLOU (Eds.), Probabilistic Safety
Assessment and Management '96, 1547-1436, Elsevier, New York (1991).

[47] T. MATSUOKA and M. KOBAYASHI, "GO-FLOW: A New Reliability Analysis Methodology",
Nuclear Science and Engineering, 98, 64-78 (1988).

10-4

[48] M. MARSAN and G. CONTE, "A Class of Generalized Stochastic Petri Nets for the
Performance Evaluation of Multiprocessor Systems", ACM Transactions on Computer Systems,
2, 93-122 (1984).

[49] R. MOCK, "The Usage of Generalized Stochastic Petri Nets for Reliability Assessments of
Passive Safety Installations of SWR 1000 - A Pilot Application", S. KONDO and K. FURUTA
(Eds.), PSAM 5 - Probabilistic Safety Assessment and Management, 1615-1621, Universal
Academy Press Inc, Tokyo, Japan (2000).

[50] L. M. KAUFMAN and B. W. JOHNSON, Embedded Digital System Reliability and Safety
Analyses, NUREG/GR-0020, U.S. Nuclear Regulatory Commission, Washington, D.C. (2001)

[51] D. T. SMITH, T. A. DELONG and B. W. JOHNSON, "A Safety Assessment Methodology for
Complex Safety-Critical Hardware/Software Systems", International Topical Meeting on Nuclear
Plant Instrumentation, Controls, and Human-Machine Interface Technologies, Washington, D.C.
(2000).

[52] J. D. LAWRENCE, Software Reliability and Safety in Nuclear Reactor Protection Systems,
UCRL-ID-114839, Lawrence Livermore National Laboratory, Livermore, California (1993)

[53] M. CEPIN and B. MAVKO, "A Dynamic Fault-Tree", Reliab.Engng & System Safety, 75, 83-
91 (2001).

[54] J. D. ANDREWS and J. DUGAN, "Dependency Modeling Using Fault-Tree Analysis",
Proceedings of the 17th International System Safety Conference, 67-76, The System Safety
Society, Unionville, Virginia (1999).

[55] K. K. VEMURI, J. DUGAN and K. J. SULLIVAN, "Automatic Synthesis of Fault Trees for
Computer-Based Systems", IEEE Trans.Reliability, 48, 394-402 (1999).

[56] BALAKRISHMAN, M. and K. TRIVEDI, "Stochastic Petri Nets for Reliability Analysis of
Communication Network Applications With Alternate Routing", Reliab.Engng & System Safety,
53, 243-259 (1996).

[57] T. S. LIU and S. B. CHIOU, "The Application of Petri Nets to Failure Analysis", Reliability
Engineering and System Safety, 129-142 (1997).

[58] M. GRIBAUDO, A. HORVAACUTE, A. BOBBIO, E. TRONCI, E. CIANCAMERLA and M.
MINICHINO, Fluid Petri Nets and Hybrid Model-Checking: A Comparative Case Study, pp 239-57
(2006).

[59] N. E. FENTON, B. LITTLEWOOD, M. NEIL, L. STRIGINI, D. R. WRIGHT and P. J.
COURTOIS, Bayesian Belief Network Model for the Safety Assessment of Nuclear Computer-
Based Systems, pp 349-63, CRC Press, Inc., Boca Raton, FL (2000).

[60] B. A. GRAN and A. HELMINEN, "A Bayesian Belief Network for Reliability Assessment", U.
VOGES (Ed.), SAFECOMP 2001, LNCS 2187, 33-45, Springer-Verlag, Heidelberg, Germany
(2001).

10-5

[61] A. HELMINEN, Reliability Estimation Of Safety-Critical Software-Based Systems Using
Bayesian Networks, Helsinki, Finland (2001).

[62] R. I. ZEQUIERA, "A Model for Bayesian Software Reliability Analysis",
Qual.Reliab.Engng.Int., 16, 187-193 (2000).

[63] B. LI, M. LI and C. SMIDTS, "Integrating Software into PRA: A Test-Based Approach", C.
SPITZER, U. SCHMOKER and V. N. DANG (Eds.), Springer – Verlag, London, U.K. (2004).

[64] N. F. SCHNEIDEWIND, "Analysis of Error Processes in Computer Software", Proc.Int'l
Conf.Reliable Software, 76-78, IEEE CS Press (1975).

[65] N. F. SCHNEIDEWIND and T. W. KELLER, "Application of Reliability Models to the Space
Shuttle", IEEE Trans.Software Engineering, 9, 28-33 (1992).

[66] K. W. MILLER, L. J. MORELL, R. E. NOONAN, S. P. PARK, D. M. NICOL, B. W. MURRILL
and J. M. VOAS, "Estimating the Probability of Failure When Testing Reveals No Failures", IEEE
Trans.Software Eng., 18, 33-43 (1992).

[67] Y. YU and B. W. JOHNSON, "The Quantitative Safety Assessment for Safety-Critical
Software", Proc.29th Annual IEEE/NASA Software Engineering Workshop, 193-198, IEEE,
Piscataway, NJ (2005).

[68] A. L. GOEL and K. OKUMOTO, "Time-Dependent Error Detection Rate Model for Software
and Other Performance Measures", IEEE Trans.Reliability, 28, 206-211 (1979).

[69] K. MATSUMO, K. INOUE, T. KIKUMO and K. TORII, "Experimental Evaluation of Software
Reliability Growth Models", IEEE Proceedings of FTCS-18, 148-153 (1988).

