NEMS International Energy Module

Model Documentation Report

World Oil Market Petroleum Products Supply and Oxygenates Supply Components

April 4, 1994

International, Economic, and Integrated Forecasting Branch Energy Demand and Integration Division Office of Integrated Analysis and Forecasting Energy Information Administration

TABLE OF CONTENTS

		Page 1
	PREFACE	vi
1.	MODEL OVERVIEW	1
	A. IEM Design ObjectivesB. Scope of IEMC. Relation to Other NEMS Components	
2.	STRUCTURE OF IEM COMPONENTS	
	 2.1 World Oil Market (WOM) A. Background B. General WOM Modeling Approach C. Flow Diagram of WOM Model Structure D. Key WOM Assumptions E. Basis of WOM Modeling Choices 	8
	 2.2 Petroleum Product Supply (PPS) A. Background B. General PPS Modeling Approach C. Flow Diagram of PPS Model Structure D. Key PPS Assumptions E. Basis of PPS Modeling Choices 	13
	 2.3 Oxygenates Supply (OS) A. Background B. General OS Modeling Approach C. Flow Diagram of OS Model Structure D. Key OS Assumptions E. Basis of OS Modeling Choices 	17
3.	MATHEMATICAL SPECIFICATIONS	25
	 A. World Oil Market B. Petroleum Product Supply C. Oxygenates Supply D. Solution Methodology 	

Appendix C	Sample Input Data for Petroleum Product	
	Import Supply Curves	61

Page

LIST OF FIGURES

Figure 1-1	Petroleum Allocation for Defense Districts Map
Figure 2-1	Flow Chart for IEM Module: Market Clearing With Exogenous OPEC Supply
Figure 2-2	1993 Motor Gasoline and Jet Fuel Import Supply Curves to PADD1
Figure 2-3	Flow Chart for Petroleum Products Supply Submodule
Figure 2-4	Methanol Import Supply Curves to PADD1, 1995, 2000, and 2005
Figure 2-5	Flow Chart for Oxygenates Supply Submodule

LIST OF TABLES

Table 1-1	Scope of IEM Components
Table 1-2	Sources of Crude Oil Demand and Supply
Table 1-3	Intermodule Input and Output Flows for the IEM
Table 2-1	Crude Oil Categories
Table 4-1	IEM Model Variables
Table 4-2	WOM Model Parameters
Table 4-3	Data Sources for Estimated WOM Parameters
Table 4-4	Cross-Reference Table

ABBREVIATIONS & ACRONYMS

EMF	Energy Modeling Forum
GDP	Gross Domestic Product
IEO	International Energy Outlook
NEMS	National Energy Modeling System
OECD	Organization for Economic Cooperation and Development
OGSM	Oil & Gas Supply Module
OMS	Oil Market Simulation model
OPEC	Organization of Petroleum Exporting Countries
OS	Oxygenates Supply
PADD	Petroleum Administration for Defense District
PMM	Petroleum Market Module
PPS	Petroleum Product Supply
ROW	Rest-of-World
SPR	Strategic Petroleum Reserve
WOM	World Oil Market
WOP	World Oil Price
WORLD	World Oil Refining Logistics and Demand Model

PREFACE

The Energy Information Administration (EIA) is developing the National Energy Modeling System (NEMS) to enhance its energy forecasting capabilities and to provide the Department of Energy with a comprehensive framework for analyzing alternative energy futures. NEMS is designed with a multilevel modular structure that represents specific energy supply activities, conversion processes, and demand sectors as a series of self-contained units which are linked by an integrating mechanism. The NEMS International Energy Module (IEM) computes world oil prices and the resulting patterns of international trade in crude oil and refined products. This report is a reference document for energy analysts, model users, and the public that is intended to meet EIA's legal obligation to provide adequate documentation for all statistical and forecast reports (*Public Law 93-275, section 57(b)(1)*. Its purpose is to describe the structure of the IEM. Actual operation of the model is not discussed here.

The report contains four sections summarizing the overall structure of the IEM and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods. Following a general description of the function and rationale of its key components, system and equation level information sufficient to permit independent evaluation of the model's technical details is presented. The major sections of this report are:

- Model Overview -- This section identifies the analytical issues IEM is intended to address, the general types of activities and relationships it embodies, and its interactions with other NEMS modules.
- **Structure of IEM Components** -- This section describes in greater detail the modeling approach adopted for each IEM component, citing theoretical or empirical evidence supporting those choices. The structure of each component is displayed with flow diagrams and fundamental assumptions about behavior or technology are highlighted.
- Mathematical Specifications -- Model equations for transforming data, representing behavioral or technological relationships, and defining market equilibrium are presented.
- Variables, Data, and Parameters -- List of model inputs and outputs with definitions, sources, units of measure. Discussion of data sources and procedures for estimating model coefficients. Cross-reference tables orienting users to the model's computer code are also presented.

These sections of the report are followed by appendices that include an IEM model abstract and an annotated copy of the IEM computer code.

The EIA contact person for questions relating to the structure or performance of the IEM is:

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

Mr. G. Daniel Butler U.S. Department of Energy EI-812 1000 Independence Ave., SW Washington, DC 20585

Tel: 202-586-9503

1. MODEL OVERVIEW

A. IEM Design Objectives

The Oil Market Simulation (OMS) model has been EIA's primary tool for forecasting mid to long term world oil prices. To enhance the capabilities of the forecasting system to address international issues and their interaction with U.S. markets, an expansion of the OMS methodology is incorporated into the NEMS International Energy Module (IEM). Components of the NEMS IEM accomplish the following:

- Calculate the average world oil price and provide supply curves for five grades of crude oil for import to the United States.
- Calculate the change in the world oil price in response to shifts in U.S. import demands.
- Provide crude oil and petroleum product supply curves with a representation of foreign supply levels and associated costs for U.S. petroleum imports. Calculate shifts in import supply curves as world oil market conditions vary.¹
- Provide supply curves for U.S. imports of oxygenates (Methyl tertiary butyl ether [MTBE] and methanol).

Three separate components of the IEM have been developed to carry out these functions. The World Oil Market (WOM) component is an expanded version of OMS. Its role in IEM is to forecast international crude oil market conditions, including price and supply availability, and the effects of U.S. demand on the world market. The Petroleum Product Supply (PPS) component generates supply curves for petroleum products imported into the United States. These supply curves reflect conditions in the international market, including refinery capacity, transportation costs, and the effects of U.S. demand on world markets. Finally, the Oxygenates Supply (OS) component produces supply curves for U.S. imports of MTBE and methanol.

B. Scope of IEM

The traditional OMS model has global coverage with relatively limited detail for individual regions and no representation of refined product markets. The IEM supplements these results in terms of both model inputs and outputs by using results from the NEMS Petroleum Market Module (PMM) and generating import supply curves for crude oil and refined products that are disaggregated by grade and location. The integrated NEMS formulation therefore links the demand for crude oil by refiners with end-use demands for refined products, which are in turn influenced by various measures of economic

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

¹ In international trade economics, what is called an "import supply curve" in this report is generally referred to as the rest-of-the-world excess supply curve.

activity levels. Table 1-1 summarizes the regionality and level of detail of individual IEM components.

The world oil price (WOP) calculated in the WOM submodule is used to adjust exogenouslydetermined Petroleum Administration for Defense District-level (PADD) import supply curves for crude oil, refined petroleum products, and gasoline blending components (oxygenates). Figure 1-1 presents a map of the United States segregated into PADDs. World crude trade is mapped into five classes that reflect their product yield characteristics in the refinery environment. One class contains the light, low sulfur crude oils that have a relatively high yield of light products (gasoline, distillate, and jet fuel). The second class consists of medium sulfur heavy oils. The remaining classes have high sulfur content and three weight classes - light, heavy, and very heavy. A total of 12 refined product categories are covered, including gasoline blending components (MTBE and methanol) and two grades of distillate and residual fuels based on sulfur content.

While the IEM is intended to be executed as a module of the NEMS system, and utilizing its complete capabilities and features requires a NEMS interface, it is also possible to execute the WOM component of IEM on a stand-alone basis in the tradition of the OMS model. The WOM forecasts world oil price on the basis of a market clearing given an exogenously specified OPEC output path. In addition to simultaneously forecasting prices and quantities, the WOM submodule can also be used to determine the regional production and consumption levels (and implicit trade patterns) corresponding to a user-specified world oil price path. Sensitivity analyses can be conducted to examine the response of the world oil market to changes in oil price, OPEC production capacity and demand.

To summarize, the model searches for a world oil price compatible with supply-demand equilibrium in each region. Non-OPEC free world demand and supply are determined by a set of price-quantity relationships, and in equilibrium the difference between world demand and non-OPEC world supply equals OPEC production. OPEC production is determined by an exogenously specified output path. Output of a price run includes forecasts of the world oil price, OPEC production, free world production and consumption, net imports by region, OPEC revenue, and spare OPEC capacity.

C. Relation to Other NEMS Components

The IEM both uses information from and provides information to other NEMS components. It primarily uses information about U.S. supply and demand balances and provides information about market conditions in the rest of the world. It should be noted, however, that the present focus of the IEM is exclusively on the international oil market. It is the intent to add models of international markets in other fuels as the development of the IEM evolves. Currently, any interactions between the U.S. and foreign regions in fuels other than oil (for example, coal trade) are modeled in the particular NEMS module that deals with that fuel. Sources of crude oil demand and supply relationships in the IEM are shown in Table 1-2.

For U.S. crude oil supply and demand, the WOM uses forecasts generated by the NEMS Petroleum Market Module (based on supply curves provided by the Oil & Gas Supply Module and demand curves from the end-use demand modules). For other non-OPEC regions, regional oil demand in a given year is determined as a function of the prevailing average world oil price, the current level of regional

economic activity, and its own lagged value. Non-OPEC regional oil supply is specified as a function of the world oil price and regional supply in the previous period. The time path of OPEC production is set exogenously.² In addition to these behavioral relationships, regional oil demand and supply values that are determined exogenously include: (1) OPEC demand levels, (2) U.S. Strategic Petroleum Reserve fill rates, and (3) the net exports from Eurasia (the former Soviet Union, Eastern Europe, and China).

The WOM subcomponent calculates world crude oil prices based on initial estimates of U.S. crude oil supply and demand volumes provided from the PMM. The resulting WOP determines the position of crude oil, refined product, and oxygenates supply curves, which are sent to the PMM to summarize the availability of imports and petroleum product prices for each year of a NEMS forecast. These supply curves are then brought into the PMM to determine the U.S. petroleum supply/demand balance that reflects a least-cost mix of domestic and foreign supplies. The resulting U.S. crude oil supply and demand quantities are then sent back to the WOM component to recalculate the WOP, which is again used to adjust crude oil and petroleum product supply curves. This iterative process continues until the WOP is stable over successive iterations, implying that the crude oil market is equilibrated both in the U.S. and, given U.S. supplies and demands, the world as a whole. Table 1-3 summarizes IEM inputs from and outputs to other NEMS modules.

² OPEC behavior can alternatively be represented using a price reaction function relating percentage price changes to capacity utilization rates, with stable prices when target utilization rates are achieved. Although this formulation was previously consistent with observed outcomes, its explanatory power has been greatly diminished by changes in market relationships associated with the Gulf War. Therefore, a straight market-clearing approach with exogenously specified OPEC output paths is now preferred.

IEM			
<u>Component</u>	<u>Regionality</u>		<u>Coverage</u>
WOM/Pricing	U.S U.S. Territories Canada Japan Australia/New 2 OECD Europe OPEC Eurasia Rest of World	Zealand	Petroleum
WOM/U.S. Imports	PADDs		<u>Crude oil</u> Low Sulfur Light Med. Sulfur Heavy High Sulfur Light High Sulfur Heavy High Sulfur, Very Heavy
DDC		Defined Droduct	-
FFS	PADDs	<u>Kenned Product</u>	Reformulated Gasoline Gasoline Distillate Low Sulfur Distillate Low Sulfur Residual Fuel High Sulfur Residual Fuel Jet Fuel Liquefied Petroleum Gases Petrochemical Feedstocks Other Refined Products*
OS	PADDs	Methano	ol MTBE

* Includes refinery gas, naphtha, petroleum coke, and other miscellaneous products.

	Crude Oil <u>Demand</u>	Crude Oil <u>Supply</u>
U.S.	NEMS PMM	NEMS PMM
Other Non-OPEC	Endogenous	Endogenous
OPEC	Exogenous	Exogenous

Table 1-2. Sources of Crude Oil Demand and Supply

Table 1-3. Intermodule Input and Output Flows for the International Energy Module

Model Inputs	From Module		Regions
Controlling information: iteration count, time horizon, etc.	System	N/A	
U.S. Petroleum supply and demand	РММ		U.S.
Model Outputs	To Module		Regions
World oil price	System	N/A	
Import supply curves for crude oil by grade	PMM		PADD
Import supply curves for refined products	PMM		PADD
Import supply curves for gasoline blending components (oxygenates)	РММ		PADD

2. STRUCTURE OF IEM COMPONENTS

2.1 World Oil Market

A. Background

The purpose of the World Oil Market component of IEM is to compute the prices and available quantities of crude oil for import to the U.S. under alternative worldwide energy market conditions over the 1990-2010 time period. Alternative scenarios could include policy and regulatory initiatives (such as foreign adoption of U.S. clean air standards), resource conditions (such as the declining quality of crude oil in world trade or the location of new refinery capacity), and economic growth paths (such as low, mid, and high cases).

In previous *Annual Energy Outlook* forecasts generated from the stand-alone OMS model, there has typically not been any formal feedback mechanism between world oil price estimates and U.S. petroleum consumption and imports. World oil price trajectories have been treated simply as unalterable assumptions in each scenario. Now world oil prices are endogenously determined as a function of NEMS-determined oil supply and demand, introducing formal feedback effects to world and U.S. economic growth.

B. General WOM Modeling Approach

The World Oil Market submodule adopts the basic methodology of EIA's Oil Market Simulation (OMS) model with more detailed coverage of U.S. supply and demand patterns provided through linkages with the NEMS Petroleum Market Module (PMM). The OMS model uses a recursive simulation approach in which period t+1 values of endogenous variables such as oil demand and supply levels are influenced by their values in period t. Implementing this approach involves three key components of global crude oil markets: demand, non-OPEC oil supply, and OPEC production. Here the behavior and decision rules of economic agents in the oil market which determine these factors is discussed.

Crude Oil Demand:

U.S. crude oil demand is provided to the WOM submodule by the PMM, and is therefore exogenous to the WOM. The demand for crude oil in each non-U.S. region is endogenously determined within the WOM submodule by three factors: real income, world oil price, and demand for crude oil in the previous period. Traditional economic theory and empirical findings have shown that both income and price play an important role in determining oil consumption; income has a positive impact on demand and price has a negative impact. Price changes influence demand both directly and indirectly through their impact on levels of economic activity. The demand for oil in a previous year is called lagged demand, and is used to capture the demand adjustment process reflected in varying short-run and long-run price elasticities. Short-run demand is considered less elastic than long-run demand because the

demand for petroleum products is derived from the demand for the services of energy-using capital or other end-use durables, such as automobiles, aircraft, and electric appliances. Delays in altering this energy-using capital stock limit the extent to which consumers are able to change their levels of energy consumption in the short-run. Therefore, the inclusion of lagged variables in the oil demand equation assumes that consumption will slowly adjust over time in response to a one-time change in prices, *ceteris paribus*, until a new level of demand is reached which is consistent with the new structure of relative prices.

Non-OPEC Oil Supply:

U.S. crude oil production is also provided to the WOM submodule by the PMM. The supply of oil from other non-OPEC regions is determined by two factors: world oil price and non-OPEC production lagged one period. Crude oil production within each region is divided into conventional and unconventional sources, with distinct supply functions and parameter values for each type of production. Conventional and unconventional supplies are both positively related to world oil prices, subject to an upper bound set by production capacity. The incorporation of lagged production in the supply equations reflects that the supply of oil at any particular time is, in part, determined by supply during the previous period. As with oil demand, short-run supply responses to a change in oil prices is limited by the time required to invest in the new equipment required to expand production capacity (e.g., drilling rigs) and the delays inherent in adding reserves, developing wells, and extracting oil. Therefore, oil supply is more price-elastic in the long-run than in the short-run. Other things being equal, oil producers will adjust over time in response to a discrete change in prices until a new optimal level of supply is reached. Lagged supply can also be thought of as a proxy for information about oil reserves and production capacity.

OPEC Production:

Output and pricing behavior of OPEC in the IEM are exogenously specified by a time path of OPEC production based on expert judgement and/or "offline" analysis. Assumed growth rates of OPEC production may vary from year to year over the forecast period, but the level of OPEC output within any given year is independent of the WOP. (Of course, the converse does not hold since the equilibrium WOP will depend on the specified level of OPEC output.

World Oil Market Interactions:

The WOM submodule of IEM solves for the equilibrium world oil price (WOP) which equates world petroleum demand with the sum of non-OPEC supply and OPEC production. Changes in prices bring the world oil market into balance though three primary channels:

- The direct effect on regional demand due to world prices, where higher prices imply lower consumption and vice-versa.
- The direct effect on non-OPEC production, where a higher price stimulates increased output, all else held constant.

The indirect effect of price on consumption as it alters real income growth (the feedback effect), with higher oil prices reducing real income which, in turn, implies lower consumption since the consumption/income effect is positive, although generally inelastic.

The parameters in the non-OPEC oil demand and supply equations are estimated on the basis of forecasts from other larger models. This approach is adopted because the OMS is designed to forecast future activities in the world oil market. Models providing various inputs to the OMS model include the Short-Term Integrated Forecasting System (STIFS), the World Energy Projection System (WEPS), and the Wharton Econometric Forecasting Associates, Inc (WEFA Group) Macro Model. Details about the derivation of WOM parameter values from these models are discussed in Section 4 of this report.

Crude Oil Import Supply Curves:

The equilibrium world oil price is input directly into the NEMS System module and indirectly to the NEMS PMM in the form of crude oil import supply curves, distinguished by PADD and crude oil quality as outlined in Table 2-1. Because foreign regions are represented in the IEM only as aggregate estimates of petroleum supply and demand (making no distinction as to crude oil, natural gas liquids, refined products, etc.), foreign sources of crude oil to the U.S. are represented in the form of import supply curves. A library of crude oil import supply curves are derived external to NEMS using the WORLD model (see Section 2.2B) as a function of the world oil price, the location and quality of the available world trade crude, world-scale transportation rates and bunker fuel costs, and scenario-specific assumptions. After the WOM has converged, through iterations with related components of NEMS, on a forecasted average world oil price, crude oil import supply curves will be provided to NEMS based on the information in the externally-derived library. The NEMS will be constrained to import a mix of crude oil qualities such that the average acquisition cost to domestic refiners will equal the forecasted world oil price.

Table 2-1. Crude Oil Categories for IEM Import Supply Curves.

		Sulfur	API
<u>Group</u>	<u>Code</u>	<u>Content</u>	<u>Gravity</u>
Low Sulfur	S	0-0 2	25-66
Light	0	0.2-0.5	32-66
Modium Sulfur	мы	0 2 1 1	21.22
Heavy		0.2-1.1	21-32
High Sulfur	ш	0 5-1 1	32-56
l ight		1 1-1 3	30-56
g		1.3-1.99	35-56
High Sulfur Heavy	НН	1.3-1.99	21-35
High Sulfur Very Heavy	HV	> 0.7	< 21

C. Flow Diagram of WOM Structure

Figure 2-1 shows the general structure of the WOM submodule, including its links with the PPS and OS submodules of IEM. Based on external assumptions and a trial price, crude oil supplies and demands for non-OPEC regions are calculated. U.S. supply and demand is provided from the NEMS PMM (using import supply relationships that are consistent with the trial price), while balances for the rest-of-world (ROW) regions are endogenously estimated using the relationships from Section 3 below.³ Regional oil production and consumption levels are aggregated to obtain non-OPEC world totals, and any excess of demand over supply is assumed to be met by OPEC production. This "call on OPEC production" is then compared to the exogenously specified level of OPEC output for that period. If required OPEC output is greater than specified OPEC output, there is excess world demand for oil and the current trial price should be raised in the next iteration to dampen demand and stimulate non-OPEC oil production. The new price P_t is used to adjust the exogenously-derived import supply curves for crude oil and refined products, which in turn induce revisions in U.S. petroleum supply and demand balances. Together with revised ROW crude oil supplies and demands, these adjustments alter the

³ Non-OPEC world regions represented in the IEM are the U.S., Canada, Japan, European OECD, and Other Free World. Oil supply and demand for Eurasian economies are represented by exogenously specified paths.

residual demand for OPEC oil. If required OPEC output is under the specified level, the trial price should be lowered to stimulate oil demand and reduce non-OPEC production. This process continues until the demand for OPEC output equals the specified level, indicating that both world and U.S. crude oil markets are in equilibrium at that price.

