DOE/EIA-M064(99)

Model Documentation Report: Industrial Sector Demand Module of the National Energy Modeling System

January 1999

Office of Integrated Analysis and Forecasting Energy Information Administration U.S. Department of Energy Washington, DC

Table of Contents

1. Introduction	1
Purpose of this Report	1
Model Summary	1
Organization of this Report	2
2. Model Purpose	3
Model Objectives	4
Interaction with Other NEMS Modules	4
3. Model Rationale	6
Theoretical Approach	6
Key Computations	11
Assumptions	29
4. Model Structure	32
Outline of Model	32
Subroutines and Equations	32
Appendix A. Bibliography	70
Appendix B. Model Abstract	72
Appendix C. Data Inputs	74

Text Tables

Table 1.	Interaction With Other NEMS Modules	4
Table 2.	Industry Categories	10
Table 3.	Outline of NEMS Industrial Module	33

Text Figures

Figure 1. Industrial Model Components	. 8
Figure 2. Food and Kindred Products End-Use Flow	14
Figure 3. Paper and Allied Products Industry Process Flow	15
Figure 4. Bulk Chemical Industry End-Use Flow	17
Figure 5. Glass and Glass Products Industry Process Flow	18
Figure 6. Cement Industry Process Flow	20
Figure 7. Iron and Steel Industry Process Flow	22

Appendix Tables

Building Component UEC	74
Food and Kindred Product Industry UECs	74
Pulp and Paper Industry UECs	75
Bulk Chemical Industry UECs	75
Glass and Glass Product Industry UEC	75
Hydraulic Cement Industry UEC	76
Blast Furnace and Basic Steel Products Industry UEC	76
Primary Aluminum Industry UEC	76
Non-Manufacturing Sector PA Component UEC	77
Non-Energy-Intensive Manufacturing Sector PA Component UEC	77
Regional Technology Shares	78
Coefficients for Technology Possibility Curves	78
Advanced and State-of-the-Art Technologies	80
Unrecovered Heat Assumptions	91
Logit Function Parameters for Estimating Boiler Fuel Shares	92
Recycling	92
	Building Component UECFood and Kindred Product Industry UECsPulp and Paper Industry UECsBulk Chemical Industry UECsGlass and Glass Product Industry UECHydraulic Cement Industry UECBlast Furnace and Basic Steel Products Industry UECPrimary Aluminum Industry UECNon-Manufacturing Sector PA Component UECNon-Energy-Intensive Manufacturing Sector PA Component UECRegional Technology SharesCoefficients for Technology Possibility CurvesAdvanced and State-of-the-Art TechnologiesUnrecovered Heat AssumptionsLogit Function Parameters for Estimating Boiler Fuel SharesRecycling

1. Introduction

Purpose of this Report

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models (*Public Law 94-385, section 57.b2*). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

Model Summary

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2020) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

The NEMS Industrial Model estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and non-energy-intensive manufacturing industries. The energy-intensive manufacturing industries are modeled through the use of a detailed process flow accounting procedure, whereas the non-energy-intensive manufacturing industries are modeled through econometrically based equations. The nonmanufacturing industries are represented with a very basic model. The industrial model forecasts energy consumption at the four Census region levels; energy consumption at the Census division level is allocated by using SEDS data.

Each industry is modeled as three components consisting of the process/assembly component (PA), the buildings component (BLD), and the boiler/steam/cogeneration component (BSC). The BSC component satisfies steam demand from the PA and BLD components. In some industries, the PA component produces byproducts that are consumed in the BSC component. For the energy-intensive industries, the PA component is separated into the major production processes or end uses.

Archival Media

The model has been archived on IBM RISC 6000 magnetic tape storage as part of the National Energy Modeling System production runs used to generate the Annual Energy Outlook 1999. It is archived as File 1 on Verbatim tape, 8mm-DL 112M, serial number 1046G112.

Model Contact

T. Crawford Honeycutt (202)586-1420 choneycu@eia.doe.gov

Office of Integrated Analysis and Forecasting Energy Demand Analysis Branch 1000 Independence Avenue, SW EI-84, Room 2F-094 Washington, DC 20585

Organization of this Report

Chapter 2 of this report discusses the purpose of the NEMS Industrial Demand Model, detailing its objectives, input and output quantities, and the relationship of the Industrial Model to the other modules of the NEMS system. Chapter 3 of the report describes the rationale behind the Industrial Model design, providing insights into further assumptions utilized in the model. The first section in Chapter 4 provides an outline of the model. The second section in Chapter 4 provides a description of the principal model subroutines, including the key computations performed and key equations solved in each subroutine.

The Appendices to this report provide supporting documentation for the Industrial Model. Appendix A is a bibliography of data sources and background materials used in the model development process. Appendix B consists of a model abstract. Appendix C provides the input data.

2. Model Purpose

Model Objectives

The NEMS Industrial Demand Model was designed to forecast industrial energy consumption by fuel type and Standard Industrial Classification (SIC). The Industrial Model generates mid-term (up to the year 2020) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output for industrial activity. All dollar values are expressed in 1987 dollars. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of fuel consumption for 17 main fuels (including feedstocks and renewables) for each of 15 SIC industry groups. The Industrial Model forecasts energy consumption at the four Census region levels; energy consumption is allocated to the Census division level based on SEDS data.

The NEMS Industrial Model is an annual energy forecasting model; as such, it does not project seasonal or daily variations in fuel demand or fuel prices. The model was designed primarily for use in applications such as the *Annual Energy Outlook* and other applications that examine mid-term energy-economy interactions.

The model can also be used to examine various policy, environmental, and regulatory initiatives. For example, energy consumption per dollar of output is, in part, a function of energy prices. Therefore, the effect on industrial energy consumption of policies that change relative fuel prices can be analyzed endogenously in the model.

To a lesser extent, the Industrial Model can endogenously analyze specific technology programs or energy standards. The model distinguishes among the energy-intensive manufacturing industries, the non-energy-intensive manufacturing industries, and the non-manufacturing industries.

A process flow approach, represented by their major production processes or end uses, is used to model the energy-intensive industries. This approach provides considerable detail about how energy is consumed in that particular industry. The industrial model uses "technology bundles" to characterize technical change in the energy-intensive industries. These bundles are defined for each production process step for five of the industries and for end use in two of the industries. The process step industries are pulp and paper, glass, cement, steel, and aluminum. The end use industries are food and bulk chemicals.

The unit energy consumption is defined as the energy use per ton of throughput at a process step or as energy use per dollar of output for the end use industries. The "Existing UEC" is the current average installed intensity (as of 1994). The "New 1994 UEC" is the intensity expected to prevail for a new installation in 1994. Similarly, the "New 2020 UEC" is the intensity expected to prevail for a new installation in 2020. For intervening years, the intensity is interpolated.

The rate at which the average intensity declines is determined by the rate and timing of new additions to capacity. In our current model, the rate and timing of new additions are a function of retirement rates and industry growth rates.

The model uses a vintage capital stock accounting framework that models energy use in new additions to the stock and in the existing stock. This capital stock is represented as the aggregate vintage of all plants built within an industry and does not imply the inclusion of specific technologies or capital equipment.

Interaction with Other NEMS Modules

Table 1 shows the Industrial Model inputs from and outputs to other NEMS modules. Note that all intermodule interactions must pass through the integrating module.

Table 1. Interaction With Other NEMS Modules

INPUTS	From Module
Controlling information (iteration count, present year, number of years to be modeled, convergence switch, etc.)	System
Electricity prices	Electricity Market Module
Natural gas prices	Natural Gas T & D
Steam coal prices Metallurgical coal prices	Coal Supply
Distillate oil prices Residual oil prices LPG prices Motor gasoline prices Petrochemical feedstock prices Asphalt and road oil prices Other petroleum prices	Petroleum Market Module
Value of output Employment	Macro
Refinery consumption of: Natural gas Steam coal Distillate oil Residual oil LPG Still gas Petroleum coke Other petroleum Purchased Electricity	Petroleum Market Module
Lease and Plant Natural Gas Consumption	Natural Gas Transmission and Distribution Module

OUTPUTS	To Module
Industrial consumption of: Purchased electricity Natural gas Steam coal Metallurgical coal Net coal coke imports Distillate oil Residual oil LPG Motor gasoline Kerosene Petrochemical feedstocks Still gas Petroleum coke Other petroleum	Supply Modules
Consumption of renewables: Biomass Hydropower Solar/wind/geothermal/etc.	System
Nonutility generation: Cogeneration of electricity Electricity sales to the grid and own use	Electricity Market Module

Table 1. Interaction with Other NEMS Modules (continued)

3. Model Rationale

Theoretical Approach

Introduction

The NEMS Industrial Model can be characterized as a dynamic accounting model, because its architecture attempts to bring together the disparate industries and uses of energy in those industries, and put them together in an understandable and cohesive framework. This explicit understanding of the current uses of energy in the industrial sector is used as the framework from which to base the dynamics of the model.

One of the overriding characteristics in the industrial sector is the heterogeneity of industries, products, equipment, technologies, processes, and energy uses. Adding to this heterogeneity is that the industrial sector includes not only manufacturing, but also agriculture, mining, and construction. These disparate industries range widely from highly energy-intensive activities to non-energy-intensive activities. Energy-intensive industries are modeled at a disaggregate level so that changes in composition of the products produced will not significantly offset accounting of energy consumption. Other industries or users, or they have been so disaggregate as to require extensive resources for data development and for running the model.

Modeling Approach

A number of considerations have been taken into account in building the industrial model. These considerations have been identified largely through experience with the current and previous EIA models and with various EIA analyses, through communication and association with other modelers and analysts, and through literature review. The primary considerations are listed below.

- The industrial model incorporates three major industry categories, consisting of energyintensive manufacturing industries, non-energy-intensive manufacturing industries, and nonmanufacturing industries. The level and type of modeling and the attention to detail is different for each.
- Each industry is modeled as three separate but interrelated components, consisting of boilers/steam/cogeneration (BSC), buildings (BLD) and process/assembly (PA) activities.
- The model uses a vintaged capital stock accounting framework that models energy use in new additions to the stock and in the existing stock. The existing stock is retired based on retirement rates for each industry.
- The energy-intensive industries are modeled with a structure that explicitly describes the major process flows or major consuming uses in the industry.

- The industrial model uses "technology bundles" to characterize technical change in the energy-intensive industries. These bundles are defined for each production process step or end use.
- Technology penetration for each technology bundle for each production process step or end use in each energy-intensive industry is based upon engineering judgment.
- The model structure accommodates several industrial sector activities including: fuel switching, cogeneration, renewables consumption, recycling and byproduct consumption. The principal model calculations are performed at the four Census region levels and aggregated to a national total.

Fundamental Assumptions

The industrial sector consists of a wide variety of heterogeneous industries. The Industrial Model classifies these industries into three groups by Standard Industrial Classification (SIC) - energy-intensive industries, non-energy-intensive industries, and non-manufacturing industries. There are eight energy-intensive manufacturing industries; seven of these are modeled in the industrial model. These are as follows: food and kindred products (SIC 20); paper and allied products (SIC 26); bulk chemicals (SICs 281, 282, 286, and 287); glass and glass products (SICs 3211, 3221, and 3229); hydraulic cement (SIC 3241); blast furnaces and basic steel products (primarily SIC 331); and aluminum (primarily SICs 3334 and 3353). Petroleum refining (SIC 2911) is modeled in detail in a separate module of NEMS, and the projected energy consumption is included in the manufacturing total. The forecasts of lease and plant and cogeneration consumption for Oil and Gas (SIC 1311) are exogenous to the Industrial Model, but endogenous to the NEMS modeling system.

Each industry is modeled as three separate but interrelated components consisting of the process/assembly component (PA), the buildings component (BLD) and the boiler/steam/cogeneration component (BSC). (See Figure 1). The BSC component satisfies the steam demand from the PA and BLD components. For the energy-intensive industries, the PA component is broken down into the major production processes or end uses.

Figure 1. Industrial Model Components

The flow of energy among the three industrial model components follows the arrows. Energy consumption in the NEMS Industrial Model is primarily a function of the level of industrial economic activity. Industrial economic activity in the NEMS system is measured by the dollar value of output produced by each industry group. The value of output for the Industrial Model by SIC is provided by the NEMS MACRO Module. As the level of industrial economic activity increases, the amount of energy consumed to produce the relevant industrial products typically increases at a slower rate.

The amount of energy consumption reported by the Industrial Model is also a function of the vintage of the capital stock that produces the output. It is assumed that new capital stock will consist of state-of-the-art technologies that are relatively more energy efficient than the average efficiency of the existing capital stock. Consequently, the amount of energy required to produce a unit of output using new capital stock is less than that required by the existing capital stock. The energy intensity of the new capital stock relative to 1994 capital stock is reflected in the parameter of the Technology Possibility Curve estimated for each of the energy-intensive industries. These curves are based on engineering judgment of the likely future path of energy intensity changes.

The energy intensity of the existing capital stock also is assumed to decrease over time, but not as rapidly as new capital stock. The decline is due to retrofitting and replacement of equipment due to normal wear and tear. The net effect is that over time the amount of energy required to produce a unit of output declines. Although total energy consumption in the industrial sector is projected to increase, overall energy intensity is projected to decrease.

Energy consumption in buildings is assumed to grow at the same rate as the average growth rate of employment and output in that industry.¹ Energy consumption in the BSC is assumed to be a function of the steam demand of the other two components.

Industry Disaggregation

Table 2 identifies the industry groups to be modeled in the industrial sector along with their Standard Industrial Classification² (SIC) code coverage. These industry groups have been chosen for a variety of reasons. The primary consideration is the distinction between energy intensive groups (or large energy consuming industry groups) and non-energy-intensive industry groups. The energy-intensive industries are modeled more in detail, with aggregate process flows. The industry categories are also chosen to be as consistent as possible with the categories which are available from the Manufacturing Energy Consumption

¹Note that manufacturing employment generally falls in a typical *Annual Energy Outlook* forecast. As a result, buildings' energy consumption falls over time. Given this situation, we have assumed there is no additional consumption decline due to efficiency increases.

²The Standard Industrial Classification (SIC) codes have been modified at various points in time, leading to occasional difficulties with tracking specific industries over time.

Survey (MECS).³ Table 2 identifies 6 nonmanufacturing industries and 9 manufacturing industries. Within the manufacturing industries, the seven most energy-intensive are modeled in greater detail in the Industrial Demand Model. Refining (SIC 2911), also an energy-intensive industry, is modeled elsewhere in NEMS.

Energy-Intensive Manufacturing	Nonmanufacturing Industries
Food and Kindred Products (SIC 20)	Agricultural Production - Crops (SIC 01)
Paper and Allied Products (SIC 26)	Other Agriculture including Livestock (SIC 02, 07,
Bulk Chemicals (SIC 281, 282, 286, 287)	Coal Mining (SIC 12)
Glass and Glass Products (SIC 3211, 3221, 3229)	Oil and Gas Mining (SIC 13)
Hydraulic Cement (SIC 324)	Metal and Other Nonmetallic Mining (SIC 10, 14)
Blast Furnaces and Basic Steel (SIC 331)	Construction (SIC 15, 16, 17)
Aluminum (SIC 3334, 3353)	
Nonenergy-Intensive Manufacturing	
Metals-Based Durables (SIC 34, 35, 36, 37, 38)	
Other Manufacturing (all remaining manufacturing SIC)	

Table 2. Industry Categories

SIC = Standard Industrial Classification.

Source: Office of Management and Budget, *Standard Industrial Classification Manual 1987* (Springfield, VA, National Technical Information Service).

Energy Sources Modeled

The NEMS Industrial Model estimates energy consumption by 15 industries for 17 energy types. The major fuels modeled in the Industrial Model are:

- Electricity
- Natural Gas
- Steam Coal
- Distillate Oil
- Residual Oil

³All of the two digit industries can be made consistent with the published tables in MECS, but the published MECS tables do not always have subcategories (below 2 digit) that add up to their industry total. Moreover, in cases where there are subcategories, MECS uses fairly specific 4-digit industry which is typically at a lower level of detail than that which is desired for the industrial model.

- LPG for heat and power
- Other Petroleum
- Renewables
- Motor Gasoline

Other energy sources⁴ that are used in specific industries are also modeled:

- Natural Gas Feedstock
- Coking Coal (including net imports)
- LPG Feedstock
- Petrochemical Feedstocks
- Asphalt and Road Oil

In the model, byproduct fuels are always consumed before purchased fuels.

Key Computations

The key computations of the Industrial Model are the Unit Energy Consumption (UEC) estimates made for each SIC industry group. UEC is defined as the amount of energy required to produce one dollar's worth of output. Distinguishing between the characteristics of the process when new capital equipment is put into place and the characteristics of the process with existing capital equipment is done with a vintage-based accounting procedure. In practice, the fuel use pattern typically is similar across vintages.

The modeling approach incorporates technical change in the production process to achieve lower energy intensity. Autonomous technical change can be envisioned as a learning-by-doing process for existing technology. As experience is gained with a technology, the costs of production decline. Autonomous technical change is the most important source of energy-related changes in the industrial sector. The reason is that few industrial innovations are adopted solely because of their energy consumption characteristics; industrial innovations are adopted for a combination of factors. These factors include process changes to improve product quality, changes made to improve productivity, or changes made in response to the competitive environment. These strategic decisions are not readily amenable to economic or engineering modeling at the level of disaggregation in the Industrial Model.

⁴Still gas and petroleum coke are consumed primarily in the refining industry, which is modeled in the Petroleum Market Module of NEMS.

Buildings Component UEC

Buildings are estimated to account for 8 percent of allocated heat and power energy consumption in manufacturing industries.⁵ Estimates of 1994 manufacturing sector building UEC's are presented in Table C1 in Appendix C. Energy consumption in industrial buildings is assumed to grow at the same rate as employment in that industry. This assumption appears to be reasonable since lighting and HVAC are used primarily for the convenience of humans rather than machines.

Process and Assembly Component UEC

The process and assembly component accounted for the largest share, 58 percent, of direct energy consumption for heat and power in 1994. Of the total, natural gas accounts for 51 percent and electricity accounts for 40 percent.

Estimation of the PA component UECs differs according to whether the industry is an energy-intensive industry or an energy non-intensive industry. For the energy-intensive industries, engineering data relating energy consumption to the product flow through the process steps are used. In addition, engineering judgment is also used to characterize autonomous change in the energy-intensive industries through the use of Technology Possibility Curves. The energy-non-intensive industries do not use product flows through process steps or for end-uses due to data limitations.

Fuel shares for process and assembly energy use in six of the energy-intensive manufacturing industries⁶ are adjusted for changes in relative fuel prices. The six industries are food, paper, chemicals, glass, cement, and steel. In each industry, two logit fuel-sharing equations are applied to revise the initial fuel shares obtained from the process-assembly component. The resharing does not affect the industry's total energy use--only the fuel shares. The methodology adjusts total fuel shares across all process stages and vintages of equipment to account for aggregate market response to changes in relative fuel prices.

