DOE/EIA-M063/2(2003)

Documentation of the Oil and Gas Supply Module (OGSM)

Volume II-Appendices

April 2003

Energy Information Administration Oil and Gas Division Office of Integrated Analysis and Forecasting

Appendix A. Data Inventory

An inventory of OGSM variables is presented in the following tables. These variables are divided into four categories:

Variables:	Variables calculated in OGSM
Data:	Input data
Parameters:	Estimated parameters
Output:	OGSM outputs to other modules in NEMS.

The data inventory for the Offshore Supply Submodule is presented in a separate table.

All regions specified under classification are OGSM regions unless otherwise noted.

			/ariables		
	Variab	le Name			
Subroutine	Code	Text	Description	Unit	Classification
OGCST_L48	ESTWELLSL48	ESTWELLS	Estimated lower 48 onshore drilling (successful and dry)	Wells	Lower 48 onshore
OGCST_L48	ESTSUCWELL4 8	ESTSUCWELLS	Estimated lower 48 onshore successful wells drilled	Wells	Lower 48 onshore
OGCST_L48	RIGSL48	RIGSL48	Available rigs	Rigs	Lower 48 onshore
OGCST_L48	DRILLL48	DRILLCOST	Successful well drilling costs	1987\$ per well	Class(Exploratory,D evelopmental);6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)
OGCST_L48	DRYL48	DRYCOST	Dry well drilling costs	1987\$ per well	Class(Exploratory,D evelopmental);6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)
OGCST_L48	LEASL48	LEQC	Lease equipment costs	1987\$ per well	Class(Exploratory,D evelopmental);6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)
OGCST_L48	OPERL48	OPC	Operating costs	1987\$ per well	Class(Exploratory,D evelopmental);6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)
OG_DCF	DCFTOT	PROJDCF	Discounted cash flow for a representative project	1987\$ per project	Class(Exploratory,D evelopmental);6 Lower 48 onshore regions,Fuel(2 oil, 5 gas); 3 Alaska regions, Fuel (oil,gas)
OG_DCF	PVSUM(1)	PVREV	Present value of expected revenue	1987\$ per project	(Above)
OG_DCF	PVSUM(2)	PVROY	Present value of expected royalty payments	1987\$ per project	(Above)
OG_DCF	PVSUM(3)	PVPRODTAX	Present value of expected production taxes	1987\$ per project	(Above)
OG_DCF	PVSUM(4)	PVDRILLCOST	Present value of expected drilling costs	1987\$ per project	(Above)
OG_DCF	PVSUM(5)	PVEQUIP	Present value of expected lease equipment costs	1987\$ per project	(Above)
OG_DCF	PVSUM(8)	PVKAP	Present value of expected capital costs	1987\$ per project	(Above)
OG_DCF	PVSUM(6)	PVOPERCOST	Present value of expected operating costs	1987\$ per project	(Above)
OG_DCF	PVSUM(7)	PVABANDON	Present value of expected abandonment costs	1987\$ per project	(Above)
OG_DCF	PVSUM(13)	PVTAXBASE	Present value of expected tax base	1987\$ per project	(Above)
OG_DCF	XIDC	XIDC	Expensed Costs	1987\$ per	(Above)

Variables									
Subroutine	Varia	ble Name	Description	Unit	Classification				
	Code	Text	Decomption						
OG_DCF	DHC	DHC	Dry hole costs	1987\$ per project	(Above)				
OG_DCF	DEPREC	DEPREC	Depreciable costs	1987\$ per project	(Above)				
OG_DCF	PVSUM(15)	PVSIT	Expected value of state income taxes	1987\$ per project	(Above)				
OG_DCF	PVSUM(16)	PVFIT	Expected value of federal income taxes	1987\$ per project	(Above)				
OG_DCF	OG_DCF	DCF	Discounted cash flow for a representative well	1987\$ per well	(Above)				
OGEXP_CALC	C_SGDDCF	SGDCFON	Discounted cash flow for shallow gas	1987\$	Class(Exploratory,D evelopmental) ;6 Lower 48 onshore regions				
OGEXP_CALC	OXDCF	ODCFON	Discounted cash flow for oil	1987\$	Class(Exploratory,D evelopmental) ;6 Lower 48 onshore regions				
OGEXP_CALC	WELLSL48	WELLSON	Lower 48 onshore wells drilled	Wells	Class(Exploratory,D evelopmental) ;6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)				
OGEXP_CALC	SRL48	SR	Lower 48 onshore success rates	Fraction	Class(Exploratory,D evelopmental) ;6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)				
OGEXP_CALC	SUCWELLL48	SUCWELSON	Successful Lower 48 onshore wells drilled	Wells	Class(Exploratory,D evelopmental) ;6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)				
OGEXP_CALC	DRYWELLL48	DRYWELON	Dry Lower 48 onshore wells drilled	Wells	Class(Exploratory,D evelopmental) ;6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)				
OGOUT_L48	NRDL48	NRD	Proved reserves added by new field discoveries	Oil-MMB Gas-BCF	6 Lower 48 onshore regions,Fuel(2 oil,2 gas);				
OGOUT_L48	FR1L48	FR1	Finding rates for new field wildcat drilling	Oil-MMB per well Gas-BCF per well	6 Lower 48 onshore regions,Fuel(2 oil,2 gas)				
OGOUT_L48	NDIRL48	I	Inferred reserves added by new field discoveries	Oil-MMB Gas-BCF	6 Lower 48 onshore regions,Fuel(2 oil,2 gas)				
OGOUT_L48	FR2L48	FR2	Finding rates for other exploratory wells	Oil-MMB per well Gas-BCF per well	6 Lower 48 onshore regions,Fuel(2 oil,2 gas)				

			/ariables		
Subroutine	Variab	le Name	Description	Unit	Classification
Subroutine	Code	Text	Description	Unit	Classification
OGOUT_L48	EXTL48	EXT	Reserve extensions	Oil-MMB Gas-BCF	6 Lower 48 onshore regions,Fuel(2 oil, 2 gas)
OGOUT_L48	FR3L48	FR3	Finding rates for developmental drilling	Oil-MMB per well Gas-BCF per well	6 Lower 48 onshore regions,Fuel(2 oil, 2 gas)
OGOUT_L48	REVL48	REV	Reserve revisions	Oil-MMB Gas-BCF	6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)
OGOUT_L48	RESADL48	RA	Total additions to proved reserves	Oil-MMB Gas-BCF	6 Lower 48 onshore regions,Fuel(2 oil, 5 gas)
OGOUT_L48 OGFOR_AK	RESBOYL48 BOYRESCOAK BOYRESNGAK	R	End of year reserves for current year	Oil-MMB Gas-BCF	6 Lower 48 onshore regions,Fuel(2 oil, 5 gas); 3 Alaska regions,Fuel(oil,gas)
OGOUT_L48 OGOUT_OFF	PRRATL48 PRRATOFF	PR	Production to reserves ratios	Fraction	6 Lower 48 onshore regions,Fuel(2 oil, 5 gas);4 Lower 48 offshore regions, Fuel(oil,gas)
OGOUT_L48 OGOUT_OFF	EXPRDL48 EXPRDOFF	Q	Production	Oil-MMB Gas-BCF	6 Lower 48 onshore regions,Fuel(2 oil, 5 gas);4 Lower 48 offshore regions, Fuel(oil,gas)
OGCOMP_AD	OGPRDAD	ADGAS	Associated-dissolved gas production	BCF	6 Lower 48 onshore regions, 3 Lower 48 offshore regions
CALC_ECF_DATA	PRV_COGEN	PRV_COGEN	Cogeneration electric capacity from production of EOR proved reserves	MW	6 Lower 48 supply regions; cogen characteristic (array position 1=capacity)
CALC_ECF_DATA	INF_COGEN	INF_COGEN	Cogeneration electric capacity from production of EOR inferred reserves	MW	6 Lower 48 supply regions; cogen characteristic (array position 1=capacity)
CALC_ECF_DATA	PRV_COGEN	PRV_COGEN	Cogeneration electric generation from production of EOR proved reserves	GWH	6 Lower 48 supply regions; cogen characteristic (array position 4=generation)
CALC_ECF_DATA	INF_COGEN	INF_COGEN	Cogeneration electric generation from production of EOR inferred reserves	GWH	6 Lower 48 supply regions; cogen characteristic (array position 4=generation)
OGCOST_AK	DRILLAK	DRILLCOST	Drilling costs	1987\$ per well	Class(Exploratory,D evelopmental);3 Alaska regions,Fuel (oil, gas)

	Variables										
Subroutine	Varia Code	ble Name Text	Description	Unit	Classification						
OGCOST_AK	LEASAK	EQUIP	Lease equipment costs	1987\$ per well	Class(Exploratory,D evelopmental);3 Alaska regions,Fuel (oil, gas)						
OGCOST_AK	OPERAK	OPCOST	Operating costs	1987\$ per well	Class(Exploratory,D evelopmental);3 Alaska regions,Fuel (oil, gas)						
OGFOR_AK	TOTGRR	TRR	Alaska total gross revenue requirements	Million 1987\$	NA						
OGFOR_AK	TOTDEP	TOTDEP	Alaska total depreciation	Million 1987\$	NA						
OGFOR_AK	MARTOT	MARGIN	Alaska total after tax margin	Million 1987\$	NA						
OGFOR_AK	RECTOT	DEFRETREC	Alaska total recovery of differed returns	Million 1987\$	NA						
OGFOR_AK	TXALLW	TXALLW	Alaska income tax allowance	Million 1987\$	NA						
XOGOUT_IMP	SUCWELL	SUCWELL	Successful Canadian wells drilled in WCSB	Wells	Fuel(gas)						
XOGOUT_IMP	RESADCAN	RESADCAN	Canadian reserve additions in WCSB	Gas: BCF	Fuel(gas)						
XOGOUT_IMP	FRCAN	FRCAN	Canadian finding rate for WCSB	Gas:BCF per well	Fuel(gas)						
XOGOUT_IMP	RESBOYCAN	RESBOYCAN	WCSB Canadian reserves (BOY for t+1)	Gas: BCF	Fuel(gas)						
XOGOUT_IMP	URRCAN	URRCAN	Remaining Canadian resources in WCSB	Gas: BCF	Fuel(gas)						
XOGOUT_IMP	PRRATCAN	PR	Canadian production to reserves ratio in WCSB	Fraction	Fuel(gas)						

			Dat	a		
	Variable	Name				
Subroutine	Code	Text	Description	Unit	Classification	Source
OGINIT_BFW	ACCESS_YR		Year in which Federal access restrictions would be reduced in the Rocky Mountain Region in an increased ACCESS Case	Year	NA	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	ADVLTXL48	PRODTAX	Lower 48 onshore ad valorem tax rates	Fraction	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Colorado School of Mines. Oil Propert Evaluation, 1983, p. 9-7
OGFOR_OFF OGINIT_OFF	ADVLTXOFF	PRODTAX	Offshore ad valorem tax rates	Fraction	4 Lower 48 offshore subregions; Fuel (oil, gas)	Colorado School of Mines. Oil Propert Evaluation, 1983, p. 9-7
oginit_ak ogpip_ak	ANGTSMAX	-	ANGTS maximum flow	BCF/D	Alaska	National Petroleum Council
oginit_ak ogpip_ak	ANGTSPRC		Minimum economic price for ANGTS start up	1987\$/MCF	Alaska	National Petroleum Council
OGINIT_AK OGPIP_AK	ANGTSRES		ANGTS reserves	BCF	Alaska	National Petroleum Council
OGINIT_AK OGPIP_AK	ANGTSYR		Earliest start year for ANGTS flow	Year	NA	National Petroleum Council
OGEXPAND_LNG OGINIT_LNG	BUILDLAG		Buildup period for expansion of LNG facilities	Year	NA	Office of Integrated Analysis and Forecasting
OGINIT_IMP	CPRDCAN		Canadian coproduct rate	Fraction	Canada; Fuel (oil, gas)	Not Used Derived using data from the Canadian Petroleum Association
OGFOR_L48 OGINIT_L48	CPRDL48	COPRD	Lower 48 onshore coproduct rate	Fraction	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGFOR_OFF OGINIT_OFF	CPRDOFF	COPRD	Offshore coproduct rate	Fraction	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP OGINIT_RES OGOUT_IMP	CURPRRCAN	PR	Canadian 1989 P/R ratio	Fraction	Canada; Fuel (gas)	Derived using data from the Canadian Petroleum Association