D. Key WOM Assumptions

The WOM submodule of IEM is based on the OMS approach to modeling international oil markets, which is dependent on two key assumptions: 1) oil is the marginal fuel, and 2) OPEC produces such marginal supply at prices that inhibit any significant market penetration of new technologies. Under these assumptions, world oil prices are computed as a function of OPEC production decisions, availability of non-OPEC oil supplies, and worldwide economic growth. Under the assumption that oil is the marginal fuel, competition between oil and other fuels can be ignored since potential volumes of fuel switching are assumed to be too small to influence prices. The second assumption means the price of oil will not rise high enough to induce the market penetration of new technologies that would reduce the demand for oil sufficiently to put downward pressure on its price.⁴ Other assumptions which facilitate the analysis include:

- The current oil price, Gross Domestic Product (GDP) growth rates, and last year's supplies and demands are the only determinants of non-OPEC, non-communist supply and demand.⁵
- A set of reference supplies and demands (usually specified at a constant real price throughout the forecast period).
- Price-taking behavior by all countries and regions except for OPEC.

E. Basis of WOM Modeling Choices

Two distinct approaches are generally used to model the world oil market: recursive simulation and optimization. Both approaches assume that OPEC has significant influence on the world oil price; however, each method assumes a different basis for OPEC behavior. The rationale behind recursive simulation is the perception that there is only limited understanding of past and future energy market behavior. In optimization, OPEC is assumed to set prices in order to maximize the discounted present

⁴ Over time conventional oil is expected to gradually decline as the world's marginal fuel. Therefore, accounting for competition among fuels and allowing for the greater possible penetration of new technologies for coal, nuclear power, natural gas and other alternatives will become increasingly important.

⁵ This assumption does not apply to the U.S. in the IEM version of OMS. In order to ensure consistency between World Oil Market results and other components of NEMS, U.S. crude oil supply and demand is taken from the NEMS Petroleum Market Module, which in turn draws inputs from the NEMS Oil & Gas Supply Module.

value of its stream of profits throughout the forecast period. Such an approach implies perfect foresight about future energy markets. That is, OPEC's output decisions are not myopically based only on their influence on current prices and revenue, but instead depend on perfect information about supplies and demands over the entire forecast horizon.⁶

A survey of current models indicates that recursive simulation is favored over optimization. Four advantages of using the recursive simulation approach are frequently cited: 1) it often does well in explaining past data, 2) it evolves from today's actual oil price, 3) forecasts change only gradually in response to parameter changes, and 4) lags can easily be incorporated into the responsiveness of supply and demand. The primary advantage of the optimization approach is that there can be a clearly defined objective for OPEC (e.g., profit maximization) rather than the somewhat *ad hoc* objectives (e.g., target capacity utilization) used in the recursive simulation approach, but this is more than offset by the requirement to assume perfect foresight.

2.2 Petroleum Product Supply

A. Background

The purpose of the PPS component within the IEM is to represent the availability of foreign petroleum product supplies to U.S. markets, so that a least cost mix of domestic and imported supplies can be derived within the PMM. The PPS relies on petroleum product import supply curves obtained from the <u>World Oil Refining, Logistics, and Demand (WORLD)</u> Linear Programming (LP) model, a detailed international refining and transportation model depicting refinery operations, product trade, and capital expansions and retirements. Since imbedding WORLD directly into the NEMS structure is currently not feasible due to its size and complexity, a set of import supply curves generated from solutions to WORLD are used to summarize global petroleum supply conditions.⁷

Only a few international energy models provide forecasts by petroleum product type. However, these models do not simulate the petroleum refining and transportation sectors. By not modeling the refining and transportation sectors of the petroleum industry, these models cannot quantify the impacts on product prices or other factors of interest for policy analyses. They cannot assess the impact, for example, of future refinery construction, significant changes in transportation costs due to requirements for new types of vessels, or new environmental regulations that affect refinery operations or the mix of products consumed.

⁶ It is important to note that there are as many optimal *ex ante* OPEC revenue streams as there are expectations of future energy market conditions. Any given optimization is driven by a set of foresight assumptions that are highly uncertain.

⁷ Future work will examine the possibility of directly incorporating a streamlined or "reduced form" version of WORLD into the IEM.

B. General PPS Modeling Approach

A representation of foreign product supply levels and associated costs are incorporated in the PPS component of the IEM. This representation takes the form of petroleum product supply curves which are obtained from output generated by the WORLD LP model, and subsequently adjusted within the PPS to reflect changes in the world oil price (WOP).⁸ These import supply curves consist of a series of three stepped line segments, each defining a single price over a range of supply (Figure 2-2 provides representations of the 1993 import supply curves for motor gasoline and jet fuel to PADD1). PADD-specific import supply curves are generated for each of ten refined products for each year of a NEMS forecast.

The WORLD LP Model:

WORLD is a 4,500 row by 25,000 column LP model which simulates the operation, technology, and economics of the international petroleum industry. The WORLD model includes numerous cost, technology, demand and logistics components, including detailed refining matrices, and is well-suited for examining the impacts on domestic refiners of environmental regulations, such as reformulated fuel specifications and other policy initiatives. It provides detailed simulations for each year of a NEMS forecast with features such as:

- <u>Crude Oils</u> provides detail on over 120 world crude oils, by nation and crude type, including SPR crudes;
- Refining Technology simulates and provides a detailed representation of over 50 refinery processes, including advanced technologies for reformulated gasoline, oxygenates and military fuels;
- <u>Capital Investment</u> contains factors which represent the cost of capital for refineries in each region;
- <u>Product Formulation and Demand</u> 30 product types are represented, and allows product blending and quality specifications to be represented;
- Transportation provides comprehensive inter-regional transportation detail of crudes, petroleum products, and intermediates;
- Regional Effects numerous levels of detail are provided, including individual country, crude supply regions (EIA supply regions), refining regions (PADDs) and demand regions (Census Divisions), as well as detail on refinery types.

⁸ Again, because foreign regions are represented in the IEM only as aggregate estimates of petroleum supply and demand (making no distinction as to crude oil, natural gas liquids or refined products, for example), it becomes necessary to represent the foreign sources of refined petroleum products to the U.S. in the form of import supply curves.

WORLD is solved by using the above data on crude shipping, processing, investment, blending and product shipping to satisfy specific product demands in a manner which minimizes worldwide refining and transportation costs while simultaneously meeting all system constraints, including shipping limits, capacity and operational limits, product blending specifications, and regional product demands.

Derivation of Import Supply Curves:

The primary output from WORLD to the IEM are the price-quantity arrays used to construct petroleum product import supply curves for each PADD and forecast year of the NEMS. The following steps summarize how the product import supply curves are generated by WORLD for the PPS:

- 1. Determine maximum refined product imports into the United States by assuming that no additional domestic refinery capacity is built. This is accomplished using the WORLD model for a given year and world oil price case (high, base, or low).
- 2. The WORLD model simulation in Step 1 represents one piecewise-linear step of an import supply curve for each PADD/refined product combination. Two additional steps of the import supply curves are obtained by reducing U.S. refined product demands in amounts equivalent to one-third of a PADD's import for each refined product and using the WORLD model for each reduced-demand case.
- 3. The quantities reflected in the import supply curves are the differences between a PADD's import levels in successive simulations of the model. The prices are the marginal prices (shadow costs) from the linear programming solution.

Supply Curve Adjustment:

The fundamental operation conducted within the PPS component is the adjustment of the product import supply curves received from the WORLD model to reflect changes in the estimated world oil price. For a given year of a NEMS forecast, the various components of the IEM iterate with the domestic PMM in NEMS to find a WOP consistent with supply-demand balance in the domestic petroleum markets. The supply curve adjustment process consists of adding or subtracting any change in the WOP to the import product prices after model iteration. The process shifts the import product supply curves up or down by the amount of change in the WOP after each model iteration, but does not alter the shape of the supply curves. Input for this calculation (the WOP) is obtained from the WOM component of the IEM.

The PPS component passes the adjusted product supply curves to the domestic PMM which contains an initial estimate of the quantities of petroleum product and crude imports. The supply levels and costs (the supply curves) of imported products determined within the PPS are then compared to the equivalent U.S. product information in the PMM. That is, the set of product import supply curves, after being adjusted to reflect changes in the WOP, are passed to the PMM and a new U.S. supply and demand balance is achieved in response to the new prices. This iterative process continues until a least cost mix of domestic and foreign supplies is determined.

C. Flow Diagram of PPS Model Structure

Figure 2-3 presents a flow diagram of the PPS Component of the IEM. As can be seen, the WOM component of the IEM provides the world oil price to the PPS which adjusts the import supply curves received from WORLD. This data is then passed to the PMM component of the NEMS which computes a supply/demand balance based on the new set of prices.

D. Key PPS Assumptions

Because of its size and complexity, the WORLD model is currently precluded from being incorporated directly into the NEMS computing environment. Because the petroleum product import supply curves used within the PPS are obtained exogenously, the IEM is not a completely closed system. Incorporating the product import supply curves exogenously implies that the U.S. supply and demand assumptions in the WORLD model will never perfectly correspond to the supply and demand estimates in the IEM and NEMS as a whole. However, such discrepancies have always been found to be insignificant in the mid-term assuming business-as-usual world oil market conditions (that is, conditions under which there are no major disruptions in worldwide petroleum supplies over the forecast period).

E. Basis of PPS Modeling Choices

Models of petroleum product supply that incorporate refinery operation and transportation costs are generally linear programming (LP) models. LPs are the model of choice in the petroleum industry because they allow refiners and distributors to optimize operations given certain production and transportation constraints. In addition, petroleum refining and transportation LPs are the best source of information on marginal costs for individual refined products. Other alternatives involve testing numerous refinery configurations to determine optimal operations before marginal costs can be calculated. The sum of individual petroleum companies' marginal costs becomes the industry supply curve, under the assumption of perfect competition.

LPs yield some measurement of the coproduction phenomenon, one of the most difficult concepts to model in the petroleum industry. In a refinery operation, more than one output is produced at a time. If gasoline is the primary product sought from a refinery run, there will also be coproduction of distillate, jet fuel, and other refined products. Similarly, the production of distillate results in the coproduction of gasoline, jet fuel, and so forth. Isolating marginal costs for any particular fuel in this system of interdependency is difficult without the use of LPs. On the other hand, the disadvantages of LPs include the large quantities of data required to support the model and the amount of computer time needed to solve it.

The key building blocks of the PPS submodule are the supply curves exogenously derived by the

WORLD LP model. WORLD is an international refining and transportation LP model, which depicts the economics of worldwide refining and the international trade of crude oils and refined products. In the past, two EIA models have been used to address these issues. However, the refinery formulations of these models failed to adequately simulate the petroleum refining and transportation sectors, and did not appropriately consider environmental regulations or contain adequate structure for assessing potential expansion or retirement of existing worldwide refinery capacity. Consequently, they could not assess the impact, for example, of future refinery construction, significant changes in transportation costs due to requirements for new types of vessels, or new environmental regulations that affect refinery operations or the mix of products consumed.

WORLD can be used to calculate product supply curves under alternative assumptions about the world oil price, changes in refinery operations, and changes in transportation. It allows for additions and retirement of refineries, and changes in their operation and structure. Because of its enhanced capabilities, the WORLD model is now used to generate import supply curves for use in the NEMS. By passing these curves to the domestic PMM component of the NEMS, the PPS modeling choice now allows for an interactive, endogenous determination of the optimal level of U.S. petroleum product imports to be made within the NEMS. Because of its large size and complexity, the WORLD model cannot be directly incorporated into the NEMS.

Due to computer run-time considerations, crude oil, refined product and oxygenate imports into the U.S. are formulated as a set of piece-wise linear import supply curves. It is generally acknowledged that representations of foreign refinery operations would be a superior formulation over the import supply curves. With foreign refinery models in the NEMS, it would be possible to assess such issues as where incremental refinery capacity might be built in the mid to longer term given the stricter environmental specifications of fuels. Future developmental work on the IEM will experiment with incorporating a reduced-form version of the WORLD model in the NEMS.

2.3 Oxygenates Supply

A. Background

The purpose of the OS component is to represent the costs of oxygenated fuels available for import into the U.S. The Clean Air Act Amendments of 1990 (CAA90) impose new environmental requirements on some energy sectors. One section of the law requires an increase in the oxygen content of gasoline to reduce carbon monoxide emissions, which can be accomplished by blending with oxygenates. Effective November 1992, gasoline sold in many areas of the United States during the winter must contain a minimum level (2.7 percent by weight) of oxygen. In 1995, "reformulated gasoline" requirements become effective year-round in nine urban areas. Reformulated gasoline is designed to reduce smog formation and requires a minimum oxygen level (2.0 percent by weight) in addition to other component specifications. These new requirements will increase U.S. demand for oxygenates, but the quantity of future demand is uncertain.Several alcohols and ethers can serve as oxygenates, but the ones most commonly used are ethanol and methyl tertiary butyl ether (MTBE). Methanol is also classified as an oxygenate, but it is not expected to be used directly for gasoline blending. However, it is important as a feedstock for the production of MTBE.

It should also be noted that while its environmental properties are an important determinant in the demand for MTBE, MTBE is primarily used as an additive to boost octane content, in unleaded gasolines. In this context, while U.S. lead reduction levels are largely complete, efforts in Western Europe are ongoing, and are just beginning in many other countries of the world. Consequently, the growing demand for oxygenates in the U.S., coupled with the lead reduction programs in other countries, will increase the worldwide demand for MTBE. It is unlikely that domestic production of MTBE will be sufficient to meet the growing U.S. demand, so imports will become an increasingly important source of supply.

B. General OS Modeling Approach

The OS component of the IEM provides import supply curves for methanol and MTBE. These supply curves represent the prices associated with given quantities of methanol and MTBE that are available for import to the United States from foreign sources. The curves are developed and obtained from the WORLD LP model. Within WORLD the curves are developed from data on pricing practices for current production capacity and assumptions about pricing for new production capacity that is under construction or expected to be constructed in the future. Figure 2-4 presents an example of methanol import supply curves to PADD1 over alternative time periods.

These supply curves are used in the OS component in the same manner as described for the petroleum product supply curves in the preceding section. First, the oxygenate supply curves received from the WORLD model are adjusted to reflect changes in the WOP. These supply curves are then passed to the PMM component, where a new supply and demand balance is achieved. (The WOP is obtained from the WOM component within the IEM). Second, the new quantities of U.S. MTBE and methanol from the PMM component imply a new WOP. The OS component again adjusts the set of oxygenate supply curves based on the new WOP calculated within the WOM. This interaction between the OS, WOM and the PMM is continued until a least cost mix of domestic and foreign oxygenates is obtained. That is, convergence is established when the import quantities (or prices) calculated in the current iteration are identical to the quantities from the prior iteration.

C. Flow Diagram of PPS OS Model Structure

Figure 2-5 presents a flow diagram of the OS component of the IEM. As can be seen the WOM component provides the world oil price to the OS which adjusts the oxygenate import supply curves received from the WORLD LP. These adjusted curves are then passed to the PMM, and through iteration with the WOM, the PMM calculates new input prices and achieves a new U.S. supply-demand balance.

D. Key OS Assumptions

The transportation demand module within NEMS forecasts total demand for high oxygen gasoline. The PMM will determine the quantity of oxygenates needed to satisfy that gasoline demand. The two oxygenates modeled within the OS component, MTBE and methanol, are treated as being competitive, and the PMM determines the demand for each separately.

Because of the expansion potential for the U.S. ethanol industry and the lack of commercial markets for other oxygenates, it is assumed that ethanol, ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), and tertiary butyl alcohol (TBA) will all be supplied from domestic sources. The demand for these oxygenates is not expected to exceed domestic supply capabilities and foreign supplies are not expected to be widely available or less expensive than domestic supplies. Therefore, the IEM does not provide import supply curves for these oxygenates.

E. Basis of OS Modeling Choices

The basis for modeling the OS component corresponds exactly to those for the PPS component. That is, WORLD can be used to calculate oxygenate supply curves under alternative assumptions about the world oil price, changes in refinery operations, changes in transportation costs and requirements, and environmental regulations. It allows for additions and retirement of refineries, and changes in their operation and structure. Because of its highly detailed nature, oxygenate import supply curves are now generated by the WORLD model for use in the NEMS. By passing these curves to the domestic PMM component of the NEMS, the OS modeling choice allows for an interactive, endogenous determination of the optimal level of U.S. petroleum product imports to be made within the NEMS.

Figure 2-1. Flow Chart for IEM Module: Market Clearing with Exogenous OPEC Supply

Figure 2-2. 1993 Motor Gasoline and Jet Fuel Import Supply Curves to PADD I

Figure 2-3. Flow Chart for Petroleum Product Supply Submodule

Figure 2-4. Methanol Import Supply Curves to PADD I, 1995, 2000, and 2005

Figure 2-5. Flow Chart for Oxygenates Supply Submodule

3. MATHEMATICAL SPECIFICATIONS

A. World Oil Market

Crude Oil Demand:

U.S. crude oil demand is calculated within the PMM, while crude oil demand for other world regions is estimated using the following functional forms⁹:

(1)
$$D_{i,t} = RD_{i,t} \times \frac{(GDP_{i,t}/RDGP_{i,t})^{y_i}(D_{i,t-1}/RD_{i,t-1})^{a_i}(P_t/RP_t)^{b_i+f_iy_i}}{(GDP_{i,t-1}/RGDP_{i,t-1})^{a_iy_i}(P_{t-1}/RP_{t-1})^{a_if_iy_i}}$$

where the prefix R denotes reference values and

i	=	U.S., Canada, Japan, OECD Europe, Rest of World (excluding Eurasia), U.S.
		Territories, Australia & New Zealand
D	=	oil demand
GDP =	gro	oss domestic product
Р	=	oil price
t	=	forecast year
у	=	income elasticity
а	=	geometric Koyck-lag parameter
b	=	price elasticity
f	=	feedback elasticity

All parameters and variables except for the oil price P are region specific in all equations for non-OPEC oil demand and supply, although common parameter value assumptions may be adopted for all regions or a subset of regions. Note that the composite price coefficient b + fy reflects that the demand impact of price changes occurs through two channels. The coefficient b represents the usual substitution and income effects resulting in movement along a demand curve in traditional microeconomic theory. The coefficient f reflects the feedback effect arising because higher prices also reduce income, and multiplying this by the income elasticity to obtain the product fy captures the effect of income feedbacks on prices.¹⁰

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

⁹ Crude oil demand by OPEC is exogenously determined.

¹⁰ See Section 2.1B and "The Oil Market Simulation Model: Model Documentation Report" (System Sciences, Inc. for EIA, 1985) for further details on the model specification.

Non-OPEC Crude Oil Supply:

Total crude oil supply is divided into conventional and unconventional output, with distinct parameter values in the supply functions for each type of production. U.S. crude oil supply is calculated within the PMM (based on supply curves constructed within the Oil and Gas Supply Module), while crude supply for other regions is estimated using the following functional forms:

(2a)
$$S_{i,t}^{c} = RS_{i,t}^{c} \times (S_{i,t-1}^{c}/RS_{i,t-1}^{c})^{d_{i}} \times (P_{t}/RP_{t})^{e_{i}}$$

(2b)
$$S_{i,t}^{u} = RS_{i,t}^{u} \times (S_{i,t-1}^{u}/RS_{i,t-1}^{u})^{g_{i}} \times (P_{t}/RP_{t})^{h_{i}}$$

$$(2c) \qquad S_{i,t} = S_{i,t}^{c} + S_{i,t}^{u}$$

where R, P, and t are defined as before and

- i = U.S., Canada, Japan, OECD Europe, and Rest of World (excluding Eurasia)
- S^c = conventional oil supplies (includes crude oil, natural gas liquids, other liquids, and refinery processing gain)
- S^{u} = unconventional oil supplies (includes enhanced oil recovery, synthetic crude oil, and extraction from tar sands and shale oil)
- S = total non-OPEC liquids supply (excluding net Eurasian exports)
- d = geometric Koyck-lag conventional supply parameter
- g = geometric Koyck-lag unconventional supply parameter
- e = price elasticity of conventional supply
- h = price elasticity of unconventional supply

Oil Market Equilibrium:

Equilibrium in the world market for crude oil requires that world oil demand equal the sum of supplies from non-OPEC conventional sources, non-OPEC unconventional sources, and OPEC production:

(3)
$$\sum_{i} D_{i,t} + \Delta Stock_{t} = \sum_{i} S_{i,t} + OPEC_{t} + CPE_{t} + Disc_{t}$$

where D and S are defined as before and

OPEC _t	=	OPEC production
Δ Stock	= 1	change in oil inventories (> 0 implies stock build)
CPE	=	net exports of from Eurasia
Disc	=	residual term

Crude Oil Import Supply Curve Adjustment:

Output from the WOM submodule is linked to the PMM via a set of crude oil import supply curves, which are externally derived from the WORLD LP model based on an assumed initial oil price. Crude oil import supply curves are distinguished by crude oil grade (see Table 2-1) and PADD location. In order to reflect changes in the WOP forecasted by the IEM, the price associated with each import supply quantity is adjusted by the difference between the current equilibrium price and its initial value:

(4) $IMCRSC_{i,i,t} = (IMCRSC_{i,i,t} + Offset) / Deflator$

where t is defined as before, and

IMCRSC	=	price component of the imported crude oil supply curve
i	=	crude oil grade
j	=	PADD
Offset	=	the difference between the NEMS forecasted price and the initial price derived
		by the WORLD model
Deflator	=	GDP price deflator used for adjusting IEM prices to some other year's real
		prices used by other modules within the NEMS.