[70] S. YAMADA, H. OHTERA and H. NARIHISA, "Software Reliability Growth Models With
Testing Effort", IEEE Trans.Reliability, R-35, 19-23 (1986).

[71] J. MAY, Component-Based Software Reliability Analysis, Department of Computer Science,
University of Bristol, U.K. (2002).

[72] C. SMIDTS and M. LI, Software Engineering Measures for Predicting Software Reliability in
Safety Critical Digital Systems, U.S. Nuclear Regulatory Commission, Office of Nuclear
Regulatory Research, Washington, D.C. (2000).

[73] C. SMIDTS and M. LI, Validation of A Methodology For Assessing Software Quality,
University of Maryland (2002).

[74] A. RAUZY, "Mode Automata and Their Compilation into Fault Trees", Reliab.Engng &
System Safety, 78, 1-12 (2002).

[75] M. A. BOYD and S. J. BAVUSO, "Simulation Modeling for Long Duration Spacecraft Control
Systems", Proc.Annual Reliability and Maintainability Symposium, 106-113, IEEE, New York, NY
(1993).

10-6

[76] K. S. TRIVEDI and V. G. KULKARNI, "FSPNs: Fluid Stochastic Petri Nets", M. A. MARSAN
(Ed.), Proc.14th Int.Conf.on Applications and Theory of Petri Nets, 24-31, Springer-Verlag,
Heidelberg (1993).

[77] G. JOHNSON and J. D. LAWRENCE, Conceptual Software Reliability Prediction Models for
Nuclear Power Plant Safety Systems, Lawrence Livermore National Laboratory, Livermore,
California (2000).

[78] Y. ZANG and M. M. GOLAY, "Development of a Method for Quantifying The Reliability of
Nuclear Safety-Related Software", PSAM6: Proceedings of the 6th International Conference on
Probabilistic Safety Assessment and Management, CD-ROM Version, Elsevier Science Ltd.
(2002).

[79] G. PAI, S. DONOHUE and DUGAN.J., Estimating Software Reliability From Process and
Product Evidence, Elsevier Science Ltd. (2002).

[80] B. LITTLEWOOD and D. WRIGHT, "Some Conservative Stopping Rules for the Operational
Testing of Safety-Critical Software", IEEE Trans.Software Engineering, 23, 673-683 (1997).

[81] C. SMIDTS, D. SOVA and G. K. MANDELA, "An Architectural Model for Software Reliability
Quantification", Proceedings of the Eighth International Symposium on Software Reliability
Engineering (ISSRE '97), 324-336, IEEE Computer Society, Washington, D.C. (1997).

[82] S. YANG, N. SANG and G. XIONG, "Safety Testing of Safety Critical Software Based on
Critical Mission Duration", 97-102, IEEE Computer Society, Washington, D.C. (2004).

[83] Y. CHEN and D. SINGPURWALLA, "Unification of Software Reliability Models by Self-
Exciting Point Process", Adv.Appl.Prob., 20, 337-352 (1997).

[84] P. HAAPANEN, J. KORHONEN and U. PULKKINEN, Licensing Process for Safety-Critical
Software-Based Systems, Radiation and Nuclear Safety Authority, Helsinki, Finland (2000).

[85] C. SMIDTS and M. LI, Preliminary Validation of a Methodology for Assessing Software
Quality, NUREG/CR-6468, U.S. Nuclear Regulatory Commission, Washington, D.C. (2004)

[86] M. A. CARUSO, M. C. CHEOK, M. A. CUNNIGHAM and ET AL, An Approach for Using
Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis, p 242 (1999).

[87] REGULATORY GUIDE 1.174, An Approach for Using Probabilistic Risk Assessment in Risk
Informed Decisions on Plant-Specific Changes to the Licensing Bases, U.S. Nuclear Regulatory
Commission, Washington, D.C. (1998)

[88] C. A. C. O. R. S. LETTER FROM MARIO V.BONACA and E. D. F. O. N. R. C. TO LUIS
A.REYES, Subject: Digital Instrumentation and Control Research Program, U. S. Nuclear
Regukatroy Commission, Washington, D.C. (2004).

[89] C. PERROW, Normal Accidents, Living with High-Risk Technologies, Princeton
University Press, Princeton, New Jersey (1999).

10-7

[90] J. KIRSCHENBAUM, M. STOVSKY, P. BUCCI, T. ALDEMIR and S. A. ARNDT,
"Benchmark Development for Comparing Digital Instrumentation and Control System Reliability
Modeling Approaches", American Nuclear Society, LaGrange Park, IL (2005).

[91] T. J. MCCABE, A Complexity Measure (1976).

[92] Code of Federal Regulations, Title 10 (Energy), Part 50 (Domestic Licensing of Production
and Utilization Facilities).

[93] C. E. SHANNON and W. WEAVER, The Mathematical Theory of Communication,
University of Illinois Press, Urbana, IL (1964).

[94] L. LAMPORT, S. SHOSTAK and P. PEASE, "The Byzantine Generals Problem", ACM
Transactions on Programming Languages and Systems, 4, 382-401 (1982).

[95] F. L. LIAN, J. R. MOYNE and D. M. TILBURY, "Performance Evaluation of Control
Networks", IEEE Control Systems Magazine, 21, 66-83 (2001).

[96] F. L. LIAN, J. R. MOYNE and D. M. TILBURY, "Network Design Consideration for
Distributed Control Systems", IEEE TRansactions on Control Systems Technology, 10, 297-307
(2002).