The fuel share adjustments are done in two stages. The first stage determines the fuel shares of electric and nonelectric energy. The latter group excludes boiler fuel and feedstocks. The second stage determines the fossil fuel shares of nonelectric energy. In each case, a new fuel-group share, $NEWSHR_i$, is established as a function of the initial, default fuel-group shares, $DEFLTSHR_j$ and fuel-group price indices, $PRCRAT_i$. The price indices are the ratio of the current year price to the base year price, in real dollars. The formulation is as follows:

(1)

 $NEWSHR_{i} = \frac{DEFLTSHR_{i} * e^{(\beta_{i} - \beta_{i}*PRCRAT_{i})}}{\sum_{j=1}^{N} DEFLTSHR_{j} * e^{(\beta_{j} - \beta_{j}*PRCRAT_{j})}}$

⁶Primary aluminum is excluded because it uses only electricity in the process and assembly component.

⁵Computed from Energy Information Administration, *Manufacturing Consumption of Energy 1994*, DOE/EIA-0512(94) (Washington, DC, December 1997), Table 10. Note that byproduct and non-energy use of combustible fuels are excluded from the computation.

where:

 $NEWSHR_i$ = New fuel-group share for fuel *i*, and $DEFLTSHR_i$ = Default fuel-group share for fuel *i*,

The coefficients β_j are user-specified. They were assumed to be 0.20 for the Annual Energy Outlook 1999.

The form of the equation results in unchanged fuel shares when the price indices are all 1, or unchanged from their 1997 levels. The implied own-price elasticity of demand is about -0.1 for the assumed values of β_{j} .

Energy-Intensive Industry UEC Estimation

For the seven most energy-intensive industries, energy consumption for the PA component is modeled according to the process flows in that industry. The industries are food and kindred products, paper and allied products, bulk chemicals, hydraulic cement, glass and glass products, blast furnaces and basic steel products, and primary aluminum. (Petroleum refining is also a major energy consuming industry but it is being modeled elsewhere in NEMS.)

To derive energy use estimates for the process steps, the production process for each industry was first decomposed into its major steps, and then the engineering and product flow relationships among the steps were specified. The process steps for the seven industries were analyzed according to one of the following methodologies:

Methodology 1. Developing a process flowsheet and estimates of energy use by process step. This was applicable to those industries where the process flows could be fairly well defined for a single broad product line by unit process step (paper and allied products, glass and glass products, hydraulic cement, blast furnace and basic steel products, and primary aluminum).

Methodology 2. Developing end use estimates by generic process units as a percentage of total use in the PA component. This was especially applicable where the diversity of end products and unit processes is extremely large (food and kindred products, and bulk chemicals).

In both methodologies, major components of consumption are identified by process for various energy sources:

- · Fossil Fuels;
- Electricity (valued at 3412 Btu/kWh);
- Steam; and
- Non-fuel energy sources.

The following sections present a more detailed discussion of the process steps and unit energy consumption estimates for each of the energy-intensive industries. The data tables showing the estimates are presented in Appendix C and are referenced in the text as appropriate. The process steps are model inputs with the variable name *INDSTEPNAME*.

Food and Kindred Products (SIC 20)

The food and kindred products industry accounted for 13 percent of manufacturing gross output in 1994.

The food and kindred products industry consumed approximately 1,193 trillion Btu of energy in 1994. Energy use in the food and kindred products industry for the PA Component was estimated on the basis of end-use in four major categories:

- Steam or hot water;
- Direct fuel used in a process such as in grain drying or directly fired ovens;
- Electrical energy used in refrigeration; and
- Other electrical energy.

Figure 2 portrays the PA component's end-use energy flow for the food and kindred products industry. The UECs estimated for this industry are provided in Table C2, Appendix C. Note that the steam/hot water use shown in the table represents the energy content of steam that is used in the industry sub-sector (i.e., boiler losses and efficiencies are not included in these tables). The dominant end-use was steam (and hot water), which accounted for 57 percent of the total PA energy consumption. Direct fuel use made up about 23 percent. Electric energy contributed 20 percent of the energy consumption.

Figure 2. Food and Kindred Products End Uses End Uses

Paper and Allied Products (SIC 26)

The paper and allied products industry's principal processes involve the conversion of wood fiber to pulp, and then paper and board to consumer products that are generally targeted at the domestic marketplace. Aside from dried market pulp, which is sold as a commodity product to both domestic and international paper and board manufacturers, the industry produces a full line of paper and board products.

Figure 3 illustrates the major process steps for all pulp and paper manufacturing. The wood is prepared by removing the bark and chipping the whole tree into small pieces. Pulping is the process in which the fibrous cellulose in the wood is removed from the surrounding lignin. Pulping can be conducted with a chemical process (e.g., Kraft, sulfite) or a mechanical process. (In addition, a semi-chemical process is also available.) The pulping step also includes processes such as drying, liquor evaporation, effluent treatment and miscellaneous auxiliaries. Bleaching is required to produce white paper stock.

Paper and paperboard making takes the pulp from the above processes and makes the final paper and paper board products. The manufacturing operations after pulp production are similar for each of the paper endproducts even though they have different desired characteristics imparted by the feedstocks (fibers furnished) and specific processes used. The processes in the paper-making step include papermaking, converting/packaging, coating/redrying, effluent treatment, and other miscellaneous processes.

In 1994, a total of 99 million tons of paper and paperboard products were produced. The major paper products include wood-free printing paper, groundwood printing paper, newsprint paper, tissue paper and packaging paper. The major paper board products include kraft paperboard, corrugating medium and recycled paperboard. Of the total product, 52 percent was produced from kraft chemical process, 4 percent from semi-chemical, 39 percent from waste fibers and 6 percent from mechanical (groundwood). The

average unit energy consumption estimated for this industry is slightly over 28 million Btu/ton of final product. The unit energy use estimates for this industry are provided in Table C3, Appendix C. The largest component of this energy use is in the paper and paper board making process step and kraft pulping step, accounting for 38 percent each. Use of recycled paper as the feedstock for the waste fiber pulping step is taken into account. The regional distribution for each technology is shown in Table C11 in Appendix C.

Bulk Chemical Industry (SIC 281, 282, 286, and 287)

The bulk chemical sector is very complex. Industrial inorganics and industrial organics are the basic chemicals, while plastics, agricultural chemicals, and other chemicals are either intermediates or final products. The chemical industry is estimated to consume 24 percent (5 quadrillion Btu) of the total energy consumed in the industrial sector. This industry is a major energy feedstock user and a major cogenerator of electricity.

The complexity of the bulk chemical industry, with its wide variety of products and use of energy as both a fuel and feedstock, has led to an end-use modeling approach. The unit energy consumption in the PA component for the bulk chemical industry is shown in Table C4 in Appendix C. The end-uses for the industry is shown in Figure 4.

Figure 4. Bulk Chemical Industry End Use

End Uses

Glass and Glass Products Industry (SIC 3211, 3221, 3229)

The energy use profile has been developed for the total glass and glass products industry, SIC 3211, 3221, and 3229. The glass making process contains four process steps: batch preparation, melting/refining, forming and post-forming. Figure 5 provides an overview of the process steps involved in the glass and glass products industry. While scrap (cullet) and virgin materials are shown separately, this is done to separate energy requirements for scrap versus virgin material melting. In reality, glass makers generally mix cullet with the virgin material. In 19941, the glass and glass product industry produced approximately 18 million tons of glass products.

The glass and glass product industry consumed approximately 198 trillion Btu of energy in 1994 as identified in the *1994 Manufacturing Consumption Survey*. This accounts for about 20 percent of the total energy consumed in the stone, clay and glass industry. The fuel consumed is predominantly for direct fuel use; there is very little steam raising. This direct fuel is used mainly in furnaces for melting. Table C5 in Appendix C shows the unit energy consumption values for each process step.

Figure 5. Glass and Glass Products Industry Process Flow

Hydraulic Cement Industry (SIC 3241)

The hydraulic cement industry uses raw materials from quarrying and mining operations which are sent through crushing and grinding mills and then converted to clinker in the clinker producing step. This clinker is then ground to produce cement. The industry produces cement by two major processes: the long-wet process and the dry process. The dry process is less energy-intensive than the wet process. As a result, it is assumed in the model that all new plants will be based on the dry process. Figure 6 provides an overview of the process steps involved in the hydraulic cement industry.

The cement industry produced 85 million tons of cement in 1994. Since cement is the primary binding ingredient in concrete mixtures, it is used in virtually all types of construction. As a result, the U.S. demand for cement is highly sensitive to the levels of construction activity. The wet process accounted for 23 percent of production, while the dry process accounted for about 77 percent.

The hydraulic cement industry exhibits one of the highest unit energy consumption values (MMBtu/dollar value of output) in the U.S. industrial sector. The industry consumed approximately 327 trillion Btu of energy in 1994 as identified in the *1994 Manufacturing Consumption Survey*. This accounts for 35 percent of the energy consumed in the stone, clay and glass industry. Direct fuel, used in clinker-producing kilns, accounted for 95 percent of the total energy consumption, with the remaining 5 percent attributed to electricity. The electricity consumed is used to operate crushing and grinding equipment, materials handling equipment, machine drives and pumps and fans.

The wet process requires significantly larger amounts of energy which can be largely attributed to fuels used to dry the feed. While wet grinding is known to require less energy than dry grinding, the entire wet process has longer kilns, requiring greater energy use than the dry process to drive them. Higher air flows, larger pollution control devices, and generally older facilities lead to slightly larger estimated electric energy use for the wet process.

The UEC values for each process in the hydraulic cement industry are shown in Table C6, Appendix C. As noted previously, it is assumed that all new hydraulic cement capacity will be based on the dry process. The regional distribution of hydraulic cement production processes is presented in Table C11 in Appendix C.

Figure 6. Cement Industry Process Flow

Blast Furnace and Basic Steel Products Industry (SIC 331)

The blast furnace and basic steel products industry includes the following six major process steps:

Agglomeration; Cokemaking; Iron Making; Steel Making; Steelcasting; and Steelforming.

Steel manufacturing plants can be divided into two major classifications: integrated and non-integrated. The classification is dependent upon the number of the above process steps that are performed in the facility. Integrated plants perform all the process steps, whereas non-integrated plants, in general, perform only the last three steps.

For the Industrial Model, a process flow was developed to classify the above six process steps into the five process steps around which unit energy consumption values were estimated. Figure 7 shows the process flow diagram used for the analysis. The agglomeration step was not considered because it is not part of the SIC 33 (it is part of mining). Iron ore and coal are the basic raw materials which are used to produce iron. A simplified description of a very complex industry is provided below.

Iron is produced in the Blast Furnace (BF), which is then charged into a Basic Oxygen Furnace (BOF) or Open Hearth (OH) to produce raw steel. The OH is now obsolete. The Electric Arc Furnace (EAF) is utilized to produce raw steel from an all scrap charge, sometimes supplemented with direct reduced iron (DRI) or hot briquetted iron (HBI).

The raw steel is cast into ingots, blooms, billets or slabs, some of which are marketed directly (e.g., forging grade billets). The majority is further processed ("hot rolled") into various mill products. Some of these are sold as hot rolled mill products, while some are further cold rolled to impart surface finish or other desirable properties.

In 1994, the U.S. steel industry produced over 100 million tons of raw steel utilizing the BF/BOF and the EAF. Taking process yields into account, the total shipments were approximately 95 million tons. The EAF accounted for almost 40 percent of the raw steel production. Continuous casting was the predominant casting process whereas ingot casting is declining.

Table C7 in Appendix C summarizes UEC estimates by process step and energy type for the steel industry. The largest category for energy use is coal, followed by liquid and gas fuels. Coke ovens and blast furnace also generate a significant amount of byproduct fuels, which are used throughout the steel plant. The regional distribution of steel-making technologies is presented in Table C11, Appendix C.

Figure 7. Iron and Steel Industry Process Flow

Primary Aluminum Industry (SIC 3334, 3353)

The U.S. primary aluminum industry consists of two majors sectors: the primary aluminum sector, which is largely dependent on imported bauxite and alumina as raw materials; and the secondary sector, which is largely dependent on the collection and processing of aluminum scrap. The primary and secondary aluminum industries generally cater to different markets. Traditionally, the primary industry bought little scrap and supplied wrought products, including sheet, plate and foil. The secondary industry is scrapbased and supplies foundries that produce die, permanent mold, and sand castings. In the past decade, the primary producers have been moving aggressively into recycling aluminum, especially used beverage cans, into wrought products.

The primary aluminum industry modeled in the Industrial Model generally accounts for the energy used in SIC 3334 (alumina refineries and primary aluminum smelters) and SIC 3353 (aluminum sheet, plate, and foil). The primary industry produced approximately 5.1 million tons of aluminum products in 1994.

The UEC estimates developed for the process steps are presented in Table C8 in Appendix C. . The primary form of energy used is electricity. The regional distribution of smelters in the primary aluminum Industry is presented in Table C11 in Appendix C.

Non-Energy-Intensive Industries

The remaining industries, non-manufacturing and non-energy-intensive manufacturing, do not have process steps. They are represented as having a UEC for each fuel. These UECs are presented in Table C9 for non-manufacturing and in Table C10 for non-energy-intensive manufacturing in Appendix C.

Technology Possibility Curves and Relative Energy Intensities

Future energy improvements were estimated for old (retrofit) and new processes/plants. The energy improvements for old plants as a group consist of gradual improvements due to housekeeping/energy conservation measures, retrofit of selected technologies, and the closure of older facilities leaving the more efficient plants in operation. The energy savings for old processes/plants were estimated using engineering judgment on how much energy conservation savings were reasonably achievable in each industry. The estimated annual energy savings for energy conservation measures are modest (up to 0.5 percent per year).

Unit energy consumption values for the state-of-the-art (SOA) and advanced technologies were estimated. SOA technologies are the latest proven technologies that are available at the time there is a commitment made to build a new plant. These values were then compared to the unit energy consumption values for 1994 to develop a relative energy intensity (REI). Relative energy intensity is defined as the ratio of energy use in a new or advanced process compared to 1994 average energy use (see Table C12, Appendix C).

The savings shown in the appendix for the listed technologies represent savings over "average" 1994 energy use and SOA energy use. The latter increases are due to the gradual commercialization of advanced

technologies. Advanced technologies are ones which are still under development and will be available at some time in the future. Where a range is shown for the savings, it was assumed that the lower end of the savings range would start to be realized in the beginning of the time frame, the midpoint of the savings would be realized at the end of the time frame, and the upper end of the savings range would not be realized until 10 or more years after the time frame shown. An energy savings range is most often given when multiple technologies will be becoming available in the future for the same process step or product line. The savings range represents engineering judgment of the most likely achievable savings. In these instances, it is uncertain which specific technologies will be implemented, but it is reasonably certain that at least one of these technologies or a similar technology is likely to be successful. It is also recognized that in some instances thermodynamic limits are being approached which will prevent further significant improvements in energy savings.

The improvement for new plants assumes the plant has been built with the SOA technologies available for that process. SOA technologies are the latest proven technologies that are available at the time there is a commitment made to build the plant. A second and often more important set of substantial improvements are often realized when **advanced technologies** become available for a certain process. Often one sees a number of technologies being developed and it is difficult to ascertain which specific technologies will be successful. Some judgment is necessary as to the potential for energy savings and the likelihood for such savings to be achieved. All the energy improvement values are based on 1994 energy usage.

Additionally, even SOA technologies and advanced technologies can at times be expected to show improvements once developed as the process is improved, optimal residence times and temperatures are found, and better energy recovery techniques are installed. Depending on the process, these are factored into the projections as slow improvements ranging from zero to about 0.5 percent/year. Old plants, however, are assumed to be able to economically justify some retrofits and for other reasons listed above, to show slow improvements over time in their unit energy use. Based on engineering judgment, it is assumed that by 2020, old processes (1994 stock) still operating can achieve up to 50 percent of the energy savings of SOA technology. Thus, if SOA technology has an REI of 0.80, old processes in the year 2020 will have an REI of 0.90. As a convenience for modeling purposes, the rate of change between the initial point and final point is defined as the technology possibility curve (TPC) and used to interpolate for the intervening points. (The TPCs are given in Table C12.) The list of SOA and advanced technologies considered in the analysis is presented in Table C13, Appendix C.

The current UEC for the old and new vintage is calculated as the product of the previous year's UEC and a factor that reflects the assumed rate of intensity decline over time and the impact of energy price changes on the assumed decline rate.

$$ENPINT_{v,f,s} = ENPINTLAG_{v,f,s} * (1 + TPCRate_{v})$$

$$(2)$$

where:

*ENPINT*_{v,f,s} = Unit energy consumption of fuel f at process step s for vintage v;</sub>

$ENPINTLAG_{v,f,s}$	=	Lagged unit energy consumption of fuel f at process step s for vintage v ; and
$TPCRate_{v}$	=	Energy intensity decline rate after accounting for the impact of increased energy prices.

The TPCRate_v are calculated using the following relationships if the TPCPrat is above a threshold. Otherwise, the default values for the intensity decline rate is used, $BCSC_{v,fuel,step}$. For the non-manufacturing industries, the default values, i.e., when TPCPrat is below the threshold, for $BCSC_{v,fuel,step}$ are zero.

Above the TPCPrat threshold, the following relationships hold:

$$X = TPCPrat^{TPCBeta}$$

$$TPCPriceFactor = 4 * \frac{X}{(1 + X)}$$

$$TPCRate_{v} = TPCPriceFactor * BCSC_{v,fuel,step}$$
(3)

where:	TPCPrat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;
	TPCB eta	=	Parameter of logistic function, currently specified as 5;
	TPCPriceFactor	=	TPC price factor, ranging from 0 (no price effect) to 4;
	$TPCRate_{v}$	=	Intensity decline rate after accounting for due to energy price increases for vintage <i>v</i> ; and
	$BCSC_{v,fuel,step}$	=	Default intensity rate for old and new vintage for each fuel f and step s .

After the TPC calculations are done, another set of calculations that characterize price-induced energy conservation (as opposed to energy reductions resulting from technology changes) are performed. Industrial processes involve the discharge of waste at elevated temperatures (e.g., liquids, air, solids). Some portion of the unrecovered heat would be both technically and economically recoverable if energy prices increase. The approach assumes that the design engineer's goal is to maintain a constant dollar value of the unrecovered heat. This leads to an equilibrium condition:

$$P_{2} * HeatLoss_{2} = P_{1} * HeatLoss_{1}$$

$$\Rightarrow \frac{HeatLoss_{2}}{HeatLoss_{1}} = \frac{P_{1}}{P_{2}}$$
(4)

where:	P_1 and P_2	=	Energy price in period 1 and period 2, and
	$HeatLoss_1$ and $HeatLoss_2$	=	Unrecovered heat in period 1 and period 2.