B. Petroleum Product Supply

Petroleum Product Import Supply Curve Adjustment:

Within the PPS component of the IEM, petroleum product import supply curves are adjusted to reflect changes in the WOP during each iteration of the model until equilibrium supply-demand conditions are met. The adjustment process shifts import product supply curves up or down, but does not alter their shape (slope) after each iteration of the model. For example, if the WOP increases during model iteration to reflect new supply-demand conditions, this price increase is fully added to the product supply curves. This process is done for each of ten refined products for each of five PADDs, and for each year of the model forecast. Refined product import supply curves are adjusted in the following manner within the PPS:

(5)
$$IMPPSC_{i,j,t} = (IMPPSC_{i,j,t} + Offset) / Deflator$$

where t is defined as before, and

IMPPSC	=	price component of the imported refined product supply curve
i	=	refined product type
j	=	PADD
Offset	=	the difference between the NEMS forecasted price and the initial price derived
		by the WORLD model
Deflator	=	GDP price deflator used for adjusting IEM prices to some other year's real
		prices used by other modules within the NEMS.

C. Oxygenates Supply

Methanol and MTBE Import Supply Curve Adjustment:

Within the OS component, methanol and MTBE import supply curves are adjusted to reflect changes in the forecasted WOP during each iteration of the IEM in the same manner as refined petroleum products are adjusted within the PPS. The adjustment process for oxygenates shifts these curves up (or down), but does not alter their shape. For example, if the current WOP increases, this price increase is fully added to the oxygenate supply curves. This process is done for methanol and MTBE for each of five PADDs, and for each year forecasted. The adjusted oxygenate import supply curves are calculated in the following manner within the OS:

(6)
$$IMOXSC_{ij,t} = (IMOXSC_{ij,t} + Offset) / Deflator$$

where t is defined as before, and

=	price component of the imported oxygenates supply curve
=	oxygenate type
=	PADD
=	the difference between the NEMS forecasted price and the initial price derived
	by the WORLD model
=	GDP price deflator used for adjusting IEM prices to some other year's real
	prices used by other modules within the NEMS.
	= = = =

D. Solution Methodology

The basic methodology of the EIA's Oil Market Simulation (OMS) model is incorporated into the NEMS to project annual world oil prices and associated worldwide petroleum supply/demand balances. The solution algorithm in the model solves for the price at which the demand for OPEC oil (total demand less non-OPEC supply) intersects either the exogenously specified OPEC production path or the price-reaction function. A standard iterating procedure, the Newton-Raphson algorithm, is used to
search for a price P* at which total demand D = f(P) less non-OPEC supply S = g(P) equals the level of OPEC output X.¹¹ The level of OPEC output can be determined from either the exogenously specified production path or the inverse $X = h^{-1}(P)$ of the price reaction function.

The starting point for the algorithm is a set of reference quantities and prices. The reference price path is a projection that assumes prices remain constant in real terms throughout the forecast period. The reference quantities are derived using equations in the OMS model as a function of this assumed reference price path. These resulting reference values are projections of oil supply and demand that are consistent with historically observed quantities, world oil prices, GDP levels, and exchange rates. Each iteration gets closer to the solution, by adjusting the current estimate of the solution price up or down. It stops searching when the next adjustment to the price would be less than one-half cent.

Solution Method for Price Run:

The sequence of steps for obtaining an WOM price run solution is:

- (a) User provides period t-1 historical values and reference paths of oil demand, supply, and GDP for each region.
- (b) User provides OPEC demand and commercial and strategic inventory supplies.
- (c) Based on a trial price, Equations (1) and (2c) are used to compute non-OPEC oil supplies and demands, with (2a) and (2b) substituted into (2c).
- (d) The difference between (1) and (2c) equals world excess demand, which is the call on OPEC production.
- (e) When an exogenous OPEC output path is specified, the demand for OPEC output from step (d) is compared to that level. If the call on OPEC output is greater (less) than OPEC supply, the trial price is raised (lowered) and steps (a)-(d) are repeated. If the call on OPEC output equals OPEC supply, the world oil market is in equilibrium at that price and the search process stops.

Solution Method for Production Run:

The sequence of steps for obtaining an OMS production run solution is:

- (a) User provides annual world oil prices over forecast period.
- (b) Assumed prices are substituted in Equations (1) and (2) to obtain annual regional non-OPEC production and demand.

¹¹ Such solution techniques are discussed in *Mathematical Applications of Electronic Spreadsheets* by Deanne E. Arganbright (McGraw Hill, 1985). Here f, g, and h refer to functions and are unrelated to the parameters f and g in Section 3A.

- (c) User provides OPEC demand and commercial and strategic inventory supplies.
- (d) Regional demands are summed to obtain world demand.
- (e) Regional production levels are summed to obtain non-OPEC world production.
- (f) OPEC production is figured as the difference between world demand and non-OPEC world production, as implied by Equation (3).

4. VARIABLES, DATA, AND PARAMETERS

A. Variable and Parameter Lists

A complete listing of variables and parameters for each of the IEM submodules is provided in Tables 4-1 and 4-2, respectively.

B. WOM Data Sources and Estimation Methods

Estimation of Demand and Supply Functions:

In principle, the parameters of the foreign non-OPEC crude oil demand and supply functions represented by Equations (1), (2a), and (2b) could be estimated in a conventional fashion by applying regression analysis to a set of historically observed data. However, the values of these coefficients should also be consistent with the projections of macroeconomic activity, energy demand and supply, and domestic and international energy prices generated by other forecasting models. Therefore, the relevant oil demand and supply elasticities are derived using the results of simulations of such large-scale energy and macroeconomic models. The foreign-region coefficient estimates are calibrated to simulations of the World Energy Projection System (WEPS) and the WEFA Group macroeconomic model.¹² These data sources, including values of U.S. functions in stand-alone mode, are listed in Table 4-3.

C. PPS/OS Data Sources and Estimation Methods

Both the PPS and OS subcomponents of the IEM receive external input data from the WORLD LP model. The PPS receives price and quantity import data for ten refined products for each PADD, while the OS receive methanol and MTBE price and quantity import data for each PADD. These data are used to construct petroleum product and oxygenate import supply curves which are used by the PPM module of the NEMS to derive a supply/demand balance.

¹² The OMS model, which is the predecessor of the WOM component of the IEM, was formerly operated on a stand-alone basis with U.S. oil demand and supply functions analogous to (1) and (2). The U.S. coefficient estimates of these functions were calibrated to simulations of the Short-term Integrated Forecasting System (STIFS), the Intermediate Future Forecasting System (IFFS), and the Data Resources, Inc. (DRI) macroeconomic model. Since the IEM now receives U.S. supply and demand data from the PMM, equations (1) and (2) no longer apply to the U.S. when the IEM is executed as a component of NEMS. However, the original specification can be retained if it is desired to run the IEM independently of other NEMS modules.

D. Cross-Reference Table

Table 4-4 provides for each equation in Section 3.0 of this report, the location of the corresponding equation in the FORTRAN code (Appendix B), by sub-routine name and line number.

world Oil	Market Component		
<u>Variable</u>	Definition		<u>Type</u>
P _t	World Oil Price		Endogenous
$\mathbf{D}_{\mathrm{i},\mathrm{t}}$	Demand for Oil		Endogenous
$RD_{i,t}$	Reference Demand for Oil	Exoger	nous
$\mathbf{RS}_{i,t}$	Reference Oil Production		Exogenous
GDP _{i,t}	Gross National Product		U.S., Endogenous to NEMS (from Macroeconomic Module)
			Non-U.S., Exogenous
$\mathbf{S}_{i,t}$	Total Oil Production		Endogenous
$\mathbf{S}_{\mathrm{c,i,t}}$	Conventional Oil Production	Endoge	enous
$\boldsymbol{S}_{u,i,t}$	Unconventional Oil Production	Endoge	enous
$\mathbf{D}_{\mathrm{O,t}}$	Demand for OPEC Oil	Endoge	enous
POPEC	OPEC Oil Production		Endogenous
CU	OPEC Capacity Utilization		Endogenous
Z _t	Percent Change in P _t from P _{t-1}	Endoge	enous
Q_IMCR _{j,k,t}	Crude Import Quantity Array	Exoger	nous
P_IMCR _{j,k,t}	Crude Import Price Array		Exogenous
Offset	Difference between current WOP forecast (multiplied by a deflator) and initial oil price (in constant dollars)		Endogenous

World Oil Market Component

Petroleum Product Supply & Oxygenate Supply Components

Variable	Definition	<u>Type</u>
P _t	World Oil Price	Endogenous
Offset	Difference between current WOP forecast (multiplied by a price deflator) and initial oil price (in constant dollars)	Endogenous
$\text{IMRGSC}_{j,t}$	Reformulated Gasoline Import Supply Curve	Exogenous
	(price and quantity array)	
IMGSSC _{j,t}	Gasoline Import Supply Curve (price and quantity array)	Exogenous
IMMDSC _{j,t}	Distillate Import Supply Curve (price and quantity array)	Exogenous
IMLDSC _{j,t}	Low Sulfur Distillate Import Supply Curve (price and quantity array)	Exogenous
IMLRSC _{j,t}	Low Sulfur Residual Fuel Import Supply Curve (price and quantity array)	Exogenous
IMHRSC _{j,t}	High Sulfur Residual Fuel Import Supply Curve (price and quantity array)	e Exogenous
IMJFSC _{j,t}	Jet Fuel Import Supply Curve (price and quantity array)	Exogenous
IMLPSC _{j,t}	LPG Import Supply Curve (price and quantity array)	Exogenous
IMPFSC _{j,t}	Petroleum Feedstock Import Supply Curve (price and quantity array)	Exogenous
IMOTSC _{j,t}	Other Refined Products Import Supply Curve (price and quantity array)	Exogenous

Table 4-1. IEM Model Variables (continued)

<u>Variable</u>	Definition	<u>Type</u>
IMMESC _{j,t}	Methanol Import Supply Curve (price and quantity array)	Exogenous
$\text{IMMTSC}_{j,t}$	MTBE Import Supply Curve (price and quantity array)	Exogenous

Units of measure:

Oil quantities = millions of barrels per day (MMB/D) Oil prices = real dollars per barrel Incomes = real dollars Petroleum product import quantities = millions of barrels Petroleum product import prices = real dollars per barrel

For all variables, the subscript t is a time index in annual increments (e.g., t-1 denotes last year), the subscript i distinguishes non-OPEC regions (USA, Canada, Europe, Japan, Other Free World), while the subscript j distinguishes PADDs, and the subscript k denotes products.

Table 4-2. WOM Model Parameters

For all parameters, the subscript t is a time index in annual increments (e.g., t-1 denotes last year) and the subscript i distinguishes non-OPEC regions (U.S., U.S. Territories, Canada, Europe, Japan, Australia/New Zealand, Rest of World [excluding Eurasia]).

Parameter	Definition
Demand Functions:	
b _i	Price elasticity of oil demand
\mathbf{y}_{i}	Income elasticity of oil demand
a _i	Koyck-lag demand parameter
$\mathbf{f}_{\mathbf{i}}$	Demand feedback elasticity
Supply Functions:	

 e_i Price elasticity for conventional oil supply h_i Price elasticity for unconventional oil supply d_i Koyck-lag parameter for conventional supply g_i Koyck-lag parameter for unconventional supplyi, jParameters of OPEC price reaction function

See "The Oil Market Simulation Model: Model Documentation Report" (System Sciences, Inc. for EIA, 1985) for details on parameter definitions and values.

Short-Term Integrated Forecasting System (STIFS)

The STIFS short-term energy balance projections underlying <u>Annual Energy Outlook</u> forecasts are the source of implied short-term (one-year) elasticities of crude oil demand with respect to price, holding all other demand determinants constant.

The National Energy Modeling System (NEMS)

NEMS produces domestic energy balances for low, mid, and high world oil price scenarios and, for the mid-price trajectory, both high and low income runs to evaluate sensitivities to variation in income. The three price and two income scenarios provide domestic oil supply/demand and one-year price and income elasticities of demand.

The World Energy Projection System (WEPS)

The WEPS outputs for the *International Energy Outlook 1994* are also based on three price and tow income sensitivity cases. Mid- to long-term price/income sensitivities of demand were obtained for Canada, Japan, OECD-Europe, and other countries, including Australia and New Zealand. Supply elasticities were also obtained for the same regions.

The DRI and WEFA Group Domestic and International Macroeconomic Activity Models

These models were used to estimate the effects of varying world oil price levels on total economic activity (i.e., energy-economy feedback effects).

Note: In addition to these sources, model users have the discretion to specify alternative elasticities.

Table 4-4. Cross-Reference Table

Line <u>Number</u>	Docume Variable <u>Name</u>	ent e		Computer Variable <u>Name</u>			<u>Dimen</u>	sion		Equatic <u>Numbe</u>	on r ¹³
5110-5880 5110-5420 5110-5420 5450-5870	$P_t \\ D_{i,t} \\ RD_{i,t} \\ RS_{i,t} \\ RD_{RD} \\ RD_{RD$		Deman	Price d Ref_Dem Ref_Sup		(7,27)	(27) (8,27) (6,27)		1	1,2a,2b 1 2a,2b	OMS OMS
5110-5420 5560 5430-5880 5430-5880	$ \begin{array}{c} GDP_{i,t} \\ S_{c,i,t} \\ S_$	Supply	14	GDP	(5,27)	(5,27)	(7,27)	2c	2a,2c	1 2h 2c	OMS_sim OMS
5640 5670 5650	POPEC CU Stock	OPEC_ 15	Prod Stk. Ch	g	(27) (27)	(3.27)	(3,27)	3 n.a.	3	20,20	OMS_Sim OMS_sim
5650 6260 6430	Disc _t Q_IMCRSC	∽j,k,t	Discrep Q_ITIN P_ITIM	g MCRSC		(3,27) (27) (27,5,5) (27,5,5)	(,3)		3 4 4		OMS OMS Crd_
6440-7410	Offset	j,k,t	1_1111	Offset		(27,3,3	(27)		4	4,5,6	Ciu_
7180	IMRGSC _{j,t}		ITIMR	GSC		(27,5,3	,2)		5		Prd_5

¹³ Equation numbers refer to the numbers assigned to each equation in Section 3.0 of this report. For example equation the crude oil demand equation.

¹⁴ Conventional supply is derived in the code as the difference between variable Supply and Unc_sup.

¹⁵ Opec capacity utilization is derived as OPEC_Prod divided by OPEC_cap (OPEC capacity).

7200	IMGSSC _{i.t}	ITIMGSSC	(27,5,3,2)	5	Prd_
7220	IMMDSC _{i,t}	ITIMMDSC	(27,5,3,2)	5	Prd_
7240	IMLDSC _{j,t}	ITIMLDSC	(27,5,3,2)	5	Prd_

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

40

Line <u>Number</u>	Document Variable <u>Name</u>	Computer Variable <u>Name</u>	Dimensio	<u>on</u>	Equation <u>Number</u>	
7260	IMLRSC _{i,t}	ITIMLRSC	(27,5,3,2)	5		Prd_
7280	IMHRSC	ITIMHRSC	(27,5,3,2)	5		Prd_
7300	IMJFSC _{it}	ITIMJFSC	(27,5,3,2)	5		Prd_
7320	IMLPSC _{it}	ITIMLPSC	(27,5,3,2)	5		Prd_
7340	IMPFSC _i ,	ITIMPFSC	(27,5,3,2)	5		Prd_
7360	IMOTSC	ITIMOTSC	(27,5,3,2)	5		Prd_
7380	IMMESC	ITIMMESC	(27,5,3,2)	6		Prd_
7400	IMMTSC _{j,t}	ITIMMTSC	(27,5,3,2)	6		Prd_

For all variables, the subscript t is a time index in annual increments (e.g., t-1 denotes last year), the subscript i distinguisher (U.S., U.S. Territories, Canada, Europe, Japan, Australia/New Zealand, Rest of World [excluding Eurasia]), while the sub PADDs, and the subscript k denotes products.

APPENDIX A

Model Abstract

- a. Model Name: International Energy Module IEM b. Acronym: c. Description: Recursive model of world petroleum supply and demand by region derived from EIA's Oil Market Simulation (OMS) model with enhanced detail on U.S. market conditions from the NEMS Petroleum Market Module (PMM). Determines PADD-level import supply schedules by refined product type and crude oil grade consistent with estimated world oil price. IEM outputs include forecasted world oil price, non-OPEC oil production and oil consumption by region, and OPEC oil production and capacity utilization. As component of NEMS, forecast world oil price based on either an d. Purpose: exogenously specified OPEC output path or OPEC pricing behavior and estimate U.S. import supplies of crude oil, refined petroleum products, and oxygenated gasoline blending components to allow estimation of U.S. oil supply and demand balances. e. Model Update: Revisions to the model are in progress. Archive Tape ID: NEMS archive tape, 1994 Annual Energy Outlook. f. Part of: NEMS g. Model Interface: Inputs: NEMS Petroleum Market Module (PMM), Short-Term Integrated Forecasting System (STIFS), Intermediate Future Forecasting System (IFFS), World Energy Projection System (WEPS), WEFA Group Int'l Macro Model. Outputs: NEMS System Module and PMM.
- h. <u>Official Representative</u>: Mr. G. Daniel Butler Office of Integrated Analysis and Forecasting, Energy Information Administration, U.S. Department of Energy Tel: (202) 586-9503

i.	Documentat	ion References:	EIA, M Module	<i>Iodel Documentation Report: NEMS International Energy</i> (April 1994).
j.	Archive Mee	<u>dia</u> :	World model, Annual	Oil Market component of IEM is revised version of OMS recently archived in <i>International Energy Outlook 1993</i> and <i>Energy Outlook 1993</i> .
k.	System Desc	cribed:	The mo annuall	del describes world oil supply and demand on a regional basis y from present time through 2010.
1.	Coverage:	Forecast time p	eriod:	Annual from 1990 to 2010
		Demand Region	<i>ıs:</i>	United States (50 states and territories), Canada, Japan, Australia & New Zealand, OECD Europe, OPEC, Rest of World (excluding Eurasia).
		Supply Regions	•	United States, Canada, Japan, OECD Europe, OPEC, Rest of World (excluding Eurasia).
		U.S. Detail:		PADD-level import supply curves.
		Product Types:	5 grad (methat	es of crude oil, 10 refined products, and 2 oxygenates nol & MTBE)
m.	Model Struc	<u>ture</u> :	The mo (WOM (OS). 7 model,	odel includes three subcomponents: The World Oil Market); Petroleum Product Supply (PPS); and Oxygenates Supply The structure of the WOM component is based on the OMS with greater U.S. detail from NEMS PMM.
	Modeling Te	echnique:	Recurs program parame demano	ive simulation (search for equilibrium oil price), linear nming (derive import supply curves), econometric (estimate ters of OPEC price reaction curve and ROW crude l/supply curves).
n.	<u>Input Data (</u>]	Non-DOE):	None	
0.	<u>Input Data (</u> 1	<u>DOE)</u> :	U.S. cru supply from W	ide oil supply and demand from PMM, reference demand and for ROW regions, initial (unadjusted) import supply curves YORLD LP model.

Data Sources:Annual Energy Review, Monthly Energy Review, International
Energy Annual, and International Petroleum Statistics Report,
Energy Information Administration.

- p. <u>Computing Environment</u>: EIA IBM 3090, Model 400E Mainframe.
- q. <u>Independent Expert Reviews</u>: World Oil Market component of IEM is revised version of OMS model, which has undergone several independent reviews (e.g., *International Oil Supply and Demand*, Energy Modeling Forum, Stanford University, September 1991).

r. <u>Status of Evaluation Efforts</u>: On-going.

BIBLIOGRAPHY

World Oil Market

s.

- 1. Suranovic, Steven M., "Does a Target-Capacity Rule Fulfill OPEC's Economic Objectives," *Energy Economics*, April 1993.
- 2. Energy Information Administration, *International Energy Module Component Design Report*, Washington, DC, January 1993 (Revised).

3. Energy Information Administration, *International Energy Outlook*, DOE/EIA-0484(93), Washington, DC, April 1993.

- 4. Energy Modeling Forum, *International Oil Supplies and Demands*, Volume 2, EMF Report 11, Stanford University, Stanford California, April 1992.
- 5. Energy Information Administration, *Oil Market Simulation Model User's Manual*, DOE/EIA-M0228(92), Washington, DC, July 1992.
- 6. Energy Information Administration, *Near-Term, Midterm, and Long-term Forecasting in the National Energy Modeling System*, Issue Paper, Washington, DC, May 1991.
- 7. Energy Information Administration, *A Recommended Design for the National Energy Modeling System*, Draft Paper, Washington, DC, May 1991.
- 8. Energy Information Administration, *Requirements for a National Modeling System*, Draft Paper, Washington, DC, November 1991.
- 9. Decision Analysis Corp. of Virginia, International Modeling Capability in NEMS, Final Report,

October 1, 1991.

- 10. Decision Analysis Corp. of Virginia, *Transportation and Refining of International Petroleum* (*TRIP*) *Model Documentation*, 2 Vol., February 28, 1989.
- 11. System Sciences, Inc. "The Oil Market Simulation Model: Model Documentation Report." Prepared for Office of Energy Markets and End Use, EIA, May 1985.
- 12. Logistics Management Institute, *The International Energy Evaluation System*, 2 Vol., September 1, 1978.
- 13. Hubbert, M.K. "Degree of Advancement of Petroleum Exploration in the United States," *American Association of Petroleum Geologists Bulletin* 51: 2207-2227, 1967.