			Dat	a		
Subroutine	Variable	Name	Description	Umit	Classification	Source
Subroutine	Code	Text	Description	Unit	Classification	Source
OGINIT_L48 OGINIT_RES OGOUT_L48	CURPRRL48	omega	Lower 48 initial P/R ratios	Fraction	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGINIT_OFF OGINIT_RES OGOUT_OFF	CURPRROFF	omega	Offshore initial P/R ratios	Fraction	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGOUT_L48	CURPRRTDM		Lower 48 initial P/R ratios at NGTDM level	Fraction	17 OGSM/NGTD M regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGINIT_RES OGOUT_L48	CURRESL48	R	Lower 48 onshore initial reserves	MMB BCF	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Derived from Annual Reserves Report Data
OGINIT_OFF OGINIT_RES OGOUT_OFF	CURRESOFF	R	Offshore initial reserves	MMB BCF	4 Lower 48 offshore subregions; Fuel (oil, gas)	Derived from Annual Reserves Report Data
OGINIT_L48 OGINIT_RES OGOUT_L48	CURRESTDM		Lower 48 natural gas reserves at NGTDM level	MMB BCF	17 OGSM/NGTD M regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGOUT_L48	DECFAC	DECFAC	Inferred resource simultaneou s draw down decline rate adjustment factor	Fraction	NA	Office of Integrated Analysis and Forecasting
OGINIT_IMP	DECLCAN		Canadian decline rates	Fraction	Canada; Fuel (oil, gas)	Not Used Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48 WELL	DECLL48		Lower 48 onshore decline rates	Fraction	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGFOR_OFF OGINIT_OFF WELL	DECLOFF		Offshore decline rates	Fraction	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_AK OGPRO_AK	DECLPRO		Alaska decline rates for currently producing fields	Fraction	Field	Office of Integrated Analysis and Forecasting
OGINIT_IMP	DEPLETERT		Depletion rate	Fraction	NA	Not Used Office of Integrated Analysis and Forecasting

			Dat	a		
Subroutine	Variable Code	Name Text	Description	Unit	Classification	Source
OGDEV_AK OGINIT_AK OGSUP_AK	DEV_AK		Alaska drilling schedule for developmen tal wells	Wells per year	3 Alaska regions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGDCF_AK OGFOR_L48 OGFOR_OFF OGINIT_BFW	DISC	disc	Discount rate	Fraction	National	Office of Integrated Analysis and Forecasting
OGINIT_IMP	DISRT		Discount rate	Fraction	Canada	Not Used Office of Integrated Analysis and Forecasting
OGCOST_AK OGINIT_AK	DRILLAK	DRILL	Alaska drilling cost (not including new field wildcats)	1990\$/well	Class (exploratory, developmental); 3 Alaska regions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP	DRILLCAN		Canadian initial drilling costs	1987\$	Canada; Fuel (oil, gas)	Not Used Office of Integrated Analysis and Forecasting
OGALL_OFF OGFOR_OFF OGINIT_OFF	DRILLOFF	DRILL	Offshore drilling cost	1987\$	4 Lower 48 offshore subregions	Mineral Management Service
OGCOST_AK OGINIT_AK	DRLNFWAK		Alaska drilling cost of a new field wildcat	1990\$/well	3 Alaska regions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGDCF_AK OGDEV_AK OGINIT_AK OGNEW_AK	DRYAK	DRY	Alaska dry hole cost	1990\$/hole	Class (exploratory, developmental); 3 Alaska regions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP	DRYCAN		Canadian dry hole cost	1987\$	Class (exploratory, developmental)	Not Used Office of Integrated Analysis and Forecasting
OGALL_OFF OGEXP_CALC OGFOR_OFF OGINIT_OFF	DRYOFF	DRY	Offshore dry hole cost	1987\$	Class (exploratory, developmental); 4 Lower 48 offshore subregions	Minerals Management Service
OGFOR_OFF OGINIT_OFF	DVWELLOFF		Offshore developmen t project drilling schedules	wells per year	4 Lower 48 offshore subregions; Fuel (oil, gas)	Minerals Management Service

			Dat	a		
Subroutine	Variable N Code	ame Text	Description	Unit	Classification	Source
OGFOR_L48 OGINIT_L48	DVWLCBML48		Lower 48 developmen t project drilling schedules for coalbed methane	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	DVWLDGSL48		Lower 48 developmen t project drilling schedules for deep gas	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	DVWLDVSL48		Lower 48 developmen t project drilling schedules for devonian shale	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGINIT_IMP	DVWLGASCAN		Canadian developmen t gas drilling schedule	wells per project per year	Canada	Not Used
OGINIT_IMP	DVWLOILCAN		Canadian developmen t oil drilling schedule	wells per project per year	Canada	Not Used
OGFOR_L48 OGINIT_L48	DVWLOILL48		Lower 48 developmen t project drilling schedules for oil	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	DVWLSGSL48		Lower 48 developmen t project drilling schedules for shallow gas	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	DVWLTSGL48		Developme nt project drilling schedules for tight gas	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGINIT_IMP XOGOUT_IMP	ELASTCAN		Elasticity for Canadian reserves	Fraction	Canada	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGINIT_RES OGOUT_L48	ELASTL48		Lower 48 onshore production elasticity values	Fraction	6 OGSm Lower 48 onshore regions	Office of Integrated Analysis and Forecasting

			Dat	a		
Subroutine	Variable N Code	ame Text	Description	Unit	Classification	Source
OGINIT_OFF OGINIT_RES OGOUT_OFF	ELASTOFF		Offshore production elasticity values	Fraction	4 Lower 48 offshore subregions	Office of Integrated Analysis and Forecasting
OGCOMP_EMIS OGINIT_EMIS	EMCO		Emission factors for crude oil production	Fraction	Census regions	EPA - Energy Technology Characterizations Handbook
OGCOMP_EMIS OGINIT_EMIS	EMFACT		Emission factors	MMB MMCF	Census regions	EPA - Energy Technology Characterizations Handbook
OGCOMP_EMIS OGINIT_EMIS	EMNG		Emission factors for natural gas production	Fraction	Census regions	EPA - Energy Technology Characterizations Handbook
OGCOST_AK OGINIT_AK	EQUIPAK	EQUIP	Alaska lease equipment cost	1990\$/well	Class (exploratory, developmental); 3 Alaska regions; Fuel (oil, gas)	U.S. Geological Survey
OGEXP_CALC OGINIT_BFW	EXOFFRGNLAG		Offshore exploration & developmen t regional expenditure (1989)	1987\$	Class (exploratory, developmental); 4 Lower 48 offshore subregions	Office of Integrated Analysis and Forecasting
OGDEV_AK OGINIT_AK OGSUP_AK	EXP_AK		Alaska drilling schedule for other exploratory wells	wells per year	3 Alaska regions	Office of Integrated Analysis and Forecasting
OGINIT_IMP	EXPENSE		Fraction of drill costs that are expensed	fraction	Class (exploratory, developmental)	Not Used Canadian Tax Code
OGFOR_OFF OGINIT_OFF	EXWELLOFF		Offshore exploratory project drilling schedules	wells per year	4 Lower 48 offshore subregions	Minerals Management Service
OGFOR_L48 OGINIT_L48	EXWLCBML48		Lower 48 exploratory project drilling schedules for coalbed methane	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting

			Dat	ta		
Subroutine	Variable M Code	lame Text	Description	Unit	Classification	Source
OGFOR_L48 OGINIT_L48	EXWLDGSL48		Lower 48 exploratory and developmen tal project drilling schedules for deep gas	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	EXWLDVSL48		Lower 48 exploratory project drilling schedules for devonian shale	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGINIT_IMP	EXWLGASCAN		Canadian exploratory gas drilling schedule	wells per year	Canada	Not Used
OGINIT_IMP	EXWLOILCAN		Canadian exploratory oil drilling schedule	wells per year	Canada	Not Used
OGFOR_L48 OGINIT_L48	EXWLOILL48		Lower 48 exploratory project drilling schedules for oil	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	EXWLSGSL48		Lower 48 exploratory project drilling schedules for shallow gas	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	EXWLTSGL48		Lower 48 exploratory project drilling schedules for tight gas	wells per year	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGDEV_AK OGFAC_AK OGINIT_AK OGSUP_AK	FACILAK		Alaska facility cost (oil field)	1990\$/bls	Field size class	U.S. Geological Survey
OGINIT_IMP	FEDTXCAN		Canadian corporate tax rate	fraction	Canada	Not used. Petroleum Fiscal Systems in Canada - Energy, Mines & Resources
OGDCF_AK OGEXP_CALC OGFOR_L48 OGFOR_OFF OGINIT_BFW	FEDTXR	FDRT	U.S. federal tax rate	fraction	Canada	U.S. Tax Code

			Dat	a		
Subroutine	Variable		Description	Unit	Classification	Source
	Code	Text				
OGINIT_IMP	FLOWCAN	-	Canadian flow rates	bls, MCF per year	Canada; Fuel (oil, gas)	Not used. Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	FLOWL48		Lower 48 onshore flow rates	bls, MCF per year	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	EIA, Office of Oil and Gas
OGFOR_OFF OGINIT_OFF	FLOWOFF		Offshore flow rates	bls, MCF per year	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
oginit_lng ogprof_lng	FPRDCST		Foreign production costs	1991\$/MCF per year	LNG Source Country	National Petroleum Council
oginit_imp Xogout_imp	FRMINCAN	FRMIN	Canadian minimum economic finding rate	BCF per well	Canada	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGOUT_L48	FRMINL48	FRMIN	Lower 48 onshore minimum exploratory well finding rate	MMB BCF per well	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGINIT_OFF OGOUT_OFF	FRMINOFF	FRMIN	Offshore minimum exploratory well finding rate	MMB BCF per well	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
XOGOUT_IMP	FRTECHCAN	FRTECH	Canada technology factor applied to finding rate	fraction	Canada	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGOUT_L48	FR1L48	FR1	Lower 48 onshore new field wildcat well finding rate	MMB BCF per well	6 Lower 48 onshore regions; Fuel (2 oil, 2 gas)	Office of Integrated Analysis and Forecasting
OGINIT_OFF OGOUT_OFF	FR10FF	FR1	Offshore new field wildcat well finding rate	MMB BCF per well	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGOUT_L48	FR2L48	FR3	Lower 48 onshore developmen tal well finding rate	MMB BCF per well	6 Lower 48 onshore regions; Fuel (2 oil, 2 gas)	Office of Integrated Analysis and Forecasting
OGINIT_OFF OGOUT_OFF	FR2OFF	FR3	Offshore developmen tal well finding rate	MMB BCF per well	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting

			Dat	ta		
Subroutine	Variable Code	Name Text	Description	Unit	Classification	Source
OGINIT_L48 OGOUT_L48	FR3L48	FR2	Lower 48 other exploratory well finding rate	MMB BCF per well	6 Lower 48 onshore regions; Fuel (2 oil, 2 gas)	Office of Integrated Analysis and Forecasting
OGINIT_OFF OGOUT_OFF	FR3OFF	FR2	Offshore other exploratory well finding rate	MMB BCF per well	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGFOR_AK OGINIT_AK OGNEW_AK	FSZCOAK	_	Alaska oil field size distributions	ММВ	3 Alaska regions	U.S. Geological Survey
OGFOR_AK OGINIT_AK OGNEW_AK	FSZNGAK		Alaska gas field size distributions	BCF	3 Alaska regions	U.S. Geological Survey
OGINIT_L48	HISTADL48		Lower 48 historical associated- dissolved natural gas reserves	BCF	NA	Annual Reserves report
OGINIT_OFF	HISTADOFF		Offshore historical associated- dissolved natural gas reserves	BCF	NA	Annual Reserves Report
oginit_imp Xogout_imp	HISTFRCAN		Historical Canadian finding rate for gas	BCF per well	Canada	Office of Integrated Analysis and Forecasting
OGINIT_AK OGPRO_AK	HISTPRDCO		Alaska historical crude oil production	MB/D	Field	Alaska Oil and Gas Conservation Commission
OGINIT_IMP XOGOUT_IMP	HISTPRRCAN		Canadian gas production to reserves ratio for historical years	BCF	Canada; Fuel (gas)	Office of Integrated Analysis and Forecasting
OGINIT_L48	HISTPRRL48		Lower 48 historical P/R ratios	fraction	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Derived from Annual Reserves Report
OGINIT_OFF	HISTPRROFF		Offshore historical P/R ratios	fraction	4 Lower 48 offshore subregions; Fuel (oil, gas)	Derived from Annual Reserves Report

			Dat	a		
Subroutine	Variable N Code	ame Text	Description	Unit	Classification	Source
OGINIT_L48	HISTPRRTDM		Lower 48 onshore historical P/R ratios at the NGTDM level	fraction	17 OGSM/NGTD M regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP XOGOUT_IMP	HISTRESAD		Canadian gas reserves additions for historical years	BCF	Canada; Fuel (gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP XOGOUT_IMP	HISTRESCAN		Canadian beginning of year gas reserves for historical years	BCF	Canada; Fuel (gas)	Canadian Petroleum Association
OGINIT_IMP XOGOUT_IMP	HISTWELCAN		Canadian gas wells drilled in historical years	BCF	Canada; Fuel (gas)	Office of Integrated Analysis and Forecasting
OGINIT_L48	HISTRESL48		Lower 48 onshore historical beginning- of-year reserves	MMB BCF	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Annual Reserves Report
OGINIT_OFF	HISTRESOFF		Offshore historical beginning- of-year reserves	MMB BCF	4 Lower 48 offshore subregions; Fuel (oil, gas)	Annual Reserves Report
OGINIT_L48	HISTRESTDM		Lower 48 onshore historical beginning- of-year reserves at the NGTDM level	MMB BCF	17 OGSM/NGTD M regions; Fuel (2 oil, 5 gas)	Annual Reserves Report
WELL OGEXPAND_LNG OGINIT_IMP XOGOUT_IMP	IMPBYR		Base start- year for Foreign Natural Gas Supply Submodule		-	Office of Integrated Analysis and Forecasting
OGDCF_AK OGFOR_L48 OGFOR_OFF OGINIT_BFW	INFL	infl	U.S. inflation rate	fraction	National	Office of Integrated Analysis and Forecasting