The above relationship can be put into the TPC-UEC framework by determining the practical minimum energy to carry out reactions as a fraction of the total energy actually used, FUnew. (The unrecovered heat values are given in Table C14 in Appendix C.)

$$UEC_{1} = (FUnew * UEC_{1}) + (FUlos_{1} * UEC_{1})$$
(5)

Note that the term (FUnew * UEC₁) is a constant and that the remaining product term represents the unrecovered heat in the first period (with price = P_1). Multiplying the second product term by product throughput yields HeatLoss₁.

$$UEC_{1} = CONSTANT + \frac{HeatLoss_{1}}{Throughput}$$
(6)

A similar equation holds for period 2 with price = P_2 . Manipulation of the above three equations yields the following expression for the UEC₂ that results from the price-induced energy conservation.

$$UEC_2 = (FUnew * UEC_1) + (FUloss_1 * UEC_1) * \frac{P_1}{P_2}$$
(7)

While unrecovered heat, and the UEC, is inversely related to price in the two periods, it is unlikely that all facilities will adopt uniform policies regarding heat recovery. Consequently, a market penetration factor is assumed for old an new vintage. (Currently, these are assumed to be 0.2 for old vintage and 0.4 for new vintage.) This result can be thought of as representing per unit energy saving (UES) and is easier to calculate in the model.

$$UES_{2,\nu} = (FUnew * UEC_{1,\nu}) + (FUloss_1 * UEC_{1,\nu}) * \frac{P_1}{P_2} * MarkPen_{\nu}$$
(8)

where:

 $UES_{2,v} = Unit energy savings in period 2 for vintage v, and$ $MarkPen_v = Market penetration of price-induced energy conservation for$ vintage v.

The final calculation then is to adjust by the base UEC by the UES for each vintage.

$$ENPINT_{v,f,s} = ENPINT_{v,f,s} - UES_{v}$$
(9)

Boiler, Steam, Cogeneration Component

The boiler, steam, cogeneration (BSC) component consumes energy to meet the steam demands from the other two components and to provide internally generated electricity to the buildings and process and assembly components. The boiler component consumes fuels and renewable energy to produce the steam and, in appropriate situations, cogenerate electricity.

The boiler component is estimated to consume 39 percent of total manufacturing heat and power energy consumption.⁷ Within the BSC component, natural gas accounts for 68 percent and coal 22 percent.

The steam demand and byproducts from the PA and BLD Components are passed to the BSC Component, which applies a heat rate and a fuel share equation to the boiler steam requirements to compute the required energy consumption.

The boiler fuel shares are calculated using a logit formulation. (Note that waste and byproduct fuels are excluded from the logit because they are assumed to be consumed first.) The equation is calibrated to 1994 so that the actual boiler fuel shares are produced for the relative prices that prevailed in 1994. The equation for each manufacturing industry is as follows:

ShareFuel_i =
$$\frac{(P_i^{\alpha_i}\beta_i)}{\sum_{i=1}^3 P_i^{\alpha_i}(\beta_i)}$$
(10)

where the fuels are coal, petroleum, and natural gas. The P_i are the fuel prices; α_i are sensitivity parameters; and the β_i are calibrated to reproduce the 1994 fuel shares using the relative prices that prevailed in 1994. (The values in the equation are presented in Table C15.) The byproduct fuels are consumed before the quantity of purchased fuels is estimated. The boiler fuel shares are assumed to be those estimated using the 1994 MECS and exclude waste and byproducts.

The α_i sensitivity parameters are posited to be a positive function of energy prices. For years after 1999, the ratio of the current year's average industrial energy price to the average price in 1999 is computed, SwitchPrat.

Above the SwitchPrat threshold, the following relationships hold:

$$X = SwitchPrat^{SwitchBeta}$$

$$SwitchPriceFactor = 4 * \frac{X}{(1 + X)}$$

$$\alpha_{iPrice} = SwitchPriceFactor * \alpha_{i}$$
(11)

⁷Computed from Energy Information Administration, *Manufacturing Consumption of Energy 1994*, DOE/EIA-0512(94) (Washington, DC, December 1997), Table A8. Note that byproduct and non-energy use of combustible fuels are excluded from the computation.

where:	SwitchPrat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;
	SwitchBeta	=	Parameter of logistic function, currently specified as 4;
	SwitchPriceFactor	=	Fuel switching price factor, ranging from 0 (no price effect) to 4;
	$lpha_{iPrice}$	=	Fuel switching sensitivity parameters after accounting for energy price increases;
	α_{i}	=	Default fuel switching sensitivity parameters.

Cogeneration (the generation of electricity and steam) has been a standard practice in the industrial sector for many years. Total electricity cogeneration is assumed to vary directly with steam demand. Natural gas cogeneration is also assumed to be influenced by both the price of electricity and the price of natural gas. (The same influence would hold for steam coal, but we explicitly assume that little new coal-based cogeneration will be added.)

Beginning with 1999, the difference between the electricity and natural gas price is calculated for each year.

$$GasElecDiff_{indreg, year} = PRCX_{elec, indreg} - PRCX_{ngas, indreg}$$
(12)

where:PRCXelec, indreg=Price of electricity in current year by Census region, andPRCXngas, indreg=Price of natural gas in current year by Census region.

The following relationship affects additions to natural gas cogeneration for years after 1999.

$$GasElecFac_{indreg,year} = Max \left(1, \frac{GasElecDiff_{indreg,year}}{GasElecDiff_{indreg,year-1}}\right)$$
(13)

Cogeneration from natural gas then is projected as follows:

$$SICGEN_{indreg,year,inddir,fuel,gt,3} = SICGEN_{indreg,year-1,inddir,fuel,gt,3} *$$

$$Max \left(1, \frac{StemCur}{StemCurLag}\right) * GasElecFac$$
(14)

where: $SICGEN_{indreg, year, inddir, fuel, gt, 3} =$ Total cogeneration by region, year, industry, and fuel for gas turbines;

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

29

SICGEN _{indreg,ye}	ar-1,inddir,fuel,gt,3 =	Previous year's cogeneration by region, industry, and fue for gas turbines;	
StemCur	=	Total steam demand for the current year, and	
StemCurLag	=	Previous year's total steam demand.	

For the other fossil fuel cogeneration the equation is as follows:

$$SICGEN_{indreg, year, inddir, fuel, pm, 3} = SICGEN_{indreg, year-1, inddir, fuel, pmt, 3} * Max \left(1, \frac{StemCur}{StemCurLag}\right)$$
(15)

Cogeneration from biomass for the pulp and paper industry is also directly related to the amount of biomass available for that industry.

Assumptions

Capital Stock and Vintaging

Industrial energy consumption is affected by increased energy efficiency in new and old plants, the growth rate of the industry, and the retirement rate for old plants. The efficiency changes are captured in the TPCs and the rate of growth is given by the Macroeconomic module. (Retirement rates from the Census Bureau and vintaging information are very sketchy.) At present, the capital stock is grouped into three vintages: old, middle, and new. The old vintage consists of capital in production prior to 1994 and is assumed to retire at a fixed rate each year. Middle vintage capital is that which is added from 1994 through the lag of the forecast year. New production is added in the forecast years when existing production is less than the output forecasted by the NEMS Regional Macroeconomic Model. Capital additions during the forecast horizon are retired in subsequent years at the same rate as the pre-1994 capital stock. The retirement rates used in the Industrial Model for the various industries are listed in Table C12 in Appendix C.

Existing old and middle vintage production is reduced by the retirement rate of capital through the following equations. The retirement rate is posited to be a positive function of energy prices. For years after 1999, the ratio of the current year's average industrial energy price to the average price in 1999 is computed, RetirePrat. For non-manufacturing industries, if RetirePrat is above a threshold, the retirement rate is changed from 0 to a small positive value, currently 0.02.⁸ Further, the retirement rate is an increasing function of RetirePrat. For the manufacturing industries, the default retirement rates increase with RetirePrat.

Above the RetirePrat threshold, the following relationships hold:

⁸There is no information concerning the retirement rates for non-manufacturing industries.

 $X = RetirePrat^{RetireBeta}$

$$RetirePriceFactor = 2 * \frac{X}{(1 + X)}$$
(16)

RetireRate = RetirePriceFactor * ProdRetr.

where:	RetirePrat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;
	RetireBeta	=	Parameter of logistic function, currently specified as 5;
	RetirePriceFactor	=	TPC price factor, ranging from 0 (no price effect) to 2;
	<i>RetireRates</i>	=	Retirement rate after accounting for energy price increases for step <i>s</i> ; and
	<i>ProdRetr</i> _s	=	Default retirement rate for step s.

Renewable Fuels

Renewable fuels are modeled in the same manner as all other fuels in the industrial model. Renewable fuels are modeled both in the PA component and the BSC component. The primary renewable fuels consumed in the industrial sector are pulping liquor, a byproduct of the chemical pulp process in the paper industry, and wood.

Recycling

With projected higher landfill costs, regulatory emphasis on recycling, and potential cost savings, recycling of post-consumer scrap is likely to grow. Projecting such growth, however, is highly dependent on assessing how regulations will be developed, the growth of the economy, and quality related issues dealing with recycled materials. Assumptions for recycling in the Paper and Allied Products and Blast Furnace and Basic Steel Products industries are shown in Table C16 in Appendix C.

Legislative Implications

The Energy Policy Act of 1992 (EPACT) and the Clean Air Act Amendments of 1990 (CAA) contain several implications for the industrial model. These implications fall into three categories: coke oven standards; efficiency standards for boilers, furnaces, and electric motors; and industrial process technologies. The industrial model assumes the leakage standards for coke oven doors do not reduce the efficiency of producing coke, or increase unit energy consumption. The industrial model uses heat rates of 1.25 (80 percent efficiency) and 1.22 (82 percent efficiency) for gas and oil burners respectively. These efficiencies meet the EPACT standards. The standards for electric motors call for an increase of 10 percent efficiency. The industrial model incorporates a 10 percent savings for SOA motors increasing to

20 percent savings in 2015. Given the time lag in the legislation and the expected lifetime of electric motors, no further adjustments are necessary to meet the EPACT standards for electric motors. The industrial model incorporates the necessary reductions in unit energy consumption for the energy-intensive industries.

Several programs included in the Climate Change Action Plan (CCAP) target the industrial sector. Note that the potential impacts of the Climate Wise Program are also included in the CCAP impacts. The intent of these programs is to reduce greenhouse gas emissions by lowering industrial energy consumption. The Department of Energy (DOE) program offices estimated that implementation of these programs would reduce industrial electricity consumption by 79 billion kilowatthours and fossil energy consumption by 359 trillion Btu by 2010. However, since the energy savings associated with the voluntary programs in the CCAP largely duplicate savings that would have occurred in their absence and since some of these programs were not fully funded, estimated CCAP energy savings were reduced for industrial modeling purposes. The *Annual Energy Outlook 1999* (*AEO99*) assumes that CCAP reduces electricity consumption by 41 billion kilowatt-hours and fossil energy consumption by 90 trillion Btu. The fossil energy is assumed to be 85 percent natural gas and 15 percent steam coal. In this situation, carbon emissions would be reduced by about 7 million metric tons (1 percent) in 2010.

Benchmarking

The Industrial Model energy demand forecasts are benchmarked to actual 1990 through 1994 State Energy Data System (SEDS) values to ensure that the model forecasts for these years coincide with the SEDS consumption data. The benchmark factors are based on the ratio of the SEDS value of consumption for each fuel to the consumption calculated by the model at the census division level. Additional calibration for the years 1995-1997 are performed to conform with the *Short-Term Integrated Forecasting System*.

4. Model Structure

Outline of Model

Table 3 presents the solution outline for the NEMS Industrial Demand Model. The following section provides an overview of the solution outline for the model.

Subroutines and Equations

This section provides the solution algorithms for the Industrial Model. The order in which the equations are presented follows the logic of the FORTRAN source code very closely to facilitate an understanding of the code and its structure. In several instances, a variable name will appear on both sides of an equation. This is a FORTRAN programming device that allows a previous calculation to be updated (for example, multiplied by a factor) and re-stored under the same variable name.

IND

IND is the main industrial subroutine called by NEMS. This subroutine retrieves data for gross output for both the manufacturing and non-manufacturing industries from the NEMS Macroeconomic (MACRO) model. Employment is also obtained from the MACRO model for each non-agricultural industry. Prices for the various fuels as well as the previous year's consumption are obtained from NEMS COMMON blocks. For the first model year, consumption is obtained from the *State Energy Data System 1995* (SEDS). Because data for the industrial model are available only for the four Census regions, the energy prices obtained from NEMS, available for each of the nine Census divisions, are combined using a weighted average of the fuel prices as shown in the following equation for the first model year. A similar weighted average is used for all other fuels and model years. However, the previous year's consumption is used rather than SEDS consumption.
			Industrial Module Solution Outline			
I.	First Year: Initialize Data					
	А. В. С. D.	RCNTL: Reac REXOG: Assi IEDATA: Reac other RSTEO: Reac	l Control Options gn exogenous macroeconomic and energy price variables that come from NEMS. l ENPROD file with industry production parameters, base year industrial output, UECs, elasticities and r coefficients; l Short Term Energy Outlook File with last available history data and national projections for the next two			
п	Indus	year:	S.			
11.	maus	try Processin	g:			
	Loop the manufac	rough each of 15 ind cturing industries. F	dustry groups, including 6 non-manufacturing, 7 energy intensive and 2 energy non-intensive - For each industry, loop through each of 4 census regions			
	А. В.	RDBIN: CALPROD:	Read memory management file with previous year's data for this industry, region Compute revised productive capacity and throughput by process/assembly step and vintage; implement retirement and vintaging assumptions			
	C.	CALCSC:	(TPCs) or econometric estimates, depending on the industry. CSC1: Calculate UECs for non-energy-intensive industries.			
	D. E.	2. CAL CALBYPROD: CALPATOT: 1. IND a.	CALPALOG: Apply ADL TPC Approach. Calculate consumption of byproduct fuels Compute consumption of energy in the process assembly component PALOG: Optionally, adjust fuel shares for process-assembly industries using a 2-stage logit equation. First year, read spreadsheet file (INDPALOG.WK1) with logit coefficients CALPALOG: evaluate logit shares for a given industry and a given set of fuels, given			
	F. G. H. I. J.	CALBTOT: CALGEN: CALSTOT: WRBIN: INDTOTAL:	changes in energy prices since the base year. Compute consumption of energy in the buildings component Compute electricity generation for sale and internal use by prime mover and fuel. Compute Energy consumption in the Boiler-Steam-Cogeneration (BSC) component Write memory management file with data on this industry, region Accumulate total energy consumption for the industry			
III.	National Sums:					
	А. В.	NATTOTAL: CONTAB:	Accumulate total energy consumption over all industries Accumulate aggregates for non-manufacturing heat and power			
IV.	WEX	OG: Ap	ply exogenous adjustments and assign values to global variables			
	А.	SEDS Benchma 1. SED cons 2. Post	rking: S years (through 1995): calculate regional benchmark factors as the ratio of actual consumption to model umption for each fuel in four Census regions. SEDS Years (1996-on): Optionally, multiply model consumption by the SEDS benchmark factors.			
	В. С. D.	Disaggregate en Calibrate region STEO Benchma 1. STE forec 2. Post-	ergy consumption from 4 Census regions to 9 Census Divisions using shares from SEDS al energy consumption to match the latest year of national-level history data (from the STEO file). rking: O years: calculate national benchmark factors as the ratio of model consumption for each fuel to the STEO cast for each fuel. STEO years: Optionally, over the period 1998 to 2000, multiply model consumption by the STEO			
	E.	benc Assign final rest	hmark factors. Ilts to NEMS variables			

$$PRCX_{elec,r} = \frac{\sum_{d=1}^{NUM_r} DPRCX_{elec,r} \times QSELIN_{d,1994}}{\sum_{d=1}^{NUM_r} QSELIN_{d,1994}}$$
(17)

PRCX _{elec,r}	=	Price for electricity in Census region r ,
NUM _r	=	Number of Census divisions in Census region r ,
$DPRCX_{elec,d}$	=	Price of electricity in Census division d, and
$QSELIN_{d,1994}$	=	SEDS consumption of electricity in Census division <i>d</i> in 1994.

IND calls two subroutines: ISEAM, the subroutine that guides the industrial model calculations, and WEXOG, the subroutine that reports the results back to NEMS.

ISEAM

ISEAM controls all of the industrial model calculations. It opens external files for debugging, binary files for restarting on successive iterations and forecast years, and the input data files. In the first model year and only on the first iteration, ISEAM calls RCNTRL to read runtime parameters file. ISEAM then calls REXOG to read in exogenous inputs on each model run. For the first model year, ISEAM calls the following subroutines for each Census region within each industry: IEDATA, CALBYPROD, CALPATOT, CALBTOT, CALGEN, CALSTOT, and INDTOTAL. After the forecast for the last Census region for a particular industry has been calculated, the following two subroutines are called to compute totals: NATTOTAL and CONTAB. After the first model year, ISEAM calls two subroutines, RDBIN to read the restart files, and MODCAL to carry out model calculations. After all model calculations have been completed, ISEAM calculates industry totals and saves information to the restart files in the subroutine WRBIN. Finally, after each industry has been processed, ISEAM calls the subroutine INDCGN to report industrial cogeneration estimates to NEMS.

Subroutine RCNTRL

RCNTRL reads data from the input file INDRUN. This file contains internal control variables for the industrial model. Data in this file are based on user defined parameters consisting of indicator variables for subroutine tracing, debugging, writing summary tables, options to calculate model sensitivities, and benchmarking options. This file also contains the number of industries to be modeled and the industrial input file name.

Subroutine REXOG

REXOG prepares exogenous data obtained from the NEMS MACRO model for use in the industrial model. Dollar value of output and employment are aggregated over the appropriate Census divisions to obtain data at the Census region level. Employment data is obtained from NEMS at the two digit SIC level. Therefore, for some industries, employment data must be shared out between industries at the same two digit SIC level. In particular, the chemical industry (SIC 28) is grouped into bulk chemicals (SICs 281, 282, 286, and 287) and other chemical. Employment for the petroleum industry must be shared out between refining and all other petroleum. The stone, clay, and glass industry and the primary metals industry also require sharing out of employment data.

Subroutine IEDATA

IEDATA stands for Industrial Enprod Data where enprod is the name of the initial industrial input data file. This routine consists of many subprograms designed to retrieve industrial input data. The call order of these routines is consistent with the data structure of the model. Most of these subroutines perform no calculations and are simply listed with a description of their function.

The routines are as follows:

IRHEADER

Get industry and region identifier numbers, base year value of output, physical to dollar output conversion factor, and base year steam demand.