14. Hubbert, M.K. *Energy Resources*, National Research Council, National Academy of Sciences, Publication 1000-D, Washington, DC, 1962.

Petroleum Product Supply

- 1. Decision Analysis Corp. of Virginia, *Final Model Documentation Report, The Oil Market Module*, September 1990.
- 2. Energy & Systems Inc., "WORLD" Reference Manual, May 1993.
- 3. Farmer, Richard D., "Problems and Lessons in Estimating Supply Curves for Refined Petroleum Products," *The Journal of Energy and Development*, Autumn 1986, pp. 27-42.
- 4. Science Applications International Corp., *Performance Results of Alternative Formulations for the Petroleum Market Module in NEMS*, Draft Report, March 1992.

Oxygenate Supply

- 1. American Petroleum Institute, Refining Department, *Alcohols and Ethers*, 2nd Ed., Washington, DC, July 1988.
- 3. Chem Systems Inc., The Global MTBE Business, July 1992.
- 4. Chem Systems Inc., The Global MTBE Business, Prospectus, June 1991.
- 5. DeWitt & Company Inc., 1990 Annual Methanol Report, July 1990.
- 6. "Economic of Fuel Methanol: Asking the Right Questions," by Michael F. Lawrence of Jack Faucett Associates, December 1989.
- 7. Environmental Protection Agency, Office of Mobile Sources, *Analysis of the Economic and Environmental Effects of Methanol as an Automotive Fuel*, Washington, DC, September 1989.

- 8. Hodge, Cal, Valero Refining & Marketing Company, "MTBE: Outlook for Growth," paper presented to the National Conference on Octane Quality and Reformulated Gasolines, March 26, 1992.
- 9. Information Resources Inc., Fuel Reformulation, March/April 1992.
- 10. Information Resources Inc., "Oxy-Fuel News," and "Octane Week," various issues.
- 11. Interagency Commission on Alternative Fuels, *First Interim Report of the Interagency Commission of Alternative Motor Fuels*, September 30, 1990.
- 12. U.S. Dept. of Energy, Office of Policy, Planning, and Analysis, *Assessment of Costs and Benefits of Flexible and Alternative Fuel Use in the U.S. Transportation Sector*, Technical Report Three: Methanol Production and Transportation Costs, Washington, DC, November 1989.

APPENDIX B

IEM FORTRAN Computer Code

SUBROUTINE WORLD 0000010 С 00000020 С The following is a list of the variables used in the 0000030 C C International Energy Module of the NEMS. 00000040 00000050 С Input Variables (The numbers in parentheses represent dimension, 0000060 С unless noted otherwise.) 0000070 С 00000080 From CN6005.PRJ.WORLD.OMSREF.scen.datekey 00000090 00000100 Year(27) 1989, 1990, ..., 2015 00000110 00000120 Ref_Price(27) Reference case oil prices, 1989 - 2015 00000130 00000140 Start_Price(27) Initial forecast prices in constant 1990 00000150 00000160 dollars (taken from the Oil Market Simulation Model), 1989 - 2015 00000170 00000180 Price_Adj(7,27) Price adjustments for U.S., Canada, 00000190 Japan, OECD Europe, Other Market 00000200 Economies, U.S. Territories, and Australia/New Zealand, 1989 - 2015 00000210 00000220 00000230 OPEC Production Capacity if OPEC_Behavior = 0; pre-determined OPEC production path OPEC_Cap2(27) 00000240 00000250 if OPEC_Behavior = 1; input from the Oil 00000260 Market Simulation Model spreadsheet 00000270 (range M8..AH8), 1989 - 2015 00000280 00000290 Ref_Dem(8,27) Reference case oil demand for U.S., 00000300 Canada, Japan, OECD Europe, Other Market Economies, U.S. Territories, 00000310 00000320 Australia/New Zealand, and OPEC, 1989 -00000330 2015 00000340 00000350 Ref Sup(6,27) Reference case oil supply for U.S., 00000360 Canada, Japan, OECD Europe, Other Market 00000370 Economies, and CPE Exporters, 1989 - 2015 00000380 00000390 Stk_Chg(3,27) Net stock withdrawal for U.S. (50 00000400 States), U.S. (SPR), and Other Market 00000410 Economies, 1989 - 2015 00000420 00000430 Difference between "Total Consumption" and "Total Supply," 1989-2015 Discrep(27) 00000440 00000450 0000000000000000 00000460 Unconventional oil supply for U.S., 00000470 Unc Sup(5, 27)Canada, Japan, OECD Europe, and Other 00000480 Market Economies, 1989 - 2015 00000490 00000500 OPEC_Cap1(27) 00000510 OPEC Capacity 1, defined as report writer These quantities (for the variables. 00000520 years 1989 through 2015) are (for 1989 -00000530 2010) input from the Oil Market 00000540 Simulation Model spreadsheet (range 00000550 M7..AH7) and output in the Report_Writer 00000560 subroutine. 00000570 00000580 From CN6005.PRJ.WORLD.OMSECON.scen.datekey 00000590 00000600

2	GDP(7,27)	Gross Domestic Product in 1985	00000610
7		dollars, 1989-2015, Input (for 1989-	00000620
7		2010) from the Oil Market Simulation	00000630
7		Model spreadsheet for U.S. (range	00000640
- -		$I175 \lambda C175)$ Canada ($I177 \lambda C177$) Japan	00000040
-		(1170 MG170) OECD Europe (1191 MG191)	000000000
~		(L1/9AGI/9), OECD Europe (L101AGI01),	00000660
		Other Market Economies (L183AG183),	00000670
2		U.S. Territories (L175AG175 - same as	00000680
2		U.S.), and Australia/New Zealand	00000690
2		(L185AG185).	00000700
2			00000710
2	P_Elas_Dem(7)	Price demand elasticity for U.S., Canada,	00000720
2		Japan, OECD Europe, Other Market	00000730
2		Economies, U.S. Territories, and	00000740
2		Australia/New Zealand.	00000750
2			00000760
7	FB Elas Dem(7)	Feedback demand elasticity for U.S.	00000770
7	ID_HIUB_Dem(7)	Canada Japan OFCD Furope Other Market	00000770
ä		Egonomics U.S. Torritorios and	00000700
~		Economies, 0.5. Terricories, and	00000790
		Australia/New Zealand	00000800
2			00000810
2	P_Elas_Sup(7)	Supply price elasticity for U.S., Canada,	00000820
2		Japan, OECD Europe, Other Market	00000830
2		Economies, U.S. Territories, and	00000840
2		Australia/New Zealand	00000850
2			00000860
7	I Elas(7)	Income elasticity for U.S., Canada,	00000870
7		Japan, OECD Europe, Other Market	00000880
a a		Economies U.S. Territories and	00000890
- -		Aughtenia /New Zoaland	000000000
~		Australia/New Zealand	00000900
			00000910
2	Dem_Lag(7)	Demand lag for U.S., Canada, Japan, OECD	00000920
2		Europe, Other Market Economies, U.S.	00000930
2		Territories, and Australia/New Zealand	00000940
2			00000950
2	Sup_Lag(7)	Supply lag for U.S., Canada, Japan, OECD	00000960
2		Europe, Other Market Economies, U.S.	00000970
2		Territories, and Australia/New Zealand	00000980
2		· ···, ··· ··· ··· ··· ···	00000990
7	Dem Adi(27)	Income elasticity adjustment factor: used	00001000
7		only for simulations where a sensitivity	00001010
7		analygig of the economic parameters is	00001010
~		haing addressed, severally set to 1	00001020
- -		being addressed; generally set to i	00001030
2			00001040
2	Sup_Adj(27)	Price elasticity of supply adjustment	00001050
2		factor; used only for simulations where	00001060
2		a sensitivity analysis of the economic	00001070
2		parameters is being addressed; generally	00001080
2		to 1	00001090
2			00001100
2	Variables whose valu	les are endogenous to the FORTRAN code	00001110
7			00001120
7	GDP85(7)	Gross Domestic Product for 1985 in	00001130
7	GD105(7)	constant 1985 U.S. dollars for U.S.	00001130
- -		Constant 1905 0.5. dollars lot 0.5.,	00001140
- -		Canada, Japan, OECD Europe, Other Market	00001150
2		Economies, U.S. Territories, and	00001160
2		Australia/New Zealand.	00001170
2			00001180
2	P_Elas_USup	Price elasticity for unconventional oil	00001190
2		supply	00001200
2			00001210
2	Alpha	Price behavior factor for price reaction	00001220
2	_	function (currently set to -0.332557634)	00001230
2		· · · · · · · · · · · · · · · · · · ·	00001240
2	Beta	Price behavior factor for price reaction	00001250
2	~ ~ ~	function (currently set to 0.0649573199)	00001260
Ä		(our energy bee to 0.0019575199)	00001270
-	Domand(7 X)	This is an array of oil domand for	000012/0
-	v = 1	INTE IS AN ALLAY OF OLD THE COMMAND FOR	00001280
ن ۳	$\mathbf{v} = \mathbf{T}$	U.S., Canada, Japan, OECD Europe, Otner	00001290
2		Market Economies, U.S. Territories, and	00001300
2		Australia/New Zealand. The values for time	00001310

		period 1 are actual oil demand for 1989 and these values are input through the MISCE file.	00001320 00001330 00001340
C	Supply(7,X)	This array contains oil supply for U.S.,	00001360
C	X = T	Market Economies. The values for time	00001370
C C		period 1 are actual oil supply for 1989 and these are input through the MISCE file.	00001390 00001400
c			00001410
C C	Price(X) X = 1	The actual world oil price for 1989.	00001420
c			00001440
C C	From CN6005.PRJ.PERC	ENT.scen.datekey	00001450
c	Y	Year = 1990, 1995, 2000, 2005, and 2010	00001470
C C	P	PADD Number $(1, 2, \dots, 5)$ or Total U.S. (6)	00001480
c	-		00001500
C	Fuel_Type	2-character codes used to identify the	00001510
c		LL (low sulfur light), MH (medium sulfur	00001520
C		heavy), HL (high sulfur light), HH (high	00001540
C		sulfur heavy), and HV (high sulfur very heavy). The light refined products are:	00001550
c		LG (LPG), RG (reformulated gasoline??), MG	00001570
C		(motor gasoline), JF (jet fuel), DS	00001580
C C		(distillate), DL (low sulfur deisel??), ME (methanol), and MT (methanol tributylene?).	00001590
c		The heavy refined products are: RL (low	00001610
C		sulfur), RH (high sulfur), OT (other?), and	00001620
C		PF (petrochemical feed).	00001630
Ĉ	Pct_Crude(5,6,5,12)	Percentage of crude imports attribute to	00001650
C		each of the following 12 areas: Canada,	00001660
c		OPEC-North Africa, OPEC-West Africa,	00001680
C		OPECIndonesia, OPEC-Persian Gulf, Other	00001690
C		Middle East, Other Latin America, Other	00001700
c		1995,,2010), PADD, fuel type, and area.	00001720
C			00001730
C C	PCt_LtRer(5,6,8,11)	attributed to each of the following 11	00001740
c		areas: Canada, Nothern Europe, Southern	00001760
C		Europe, OPEC-Latin America, OPEC-North	00001770
c		OPEC-Persian Gulf, Caribbean Basin, Asian	00001780
С		Exporters, and Other. By year (1990,	00001800
C C		1995,,2010), PADD, fuel type, and area.	00001810
c	<pre>Pct_HvRef(5,6,4,11)</pre>	Same as Pct_LtRef, but for heavy refined	00001830
C		products.	00001840
C	The following variable	s are used "universally" by the NEMS system	00001850
C	to perform input/outpu	t operations:	00001870
C	Fname	File name (for nurposes of i/a)	00001880
c	r manie	File name (IOI pulposes OI 1/0)	00001900
C	New	Logical, New=FALSE => existing file;	00001910
C		New=TRUE => new file	00001920
c	Iunit1	FORTRAN unit number assigned using	00001940
C		EXTERNAL FILE_MGR function.	00001950
c	FILE_MGR	Function for determining FORTRAN unit	00001970
C		number to associate with a specific file.	00001980
C C	The following variable	s are used within the OMS Sim.	00001990
c	Crd_Sup_Crv, and/or Pr	d_Sup_Crv or are assigned as output in	00002010
C	the Report_Variables s	ection of the program.	00002020

I,J,K	Integer variables used as indices in looping and array structures.	00002030 00002040 00002050
First_Time(27)	Logical, true=> first iteration; false=> two or more iterations.	00002060
Price(27)	World Oil Price, 1989 - 2015. Price(1)- -the 1989 actual world oil priceis set to 19.63 (through MISCE file).	00002100 00002110 00002110 00002120
Demand(7,27)	Oil demand for U.S., Canada, Japan, OECD Europe, Other Market Economies, U.S. Territories, and Australia/New Zealand, 1989-2015. The actual demand for 1989 is input through MISCE file.	00002130 00002140 00002150 00002160 00002170 00002180
Supply(5,27)	Oil supply from U.S., Canada, Japan, OECD Europe, and Other Market Economies, 1989 - 2015. The actual supply for 1989 is input through MISCE file.	00002190 00002200 00002210 00002220 00002220
OPEC_Prod(27)	OPEC oil production, 1989 - 2015. Set equal to Call_On_OPEC in OMS_Sim routine.	00002240
OPEC_Dem(27)	OPEC oil demand, 1989 - 2015. Set equal to Ref_Dem for OPEC in OMS_Sim routine.	00002280
Net_CPE(27)	Reference supply for CPE exporters, 1989 - 2015. Set equal to Ref_Sup for CPE Net Exports in OMS_Sim routine.	00002310 00002320 00002330
Balance(27)	Set equal to the variable "Discrep" (1989 - 2015) in OMS_Sim routine.	00002340
OPEC_Behavior	<pre>0 = uses OPEC target capacity utilization pricing methodology employed in the Oil Market Simulation (OMS) model 1 = uses market clearing methodology to a pre-determined OPEC output path</pre>	00002370 00002380 00002390 00002400 00002410 00002420
Old_Price	Initialized to 0 during first iteration and thereafter set to latest "New_Price"	00002430
New_Price	<pre>Initialized to "Start_Price" during first iteration for "current year" (CURIYR+1) and thereafter computed using the variables "Old_Price", "Function", and "Funct_Prime". At the end of the iteration, "Price(t)" is set to "New_Price".</pre>	00002470 00002480 00002490 00002500 00002510 00002520 00002530
Sum_Demand	Oil demand aggregated over years and for the regions U.S., Canada, Japan, OECD Europe, Other Market Economies, and U.S. Territories.	00002550 00002560 00002570 00002580 00002590
Sum_Supply	Oil supply aggregated over years and for the regions U.S., Canada, Japan, OECD Europe, and Other Market Economies.	00002600 00002610 00002620 00002630
Call_On_OPEC	Unmet oil demand (OPEC Production).	00002640
Elas_Factor	Elasticity factor	00002660
Function	Price reaction function.	00002680
Funct_Prime	OPEC determined world oil price (P')	00002700
Т	Integer variable used as time index. Set to CURIYR+1 in OMS_Sim.	00002720
	I,J,K First_Time(27) Price(27) Demand(7,27) Supply(5,27) OPEC_Prod(27) OPEC_Dem(27) Net_CPE(27) Balance(27) OPEC_Behavior OPEC_Behavior OId_Price New_Price Sum_Demand Sum_Demand Sum_Supply Call_On_OPEC Elas_Factor Function Funct_Prime T	 I.J.X Integer variables used as indices in looping and array structures. First_Time(27) Logical, true>> first iteration, false>> two or more iterations. Price(27) World Oil Price, 1989 - 2015. Price(1)-tb 1989 actual world Oil priceis set to 19.63 (through MISCE file). Demand(7,27) Oil demand for U.S., Canada, Japan, OECD Europe, Other Market Economies, U.S. Territories, and Australia/New Zealand, 1989-2015. The actual demand for 1989 is input through MISCE file. Supply(5,27) Oil supply from U.S., Canada, Japan, OECD Europe, and Other Market Economies, 1989 - 2015. The actual supply for 1989 is input through MISCE file. OPEC_Prod(27) OPEC oil production, 1989 - 2015. Set equal to Call_On_OPEC in OMS_Sim routine. OPEC_Dem(27) OPEC oil demand, 1989 - 2015. Set equal to Call_On_OPEC in OMS_Sim routine. OPEC_Dem(27) OPEC oil demand, 1989 - 2015. Set equal to Ref_Sup for CPE Net Exports in OMS_Sim routine. Det call_ON_OPEC in OMS_Sim routine. Det call on OPEC in OMS_Sim routine. Det call_ON_OPEC in OMS_Sim routine. Det call_ON_OPEC in OMS_Sim routine. OPEC_Behavior 0 = uses OPEC target capacity utilization pricing methodology employed in the Oil Market Simulation (OMS) model 1 = uses market clearing methodology to a pre-determined OPEC output path Oil demand aggregated over years and for the regions U.S., Canada, Japan, OECD Europe, Cher Market Economies, and U.S. Territories. Sum_Demand Oil demand (OPEC Production). Elas Factor E