			Dat	a		
Subroutine	Variable Code	Name Text	Description	Unit	Classification	Source
OGINIT_L48 OGOUT_L48	INFRSVL48	1	Lower 48 onshore inferred reserves	MMB BCF	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGINIT_OFF OGOUT_OFF	INFRSVOFF	I	Offshore inferred reserves	MMB BCF	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP	INFRT		Canadian inflation rate	fraction	Canada	Not used. Office of Integrated Analysis and Forecasting
OGINIT_IMP	INVESTRT		Canadian investment tax credit	fraction	Canada	Not Used
OGDCF_AK OGINIT_AK	KAPFRCAK	EXKAP	Alaska drill costs that are tangible & must be depreciated	fraction	Alaska	U.S. Tax Code
OGFOR_L48 OGINIT_L48	KAPFRCL48	ΕΧΚΑΡ	Lower 48 onshore drill costs that are tangible & must be depreciated	fraction	Class (exploratory, developmental)	U.S. Tax Code
OGFOR_OFF OGINIT_OFF	KAPFRCOFF	ΕΧΚΑΡ	Offshore drill costs that are tangible & must be depreciated	fraction	Class (exploratory, developmental)	U.S. Tax Code
OGFOR_L48 OGINIT_L48	KAPSPNDL48	КАР	Lower 48 onshore other capital expenditure s	1987\$	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Not used
OGFOR_OFF OGINIT_OFF	KAPSPNDOFF	КАР	Offshore other capital expenditure s	1987\$	Class (exploratory, developmental); 4 Lower 48 offshore subregions	Minerals Mangement Service
OGFOR_L48 OGINIT_L48	LAGDRILL48		1989 Lower 48 drill cost	1987\$	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting

			Dat	a		
Subroutine	Variable N	lame	Description	Unit	Classification	Source
Subroutine	Code	Text	Description	Unit	Classification	Source
OGFOR_L48 OGINIT_L48	LAGDRYL48		1989 Lower 48 dry hole cost	1987\$	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	LAGLEASL48		1989 Lower 48 lease equipment cost	1987\$	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	LAGOPERL48		1989 Lower 48 operating cost	1987\$	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP	LEASCAN		Canadian lease equipment cost	1987\$	Canada; Fuel (oil, gas)	Not used. Office of Integrated Analysis and Forecasting
OGFOR_OFF OGINIT_OFF	LEASOFF	EQUIP	Offshore lease equipment cost	1987\$ per project	Class (exploratory, developmental); 4 Lower 48 offshore subregions	Minerals Mangement Service
OGEXPAND_LNG OGINIT_LNG	LIQCAP		Liquefaction capacity	BCF	LNG Source Country	National Petroleum Council
OGINIT_LNG OGPROF_LNG	LIQCST		Liquefaction costs	1991\$/MCF	LNG Source Country	National Petroleun Council
OGEXPAND_LNG OGPROF_LNG	LIQSTAGE		Liquefaction stage	NA	NA	National Petroleum Council
OGINIT_BFW	LST_CONV		Share of the conventiona I resources in the Rocky Mountains that are subject to Federal lease stipulations	Percent	Fuel (oil, gas)	ARI
OGFOR_AK OGINIT_AK OGPRO_AK	MAXPRO		Alaska maximum crude oil production	MB/D	Field	Announced Plans
OGINIT_IMP OGOUT_MEX	MEXEXP		Exports from Mexico	BCF	3 US/Mexican border crossing	Office of Integrated Analysis and Forecasting

			Dat	a		
Subroutine	Variable I Code	Name Text	Description	Unit	Classification	Source
OGINIT_IMP OGOUT_MEX	MEXIMP		Imports from Mexico	BCF	3 US/Mexican border crossing	Office of Integrated Analysis and Forecasting
OGINIT_BFW	NAC_CONV		Share of the conventiona I resources in the Rocky Mountains that are legally inaccessible	Percent	Fuel (oil, gas)	ARI
OGINIT_AK OGNEW_AK	NFW_AK		Alaska drilling schedule for new field wildcats	wells	NA	Office of Integrated Analysis and Forecasting
OGFOR_OFF OGINIT_OFF	NFWCOSTOFF	COSTEXP	Offshore new field wildcat cost	1987\$	Class (exploratory, developmental); 4 Lower 48 offshore subregions	Minerals Management Service
OGFOR_OFF OGINIT_OFF	NFWELLOFF		Offshore exploratory and developmen tal project drilling schedules	wells per project per year	Class (exploratory, developmental); r=1	Minerals Management Service
OGINIT_L48 OGINIT_RES OGOUT_L48	NGTDMMAP		Mapping of NGTDM regions to OGSM regions	NA	17 OGSM/NGTD M regions	Office of Integrated Analysis and Forecasting
OGINIT_IMP	OGCNBLOSS		Gas lost in transit to border	BCF	6 US/Canadian border crossings	Not Used
OGINIT_IMP	OGCNCAPB		Canadian capacities at borders - base case	BCF	6 US/Canadian border crossing	Not used. Derived from Natural Gas Annual
OGINIT_IMP	OGCNCAPH		Canadian capacities at borders - high WOP case	BCF	6 US/Canadian border crossing	Not used. Derived from Natural Gas Annual
OGINIT_IMP	OGCNCAPL		Canadian capacities at borders - low WOP case	BCF	6 US/Canadian border crossing	Not used. Derived from Natural Gas Annual

			Dat	ta		
Subroutine	Variable I Code	Name Text	Description	Unit	Classification	Source
OGINIT_IMP XOGOUT_IMP	OGCNCON		Canadian gas consumptio n	BCF	Canada; Fuel (gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP	OGCNDEM		Canadian demand calculation parameters	NA	NA	Not Used
OGINIT_IMP	OGCNDMLOSS		Gas lost from wellhead to Canadian demand	BCF	Canada	Not used. Office of Integrated Analysis and Forecasting
OGINIT_IMP	OGCNEXLOSS		Gas lost from US export to Canadian demand	BCF	Canada	Not used. Office of Integrated Analysis and Forecasting
OGINIT_IMP	OGCNFLW		1989 flow volumes by border crossing	BCF	6 US/Canadian border crossings	Not used. Office of Integrated Analysis and Forecasting
OGINIT_IMP	OGCNPARM1		Actual gas allocation factor	fraction	Canada	Not used. Office of Integrated Analysis and Forecasting
OGINIT_IMP	OGCNPARM2	-	Responsive ness of flow to different border prices	fraction	Canada	Not used. Office of Integrated Analysis and Forecasting
OGINIT_PRICE	OGCNPPRD		Canadian price of oil and gas	oil: 87\$s/B gas: 87\$s/mcf	Canada	NGTDM
OGPIP_AK OGPROF_LNG	OGPNGIMP		Natural gas import price	87\$s/mcf	US/Canadian & US/Mexican border crossings and LNG destination points	NGTDM
OGINIT_IMP	OPERCAN		Canadian operating cost	\$ 1987	Canada; Fuel (gas)	Not used. Office of Integrated Analysis and Forecasting
OGFOR_OFF OGINIT_OFF	OPEROFF	OPCOST	Offshore operating cost	1987\$ per well per year	Class (exploratory, developmental); 4 Lower 48 offshore subregions	Mineral Management Service
OGDCF_AK OGINIT_AK	PRJAK	n	Alaska oil project life	Years	Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	PRJL48	n	Lower 48 project life	Years	Fuel (oil, gas)	Office of Integrated Analysis and Forecasting

			Dat	a		
Subroutine	Variable I	Name	Description	Unit	Classification	Source
Subroutine	Code	Text	Description	Unit	Classification	Source
OGFOR_OFF OGINIT_OFF	PRJOFF	n	Offshore project life	Years	Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_IMP	PROVTXCAN	PROVRT	Canadian provincial corporate tax rates	fraction	Canada	Not used. Petroleum Fiscal Systems in Canada - Energy, Mines & Resources
OGFOR_AK OGINIT_AK OGPRO_AK	PROYR		Start year for known fields in Alaska	Year	Field	Announced Plans
OGEXPAND_LNG OGINIT_LNG OGLNG_OUT	QLNG		LNG operating flow capacity	BCF	LNG destination points	National Petroleum Council
OGEXPAND_LNG OGINIT_LNG OGLNG_OUT	QLNGMAX		LNG maximum capacity	BCF	LNG destination Points	National Petroleum Council
OGDCF_AK OGINIT_AK	RCPRDAK	m	Alaska recovery period of intangible & tangible drill cost	Years	Alaska	U.S. Tax Code
OGINIT_IMP	RCPRDCAN		Canada recovery period of intangible & tangible drill cost	Years	Canada	Not used. Petroleum Fiscal Systems in Canada - Energy, Mines & Resources
OGFOR_L48 OGINIT_L48	RCPRDL48	m	Lower 48 recovery period for intangible & tangible drill cost	Years	Lower 48 Onshore	U.S. Tax Code
OGFOR_OFF OGINIT_OFF	RCPRDOFF	m	Offshore recovery period intangible & tangible drill cost	Years	Lower 48 Offshore	U.S. Tax Code
OGFOR_AK OGINIT_AK OGPRO_AK	RECRES		Alaska crude oil resources for known fields	MMB	Field	OFE, Alaska Oil and Gas - Energy Wealth or Vanishing Opportunity
OGINIT_LNG OGPROF_LNG	REGASCST		Regasificati on costs	1991\$/MCF per year	Operational Stage; LNG destination points	National Petroleum Council
OGEXPAND_LNG OGINIT_LNG	REGASEXPAN		Regasificati on capacity	BCF	LNG destination points	National Petroleum Council
OGEXPAND_LNG OGINIT_LNG OGPROF_LNG	REGASSTAGE		Regasificati on stage	NA	NA	National Petroleum Council

			Dat	a		
Subroutine	Variable Code	Name Text	Description	Unit	Classification	Source
OGINIT_IMP XOGOUT_IMP	RESBASE	Q	Canadian recoverable resource estimate	BCF	Canada	Canadian Geological Survey
OGINIT_IMP	ROYRATE		Canadian royalty rate	fraction	Canada	Not used. Petroleum Fiscal Systems in Canada - Energy, Mines & Resources
OGDCF_AK OGFOR_L48 OGINIT_BFW	ROYRT	ROYRT	Alaska royalty rate	fraction	Alaska	U.S. Geological Survey
OGINIT_AK OGSEVR_AK	SEVTXAK	PRODTAX	Alaska severance tax rates	fraction	Alaska	U.S. Geological Survey
OGFOR_L48 OGINIT_L48	SEVTXL48	PRODTAX	Lower 48 onshore severance tax rates	fraction	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Commerce Clearing House
OGFOR_OFF OGINIT_OFF	SEVTXOFF	PRODTAX	Offshore severance tax rates	fraction	4 Lower 48 offshore subregions; Fuel (oil, gas)	Commerce Clearing House
	SPENDIRKLAG		1989 Lower 48 exploration & developmen t expenditure s	1987\$	Class (exploratory, developmental)	Office of Integrated Analysis and Forecasting
OGDCF_AK OGDEV_AK OGINIT_AK OGNEW_AK	SRAK	SR	Alaska drilling success rates	fraction	Alaska	Office of Oil and Gas
OGINIT_IMP	SRCAN	SR	Canada drilling success rates	fraction	Canada	Office of Integrated Analysis and Forecasting
OGEXP_CALC OGEXP_FIX OGFOR_L48 OGINIT_L48 OGOUT_L48	SRL48	SR	Lower 48 drilling success rates	fraction	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGALL_OFF OGFOR_OFF OGINIT_OFF OGOUT_OFF	SROFF	SR	Offshore drilling success rates	fraction	Class (exploratory, developmental); 4 Lower 48 offshore subregions; Fuel (oil, gas)	Minerals Management Service

			Dat	a		
.	Variable	Name				
Subroutine	Code	Text	Description	Unit	Classification	Source
OGEXPAND_LNG OGINIT_LNG	STARTLAG		Number of year between stages (regasificati on and liquefaction)	years	NA	Office of Integrated Analysis and Forecasting
OGINIT_BFW	STL_CONV		Share of the conventiona I resources in the Rocky Mountains that are subject to Standard Lease Terms	Percent	Fuel (oil, gas)	ARI
OGDCF_AK OGINIT_AK	STTXAK	STRT	Alaska state tax rate	fraction	Alaska	U.S. Geological Survey
OGEXP_CALC OGFOR_L48 OGINIT_L48	STTXL48	STRT	State tax rates	fraction	6 Lower 48 onshore regions	Commerce Clearing House
OGEXP_CALC OGFOR_OFF OGINIT_L48	STTXOFF	STRT	State tax rates	fraction	4 Lower 48 offshore subregions	Commerce Clearing House
OGCOST_AK OGINIT_AK	TECHAK	TECH	Alaska technology factors	fraction	Alaska	Office of Integrated Analysis and Forecasting
OGINIT_IMP	TECHCAN		Canada technology factors applied to costs	fraction	Canada	Not used. Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	TECHL48	TECH	Lower 48 onshore technology factors applied to costs	fraction	Lower 48 Onshore	Office of Integrated Analysis and Forecasting
OGFOR_OFF OGINIT_OFF	TECHOFF	TECH	Offshore technology factors applied to costs	fraction	Lower 48 Offshore	Office of Integrated Analysis and Forecasting
OGINIT_LNG OGPROF_LNG	TRANCST		LNG transporatio n costs	1990/MCF	NA	National Petroleum Council
OGDCF_AK OGINIT_AK	TRANSAK	TRANS	Alaska transportati on cost	1990\$	3 Alaska regions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGFOR_L48 OGINIT_L48	TRANSL48	TRANS	Lower 48 onshore expected transportati on costs	NA	6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Not Used