The ratio of physical output to 1994 value of output for five of the energy-intensive industries is calculated (food and bulk chemical industries are excluded). This constant ratio is applied to value of output in subsequent years.

$$PHDRAT_{i} = \frac{PHYSICAL_{i}}{PRODVX_{i,r}}$$
(18)

where:

PHDRAT _i	=	Ratio of physical units to value of output for industry <i>i</i> ,
PHYSICAL _i	=	Physical units of output for industry <i>i</i> , and
PRODVX _{i,r}	=	Value of output for industry <i>i</i> in Census region <i>r</i> .

If the Unit Energy Consumption (UEC) is in physical units, then the following equation is used.

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

$$PRODX_{i,r} = PHDRAT_i \ x \ PRODVX_{i,r}$$

$PRODX_{i,r}$	=	Output in physical units for industry i in Census region r ,
PHDRAT _i	=	Ratio of physical units to value of output in industry <i>i</i> , and
PRODVX _{i,r}	=	Value of output for industry <i>i</i> in Census region <i>r</i> .

If the UEC is in dollar units, then the following equation is used.

PRODX = PRODVX	(20)
ir incorn _{ir}	(20)

where:

$PRODX_{i,r}$	=	Value of output for industry i in Census region r , and
PRODVX _{i,r}	=	Value of output for industry <i>i</i> in Census region <i>r</i> .

IRSTEPDEF

Get production throughput coefficients, process step retirement rates, and other process step flow information. The latter includes process step number, number of links, the process steps linked to the current step, physical throughput to each process step, the retirement rate, and process step name.

Note that only the energy-intensive industries have steps. However, two industries, food and kindred products and bulk chemicals, do not have linkages among steps because the steps represent end-uses (e.g., refrigeration and freezing in the food and kindred products industry). As a result, the downstep throughput for food and kindred products and bulk chemicals is equal to 1. A linkage is defined as a link between more than one process step. For example, in the paper and allied products industry, the wood preparation process step is linked to the virgin fibers pulping process step. The down-step throughput is the fraction of total throughput for an industry at a process step if it is linked to the final consumption. If the process step plus the fraction of final consumption. The following example illustrates this procedure.

Figure 3 above shows the process flow for the paper and allied products industry. The algebraic representation is as follows:

Let:

- $Y_1 \equiv$ Number of tons of paper to be produced.
- $Y_2 =$ Number of tons of material to go through the bleaching process.
- $Y_3 =$ Number of tons of material to go through the waste fiber pulping process.
- $Y_4 =$ Number of tons of material to go through the mechanical pulping process.
- $Y_5 \equiv$ Number of tons of material to go through the semi-mechanical pulping process.
- $Y_6 \equiv$ Number of tons of material to go through the Kraft pulping process.
- $Y_7 \equiv$ Number of tons of material to go through the wood preparation process.

Then, we have the following:

 $\begin{array}{rll} Y_1 = & \mbox{Some value of output, in tons (from the MACRO Module).} \\ Y_2 = & 0.443 \ Y_1 \\ Y_3 = & 0.164 \ Y_1 + 0.164 \ Y_2 \\ Y_4 = & 0.068 \ Y_1 + 0.068 \ Y_2 \\ Y_5 = & 0.037 \ Y_1 + 0.037 \ Y_2 \\ Y_6 = & 0.424 \ Y_1 + 0.424 \ Y_2 \\ Y_7 = & 0.998 \ Y_4 + 0.998 \ Y_5 + 0.998 \ Y_6 \end{array}$

If according to the Pulp and Paper Association that $Y_1 = 81$ million tons of paper was produced in 1991, then $Y_2 = 36$, $Y_3 = 19.2$, $Y_4 = 79.5$, $Y_5 = 43.25$, $Y_6 = 49.6$, and $Y_7 = 172.4$.

The papermaking process is as follows. We need 172 million tons of output from the wood preparation process and 19 million tons of output from the waste fiber pulping process. Of the 172 million tons of material, 79 million tons flow through mechanical pulping, 43 million tons into semi-mechanical pulping, and 50 million tons into the Kraft pulping process. 36 million tons from the sum of output of the waste fiber, mechanical, semi-mechanical, and Kraft pulping processes goes through the bleaching process. This 36 million tons along with the remainder of the output from each process goes to the final stage in papermaking.

Physical throughput is obtained for two vintages, old and new. Old vintage is considered to be any capital installed in 1994 or earlier. Middle vintage includes installations from 1995 to the lag of the current forecast year. New vintage includes any capital installed in the current forecast year.

The following subroutines collect data from the input files:

IRBEU

Get building energy use data including lighting, heating, ventilation, and air conditioning.

IRBSCBYP

Get byproduct fuel information for the boiler/steam/cogeneration component. These data consist of fuel identifier numbers of steam intensity values.

IRBSFUEL

Get boiler fuel share values for coal, oil, and natural gas. Biomass data is retrieved in the IRBSCBYP routine and is assumed to have a constant share of boiler fuel throughout the forecast.

IRCOGEN

Get cogeneration information which includes prime mover heat rates, total generation and capacity from 1990 through the current survey year, and planned capacity.

IRSTEPBYP

Get byproduct data for process and assembly component. These data consist of fuel identifier numbers and heat intensity values.

IRSTEPDAT

Get process step data for the energy intensive industries. These data consist of fuel identifier numbers, base year unit energy consumption values, and technology penetration coefficients.

MECS94

This subroutine is called to update the prodflows for 1994.

CWAFUD

Calls a data file, Consumption With Advance Fuel Use Data (CWAFUD), to update the initial ENPROD data file with 1994 values of UECs and TPCs. The second half of this file is reserved for use in a high technology case.

IFINLCALC

Calculate initial year values for process step production throughput for the energy intensive industries.

If the current process step is linked to final consumption (i.e., if there are no intermediate steps between the current step and final output), then the following equation is used:

$$PRODSUM_{s,l} = PRODFLOW_{old,s,l} \times PRODX_{i,r}$$

$$(21)$$

where:

<i>PRODSUM</i> _{s,l}	=	Amount of throughput used at process step <i>s</i> through link <i>l</i> ,
PRODFLOW _{old,s,l}	=	Down-step throughput to process step s linked by link l for old vintage, and
PRODX _{i,r}	=	Output for industry <i>i</i> in Census region <i>r</i> .

Note that PRODFLOW is a parameter that represents the relative production throughput to a subsequent production step in the energy-intensive industries. The linkage parameter indicates which production step is involved.

If the current process step is linked to one or more intermediate process steps, then the following equation is used:

$$PRODSUM_{s,l} = PRODFLOW_{old,s,l} \times PRODCUR_{total,IP}$$
(22)

where:

<i>PRODSUM</i> _{s,l}	=	Amount of throughput used at process step <i>s</i> through link <i>l</i> ,
PRODFLOW _{old,s,l}	=	Down-step throughput to process step s linked by link l for old vintage, and
PRODCUR _{total,IP}	=	Current production at process step <i>IP</i> linked to process step <i>s</i> through link <i>l</i> for all vintages.

In either case, the total production at each process step is determined through the following equation:

$$PRODCUR_{total,s} = \sum_{l=1}^{NTMAX_s} PRODSUM_{s,l}$$
(23)

where:

$$PRODCUR_{total,s}$$
=Current production at process step s for all
vintages, $NTMAX_s$ =Number of links at process step s, and $PRODSUM_{s,l}$ =Amount of throughput used at process step s
through link l.

Subroutine CALBYPROD

The industrial model consumes all byproduct fuels prior to purchasing any fuels. This subroutine calculates the energy savings or the current location on the technology possibility curve (TPC) based on the current year's industry production and the previous year's industry production for each process step, fuel, and old and new vintage. The TPC for biomass byproducts is posited to be a positive function of energy

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

prices. Other byproducts, such as blast furnace gas, are unrelated to energy prices. Currently, only the paper and allied products industry has a TPC for biomass byproducts. For all other industries the UEC remains unchanged. For years after 1999, the ratio of the current year's average industrial energy price to the average price in 1999 is computed, TPCPrat. If TPCPrat is above a threshold, the TPC is changed from 0 to a small positive value, currently 0.005. Further, the TPC is an increasing function of TPCPrat.

Above the TPCPrat threshold, the following relationships hold:

$$X = TPCPrat^{TPCBeta}$$

$$TPCPriceFactor = 2 * \frac{X}{(1 + X)}$$

$$TPCRate_{v} = TPCPriceFactor * BYPCSC_{v,f,s}$$
(24)

where:	TPCPrat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;
	TPCBeta	=	Parameter of logistic function, currently specified as 5;
	TPCPriceFactor	=	TPC price factor, ranging from 0 (no price effect) to 2;
	$TPCRate_{v}$	=	TPC multiplier on TPC rate due to energy price increases for vintage <i>v</i> ;
	BYPCSC	=	Initial TPC for vintage v, fuel f, and step s.

CALBYPROD calculates the rate of byproduct energy produced for each process step, fuel, for the new and old vintages as shown in the following equation. This value is based on the previous year's rate of production and the current energy savings for each vintage.

$$BYPINT_{v,f,s} = (BYPINTLag_{v,f,s}) * (1 + TPCRate_{v})$$
(25)

where:

BYPINT _{v,f,s}	=	Rate of byproduct energy production (or UEC) for byproduct fuel f at process step s for vintage v ,
BYPINTLAG _{v,f,s}	=	Lagged rate of byproduct energy production for byproduct fuel f at process step s for vintage v , and
$TPCRate_{v}$	=	TPC for vintage <i>v</i> .

The energy savings for middle vintage is a weighted average (by production) of the prior year's energy savings for new vintage and the previous year's energy savings for middle vintage.

$$BYPINT_{midf,s} = \left(\frac{(PRODLag_{mid,s} * BYPINTLag_{mid,f,s}) + (PRODLag_{new,s} * BYPINTLag_{new,f,s})}{PRODLag_{mid,s} + PRODLag_{new,s}}\right)^{TPCRate_{old}}$$
(26)

where:

PRODLAG_{new,s}=Prior year production from new capacity at process step
$$s$$
,PRODLAG_{mid,s}=Prior year production from middle capacity at process
step s , andTPCRate_{old}=TPC multiplier for vintage old.

The byproduct rate of production is used to calculate the quantity of byproduct energy produced by multiplying total production at the process step by the production rate.

$$BYPQTY_{v,f,s} = PRODCUR_{v,s} \times BYPINT_{v,f,s}$$
(27)

where:

BYPQTY _{v,f,s}	=	Byproduct energy production for byproduct fuel f at process step s for vintage v ,
$PRODCUR_{v,s}$	=	Production at process step s for vintage v , and
BYPINT _{v,f,s}	=	Rate of byproduct energy production for byproduct fuel f at process step s for vintage v .

The byproduct rate of production is then converted from millions of Btu to trillions of Btu. Byproduct production is subdivided into three categories: main fuels, intermediate fuels, and renewable fuels.

Byproduct production for each group of fuels is determined by summing byproduct production over the individual process steps for each fuel and vintage as shown below for main byproduct fuels. The equations for intermediate and renewable fuels are similar.

$$ENBYPM_{f,v} = \sum_{s=1}^{MPASTP} BYPQTY_{v,f,s}$$
(28)

where:

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

$ENBYPM_{f,v}$	=	Byproduct energy production for main byproduct fuel f for vintage v ,
MPASTP	=	Number of process steps, and
$BYPQTY_{v,f,s}$	=	Byproduct energy production for byproduct fuel f at process step s for vintage v .

Subroutine CALPATOT

CALPATOT calculates the total energy consumption from the process and assembly component. Energy consumption at each process step is determined by multiplying the current production at that particular process step by the unit energy consumption (UEC) for that process step. Energy consumption is calculated for each fuel and vintage using the following equation.

$$ENPQTY_{v,f,s} = PRODCUR_{v,s} \times ENPINT_{v,f,s}$$
(29)

where:

$ENPQTY_{v,f,s}$	=	Consumption of fuel f at process step s for vintage v ,
<i>PRODCUR</i> _{v,s}	=	Production at process step s for vintage v , and
ENPINT _{v,f,s}	=	Unit energy consumption of fuel f at process step s for vintage v .

Consumption of each fuel is converted to trillions of Btu. Energy consumption is subdivided into main fuels, intermediate fuels, and renewable fuels. Main fuels include the following:⁹

- electricity,
- core and non-core natural gas,
- natural gas feedstocks,
- steam coal,
- coking coal (including net coke imports),
- residual oil,
- distillate oil,
- liquid petroleum gas for heat and power,
- liquid petroleum gas for feedstocks,
- motor gasoline,
- still gas,

⁹Still gas and petroleum coke are consumed primarily in the refining industry, which is modeled in the Petroleum Market Module of NEMS.

- petroleum coke,
- asphalt and road oil,
- petrochemical feedstocks,
- other petroleum feedstocks, and
- other petroleum.

Intermediate fuels include the following:

- steam,
- coke oven gas,
- blast furnace gas,
- other byproduct gas,
- waste heat, and
- coke.

Renewable fuels include the following although only the first three are represented in the model:

- hydropower,
- biomass--wood,
- biomass--pulping liquor,
- geothermal,
- solar,
- photovoltaic,
- wind, and
- municipal solid waste.

Energy consumption for the three fuel groups is determined for each fuel by summing over the process steps as shown below for main fuels. The equations for intermediate and renewable fuels are similar.

$$ENPMQTY_{f} = \sum_{s=1}^{MPASTP} ENPQTY_{total,f,s}$$
(30)

where:

$ENPMQTY_{f}$	=	Consumption of main fuel f in the process/assembly component,
MPASTP	=	Number of process steps, and
ENPQTY _{total,f,s}	=	Consumption of fuel f at process step s for all vintages.

Energy consumption for coke imports is calculated as the difference between coke consumption and coke production. In the current industrial model, coke is consumed only in the blast furnace/basic oxygen furnace process step in the blast furnace and basic steel products industry. Coke is produced only in the coke oven process step in the blast furnace and basic steel products industry. The equation for net coke imports is shown below.

$$ENPMQTY_{coke} = ENPIQTY_{coke} - \left[PRODCUR_{total,co} \times \frac{24.8}{10^6} \right]$$
(31)

<i>ENPMQTY</i> _{coke}	=	Consumption of coke imports in the process/assembly component,
ENPIQTY _{coke}	=	Consumption of coke in the process/assembly component,
PRODCUR _{total,co}	=	Current production at the coke oven process step for all vintages, and
24.8/10 ⁶	=	Conversion factor, where there are 24.8 million Btu per short ton of coke converted to trillion Btu.

Subroutine CALBTOT

CALBTOT calculates the total energy consumption for buildings. The energy consumption for buildings is calculated for two building uses, lighting and HVAC. Total energy consumption is determined for electricity, natural gas, and steam with a weighted average of the industry employment UEC and the industry output UEC.

$$ENBQTY_{e,f} = (EWeight * [EMPLX_{i,r} * ENBINT_{e,f}] + OWeight * [ProdVX_{i,r} * ONBINT_{e,f}]) * BldPFac$$
(32)

where:

$ENBQTY_{e,f}$	=	Consumption of fuel f for building end use e ,
$EMPLX_{i,r}$	=	Employment for industry i in Census region r ,
$ProdVX_{i,r}$	=	Output of industry <i>i</i> in Census region <i>r</i> ,
$ENBINT_{e,f}$	=	Employment unit energy consumption of fuel f for building end use e ;
$ONBINT_{e,f}$	=	Output unit energy consumption of fuel f for building end use e ;
EWeight	=	Weight for Employment unit energy consumption;
PWeight	=	Weight for Output unit energy consumption; and

BldPfac = Reflects the effect of energy price increases on buildings energy consumption.

The BldPfac variable adjusts buildings energy consumption if the average industrial energy price increases above a threshold. Below the threshold, BldPfac is equal to 1. Above the threshold, the value of BldPfac is calculated as follows:

$$BldPFac = BldPRat \ ^{BldElas}$$
(33)

where:

BldPRat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000; and
BldElas	=	Assumed elasticity, currently -0.2.

Subroutine CALGEN

Calculates total steam used to cogenerate electricity. The total steam demand is computed by summing steam demand from buildings and steam demand from the process and assembly component. The prime movers are steam turbines, combustion turbines, and internal combustion. (A fourth prime mover, hydroelectric is unrelated to steam.) Generation for own use and sales to the grid are calculated from the share of sales to the grid from EIA-867 data.¹⁰

The following equation calculates the total demand for steam.¹¹

$$STEMCUR = ENBQTY_{hvac,steam} + ENPIQTY_{steam}$$
(34)

where:

STEMCUR	=	Total steam demand,
$ENBQTY_{hvac, steam}$	=	Consumption of steam for HVAC, and

¹⁰Two subroutines not show here perform the calculations required to move between the division-level data based on the EIA-867 and the region-level data that are required for model computation. These subroutines are CAL_EI867 and CALCGSH. Cogeneration capacity is determined in subroutine INDCGN using the average utilization rates for the last data year from the EIA-867.

¹¹This subroutine also calculates the amount of steam produced by product fuels, which reduces the amount of steam required to be produced by purchased fuels.

 $ENPIQTY_{steam}$ = Consumption of steam in the process/assembly component.

Total electricity cogeneration is assumed to vary directly with steam demand. Natural gas cogeneration is also assumed to be influenced by both the price of electricity and the price of natural gas. (The same influence would hold for steam coal, but we explicitly assume that little new coal-based cogeneration will be added.)

Beginning with 1999, the difference between the electricity and natural gas price is calculated for each year.

$$GasElecDiff_{indreg,year} = PRCX_{elec,indreg} - PRCX_{ngas,indreg}$$
(35)

where:

1

PRCXelec,indreg = Price of electricity in current year by Census region, and

PRCXngas,indreg = Price of natural gas in current year by Census region.

The following relationship affects additions to natural gas cogeneration for years after 1999.

$$GasElecFac_{indreg, year} = Max \left(1, \frac{GasElecDiff_{indreg, year}}{GasElecDiff_{indreg, year-1}} \right)$$
(36)

Cogeneration from natural gas then is projected as follows:

$$SICGEN_{indreg, year, inddir, fuel, gt, 3} = SICGEN_{indreg, year-1, inddir, fuel, gt, 3} * Max \left(1, \frac{StemCur}{StemCurLag}\right) * GasElecFac$$

$$(37)$$

where:
$$SICGEN_{indreg, year, inddir, fuel, gt, 3} =$$
Total cogeneration by region, year, industry, and fuel for
gas turbines; $SICGEN_{indreg, year-1, inddir, fuel, gt, 3} =$ Previous year's cogeneration by region, industry, and fuel
for gas turbines; $StemCur =$ Total steam demand for the current year, and $StemCurLag =$ Previous year's total steam demand.