[97] IEEE 802.5 Standard (2001).

[98] IEEE 802.3 Standard (2005).

[99] Guidelines for Evaluating Electromagnetic and Radio-Frequency Interference in Safety-
Related Instrumentation and Control Systems, RG 1.180, Revision 1, U.S. Nuclear Regulatory
Commission, Washington, D.C. (2003)

[100] IEEE 802.11 Standard (2005).

[101] N. PLOPLYS, P. KAWKA and A. ALLEYNE, "Closed Loop Control Over Wireless
Networks", IEEE Control Systems Magazine, 58-71 (2004).

[102] REGULATORY GUIDE 1.152, Revision 2, U.S. Nuclear Regulatory Commission,
Washington, D.C. (2006).

[103] Functional Safety of Electrical / Electronic / Programmable Electronic Safety-Related
Systems, I n t e r n a t i o n a l E l e c t r o t e c h n i c a l C o m m i s s i o n, Geneva, Switzerland
(2000).

[104] Design Assurance for Airborne
Electronics Hardware, Radio Technical Commission for Aeronautics (2000).

[105] B. W. JOHNSON, Design and Analysis of Fault Tolerant Digital Systems, Addison-Wesley
(1989).

10-8

[106] J.-C. LAPRIE, Dependable Concepts: Basic Concepts and Terminology, Springer Verlag
(1992).

[107] J. ARLAT, A. COSTES, Y. CROUZET, J.-C. LAPRIE and D. POWELL, "Fault Injection
and Dependability Evaluation of Fault-Tolerant Systems", IEEE Transactions on Computers, 42,
913-923 (1993).

[108] S. D. YOUNG and C. ELKS, "Performance Assessment of Fault Tolerant Byzantine
Computer", Computers in Aerospace, American Institute of Aeronautics and Astronautics (1989).

[109] R. K. IYER and P. VELARDI, Hardware-Related Software Errors: Measurement and
Analysi, pp 223-31 (1985).

[110] M. REYNOLDS and C. ELKS, A Contemporary Perspective on Fault Injection Methods
and Tools, CSCS-2006-002 rev 01, University of Virginia, Charlottesville, Virginia (2006)

[111] R. K. IYER and D. J. ROSETTI, A Measurement-Based Model for Workload Dependence of
CPU Errors, pp 511-9 (1986).

[112] C. CONSTANTINESCU, "Impact of Deep Submicron Technology on Dependability of
VLSI Circuits", Proceedings of the International Colnference on Dependable Systems and
Networks, 23-26 (2002).

[113] L. KAUFMAN, B. W. JOHNSON and J. DUGAN, Coverage Estimation Using Statistics of
the Extreme for When Testing Reveals No Failures (2002).

[114] T. D. SMITH and B. W. JOHNSON, A Variance Reduction Technique Via Fault Expansion
for Fault Coverage Estimation, pp 366-76 (1997).

[115] E. CUTRIGHT, T. DELONG, and B. W. JOHNSON, Numerical Safety Evaluation Process
for Safety-Critical Systems, UVA-CSCS-NSE-001, University of Virginia, Charlottesville, Virginia
(2003)

[116] E. CUTRIGHT and B. W. JOHNSON, Analytical Safety Model, UVA-CSCS-NSE-002,
University of Virginia, Charlottesville, Virginia (2003)

[117] G. APOSTOLAKIS and J. S. WU, The interpretation of probability, De Finetti.s
representation theorem, and their implications to the use of expert opinions in safety
assessment, pp 311-22, R. E. BARLOW and C. A. CLAROOTI, Eds., Chapman&Hill, London, U.
K. (1993).

[118] PRISM: System Reliability Assessment Software, Reliability Analysis Center (RAC),
Rome, New York (2003).

[119] E. CUTRIGHT, T. DELONG, and B. W. JOHNSON, Generic Processor Fault Model, UVA-
CSCS-NSE-004, University of virginia, Charlottesville, Virginia (2003)

10-9

[120] J. G. CHOI and P. H. SEONG, "Dependability Estimation of Digital System by Operational
Profile-Based Fault Injection ", PSA'99, I, 499-506, American Nuclear society, LaGrange Park,
Illinois (1999).

[121] D. T. SMITH, B. W. JOHNSON and J. A. PROFETA, System Dependability Evaluation Via
a Fault List Generation Algorithm, pp 974-9 (1996).

[122] S. S. BHIDE. 'Dependability Modeling of Digital Embedded Systems Accounting for
Common-Mode and Common-Cause Failures', (University of Virginia2000).

[123] T. DELONG, T. D. SMITH and B. W. JOHNSON, Dependability Metrics to Assess Safety
Critical System (2006).

[124] U.S.NUCLEAR REGULATORY COMMISSION, Severe Accident Risks: An Assessment
for Five U.S. Nuclear Power Plants, NUREG-1150, U.S. Nuclear Regulatory Commission,
Washington, D.C. (1990)

[125] N. E. TODREAS and M. S. KAZIMI, Nuclear Systems: Thermal Hydraulic Fundamentals,
Hemisphere Pulishing. Corp. (1990).

[126] M. HASSAN and T. ALDEMIR, "A Data Base Oriented Dynamic Methodology for the
Failure Analysis of Closed Loop Control Systems in Process Plants", Reliability Engineering &
System Safety, 27, 275-322 (1990).

[127] B. LEIMKUEHLER and S. V. SHERIKAR, "Getting Optimum Performance Through
Feedwater Control Valve Modifications" (1997).