			Dat	a		
Subroutine	Variable N Code	ame Text	Description	Unit	Classification	Source
OGFOR_OFF OGINIT_OFF	TRANSOFF	TRANS	Offshore expected transportati on costs	NA	4 Lower 48 offshore subregions; Fuel (oil, gas)	Not Used
OGINIT_OFF OGOUT_OFF	UNRESOFF	Q	Offshore undiscovere d resources	MMB BCF	4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGOUT_L48	URRCRDL48	Q	Lower 48 onshore undiscovere d recoverable crude oil resources	ММВ	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGINIT_L48 OGOUT_L48	URRTDM		Lower 48 onshore undiscovere d recoverable natural gas resources	TCF	6 Lower 48 onshore regions	Office of Integrated Analysis and Forecasting
OGEXP_CALC OGINIT_BFW	WDCFIRKLAG		1989 Lower 48 exploration & developmen t weighted DCFs	1987\$	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Integrated Analysis and Forecasting
OGEXP_CALC OGINIT_BFW	WDCFIRLAG		1989 Lower 48 regional exploration & developmen t weighted DCFs	1987\$	Class (exploratory, developmental); 6 Lower 48 onshore regions;	Office of Integrated Analysis and Forecasting
OGEXP_CALC OGINIT_BFW	WDCFL48LAG		1989 Lower 48 onshore exploration & developmen t weighted DCFs	1987\$	Class (exploratory, developmental)	Office of Integrated Analysis and Forecasting
OGEXP_CALC OGINIT_BFW	WDCFOFFIRKLA G		1989 offshore exploration & developmen t weighted DCFs	1987\$	Class (exploratory, developmental); 4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Integrated Analysis and Forecasting

			Dat	a		
Subroutine	Variable N Code	ame Text	Description	Unit	Classification	Source
OGEXP_CALC OGINIT_BFW	WDCFOFFIRLAG		1989 offshore regional exploration & developmen t weighted DCFs	1987\$	Class (exploratory, developmental); 4 Lower 48 offshore subregions;	Office of Integrated Analysis and Forecasting
OGEXP_CALC OGINIT_BFW	WDCFOFFLAG		1989 offshore exploration & developmen t weighted DCFs	1987\$	Class (exploratory, developmental)	Office of Integrated Analysis and Forecasting
oginit_imp Xogout_imp	WELLAGCAN	WELLAG	1989 wells drilled in Canada	Wells per year	Fuel (gas)	Canadian Petroleum Association
OGEXP_CALC OGEXP_FIX OGINIT_L48	WELLAGL48	WELLSON	1989 Lower 48 wells drilled	Wells per year	Class (exploratory, developmental); 6 Lower 48 onshore regions; Fuel (2 oil, 5 gas)	Office of Oil & Gas
OGALL_OFF OGEXP_CALC OGINIT_OFF	WELLAGOFF	WELLSOF F	1989 offshore wells drilled	Wells per year	Class (exploratory, developmental); 4 Lower 48 offshore subregions; Fuel (oil, gas)	Office of Oil & Gas
OGINIT_IMP	WELLLIFE		Canadian project life	Years	Canada	Not used. Office of Integrated Analysis and Forecasting
OGDCF_AK OGINIT_AK	XDCKAPAK	XDCKAP	Alaska intangible drill costs that must be depreciated	fraction	Alaska	U.S. Tax Code
OGFOR_L48 OGINIT_L48	XDCKAPL48	XDCKAP	Lower 48 intangible drill costs that must be depreciated	fraction	NA	U.S. Tax Code
OGFOR_OFF OGINIT_OFF	XDCKAPOFF	XDCKAP	Offshore intangible drill costs that must be depreciated	fraction	NA	U.S. Tax Code

			Parameters	
Subroutine	Paramete	er Name	Associated Variable	Classification
	Code	Text		
OGCST_L48	value from regression	b0	Constant coefficient	Lower 48 onshore
OGCST_L48	value from regression	b1	Crude oil wellhead price coefficient	Lower 48 onshore
OGCST_L48	value from regression	b2	Natural gas wellhead price coefficient	Lower 48 onshore
OGCST_L48	value from regression	ρ	Aurocorrelation parameter	Lower 48 onshore
OGCST_I48	ALPHA_RIG	ln(b0)	Constant coefficient	Lower 48 onshore
OGCST_I48	B0_RIG	b1	Lower 48 onshore rigs	Lower 48 onshore
OGCST_I48	B1_RIG	b2	Revenue per lower 48 onshore rig	Lower 48 onshore
OGCST_I48	alpha_drl alpha_dry	ln(δ0)	Constant coefficient for onshore drilling and dry costs	6 lower 48 onshore regions, 3 fuels (oil, shallow gas, deep gas)
OGCST_I48	b0_drl b0_dry	ln(δ1)	Average depth per well	depth category, 3 fuels (oil, shallow gas, deep gas)
OGCST_I48	b4_drl b4_dry	ln(δ2)	Region 1 and region 6 adjustment	3 fuels (oil, shallow gas, deep gas)
OGCST_I48	b1_drl b1_dry	δ3	Estimated number of Lower 48 wells drilled	3 fuels (oil, shallow gas, deep gas)
OGCST_I48	b3_drl b3_dry	δ4	Lower 48 onshore rigs	3 fuels (oil, shallow gas, deep gas)
OGCST_I48	b2_drl b2_dry	δ5	Time trend - proxy for technology	3 fuels (oil, shallow gas, deep gas)
OGCST_I48	rho_drl rho_dry	ρ	Autocorrelation parameter	3 fuels (oil, shallow gas, deep gas)
OGCST_L48	ALPHA_LEQ	ln(ε0)	Constant coefficient	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)
OGCST_L48	B0_LEQ	ln(ε1)	Lower 48 successful wells by fuel (oil, gas)	Fuel (oil, shallow gas, deep gas)
OGCST_L48	B1_LEQ	ln(ε2)	Time trend - proxy for technology	Fuel (oil, shallow gas, deep gas)
OGCST_L48	B2_LEQ	ln(ε3)	Estimated successful wells	Fuel (oil, shallow gas, deep gas)
OGCST_L48	RHO_LEQ	ρ	Autocorrelation parameter	Fuel (oil, shallow gas, deep gas)
OGCST_L48	ALPHA_OPR	ln(ε0)	Constant coefficient	6 Lower 48 onshore regions; Fuel (oil, shallow gas, deep gas)
OGCST_L48	B0_OPR	ln(ε1)	Depth per well	Fuel (oil, shallow gas, deep gas)
OGCST_L48	B1_OPR	ln(ε2)	Lower 48 successful wells by fuel (oil, gas)	Fuel (oil, shallow gas, deep gas)
OGCST_L48	B2_OPR	ln(ɛ3)	Time trend - proxy for technology	Fuel (oil, shallow gas, deep gas)
OGCST_L48	RHO_OPR	ρ	Autocorrelation parameter	Fuel (oil, shallow gas, deep gas)
OGWELLS_L48	value from regression	m0	Constant coefficient - oil wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)

Parameters					
	Parameter Name		Associated Variable	Classification	
Subroutine	Code	Text			
OGWELLS_L48	value from regression	m00	Regional coefficient - oil wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m1	Discounted cash flow - oil wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m2	Cashflow - oil wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	ρ	Autocorrelation parameter - oil wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m0	Constant coefficient - shallow gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m00	Regional coefficient - shallow gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m1	Discounted cash flow - shallow gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m2	Cashflow - shallow gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	ρ	Autocorrelation - shallow gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m0	Constant coefficient - deep gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m00	Regional coefficient - deep gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	m1	Discounted cash flow - deep gas wells	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGWELLS_L48	value from regression	ρ	Autocorrelation parameter	6 Lower 48 onshore regions; Fuel oil, shallow gas, deep gas)	
OGCOMP_AD	ALPHA_AD	ln(α0)+ln(α1)	Constant coefficient plus regional dummy	Lower 48 regions (6 onshore, 3 offshore	
OGCOMP_AD	BETA_AD	ln(β0)+ln(β1)	Crude oil production plus regional dummy	Lower 48 regions (6 onshore, 3 offshore)	
XOGOUT_IMP	value from regression	В0	Constant coefficient	Canada national, Fuel(gas)	
XOGOUT_IMP	value from regression	B2	Gas price	Canada national, Fuel(gas)	
XOGOUT_IMP	not represented	B3	Years >1992 dummy constant	Canada national, Fuel(gas)	

Outputs					
OGSM Subroutine	Variable Name	Description	Unit	Classification	Passed To Module
OGFOR_AK OGPIP_AK	OGANGTSMX	Maximum natural gas flow through ANGTS	BCF	NA	NGTDM
OGINIT_IMP	OGCNBLOSS	Gas lost in transit to border	BCF	6 US/Canadian border crossings	NGTDM (Not used)
OGINIT_IMP	OGCNCAP	Canadian capacities by border crossing	BCF	6 US/Canadian border crossings	NGTDM (Not used)
OGINIT_IMP XOGOUT_IMP	OGCNCON	Canada gas consumption	Oil: MMB Gas: BCF	Fuel(oil,gas)	
OGINIT_IMP	OGCNDMLOSS	Gas lost from wellhead to Canadian demand	BCF	NA	NGTDM (Not used)
OGINIT_IMP	OGCNEXLOSS	Gas lost from US export to Canadian demand	BCF	NA	NGTDM (Not used)
OGINIT_IMP	OGCNFLW	1989 flow volumes by border crossing	BCF	6 US/Canadian border crossings	NGTDM (Not used)
OGINIT_IMP	OGCNPARM1	Actual gas allocation factor	fraction	NA	NGTDM (Not used)
OGINIT_IMP	OGCNPARM2	Responsiveness of flow to different border prices	fraction	NA	NGTDM (Not used)
OGINIT_IMP	OGCNPMARK UP	Transportation mark- up at border	1987\$	6 US/Canadian border crossings	NGTDM (Not used)
OGINIT_RES XOGOUT_IMP	OGELSCAN	Canadian price elasticity	fraction	Fuel (oil, gas)	
OGINIT_RES OGOUT_L48 OGOUT_OFF	OGELSCO	Oil production elasticity	fraction	6 Lower 48 onshore & 3 Lower 48 offshore regions	РММ
OGINIT_RES OGOUT_OFF	OGELSNGOF	Offshore nonassociated dry gas production elasticity	fraction	3 Lower 48 offshore regions	NGTDM
OGINIT_RES OGOUT_L48	OGELSNGON	Onshore nonassociated dry gas production elasticity	fraction	17 OGSM/NGTDM regions	NGTDM
OGOUT_EOR	OGEORCOGC	Electric cogeneration capacity from EOR	MWH	6 Lower 48 onshore regions	Industrial (not used)
OGOUT_EOR	OGEORCOGG	Electric cogeneration volumes from EOR	MWH	6 Lower 48 onshore regions	Industrial (not used)
OGCOMP_AD	OGPRDAD	Associated-dissolved gas production	BCF	6 Lower 48 onshore regions & 3 Lower 48 offshore regions	NGTDM
OGINIT_RES XOGOUT_IMP	OGPRRCAN	Canadian P/R ratio	fraction	Fuels (oil, gas)	NGTDM
OGINIT_RES OGOUT_L48	OGPRRCO	Oil P/R ratio	fraction	6 Lower 48 onshore & 3 Lower 48 offshore regions	РММ
_ OGINIT_RES OGOUT_OFF	OGPRRNGOF	Offshore nonassociated dry gas P/R ratio	fraction	3 Lower 48 offshore regions	NGTDM