For the other fossil fuel cogeneration the equation is as follows:

$$SICGEN_{indreg, year, inddir, fuel, pm, 3} = SICGEN_{indreg, year-1, inddir, fuel, pmt, 3} * Max \left(1, \frac{StemCur}{StemCurLag}\right)$$
(38)

Cogeneration from biomass for the pulp and paper industry is also directly related to the amount of biomass available for that industry (calculated in subroutine CALBYPROD).

$$BIO = Max(0, \frac{BioAvail_{indreg, year} - BioAvail_{indreg, year-1}}{HeatRate})$$
(39)

where:

<i>BioAvail</i> _{indreg,year}	=	Biomass available in the current year;
BioAvail _{indreg,year-1}	=	Biomass available in the previous year; and
HeatRate	=	Converts Btu to kWh (currently assumed to be 25,000).

The available biomass generation is then added to the previous year's cogeneration.

$$SICGEN_{indreg, year, inddir, biomass, pm, 3} = SICGEN_{indreg, year-1, inddir, biomass, pm, 3} + BIO$$
(40)

where:	SICGEN _{indreg,year,inddir,biomass,gt,3} =	Total biomass cogeneration by region, year, industry, and prime mover; and
	$SICGEN_{indreg, year-1, inddir, biomass, gt, 3} =$	Previous year's cogeneration by region, industry, and prime mover.

Capacity for electric generation is determined from total generation of electricity and a capacity utilization rate based on EIA-867 survey data. The following equation calculates generation capacity by prime mover. (Note that this equation operates at the division level rather than the region level. The capacity values are used only for reporting purposes and not used within the industrial module.) Capacity by prime mover is calculated using shares computed based on EIA-867 survey data. Electricity generation for own use is calculated by using the own use share of electricity generation from the EIA-867 survey data.

Electricity generation for own use is then calculated from the following equation.

$$ELOWN_{pm} = ELGEN_{pm} x (1 - GRDSHRG_{inddir,indreg})$$

where:

$ELOWN_{pm}$	=	Electricity generation by prime mover, <i>pm</i> , for own use,
ELGEN _{total}	=	Electricity generation from all prime movers, and
GRDSHRG _{inddir,indreg}	=	Industry grid share value.

Electricity generation for sales to the grid is calculated similarly.

Subroutine CALSTOT

CALSTOT calculates total fuel consumption in the BSC component. Fuel consumption is also allocated between cogeneration and non-cogeneration boilers. Generation by prime mover is determined in CALGEN as is the net steam demand. The methodology is initiated by calculating the system fuel required for the generation by each prime mover. The fuel consumption is then allocated to electricity generation using an incremental heat rate. The remaining fuel consumption is allocated to steam generation from cogeneration units. The latter allows the amount of steam generated with this fuel to be calculated using assumed boiler efficiencies. This steam, cogsteam, is subtracted from the net steam demand, StemCur, to determine the amount of steam that must be produced with non-cogeneration boilers.

$$FuelSys_{pm,fuel} = SicGen_{region, year, inddir, fuel, pm} * \frac{GenEqpHtRt_{pm}}{10^6}$$
(42)

$$FuelSys_{pm,fuel} = Total fuel consumption for cogeneration by prime mover pm,$$

$$SicGen_{region, year, inddir, fuel, pm} = Electricity generation by region, year, industry, fuel and prime mover, and$$

$$GenEqpHtRt_{pm} = Heat rate for each prime mover.$$

The fuel consumption allocated to electricity generation is calculated using an incremental heat rate for electricity only.¹²

¹²The variable $\text{FuelElec}_{pm,fuel}$ is allocated between own use and sales to the grid using the historical share of sales to the grid in variable $\text{OthFuel}_{pm,fuel,k}$, where *k* represents own use or sales to the grid. In subroutine INDCGN, $\text{OthFuel}_{pm,fuel,k}$ is copied into variable DivFuel; DivFuel is finally copied into variable CGINDQ in subroutine WEXOG for reporting the results to NEMS.

$$FuelElec_{pm,fuel} = SicGen_{region, year, inddir, fuel, pm} * \frac{IncrHeatRate}{10^6}$$
(43)

where:

FuelElec _{pm,fuel}	=	Allocated fuel consumption for electricity generation by cogeneration prime mover <i>pm</i> ,
SicGen _{region, year, inddir, fuel, pm}	=	Electricity generation by region, year, industry, fuel and prime mover, and
IncrHeatRate	=	Incremental heat rate for electricity only.

Consequently, the fuel allocated to process steam generated from cogeneration is just the difference.

$$FuelCogSteam_{pm,fuel} = FuelSys_{pm,fuel} - FuelElec_{pm,fuel}$$
(44)

The next steps are to calculate the amount of process steam generated by the allocated fuel and to determine the amount of steam that must be generated by non-cogeneration boilers.¹³

CogSteam = Fi	ielCogSteam _{pm,fuel} *	$BEff_{fuel}$		(45)
NonCogSteam = StemCur - CogSteam				(+3)
	$BEff_{fuel}$	=	Assumed boiler efficiency by fuel, and	
	NonCogSteam	n =	Steam to be cogenerated by non-cogeneration boile	rs.

The fuels consumed in non-cogeneration boilers is added to the system fuel consumed by cogeneration to yield total fuel consumption in the BSC component.

$$EnSQty_{fuel} = FuelSys_{pm,fuel} + \frac{(CogSteam_{pm,fuel} * BSShr_{fuel})}{BEff_{fuel}}$$
(46)

¹³A complication arise here because biomass is heavily used in cogeneration. Since the biomass is a byproduct of the production process, it reduces the purchased fuel requirements. Consequently, the amount of biomass available for non-cogeneration steam boilers is subtracted from NonCogSteam.

Subroutine INDTOTAL

The consumption estimates derived in the PA, BSC, and BLD components are combined in INDTOTAL to produce an overall energy consumption figure for each industry. The consumption estimates include byproduct consumption for each of the main, intermediate, and renewable fuels. Only electricity, natural gas, and steam include consumption from buildings. For all fuels except electricity, the following equation is used.

$$QTYMAIN_{f,r} = ENPMQTY_f + ENBQTY_{totalf} + ENSQTY_f + BYPBSCM_f$$
(47)

where:

$QTYMAIN_{f,r}$	=	Consumption of main fuel f in Census region r ,
$ENPMQTY_{f}$	=	Consumption of main fuel f in the PA component,
ENBQTY _{total,f}	=	Consumption of fuel <i>f</i> for all building end uses,
$ENSQTY_{f}$	=	Consumption of fuel f to generate steam, and
BYPBSCM _f	=	Byproduct consumption of main fuel <i>f</i> to generate electricity from the BSC component.

Consumption of electricity is defined as purchased electricity only, therefore, electricity generation for own use is removed from the consumption estimate.

$$QTYMAIN_{elec.r} = ENPMQTY_{elec} + ENBQTY_{total.elec} - ELOWN$$
(48)

where:

QTYMAIN _{elec,r}	=	Consumption of purchased electricity in Census region r ,
ENPMQTY _{elec}	=	Consumption of electricity in the PA component,
$ENBQTY_{total,elec}$	=	Consumption of electricity for all building end uses, and
ELOWN	=	Electricity generated for own use.

Subroutine NATTOTAL

After processing all four Census regions for an industry, NATTOTAL computes a national industry estimate of energy consumption. This subroutine also computes totals over all fuels for main, intermediate, and renewable fuels. Total consumption for the entire industrial sector for each main, intermediate, and

renewable fuel is determined by aggregating as each industry is processed as shown in the following equation.

$$TQMAIN_{f,r} = \sum_{i=1}^{INDMAX} QTYMAIN_{f,r}$$
(49)

where:

 $TQMAIN_{f,r}$ =Total consumption for main fuel f in Census region r,INDMAX=Number of industries, and $QTYMAIN_{f,r}$ =Consumption of main fuel f in Census region r.

Subroutine CONTAB

CONTAB is responsible for reporting consumption values for individual industries. Consumption figures are reported for each of the fuels used in each particular industry. The equation below illustrates the procedure for main fuels in the food and kindred products industry.¹⁴ All other industries have similar equations.

$$FOODCON_{f} = \sum_{f=1}^{NUM_{f_{R}}} QTYMAIN_{f,total}$$
(50)

where:

$FOODCON_f$	=	Total consumption of fuel f in the food and kindred products industry,
NUM_{fg}	=	Number of fuels in fuel group fg , and
$QTYMAIN_{f,total}$	=	Consumption of main fuel f for all Census regions.

Subroutine WRBIN

WRBIN writes data for each industry to a binary file. Two different binary files are created. The first contains variables and coefficients that do not change over years, but change over industries. This binary file also contains data that do not change over years, but change over processes. The second binary file contains data that change from year to year.

¹⁴Another subroutine, INDFILLCON, is called from CONTAB to actually fill the FOODCON consumption array.

Subroutine INDCGN

Calculates aggregate industrial total cogeneration and cogeneration capacity, for own use and sales to the grid by fuel and census division. Aggregate industrial total cogeneration fuel consumption for own use and sales to the grid by census division is also calculated. These quantities are reported to NEMS cogeneration variables.

The equation below calculates aggregate cogeneration capacity for sales to the grid by division and fuel based on EIA-867 survey data.

$$CAPGW_{cdiv,fuel,sales} = CAP867_{cdiv,year,ind,fuel} \ x \ SHARE_{pm,cdiv,year,ind,fuel} \ x \ IGRIDSHR_{cdiv,year,ind}$$
(51)

where:

$CAPGW_{cdiv, fuel, sales}$	=	Existing or planned capacity for cogeneration of electricity for sales to the grid for census division and fuel,
CAP867 _{cdiv,year,ind,fuel}	=	EIA-867 capacity by census division, year, industry, and fuel,
$SHARE_{pm,cdiv,yr,ind,fuel}$	=	EIA-867 share of fuel by prime mover PM, census division, year, and industry,
IGRIDSHR _{cdiv,yr,ind}	=	EIA-867 sales-to-the-grid share of capacity in census division, year, and industry

The capacity for own use is calculated similarly.

Calculate EIA-867 total industrial generation by division and fuel for sales to the grid.

$$GENGWH_{cdiv,fuel,sales} = \sum_{cdiv=1,9} \sum_{fuel=1,6} \sum_{pm=1,3} \sum_{ind=1,15} SICGEN_{cdiv,yr,ind,fuel,pm,sales}$$
(52)

where:

$GENGWH_{cdiv,fuel,sales}$	=	Total generation by census division, fuel, and own use/sales to the grid.
$SICGEN_{cdiv,yr,ind,fuel,pm,sales}$	=	EIA-867 based generation by census division, year, fuel, prime mover, and own use sales to the grid.

Generation for sales to the grid is calculated similarly.

Total industrial consumption by division and fuel is calculated from the EIA-867 survey data.

DIVFUEL _{cdiv,fuel,sales}	= and sale	Industrial variable holding aggregate total industrial cogeneration fuel consumption by division, fuel, es to the grid and own use
OTHFUEL _{cdiv,fuel,sales}	=	Variable holding the cogeneration fuel consumption calculated based on EIA-867 aggregate total generation by fuel, prime mover, and census division, multiplied by appropriate heat rates,

where:

$$OTHFUEL_{cdiv,fuel,sales} = \sum_{cdiv=1,9} \sum_{pm=1,3} SICGEN_{cdiv,yr,ind,pm,sales} \ x \ RATE_{pm}$$
(54)

where:

 $RATE_{pm}$ = Heat rate for prime mover pm.

Industrial cogeneration fuel consumption for own use is calculated similarly.

Subroutine WEXOG

WEXOG stands for write industrial calculated quantities to NEMS exogenous variables. Prior to assigning values to the NEMS variables, total industrial fuel consumption quantities are computed. These values are then calibrated or benchmarked to the *State Energy Data System* (SEDS) estimates for each data year, and thereafter are calibrated to the *Short Term Energy Outlook* (STEO) forecast year estimates. The calibration factors are multiplicative for all fuels which have values greater than zero and are additive otherwise.

The equation for total industrial electricity consumption is below. All other fuels have similar equations with refinery consumption and oil and gas consumption included only where appropriate.

$$BMAIN_{fuel,region} = TQMAIN_{fuel,region} + QELRF_{region}$$
(55)

The equation for total industrial natural gas consumption is:

$$BMAIN_{fuel, region} = TQMAIN_{fuel, region} + QNGRF_{region} + CGOGQ_{sales, region} + CGOGQ_{own, region} + NONTRAD_{region, fuel}$$
(56)

where:

 $BMAIN_{ng,r}$ = Consumption of natural gas in Census region r,

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

$TQMAIN_{f,r}$	=	Consumption of natural gas fuel f in Census region r ,
<i>QNGRF</i> _{r,y}	=	Natural gas consumed by petroleum refining industry in Census division r in year y , and
CGOGQ _{sales,region}	=	Consumption of natural gas from cogeneration of electricity for sales to the grid in enhanced oil recovery in Census region and year.
CGOGQ _{own,region}		 Consumption of natural gas from cogeneration of electricity for own use in enhanced oil recovery by Census region year.

Total industrial consumption for other fuels is calculated similarly.

SEDS benchmark factors are calculated as follows:

$$SEDSBF_{fuel,region} = \frac{SEDS4_{fuel,region}}{BMAIN_{fuel,region}}$$
(57)

where:

$SEDSBF_{\rm fuel, region}$	=	Current SEDS data year benchmark factors
$SEDS4_{\rm fuel, region}$	=	Current SEDS data year consumption aggregated from the division level by fuel to the region level by fuel
$BMAIN_{fuel, region}$	=	Total industrial fuel consumption by fuel and region

SEDS benchmark factors are then multiplied by the total industrial consumption value as follows:

$$BENCH_{fuel, region} = SEDSBF_{fuel, region} \times BMAIN_{fuel, region}$$
(58)

STEO benchmark factors are calculated as follows:

$$STEOBF_{fuel} = \frac{STEO_{fuel,year}}{\sum_{fuel} \sum_{region} BENCH_{fuel,region}}$$
(59)

where:

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

${\rm STEOBF}_{\rm fuel}$	=	STEO benchmark factor by fuel which equals each fuels share of the total SEDS benchmarked industrial consumption. Note that these factors are applied post SEDS data years.
STEO _{fuel,year}	=	Total third quarter STEO consumption by fuel for each forecast year.
$\operatorname{BENCH}_{\operatorname{fuel, region}}$	=	Benchmarked total industrial fuel consumption.

The STEO factors are applied to the SEDS industrial benchmarked consumption values as follows:

$$BENCH_{fuel,region} = STEOBF_{fuel} \times BENCH_{fuel,region}$$
(60)

STEO benchmark factors are faded to zero beginning in the first year after the STEO forecast year until 4 years post STEO forecast.

The shares for renewable fuels, calculated through the following equation, are based on the value of output from the paper and lumber industries since most renewable fuel consumption occurs in these industries.

$$DSRENW_{f,d} = \frac{OUTIND_{13,d} + OUTIND_{11,d}}{\sum_{d=1}^{NUM_r} (OUTIND_{13,d} + OUTIND_{11,d})}$$
(61)

where:

$DSRENW_{f,d}$	=	Share of output for renewable fuel f in Census division d ,
OUTIND _{13,d}	=	Gross value of output for the paper and allied products industry in Census division d ,
OUTIND _{11,d}	=	Gross value of output for the lumber and wood products industry in Census division d , and
NUM _r	=	Number of Census divisions in Census region r.

The benchmark factor for biomass is computed as follows.

$$BENCHFAC_{bm,d} = \frac{BIOFUELS_d}{\sum_{f=2}^{3} DQRENW_{f,d}}$$
(62)

where:

 $BENCHFAC_{bm,d}$ = Benchmark factor for biomass in Census division d,

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

$BIOFUELS_d$	=	Consumption of biofuels in Census division d , and	
$DQRENW_{f,d}$	=	Consumption of renewable fuel f in Census division d , and	
DQRENW _{f,d} = TQRENW	, f,region x D	SRENW _d	(63)

<i>TQRENW</i> _{<i>f</i>,<i>r</i>}	=	Industrial total consumption of renewable fuel f in Census region r , and
$DSRENW_{f,d}$	=	Share of output for renewable fuel f in Census division d ,

Adjust total industrial consumption for Climate Change Action Plan effects. There are assumed fossil fuel savings (CCAPFOS) and electricity savings (CCAPKWH) for 2000 and 2010. All fossil fuel savings are assumed to be in steam coal use. Savings increase gradually up to year 2010, and remain constant thereafter. Total savings are calculated and are then shared out at the census division level.

Fossil fuel, i.e., coal, savings are calculated as:

$$CCAPCL_{total} = CCAPFOS_1 + .1 * (CCAPFOS_2 - CCAPFOS_1) * NGYRS$$
(64)

where:

CCAPCL _{total}	=	Total reduction in coal consumption due to climate change action plan.
CCAPFOS	=	Assumed fossil fuel savings for a base year $1=2000$ and $2=2010$.
NGYRS	=	Number of years past year 2000 up to year 2010.

Electricity savings are calculated similarly.

Benchmarked consumption values are then passed into the appropriate variables for reporting to NEMS. The following equation calculates consumption of electricity. Equations for other fuels are similar.

$$QELIN_{cdiv,year} = BENCH_{elec,region} \times SEDSHR_{elec,region,cdiv}$$
(65)

where:

<i>QELIN</i> _{cdiv,year}	=	Industrial consumption of electricity in Census region and year,
BENCH _{elec,region}	=	Consumption of electricity in Census region, and
SEDSHR _{elec,region,cdiv}	=	SEDS census region share of electricity in census division.

The following two equations represent the consumption of core and non-core natural gas.

$$QGFIN_{cdiv,year} = \left[BENCH_{ngas,region} \ x \ SEDSHR_{ngas,region,region}\right] x \left[\frac{TQMAIN_{cng,region} \ + \ TQMAIN_{fds,region}}{BMAIN_{ngas,region}}\right]$$
(66)

where:

QGFIN _{cdiv,year}	=	Industrial consumption of core natural gas in Census division <i>cdiv</i> and <i>year</i> ,
BENCH _{ngas, region}	=	Benchmarked consumption of total natural gas in Census <i>region</i> ,
SEDSHR _{ngas, region, cdiv}	=	SEDS census region share of natural gas in census division <i>cdiv</i> ,
TQMAIN _{cng, region}		= Consumption of core natural gas in Census <i>region</i> ,
TQMAIN _{fds, region}	=	Consumption of feedstock natural gas in Census region, and
BMAIN _{ngas, region}	=	Total unbenchmarked consumption of natural gas in Census region <i>region</i> .

where:

QGIIN _{cdiv,year}	=	Industrial consumption of non-core natural gas in Census division <i>cdiv</i> by year,
QNGIN _{ngas,cdiv}	=	Consumption of natural gas in Census division <i>cdiv</i> ,
QGFIN _{cdiv,year}	=	Industrial consumption of core natural gas in Census division <i>cdiv</i> by year.