[128] M. YAU. 'Dynamic Flowgraph Methodology for the Analysis of Software Based Controlled
Systems', (University of California, Los Angeles1997).

[129] M. YAU, G. APOSTOLAKIS and S. GUARRO, "The Use of Prime Implicants in
Dependability Analysis of Software Controlled Systems", Reliability Engineering and System
Safety, 62, 23-32 (1998).

[130] M. YAU, M. WETHERHOLT and S. GUARRO, "Safety Analysis and Testing of Critical
Space Systems Software", Proceedings, 4th International Conference on Probabilistic Safety
Assessment and Management (PSAM-4), Paper # September 13-18, New York, NY (1998).

[131] S. A. LAPP and G. J. POWERS, "Computer-Aided Synthesis of FaultTtrees", IEEE
Transactions on Reliability, R-26, 2-13 (1977).

[132] S. L. SALEM, G. APOSTOLAKIS and D. OKRENT, A New Methodology for the Computer-
Aided Construction of Fault Trees, pp 417-33 (1977).

[133] S. L. SALEM, J. S. WU and G. APOSTOLAKIS, Decision Table Development and
Application to the Construction of Fault Trees, pp 51-64 (1979).

[134] E. J. HENLEY and H. KUMAMOTO, Probability Risk Assessment: Reliability Engineering,
Design, and Analysis, IEEE Press (1992).

10-10

[135] S. GARRIBA, E. GUAGNINI and P. MUSSIO, Multiple-Valued Logic Trees: Meaning and
Prime Implicants, pp 463-72 (1985).

[136] E. J. SHIELDS, G. APOSTOLAKIS and S. B. GUARRO, "Determining the Prime
Implicants for Multi-State Embedded Systems", G. APOSTOLAKIS and J. S. WU (Eds.),
Proceedings of PSAM-II, 7-12, International Asoociation for Probabilistic Assessment and
Management, San Diego, California (1994).

[137] C. S. HSU, Cell-to-cell Mapping: A Method of Global Analysis for Nonlinear Systems,
Springer-Verlag, New York, NY (1987).

[138] A. MOSLEH, K. N. FLEMING, G. W. PARRY, and ET AL, Procedures for Treating
Common Cause Failures in Safety and Reliability Studies, NUREG/CR-4780 (EPRI NP-5613),
U.S. Nuclear Regulatory Commission, Washington, D.C. (1989)

[139] M. BOUISSOU, "Boolean Logic Driven Markov Processes: A Powerful New Formalism for
Specifying and Solving Very Large Markov Models", PSAM6: Proceedings of the 6th International
Conference on Probabilistic Safety Assessment and Management, CD-ROM Version, Elsevier
Science Ltd. (2002).

[140] P. BUCCI, J. KIRSCHENBAUM, T. ALDEMIR, C. L. SMITH and T. S. WOOD,
"Constructing Dynamic Event Trees From Markov Models", M. STAMATALETOS and H. S.
BLACKMAN (Eds.), PSAM8: Proceedings of the 8th International Conference on Probabilistic
Safety Assessment and Management, CD-ROM Version, Paper # 369, ASME Press, Inc. (2006).

[141] S. RUSSELL and P. NORVIG, Artificial Intelligence: A Modern Approach, Prentice-Hall,
New Jersey (2003).

[142] K. D. RUSSELL, M. B. SATTISON, and D. M. RASMUSON, Integrated Reliability and Risk
Analysis System (IRRAS) Version 2.0 User's Guide, NUREG/CR-5111, U.S. Nuclear Regulatory
Commission, Washington, D.C. (6-1-1990)

[143] G. A. APOSTOLAKIS, A Commentary on Model Uncertainty, NUREGICP-0138, U.S.
Nuclear regulatory Commission, Washington, D.C. (1994)

[144] G. W. PARRY, "The Characterization of Uncertainty in Probabilistic Risk Assessments of
Complex Systems", Reliab.Engng & System Safety, 54, 119-126 (1996).

[145] T. NILSEN and T. AVEN, "Models and Model Uncertainty in the Context of Risk Analysis",
Reliab.Engng & System Safety, 79, 309-317 (2003).

[146] J. M. REINERT and G. A. APOSTOLAKIS, Including Model Uncertainty in Risk-Informed
Decision Making, pp 354-69 (2006).

[147] G. APOSTOLAKIS, "The Concept of Probability in Safety Assessments of Technological
Systems", Science, 250, 1359-1364 (1990).

[148] T. ALDEMIR, "A Finer Mesh Is Not Always a Better Mesh - The Case of Non-Compact
Support in Probabilistic Dynamics", Mathematics and Computation, Supercomputing, Reactor

10-11

Physics and Nuclear and Biological Applications, CD-ROM, American Nuclear Society, La
Grange Park, IL (2005).

[149] I. MEZIC and T. RUNOLFSSON, "Uncertainty Analysis of Complex Dynamical Systems",
Proceedings of the 2004 American Control Conference, 3, 2659-2664 (2006).

[150] J. KNUDSEN and C. L. SMITH, "Estimation of System Failure Probability Uncertainty
Including Model Success Criteria", Proceedings of the 6th International Conference on
Probabilistic Safety Assessment and Management (PSAM 6), 1 (2002).

[151] K. GO¡SEVA-POPSTOJANOVA and S. KAMAVARAM, "Assessing Uncertainty in
Reliability of Component–Based Software Systems", Proceedings of the 14th International
Symposium on Software Reliability Engineering (ISSRE'03), 307-320 (2003).