	Outputs					
OGSM Subroutine	Variable Name	Description	Unit	Classification	Passed To Module	
OGINIT_RES OGOUT_L48	OGPRRNGON	Onshore nonassociated dry gas P/R ratio	fraction	17 OGSM/NGTDM regions	NGTDM	
OGFOR_AK OGPIP_AK OGPRO_AK	OGQANGTS	Gas flow at U.S. border from ANGTS	BCF	NA	NGTDM	
OGINIT_IMP XOGOUT_IMP OGOUT_MEX	OGQNGEXP	Natural gas exports	BCF	6 US/Canada & 3 US/Mexico border crossings	NGTDM	
OGLNG_OUT XOGOUT_IMP OGOUT_MEX	OGQNGIMP	Natural gas imports	BCF	3 US/Mexico border crossings; 4 LNG terminals	NGTDM	
OGINIT_RES XOGOUT_IMP	OGRESCAN	Canadian end-of- year reserves	oil: MMB gas: BCF	Fuel (oil, gas)	NGTDM	
OGINIT_RES OGOUT_L48 OGOUT_OFF	OGRESCO	Oil reserves	MMB	6 Lower 48 onshore & 3 Lower 48 offshore regions	РММ	
OGINIT_RES OGOUT_OFF	OGRESNGOF	Offshore nonassociated dry gas reserves	BCF	3 Lower 48 offshore regions	NGTDM	
OGINIT_RES OGOUT_L48	OGRESNGON	Onshore nonassociated dry gas reserves	BCF	17 OGSM/NGTDM regions	NGTDM	

OFFSHORE SUPPLY SUBMODULE				
VARIABLE	BRIEF DESCRIPTION	UNITS	SOURCE	
PARAM (1)	Operating cost overhead	Fraction	ICF Resources Incorporated Various Industry Cost Surveys	
PARAM (2)	G & A expenses on tangible and intangible investments	Fraction	ICF Resources Incorporated Various Industry Cost Surveys	
PARAM (3)	Useful life on capital investment	Years	Internal Revenue Service	
PARAM (4)	Royalty rate on producer revenue	Fraction	Minerals Management Service	
PARAM (5)	Severence tax rate	Fraction	Minerals Management Service	
PARAM (6)	Income tax credit on capital investment	Fraction	Internal Revenue Service	
PARAM (7)	Federal income tax rate	Fraction	Internal Revenue Service	
PARAM (8)	Discount factor	Multiplier	ICF Resources Incorporated	
PARAM (9)	Year after tangible investment begins depreciating	Years	Internal Revenue Service	
PARAM (10)	Co-product value adjustment factor	Fraction	Minerals Management Service	
PARAM (11)	Year in which costs are evaluated		ICF Resources Incorporated	
PARAM (12)	Current year in analysis		ICF, EIA	
PARAM (13)	Convergence criterion for method of bisection	Value	ICF Resources Incorporated	
PARAM (14)	Fraction of investment costs that are tangible	Fraction	Definition	
PARAM (15)	Fraction of exploratory well costs that are GNG costs	Fraction	Various Industry Cost Surveys	
NPYR	Total number of years in production for wells in a given field size class	year	DOE Fossil Energy Models ICF Resources Incorporated	
ULT_PCT	Percent of ultimate recovery of a well that is produced each year	fraction	DOE Fossil Energy Models ICF Resources Incorporated	
NUSGS	US Geological Survey defined field size class number		US Geological Survey	
MIN_USGS	Minimum field size in a field size class defined by USGS	MMBOE	US Geological Survey	
MAX_USGS	Maximum field size in a field size class defined by USGS	MMBOE	US Geological Survey	
WEL_REC	Average per well ultimate recovery for fields in a USGS field size class	MMBOE	DOE Fossil Energy Models ICF Resources Incorporated	
PLAY_NUM	Unit code assigned to the 'plays' defined in DWOSS		Minerals Management Service ICF Resources Incorporated	
PLAY_COD	Alpha-numeric code for the 'plays' defined in DWOSS		ICF Resources Incorporated	
PLAY_NAM	Description of the 'plays' defined in DWOSS		ICF Resources Incorporated Minerals Management Service	
WAT_DEP	Average water depth for each of the water depth aggregated plays	feet	ICF Resources Incorporated Offshore Data Services Various Industry Sources	
EXP_DEP	Average exploratory well drilling depth in each play	feet	Offshore Data Services Minerals Management Service	
DEV_DEP	Average development well drilling depth in each play	feet	Offshore Data Services Minerals Management Service	

	OFFSHORE SUPPLY SUBMODULE				
VARIABLE	BRIEF DESCRIPTION	UNITS	SOURCE		
EDSR	Exploration drilling success rate in each play	fraction	Offshore Data Services Various Industry Sources American Petroleum Institute		
XDSR	Extension drilling success rate in each play	fraction	Offshore Data Services Various Industry Sources American Petroleum Institute		
DDSR	Development drilling success rate in each play	fraction	Offshore Data Services Various Industry Sources American Petroleum Institute		
GO_RATIO	Gas oil ratio for fields in each play	Scf/Bbl	Minerals Management Service		
YIELD	Condensate yield for fields in each play	Bbl/MMcf	Minerals Management Service		
APIGRAV	Crude oil gravity for fields in each play	Deg. API	Minerals Management Service		
FLOWLINE	Length of gathering system for an average field in a play	Miles	Minerals Management Service ICF Resources Incorporated		
OIL_TARF	Transportation tariff for oil for an average field in a play	\$/Bbl	Minerals Management Service		
GAS_TARF	Transportation tariff for gas for an average field in a play	\$/Mcf	Minerals Management Service		
NPOOL	Number of fields in a play		Minerals Management Service		
OIL_GAS	The type of field - oil-bearing or gas-bearing		ICF Resources Incorporated		
OIL_SIZE	Size of the field if an oil-bearing field	MMBbl	Minerals Management Service		
GAS_SIZE	Size of the field if an gas-bearing fieldBcfMinerals Management Service		ICF Resources Incorporated		
FSC	USGS Field Size Class to which the field belongs		US Geological Survey		
WDC	Gulf of Mexico water depth category to which the field belongs		ICF Resources Incorporated Minerals Management Service		
EDRATE	Exploration drilling rate	feet/day	Various Industry Sources		
DDRATE	Development drilling rate	feet/day	Various Industry Sources		
ITECH	Five technology choices relating to exploration drilling rig, development drilling rig, pre-drilling, production structure, and pipeline construction		Minerals Management Service ICF Resources Incorporated Various Literature Sources		
EXPRIG	Exploration drilling rig		Calculated in Model		
PRERIG	Pre-drilling rig		Calculated in Model		
DEVRIG	Development drilling rig		Calculated in Model		
EXPWEL	Number of exploratory wells		Calculated in Model		
IYREXP	Year when exploratory drilling begins		Calculated in Model		
EXPTIM	Time required for exploratory drilling		Calculated in Model		
DELWEL	Number of delineation wells		Calculated in Model		
IYRDEL	Year when delineation drilling begins		Calculated in Model		
DELTIM	Time required for delineation drilling		Calculated in Model		
DEVWEL	Number of development wells		Calculated in Model		

	OFFSHORE SUPPLY SUBMODULE				
VARIABLE	BRIEF DESCRIPTION	UNITS	SOURCE		
DEVDRY	Number of dry development wells		Calculated in Model		
IYRDEV	Year when development drilling begins		Calculated in Model		
DEVTIM	Time required for development drilling		Calculated in Model		
PREDEV	Number of pre-drilled development wells		Calculated in Model		
PREDRY	Number of pre-drilled dry development wells		Calculated in Model		
IYRPRE	Year when pre-drilling begins		Calculated in Model		
PRETIM	Time required for pre-drilling		Calculated in Model		
NSLOT	Number of slots		Calculated in Model		
NSTRUC	Number of production structures		Calculated in Model		
IYRSTR	Year when structure installation begins		Calculated in Model		
STRTIM	Time required to complete the structure installation		Calculated in Model		
NTEMP	Number of templates		Calculated in Model		
IYRTEM	Year when template construction begins		Calculated in Model		
TEMTIM	Time required to complete the template installation		Calculated in Model		
IYRPIP	Year when the pipeline gathering system construction begins		Calculated in Model		
PIPTIM	Time required to complete the pipeline gathering system installation		Calculated in Model		
ULTREC	Cumulative ultimate recoverable reserves in a field	MMBOE	Calculated in Model		
QAVOIL	Average oil production rate per year during the life of a field	Bbl	Calculated in Model		
QOIL	Annual oil production volume for each year during the life of a field	Bbl	Calculated in Model		
QCOIL	Cumulative oil production volume at the end of each year	Bbl	Calculated in Model		
QAVGAS	Average gas production rate per year during the life of a field	Mcf	Calculated in Model		
QGAS	Annual gas production volume for each year during the life of a field	Mcf	Calculated in Model		
QCGAS	Cumulative gas production volume at the end of each year	Mcf	Calculated in Model		
IYRPRD	Year when production begins in a field		Calculated in Model		
PRDTIM	Time required for total production		Calculated in Model		
MAXPYR	Year when the last well in a field ceases production		Calculated in Model		
IYRABN	Year when the field and production structure are abandoned		Calculated in Model		
GEOCST	Cost to conduct geological and geophysical evaluation	\$	Calculated in Model		
DNCEXP	Cost to drill an exploratory well	\$/well	Calculated in Model		

	OFFSHORE SUPPLY SUBMODULE			
VARIABLE	BRIEF DESCRIPTION	UNITS	SOURCE	
DNCDEL	Cost to drill a delineation well	\$/well	Calculated in Model	
DNCDEV	Cost to drill a development well	\$/well	Calculated in Model	
DNCDRY	Cost to drill a dry development well	\$/well	Calculated in Model	
DNCPRE	Cost to drill a pre-drilled development well	\$/well	Calculated in Model	
DNCPDR	Cost to drill a pre-drilled dry development well	\$/well	Calculated in Model	
STRCST	Cost to construct and install the production structure	\$/struc	Calculated in Model	
TEMCST	Cost to construct and install the template	\$/temp	Calculated in Model	
ABNCST	Cost to abandon the production structure	\$/struc	Calculated in Model	
PIPECO	Cost to install pipeline and gathering system	\$/struc	Calculated in Model	
PRDEQP	Cost to install topside production equipment	\$/struc	Calculated in Model	
STROPC	Cost to operate the production structure	\$/struc/year	Calculated in Model	
GEO_CST	Annual geological and geophysical costs	\$/year	Calculated in Model	
GNG_CAP	Annual geological and geophysical costs that are capitalized	\$/year	Calculated in Model	
GNG_EXP	Annual geological and geophysical costs that are expensed	\$/year	Calculated in Model	
EXPDCST	Annual exploratory drilling costs	\$/year	Calculated in Model	
DELDCST	Annual delineation drilling costs	\$/year	Calculated in Model	
DEVDCST	Annual development drilling costs	\$/year	Calculated in Model	
DDRDCST	Annual dry development drilling costs	\$/year	Calculated in Model	
PREDCST	Annual pre-drilled development drilling costs	\$/year	Calculated in Model	
PDRDCST	Annual dry pre-drilled development drilling costs	\$/year	Calculated in Model	
PDEQCST	Annual production equipment and facilities costs	\$/year	Calculated in Model	
STRYCST	Annual structure installation costs	\$/year	Calculated in Model	
TMPYCST	Annual template installation costs	\$/year	Calculated in Model	
PIPECST	Annual pipeline and gathering system installation costs	\$/year	Calculated in Model	
ABNDCST	Annual abandonment costs	\$/year	Calculated in Model	
OPCOST	Annual total operating costs	\$/year	Calculated in Model	
TANG	Annual total tangible investment costs	\$/year	Calculated in Model	
INTANG	Annual total intangible investment costs	\$/year	Calculated in Model	
INVEST	Annual total capital investment costs	\$/year	Calculated in Model	
REV_OIL	Annual gross oil revenues	\$/year	Calculated in Model	
REV_GAS	Annual gross gas revenues	\$/year	Calculated in Model	
REV_GROS	Annual total producer revenues	\$/year	Calculated in Model	
GRAV_ADJ	Annual gravity adjustment penalties	\$/year	Calculated in Model	

	OFFSHORE SUPPLY SUBMODULE			
VARIABLE	BRIEF DESCRIPTION	UNITS	SOURCE	
TRAN_CST	Annual transportation costs for oil and gas	\$/year	Calculated in Model	
REV_ADJ	Annual adjusted gross revenues	\$/year	Calculated in Model	
ROYALTY	Annual royalty payments	\$/year	Calculated in Model	
REV_PROD	Annual net producer revenues	\$/year	Calculated in Model	
GNA_CST	Annual GNA on investments	\$/year	Calculated in Model	
GNA_OPN	Annual GNA on operations	\$/year	Calculated in Model	
REV_NET	Annual net Revenues from operations	\$/year	Calculated in Model	
NET_BTCF	Annual net before-tax cash flow	\$/year	Calculated in Model	
FED_TAXS	Annual federal tax bill	\$/year	Calculated in Model	
FED_INTC	Annual federal income tax credits	\$/year	Calculated in Model	
NET_INCM	Annual net income from operations	\$/year	Calculated in Model	
DEPR	Annual depreciation values	\$/year	Calculated in Model	
GNGRC	Annual GNG cost recovery	\$/year	Calculated in Model	
ANN_ATCF	Annual after-tax cash flow	\$/year	Calculated in Model	
NPV_ATCF	Annual discounted after-tax cash flow	\$/year	Calculated in Model	
REPCST	Replacement cost	\$/BOE	Calculated in Model	
NETPV	Net present value of the after-tax cash flow	\$	Calculated in Model	
TYPE	Field type (oil or gas) transferred to the endogeneous component		Calculated in Exogeneous Part	
MASP_TOT	Minimum acceptable supply price transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	
RSRV_OIL	Recoverable oil reserves transferrd to the endogeneous component	MMBbl	Calculated in Exogeneous Part	
RSRV_GAS	Recoverable gas reserves transferred to the endogeneous component	Bcf	Calculated in Exogeneous Part	
MASP_EXP	Exloration part of MASP transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	
MASP_DRL	Drilling part of MASP transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	
MASP_STR	Structure part of MASP transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	
MASP_OPR	Operations part of MASP transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	
EXPL_WEL	Number of exploratory wells transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	
DEVL_WEL	Number of development wells transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	
DRY_HOLE	Number of dry holes transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part	