(67)

Industrial consumption of biomass is calculated in the following equation.

$$QBMIN_{d,y} = \left[\sum_{f=2}^{3} DQRENW_{f,d}\right] + \left[\sum_{\mu=1}^{2} CGOGQ_{d,y,bm,\mu}\right] + QBMRF_{d,y}$$
(68)

where:

<i>QBMIN</i> _{d,y}	=	Industrial consumption of biomass in Census division <i>d</i> in year <i>y</i> ,
$DQRENW_{f,d}$	=	Consumption of renewable fuel f in Census division d ,
$CGOGQ_{d,y,bm,u}$	=	Consumption of biomass from cogeneration of electricity for use u in enhanced oil recovery in Census division d in year y , and
$QBMRF_{d,y}$	=	Biomass consumed by petroleum refining industry in Census division <i>d</i> in year <i>y</i> .

Consumption of total renewables is calculated through the following equation. Currently, only biomass is nonzero.

$$QTRIN_{dy} = QHOIN_{dy} + QBMIN_{dy} + QGEIN_{dy} + QSTIN_{dy} + QPVIN_{dy} + QWIIN_{dy} + QMSIN_{dy}$$
(69)

where:

$QTRIN_{d,y}$	=	Industrial consumption of total renewables in Census division <i>d</i> in year <i>y</i> ,
<i>QHOIN</i> _{d,y}	=	Industrial consumption of hydropower in Census division d in year y ,
<i>QBMIN</i> _{d,y}	=	Industrial consumption of biomass in Census division d in year y ,
<i>QGEIN</i> _{d,y}	=	Industrial consumption of geothermal in Census division d in year y ,
$QSTIN_{d,y}$	=	Industrial consumption of solar thermal in Census division d in year y ,
$QPVIN_{d,y}$	=	Industrial consumption of photovoltaic in Census division d in year y ,

$QWIIN_{d,y}$	=	Industrial consumption of wind in Census division d in year y , and
$QMSIN_{d,y}$	=	Industrial consumption of municipal solid waste in Census division <i>d</i> in year <i>y</i> .

Currently, only biomass (including pulping liquor) and hydropower are implemented in the model.

Variables pertaining to industrial cogeneration of electricity including generation for own use and sales to the grid, capacity, and fuel consumption are also passed to the appropriate NEMS variables. Cogeneration data from the refining and oil and gas industries are included in the industrial cogeneration data passed to NEMS as shown in the following equation for capacity. Similar equations are used to incorporate refining and oil and gas cogeneration for own use and sales to the grid as well as fuel consumption.

$$CGINDCAP_{d,y,f,u,pl} = CAPGW_{d,f,u,pl}$$

$$(70)$$

where:

where:

CGINDCAP _{d,y,f,u,pl}	=	Industrial capacity for cogeneration for use u using fuel f in Census division d in year y ,
$CAPGW_{d,f,u,pl}$	=	Capacity for cogeneration of electricity for use u using fuel f in Census division d ,

Total consumption is calculated below.

$$CGINDQ_{d,y,f,u} = DIVFUEL_{d,f,u}$$
(71)

$$CGINDQ_{d,y,f,u} = Industrial consumption of fuel f for cogeneration of electricity for use u in Census division d in year y,$$

$$DIVFUEL_{d,f,u} = Consumption of fuel f for cogeneration of electricity for use u in Census division d,$$

Subroutine RDBIN

RDBIN is called by the main industrial subroutine ISEAM on model runs after the first model year. This subroutine reads the previous year's data from the binary files. The previous year's values are assigned to lagged variables for price, value of output, and employment. The previous year's UECs, TPC coefficients, price elasticities, and intercepts are read into the variables for initial UEC, TPC, price elasticity, and intercept. Process specific data is read into either a lagged variable or an initial estimate variable. Three cumulative variables are calculated in this subroutine for future use. A cumulative output variable, a cumulative UEC, and a cumulative production variable are computed for each fuel and process step.

MODCAL

MODCAL performs like the main industrial subroutine ISEAM in all years after the first model year. In subsequent years, no data must be read from the input files, however, UECs and TPC coefficients must be adjusted to reflect the new model year, whereas the first model year uses only initial estimates of these values. MODCAL calls the following subroutines: CALPROD, CALCSC, CALPRC, CALPATOT, CALBYPROD, CALBTOT, CALGEN, CALBSC, CALSTOT, INDTOTAL, NATTOTAL, and CONTAB. Similar to the functioning of ISEAM, the subroutines NATTOTAL and CONTAB are called only after the last region for an industry has been processed.

Subroutine CALPROD

CALPROD determines the throughput for production flows for the process and assembly component. Existing old and middle vintage production is reduced by the retirement rate of capital through the following equations. The retirement rate is posited to be a positive function of energy prices. For years after 1999, the ratio of the current year's average industrial energy price to the average price in 1999 is computed, RetirePrat. For non-manufacturing industries, if RetirePrat is above a threshold, the retirement rate is changed from 0 to a small positive value, currently 0.02.¹⁵ Further, the retirement rate is an increasing function of RetirePrat. For the manufacturing industries, the default retirement rates increase with RetirePrat.

Above the RetirePrat threshold, the following relationships hold:

$$X = RetirePrat^{RetireBeta}$$

$$RetirePriceFactor = 2 * \frac{X}{(1 + X)}$$
(72)

RetireRate = RetirePriceFactor * ProdRetr

where:	RetirePrat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;
	RetireBeta	=	Parameter of logistic function, currently specified as 5;
	RetirePriceFactor	=	TPC price factor, ranging from 0 (no price effect) to 2;
	<i>RetireRate</i> _s	=	Retirement rate after accounting for energy price increases for step <i>s</i> ; and

¹⁵There is no information concerning the retirement rates for non-manufacturing industries.

 $ProdRetr_s$ = Default retirement rate for step s.

$$PRODCUR_{old,s} = \left[PRODCUR_{old,s} + IDLCAP_{old,s}\right] \times (1 - RetireRate_s)$$
(73)

where:

$PRODCUR_{old,s} =$	Exist	ing production for process step s for old vintage,
IDLCAP _{old,s}	=	Idle production at process step s for old vintage, and
<i>RetireRate</i> _s	=	Retirement rate after accounting for due to energy price increases for

step s.

$$PRODCUR_{mid,s} = (PRODCUR_{mid,s} + PRODCUR_{new,s}) x (1 - RetireRate_{s})$$
(74)

where:

PRODCUR _{mid,s}	=	Existing production at process step <i>s</i> for mid vintage,
PRODCUR _{new,s}	=	Production at process step s for new vintage,
<i>RetireRate</i> _s	=	Retirement rate after accounting for due to energy price increases for step <i>s</i> .

Total production throughput for the industry is calculated. If the initial UEC is in physical units, the value of output for the current year is multiplied by the fixed ratio of physical units to value of output calculated in the first model year.

$$PRODX_{i,r} = PHDRAT \ x \ PRODVX_{i,r} \tag{75}$$

where:

<i>PRODX</i> _{<i>i</i>,<i>r</i>}	=	Value of output in physical units for industry i in Census region r ,
PHDRAT	=	Ratio of physical units to value of output, and
$PRODVX_{i,r}$	=	Output for industry i in Census region r .

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

If the initial UEC is in dollar units, then the current year's value of output is used to determine total production throughput.

Total production throughput is calculated by determining new capacity requirements at each process step so as to meet final demand changes and replace retired capacity. All process steps that meet common downsteps are evaluated using a production flow balance equation. The flow balance is defined by equating downstep production requirements with all capacity available to meet it. The balance is achieved by adding new capacity or idling existing capacity. New capacity for a step is added in proportion to the assumed relative production flow rates for new capacity. Capacity is idled in proportion to the flowrates of existing capacity.

The following are elements of each process step's balance equation:

 Existing joint capacity (EXISTCAP): the step's own existing capacity, as well as related steps' existing production capacity. This includes all capacity surviving from 1990 (old) and post-1991 (mid) vintages. "Related Steps" are those that flow to common downsteps. EXISTCAP is determined from the variables PRODCUR(OLD, related_steps) and PRODCUR(MID, related_steps).

$$PRODCUR_{total,s} = PRODFLOW_{old,s,l} \times PRODX_{i,r}$$

$$(76)$$

where:

$PRODCUR_{total,s} =$	Produc	tion at process step s for all vintages,
PRODFLOW _{old,s,l}	=	Down-step throughput to process step s by link l for old vintage, and
PRODX _{i,r}	=	Value of output for industry <i>i</i> in Census region <i>r</i> .

 Combined Downstep Requirements (DOWN_STEP_REQD): the combined downstep flow requirements, including any new downstep production, that must be met by all the related (or "joint") steps. DOWN_STEP_REQD is a function of PRODCUR(OLD,downstep), PRODCUR(MID,downstep), and PRODCUR(NEW,downstep), unless the step meets final demand (exogenous production). If so, DOWN_STEP_REQD is a function of PROX.

$$PRODCUR_{news} = PRODCUR_{total.s} - PRODCUR_{old.s} - PRODCUR_{mid.s}$$
(77)

where:

 $PRODCUR_{new.s} =$ New production at process step s for new vintage,

$PRODCUR_{total,s} =$	Total production at process step <i>s</i> for all vintages,
$PRODCUR_{old,s} =$	Existing production at process step <i>s</i> for old vintage, and
PRODCUR _{mid,s}	= Existing production at process step <i>s</i> for mid vintage.

Middle vintage production is unaltered.

- 3. New joint Capacity (JOINTNEW): The difference between Existing Joint Capacity (1) and the Combined Downstep Requirements (2). This is the balancing item for a set of related ("joint") process steps.
- 4. Step's Share of Joint Capacity (JOINTSHR): This is the proportion of New Joint Capacity that will be met by this step. JOINTSHR is the ratio of the step's own flow rate, PRODFLOW(NEW_RATE,own_step,downstep), to the sum of related steps rates, PRODFLOW(NEW_RATE,related_steps,downstep). A separate JOINTSHR is calculated for use when JOINTNEW is less that zero--the idling case.

The balance equation is:

$$JOINTNEW + EXISTCAP - DOWN STEP REQD = 0$$
(78)

where:

JOINTNEW	=	Idle production for process step <i>s</i> for old vintage,
EXISTCAP	=	Existing production at process step <i>s</i> for old vintage,
DOWN_STEP_REQD	=	Existing production at process step s for mid vintage, and

Solving for the unknown, we write:

$$JOINTNEW = DOWN \ STEP \ REQD - EXISTCAP$$
(79)

The step's share of new capacity is:

$$PRODCUR_{new,is} = JOINTSHR_{is} \times JOINTNEW$$
(80)

When implemented as a general routine, the balance equation is developed in matrix format as:

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

 $\begin{array}{l} [PFold_{i,j}] \ x \ [PRODCUR \ OLD_{j}] \ + \\ [PFmid_{i,j}] \ x \ [PRODCUR \ MID_{j}] \ + \\ [PFnew_{i,j}] \ x \ [PRODCUR \ NEW_{j}] \ + \\ JOINTNEW \ = \ 0 \end{array}$

where:

PFold _{i,j}	=	Production flow rate corresponding to industrial processes installed in 1994 plants for the ith primary step and the jth downstep
PFmid _{i,j}	=	Production flow rates corresponding to industrial production capacity installed in post 1994 plants for the ith primary step and the jth downstep
PFnew _{i,j}	=	Production flow rates of all new industrial capacity added within a given year to meet exogenous output and retirement of existing capital stock requirements for the ith primary step and the jth downstep

When solving for JOINTNEW, the negative of the above matrix term is used. This is subtracting the matrix terms from both sides of the balance equation. A "+1" coefficient in Pfold or Pfnew is used when the column corresponds to a joint process step. If the column is a downstep, the coefficient is the negative of the sum of flow rates to that downstep.

Subroutine CALCSC1

All the non-energy-intensive industries' UECs are updated in CALCSC1. The current UEC for the old and new vintage is calculated as the product of the previous year's UEC and a factor that reflects the assumed rate of intensity decline over time and the impact of energy price changes on the assumed decline rate.

$$ENPINT_{vf,s} = ENPINTLAG_{v,f,s} * (1 + TPCRate_{v})$$
(82)

where:

ENPINT _{v,f,s}	=	Unit energy consumption of fuel <i>f</i> at process step <i>s</i> for vintage <i>v</i> ;
$ENPINTLAG_{v,f,s}$	=	Lagged unit energy consumption of fuel f at process step s for vintage v ; and
$TPCRate_v$	=	Energy intensity decline rate after accounting for the impact of increased energy prices.

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

(81)

The TPCRate_v are calculated using the following relationships if the TPCPrat is above a threshold. Otherwise, the default values for the intensity decline rate is used, $BCSC_{v,fuel,step}$. For the non-manufacturing industries, the default values, i.e., when TPCPrat is below the threshold, for $BCSC_{v,fuel,step}$ are zero.

Above the TPCPrat threshold, the following relationships hold:

$$X = TPCPrat^{TPCBeta}$$

$$TPCPriceFactor = 4 * \frac{X}{(1 + X)}$$

$$TPCRate_{v} = TPCPriceFactor * BCSC_{v,fuel,step}$$
(83)

where:	TPCPrat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;
	TPCBeta	=	Parameter of logistic function, currently specified as 5;
	TPCPriceFactor	=	TPC price factor, ranging from 0 (no price effect) to 4;
	$TPCRate_{v}$	=	Intensity decline rate after accounting for due to energy price increases for vintage v ; and
	BCSC _{v,fuel,step}	=	Default intensity rate for old and new vintage for each fuel f and step s .

Subroutine CALCSC3

CALCSC3 computes UECs for the energy-intensive industries. The current UEC for the old and new vintage is calculated as the product of the previous year's UEC and a factor that reflects the assumed rate of intensity decline over time and the impact of energy price changes on the assumed decline rate.

$$ENPINT_{vf,s} = ENPINTLAG_{vf,s} * (1 + TPCRate_{v})$$
(84)

where:

ENPINT _{v,f,s}	=	Unit energy consumption of fuel <i>f</i> at process step <i>s</i> for vintage <i>v</i> ;
$ENPINTLAG_{v,f,s}$	=	Lagged unit energy consumption of fuel f at process step s for vintage v ; and
$TPCRate_{v}$	=	Energy intensity decline rate after accounting for the impact of increased energy prices.

The TPCRate_v are calculated using the following relationships if the TPCPrat is above a threshold. Otherwise, the default values for the intensity decline rate is used, $BCSC_{v,fuel,step}$.

Above the TPCPrat threshold, the following relationships hold:

$$X = TPCPrat^{TPCBeta}$$

$$TPCPriceFactor = 3 * \frac{X}{(1 + X)}$$
(85)

TPCRate_v = *TPCPriceFactor* * *BCSC*_{v,fuel,step}

where:	TPCPrat	=	Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;
	TPCBeta	=	Parameter of logistic function, currently specified as 5;
	TPCP riceFactor	=	TPC price factor, ranging from 0 (no price effect) to 3;
	$TPCRate_{v}$	=	Intensity decline rate after accounting for due to energy price increases for vintage <i>v</i> ; and
	$BCSC_{v,fuel,step}$	=	Default intensity rate for old and new vintage for each fuel f and step s .

After the TPC calculations are done, another set of calculations that characterize price-induced energy conservation (as opposed to energy reductions resulting from technology changes) are performed. Industrial processes involve the discharge of waste at elevated temperatures (e.g., liquids, air, solids). Some portion of the unrecovered heat would be both technically and economically recoverable if energy prices increase. The approach assumes that the design engineer's goal is to maintain a constant dollar value of the unrecovered heat. This leads to an equilibrium condition:

$$P_{2} * HeatLoss_{2} = P_{1} * HeatLoss_{1}$$

$$\Rightarrow \frac{HeatLoss_{2}}{HeatLoss_{1}} = \frac{P_{1}}{P_{2}}$$
(86)

where:	P_1 and P_2	=	Energy price in period 1 and period 2, and
	HeatLoss ₁ and HeatLoss ₂	=	Unrecovered heat in period 1 and period 2.

The above relationship can be put into the TPC-UEC framework by determining the practical minimum energy to carry out reactions as a fraction of the total energy actually used, FUnew.

$$UEC_1 = (FUnew * UEC_1) + (FUloss_1 * UEC_1)$$
(87)

Note that the term (FUnew * UEC₁) is a constant and that the remaining product term represents the unrecovered heat in the first period (with price = P_1). Multiplying the second product term by product throughput yields HeatLoss₁.

$$UEC_{1} = CONSTANT + \frac{HeatLoss_{1}}{Throughput}$$
(88)

A similar equation holds for period 2 with price = P_2 . Manipulation of the above three equations yields the following expression for the UEC₂ that results from the price-induced energy conservation.

$$UEC_{2} = (FUnew * UEC_{1}) + (FUloss_{1} * UEC_{1}) * \frac{P_{1}}{P_{2}}$$
(89)

While unrecovered heat, and the UEC, is inversely related to price in the two periods, it is unlikely that all facilities will adopt uniform policies regarding heat recovery. Consequently, a market penetration factor is assumed for old an new vintage. (Currently, these are assumed to be 0.2 for old vintage and 0.4 for new vintage.) This result can be thought of as representing per unit energy saving (UES) and is easier to calculate in the model.

$$UES_{2,v} = (FUnew * UEC_{1,v}) + (FUloss_1 * UEC_{1,v}) * \frac{P_1}{P_2} * MarkPen_v$$
(90)

where:

 $UES_{2,v}$ = Unit energy savings in period 2 for vintage v, and $MarkPen_v$ = Market penetration of price-induced energy conservation for vintage v.

The final calculation then is to adjust by the base UEC by the UES for each vintage.

$$ENPINT_{v,f,s} = ENPINT_{v,f,s} - UES_v$$
(91)

The UECs for middle vintage are calculated as the ratio of cumulative UEC to cumulative production for all process steps and industries, i.e., the weighted average UEC.

$$ENPINT_{mid,f,s} = \frac{SUMPINT_{f,s}}{CUMPROD_{new,s}}$$
(92)

where:

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

ENPINT _{mid,f,s}	=	Unit energy consumption of fuel f at process step s for middle vintage,
$SUMPINT_{f,s}$	=	Cumulative unit energy consumption of fuel f at process step s , and
CUMPROD _{new,s}	=	Cumulative production at process step s for new vintage.