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

C C C C C	Offset Difference between International World Oil Price (multiplied by a price deflator) and Start_Price. Used in the subroutines Crd_Sup_Crv and Prd_Sup_Crv.				
0000	The following variables are used to manipulate data in the US_Import_Report subroutine.				
0000	Head_Yr(21)	Contains the years 1990, 1991,,2010. This array is used to print year headers in the U.S. Import report tables.	00002810 00002820 00002830 00002840		
	С	Integer translation of the Fuel_Type variables. LL=1, MH=2, HL=3, HH=4, HV=5 LG=1, RG=2, MG=3, JF=4, DS=5, DL=6, ME=7, MT=8 RL=1, RH=2, OT=3, PF=4	00002850 00002860 00002870 00002880 00002890 00002900		
0 0 0 0	Big_Type	Identifies the data as a crude (1), light refined (2), or heavy refined (3) product for purposes of aggregation and input.	00002920 00002930 00002940		
	Table_No	Identifies the appropriate number of the printed report table. Currently set up as a sequential counter.	00002950 00002960 00002970 00002980		
0000	Crude_Shr(21,6,12)	Contains the aggregated share of crude imported from a specific area according to year and PADD.	00002990 00003000 00003010 00003020		
0000	<pre>LtRef_Shr(21,6,11)</pre>	Contains the aggregated share of light refinery product imported from a specific area according to year and PADD.	00003030 00003040 00003050 00003060		
C C C	HvRef_Shr(21,6,11)	Same as LtRef_Shr, but for heavy refinery product.	00003070 00003080 00003090		
0000	OPEC_Tot(21,6,3)	Contains the total OPEC shares of crude (1), light refinery (2), and heavy refinery (3) products, by year and PADD.	00003100 00003110 00003120 00003130		
00000	Hold_Tot	Holds the sums of the Crude_Shr, LtRef_Shr, and HvRef_Shr variables, aggregated over years to ensure that rows with all 0 entries won't be printed.	00003140 00003150 00003160 00003170 00003180		
	Hold_Dif	Holds the differences between anchor year Crude_Shr variables and anchor year LtRef_Shr variables for use in the interpolation routine.	00003190 00003200 00003210 00003220 00003230		
00000	Hold_Df2	Holds the difference between anchor year HvRef_Shr variables for use in the interpolation routine.	00003250 00003250 00003250 00003260 00003270		
C C C	****END OF VARIABLE DESCRIPTIONS**** Main Routine For International Energy Module				
00	Main Routine For Int IMPLICIT NONE CALL OMS_Dat_In CALL OMS_Sim CALL Crd_Sup_Crv CALL Prd_Sup_Crv CALL World_Oil_Rep CALL US_Import_Rep RETURN END SUBROUTINE OMS Dat	ort ort	00003310 00003320 00003330 00003340 00003350 00003360 00003370 00003380 00003390 00003400 00003410		
C C C	Routine used to read b	- ulk of input data.	00003420 00003430 00003440		

```
IMPLICIT NONE
                                                                               00003450
      LOGICAL New
                                                                               00003460
      CHARACTER*18 Fname
                                                                               00003470
      INTEGER Iunit1
                                                                               00003480
      INTEGER FILE_MGR
                                                                               00003490
      EXTERNAL FILE_MGR
                                                                               00003500
                                                                               00003510
      INTEGER Year, I, J
      REAL Ref_Price, Price_Adj, OPEC_Cap2, Ref_Dem, Ref_Sup,
                                                                               00003520
           Stk_Chg, Discrep, Unc_Sup, OPEC_Cap1,
                                                                               00003530
           GDP, P_Elas_Dem, FB_Elas_Dem, P_Elas_Sup, I_Elas,
                                                                               00003540
           Dem_Lag, Sup_Lag, Start_Price, Dem_Adj, Sup_Adj
                                                                               00003550
      COMMON /OMSDATA/ Year(27), Ref_Price(27), Price_Adj(7, 27),
OPEC_Cap2(27), Ref_Dem(8, 27), Ref_Sup(6, 27),
                                                                               00003560
                                                                               00003570
           Stk_Chg(3, 27), Discrep(27), Unc_Sup(5, 27), OPEC_Cap1(27),
                                                                               00003580
           GDP(7, 27), P_Elas_Dem(7),
                                                                               00003590
           FB_Elas_Dem(7), P_Elas_Sup(7), I_Elas(7), Dem_Lag(7),
                                                                               00003600
           Sup_Lag(7), Start_Price(27), Dem_Adj(27), Sup_Adj(27)
                                                                               00003610
C
                                                                               00003620
C
    Inputs International Reference Supply And Demand Values
                                                                               00003630
C
                                                                               00003640
      Fname='OMSREF'
                                                                               00003650
      New=.FALSE.
                                                                               00003660
      Iunit1=FILE_MGR('O',Fname,New)
                                                                               00003670
      CALL Skip_Comments(Iunit1)
                                                                               00003680
  READ (Iunit1, 100) (Year(I), I=1, 27)
100 FORMAT (20X, 2717)
                                                                               00003690
                                                                               00003700
      CALL Skip_Comments(Iunit1)
                                                                               00003710
  READ (Iunit1, 200) (Ref_Price(I), I=1, 27)
200 FORMAT (20X, 27F7.0)
                                                                               00003720
                                                                               00003730
      READ (Iunit1, 200) (Start_Price(I), I=1, 27)
                                                                               00003740
      CALL Skip_Comments(Iunit1)
                                                                               00003750
      DO 11 I=1, 7
                                                                               00003760
      READ (Iunit1, 200) (Price_Adj(I, J), J=1, 27)
                                                                               00003770
   11 CONTINUE
                                                                               00003780
      CALL Skip_Comments(Iunit1)
                                                                               00003790
      READ (Iunit1, 200) (OPEC_Cap2(I), I=1, 27)
                                                                               00003800
      CALL Skip_Comments(Iunit1)
                                                                               00003810
      DO 1 I=1, 8
                                                                               00003820
      READ (Iunit1, 200) (Ref_Dem(I, J), J=1, 27)
                                                                               00003830
    1 CONTINUE
                                                                               00003840
      CALL Skip_Comments(Iunit1)
                                                                               00003850
      DO 2 I=1, 6
                                                                               00003860
      READ (Iunit1, 200) (Ref_Sup(I, J), J=1, 27)
                                                                               00003870
    2 CONTINUE
                                                                               00003880
      CALL Skip_Comments(Iunit1)
                                                                               00003890
      DO 3 I=1, 3
                                                                               00003900
      READ (Iunit1, 200) (Stk_Chg(I, J), J=1, 27)
                                                                               00003910
    3 CONTINUE
                                                                               00003920
      CALL Skip_Comments(Iunit1)
                                                                               00003930
      READ (Iunit1, 200) (Discrep(I), I=1, 27)
                                                                               00003940
      CALL Skip_Comments(Iunit1)
                                                                               00003950
      DO 4 I=1, 5
                                                                               00003960
      READ (Iunit1, 200) (Unc_Sup(I, J), J=1, 27)
                                                                               00003970
    4 CONTINUE
                                                                               00003980
      CALL Skip_Comments(Iunit1)
                                                                               00003990
      READ (Iunit1, 200) (OPEC_Cap1(I), I=1, 27)
Iunit1=FILE_MGR('C',Fname,New)
                                                                               00004000
                                                                               00004010
                                                                               00004020
С
C
    Inputs International Economic Parameters
                                                                               00004030
С
                                                                               00004040
      Fname='OMSECON'
                                                                               00004050
      Iunit1=FILE_MGR('O',Fname,New)
                                                                               00004060
      CALL Skip_Comments(Iunit1)
DO 5 I=1, 7
                                                                               00004070
                                                                               00004080
      READ (Iunit1, 200) (GDP(I, J), J=1, 27)
                                                                               00004090
    5 CONTINUE
                                                                               00004100
      CALL Skip_Comments(Iunit1)
                                                                               00004110
      DO 6 I=1,
                                                                               00004120
      READ (Iunit1, 400) P_Elas_Dem(I), FB_Elas_Dem(I), P_Elas_Sup(I),
                                                                               00004130
          I_Elas(I)
                                                                               00004140
  400 FORMAT (20X, 4F10.0)
                                                                               00004150
```

```
6 CONTINUE
                                                                                 00004160
       CALL Skip_Comments(Iunit1)
                                                                                 00004170
      DO 7 I=1, 7
                                                                                 00004180
      READ (Iunit1, 500) Dem_Lag(I), Sup_Lag(I)
                                                                                 00004190
  500 FORMAT (20X, 2F10.0)
                                                                                 00004200
     7 CONTINUE
                                                                                 00004210
       CALL Skip_Comments(Iunit1)
                                                                                 00004220
      READ (Iunit1, 200) (Dem_Adj(J), J=1, 27)
                                                                                 00004230
      READ (Iunit1, 200) (Sup_Adj(J), J=1, 27)
                                                                                 00004240
       Iunit1=FILE_MGR('C',Fname,New)
                                                                                 00004250
                                                                                 00004260
       RETURN
       END
                                                                                 00004270
       SUBROUTINE Skip_Comments(File_Num)
                                                                                 00004280
С
                                                                                 00004290
    Skips commented lines (i.e., lines with "*" in the first
С
                                                                                 00004300
С
    column of line) in all input files
                                                                                 00004310
C
                                                                                 00004320
       CHARACTER*1 Star, A
                                                                                 00004330
      INTEGER File_Num
                                                                                 00004340
      DATA Star/'*'/
                                                                                 00004350
      READ (File_Num, 100) A
                                                                                 00004360
  100 FORMAT (A1)
                                                                                 00004370
      DO WHILE (A.EQ.Star)
                                                                                 00004380
        READ (File_Num, 100) A
                                                                                 00004390
                                                                                 00004400
       END DO
       BACKSPACE File_Num
                                                                                 00004410
      RETURN
                                                                                 00004420
      END
                                                                                 00004430
       SUBROUTINE OMS_Sim
                                                                                 00004440
С
                                                                                 00004450
С
    Forecasts World Oil Prices Using Either The OPEC Target
                                                                                 00004460
С
    Capacity Utilization Pricing Methodology (OPEC_Behavior = 0)
                                                                                 00004470
С
    Or A Market Clearing Methodology (OPEC_Behavior = 1)
                                                                                 00004480
C
                                                                                 00004490
       IMPLICIT NONE
                                                                                 00004500
       INTEGER I, T, Year, OPEC_Behavior
                                                                                 00004510
       LOGICAL First_Time
                                                                                 00004520
      REAL Ref_Price, Price_Adj, OPEC_Cap2, Ref_Dem, Ref_Sup,
                                                                                 00004530
           Stk_Chg, Discrep, Unc_Sup, OPEC_Cap1,
                                                                                 00004540
           GDP, P_Elas_Dem, FB_Elas_Dem, P_Elas_Sup, I_Elas,
                                                                                 00004550
      . Dem_Lag, Sup_Lag, Start_Price, Dem_Adj, Sup_Adj
REAL GDP85, Price, Demand, Supply, OPEC_Prod, OPEC_Dem, Net_CPE,
Balance, P_Elas_USup, Old_Price, New_Price, Sum_Demand,
                                                                                 00004560
                                                                                 00004570
                                                                                 00004580
           Sum_Supply, Call_On_OPEC, Elas_Factor, Function,
                                                                                 00004590
           Funct_Prime
                                                                                 00004600
      DOUBLE PRECISION Alpha, Beta
                                                                                 00004610
      DIMENSION GDP85(7), First_Time(27)
                                                                                 00004620
       DATA OPEC_Behavior/1/
                                                                                 00004630
      DATA First_Time/27*.TRUE./
                                                                                 00004640
       COMMON /FORECAST/ Price(27), Demand(7, 27), Supply(5, 27),
                                                                                 00004650
           OPEC_Prod(27), OPEC_Dem(27), Net_CPE(27), Balance(27)
                                                                                 00004660
      COMMON /OMSDATA/ Year(27), Ref_Price(27), Price_Adj(7, 27),
OPEC_Cap2(27), Ref_Dem(8, 27), Ref_Sup(6, 27),
                                                                                 00004670
                                                                                 00004680
           Stk_Chg(3, 27), Discrep(27), Unc_Sup(5, 27), OPEC_Cap1(27),
                                                                                 00004690
           GDP(7, 27), P_Elas_Dem(7),
                                                                                 00004700
           FB_Elas_Dem(7), P_Elas_Sup(7), I_Elas(7), Dem_Lag(7),
                                                                                 00004710
           Sup_Lag(7), Start_Price(27), Dem_Adj(27), Sup_Adj(27)
                                                                                 00004720
      INCLUDE (PARAMETR)
INCLUDE (INTOUT)
                                                                                 00004730
                                                                                 00004740
       INCLUDE (PMMOUT)
                                                                                 00004750
       INCLUDE (NCNTRL)
                                                                                 00004760
       DATA GDP85/3549., 305., 1194., 2784., 1643., 3549., 162./
                                                                                 00004770
       DATA P_Elas_USup/0.12/
                                                                                 00004780
      DATA Alpha, Beta/-0.332557634, 0.0649573199/
                                                                                 00004790
      Demand(1, 1)=17.534
Demand(2, 1)=1.733
                                                                                 00004800
                                                                                 00004810
      Demand(3, 1)=4.983
                                                                                 00004820
      Demand(4, 1)=12.832
Demand(5, 1)=11.410
                                                                                 00004830
                                                                                 00004840
       Demand(6, 1)=0.209
                                                                                 00004850
      Demand(7, 1)=0.790
                                                                                 00004860
```

```
00004870
       Supply(1, 1)=9.880
      Supply(2, 1)=2.027
Supply(3, 1)=0.0
                                                                                 00004880
                                                                                 00004890
       Supply(4, 1)=4.413
                                                                                 00004900
       Supply(5, 1)=10.675
                                                                                 00004910
       Price(1)=19.63
                                                                                 00004920
       IF (.NOT.First_Time(CURIYR+1)) GO TO 1
                                                                                 00004930
       First Time(CURIYR+1)=.FALSE.
                                                                                 00004940
      Old Price=0.
                                                                                 00004950
      New_Price=Start_Price(CURIYR+1)
                                                                                 00004960
                                                                                 00004970
С
C
   Set International World Oil Price to New Price and apply
                                                                                 00004980
С
   price deflator (= 1.178) in first iteration of current
                                                                                 00004990
С
   year.
                                                                                 00005000
C
                                                                                 00005010
       IT_WOP(CURIYR, 1)=New_Price/1.178
                                                                                 00005020
      RETURN
                                                                                 00005030
    1 T=CURIYR+1
                                                                                 00005040
       Old_Price=New_Price
                                                                                 00005050
       Sum Demand=0.
                                                                                 00005060
       Sum_Supply=0.
                                                                                 00005070
                                                                                 00005080
       Elas_Factor=0.
      DO 2 I=1, 7
                                                                                 00005090
C
                                                                                 00005100
C U.S. Demand is set to Total Product Supplied for U.S.
                                                                                 00005110
C
                                                                                 00005120
       IF (I.EQ.1) Demand(1, T)=RFQPRDT(11, CURIYR)
                                                                                 00005130
      IF (I.GT.1.AND.I.NE.6)
                                                                                 00005140
           Demand(I, T)=Ref_Dem(I, T)*(((GDP(I, T)/GDP85(I))**
                                                                                 00005150
           (Dem_Adj(T)*I_Elas(I)))
                                                                                 00005160
           /((GDP(I, T-1)/GDP85(I))**
                                                                                 00005170
           ((Dem_Adj(T)*I_Elas(I))*Dem_Lag(I)))
                                                                                 00005180
           *((Demand(I, T-1)/Ref_Dem(I, T-1))**Dem_Lag(I))*((Old_Price
                                                                                 00005190
           /Ref_Price(T)*Price_Adj(I, T))**(P_Elas_Dem(I)
                                                                                 00005200
           -FB Elas Dem(I)*
                                                                                 00005210
           (Dem_Adj(T)*I_Elas(I)))))*((Price(T-1)/Ref_Price(T-1))
                                                                                 00005220
           *Price_Adj(I, T-1))**(FB_Elas_Dem(I)*
                                                                                 00005230
           (Dem_Adj(T)*I_Elas(I))*Dem_Lag(I)))
                                                                                 00005240
      IF (I.EQ.6)
                                                                                 00005250
           Demand(I, T)=Ref_Dem(I, T)*(((GDP(I, T)/GDP85(I))**I_Elas(I)) 00005260
/((GDP(I, T-1)/GDP85(I))**(I_Elas(I)*Dem_Lag(I))) 00005270
*((Demand(I, T-1)/Ref_Dem(I, T-1))**Dem_Lag(I))*((Old_Price 00005280
/Ref_Price(T)*Price_Adj(I, T))**(P_Elas_Dem(I) 00005290
           -FB_Elas_Dem(I)*I_Elas(I))))*((Price(T-1)/Ref_Price(T-1)
                                                                                 00005300
           *Price_Adj(I, T-1))**(FB_Elas_Dem(I)*I_Elas(I)*Dem_Lag(I)))
                                                                                 00005310
      IF (I.EQ.7) GO TO 2
                                                                                 00005320
       Sum_Demand=Sum_Demand+Demand(I, T)
                                                                                 00005330
      IF (I.NE.6)
                                                                                 00005340
           Elas_Factor=Elas_Factor+(P_Elas_Dem(I)-FB_Elas_Dem(I)*
                                                                                 00005350
           (Dem_Adj(T)*I_Elas(I)))
                                                                                 00005360
           *Demand(I, T)
                                                                                 00005370
      IF (I.EQ.6)
                                                                                 00005380
           Elas_Factor=Elas_Factor+(P_Elas_Dem(I)-FB_Elas_Dem(I)*
                                                                                 00005390
           (I_Elas(I)))
                                                                                 00005400
           *Demand(I, T)
                                                                                 00005410
    2 CONTINUE
                                                                                 00005420
      DO 3 I=1, 5
                                                                                 00005430
C
                                                                                 00005440
C U.S. Supply is set to Domestic Total Crude for U.S.
                                                                                 00005450
C
                                                                                 00005460
       IF (I.EQ.1) Supply(1, T)=RFQTDCRD(15, CURIYR)
                                                                                 00005470
           +RFPQNGL(6, CURIYR, 6, 2)+RFQDINPOT(6, CURIYR)
                                                                                 00005480
      +RFQPRCG(6, CURIYR)
IF (Ref_Sup(I, T-1).GT.0..AND.I.GT.1)
                                                                                 00005490
                                                                                 00005500
           Supply(I, T)=(Ref_Sup(I, T)-Unc_Sup(I, T))*((Supply(I, T-1))
                                                                                 00005510
           /Ref_Sup(I, T-1))**Sup_Lag(I))*((Old_Price/Ref_Price(T))**
                                                                                 00005520
           (Sup_Adj(T)*P_Elas_Sup(I)))+Unc_Sup(I, T)*((Supply(I, T-1))
                                                                                 00005530
           /Ref_Sup(I, T-1))**Sup_Lag(I))*((Old_Price/Ref_Price(T))
                                                                                 00005540
           **P_Elas_USup)
                                                                                 00005550
       Sum_Supply=Sum_Supply+Supply(I, T)
                                                                                 00005560
       IF (I.NE.1)
                                                                                 00005570
```

```
00005580
          Elas_Factor=Elas_Factor-
          (Sup_Adj(T)*P_Elas_Sup(I))*Supply(I, T)
                                                                            00005590
      IF (I.EQ.1)
                                                                            00005600
          Elas_Factor=Elas_Factor-
                                                                            00005610
           (P_Elas_Sup(I))*Supply(I, T)
                                                                            00005620
    3 CONTINUE
                                                                            00005630
      Call_On_OPEC=Sum_Demand+Ref_Dem(8, T)-Sum_Supply-Ref_Sup(6, T)
                                                                            00005640
          -(Stk_Chg(1, T)+Stk_Chg(2, T)+Stk_Chg(3, T)+Discrep(T))
                                                                            00005650
      Elas_Factor=Elas_Factor/Old_Price
                                                                            00005660
      Function=(1.+Alpha+Beta/(1.-Call_On_OPEC/OPEC_Cap2(T)))*Price(T-1)00005670
      Funct_Prime=((Beta/OPEC_Cap2(T)*Elas_Factor)
                                                                            00005680
      /(1.-Call_On_OPEC/OPEC_Cap2(T))**2)*Price(T-1)
New_Price=Old_Price-((Old_Price-Function)/(1.-Funct_Prime))
                                                                            00005690
                                                                            00005700
      IF (OPEC_Behavior.EQ.1)
                                                                            00005710
          New_Price = Old_Price * Call_On_OPEC / OPEC_Cap2(T)
                                                                            00005720
      IF (New_Price.LT.0.9*Old_Price) New_Price=0.9*Old_Price
                                                                            00005730
      Price(T)=New_Price
                                                                            00005740
      IF (T.LE.5) Price(T)=Start_Price(T)
                                                                            00005750
C
                                                                            00005760
C
   Set International World Oil Price to New Price and apply
                                                                            00005770
С
   price deflator (= 1.178???). Set other output variables for
                                                                            00005780
С
   use in Report_Variables.
                                                                            00005790
C
                                                                            00005800
      IT_WOP(T-1, 1)=Price(T)/1.178
                                                                            00005810
      OPEC_Prod(T)=Call_On_OPEC
                                                                            00005820
      OPEC_Dem(T)=Ref_Dem(8, T)
                                                                            00005830
      Net_CPE(T)=Ref_Sup(6, T)
                                                                            00005840
      Balance(T)=Discrep(T)
                                                                            00005850
      RETURN
                                                                            00005860
                                                                            00005870
      END
      SUBROUTINE Crd_Sup_Crv
                                                                            00005880
C
                                                                            00005890
    Generates PADD-Level Import Supply Curves (3-Steps) For
С
                                                                            00005900
C
    Five Grades Of Crude Oil
                                                                            00005910
C
                                                                            00005920
      IMPLICIT NONE
                                                                            00005930
      INTEGER Year
                                                                            00005940
      REAL Ref_Price, Price_Adj, OPEC_Cap2, Ref_Dem, Ref_Sup,
                                                                            00005950
          Stk_Chg, Discrep, Unc_Sup, OPEC_Cap1,
                                                                            00005960
          GDP, P_Elas_Dem, FB_Elas_Dem, P_Elas_Sup, I_Elas,
                                                                            00005970
          Dem_Lag, Sup_Lag, Start_Price, Dem_Adj, Sup_Adj
                                                                            00005980
      COMMON /OMSDATA/ Year(27), Ref_Price(27), Price_Adj(7, 27),
                                                                            00005990
          OPEC_Cap2(27), Ref_Dem(8, 27), Ref_Sup(6, 27),
                                                                            00006000
          Stk_Chg(3, 27), Discrep(27), Unc_Sup(5, 27), OPEC_Cap1(27),
                                                                            00006010
          GDP(7, 27), P_Elas_Dem(7),
                                                                            00006020
          FB_Elas_Dem(7), P_Elas_Sup(7), I_Elas(7), Dem_Lag(7)
                                                                            00006030
          Sup_Lag(7), Start_Price(27), Dem_Adj(27), Sup_Adj(27)
                                                                            00006040
      LOGICAL New
                                                                            00006050
      CHARACTER*18 Fname
                                                                            00006060
      INTEGER Iunit1
                                                                            00006070
      INTEGER FILE_MGR
                                                                            00006080
      EXTERNAL FILE_MGR
                                                                            00006090
      INTEGER T, I, J, K
                                                                            00006100
      REAL Offset
                                                                            00006110
                                                                            00006120
      INCLUDE (PARAMETR)
      INCLUDE (INTOUT)
                                                                            00006130
      INCLUDE (NCNTRL)
                                                                            00006140
      Fname='CRDCURV'
                                                                            00006150
      New=.FALSE.
                                                                            00006160
      Iunit1=FILE_MGR('O',Fname,New)
                                                                            00006170
      DO 4 T=1, CURIYR
                                                                            00006180
      DO 3 K=1, 3
                                                                            00006190
      CALL Skip_Comments(Iunit1)
                                                                            00006200
С
                                                                            00006210
C Read in Crude Import Supply Curve Quantities and
                                                                            00006220
C Prices.
                                                                            00006230
C
                                                                            00006240
      DO 1 J=1, 5
                                                                            00006250
      READ (Iunit1, 301) (Q_ITIMCRSC(CURIYR, I, J, K), I=1, 5)
                                                                            00006260
  301 FORMAT (20X, 5F10.0)
                                                                            00006270
    1 CONTINUE
                                                                            00006280
```

```
CALL Skip_Comments(Iunit1)
                                                                              00006290
      DO 2 J=1, 5
                                                                              00006300
      READ (Iunit1, 301) (P_ITIMCRSC(CURIYR, I, J, K), I=1, 5)
                                                                              00006310
    2 CONTINUE
                                                                              00006320
    3 CONTINUE
                                                                              00006330
    4 CONTINUE
                                                                               00006340
                                                                              00006350
C
C Compute offset and apply to Crude Import Supply Curve
                                                                              00006360
C Prices.
                                                                              00006370
С
                                                                              00006380
      Offset=1.178 * IT_WOP(CURIYR, 1) - Start_Price(CURIYR+1)
                                                                               00006390
      DO 7 I=1, 5
                                                                              00006400
      DO 6 J=1, 5
                                                                              00006410
      DO 5 K=1, 3
                                                                              00006420
      P_ITIMCRSC(CURIYR, I, J, K) = (P_ITIMCRSC(CURIYR, I, J, K)
                                                                              00006430
                                                                               00006440
        +Offset) / 1.178
    5 CONTINUE
                                                                               00006450
    6 CONTINUE
                                                                              00006460
    7 CONTINUE
                                                                              00006470
      Iunit1=FILE_MGR('C',Fname,New)
                                                                              00006480
      RETURN
                                                                              00006490
                                                                               00006500
      END
      SUBROUTINE Prd_Sup_Crv
                                                                               00006510
C
                                                                              00006520
    Generates PADD-Level Import Supply Curves (3-Steps) For Ten
                                                                              00006530
C
С
    Refined Product Categories and Two Categories Of Oxygenates
                                                                              00006540
С
                                                                              00006550
      IMPLICIT NONE
                                                                               00006560
      INTEGER Year
                                                                              00006570
      REAL Ref_Price, Price_Adj, OPEC_Cap2, Ref_Dem, Ref_Sup,
Stk_Chg, Discrep, Unc_Sup, OPEC_Cap1,
                                                                              00006580
                                                                              00006590
           GDP, P_Elas_Dem, FB_Elas_Dem, P_Elas_Sup, I_Elas,
                                                                              00006600
           Dem_Lag, Sup_Lag, Start_Price, Dem_Adj, Sup_Adj
                                                                               00006610
      COMMON /OMSDATA/ Year(27), Ref_Price(27), Price_Adj(7, 27),
                                                                              00006620
           OPEC_Cap2(27), Ref_Dem(8, 27), Ref_Sup(6, 27),
                                                                              00006630
           Stk_Chg(3, 27), Discrep(27), Unc_Sup(5, 27), OPEC_Cap1(27),
                                                                              00006640
           GDP(7, 27), P_Elas_Dem(7),
                                                                              00006650
           FB_Elas_Dem(7), P_Elas_Sup(7), I_Elas(7), Dem_Lag(7),
                                                                              00006660
           Sup_Lag(7), Start_Price(27), Dem_Adj(27), Sup_Adj(27)
                                                                              00006670
                                                                              00006680
      LOGICAL New
                                                                              00006690
      CHARACTER*18 Fname
      INTEGER Iunit1
                                                                              00006700
      INTEGER FILE_MGR
                                                                              00006710
      EXTERNAL FILE_MGR
                                                                              00006720
      INTEGER I, J, K
                                                                              00006730
      REAL Offset
                                                                              00006740
      INCLUDE (PARAMETR)
                                                                              00006750
      INCLUDE (INTOUT)
                                                                              00006760
      INCLUDE (NCNTRL)
                                                                              00006770
      Fname='PRDCURV'
                                                                              00006780
      New=.FALSE.
                                                                              00006790
      Iunit1=FILE_MGR('O',Fname,New)
                                                                              00006800
      DO 2 I=1, CURIYR
                                                                              00006810
        DO 1 K=1, 3
                                                                              00006820
           CALL Skip_Comments(Iunit1)
                                                                               00006830
           READ(Iunit1,301) (ITIMRGSC(CURIYR,J,K,1),J=1,5)
                                                                              00006840
  301 FORMAT (20X,5F10.0)
                                                                              00006850
           READ(Iunit1,301) (ITIMGSSC(CURIYR,J,K,1),J=1,5)
                                                                              00006860
           READ(Iunit1,301) (ITIMDSSC(CURIYR,J,K,1),J=1,5)
                                                                              00006870
           READ(Iunit1,301) (ITIMLDSC(CURIYR,J,K,1),J=1,5)
                                                                              00006880
           READ(Iunit1,301) (ITIMLRSC(CURIYR,J,K,1),J=1,5)
                                                                              00006890
           READ(Iunit1,301) (ITIMHRSC(CURIYR,J,K,1),J=1,5)
                                                                              00006900
           READ(Iunit1,301) (ITIMJFSC(CURIYR,J,K,1),J=1,5)
READ(Iunit1,301) (ITIMLPSC(CURIYR,J,K,1),J=1,5)
                                                                              00006910
                                                                              00006920
           READ(Iunit1,301) (ITIMPFSC(CURIYR,J,K,1),J=1,5)
READ(Iunit1,301) (ITIMOTSC(CURIYR,J,K,1),J=1,5)
                                                                              00006930
                                                                              00006940
           READ(Iunit1,301) (ITIMMESC(CURIYR,J,K,1),J=1,5)
                                                                              00006950
           READ(Iunit1,301) (ITIMMTSC(CURIYR,J,K,1),J=1,5)
                                                                              00006960
                                                                              00006970
           CALL Skip_Comments(Iunit1)
           READ(Iunit1,301) (ITIMRGSC(CURIYR,J,K,2),J=1,5)
                                                                              00006980
           READ(Iunit1,301) (ITIMGSSC(CURIYR,J,K,2),J=1,5)
                                                                              00006990
```

```
READ(Iunit1,301) (ITIMDSSC(CURIYR,J,K,2),J=1,5)
                                                                             00007000
          READ(Iunit1,301) (ITIMLDSC(CURIYR,J,K,2),J=1,5)
READ(Iunit1,301) (ITIMLRSC(CURIYR,J,K,2),J=1,5)
                                                                             00007010
                                                                             00007020
          READ(Iunit1,301) (ITIMHRSC(CURIYR,J,K,2),J=1,5)
                                                                             00007030
           READ(Iunit1,301) (ITIMJFSC(CURIYR,J,K,2),J=1,5)
                                                                             00007040
          READ(Iunit1,301) (ITIMLPSC(CURIYR,J,K,2),J=1,5)
                                                                             00007050
          READ(Iunit1,301) (ITIMFFSC(CURIYR,J,K,2),J=1,5)
READ(Iunit1,301) (ITIMOTSC(CURIYR,J,K,2),J=1,5)
                                                                             00007060
                                                                             00007070
          READ(Iunit1,301) (ITIMMESC(CURIYR,J,K,2),J=1,5)
                                                                             00007080
          READ(Iunit1,301) (ITIMMTSC(CURIYR,J,K,2),J=1,5)
                                                                             00007090
        CONTINUE
                                                                             00007100
    2 CONTINUE
                                                                             00007110
C
                                                                             00007120
C Compute offset and apply to Import Supply Curves.
                                                                             00007130
C
                                                                             00007140
      Offset=1.178 * IT_WOP(CURIYR, 1) - Start_Price(CURIYR+1)
                                                                             00007150
      DO 4 I=1, 5
                                                                             00007160
      DO 3 J=1, 3
                                                                             00007170
      ITIMRGSC(CURIYR, I, J, 2) = (ITIMRGSC(CURIYR, I, J, 2)
                                                                             00007180
          +Offset) / 1.178
                                                                             00007190
      ITIMGSSC(CURIYR, I, J, 2) = (ITIMGSSC(CURIYR, I, J, 2)
                                                                             00007200
          +Offset) / 1.178
                                                                             00007210
      ITIMDSSC(CURIYR, I, J, 2) = (ITIMDSSC(CURIYR, I, J, 2)
                                                                             00007220
           +Offset) / 1.178
                                                                             00007230
      ITIMLDSC(CURIYR, I, J, 2) = (ITIMLDSC(CURIYR, I, J, 2)
                                                                             00007240
          +Offset) / 1.178
                                                                             00007250
      ITIMLRSC(CURIYR, I, J, 2) = (ITIMLRSC(CURIYR, I, J, 2)
                                                                             00007260
          +Offset) / 1.178
                                                                             00007270
      ITIMHRSC(CURIYR, I, J, 2) = (ITIMHRSC(CURIYR, I, J, 2)
                                                                             00007280
          +Offset) / 1.178
                                                                             00007290
      ITIMJFSC(CURIYR, I, J, 2) = (ITIMJFSC(CURIYR, I, J, 2)
                                                                             00007300
          +Offset) / 1.178
                                                                             00007310
      ITIMLPSC(CURIYR, I, J, 2) = (ITIMLPSC(CURIYR, I, J, 2)
                                                                             00007320
          +Offset) / 1.178
                                                                             00007330
      ITIMPFSC(CURIYR, I, J, 2) = (ITIMPFSC(CURIYR, I, J, 2)
                                                                             00007340
          +Offset) / 1.178
                                                                             00007350
      ITIMOTSC(CURIYR, I, J, 2) = (ITIMOTSC(CURIYR, I, J, 2)
                                                                             00007360
          +Offset) / 1.178
                                                                             00007370
      ITIMMESC(CURIYR, I, J, 2) = (ITIMMESC(CURIYR, I, J, 2)
                                                                             00007380
          +Offset) / 1.178
                                                                             00007390
      ITIMMTSC(CURIYR, I, J, 2) = (ITIMMTSC(CURIYR, I, J, 2)
                                                                             00007400
          +Offset) / 1.178
                                                                             00007410
    3 CONTINUE
                                                                             00007420
    4 CONTINUE
                                                                             00007430
      Iunit1=FILE_MGR('C',Fname,New)
                                                                             00007440
      RETURN
                                                                             00007450
      END
                                                                             00007460
      SUBROUTINE World_Oil_Report
                                                                             00007470
С
                                                                             00007480
C This subroutine is used to assign REPORT values for use in
                                                                             00007490
C other NEMS modules.
                                                                             00007500
С
                                                                             00007510
      IMPLICIT NONE
                                                                             00007520
      INTEGER I, J, Year
                                                                             00007530
      LOGICAL First_Time
                                                                              00007540
      REAL Ref_Price, Price_Adj, OPEC_Cap2, Ref_Dem, Ref_Sup,
                                                                             00007550
          Stk_Chg, Discrep, Unc_Sup, OPEC_Cap1,
GDP, P_Elas_Dem, FB_Elas_Dem, P_Elas_Sup, I_Elas,
                                                                             00007560
                                                                             00007570
          Dem_Lag, Sup_Lag, Start_Price, Dem_Adj, Sup_Adj
                                                                             00007580
      REAL Price, Demand, Supply, OPEC_Prod, OPEC_Dem, Net_CPE,
                                                                              00007590
          Balance
                                                                              00007600
      COMMON /FORECAST/ Price(27), Demand(7, 27), Supply(5, 27),
                                                                             00007610
          OPEC_Prod(27), OPEC_Dem(27), Net_CPE(27), Balance(27)
                                                                             00007620
      COMMON /OMSDATA/ Year(27), Ref_Price(27), Price_Adj(7, 27),
                                                                             00007630
           OPEC_Cap2(27), Ref_Dem(8, 27), Ref_Sup(6, 27),
                                                                             00007640
           Stk_Chg(3, 27), Discrep(27), Unc_Sup(5, 27), OPEC_Cap1(27),
                                                                              00007650
          GDP(7, 27), P_Elas_Dem(7),
                                                                             00007660
          FB_Elas_Dem(7), P_Elas_Sup(7), I_Elas(7), Dem_Lag(7),
                                                                             00007670
           Sup_Lag(7), Start_Price(27), Dem_Adj(27), Sup_Adj(27)
                                                                             00007680
      INCLUDE (PARAMETR)
                                                                             00007690
      INCLUDE (INTOUT)
                                                                             00007700
```