OFFSHORE SUPPLY SUBMODULE			
VARIABLE	BRIEF DESCRIPTION	UNITS	SOURCE
STRUC_NO	Number of structures transferred to the endogeneous component	\$/Bbl, \$/Mcf	Calculated in Exogeneous Part
NREG	Number of Gulf of Mexico regions		Minerals Management Service
NFUEL	Types of fuels in the model (oil and gas)		EIA
NYEAR	Number of years analyzed for forecast		EIA
RATIO_RP	Reserves to production ratio		Minerals Management Service ICF Resources Incorporated
WLDRLEVL	Drilling activity level constraint	Wells	Offshore Data Services ICF Resources Incorporated
WLDRL_RT	Growth rate in drilling activity level	fraction	EIA, ICF
CUR_YEAR	Current year in the model		EIA
RES_GROW	Growth rate for proved reserves	fraction	EIA, ICF
ADT_EXPL	Advanced technology multiplier for exploration costs	fraction	EIA, ICF
ADT_DRLG	Advanced technology multiplier for drilling costs	fraction	EIA, ICF
ADT_STRC	Advanced technology multiplier for structure costs	fraction	EIA, ICF
ADT_OPER	Advanced technology multiplier for operations costs	fraction	EIA, ICF
OILPRICE	Oil price in the analysis year	\$/Bbl	PMM (NEMS)
GASPRICE	Gas price in the analysis year	\$/Mcf	NGTDM (NEMS)
XPVD_OIL	Existing proved oil reserves in current year	MMBbl	Minerals Management Service ICF Resources Incorporated
XPVD_GAS	Existing proved gas reserves in current year	Bcf	Minerals Management Service ICF Resources Incorporated
XPVD_AGS	Existing proved associated gas reserves in current year	Bcf	Minerals Management Service ICF Resources Incorporated
XPVD_CND	Existing proved condensate yield reserves in current year	MMBbl	Minerals Management Service ICF Resources Incorporated
INFR_OIL	Inferred oil reserves (remaining economic) each year	MMBbl	Calculated in Model
INFR_GAS	Inferred gas reserves (remaining economic) each year	Bcf	Calculated in Model
INGR_AGS	Inferred associated gas reserves (remaining economic) each year	Bcf	Calculated in Model
INFR_CND	Inferred condensate reserves (remaining economic) each year	MMBbl	Calculated in Model
MSP_INFO	Average supply price for the inferred oil reserves each year	\$/Bbl	Calculated in Model
MSP_INFG	Average supply price for the inferred gas reserves each year	\$/Mcf	Calculated in Model
BKED_OIL	Oil reserves booked every year include reserve adds	MMBbl	Calculated in Model
BKED_GAS	Gas reserves booked every year include reserve adds	Bcf	Calculated in Model

	OFFSHORE SUPPLY SUBMODULE				
VARIABLE	BRIEF DESCRIPTION	UNITS	SOURCE		
BKED_AGS	Associated gas reserves booked every year include reserve adds	Bcf	Calculated in Model		
BKED_CND	Condensate reserves booked every year include reserve adds	MMBbl	Calculated in Model		
WEL_EXPO	Number of exploratory oil wells drilled each year		Calculated in Model		
WEL_DRYO	Number of dry holes oil wells drilled each year		Calculated in Model		
WEL_DEVO	Number of development oil wells drilled each year		Calculated in Model		
NUM_STRO	Number of oil production structures installed each year		Calculated in Model		
WEL_EXPG	Number of exploratory gas wells drilled each year		Calculated in Model		
WEL_DRYG	Number of dry holes oil wells drilled each year		Calculated in Model		
WEL_DEVG	Number of development gas wells drilled each year		Calculated in Model		
NUM_STRG	Number of gas production structures installed each year		Calculated in Model		
BEG_RESO	Beginning of the year proved oil reserves	MMBbl	Calculated in Model		
BEG_RESG	Beginning of the year proved gas reserves	Bcf	Calculated in Model		
GRO_RESO	Growth in proved oil reserves	MMBbl	Calculated in Model		
GRO_RESG	Growth in proved gas reserves	Bcf	Calculated in Model		
ADD_RESO	Reserve additions to proved oil reserves	MMBbl	Calculated in Model		
ADD_RESG	Reserve additions to proved oil reserves	Bcf	Calculated in Model		
PROD_OIL	Oil production	MMBbl	Calculated in Model		
PROD_GAS	Gas production	Bcf	Calculated in Model		
END_RSVO	End of the year oil reserves	MMBbl	Calculated in Model		
END_RSVG	End of the year gas reserves	Bcf	Calculated in Model		
CST_EXPL	Annual exploration costs	MM\$	Calculated in Model		
CST_DRLG	Annual drilling costs	MM\$	Calculated in Model		
CST_STRC	Annual structure installation costs	MM\$	Calculated in Model		
CST_OPER	Annual operating costs	MM\$	Calculated in Model		

Unconventional Gas Recovery Supply Submodule					
Varia	ble Name	Brief Description	Unit	Classification	Source
Code	Text			Classification	oource
-	BASLOC	Basin Location: The basin/play name	NA	UGR Type; Play	ARI/USGS
-	PNUM	Play Number: The play number established by ARI	-	UGR Type; Play	ARI
ATUNDRLOC	ATUL	Undrilled Locations - Advanced Technology: Number of locations available to drill under advanced technology	-	UGR Type; Play; Quality ¹	ARI
AVDEPTH	AVGDPTH	Average Depth:Average depth of the play	Feet	UGR Type; Play; Quality	ARI
BASINDIFF	BASNDIF	Basin Differential: This is a sensitivity on the gas price at a basin level. Depending on their proximity to market and infrastructure, the price varies throughout the country. The numbers are constant throughout the model.	1996\$/ Mcf	UGR Type; Play; Quality	ARI
BNAREA	BASAR	Basin Area: Area in square miles	Square Miles	UGR Type; Play; Quality	ARI
CAPCSTDH	CCWDH	Capital Costs with Dry Hole Costs	1996\$/ Mcf	UGR Type; Play; Quality	ARI
CTUNDRLOC	CTUL	Undrilled Locations - Current Technology: Current number of locations available to drill	-	UGR Type; Play; Quality	ARI
DCCOST	DACC	Drilling and completion costs	1996\$	UGR Type; Play; Quality	ARI
DCCOSTGT	DCC_G2K	Drilling and completion cost per foot, well is greater than 2000 feet.	1996\$/ Foot	UGR Type	ARI
DCCOSTLT	DCC_L2K	Cost per foot, well is less than 2000 feet.	1996\$/ Foot	UGR Type	ARI
DEVCELLS	DEV_CEL	Developed Cells: Number of locations already drilled	-	UGR Type; Play; Quality	ARI

 $^{^1 \}mathrm{The}$ four "Quality" Categories are Total, Best 30%, Next Best 30%, and Worst 40%.

Unconventional Gas Recovery Supply Submodule					
Variable Name		Brief Description	Unit		
Code	Text		Onit	Classification	Source
DISCFAC	DIS_FAC	Discount Factor: This is the discount factor that is applied to the EUR for each well. The Present Value of a production stream from a typical coalbed methane, tight sands, or gas shales well is discounted at a rate of 15%.over a twenty year period.	Fraction	UGR Type	ARI
DISCRES	DISCRES	Discounted Reserves: The mean EUR per well multiplied by the discount factor.	Bcf	UGR Type; Play; Quality	Calculated
DRILLSCHED	DRL_SCHED	Drilling Schedule	Years	UGR Type; Play; Quality	ARI
DRILLSCHED	DRL_SCHED2	Drilling Schedule adjusted to account for technological progress	Years	UGR Type; Play; Quality	ARI
DRILLSCHED	DRL_SCHED3	Drilling Schedule: This variable ensures that adjustment for technology did not result in negative value for emerging basin Drilling Schedule.	Years	UGR Type; Play; Quality	ARI
DRILLSCHED	DRL_SCHED4	Drilling Schedule: This variable adjusts to account for the time-delaying effect of access limitations	Years	UGR Type; Play; Quality	ARI
DRRESADDS	DRA	Drilled Reserve Additions	Bcf	UGR Type; Play; Quality	Calculated
DRYHOLECOST	DHC	Dry Hole Costs	1996\$/ Well	UGR Type; Play; Quality	Calculated
EMBASINYRS* FINFAC	EMERG#	The number of years taken off the drilling schedule for an advancement in technology.	Years	UGR Type; Play	ARI
EMERGBAS	EMRG	The parameter that determines if the play is an emerging basin. This designation was made by ARI (1=yes).	-	UGR Type; Play; Quality	ARI
ENCBMYRCST	ECBM_OC	Enhanced CBM Operating Costs Variable - \$1.00	1996\$/ Mcf	UGR Type[CBM]; Basin; Quality	ARI

Unconventional Gas Recovery Supply Submodule					
Variable Name					6
Code	Text	Brief Description	Unit	Classification	Source
ENVIRONREG	ENV%	The percentage of the play that is not restricted from development due to environmental or pipeline regulations	Fraction	UGR Type; Play	ARI
ENVPIPREG	ENPRGS	Establishes if the play is pipeline or environmentally regulated (1=yes).	-	UGR Type; Play; Quality	ARI
EXNPVREV	ENPVR	Expected NPV Revenues: Gives the value of the entire discounted production stream for one well in real \$.	1996\$/ Well	UGR Type; Play; Quality	Calculated
FINFAC	TECHYRS	Number of years (from base year) over which incremental advances in indicated technology have occurred	Years	-	Calculated
FIXOMCOST	FOMC	Fixed Operating and Maintenance Costs	1996\$/ Well	UGR Type; Play; Quality	Calculated
GA10	GAA10	Variable General and Administrative (G&A) Costs:	1996\$/ Well	UGR Type; Play; Quality	Calculated
GABASE	RST	Variable G&A Costfactor - Currently 10% of equiprment costs, stimulation costs, and drilling costs	Fraction	UGR Type; Play; Quality	Calculated
H2OBASE	WOML_WTR	Water Producing Well Lease Equipment Costs	1996\$/ Well	UGR Type; EUR Level	ARI
H2ODISP	WATR_DISP	Establishes if the play requires water disposal (1 = yes)	-	UGR Type; Play; Quality	ARI
HYPPLAYS	НҮР%	Establishes whether or not the play is hypothetical (1=yes)	-	UGR Type; Play; Quality	ARI
LANDGG	DCC_G&G	Land / G&G Costs	1996\$/ Well	UGR Type; EUR level	ARI
LANDGGH2O	WOMM_OMW	Operating & Maintenance - Medium well with H2O disposal	\$1996/ Well	UGR Type; EUR Level	ARI
LANDGGH2O	WOMS_OMW	Operating & Maintenance - Small well with H2O disposal	\$1996/ Well	UGR Type; EUR Level	ARI
LANDGGH2O	WOML_OMW	Operating & Maintenance - Large well with H2O disposal	\$1996/ Well	UGR Type; EUR Level	ARI

Unconventional Gas Recovery Supply Submodule					
Variable Name		Brief Description	Unit		
Code	Text	Brief Description	Unit	Classification	Source
LEASSTIP	LEASSTIP	Lease Stipulated Share: The percentage of undrilled locations in a play that are subject to Federal lease stipulations	Percent	UGR Type; Play	ARI
LEASEQUIP	LSE_EQ	Lease Equipment Costs	\$1996/ Well	UGR Type; Play; Quality	ARI
LSEQBASE	WOML_LE	Large Well Lease Equipment Costs	\$1996/ Well	UGR Type; EUR Level	ARI
LSEQBASE	WOMS_LE	Small Well Lease Equipment Costs	\$1996/ Well	UGR Type; EUR Level	ARI
LSEQBASE	WOMM_LE	Medium Well Lease Equipment Costs	\$1996/ Well	UGR Type; EUR Level	ARI
MEANEUR	MEUR1	A weighted average of the EUR values for each (entire) basin	Bcf/Well	UGR Type; Play; Quality	Calculated
MEANEUR	MEUR1	A weighted average of the EUR values for the best 30% of the wells in the basin	Bcf/Well	UGR Type; Play; Quality	Calculated
MEANEUR	MEUR1	A weighted average of the EUR values for the middle 30% of the wells in the basin	Bcf/Well	UGR Type; Play; Quality	Calculated
MEANEUR	MEUR1	A weighted average of the EUR values for the worst 40% of the wells in the basin	Bcf/Well	UGR Type; Play; Quality	Calculated
MEANEUR	MEUR2	For Coalbed Methane, "MEUR1" adjusted for technological progress in the development of new cavity fairways	Bcf/Well	UGR Type; Play; Quality	Calculated
MEANEUR	MEUR3	For Enhanced Coalbed Methane, "MEUR2" adjusted for technological progress in the commercialization of Enhanced Coalbed Methane	Bcf/Well	UGR Type; Play; Quality	Calculated
MEANEUR	MEUR4	Mean EUR: This variable establishes whether or not the play is profitable and if so, allows the EUR to appear for development.	Bcf/Well	UGR Type; Play; Quality	Calculated