Subroutine CALBSC

The boiler fuel shares are calculated using a logit formulation. (Note that waste and byproduct fuels are excluded from the logit because they are assumed to be consumed first.) The equation is calibrated to 1991 so that the actual boiler fuel shares are produced for the relative prices that prevailed in 1991. The equation for each manufacturing industry is as follows:

ShareFuel_i =
$$\frac{(P_i^{\alpha_i}\beta_i)}{\sum_{i=1}^{3} P_i^{\alpha_i}(\beta_i)}$$
(93)

where the fuels are coal, petroleum, and natural gas. Base year boiler shares for distillate, residual oil, and liquid petroleum gas are calculated explicitly in order to obtain exact estimates of these fuel shares from the aggregate petroleum fuel share calculation. The P_i are the fuel prices; α_i are sensitivity parameters, the default value is -0.25; and the β_i are calibrated to reproduce the 1994 fuel shares using the relative prices that prevailed in 1994. The byproduct fuels are consumed before the quantity of purchased fuels is estimated. The boiler fuel shares are assumed to be those estimated using the 1994 MECS and exclude waste and byproducts.

The α_i sensitivity parameters are posited to be a positive function of energy prices. For years after 1999, the ratio of the current year's average industrial energy price to the average price in 1999 is computed, SwitchPrat.

Above the SwitchPrat threshold, the following relationships hold:

$$X = SwitchPrat^{SwitchBeta}$$

$$SwitchPriceFactor = 4 * \frac{X}{(1 + X)}$$

$$\alpha_{iPrice} = SwitchPriceFactor * \alpha_{i}$$
(94)

where:

SwitchPrat

Ratio of current year average industrial energy price to 1999 price, equal to 1 for years prior to 2000;

Energy Information Administration NEMS Industrial Demand Model Documentation Report 1999

=
SwitchBeta	=	Parameter of logistic function, currently specified as 4;
SwitchPriceFactor	=	Fuel switching price factor, ranging from 0 (no price effect) to 4;
α_{iPrice}	=	Fuel switching sensitivity parameters after accounting for energy price increases;
α _i	=	Default fuel switching sensitivity parameters.

Appendix A. Bibliography

Data Sources

Decision Analysis Corporation of Virginia, *Energy Consumption in U.S. Agriculture*, (prepared for EIA) 1989.

Decision Analysis Corporation of Virginia and Arthur D. Little, *Industrial Model: Baseline Database Final Report*, (prepared for EIA) 1993.

Decision Analysis Corporation of Virginia and Arthur D. Little, *Industrial Model: Selected Process Flows Revised Final Report*, (prepared for EIA) 1993.

Decision Analysis Corporation and Arthur D. Little Inc., *Industrial Model: Update on Energy Use and Industrial Characteristics*, (prepared for EIA) 1998.

Decision Analysis Corporation and Arthur D. Little Inc., *NEMS Industrial Model: Update on Selected Process Flows and Energy Use*, (prepared for EIA) 1994.

Energy Information Administration. Annual Energy Outlook 1999. DOE/EIA-0383(99), December 1998.

Energy Information Administration. *Manufacturing Energy Consumption Survey: Consumption of Energy 1991*, DOE/EIA-0512(91), December 1994.

Energy Information Administration. *Manufacturing Energy Consumption Survey: Consumption of Energy 1994*, DOE/EIA-0512(94), December 1997.

Energy Information Administration. *State Energy Data Report, Consumption Estimates 1960-1995*, DOE/EIA-0214(95), December 1997.

U.S. Congress, Office of Technology Assessment. *Industrial Energy Efficiency*. OTA-E-560, August 1993.

U. S. Department of Commerce, U.S. Industrial Outlook, various years.

U. S. Department of Commerce, Bureau of the Census, *Annual Survey of Manufactures, Fuels and Electric Energy Consumed*, Various Years.

U. S. Department of Commerce, Bureau of the Census, Survey of Plant Capacity, unpublished data.

U.S. Department of Commerce, Bureau of Economic Analysis, *Business Statistics 1963-1991*, Washington, DC.

U. S. Department of Commerce, Office of Business Analysis, *National Energy Accounts*, PB89-187918, February 1989.

U.S. Department of the Interior, Bureau of Mines, 1990 Minerals Yearbook, Volume II.

Background Material

American Gas Association, *Industrial Sector Energy Analysis: Chemical and Allied Products (SIC 28)*, Arlington, Virginia, July 1988.

American Gas Association, Industrial Sector Energy Analysis: Food & Kindred Products (SIC 20), Arlington, Virginia 1988.

American Gas Association, Industrial Sector Energy Analysis: The Paper Industry, Arlington, Virginia 1988.

American Gas Association, Industrial Sector Energy Analysis: The Steel Industry, Arlington, Virginia 1988.

American Gas Association, Industrial Sector Energy Analysis: The Stone, Clay and Glass Industries, Arlington, Virginia 1988.

Bohi, Douglas R., Analyzing Demand Behavior: A Study of Energy, Resources for the Future, 1981.

Bohi, Douglas R. and Mary Beth Zimmerman, An Update on Econometric Studies of Energy Demand Behavior, Annual Review of Energy, 1984.

Christensen, L. D., D. W. Jorgensen and L. J. Lau. *Conjugate Duality and the Transcendental Production Function*, in *Econometrica*, July 1971, pp. 255-6.

Considine, Timothy J. "Separability, functional form and regulatory policy in models of interfuel substitution," *Energy Economics*, April 1989, p. 82-94.

Dahl, Carol, A Survey of Energy Demand Elasticities in Support of the Development of the NEMS, (prepared for EIA) October 1993.

Karlson, Stephen H. and Gale Boyd. *The Impact of Energy Prices on Technology Choice in the United States Steel Industry*. The Energy Journal, Vol. 14, No. 2, 1992.

Rose, Kenneth and John F. McDonald. *Economics of Electricity Self-Generation by Industrial Firms*. The Energy Journal, Vol. 12, No. 2, 1991.

Appendix B. Model Abstract

Model Name:

Industrial Demand Model

Model Acronym:

None

Description:

The Industrial Demand Model is based upon economic and engineering relationships that model industrial sector energy consumption at the nine Census division level of detail. The seven most energy intensive industries are modeled at the detailed process step level and eight other industries are modeled at a less detailed level. The industrial model incorporates three components: buildings, process and assembly, and boiler, steam, and cogeneration.

Purpose of the Model:

As a component of the National Energy Modeling System integrated forecasting tool, the industrial model generates mid-term forecasts of industrial sector energy consumption. The industrial model facilitates policy analysis of energy markets, technological development, environmental issues, and regulatory development as they impact industrial sector energy consumption.

Most Recent Model Update:

August 1998.

Part of another Model?

National Energy Modeling System (NEMS)

Model Interfaces:

Receives inputs from the Electricity Market Module, Oil and Gas Market Module, Renewable Fuels Module, Macroeconomic Activity Module, and Petroleum Market Module.

Official Model Representatives:

T. Crawford Honeycutt (202)586-1420 choneycu@eia.doe.gov Office of Integrated Analysis and Forecasting Energy Demand Analysis Branch 1000 Independence Avenue, SW EI-84, Room 2F-094 Washington, DC 20585

Documentation:

Model Documentation Report: Industrial Sector Model of the National Energy Modeling System, January 1999.

Archive Media and Installation Manual(s):

The model has been archived on IBM RISC 6000 magnetic tape storage as part of the National Energy Modeling System production runs used to generate the *Annual Energy Outlook 1999*.

Energy System Described:

Domestic industrial sector energy consumption.

Coverage:

- Geographic: Nine Census divisions: New England, Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South Central, Mountain, and Pacific.
- Time Unit/Frequency: Annual, 1990 through 2020.

Modeling Features:

- Structure: 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy intensive and non-energy-intensive industries.
- Each industry is modeled as three separate but interrelated components consisting of the process/assembly component (PA), the buildings component (BLD), and the boiler/steam/cogeneration component (BSC).
- Modeling Technique: The energy intensive industries are modeled through the use of a detailed process flow accounting procedure. The remaining industries use the same general procedure but does not include a detailed process flow.

Non-DOE Input Sources:

National Energy Accounts Historical Dollar Value of Output in the Industrial Sector

DOE Input Sources:

Form EI-867: Survey of Independent Power Producers

- Electricity generation, total and by prime mover
- Electricity generation for own use and sales
- Capacity utilization

Manufacturing Energy Consumption Survey 1994, December 1997 State Energy Data System 1995, December 1997

Computing Environment:

- Hardware Used: IBM RISC 6000
- Operating System: AIX 4.2.1
- Language/Software Used: XL FORTRAN 90 Compiler/6000, Ver 4.0
- Estimated Run Time: 1.1 minutes for a 1990-2020 run in non-iterating NEMS mode on an IBM RISC 6000.

Energy Information Administration

• Special Features: None.

Table C1. Buildi	ing Component UEC (Tr	illion Btu/Tho	usand Employees)		
			Building Use an	d Energy Source	
		Lighting		HVAC	
SIC	Industry	Electric UEC	Electric UEC	Natural Gas UEC	Steam UEC
20	Food & Kindred Products	0.007	0.009	0.014	0.045
26	Paper & Allied Products	0.013	0.016	0.023	0.008
281, 282, 286, 287	Bulk Chemicals	0.016	0.030	0.680	0.006
3211, 3221, 3229	Glass and Glass Products	0.013	0.019	0.044	0.004
3241	Hydraulic Cement	0.029	0.029	0.029	0.057
331	Blast Furnaces & Basic Steel	0.012	0.018	0.067	0.011
3334, 3353	Primary Aluminum	0.019	0.027	0.006	0.005
34, 35, 36, 37, 38	Metal Based Durables	0.008	0.013	0.015	0.002
All Remaining Manufacturing SIC's	Other Non-Intensive MFG Fabricated Metals	0.007	0.010	0.013	0.004

Appendix C. Data Inputs

SIC = Standard Industrial Classification.

UEC = Unit Energy Consumption.

HVAC = Heating, Ventilation, Air Conditioning.

Source: Energy Information Administration, Office of Integrated Analysis and Forecasting (Washington, DC, January 1997).

Table C2. Food and Kindred Products Industry UECs, 1994 (Thousand Btu/1987\$ Output)												
		Electric	Nat Gas	Resid	Distillate	LPG	Coal	Steam				
End Use	Output (Billion\$)	MBtu/\$ Output										
Direct Heat	379.0	0	0.506	0.008	0.005	0.005	0.027	0				
Hot Water/Steam	379.0	0	0	0	0	0	0	1.406				
Refrigeration	379.0	0.135	0	0	0	0	0	0				
Other Electric	379.0	0.350	0	0	0	0	0	0				

Table C3. Pulp and Paper Industry UECs, 1994 (Energy Use/Ton of Product)										
	Flow	Electric	Nat Gas	Resid	Distillat e	LPG	Coal	Steam	Byproduct	
Process Step	MMtons	MMBtu/ ton	MMBtu/ ton	MMBtu/ ton	MMBtu/ ton	MMBtu	MMBtu	MMBtu	MMBtu	
Wood Preparation	109.1	0.270	0	0	0	0	0	0	3.566	
Pulping										
Waste	40.4	1.300	0	0	0	0	0	1.400	0	
Mech	5.9	5.400	0	0	0	0	0	0.500	0	
Semi-chem	4.1	1.500	0	0	0	0	0	5.300	0	
Kraft	54.5	1.500	1.422	0.386	0.021	0.020	0.051	11.300	16.183	
Bleaching	48.5	0.300	0	0	0	0	0	5.600	0	
Papermaking	98.6	1.500	0.299	0.081	0.005	0.004	0.011	6.000	0	

Table C4. Bulk Chemical Industry UECs, 1994 (Thousand Btu/1987\$ Output)												
		Electric	Nat Gas	Resid	Distillate	LPG	Coal	Steam	Pet Feed			
End-Use	Output (Billion\$)	MBtu/\$ Output										
Direct Heat	145.6	0	4.665	0.060	0.020	0.013	0.033	0	0			
Steam/Hot Water	145.6	0	0	0	0	0	0	8.654	0			
Electrolytic	145.6	0.830	0	0	0	0	0	0	0			
Other Electric	145.6	3.975	0	0	0	0	0	0	0			
Feedstocks	145.6	0	4.632	0	0	10.516	0	0	8.497			

Table C5. Glass and Glass Products Industry UECs, 1994 (Energy Use/Ton of Product)												
	Flow	Electric	Nat Gas	Resid	Distillate	LPG						
Process Step	MMtons	MMBtu/ton	MMBtu/ton	MMBtu/ton	MMBtu/ton	MMBtu						
Virgin												
Batch Prep	13.5	0.19	0	0	0	C						
Melting/Refining	13.5	0.46	5.177	0.137	0.018	0.018						
Forming	13.5	0.61	1.597	0.042	0.006	0.005						
Post-Forming	13.5	0.23	1.877	0.050	0.007	0.006						

Table C6. Hydraulic Cement Industry UECs, 1994 (Energy Use/Ton of Product)											
	Flow	Electric	Nat Gas	Resid	Distillate	Other Petrol.	LPG	Coal	Steam		
Process Step	MMtons	MMBtu/ ton	MMBtu/ ton	MMBtu/ ton	MMBtu/t on	MMBtu /ton	MMBtu/ ton	MMBtu/ ton	MMBtu/ ton		
Dry Process	57.8	0.23	0.310	0.014	0.032	0.774	0.005	2.755	0		
Wet Process	17.7	0.21	0.421	0.019	0.043	1.051	0.007	3.739	0.09		
Finish Grinding	84.8	0.22	0	0	0	0	0	0	0		

Table C7. Blast Fu Product)	rnace and	Basic St	eel Prod	ucts Ind	ustry UEC	s, 1994 (E	nergy Use	e/Ton of
	Flow	Electric	Nat Gas	Resid	Coal	Coke	Steam	Byproduct
Process Step	MMtons	MMBtu/ ton						
Coke Ovens	22.7	0.1	0.03	0	NA	NA	0.8	3.14
Iron & Steelmaking								
BOF	61	0.2	1.41	0.15	0.36	9.85	1.28	1.32
EAF	39.6	1.59	0.574	0.001	0	0	0	0
Casting								
Ingot	10.5	0.3	1.66	0	0	0	0.03	0
Continuous	90	0.09	0.3	0	0	0	0.01	0.09
Hot Rolling	96.7	0.35	1.5	0.02	0	0	0.02	0.3
Cold Rolling	36.7	0.79	1.5	0	0	0	1.61	0

Table C8. Aluminum Industry UECs, 1994 (Energy Use/Ton of Product)											
Flow Electric Nat Gas Distillate Steam											
Process Step	MMtons	MMBtu/ton	MMBtu/ton	MMBtu/ton	MMBtu/ton						
Primary	3.6	49	4.091	0.008	0.2						
Semi-Fab	5.1	2.9	10.179	0.020	0.2						

Table C9. Non-Manufacturing Sector PA Component UEC, 1994 (Thousand Btu/1987\$ Output)

		Electric	Nat Gas	Resid	Distillate	LPG	Coal	Steam	Other
Industry	Output (Billion \$)	MBtu/\$ Output							
Agri-Crops	97.6	0.959	0.318	0	4.004	0.553	0.002	0.139	0.115
Agri-Other	139.7	0.254	0.095	0	1.059	0.146	0	0.033	0.032
Coal mining	28.6	1.566	0.030	0.288	2.013	0	0.296	0	0
Oil and Gas	79.9	1.396	3.361	0.073	0.526	0	0	0	0.099
Other Mining	24.3	4.638	0.006	0.393	2.629	0	2.219	0	0
Construction	389.3	0.284	0.438	0.288	0.439	0.077	0	0	3.013

Table C10. Non-Energy-Intensive Manufacturing Sector PA Component UEC, 1994 (Thousand Btu/1987\$ Output)											
		Electric	Nat Gas	Resid	Distillate	LPG	Coal	Steam	Other		
Industry	Output (Billion\$)	MBtu/\$ Output									
Metal-Based Durables	1159.3	0.281	0.254	0.001	0.005	0.003	0.002	0.217	0.03		
Other Manufacturing	796.6	0.719	0.778	0.038	0.013	0.104	0.019	0.928	0.341		

Table C11. Regional	Table C11. Regional Technology Shares												
		Census Region											
Industry	Technology	NE	MW	SO	WE	US							
Paper and Allied Products													
	Kraft (incl. Sulfite)	6.0%	5.0%	72.0%	17.0%	100%							
	Semi-Chemical	11.0%	30.0%	48.0%	11.0%	100%							
	Mechanical	19.0%	14.0%	47.0%	20.0%	100%							
	Waste Fiber	18.0%	31.0%	34.0%	17.0%	100%							
Hydraulic Cement													
	Wet Process	17.3%	26.6%	43.0%	13.1%	100%							
	Dry Process	9.2%	28.9%	35.0%	26.8%	100%							
Blast Furnace and Basic Steel Products													
	Electric Arc Furnace	23.6%	36.1%	31.6%	8.7%	100%							
	Basic Oxygen Furnace	10.5%	69.5%	20.0%	0.0%	100%							
	Open Hearth	34.5%	0.0%	36.2%	29.3%	100%							
	Coke Oven	23.9%	50.4%	23.5%	2.1%	100%							
Primary Aluminum													
	Smelters	7.0%	15.7%	43.3%	34.1%	100%							

Source: Decision Analysis Corporation and Arthur D. Little Inc., *NEMS Industrial Model: Update on Selected Process Flows and Energy Use.* Unpublished Report Prepared for Energy Information Administration, (Vienna, VA, 1994).