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

```
INCLUDE (NCNTRL)
                                                                               00007710
      IF (CURIYR.LT.LASTYR) RETURN
                                                                               00007720
                                                                               00007730
      DO 1 I=1, LASTYR
      REPORT(I, 1)=IT_WOP(I, 1)
                                                                               00007740
      REPORT(I, 2)=Supply(1, I+1)
                                                                               00007750
      REPORT(I, 3)=Supply(2, I+1)
                                                                               00007760
      REPORT(I, 4)=Supply(4, I+1)
REPORT(I, 5)=OPEC_Prod(I+1)
                                                                               00007770
                                                                               00007780
      REPORT(I, 6)=Supply(5, I+1)
                                                                               00007790
      REPORT(I, 7)=Net_CPE(I+1)
                                                                               00007800
      REPORT(I, 8)=Stk_Chg(1, I+1)
                                                                               00007810
      REPORT(I, 9)=Stk_Chg(2, I+1)
REPORT(I, 10)=Stk_Chg(3, I+1)
REPORT(I, 11)=REPORT(I, 2)+REPORT(I, 3)+REPORT(I, 4)
                                                                               00007820
                                                                               00007830
                                                                               00007840
           +REPORT(I, 5)+REPORT(I, 6)+REPORT(I, 7)+REPORT(I, 8)
                                                                               00007850
           +REPORT(I, 9)+REPORT(I, 10)
                                                                               00007860
      REPORT(I, 12)=Demand(1, I+1)
                                                                               00007870
      REPORT(I, 13)=Demand(6, I+1)
                                                                               00007880
      REPORT(I, 14)=Demand(2, I+1)
                                                                               00007890
      REPORT(I, 15)=Demand(3, I+1)
                                                                               00007900
      REPORT(I, 16)=Demand(7, I+1)
                                                                               00007910
      REPORT(I, 17)=Demand(4, I+1)
REPORT(I, 18)=Demand(5, I+1)+OPEC_Dem(I+1)-Demand(7, I+1)
                                                                               00007920
                                                                               00007930
      REPORT(I, 19)=REPORT(I, 12)+REPORT(I, 13)+REPORT(I, 14)
                                                                               00007940
           +REPORT(I, 15)+REPORT(I, 16)+REPORT(I, 17)+REPORT(I, 18)
                                                                               00007950
      REPORT(I, 20)=Balance(I+1)
                                                                               00007960
      REPORT(I, 21)=REPORT(I, 12)+REPORT(I, 13)+REPORT(I, 14)
                                                                               00007970
           +REPORT(I, 15)+REPORT(I, 16)+REPORT(I, 17)
                                                                               00007980
      REPORT(I, 22)=OPEC_Dem(I+1)
                                                                               00007990
                                                                               00008000
      REPORT(I, 23)=Demand(5, I+1)-Demand(7, I+1)
      REPORT(I, 24)=Demand(5, I+1)
                                                                               00008010
      REPORT(I, 25)=REPORT(I, 2)+REPORT(I, 3)+REPORT(I, 4)
                                                                               00008020
           +REPORT(I, 6)
                                                                               00008030
      REPORT(I, 26)=0.
                                                                               00008040
      IF(REPORT(I,19).NE.0.) REPORT(I, 26)=REPORT(I, 5)/REPORT(I, 19)
                                                                               00008050
      REPORT(I, 27)=OPEC_Cap1(I+1)
REPORT(I, 28)=0.
                                                                               00008060
                                                                               00008070
      IF(OPEC_Cap1(I+1).NE.0.0) REPORT(I,28)=REPORT(I,5)/OPEC_Cap1(I+1) 00008080
      REPORT(I, 29)=REPORT(I, 2)+REPORT(I, 3)+REPORT(I, 4)
                                                                               00008090
           +REPORT(I, 5)+REPORT(I, 6)
                                                                               00008100
    1 CONTINUE
                                                                               00008110
      RETURN
                                                                               00008120
      END
                                                                               00008130
      SUBROUTINE US_Import_Report
                                                                               00008140
                                                                               00008150
   This routine was developed to produce a by-PADD table of
                                                                               00008160
   imports of various oil products for various country groupings.
                                                                               00008170
   Questions concerning this routine should be addressed
                                                                               00008180
   to Linda Doman.
                                                                               00008190
                                                                               00008200
      IMPLICIT NONE
                                                                               00008210
      LOGICAL New
                                                                               00008220
      CHARACTER*18 Fname
                                                                               00008230
      INTEGER Iunit1
                                                                               00008240
      INTEGER FILE MGR
                                                                               00008250
      EXTERNAL FILE_MGR
                                                                               00008260
      INTEGER A, I, K, J, Y1, Head_Yr, Y, P, C, Big_Type, Table_No
                                                                               00008270
      CHARACTER*2 Fuel_Type
                                                                               00008280
      REAL Pct_Crude, Crude_Shr, Pct_LtRef, LtRef_Shr,
                                                                               00008290
     . Pct_HvRef, HvRef_Shr, OPEC_Tot, Hold_Tot,
                                                                               00008300
     . Hold_Dif, Hold_Df2
                                                                               00008310
      DIMENSION Pct_Crude(5,6,5,12), Crude_Shr(21,6,12),
                                                                               00008320
     . Pct_LtRef(5,6,8,11), LtRef_Shr(21,6,11),
. Pct_HvRef(5,6,4,11), HvRef_Shr(21,6,11), Head_Yr(21),
                                                                               00008330
                                                                               00008340
      OPEC_Tot(21,6,3)
                                                                               00008350
                                                                               00008360
      INCLUDE (PARAMETR)
      INCLUDE (INTOUT)
                                                                               00008370
                                                                               00008380
      INCLUDE (PMMRPT)
      INCLUDE (PMMCOM1)
                                                                               00008390
                                                                               00008400
C Head_Yr(j) is used as a year header label in the final table.
                                                                               00008410
```