Unconventional Gas Recovery Supply Submodule					
Variable Name		Priof Description	11	Classification	
Code	Text	Brief Description	Unit	Classification	Source
MIN_ROI	MIN_ROI	A risk premium - the minimum rate of return that a project must be expected to achieve to offset risk of investment	1996\$/ Mcf	UGR Type	ARI
NETPR	NET_PRC	Net Price (\$/Mcf): Including Royalty and Severance Tax	1996\$/ Mcf	UGR Type; Play; Quality	Calculated
NETPROFIT	NET_PROF	Net Profits (\$/Mcf)	1996\$/ Mcf	UGR Type; Play; Quality	Calculated
NETPROFIT	NET_PROF2	Net Profits (changed to 0 if < 0): Allows only the profitable plays to become developed	1996\$/ Mcf	UGR Type; Play; Quality	Calculated
NEWWELLS	NW_WELLS	New Wells: The amount of wells drilled for the play in that year	Wells	UGR Type; Play; Quality	Calculated
NEWWELLS_LAG	NW_WELLS_LAG	New Wells Lagged: The amount of wells drilled for the play in the previous year	Wells	UGR Type; Play; Quality	Calculated
NEWWELLS	NW_WELLS2	New Wells: This variable ensures the wells drilled is a positive value.	Wells	UGR Type; Play; Quality	Calculated
NOACCESS	NOACCESS	No Access Share: The percentage of undrilled locations in a play that are legally inaccessible	Percent	UGR Type; Play	ARI
NYR_UNDEVWELLS	UNDV_WELLS2	Undeveloped wells available to be drilled for the next year	Wells	UGR Type; Play; Quality	Calculated
1.32*OGPRCL48	WHGP	Wellhead Gas Price	1996\$/ Mcf	UGR Type; OGSM Region	NGTDM (Integrated); Input (Standalone)
OPCOSTH2O	OCWW\$	Operating Costs with H2O - \$0.30	1996\$/ Mcf	UGR Type; H2O Disposal Level	ARI
OPCOSTH2O	OCNW\$	Operating Costs without H2O - \$0.25	\$1996/ Mcf	UGR Type; H2O Disposal Level	ARI
OPCSTGASTRT	GASTR	Gas Treatment and Fuel costs - \$0.25	\$1996/ Mcf	UGR Type	ARI
OPCSTH2ODISP	WTR_DSPT	Water Disposal Fee: \$0.05	\$1996/ Mcf	UGR Type	ARI
OPCSTOMS	WOMS	H2O Costs, Small Well	\$1996/ Mcf	UGR Type	ARI

Man ² 1 1	- Nome				
Variabl	e Name	Brief Description	Unit	Classification	Source
Code	Text				
PLAYPROBBASE	PLPROB	The play probability: Only hypothetical plays have a PLPROB < 100%.	Fraction	UGR Type; Play; Quality	ARI
PLAYPROB	PLPROB2	The play probability adjusted for technological progress, if initial play probability less than 1.	Fraction	UGR Type; Play; Quality	Calculated
PMPSFEQBASE	BASET	Variable cost of Pumping and Surface equipment when H2O disposal is required.	1996\$/ Well	UGR Type; Play; Quality	ARI
PMPSURFEQ	PASE	Pumping and Surface Equipment Costs	1996\$/ Well	UGR Type; Play; Quality	Calculated
PROD	PROD	Current Production	Bcf	UGR Type; Play; Quality	Calculated
PROD	PROD2	Production for the next year	Bcf	UGR Type; Play; Quality	Calculated
PROVRESV	PROV_RES	Proved Reserves	Bcf	UGR Type; Play; Quality	Calculated
PROVRESV	PROV_RES2	Proved Reserves for the next year	Bcf	UGR Type; Play; Quality	Calculated
RESADDS	R_ADD	Total Reserve Additions	Bcf	UGR Type; Play; Quality	Calculated
RESGRADDS	RGA	Reserve Growth Additions	Bcf	UGR Type; Play; Quality	Calculated
RESGRWTH	RES_GR	Establishes whether or not the play will have reserve growth (1=yes)	-	UGR Type; Play; Quality	ARI
RESWELLBCFB	RW101	Reserves per Well for the best 10% of the play (year 1): an EUR estimate	Bcf/Well	UGR Type; Play; Quality	ARI
RESWELLBCFB	RW201	Reserves per Well for the next (lesser) 20% of the play (year 1): an EUR estimate	Bcf/Well	UGR Type; Play; Quality	ARI
RESWELLBCFB	RW301	Reserves per Well for the next (lesser) 30% of the play (year 1): an EUR estimate	Bcf/Well	UGR Type; Play; Quality	ARI
RESWELLBCFB	RW401	Reserves per Well for the worst 40% of the play (year 1): an EUR estimate	Bcf/Well	UGR Type; Play; Quality	ARI

Unconventional Gas Recovery Supply Submodule					
Variable Name		Brief Description	11		
Code	Text	Brief Description	Unit	Classification	Source
RESWELLBCF	RW101	Reserves per Well for the best 10% of the play (years 2,20)	Bcf/Well	UGR Type; Play; Quality	Calculated
RESWELLBCF	RW201	Reserves per Well for the next (lesser) 20% of the play (years 2,20)	Bcf/Well	UGR Type; Play; Quality	Calculated
RESWELLBCF	RW301	Reserves per Well for the next (lesser) 30% of the play (years 2,20)	Bcf/Well	UGR Type; Play; Quality	Calculated
RESWELLBCF	RW401	Reserves per Well for the worst 40% of the play (years 2,20)	Bcf/Well	UGR Type; Play; Quality	Calculated
RES_GRTH_DEC	RGR	Reserve Growth Rate	Fraction	UGR Type; Year	ARI
ROYSEVTAX	RST	Variable Royalty and Severance Tax - Set at 17%	Fraction	UGR Type	ARI
RP	R/P_RAT	Reserves-to-Production (R/P) Ratio	Fraction	UGR Type; Play; Quality	Calculated
RP	RP_RAT2	R/P Ratio for the next year	Fraction	UGR Type; Play; Quality	Calculated
RSVPRD	RESNPROD	Reserves and Production	Bcf	UGR Type; Play; Quality	Calculated
STIMCOST	STIMC	Stimulation Costs: Provides the cost of stimulating a well in the specific basin by multiplying the given average stimulation cost by the number of stimulation zones.	1996\$/ Well	UGR Type; Play; Quality	ARI
STIMCSTBASE	STIM_CST	Variable average cost of stimulating one zone. (Number of zones is a variable)	1996\$/Z one	UGR Type	ARI
STIMUL	SZONE	Stimulation Zones: Number of times a single well is stimulated in the play	-	UGR Type; Play; Quality	ARI
SUCRATE	SCSSRT	Success Rate : The ratio of successful wells over total wells drilled (This can also be called the dry hole rate if you use the equation 1 - SCSSRT).	Fraction	UGR Type; Play; Quality	ARI

Unconventional Gas Recovery Supply Submodule					
Variable Name		Drief Description			
Code	Text	Brief Description	Unit	Classification	Source
TECHRECWELL	TRW1	The amount of technically recoverable wells available regardless of economic feasibility.	Wells	UGR Type; Play; Quality	Calculated
TECH_PROG_ SCHED_DR	REDAM%	Total percentage increase over development period due to advances in "Reduced Damage D&S" technology	Fraction	UGR Type	ARI
TECH_PROG_ SCHED_DR	FRCLEN%	Total percentage increase over development period due to advances in "Increased Fracture Length L&C" technology	Fraction	UGR Type	ARI
TECH_PROG_ SCHED_DR	PAYCON%	Total percentage increase over development period due to advances in "Improved Pay Contact" technology	Fraction	UGR Type	ARI
TECH_PROG_ SCHED_EX	EMERG%	The number of years added onto the drilling schedule because of the hindrance of the play being an emerging basin.	Years	UGR Type	ARI
TECH_PROG_ SCHED_PT	WDT%	Total percentage decrease in H2O disposal and treatment costs over the development period due to technological advances	Fraction	UGR Type	ARI
TECH_PROG_ SCHED_PT	PUMP%	Total percentage decrease in pumping costs over the development period due to technological advances	Fraction	UGR Type	ARI
TECH_PROG_ SCHED_PT	GTF%	Total percentage decrease in gas treatment and fuel costs over the development period due to technological advances	Fraction	UGR Type	ARI
TECH_PROG_ SCHED_PT	LOW%	The percentage of the play that is restricted from development due to environmental or pipeline regulations	Fraction	UGR Type	ARI
TECH_PROG_ SCHED_PT	LOWYRS	The number of years the environmental and or pipeline regulation will last.	Years	UGR Type	ARI
TECH_PROG_ SCHED_PT	ENH_CBM%	Enhanced CBM EUR Percentage gain	Fraction	UGR Type[CBM]	ARI

Unconventional Gas Recovery Supply Submodule					
Variable Name		Brief Description	11		
Code	Text	Brief Description	Unit	Classification	Source
TECH_PROG_ SCHED_EX	DEVPER	Development period for "Favorable Settings" technological advances	Years	UGR Type	ARI
TOTCAPCOST	тсс	Total Capital Costs: The sum of Stimulation Costs, Pumping and Surface Equipment Costs, Lease Equipment Costs, G&A Costs and Drilling and Completion Costs	1996\$/ Well	UGR Type; Play; Quality	Calculated
TOTCOST	TOTL_CST	Total Costs (\$/Mcf)	1996\$/ Mcf	UGR Type; Play; Quality	Calculated
ULTRECV	URR	Ultimate Recoverable Resources	Bcf	UGR Type; Play; Quality	Calculated
UNDEVRES	UNDEV_RES	Undeveloped resources	Bcf	UGR Type; Play; Quality	Calculated
UNDEV_WELLS	UNDV_WELLS	Undeveloped wells available for development under current economic conditions	Wells	UGR Type; Play; Quality	Calculated
VAROPCOST	VOC	Variable Operating Costs	1996\$/ Mcf	UGR Type; Play; Quality	Calculated
VAROPCOST	VOC2	Variable Operating Costs: Includes an extra operating cost for plays that will incorporate the technology of Enhanced CBM in the future	1996\$/ Mcf	UGR Type; Play; Quality	Calculated
WELLSP	WSPAC_CT	Well Spacing - Current Technology: Current spacing in acres	Acres	UGR Type; Play; Quality; Technology Level	ARI
WELLSP	WSPAC_AT	Well Spacing - Advanced Technology: Spacing in acres under Advanced Technology	Acres	UGR Type; Play; Quality; Technology Level	ARI
.6*LANDGGH2O	WOMS_OM	Operating & Maintenance - Small well without H2O disposal	\$1996/ Well	UGR Type; EUR Level	ARI
.6*LANDGGH2O	WOMM_OM	Operating & Maintenance - Medium well without H2O disposal	\$1996/ Well	UGR Type; EUR Level	ARI
.6*LANDGGH2O	WOML_OM	Operating & Maintenance - Large well without H2O disposal	\$1996/ Well	UGR Type; EUR Level	ARI

Appendix B. Mathematical Description

Calculation of Costs

Estimated Wells

Onshore

$$ESTWELLS_{t} = exp(b0) * POIL_{t}^{b1} * PGAS_{t}^{b2} * ESTWELLS_{t-1}^{\rho} * exp(-\rho * b0) * POIL_{t-1}^{-\rho * b1} * PGAS_{t-1}^{-\rho * b2}$$
(1)
$$ESTSUCWELLS_{t} = exp(c0) * POIL_{t}^{c1} * PGAS_{t}^{c2} * ESTSUCWELLS_{t-1}^{\rho} * exp(-\rho * c0) * POIL_{t-1}^{-\rho * c1} * PGAS_{t-1}^{-\rho * c2}$$
(2)

Lower 48 Onshore Rigs

$$RIGSL48_{t} = exp(b0) * RIGSL48_{t-1}^{b1} * REVRIG_{t-1}^{b2}$$
(3)