Table C12. Coefficients for Technology Possibility Curves								
	Old Facilities		New Facilities					
Industry/ Process Unit	REI 2020	TPC ^a	REI 1994	REI 2020	TPCª	Retirement Rate		
Food								
Direct Fuel	0.897	-0.004	0.90	0.80	-0.004	1.7		
Hot Water/Steam	0.922	-0.003	0.90	0.80	-0.004	1.7		

	Old Facilities		New Facilities			
Industry/ Process Unit	REI 2020	TPCª	REI 1994	REI 2020	TPCª	Retirement Rate
Refrigeration	0.947	-0.002	0.90	0.80	-0.004	1.7
Other Electric	0.947	-0.002	0.90	0.80	-0.004	1.7
Pulp & Paper						
Wood Preparation	0.950	-0.003	0.840	0.831	-0.0004	2.3
Waste Pulping	0.974	-0.001	0.930	0.885	-0.002	2.3
Mechanical Pulping	0.944	-0.003	0.840	0.822	-0.0009	2.3
Semi-Chemical	0.894	-0.006	0.730	0.697	-0.002	2.3
Kraft, Sulfite	0.903	-0.005	0.730	0.600	-0.008	2.3
Bleaching	0.910	-0.005	0.750	0.683	-0.004	2.3
Paper Making	0.910	-0.005	0.750	0.560	-0.012	2.3
Bulk Chemicals						
Direct Fuel	0.897	-0.004	0.90	0.80	-0.004	1.9
Hot Water/Steam	0.922	-0.003	0.90	0.80	-0.004	1.9
Electrolytic	0.980	-0.0008	0.90	0.80	-0.004	1.9
Other Electric	0.947	-0.002	0.90	0.80	-0.004	1.9
Glass ^b						
Batch Preparation	0.957	-0.002	0.882	0.882	0	1.3
Melting/Refining	0.892	-0.006	0.850	0.448	-0.027	1.3
Forming	0.952	-0.003	0.818	0.744	-0.004	1.3
Post Forming	0.921	-0.004	0.780	0.760	-0.001	1.3
Cement						
Dry Process	0.982	-0.0009	0.790	0.657	-0.008	1.2
Wet Process ^c	0.954	-0.002	NA	NA	NA	1.2
Finish Grinding	0.943	-0.003	0.813	0.641	-0.010	1.2

Table C12. Coefficients for Technology Possibility Curves

	Old Fa	acilities	١	lew Facilitie	eS	
Industry/ Process Unit	REI 2020	TPC ^a	REI 1994	REI 2020	TPC ^a	Retirement Rate
Steel						
Coke Oven ^c	1.00	0	0.840	0.817	-0.001	1.5
BF/Basic Oxygen Furnace	1.00	0	1.00	0.982	-0.0008	1.0
Electric Arc Furnace	1.00	0	0.960	0.960	0	1.5
Ingot Casting ^c	1.00	0	NA	NA	NA	2.9
Continuous Casting	1.00	0	1.00	1.00	0	2.9
Hot Rolling	0.698	-0.019	0.500	0.401	-0.009	2.9
Cold Rolling	0.877	-0.007	0.840	0.488	-0.023	2.9
Aluminum						
Primary Aluminum	0.936	-0.003	0.910	0.812	-0.005	2.1
Semi-Fabrication	0.855	-0.008	0.610	0.506	-0.008	2.1

Table C12. Coefficients for Technology Possibility Curves

^aTPC is the annual rate of change between 1994 and 2020.

^bREIs apply to both virgin and recycled materials.

^cNo new plants are likely to be built that use these technologies.

Sources: Decision Analysis Corporation and Arthur D. Little, Inc., *NEMS Industrial Model: Update on Energy Use and Industrial Characteristics.* Unpublished report prepared for Energy Information Administration, July 1998 and Office of Integrated Analysis and Forecasting.

Table C13. Advanced and State-of-the-Art Technologies						
Sector	Major Process Step	Technology	Improveme nt in Subprocess Step	Alt Process Step		
Pulp/Paper (S-O-A)	Wood Preparation	Whole Tree Debarking/Chipping*	1			
		Chip Screening Equipment*	1			
Pulp/Paper (S-O-A)	Chemical Pulping Technologies (Kraft, Sulfite)	Continuous Digesters	1			
		Batch Digesters	1			
		Radar Displacement Heating	1			

Table C13. Advan	ced and State-of-the	e-Art Technologies		
		Sunds Defibrator Cold Blow and Extended Delignification		1
		EKONO's White Liquor Impregnation		1
		Anthraquinone Pulping		1
		Alkaline Sulfite Anthraquinone (ASOQ) and Neutral Sulfite Anthraquinone (NSAQ) Pulping		1
		Tampella Recovery System	1	
		Advanced Black Liquor Evaporator	1	
		Process Controls System	1	
Pulp/Paper (S-O-A)	Mechanical and Semi-Mechanical Technologies	Pressurized Groundwood (PGW)		1
		PGW-Plus		1
		Thermo-Refiner Mechanical Pulping	1	
		Heat Recovery in TMP*	1	
		Cyclotherm System for Heat Recovery*	1	
		Chemimechanical Pulping	1	
		Chemi-Thermomechanical Pulping (CTMP)	1	
		Process Control System	1	
Pulp/Paper (S-O-A)	Semi-Chemical Technologies	See Chemical and Mechanical S-O-A technologies above		
Pulp/Paper (S-O-A)	Waste Paper Pulping Technologies	Advanced Pulping	1	
		Advanced Deinking	1	
Pulp/Paper (S-O-A)	Bleaching Oxygen Predelignification Technologies	Oxygen Bleaching		1
		Displacement Bleaching	1	
		Bio-bleaching		1
Pulp/Paper (S-O-A)	Papermaking Technologies	Extended Nip Press*	1	
		Hot Pressing	1	
		IR Moisture Profiling*	1	
		Reduced Air Requirement*	1	

Table C13. Adva	nced and State-of-th	ne-Art Technologies		
		Waste Heat Recovery*	1	
		Process Control System*	1	
Pulp/Paper (Adv Tech)	Wood Preparation	Total savings over average S-O-A technologies are foreseen to be modest. Most of the energy savings that can be achieved in the future are in the use of computer control, more efficient electric		
		motors/drives, etc. We assumed REIs to decrease by 0.5% per year.		
Pulp/Paper (Adv Tech)	Chemical (Kraft/Sulfite) Technologies			
		Non-Sulfur Chemimechanical (NSCM) Pulping		1
		Advanced Alcohol Pulping		1
		Biological Pulping		1
		Ontario Paper Co. (OPCO) Process		1
		Black Liquor Concentration*	1	
		Black Liquor Heat Recovery *	1	
		Black Liquor Gasification*	1	
Pulp/Paper (Adv Tech)	Mechanical Technologies			
		Advanced Chemical/Thermal Treatment	1	
		Non-Sulfur Chemimechanical (NSCM)		1
		OPCO Process		1
Pulp/Paper (Adv Tech)	Semi-Chemical Technologies	Technology Introduction:		
		OPCO Process		1
		NSCM Process	1	
		Waste Pulping - Improvements in steam use, computer control, etc., assumed to decrease REI by 0.2% per year.	1	
		<u> </u>		
Pulp/Paper (Adv Tech)	Bleaching Technologies	Technology Introduction:		

Table C13. Adva	nced and State-of-the	e-Art Technologies		
		Ozone Bleaching		1
		NO2/O2 Bleaching		1
		Biobleaching		1
Pulp/Paper (Adv Tech)	Papermaking Technologies	Technology Introduction: 2005-2015		
	reennorogies	High-Consistency Forming*	1	
		Advances in Wet Pressing*	1	
		Press Drving*	1	
		Impulse Drving*	1	
		Air Radio-Frequency-Assisted (ARFA) Drying*	1	
Glass (S-O-A)	Batch Preparation Technologies	Computerized Weighing, Mixing, and Charging	1	
Glass (S-O-A)	Melting/Refining Technologies			
		Chemical Boosting	1	
		Oxygen Enriched Combustion Air*	1	
		Automatic Tap Charging Transformers for Electric Melters	1	
		Sealed-in Burner Systems*	1	
		Dual-Depth Melter	1	
		Chimney Block Regenerator Refractories	1	
		Reduction of Regenerator Air Leakage*	1	
		Recuperative Burners*	1	
Glass (S-O-A)	Forming/Post-Formi ng Technologies	Emhart Type 540 Forehearth	1	
		EH-F 400 Series Forehearth	1	
		Forehearth High-Pressure Gas Firing System	1	
		Lightweighting	1	
Glass (Advanced)	Batch Preparation Technologies	No advanced technologies identified		
Glass (Advanced)	Melting/Refining Technologies	Technology Introduction: 1995-2010		

Table C13. Adva	nced and State-of-the	e-Art Technologies		
		Direct Coal Firing	1	
		Submerged Burner Combustion	1	
		Coal-Fired Hot Gas Generation*	1	
		Advanced Glass Melter		1
		Batch Liquefaction	1	
		Molybdenum-Lined Electric Melter		1
		Ultrasonic Bath Agitation/Refining*	1	
		Excess Heat Extraction from Regenerators	1	
		Thermochemical Recuperator	1	
		Sol-Gel Process		1
		Furnace Insulation Materials*	1	
		Pressure Swing Adsorption Oxygen Generator*	1	
		Hollow Fiber Membrane Air Separation Process*	1	
	Forming/Post-Formi			
Glass (Advanced)	ng Technologies	Technology Introduction: 1995-2010		
		Mold Design*	1	
		Mold Cooling Systems	1	
		Automatic Gob Control	1	
		Improved Glass Strengthening Techniques*	1	
		Improved Protective Coatings*	1	
Cement (S-O-A)	Dry Process Technologies	Roller Mills*	1	
		High-Efficiency Classifiers*	1	
		Grinding Media and Mill Linings*	1	
		Waste Heat Drying*	1	
		Kiln Feed Slurry Dewatering*	1	
		Dry-Preheater/Precalciner Kilns	1	
		Kiln Radiation and Infiltration Losses*	1	
		Kiln Internal Efficiency Enhancement*	1	
		Waste Fuels*	1	
		Controlled Particle Size Distribution Cement	1	
		High-Pressure Roller Press	1	

Table C13. Advan	ced and State-of-	the-Art Technologies		
		Finish Mill Internals, Configuration, and Operation	1	
		Grinding Aids*	1	
Cement (S-O-A)	Imports-Finish Grinding Technologies	High-Efficiency Classifiers*	1	
Centent (5-0-A)	Teennologies	Controlled Particle Size Distribution	1	
		Cement*	1	
		High Pressure Roller Press		1
		Roller Mills*		1
		Finish Mill Internals, Configuration, and Operation	1	
		Grinding Aids*	1	
Cement (Advanced)	Dry Process Technologies	Technology Introduction: 1997-2013		
		Autogenous Mills	1	
		Differential Grinding	1	
		Sensors and Controls*	1	
		Fluidized-Bed Drying	1	
		Stationary Clinkering Systems	1	
		All-Electric Kilns		1
		Sensors for On-Line Analysis*	1	
		Advanced Kiln Control*	1	
		Catalyzed, Low-Temperature Calcination		1
		Alkali Specification Modification*	1	
		Cone Crushers*	1	
		Advanced (Non-Mechanical) Comminution	1	
		Modifying Fineness Specifications*	1	
		Blended Cements*	1	
		Advanced Waste Combustion	1	
Cement (Advanced)	Imports-Finish Grinding			
		Sensors and Controls*	1	
		Cone Crushers*	1	
		Advanced (Non-Mechanical) Comminution		1

Table C13. Adv	vanced and State-of	-the-Art Technologies		
		Modifying Fineness Specifications*	1	
		Blended Cements*	1	
	Cokemaking			
I&S (S-O-A)	Technologies	Dry Quenching of Coke*		1
		Carbonization Control	1	
		Programmed Heating	1	
		Wet Quenching of Coke with Energy Recovery*	1	
		Sensible Heat Recovery of Off-Gases*	1	
I&S (S-O-A)	Ironmaking Technologies	Blast Furnace		
		Coal Injection*	1	
		Water-Cooling	1	
		Movable Throat Armor*	1	
		Top Gas Pressure Recovery*	1	
		Hot Stove Waste Heat Recovery*	1	
		Insulation of Cold Blast Main*	1	
		Recovery of BF Gas Released During Charging	1	
		Slag Waste Heat Recovery*	1	
		Paul Wurth Top*	1	
		External Desulfurization - injection of calcium carbide or mag-coke as a desulfurizing reagent*	1	
		Midrex/HBI		1
I&S (S-O-A)	Steelmaking Technologies	Basic Oxygen Furnace		
		Gas Recovery in Combination with Sensible Heat Recovery*	1	
		Two working vessels concept*	1	
		Combined Top and Bottom Oxygen Blowing*	1	
		In-Process Control (Dynamic) of Temp and Carbon Content*	1	
		Electric Arc Furnace		
		DC Arc Furnaces*	1	
		Ultra-High Power (UHP)*	1	

Table C13. Adv	anced and State-of	-the-Art Technologies		
		Computerization*	1	
		Bottom Tap Vessels*	1	
		Water-Cooled Furnace Panels and Top*	1	
		Water-Cooled Electrode Sections*	1	
		Oxy-Fuel Burners*	1	
		Long Arc Foamy Slag Practice*	1	
		Material Handling Practices*	1	
		Induction Furnaces*		1
		Energy Optimizing Furnaces*		1
		Scrap-Preheating*	1	
		Ladle Drying and Preheating*	1	
		Injection Steelmaking (ladle		
		metallurgy)	1	
		Vacuum Arc Decarburization*		
		Argon Stirring	1	
		Specialty Steelmaking Processes		
		Electroslag Remelting (ESR)*		1
		Argon-Oxygen Decarburization (AOD)*		1
		Vacuum Induction Melting (VIM)*		1
		Electron Beam Melting (EBM)*		1
		Vacuum Arc Remelting (VAR)*		1
	Steelcasting			
I&S (S-O-A)	Technologies	Modern Casters*		1
		Thin Slab Casting		1
		Slab Heat Recovery*	1	
		Soaking Pit Utilization and Pit Vacant Time*	1	
	Steelforming			
	(Rolling)	Hot Charging	1	
100 (S-U-A)	reciniologies		1	

Table C13. Adva	anced and State-of-th	e-Art Technologies		
		Preheating Furnaces		
		Improved Insulation*	1	
		Waste Heat Recovery and Air Preheating*	1	
		Waste Heat Recovery and Fuel Gas Preheating*	1	
		Increased Length of the Preheating Furnace	1	
		Waste Heat Boilers	1	
		Evaporative Cooling of Furnace Skids	1	
		Direct Rolling		
		Leveling Furnace*	1	
		The Coil Box*	1	
		Covered Delay Table*	1	
		Pickling - Insulated Floats*	1	
		Annealing		
		Air Preheating*	1	
		Fuel Gas Preheating	1	
		Combustion Control*	1	
		Continuous Annealing		1
		Continuous Cold Rolling		1
I&S (Advanced	Ironmaking			
Technologies)	Technologies	PLASMARED		1
		COREX		1
		Direct Iron Ore Smelting (AISI)		1
		HiSmelt		1
		Fastmet		1
		Iron Carbide Route		1
		Iron Ore Reduction/Steelmaking (AISI)		1
Technologies)	Technologies	PLASMAMELT		1
		INRED		1

Table C13. Advan	ced and State-of-the	e-Art Technologies		
		ELRED		1
		Foster Wheeler-Tetronics Expanded		
		Processive Plasma Process		1
I&S (Advanced	Steelmaking			
Technologies)	Technologies	Scrap Preheating*	1	
		Energy Optimizing Furnace (EOF)		1
		Modern Electric Arc Furnace with	1	
		Modern Pasia Ovugan Eurnaga	1	
		Injection of Carbonaccous Fuels	1	
		Ingreased Screp Lice		
		Ladle Drying and Brahasting*	1	
		Ladie Drying and Freneating	1	
			1	
IPC (Adversed	Staalaastin a			
Technologies)	Technologies	Horizontal Continuous Caster*		1
		Near Net Shapecasting*		1
		Direct Strip Casting*		1
		Ultra Thin Strip Casting*		1
		Spray Casting		1
				_
I&S (Advanced				
Technologies)	Hot/Cold Rolling	Direct Rolling	1	
		Continuous Cold Rolling and Finishing	1	
		In-Line Melting/Rolling	1	
		Advanced Coating	1	
	Alumina Refining			
Aluminum (S-O-A)	Technologies	Advanced Digesters	1	
		Heat Recovery*	1	
		ļ		
	Primary Aluminum			
Aluminum (S-O-A)	Technologies	Advanced Cells	1	
		New Cathodes*	1	
1				

Table C13. Advanced and State-of-the-Art Technologies				
Aluminum (S-O-A)	Semi-Fabrication Technologies	Continuous-Strip Casting		1
		Electromagnetic Casting	1	
Aluminum (S-O-A)	Secondary Aluminum Technologies	Induction Melting		1
		Advanced Melting		1
Aluminum (Advanced)	Alumina Refining Technologies	Retrofit of S-O-A Technologies	1	
Aluminum	Primary Aluminum			
(Advanced)	Technologies	Technology Introduction:		
		Carbothermic Reduction		1
		Inert Anodes*	1	
		Bipolar Cell Technology		1
		Wettable Cathodes*	1	
Aluminum (Advanced)	Semi-Fabrication Technologies	Technology Introduction		
		New Melting Technology*		
		Preheaters*	1	
	Secondary			
Aluminum (Advanced)	Aluminum Technologies	Technology Introduction		
		New Melting Technology (submerged radiant burners)	1	
		Preheaters*	1	
		Heat Recovery Technology	1	
TOTAL			164	61
Note: Many advance that these new techno for high quality steels	d technologies are more logies will not fully rep s. Other advantages inc	e energy intensive than their predecessors. place the old ones, but rather provide enha	. Thus, it is ex ncement, par actor volume	xpected ticularly and

residence time, lower capital investment, and higher scrap use. A discussion of relative energy intensities for new iron/steelmaking technologies is found in Appendix M of the 1993 report to DAC/EIA.

Source: Arthur D. Little, Inc. *Aggressive Technology Strategy for the NEMS Model*. Unpublished Report Prepared for the Energy Information Administration (September 1998).

Industry	Vintage	FUnew Steam	FUnew Fuel
Food	Old	0.48	0.57
Food	New	0.53	0.63
Pulp and Paper	Old	0.55	0.59
Pulp and Paper	New	0.69	0.74
Bulk Chemicals	Old	0.72	0.76
Bulk Chemicals	New	0.80	0.84
Glass	Old	0.79	0.65
Glass	New	0.94	0.77
Cement	Old	0.66	0.54
Cement	New	0.94	0.77
Steel	Old	0.55	0.60
Steel	New	0.69	0.75
Aluminum	Old	0.60	0.65
Aluminum	New	0.69	0.75

Table C14. Unrecovered Heat Assumptions

Source: Decision Analysis Corporation and Arthur D. Little Inc., *NEMS Industrial Model: Technology DataBase*. Unpublished Report Prepared for Energy Information Administration, (Vienna, VA, 1997).

Table C15. Logit Function Parameters for Estimating Boiler Fuel Shares				
Industry	Alpha	Natural Gas	Steam Coal	Oil
Food Paper and Allied	-0.25	0.60	0.26	0.13
Products	-0.25	0.47	0.34	0.20
Bulk Chemicals	-0.25	0.69	0.18	0.13
Glass and Glass				
Products	-0.25	0.97	0.0	0.03
Cement	-0.25	0.0	0.0	1.0
Steel	-0.25	0.57	0.22	0.22
Aluminum	-0.25	0.79	0.0	0.21
Based Durables	-0.25	0.58	0.27	0.16
Other Non-Int	-0.25	0.63	0.23	0.14
MFG				

Source: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Table C16. Recycling			
Sector	Estimate for 1991	Projected for 2015	
Paper and Allied Products (waste pulping)	24%	37%	
Blast Furnace and Basic Steel Products (scrap melting in electric arc furnace)	37%	50%	

Source: Decision Analysis Corporation and Arthur D. Little Inc., *NEMS Industrial Model: Update on Selected Process Flows and Energy Use.* Unpublished Report Prepared for Energy Information Administration, (Vienna, VA, 1994).