C С

С

С

C

С

```
C The Head_yr's range from 1990 through 2010.
                                                                            00008420
                                                                            00008430
С
      Head_Yr(1)=1990
                                                                            00008440
      DO 20 J=2,21
                                                                            00008450
      Head_Yr(J)=Head_Yr(J-1) + 1
                                                                            00008460
  20
С
                                                                            00008470
                                                                            00008480
C In this portion, the i/o portion of the share of crude imports
C attributed to each country/region source is computed.
                                                                            00008490
C
                                                                            00008500
C First initialize the arrays which will hold the product
                                                                            00008510
                                                                            00008520
C percentages.
С
                                                                            00008530
      DO 25 K=1,5
                                                                            00008540
      DO 30 P=1,6
                                                                            00008550
      DO 35 C=1,5
                                                                            00008560
      DO 40 A=1,12
                                                                            00008570
 40
         Pct_Crude(K,P,C,A) = 0.0
                                                                            00008580
 35
      CONTINUE
                                                                            00008590
      DO 45 C=1,8
                                                                            00008600
      DO 50 A=1,11
                                                                            00008610
  50
          Pct_LtRef(K,P,C,A) = 0.0
                                                                            00008620
      CONTINUE
  45
                                                                            00008630
      DO 55 C=1,4
                                                                            00008640
      DO 60 A=1,11
                                                                            00008650
          Pct_HvRef(K,P,C,A) = 0.0
  60
                                                                            00008660
      CONTINUE
  55
                                                                            00008670
  30
      CONTINUE
                                                                            00008680
  25
      CONTINUE
                                                                            00008690
C
                                                                            00008700
C Next, read the file and translate alphanumeric fuel types to
                                                                            00008710
C numerics.
                                                                            00008720
C
                                                                            00008730
      Fname='WSHARES'
                                                                            00008740
      New=.FALSE.
                                                                            00008750
      Iunit1=FILE_MGR('O',Fname,New)
                                                                            00008760
      CALL Skip_Comments(Iunit1)
                                                                            00008770
  65
      READ (Iunit1, 500) Y,P,Fuel_Type
                                                                            00008780
С
                                                                            00008790
C End of file marker is currently 9999. Therefore, when Y is
                                                                            00008800
                                                                            00008810
C greater than 2010, exit the loop.
С
                                                                            00008820
      IF (Y.GT.2010) GOTO 70
                                                                            00008830
      Y1 = Y/5 - 397
                                                                            00008840
С
                                                                            00008850
C Identify the following "Fuel_Type"s as Crude Oils.
                                                                            00008860
                                                                            00008870
С
      If ((Fuel_Type.EQ.'LL').OR.(Fuel_Type.EQ.'MH').OR.
                                                                            00008880
      (Fuel_Type.EQ.'HL').OR.(Fuel_Type.EQ.'HH').OR.
                                                                            00008890
                                   (Fuel_Type.EQ.'HV')) Big_Type=1
                                                                            0008900
С
                                                                            00008910
C Identify the following "Fuel_Type"s as Light Refined Products.
                                                                            00008920
С
                                                                            00008930
      If ((Fuel_Type.EQ.'LG').OR.(Fuel_Type.EQ.'RG').OR.
                                                                            00008940
        (Fuel_Type.EQ.'MG').OR.(Fuel_Type.EQ.'JF').OR.
                                                                            00008950
         (Fuel_Type.EQ.'DS').OR.(Fuel_Type.EQ.'DL').OR.
                                                                            00008960
        (Fuel_Type.EQ.'ME').OR.(Fuel_Type.EQ.'MT')) Big_Type=2
                                                                            00008970
C
                                                                            00008980
C Identify the following "Fuel_Type"s as Heavy Refined Products.
                                                                            00008990
C
                                                                            00009000
      If ((Fuel_Type.EQ.'RL').OR.(Fuel_Type.EQ.'RH').OR.
                                                                            00009010
          (Fuel_Type.EQ.'OT').OR.(Fuel_Type.EQ.'PF')) Big_Type=3
                                                                            00009020
                                                                            00009030
C
C Now translate Fuel_Type into numeric variable C. There are 5 C crude oils (LL, MH, HL, HH, HV), 8 light refined products (LG,
                                                                            00009040
                                                                            00009050
C RG, MG, JF, DS, DL, ME, MT), and 4 heavy refined products (RL,
                                                                            00009060
C RH, OT, PF). The indices are not, per se, important (except for
                                                                            00009070
C the crude oil products where order must correspond to that of the
                                                                            00009080
C QCRDRF array) so that values for C are assigned arbitrarily until
                                                                            00009090
C the lists for any of the oil products is exhausted.
                                                                            00009100
C
                                                                            00009110
           If ((Fuel_Type.EQ.'LL').OR.(Fuel_Type.EQ.'LG').OR.
                                                                            00009120
```

```
(Fuel_Type.EQ.'RL')) C=1
                                                                          00009130
           If ((Fuel_Type.EQ.'MH').OR.(Fuel_Type.EQ.'RG').OR.
                                                                          00009140
                  (Fuel_Type.EQ.'RH')) C=2
                                                                          00009150
           If ((Fuel_Type.EQ.'HL').OR.(Fuel_Type.EQ.'MG').OR.
                                                                          00009160
                  (Fuel_Type.EQ.'OT')) C=3
                                                                           00009170
           If ((Fuel_Type.EQ.'HH').OR.(Fuel_Type.EQ.'JF').OR.
                                                                           00009180
                  (Fuel_Type.EQ.'PF')) C=4
                                                                          00009190
           If ((Fuel_Type.EQ.'HV').OR.(Fuel_Type.EQ.'DS')) C = 5
                                                                          00009200
           If (Fuel_Type.EQ.'DL') C = 6
                                                                          00009210
           If (Fuel_Type.EQ.'ME') C = 7
                                                                          00009220
           If (Fuel_Type.EQ.'MT') C = 8
                                                                           00009230
C
                                                                          00009240
C Since the number of areas and fuel types vary by product, the
                                                                          00009250
C product indicator assigned above determines the format of the
                                                                          00009260
C of the READ statement and the way total area shares are computed
                                                                          00009270
C below. Here the percentages applied to each area by product, year,
                                                                           00009280
C PADD, and fuel type are input.
                                                                           00009290
C
                                                                          00009300
      CALL Skip_Comments(Iunit1)
                                                                          00009310
      If (Big_Type.EQ.1)
                                                                          00009320
                    READ(Iunit1,501) (Pct_Crude(Y1,P,C,I),I=1,12)
                                                                          00009330
                                                                           00009340
      If (Big_Type.EQ.2)
                    READ(Iunit1,502) (Pct_LtRef(Y1,P,C,I),I=1,11)
                                                                           00009350
                                                                          00009360
      If (Big_Type.EQ.3)
                    READ(Iunit1,502) (Pct_HvRef(Y1,P,C,I),I=1,11)
                                                                          00009370
      GOTO 65
                                                                          00009380
  70
      Iunit1=FILE_MGR('C',Fname,New)
                                                                          00009390
C
                                                                           00009400
C Reads are completed; compute the actual shares attributed to each
                                                                          00009410
                                                                          00009420
C area and aggregate over years. First, initialize "share" arrays.
C
                                                                          00009430
      DO 75 J=1,21
                                                                          00009440
        DO 80 P=1,6
                                                                           00009450
          DO 85 A=1,12
                                                                           00009460
  85
            Crude_Shr(J,P,A) = 0.0
                                                                          00009470
          DO 90 A=1,11
                                                                          00009480
            LtRef_Shr(J,P,A) = 0.0
                                                                          00009490
  90
            HvRef_Shr(J,P,A) = 0.0
                                                                           00009500
  80
        CONTINUE
                                                                           00009510
                                                                          00009520
  75
      CONTINUE
С
                                                                          00009530
C The total crude oil share for a specific area, by year and PADD
                                                                          00009540
C are aggregated in this loop. Y1 is for years 1990, 1995,...,2010.
                                                                          00009550
С
                                                                          00009560
      DO 95 Y1=1,5
                                                                          00009570
        DO 100 P=1,5
                                                                          00009580
          DO 105 A=1,12
                                                                          00009590
              Crude_Shr(5*Y1-4,P,A) =
                                                                          00009600
                Pct_Crude(Y1,P,1,A)*RFIPQCLL(P,Y1-4,2) +
                                                                          00009610
                Pct_Crude(Y1,P,2,A)*RFIPQCMH(P,Y1-4,2) +
                                                                          00009620
                Pct_Crude(Y1,P,3,A)*RFIPQCHL(P,Y1-4,2) +
                                                                          00009630
                Pct_Crude(Y1,P,4,A)*RFIPQCHH(P,Y1-4,2)
                                                                          00009640
                                                         +
                Pct_Crude(Y1,P,5,A)*RFIPQCHV(P,Y1-4,2)
                                                                          00009650
 105
          CONTINUE
                                                                          00009660
                                                                           00009670
С
С
 The total light and heavy refined products are (separately)
                                                                          00009680
C aggregated in this loop by year and PADD. The variables
                                                                          00009690
C RFIPQxx are from PMMRPT.
                                                                          00009700
C
                                                                          00009710
          DO 115 A=1,11
                                                                           00009720
            LtRef_Shr(5*Y1-4,P,A) =
                                                                           00009730
              Pct_LtRef(Y1,P,1,A)*RFIPQLG(P,5*Y1-4,2) +
                                                                          00009740
              Pct_LtRef(Y1,P,2,A)*RFIPQRG(P,5*Y1-4,2)
                                                                          00009750
                                                       +
              Pct_LtRef(Y1,P,3,A)*RFIPQMG(P,5*Y1-4,2)
                                                       +
                                                                          00009760
              Pct_LtRef(Y1,P,4,A)*RFIPQJF(P,5*Y1-4,2)
                                                                          00009770
              Pct_LtRef(Y1,P,5,A)*RFIPQDS(P,5*Y1-4,2)
                                                                          00009780
                                                       +
              Pct_LtRef(Y1,P,6,A)*RFIPQDL(P,5*Y1-4,2) +
                                                                          00009790
              Pct_LtRef(Y1,P,7,A)*RFIPQME(P,5*Y1-4,2)
                                                                          00009800
              Pct_LtRef(Y1, P, 8, A) * RFIPQMT(P, 5*Y1-4, 2)
                                                                          00009810
            HvRef_Shr(5*Y1-4,P,A) =
                                                                          00009820
              Pct_HvRef(Y1,P,1,A)*RFIPQRL(P,5*Y1-4,2) +
                                                                          00009830
```

Pct_HvRef(Y1,P,2,A)*RFIPQRH(P,5*Y1-4,2) + 00009840 Pct_HvRef(Y1,P,3,A)*RFIPQOT(P,5*Y1-4,2) +
Pct_HvRef(Y1,P,4,A)*RFIPQPF(P,5*Y1-4,2) 00009850 00009860 115 CONTINUE 00009870 100 CONTINUE 00009880 95 CONTINUE 00009890 C 00009900 C The following code is used to interpolate data for the 4 years 00009910 C between sets of anchor years (i.e., 1990 and 1995, 1995 and 2000, 00009920 C etc.). The first loop is for crude oil products; the second is 00009930 C for the light and heavy refinery products. 00009940 С 00009950 DO 120 P=1,5 00009960 DO 125 A=1,12 00009970 Y=1 00009980 DO 130 I=1,4 00009990 Y1 = Y+500010000 Hold_Dif = Crude_Shr(Y1,P,A) - Crude_Shr(Y,P,A) 00010010 Crude_Shr(Y+1,P,A) = Crude_Shr(Y,P,A) + (1.0/5.0)*Hold_Dif 00010020 Crude_Shr(Y+2,P,A) = Crude_Shr(Y,P,A) + (2.0/5.0)*Hold_Dif 00010030 Crude_Shr(Y+3,P,A) = Crude_Shr(Y,P,A) + (3.0/5.0)*Hold_Dif 00010040 00010050 Crude_Shr(Y+4,P,A) = Crude_Shr(Y,P,A) + (4.0/5.0)*Hold_Dif 130 Y = Y100010060 125 CONTINUE 00010070 CONTINUE 00010080 120 DO 135 P=1,5 00010090 DO 140 A=1,11 00010100 Y=1 00010110 DO 145 I=1,4 00010120 Y1 = Y+500010130 Hold_Dif = LtRef_Shr(Y1,P,A) - LtRef_Shr(Y,P,A) 00010140 Hold_Df2 = HvRef_Shr(Y1,P,A) - HvRef_Shr(Y,P,A) 00010150 LtRef_Shr(Y+1,P,A) = LtRef_Shr(Y,P,A) + (1.0/5.0)*Hold_Dif 00010160 HvRef_Shr(Y+1,P,A) = HvRef_Shr(Y,P,A) + (1.0/5.0)*Hold_Df2 00010170 LtRef_Shr(Y+2,P,A) = LtRef_Shr(Y,P,A) + (2.0/5.0)*Hold_Dif 00010180 HvRef_Shr(Y+2,P,A) = HvRef_Shr(Y,P,A) + (2.0/5.0)*Hold_Df2 00010190 LtRef_Shr(Y+3,P,A) = LtRef_Shr(Y,P,A) + (3.0/5.0)*Hold_Dif 00010200 HvRef_Shr(Y+3,P,A) = HvRef_Shr(Y,P,A) + (3.0/5.0)*Hold_Df2 00010210 $LtRef_Shr(Y+4,P,A) = LtRef_Shr(Y,P,A) + (4.0/5.0)*Hold_Dif$ 00010220 HvRef_Shr(Y+4,P,A) = HvRef_Shr(Y,P,A) + (4.0/5.0)*Hold_Df2 00010230 145 Y = Y100010240 140 CONTINUE 00010250 135 CONTINUE 00010260 С 00010270 C Aggregate PADD's 1 through 5 to get "Total U.S." = PADD 6. 00010280 C 00010290 DO 146 J=1,21 00010300 DO 147 A=1,12 00010310 147 $Crude_Shr(J,6,A) = Crude_Shr(J,1,A)+Crude_Shr(J,2,A) +$ 00010320 $Crude_Shr(J,3,A) + Crude_Shr(J,4,A) + Crude_Shr(J,5,A)$ 00010330 DO 148 A=1,11 00010340 $LtRef_Shr(J,6,A) = LtRef_Shr(J,1,A) + LtRef_Shr(J,2,A) +$ 00010350 $LtRef_Shr(J,3,A) + LtRef_Shr(J,4,A) + LtRef_Shr(J,5,A)$ 00010360 $HvRef_Shr(J,6,A) = HvRef_Shr(J,1,A) + HvRef_Shr(J,2,A) +$ 00010370 HvRef_Shr(J,3,A) + HvRef_Shr(J,4,A) + HvRef_Shr(J,5,A) 00010380 148 CONTINUE 00010390 CONTINUE 00010400 146 С 00010410 C Total OPEC numbers are now calculated by summing up (by year 00010420 C and PADD) for each of the 3 products, where 1=crude, 2=light 00010430 C refined product, and 3=heavy refined product in the 3rd index of 00010440 00010450 C OPEC Tot array. С 00010460 DO 150 Y1=1,21 00010470 DO 155 P=1,6 00010480 OPEC_Tot(Y1,P,1) = Crude_Shr(Y1,P,4) + Crude_Shr(Y1,P,5) + 00010490 Crude_Shr(Y1,P,6) + Crude_Shr(Y1,P,7) + Crude_Shr(Y1,P,8) 00010500 OPEC_Tot(Y1,P,2) = LtRef_Shr(Y1,P,4) + LtRef_Shr(Y1,P,5) +
LtRef_Shr(Y1,P,6) + LtRef_Shr(Y1,P,7) + LtRef_Shr(Y1,P,8) 00010510 00010520 OPEC_Tot(Y1,P,3) = HvRef_Shr(Y1,P,4) + HvRef_Shr(Y1,P,5) + 00010530 HvRef_Shr(Y1,P,6) + HvRef_Shr(Y1,P,7) + HvRef_Shr(Y1,P,8) 00010540

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

155	CONTINUE	00010550
150	CONTINUE	00010560
500	FORMAT(1X,14,4X,11,3X,A2)	00010570
501	FORMAT(12(F5.3))	00010580
502	FORMAT(11(F5.3))	00010590
	DO $603 I = 1, 21$	00010600
	DO $602 J = 1, 6$	00010610
	$OIL_IMPORTS(I, J, 4) = OPEC_Tot(I, J, 1) / 1000.$	00010620
	DO $601 \text{ K} = 1, 12$	00010630
	A = K	00010640
	IF(K.GT.3) A = K + 1	00010650
	$OIL_IMPORTS(I, J, A) = Crude_Shr(I, J, K) / 1000.$	00010660
601	CONTINUE	00010670
602	CONTINUE	00010680
603	CONTINUE	00010690
	DO 606 I = 1, 21	00010700
	DO $605 J = 1, 6$	00010710
	$OIL_IMPORTS(I, J, 17) = OPEC_Tot(I, J, 2) / 1000.$	00010720
	DO 604 K = 1, 11	00010730
	A = K + 13	00010740
	IF (K.GT.3) $A = K + 14$	00010750
	<pre>OIL_IMPORTS(I, J, A) = LtRef_Shr(I, J, K) / 1000.</pre>	00010760
604	CONTINUE	00010770
605	CONTINUE	00010780
606	CONTINUE	00010790
	DO $609 I = 1, 21$	00010800
	DO $608 J = 1, 6$	00010810
	$OIL_IMPORTS(I, J, 29) = OPEC_Tot(I, J, 3) / 1000.$	00010820
	DO $607 \text{ K} = 1, 11$	00010830
	A = K + 25	00010840
	IF (K.GT.3) A = K + 26	00010850
	$OIL_IMPORTS(I, J, A) = HvRef_Shr(I, J, K) / 1000.$	00010860
607	CONTINUE	00010870
608	CONTINUE	00010880
609	CONTINUE	00010890
	RETURN	00010900
	END	00010910

APPENDIX C

Sample Input Data for Petroleum Product Import Supply Curves

* Year: 1993					
* Refined Product Import	Quantit	ies (Step	1)		
Reformulated Mogas	8.8	5.1	12.9	5.1	5.1
Traditional Mogas	58.1	5.1	5.1	5.1	64.7
Diesel, Heating Oil	57.7	5.1	5.1	5.1	5.1
Low Sulfur No. 2	18.5	7.9	83.5	5.1	12.0
Low Sulfur Fuel Oil	63.9	5.1	5.1	5.1	56.6
High Sulfur Fuel Oil	23.6	6.9	82.8	5.1	35.1
Jet Fuel	5.1	12.7	5.1	27.7	5.1
Liquefied Pet. Gases	5.1	37.2	5.1	5.1	5.1
Petchem, Feedstocks	12.9	48.0	110.6	7.5	5.1
Other Refined Prod.	5.1	5.6	6.4	5.1	5.1
Methanol	48.8	6.4	38.8	5.1	36.8
мтвЕ	5 1	5 1	5 1	5 1	5 1
	5.1	511	511	5.1	5.1
* Refined Product Import	Prices	(Step 1)			
Reformulated Mogas	24.57	23.61	23.30	23.36	22.38
Traditional Mogas	22.28	21.41	21.77	22.50	19.67
Diesel, Heating Oil	21.53	20.32	20.15	21.01	19.35
Low Sulfur No. 2	25.31	24.35	24.52	25.55	23.82
Low Sulfur Fuel Oil	14.35	13.80	14.16	10.97	13.68
High Sulfur Fuel Oil	12.17	11.46	11.26	7.44	10.61
Jet Fuel	22.50	21.52	21.18	21.14	21.88
Liquefied Pet. Gases	13.11	12.11	11.98	9.57	12.58
Petchem. Feedstocks	17.87	17.48	17.41	18.24	15.69
Other Refined Prod.	15.93	15.42	15.57	12.12	13.30
Methanol	22.46	25.86	23.06	22.96	21.59
M. T. B. E.	13.50	14.86	12.49	14.88	12.19
* Refined Product Import	Quantit	ies (Step	2)		
Reformulated Mogas	8.3	5.0	12.2	5.0	5.0
Traditional Mogas	54 8	5.0	5 0	5 0	61 0
Diesel, Heating Oil	54.4	5.0	5.0	5.0	5.0
Low Sulfur No 2	17 4	74	78 7	5 0	11 3
Low Sulfur Fuel Oil	60 2	5 0	5 0	5 0	53 3
High Sulfur Fuel Oil	22.3	6.5	78.1	5.0	33.1
Jet Fuel	5 0	12 0	5 0	26 1	5 0
Liquefied Pet Gases	5 0	35 0	5.0	5 0	5.0
Detchem Feedstocks	12 1	45 3	104 3	7 1	5.0
Other Refined Prod	5 0		6 1	5 0	5.0
Methanol	46 0	5.5	36 6	5.0	34 7
M. T. B. E.	5.0	5.0	5.0	5.0	5.0
* Refined Product Import	Prices	(Step 2)			
Reformulated Mogas	26.26	25.26	24.71	24.61	23.66
Traditional Mogas	23.86	22.90	23.08	24.06	21.16
Diesel, Heating Oil	22.69	21.38	21.28	22.21	20.63
Low Sulfur No. 2	26.90	26.03	25.92	26.90	25.55
Low Sulfur Fuel Oil	15.43	14.54	14.89	11.53	14.42
High Sulfur Fuel Oil	13.03	12.26	12.15	10.64	11.30
Jet Fuel	23.96	22.65	22.82	22.43	23.06
Liquefied Pet. Gases	13.77	13.00	12.68	10.23	13.24
Petchem. Feedstocks	19.22	18.55	18.68	19.22	16.86
Other Refined Prod.	17.08	16.60	16.64	12.82	14.49
Methanol	23.97	24.76	24.32	24.32	23.07
M. T. B. E.	14.55	15.89	12.49	15.82	12.84

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

* Refined Product Import	Quantitie	s (Step	3)		
Reformulated Mogas	8.0	4.9	11.8	4.9	4.9
Traditional Mogas	53.1	4.9	4.9	4.9	59.2
Diesel, Heating Oil	52.7	4.9	4.9	4.9	4.9
Low Sulfur No. 2	16.9	7.2	76.3	4.9	11.0
Low Sulfur Fuel Oil	58.4	4.9	4.9	4.9	51.7
High Sulfur Fuel Oil	21.6	6.3	75.7	4.9	32.1
Jet Fuel	4.9	11.6	4.9	25.3	4.9
Liquefied Pet. Gases	4.9	34.0	4.9	4.9	4.9
Petchem. Feedstocks	11.8	43.9	101.1	6.9	4.9
Other Refined Prod.	4.9	5.1	5.9	4.9	4.9
Methanol	44.6	5.8	35.5	4.9	33.7
M. T. B. E.	4.9	4.9	4.9	4.9	4.9
* Refined Product Import	Prices (S	tep 3)			
Reformulated Mogas	27.92	26.56	26.30	26.15	24.95
Traditional Mogas	25.53	24.27	24.50	25.56	22.32
Diesel, Heating Oil	23.97	22.81	22.56	23.78	21.96
Low Sulfur No. 2	28.67	27.87	27.41	28.44	26.99
Low Sulfur Fuel Oil	16.53	15.24	15.68	12.13	15.46
High Sulfur Fuel Oil	13.83	13.05	12.76	11.16	11.97
Jet Fuel	25.31	24.15	24.45	23.57	24.44
Liquefied Pet. Gases	14.53	13.82	13.52	10.78	13.88
Petchem. Feedstocks	20.21	19.52	19.99	20.36	17.87
Other Refined Prod.	18.09	17.61	17.45	13.68	15.32
Methanol	25.49	28.94	25.49	26.04	24.66
M. T. B. E.	15.24	16.98	11.89	16.78	13.44