[152] Y. LIANG, M. A. J. SMITH and K. TRIVEDI, "Uncertainty Analysis in Reliability Modeling",
2001 Proceedings of the Annual Reliability and Maintainability Symposium, 229-234 (2001).

[153] E. CUTRIGHT, M. PESCOSOLIDO, T. DELONG, and B. W. JOHNSON, Statistical Model,
Technical Report UVA-CSCS-NSE-003, Center for Safety Critical Systems, University of Virginia,
Chalottesville, Virginia (2002)

[154] L. KAUFMAN. 'Dependability Analysis for Ultra-Dependable Systems Using Statistics of
the Extremes', (University of Virginia, Charlottesville, Virginia2006).

[155] L. KAUFMAN, J. DUGAN and B. W. JOHNSON, Using Statistics of the Extremes for
Software Reliability Analysis, pp 292-9 (1999).

[156] T. ALDEMIR, "Quantifying Setpoint Drift Effects in the Failure Analysis of Process Control
Systems", Reliability Engineering & System Safety, 24, 33-50 (1989).

A-1

Appendix A

Steam Generator Model

Notation

Symbol Subscript
A Flow area b Bubble
g 32.2 ft/s c Condensate2

h Enthalpy cs Condensate on spray
J 778 ft-lbf/Btu F Fluid in the lower region
M Mass Ff Fluid portion in the lower region

Mass flow rate Fg Vapor portion in the lower region

P Pressure f Saturated liquid
t Time fg Saturated liquid to vapor
U Internal energy G Fluid in the upper region
u velocity Gf Liquid portion in the upper region

(condensate)
V Volume Gg Vapor portion in the upper region
v Specific volume g Saturated vapor
a Void fraction i Summation convention indicating

boundary flows
r Density sp Spray
t Time constant HTR Heater
Q,q Heat flow rate FG Interfacial transport
b Bubble Loss Indicating heat loss to the environment
c Condensate in Indicating flow into
cs Condensate on spray o Flow out of

The steam generator is modeled as a two-region volume (see Fig.2.2.8). These two regions may
have the following combinations:

• Upper region (G) superheated steam, lower region (F) subcooled liquid,
• Region G superheated steam, region F saturated liquid with bubbles forming,
• Region G saturated steam with droplets forming, region F subcooled liquid, and
• Region G saturated steam with droplets forming, region F saturated liquid with bubbles

forming.

The steam generator model accounts for heat and mass transfer between the two regions. Mass
transfer is modeled in the bubble rise and condensate drop models. The governing equations for
the four possible combinations of states in the steam generator are as given in Sections A.1
through A.4.

A-2

A.1 Upper Region Superheated, Lower Region Subcooled

A-3

A.2 Upper Region Superheated, Lower Region Saturated

A-4

A.3 Upper Region Saturated, Lower Region Subcooled

A-5

A.4 Upper Region Saturated, Lower Region Saturated

 (A.37)

A-6

B-1

Appendix B

The Failure Modes and Effects Analysis (FMEA) of the benchmark
DFWCS

The Failure Modes and Effects Analysis (FMEA) of the benchmark digital feedwater control
system is presented in tabular form below.

Table B.1: FMEA Chart

Component Failure Mode Detection of Failure Effect of Failure

Main Computer Loss of all
analog Inputs

Main Computer detects loss of
inputs and fails itself

Fail over to Backup Computer, no
change in water level

Backup
Computer

Loss of all
analog Inputs

Backup Computer detects loss of
inputs and fails itself

Fail over to MFV/BFV/FP
controllers, water level will drift
based on physical process

Main Computer Loss of Power MFV/BFV/FP controllers detect
failure and initiate fail over to
Backup

Fail over to Backup Computer, no
change in water level

Backup
Computer

Loss of Power MFV/BFV/FP controllers detect
failure and initiate fail over to
MFV/BFV/FP controllers

Fail over to MFV/BFV/FP
controllers, water level will drift
based on physical process

Main Computer Output sent to
MFV/BFV/FP
controller is
differnt from the
output sent to
the
MFV/BFV/FP.

Main Computer fails itself. Fail over to Backup Computer, no
change in water level

Backup
Computer

Output sent to
MFV/BFV/FP
controller is
differnt from the
output sent to
the
MFV/BFV/FP.

Backup Computer fails itself. Fail over to MFV/BFV/FP
controllers, water level will drift
based on physical process

Main Computer Excessive
change in rate
of outputs

MFV/BFV/FP controllers detect
failure and initiate fail over to
Backup

Fail over to Backup Computer, no
change in water level

Backup
Computer

Excessive
change in rate
of outputs

MFV/BFV/FP controllers detect
failure and initiate fail over to
MFV/FP/BFV controllers

Fail over to MFV/BFV/FP
controllers, water level will drift
based on physical process

Main/Backup
Computer

Arbitrary Output No detection. Unknown.

B-2

Main/Backup
Computer

Loss of one
sensor.

Computer ignores lost input and
uses the old signal.

Fail over to MFV/BFV/FP
controllers, water level will drift
based on physical process

Main/Backup
Computer

Loss of both
sensors.

Computer ignores lost input and
uses the old signals.