* Year: 1995

* Refined Product Import	Quantit	ies (Step	1)		
Reformulated Mogas	14.3	5.1	21.4	L 5.1	5.1
Traditional Mogas	59.5	5.1	5.1	5.1	54.6
Diesel, Heating Oil	61.6	5.1	5.1	5.1	5.1
Low Sulfur No 2	30.8	13 1	139 2	5 1	20 1
Low Sulfur Fuel Oil	58.1	5.1	5.1	5.1	60.7
High Sulfur Fuel Oil	24.0	11.0	85.7	5.1	36.8
Jet Fuel	5.1	21.1	5.1	26.5	5.1
Liquefied Pet. Gases	5.1	57.7	5.1	5.1	5.1
Petchem, Feedstocks	5.1	46.5	108.8	9.5	5.1
Other Refined Prod.	5.1	5.1	5.1	5.1	5.1
Methanol	54.8	10.1	25.2	2 5.1	41.2
M. T. B. E.	5.1	5.1	5.1	5.1	5.1
* Refined Product Import	Prices	(Step 1)			
Reformulated Mogas	26.35	25.68	24.70) 25.11	23.87
Traditional Mogas	24.21	22.98	23.26	5 24.30	21.87
Diesel, Heating Oil	23.05	21.85	21.79	22.57	21.44
Low Sulfur No. 2	27.43	26.08	26.06	5 26.68	25.63
Low Sulfur Fuel Oil	16.28	15.55	15.78	3 12.51	15.38
High Sulfur Fuel Oil	14.03	13.25	13.34	10.63	12.30
Jet Fuel	24.18	23.25	23.29	22.76	23.69
Liquefied Pet. Gases	14.59	14.01	13.73	3 11.22	14.31
Petchem. Feedstocks	19.91	19.44	19.13	3 19.83	17.62
Other Refined Prod.	17.91	17.19	17.40) 13.71	16.14
Methanol	24.39	27.26	24.71	24.55	23.66
M. T. B. E.	15.49	16.53	12.53	16.54	13.74
* Refined Product Import	Quantit	ies (Step:	2)		
Reformulated Mogas	13.5	5.0	20.1	5.0	5.0
Traditional Mogas	56.1	5.0	5.0) 5.0	51.5
Diesel, Heating Oil	58.1	5.0	5.0) 5.0	5.0
Low Sulfur No. 2	29.0	12.4	131.2	2 5.0	18.9
Low Sulfur Fuel Oil	54.8	5.0	5.0	5.0	57.2
High Sulfur Fuel Oil	22.6	10.3	80.8	5.0	34.7
Jet Fuel	5.0	19.9	5.0	25.0	5.0
Liquefied Pet. Gases	5.0	54.4	5.0) 5.0	5.0
Petchem. Feedstocks	5.0	43.9	102.6	9.0	5.0
Other Refined Prod.	5.0	5.0	5.0	5.0	5.0
Methanol	51.6	9.6	23.8	5.0	38.9
M. T. B. E.	5.0	5.0	5.0	5.0	5.0
* Defined Dreduct Import	Drigon	(Stop 2)			
* Refined Product import	20 12	(Step 2)	26 57	1 26 47	25 52
Traditional Mogag	20.12	27.12	20.57	20.17	23.52
Diagol Hosting Oil	23.72	24.70	24.9	23.92	23.02
Low Cultur No. 2	24.35	23.24	23.15	24.07	22.49
Low Sulfur Eucl Oil	20.70	16 40	16 75	20.70	16 20
Low Sullur Fuel OIL	1/ 29	14 12	14 01	11 46	12 16
Tot Evol	14.09	24.12	24.01	24 20	24 02
Liquefied Bet Cares	15 63	14 96	24.00	1 12 00	15 10
Detahom Foodstocks	21 09	20 41	20 5/	1 21 09	19 72
Other Defined Dred	10 04	10.11	10 50	14 60	15.72
Mothanol	25 93	26 40	26 19	2 26 19	24 03
	16 41	17 75	13 65	17 68	14 70
M. I. D. A.	10.11	1/./5	13.07	17.00	11.70
* Refined Product Import	Quantit	ies (Step	3)		
Reformulated Mogas	13.1	4.9	19.5	5 4.9	4.9
Traditional Mogas	54.4	4.9	4.9	4.9	50.0
Diesel, Heating Oil	56.3	4.9	4.9	9 4.9	4.9
Low Sulfur No. 2	28.2	12.0	127.2	4.9	18.3
Low Sulfur Fuel Oil	53.1	4.9	4.9	9 4.9	55.5
High Sulfur Fuel Oil	22.0	10.0	78.3	3 4.9	33.6
Jet Fuel	4.9	19.3	4.9	24.3	4.9
Liquefied Pet. Gases	4.9	52.7	4.9	4.9	4.9
Petchem. Feedstocks	4.9	42.5	99.5	5 8.7	4.9
Other Refined Prod.	4.9	4.9	4.9	9 4.9	4.9
Methanol	50.1	9.3	23.0) 4.9	37.7
M. T. B. E.	4.9	4.9	4.9	9 4.9	4.9

EIA / NEMS International Energy Module / Model Documentation & Developer's Report
* Refined Product Import	Prices	(Step 3)			
Reformulated Mogas	29.67	28.95	27.95	28.26	27.09
Traditional Mogas	27.20	26.11	26.51	27.49	24.13
Diesel, Heating Oil	25.75	24.53	24.20	25.68	23.73
Low Sulfur No. 2	30.35	29.92	29.73	30.33	29.12
Low Sulfur Fuel Oil	18.49	17.34	17.69	14.11	17.45
High Sulfur Fuel Oil	15.68	14.85	14.96	12.63	13.90
Jet Fuel	27.43	26.30	25.82	25.85	26.25
Liquefied Pet. Gases	16.51	15.83	15.28	12.66	16.14
Petchem. Feedstocks	22.47	21.43	21.80	22.43	19.86
Other Refined Prod.	20.31	19.58	19.61	15.68	16.24
Methanol	27.64	31.15	27.57	28.03	26.45
M. T. B. E.	17.42	18.93	16.02	18.67	15.77

* Year: 2000

* Refined Product Import	Ouantit	ies (Step	1)		
Reformulated Mogas	14.3	5.1	21.4	5.1	5.1
Traditional Mogas	26.6	5.1	5.1	21.7	5.1
Diesel, Heating Oil	61.6	5.1	5.1	12.9	5.1
Low Sulfur No. 2	30.8	17.3	189.8	13.3	25.9
Low Sulfur Fuel Oil	71.4	5.1	5.1	5.1	53.0
High Sulfur Fuel Oil	23.1	5.1	102.0	5.1	40.4
Jet Fuel	20.9	22.4	23.4	27.7	5.1
Liquefied Pet. Gases	5.1	59.8	36.4	5.1	5.1
Petchem. Feedstocks	5.1	46.9	93.6	5.1	5.1
Other Refined Prod.	5.1	5.1	5.1	5.1	5.1
Methanol	67.0	27.3	72.6	6.3	67.6
M. T. B. E.	5.1	5.1	5.1	5.1	5.1
* Refined Product Import	Prices	(Step 1)			
Reformulated Mogas	28.83	27.59	27.50	27.62	26.45
Traditional Mogas	26.55	25.80	25.76	26.42	24.01
Diesel, Heating Oil	25.36	24.31	24.27	24.75	23.83
Low Sulfur No. 2	29.38	28.81	28.47	29.30	28.01
Low Sulfur Fuel Oil	18.40	17.73	17.95	15.12	17.79
High Sulfur Fuel Oil	16.47	15.70	15.34	11.35	14.57
Jet Fuel	26.96	25.30	25.66	25.44	25.79
Liquefied Pet. Gases	17.31	16.54	16.18	13.66	16.51
Petchem, Feedstocks	21.96	21.62	21.96	22.40	19.86
Other Refined Prod	19 97	19 97	19 79	16 35	18 08
Methanol	26 35	30 16	27 37	26 78	25 64
M. T. B. E.	17.73	19.19	14.44	19.22	16.16
* Refined Product Import	Quantit	ies (Step	2)		
Reformulated Mogas	13.5	5.0	20.1	5.0	5.0
Traditional Mogas	25.1	5.0	5.0	20.5	5.0
Diesel, Heating Oil	58.1	5.0	5.0	12.2	5.0
Low Sulfur No. 2	29.0	16.3	179.0	12.5	24.4
Low Sulfur Fuel Oil	67.3	5.0	5.0	5.0	50.0
High Sulfur Fuel Oil	21.8	5.0	96.2	5.0	38.1
Jet Fuel	19.7	21.1	22.1	26.1	5.0
Liquefied Pet. Gases	5.0	56.4	34.3	5.0	5.0
Petchem. Feedstocks	5.0	44.2	88.3	5.0	5.0
Other Refined Prod.	5.0	5.0	5.0	5.0	5.0
Methanol	63.1	25.7	68.4	5.9	63.8
M. T. B. E.	5.0	5.0	5.0	5.0	5.0
* Refined Product Import	Prices	(Step 2)			
Reformulated Mogas	30.64	29.64	29.09	28.99	28.04
Traditional Mogas	28.24	27.28	27.46	28.44	25.54
Diesel, Heating Oil	27.07	25.76	25.66	26.59	25.01
Low Sulfur No. 2	31.28	30.41	30.30	31.28	29.93
Low Sulfur Fuel Oil	19.81	18.92	19.27	15.91	18.80
High Sulfur Fuel Oil	17.41	16.64	16.53	13.85	15.68
Jet Fuel	28.34	27.03	27.20	26.81	27.44
Liquefied Pet. Gases	18.15	17.38	17.06	14.61	17.62
Petchem. Feedstocks	23.60	22.93	23.06	23.60	21.24
Other Refined Prod.	21.46	20.98	21.02	17.20	17.69
Methanol	28.35	28.58	28.70	28.70	27.45
M. T. B. E.	18.93	20.27	17.23	20.20	17.22
* Refined Product Import	Quantit	cies (Step	3)		
Reformulated Mogas	13.1	4.9	19.5	4.9	4.9
Traditional Mogas	24.3	4.9	4.9	19.8	4.9
Diesel, Heating Oil	56.3	4.9	4.9	11.8	4.9
Low Sulfur No. 2	28.2	15.8	173.6	12.2	23.6
Low Sulfur Fuel Oil	65.3	4.9	4.9	4.9	48.4
High Sulfur Fuel Oil	21.1	4.9	93.3	4.9	37.0
Jet Fuel	19.1	20.5	21.4	25.3	4.9
Liquefied Pet. Gases	4.9	54.7	33.3	4.9	4.9
Petchem. Feedstocks	4.9	42.9	85.6	4.9	4.9
Other Refined Prod.	4.9	4.9	4.9	4.9	4.9
Methanol	61.2	25.0	66.3	5.7	61.8
M. T. B. E.	4.9	4.9	4.9	4.9	4.9

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

* Refined Product Import	Prices	(Step 3)			
Reformulated Mogas	32.25	31.06	31.08	30.57	29.53
Traditional Mogas	29.72	28.62	29.31	30.09	27.36
Diesel, Heating Oil	28.44	27.22	26.96	28.20	26.64
Low Sulfur No. 2	33.17	32.29	32.15	32.91	31.62
Low Sulfur Fuel Oil	21.20	20.29	20.24	17.03	20.01
High Sulfur Fuel Oil	18.49	17.56	17.68	16.15	16.57
Jet Fuel	30.25	28.80	28.51	28.29	28.96
Liquefied Pet. Gases	19.02	18.56	17.99	15.48	18.61
Petchem. Feedstocks	24.89	24.59	24.24	25.18	22.62
Other Refined Prod.	22.50	22.35	22.51	20.40	18.69
Methanol	29.97	34.03	30.23	30.08	28.80
M. T. B. E.	20.14	21.52	16.56	21.22	18.20

Year: 2005

* Refined Product Import	Quantit	ies (Step	1)		
Reformulated Mogas	~14 . 3	5.1	21.4	5.1	5.1
Traditional Mogas	26.6	5.1	5.1	51.8	14.5
Diesel, Heating Oil	61.6	21.7	5.1	24.5	5.1
Low Sulfur No. 2	30.8	34.0	215.8	28.0	34.8
Low Sulfur Fuel Oil	89.6	5.1	5.1	5.1	64.2
High Sulfur Fuel Oil	34.3	5.8	111.7	5.1	46.9
Jet Fuel	21.4	45.6	46.9	54.4	5.1
Detaham Headatasha	5.1	02.5	40.0	5.1	5.1
Other Petined Prod	5.1	16 /	5 1	5.1	5.1
Methanol	71 0	37 7	75 1	5 1	70 5
M. T. B. E.	5.1	5.1	5.1	5.1	5.1
* Refined Product Import	Prices	(Step 1)			
Reformulated Mogas	31.46	30.70	30.71	30.31	28.97
Traditional Mogas	29.67	29.03	29.00	30.06	26.77
Low Sulfur No. 2	28.00	20.84	2/.13	28.20	20.55
Low Sulfur Evol Oil	34./3	20.00	21 15	10 06	20 50
High Sulfur Fuel Oil	10 23	18 52	18 61	15 20	20.50
Jet Fuel	30.04	28.35	28.28	28.19	28.81
Liquefied Pet. Gases	20.04	19.06	19.20	16.75	19.31
Petchem. Feedstocks	24.99	24.51	24.85	25.27	23.14
Other Refined Prod.	23.21	22.75	22.81	19.24	19.60
Methanol	29.24	32.83	30.11	30.02	28.58
M. T. B. E.	20.57	22.28	17.60	22.00	19.08
			•		
* Refined Product Import	Quantit	les (Step	2)	F O	E O
Traditional Mogas	25.5	5.0	20.1	5.U 48 8	13.0
Diesel Heating Oil	58 1	20 5	5.0	23 1	13.0
Low Sulfur No. 2	29.0	32.0	203.4	26.4	32.8
Low Sulfur Fuel Oil	84.5	5.0	5.0	5.0	60.5
High Sulfur Fuel Oil	32.3	5.4	105.3	5.0	44.3
Jet Fuel	20.1	43.0	44.2	51.2	5.0
Liquefied Pet. Gases	5.0	58.9	45.2	5.0	5.0
Petchem. Feedstocks	5.0	45.1	104.7	5.0	5.0
Other Refined Prod.	5.0	15.5	5.0	5.0	5.0
Methanol	67.0	35.6	70.9	5.0	66.4
M. T. B. E.	5.0	5.0	5.0	5.0	5.0
* Refined Product Import	Prices	(Step 2)			
Reformulated Mogas	33.82	32.82	32.27	32.17	31.22
Traditional Mogas	31.42	30.46	30.64	31.62	28.72
Diesel, Heating Oil	30.25	28.94	28.84	29.77	28.19
Low Sulfur No. 2	34.46	33.59	33.48	34.46	33.11
Low Sulfur Fuel Oil	22.99	22.10	22.45	19.09	21.98
High Sulfur Fuel Oil	20.59	19.82	19.71	15.75	18.86
Jet Fuel	31.52	30.21	30.38	29.99	30.62
Liquefied Pet. Gases	21.33	20.56	20.24	17.79	20.80
Petchem. Feedstocks	26.78	26.11	26.24	26.78	24.42
Other Refined Prod.	24.64	24.16	24.20	20.38	21.23
Methanol	31.53	33.30	31.88	31.88	30.63
M. T. B. E.	22.11	23.45	19.41	23.38	20.40
* Refined Product Import	Quantit	ies (Step	3)		
Reformulated Mogas	13.1	4.9	19.5	4.9	4.9
Traditional Mogas	24.3	4.9	4.9	47.4	13.2
Diesel, Heating Oil	56.3	19.8	4.9	22.4	4.9
Low Sulfur No. 2	28.2	31.0	197.3	25.6	31.8
Low Sulfur Fuel Oil	81.9	4.9	4.9	4.9	58.7
High Sulfur Fuel Oil	31.4	5.3	102.1	4.9	42.9
Jet Fuel	19.5	41.7	42.9	49.7	4.9
Liqueilea Pet. Gases	4.9	57.2	43.8	4.9	4.9
Other Defined Brod	4.9 4 0	43.8	TOT.0	4.9	4.9
Methanol	 65 0	34 5	4.3	4.9	±.9 64 4
M. T. B. E.	4.9	4.9	4.9	4.9	4.9
				,	

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

* Refined Product Import	Prices	(Step 3)			
Reformulated Mogas	35.66	34.70	34.47	34.09	32.79
Traditional Mogas	32.89	32.23	32.49	33.69	30.43
Diesel, Heating Oil	32.35	30.45	30.41	31.62	29.67
Low Sulfur No. 2	36.47	35.91	35.65	36.17	35.30
Low Sulfur Fuel Oil	24.54	23.13	23.52	20.38	23.32
High Sulfur Fuel Oil	21.64	20.81	20.97	16.81	19.74
Jet Fuel	33.42	31.99	31.81	31.56	32.15
Liquefied Pet. Gases	22.85	21.56	21.40	18.88	21.97
Petchem. Feedstocks	28.69	27.53	27.76	28.38	25.97
Other Refined Prod.	25.91	25.85	25.34	21.59	24.21
Methanol	33.44	37.09	34.06	34.11	32.50
M. T. B. E.	23.25	25.12	21.44	24.92	21.86

* Year: 2010

* Refined Product Import	Ouantit	ties (Step	1)			
Reformulated Mogas	14.3	5.1	-,	21.4	5.1	17.9
Traditional Mogas	35.7	5.1		5.1	72.8	13.5
Diesel, Heating Oil	93.1	21.0		5.1	31.5	5.1
Low Sulfur No. 2	46.9	49.2		232.1	30.8	35.0
Low Sulfur Fuel Oil	104.3	5.1		7.0	5.1	79.0
High Sulfur Fuel Oil	22.3	5.1		97.5	5.1	36.5
Jet Fuel	21.4	81.0		46.9	63.0	17.5
Liquefied Pet. Gases	5.1	63.6		65.9	5.1	5.1
Petchem. Feedstocks	5.1	48.7		111.8	5.1	5.1
Other Reilned Prod.	5.L	30.8		5.1	5.1	5.1
	70.0 5 1	57.0		5 1	5.1	5 1
M. I. D. E.	7.1	5.1		2.1	5.1	5.1
* Refined Product Import	Prices	(Step 1)				
Reformulated Mogas	34.38	33.87		33.14	32.86	32.02
Traditional Mogas	32.12	31.16		31.63	32.95	29.47
Diesel, Heating Oil	31.12	29.62		29.60	31.12	29.36
Low Sulfur No. 2	35.56	34.23		33.84	35.11	34.31
Low Sulfur Fuel Oil	24.30	23.20		23.09	20.30	23.00
Jet Fuel	32 47	31 23		31 00	30 59	20.75
Liquefied Pet Cases	22 53	21 98		21 91	19 35	22 37
Petchem, Feedstocks	27.66	27.28		27.21	27.59	26.05
Other Refined Prod.	26.24	25.29		25.18	21.62	23.82
Methanol	32.46	35.30		32.67	32.72	31.16
M. T. B. E.	23.76	24.47		21.42	24.43	21.99
+ Defined Duedwet Tonent	0	ica (Cham	23			
* Refined Product import		LIES (SCEP	2)	20 1	F 0	16 0
Traditional Mogas	33 7	5.0		20.1	5.0	12 7
Diesel, Heating Oil	87.8	19.8		5.0	29.7	5.0
Low Sulfur No. 2	44.2	46.4		218.8	29.0	33.0
Low Sulfur Fuel Oil	98.3	5.0		6.6	5.0	74.5
High Sulfur Fuel Oil	21.0	5.0		91.9	5.0	34.4
Jet Fuel	20.1	76.4		44.2	59.4	16.5
Liquefied Pet. Gases	5.0	59.9		62.1	5.0	5.0
Petchem. Feedstocks	5.0	45.9		105.4	5.0	5.0
Other Refined Prod.	5.0	29.0		5.0	5.0	5.0
Methanol	66.7	35.6		76.0	5.0	65.9
M. T. B. E.	5.0	5.0		5.0	5.0	5.0
* Refined Product Import	Prices	(Step 2)				
Reformulated Mogas	36.76	35.76		35.21	35.11	34.16
Traditional Mogas	34.36	33.40		33.58	34.56	31.66
Diesel, Heating Oil	33.19	31.88		31.78	32.71	31.13
Low Sulfur No. 2	37.40	36.53		36.42	37.40	36.05
Low Sulfur Fuel Oil	25.93	25.04		25.39	22.03	24.92
High Sulfur Fuel Oil	23.53	22.76		22.65	21.18	21.80
Jet Fuel	34.46	33.15		33.32	32.93	33.56
Liquefied Pet. Gases	24.27	23.50		23.18	20.73	23.74
Petchem. Feedstocks	29.72	29.05		29.18	29.72	27.36
Other Refined Prod.	27.58	27.10		27.14	23.32	24.30
Methanol M. T. B. E.	34.47	37.06		34.82	34.82	23.34
* Refined Product Import	Quantit	ties (Step	3)	10 -		
Reformulated Mogas	13.1	4.9		19.5	4.9	16.3
Diogol Hosting Oil	32.0 05 1	4.9		4.9	66.6	12.3
Low Sulfur No 2	03.1 42 0	19.2		4.9 212 2	∠ŏ.ŏ 20 2	4.9
Low Sulfur Fuel Oil	95 4	±5.0 4 Q		6 4	4 0	34.U 72 2
High Sulfur Fuel Oil	20 4			89.2		72.2
Jet Fuel	19.5	74.1		42.9	57.6	16.0
Liquefied Pet. Gases	4.9	58.1		60.2	4.9	4.9
Petchem. Feedstocks	4.9	44.5		102.2	4.9	4.9
Other Refined Prod.	4.9	28.2		4.9	4.9	4.9
Methanol	64.7	34.5		73.7	4.9	63.9
M. T. B. E.	4.9	4.9		4.9	4.9	4.9

EIA / NEMS International Energy Module / Model Documentation & Developer's Report

* Refined Product Import	Prices	(Step 3)			
Reformulated Mogas	38.78	38.09	37.39	37.46	35.74
Traditional Mogas	36.57	35.38	35.22	36.44	33.83
Diesel, Heating Oil	35.52	33.86	33.51	34.90	33.31
Low Sulfur No. 2	39.36	38.25	38.44	39.64	38.03
Low Sulfur Fuel Oil	27.39	26.26	26.60	23.37	26.27
High Sulfur Fuel Oil	24.67	24.12	24.11	20.53	22.99
Jet Fuel	36.93	35.04	35.11	34.73	35.76
Liquefied Pet. Gases	25.69	24.82	24.35	22.22	25.36
Petchem. Feedstocks	31.20	30.96	30.59	31.75	28.69
Other Refined Prod.	29.20	28.97	28.81	25.55	25.04
Methanol	36.53	40.06	36.65	36.89	35.41
M. T. B. E.	26.25	27.73	24.05	28.07	24.83