Fail over to MFV/BFV/FP
controllers, water level will drift
based on physical process

Main Computer Loss of both
redundant
sensors through
out range errors
or excessive
rate

Computer uses old values and
indicates that both sensors have
failed

Fail over to Backup Computer

Backup
Computer

Loss of both
redundant
sensors through
out range errors
or excessive
rate

Computer uses old values and
indicates that both sensors have
failed

Failover to MFV/BFV/FP controller,
water level will drift based on
physical process

MFV Controller Loss of input
from Main
Computer

MFV detects loss of input and starts
fail over to Backup

None

MFV Controller Loss of input
from Backup
Computer

MFV detects loss of input and starts
failover procedure if needed to
MFV/BFV/FP controller control

No change unless Main already
failed, if so the water level with drift
as a result of physical process
changes

MFV Controller Loss of analog
output

PDI controller detects loss of output
and uses the old value of the MFV
controller to the MFV and transfer
control to the PDI/BFV/FP
controllers

Water level will drift as a result of
physical process changes

MFV Controller Loss of setpoint
output

Computers detect the out of range
setpoint signal and revert to a
predetermined setpoint

Water level will change to follow the
predetermined setpoint

MFV Controller Arbitrary Output
to MFV

No detection Valve will follow output, causing
water level to respond accordingly

MFV Controller Late delivery of
output to MFV

No detection Unknown

MFV Controller Loss of Main
Computer failed
signal (failed off)

MFV controller will initiate fail over to
Backup Computer

None

MFV Controller Loss of Backup
Computer failed
signal (failed off)

None Backup Computer is unavailable for
fail over.

MFV Controller Loss of Main
Computer failed
signal (failed on)

MFV controller will be unable to tell
if the Main has failed unless the
Main fails its watchdog timer check

Water level output could be
controlled by a failed Main
Computer, causing it to change in
unknown ways

B-3

MFV Controller Loss of Backup
Computer failed
signal (failed off)

MFV controller will be unable to tell
if the Backup has failed unless the
Backup fails its watchdog timer
checks

Water level output could be
controlled by a failed Backup
Computer, causing it to change in
unknown ways

MFV Controller Loss of
watchdog timer
status for Main
Computer (failed
off)

MFV controller will initiate fail over to
Backup Computer

None

MFV Controller Loss of Main
Computer
watchdog timer
signal (failed on)

MFV controller will be unable to use
the watchdog timer to fail the
Computer.

Failed Main Computer could control
the MFV, causing unknown changes
in the water level

MFV Controller Loss of
watchdog timer
status for
Backup
Computer (failed
off)

MFV controller will transfer control to
its own internal buffer of old output
values

Water level will drift due to changes
in the physical process

MFV Controller Loss of Backup
Computer
watchdog timer
signal (failed on)

MFV controller will be unable to use
the watchdog timer to fail the
Computer.

Failed Backup Computer could
control the MFV, causing unknown
changes in the water level

MFV Controller Main Computer
failed (through
watchdog timer
or failed signal)

MFV controller initiates transfer of
control to the Backup Computer

None

MFV Controller Backup
Computer failed
(through
watchdog timer
or failed signal)

MFV controller initiates transfer of
control to its own internal buffer of
an old value of the MRV output

Water level will drift due to changes
in the physical process.

MFV Controller Arbitrary Output No detection unless output drops to
0.

Unknown if undetected. PDI will
hold the valve and cause a transfer
out of automatic control if detected.

BFV Controller Loss of input
from Main
Computer

BFV controller detects loss of input
and starts the fail over procedure
transferring control to the Backup
Computer

None

BFV Controller Loss of input
from Backup
Computer

BFV controller detects loss of input
and starts fail over procedure if
needed to MFV/BFV/FP control

No change unless Main already
failed, if so the water level with drift
as a result of physical process
changes

BFV Controller Loss of analog
output

None Water level will increase as the BFV
will close

BFV Controller Arbitrary output
to BFV

No detection Valve will follow output, causing
water level to respond accordingly

BFV Controller Late delivery of
output to BRV

No detection Unknown

B-4

BFV Controller Loss of Main
Computer failed
signal (failed off)

BFV controller will initiate failover to
Backup Computer

None

BFV Controller Loss of Backup
Computer failed
signal (failed off)

None Backup Computer is unavailable for
fail over.

BFV Controller Loss of Main
Computer failed
signal (failed on)

BFV controller will be unable to tell if
the Main has failed unless the Main
fails its watchdog timer check

Water level output could be
controlled by a failed Main
Computer, causing it to change in
unknown ways

BFV Controller Loss of Backup
Computer failed
signal (failed off)

BFV controller will be unable to tell if
the Backup has failed unless the
Backup fails its watchdog timer
checks

Water level output could be
controlled by a failed Backup
Computer, causing it to change in
unknown ways

BFV Controller Loss of
watchdog timer
status for Main
Computer (failed
off)

BFV controller will initiate fail over to
Backup Computer

None

BFV Controller Loss of Main
Computer
watchdog timer
signal (failed on)

BFV controller will be unable to use
the watchdog timer to fail the
Computer.

Failed Main Computer could control
the BFV, causing unknown changes
in the water level

BFV Controller Loss of
watchdog timer
status for
Backup
Computer (failed
off)

BFV controller will transfer control to
its own internal buffer of old output
values

Water level will drift due to changes
in the physical process

BFV Controller Loss of Backup
Computer
watchdog timer
signal (failed on)

BFV controller will be unable to use
the watchdog timer to fail the
Computer.

Failed Backup Computer could
control the BFV, causing unknown
changes in the water level

BFV Controller Main Computer
failed (through
watchdog timer
or failed signal)

BFV controller initiates transfer of
control to the Backup Computer

None

BFV Controller Backup
Computer failed
(through
watchdog timer
or failed signal)

BFV controller initiates transfer of
control to its own internal buffer of
an old value of the BRV output

Water level will drift due to changes
in the physical process.

BFV Controller Arbitrary Output No detection. Unknown.

FP Controller Loss of input
from Main
Computer

FP controller detects this and starts
the fail over procedure transferring
control to the Backup Computer

None

B-5

FP Controller Loss of input
from Backup
Computer

FP controller detects this and starts
fail over procedure if needed to
MFV/BFV/FP controller control

No change unless Main already
failed, if so the water level with drift
as a result of physical process
changes

FP Controller Loss of analog
output

No detection Water level will change in unknown
ways

FP Controller Arbitrary Output
to FP

No detection Pump will follow output, causing
water level to respond accordingly

FP Controller Late delivery of
output to FP

No detection Unknown

FP Controller Loss of Main
Computer failed
signal (failed off)

FP controller will initiate fail over to
Backup Computer

None

FP Controller Loss of Backup
Computer failed
signal (failed off)

None Backup Computer is unavailable for
fail over.

FP Controller Loss of Main
Computer failed
signal (failed on)

FP controller will be unable to tell if
the Main has failed unless the Main
fails its watchdog timer check

Water level output could be
controlled by a failed Main
Computer, causing it to change in
unknown ways

FP Controller Loss of Backup
Computer failed
signal (failed off)

FP controller will be unable to tell if
the Backup has failed unless the
Backup fails its watchdog timer
checks

Water level output could be
controlled by a failed Backup
Computer, causing it to change in
unknown ways

FP Controller Loss of
watchdog timer
status for Main
Computer (failed
off)

FP controller will initiate fail over to
Backup Computer

None

FP Controller Loss of Main
Computer
watchdog timer
signal (failed on)

FP controller will be unable to use
the watchdog timer to fail the
Computer.

Failed Main Computer could control
the feedwater pump, causing
unknown changes in the water level

FP Controller Loss of
watchdog timer
status for
Backup
Computer (failed
off)

FP controller will transfer control to
its own internal buffer of old output
values

Water level will drift due to changes
in the physical process

FP Controller Loss of Backup
Computer
watchdog timer
signal (failed on)

FP controller will be unable to use
the watchdog timer to fail the
Computer.

Failed Backup Computer could
control the feedwater pump, causing
unknown changes in the water level

FP Controller Arbitrary Output No detection. Unknown.

FP Controller Main Computer
failed (through
watchdog timer
or failed signal)

FP controller initiates transfer of
control to the Backup Computer

None

B-6

FP Controller Backup
Computer failed
(through
watchdog timer
or failed signal)

FP controller initiates transfer of
control to its own internal buffer of
an old value of the FP output

Water level will drift due to changes
in the physical process.

PDI Controller Loss of analog
inputs

PDI controller will output an old MFV
controller signal to the MFV output

MFV will open more, causing an
increase in water level

PDI Controller Loss of power No detection. None, unless the MFV fails. The
resulting failure would be unknown.

PDI Controller Arbitrary Failure No detection. Unknown.

PDI Controller Loss of analog
outputs

PDI will be unable to intervene if the
MFV controller fails

If the MFV controller fails then the
water level will change in unknown
ways

	ABSTRACT
	FOREWORD
	EXECUTIVE SUMMARY
	ABBREVIATIONS
	1. INTRODUCTION
	1.1 Purpose of the Report
	1.2 Background
	1.2.1 Characterization of Analog and Digital Systems
	1.2.1.1 Analog vs. Digital Instrumentation and Control Systems
	1.2.1.2 Digital Instrumentation and Control System Experience

	1.2.2 Methodologies for Modeling Type I Interactions
	1.2.3 Methodologies for Modeling Type II Interactions
	1.2.3 A Subjective Assessment of Available Methodologies

	1.3 Review of Current NRC Position on Digital Systems
	1.4 Characterization and Taxonomy of Digital I&C Systems

	2. DESCRIPTION OF THE BENCHMARK SYSTEM
	2.1 System Overview
	2.2 Detailed View of the Benchmark System
	2.2.1 Physical Connections for the DFWCS
	2.2.2 Control Laws
	2.2.3 Steam Generator Simulation Package
	2.2.3.1 Steam Generator Model
	2.2.3.2 Main Steam System
	2.2.3.3 Main Feedwater and Auxiliary Feedwater Systems

	2.2.4 Fault Tolerant Features

	2.3 Description of System Operation under Abnormal Conditions
	2.3.1 Main and Backup Computer FMEA
	 2.3.2 The FMEAs for MFV, FP, BFV and PDI decision Controllers
	2.3.3 Communication in I&C Systems and Related Problems

	2.4 Application of a Safety Quantification Methodology to the Digital Feed Water Control System for Failure Data Generation
	2.4.1 Background
	2.4.2 Concepts of Dependable Systems
	2.4.2.1 The Attributes of Dependability
	2.4.2.2 Impairments to Dependability

	2.4.3. Fault Injection as Dependability Assessment Method
	2.4.4 Overview of the Quantitative Dependability Assessment Methodology

	 2.4.5 Experimental Setup: Design, Implementation of the Fault Injection Environment
	2.4.5.1 Overview
	2.4.5.2 The DFWCS Experimental Test Bed
	 2.4.5.3 Identifying Potential Fault Injections Locations and Values for the DFWCS Application
	2.4.5.4 Fault Injection Automation
	2.4.5.5 Data Collection

	2.4.6 Results From a Fault Injection Campaign
	2.4.6.1 Error Classification
	2.4.6.2 Common Mode Failures

	2.4.7 Estimation of Failure Mode Rates and Failure Mode Probabilities on Demand
	2.4.8 Initial Conclusions

	2.5 An Example Initiating Event For Illustration

	3. DESCRIPTION OF THE DYNAMIC FLOWGRAPH METHODOLOGY
	3.1 DFM Model Construction
	3.1.1 DFM Modeling Elements
	3.1.1.1 Process Variable Nodes
	3.1.1.2 Causality Edges
	3.1.1.3 Transfer Boxes and Associated Decision Tables
	3.1.1.4 Condition Edges
	3.1.1.5 Condition Nodes
	3.1.1.6 Transition Boxes and Associated Decision Tables
	3.1.1.7 DFM Model Construction and Integration

	3.2 DFM Model Analysis
	3.2.1 Deductive Analysis and Inductive Analysis
	3.2.1.1 Deductive Analysis
	3.2.1.1.1 Multi-Valued Logic and Prime Implicants
	3.2.1.1.2 Physical Consistency Rules
	3.2.1.1.3 Dynamic Consistency Rules
	3.2.1.2 Inductive Analysis

	 3.2.2 Design Verification
	3.2.3 Failure and Fault Analysis
	3.2.4 Automated Test Vector Generation

	3.3 Quantification of Deductive Analysis Results
	3.4 Benchmark System Application
	3.4.1 Benchmark System DFM Model

	3.5 Example Initiating Event Application
	3.5.1 DFM Model for the Example Initiating Event Application
	3.5.2 Example Initiating Event DFM Analysis
	3.5.2.1 Example of Deductive DFM Analysis
	3.5.2.2 Example of Inductive DFM Analysis

	4. MARKOV/CCMT METHODOLOGY
	4.1 Example Initiating Event
	4.2 The Markov Approach Coupled with CCMT: Markov/CCMT Methodology
	4.2.1 Definition of the Top Events
	4.2.2 Partitioning of the State Space or the CVSS into Computational Cells
	4.2.3 Markov Modeling of Components
	4.2.3.1 MFV and BFV
	4.2.3.2 FP
	4.2.3.3 Main (MC) and Backup Computers
	4.2.3.4 Sensors
	4.2.3.5 FP, MFV and BFV Controllers
	4.2.3.6 PDI Controller
	4.2.3.7 System State Reduction Through Macro-Components

	4.2.4 Determination of the Cell-to-Cell Transition Probabilities
	4.2.5 Determination of the Component State Transition Probabilities
	4.2.6 Determination of the pdf and Cdf for the Top Events

	4.3 Implementation with the Example Initiating Event
	4.3.1 Definition of the Top Events
	4.3.2 Partitioning of the CVSS
	4.3.3 Markov Modeling of the Components and the Determination of the Elements h(n|n’,j’->j)
	4.3.4 Determination of the Cell-to-Cell Transition Probabilities

	5. INCORPORATION OF THE DFM AND MARKOV/CCMT MODELS INTO THE EXAMPLE PLANT PRA
	5.1 Introduction
	5.2 Description of Example Plant PRA
	5.3 Incorporation of DFM Output into the Example Plant PRA
	5.3.1 Augmentation of the ET/FT Structure with DFM
	5.3.2 Example of Integrating DFM Results into the Master PRA
	5.3.3 Technical Issues and Potential Resolution for Integrating DFM into the Master PRA

	5.4 Incorporation of Markov/CCMT Methodology Output into the Example Plant PRA
	5.4.1 DET Generation from Markov Model
	5.4.1.1 Algorithm 1
	5.4.1.2 Algorithm 2

	5.4.2 DET Analysis of a Failure Scenario for the Benchmark System
	5.4.3 DET Incorporation into an Existing PRA
	5.4.4 Outstanding Issues

	5.5 Comparison of DFM and Markov/CCMT Methodology Results to be Incorporated into the Example Plant PRA
	5.5.1 Example Initiating Event
	5.5.2 DFM Analysis Results
	 5.5.3 Markov/CCMT Analysis Results
	5.5.4 Comparison

	6. INTERFACING WITH SAPHIRE
	6.1 Description of SAPHIRE
	6.2 Model Input Format
	6.3 Integrating the Model to the Plant PRA

	7. UNCERTAINTY QUANTIFICATION
	Uncertainties in PRA are classified either
	7.1 Modeling Uncertainty
	7.1.1 Analytical Model
	7.1.2 Statistical Model
	7.1.3 Generic Processor Fault Model

	7.2 Operational Profile Uncertainty
	7.3 Fault Injection Experiment Uncertainty
	7.4 Summary

	8. PROPOSED BENCHMARK, PROCEDURES AND THE REQUIREMENTS FOR THE RELIABILITY MODELING OF DIGITAL INSTRUMENTATION AND CONTROL SYSTEMS
	9. SUMMARY AND CONCLUSION
	10. REFERENCES
	Appendix A Steam Generator Model
	A.1 Upper Region Superheated, Lower Region Subcooled
	A.2 Upper Region Superheated, Lower Region Saturated
	A.3 Upper Region Saturated, Lower Region Subcooled
	 A.4 Upper Region Saturated, Lower Region Saturated

	Appendix B