Onshore Drilling Costs

$$DRILLCOST_{t,k,t} = exp(ln(\delta 0)_{t,k}) * exp(ln(\delta 1)_{d,k}) * exp(ln(\delta 2)_{t,k}) * ESTWELLS_{t}^{\delta 3_{k}} * RIGSL48_{t}^{\delta 4_{k}} * exp(\delta 5_{k} * TIME_{t}) * DRILLCOST_{t,k,t-1}^{\rho_{k}} * exp(-\rho_{k} * ln(\delta 0)_{t,k}) * exp(-\rho_{k} * ln(\delta 1)_{d,k}) * exp(-\rho_{k} * ln(\delta 2)_{t,k}) * ESTWELLS_{t-1}^{-\rho_{k}} * \delta 3_{k}^{\delta 3_{k}} * RIGSL48_{t-1}^{-\rho_{k} * \delta 3_{k}} * exp(-\rho_{k} * \delta 5_{k} * TIME_{t-1})$$

$$(4)$$

$$DRYCOST_{r,k,t} = exp(ln(\delta 0)_{r,k}) * exp(ln(\delta 1)_{d,k}) * exp(ln(\delta 2)_{r,k}) * ESTWELLS_t^{\delta 3_k} * RIGSL48_t^{\delta 4_k} * exp(\delta 5_k * TIME_t) * DRYCOST_{r,k,t-1}^{\rho_k} * exp(-\rho_k * ln(\delta 0)_{r,k}) * exp(-\rho_k * ln(\delta 1)_{d,k}) * exp(-\rho_k * ln(\delta 2)_{r,k}) * ESTWELLS_{t-1}^{-\rho_k * \delta 3_k} * RIGSL48_{t-1}^{-\rho_k * \delta 4_k} * exp(-\rho_k * \delta 5_k * TIME_{t-1})$$
(5)

With increased access in Region 5 (Rocky Mountain Region)

$$DRILLCOST_{5,k,t} = DRILLCOST_{5,k,t} * \left(\frac{LSE_CONV + SLT_CONV}{1.06 * LSE_CONV + SLT_CONV}\right)$$
(6)

$$DRYCOST_{5,k,t} = DRYCOST_{5,k,t} * \left(\frac{LSE_CONV + SLT_CONV}{1.06*LSE_CONV + SLT_CONV}\right)$$
(7)

Lease equipment costs

$$LEQC_{r,k,t} = exp(ln(\epsilon 0)_{r,k}) * exp(ln(\epsilon 1)_{k}*DEPTH_{r,k,t}) * ESUCWELL_{k,t}^{\epsilon 2_{k}} * exp(\epsilon 3_{k}*TIME_{t}) * LEQC_{r,k,t-1}^{\rho_{k}}$$

$$exp(-\rho_{k}*ln(\epsilon 0)_{r,k}) * exp(-\rho_{k}*ln(\epsilon 1)_{k}*DEPTH_{r,k,t-1}) * ESUCWELL_{k,t-1}^{-\rho_{k}} * exp(-\rho_{k}*\epsilon 3_{k})$$

$$(8)$$

With increased access in Region 5 (Rocky Mountain Region)

$$LEQC_{5,kt} = LEQC_{5,kt} * \left(\frac{LSE_CONV + SLT_CONV}{1.06 * LSE_CONV + SLT_CONV} \right)$$
(9)

Operating Costs

$$OPC_{\mathbf{r},\mathbf{k},\mathbf{t}} = \exp(\ln(\epsilon 0)_{\mathbf{r},\mathbf{k}}) * \exp(\ln(\epsilon 1)_{\mathbf{k}} * DEPTH_{\mathbf{r},\mathbf{k},\mathbf{t}}) * ESUCWELL_{\mathbf{k},\mathbf{t}}^{\epsilon 2_{\mathbf{k}}} * \exp(\epsilon 3_{\mathbf{k}} * TIME_{\mathbf{k}}) * OPC_{\mathbf{r},\mathbf{k},\mathbf{t}-1}^{\rho_{\mathbf{k}}} * \exp(\epsilon 3_{\mathbf{k}} * TIME_{\mathbf{k},\mathbf{t}-1}) * OPC_{\mathbf{r},\mathbf{k},\mathbf{t}-1}^{\rho_{\mathbf{k}}} * (10)$$

$$\exp(-\rho_{\mathbf{k}} * \ln(\epsilon 0)_{\mathbf{r},\mathbf{k}}) * \exp(-\rho_{\mathbf{k}} * \ln(\epsilon 1)_{\mathbf{k}} * DEPTH_{\mathbf{r},\mathbf{k},\mathbf{t}-1}) * ESUCWELL_{\mathbf{k},\mathbf{t}-1}^{-\rho_{\mathbf{k}}} * \exp(-\rho_{\mathbf{k}} * \epsilon 3_{\mathbf{k}} * 1)$$

With increased access in Region 5 (Rocky Mountain Region)

$$OPC_{5,k,t} = OPC_{5,k,t} * \left(\frac{LSE_CONV + SLT_CONV}{1.06 * LSE_CONV + SLT_CONV} \right)$$
(11)

Discounted Cash Flow Algorithm

Expected discounted cash flow

$$PROJDCF_{i,r,k,t} = (PVREV - PVROY - PVPRODTAX - PVDRILLCOST - PVEQUIP - PVKAP - PVOPERCOST - PVABANDON - PVSIT - PVFIT)_{i,r,k,t}$$
(12)

Present value of expected revenues

$$PVREV_{i,r,k,t} = \sum_{T=t}^{t+n} \left[Q_{r,k,T} * \lambda * (P_{r,k,T} - TRANS_{r,k}) * \left[\frac{1}{1 + disc} \right]^{T-t} \right], \ \lambda = \begin{cases} 1 & \text{if primary fuel} \\ COPRD & \text{if secondary fuel} \end{cases}$$
(13)

Present value of expected royalty payments

$$PVROY_{i,r,k,t} = ROYRT * PVREV_{i,r,k,t}$$
(14)

Present value of expected production taxes

$$PVPRODTAX_{i,r,k,t} = PVREV_{i,r,k,t} * (1 - ROYRT) * PRODTAX_{r,k}$$
(15)

Present value of expected costs *Drilling costs*

$$PVDRILLCOST_{i,r,k,t} = \sum_{T=t}^{t+n} \left[DRILL_{1,r,k,t} * SR_{1,r,k} * WELL_{1,k,T} + DRILL_{2,r,k,t} * SR_{2,r,k} * WELL_{2,k,T} + DRY_{1,r,k,t} * (1-SR_{1,r,k}) * WELL_{1,k,T} + DRY_{2,r,k,t} * (1-SR_{2,r,k}) * WELL_{2,k,T} \right] * \left(\frac{1}{1 + \text{disc}} \right)^{T-t} \right]$$

$$(16)$$

Lease equipment costs

$$PVEQUIP_{i,r,k,t} = \sum_{T=t}^{t+n} \left[EQUIP_t * \left(SR_{1,r,k} * WELL_{1,k,T} + SR_{2,r,k} * WELL_{2,k,T} \right) * \left[\frac{1}{1 + disc} \right]^{T-t} \right]$$
(17)

Capital costs

$$PVKAP_{i,r,k,t} = \sum_{T=t}^{t+n} \left[KAP_{i,r,k,T} * \left[\frac{1}{1 + disc} \right]^{T-t} \right]$$
(18)

Operating costs

$$PVOPERCOST_{i,r,k,t} = \sum_{T=t}^{t+n} \left[OPCOST_{i,r,k,t} * \sum_{k=1}^{T} \left[SR_{1,r,k} * WELL_{1,k,T} + SR_{2,r,k} * WELL_{2,k,T} \right] * \left(\frac{1}{1 + disc} \right)^{T-t} \right]$$
(19)

Abandonment costs

$$PVABANDON_{i,r,k,t} = \sum_{T=t}^{t+n} \left[COSTABN_{i,r,k} * \left[\frac{1}{1+disc} \right]^{T-t} \right]$$
(20)

Present value of expected tax base

$$PVTAXBASE_{i,t,k,t} = \sum_{T=t}^{t+n} \left[(REV - ROY - PRODTAX - OPERCOST - ABANDON - XIDC - AIDC - DEPREC - DHC)_{i,t,k,t} * \left(\frac{1}{1 + disc} \right)^{T-t} \right]$$

Expected expensed costs

 $\begin{aligned} \text{XIDC}_{i,r,k,t} &= \text{DRILL}_{1,r,k,t} * (1 - \text{EXKAP}) * (1 - \text{XDCKAP}) * \text{SR}_{1,r,k} * \text{WELL}_{1,k,t} + \\ \text{DRILL}_{2,r,k,t} * (1 - \text{DVKAP}) * (1 - \text{XDCKAP}) * \text{SR}_{2,r,k} * \text{WELL}_{2,k,t} \end{aligned}$

Expected dry hole costs

$$DHC_{i,r,k,t} = DRY_{1,r,k,t} * (1 - SR_{1,r,k}) * WELL_{1,k,t} + DRY_{2,r,k,t} * (1 - SR_{2,r,k}) * WELL_{2,k,t}$$

Expected depreciable costs

$$DEPREC_{i,r,k,t} = \sum_{j=\beta}^{t} \left[(DRILL_{1,r,k,T} * EXKAP + EQUIP_{1,r,k,T}) * SR_{1,r,k} * WELL_{1,k,j} + (DRILL_{2,r,k,T} * DVKAP + EQUIP_{2,r,k,T}) * SR_{2,r,k} * WELL_{2,k,j} + KAP_{r,k,j} \right] * DEP_{t-j+1} * \left(\frac{1}{1 + infl} \right)^{t-j} * \left(\frac{1}{1 + disc} \right)^{t-j} \right],$$

$$\beta = \left\{ T \text{ for } t \le T + m - 1 \\ t - m + 1 \text{ for } t > T + m - 1 \right\}$$
(24)

(23)

Present value of expected state income taxes	
PVSIT _{i,r,k,t} = PVTAXBASE _{i,r,k,t} * STRT	(25)
Present value of expected federal income taxes	
$PVFIT_{i,r,k,t} = PVTAXBASE_{i,r,k,t} * (1 - STRT) * FDRT$	(26)
Discounted cash flow for a representative developmental well	
$DCF_{2,r,k,t} = PROJDCF_{2,r,k,t} * SR_{2,r,k}$	(27)
Discounted cash flow for a representative exploratory well	
$DCF_{1,r,k,t} = PROJDCF_{1,r,k,t} * SR_{1,r,k}$	(28)
DCF _{2,r,k,t} = PROJDCF _{2,r,k,t} * SR _{2,r,k} Discounted cash flow for a representative exploratory well	

Lower 48 Onshore Expenditures and Well Determination

Expected DCF for shallow gas recovery

$$SGDCFON_{i,r,t} = \frac{\sum_{k} (WELLS_{i,r,k,t-1} * DCFON_{i,r,k,t})}{\sum_{k} WELLS_{i,r,k,t-1}}, \text{ for } k=3, 5 \text{ to } 7$$

$$(29)$$

Expected oil DCF

$$ODCFON_{i,r,t} = \frac{\sum_{k} (WELLS_{i,r,k,t-1} * DCFON_{i,r,k,t})}{\sum_{k} WELLS_{i,r,k,t-1}}, \text{ for } k = 1 \text{ to } 2$$

$$(30)$$

Lower 48 Onshore Well Forecasting Equations

Exploratory Oil

$$WELLSO_{i,r,k,t} = e^{m0_{i,k}} * DCFO_{i,r,k,t-1}^{m1_{i,k}} * (CASHFLOW REMAINRES)^{m2_{i,k}} * WELLSO_{i,r,k,t-1}^{k}$$

$$* e^{-\rho^*m0_{i,k}} * DCFO_{i,r,k,t-2}^{\rho^*m1_{i,k}} * (CASHFLOW REMAINRES)^{-\rho^*m2_{i,k}}$$

Developmental Oil $WELLSO_{i,r,k,t} = e^{m0_{i,k}} * DCFO_{i,r,k,t-1}^{m1_{i,k}} * (CASHFLOW REMAINRES)^{m2_{i,k}} * WELLSO_{i,r,k,t-1}^{pk}$ $* e^{-\rho^*m0_{i,k}} * DCFO_{i,r,k,t-2}^{\rho^*m1_{i,k}} * (CASHFLOW REMAINRES)^{-\rho^*m2_{i,k}}$

Exploratory Shallow Gas

$$WELLSON_{i,r,k,t} = e^{(m0_{i,k} + \sum_{r} m00_{i,r,k} * REGr)} * DCFON_{r,k,t}^{m1_{i,k}} * (CASHFLOW_{t} * REMAINRES_{r,k,t})^{m2_{i,k}} * WELLSON_{i,r,k,t-1}^{\rho_{i,k}} * e^{-\rho_{i,k} * (m0_{i,k} + \sum_{r} m00_{i,r,k} * REGr)} * DCFON_{r,k,t-1}^{-\rho_{i,k} * m1_{i,k}} * (CASHFLOW_{t-1} * REMAINRES_{r,k,t})^{-\rho_{i,k} * m2_{i,k}}$$
(33)

Developmental Shallow Gas

$$WELLSON_{i,r,k,t} = e^{(m0_{i,k} + \sum_{r} m00_{i,r,k} * REGr)} * DCFON_{r,k,t}^{m1_{i,k}} * (CASHFLOW_{t} * REMAINRES_{r,k,t})^{m2_{i,k}} * WELLSON_{i,r,k,t-1}^{\rho_{i,k}} * e^{-\rho_{i,k} * (m0_{i,k} + \sum_{r} m00_{i,r,k} * REGr)} * DCFON_{r,k,t-1}^{-\rho_{i,k} * m1_{i,k}} * (CASHFLOW_{t-1} * REMAINRES_{r,k,t})^{-\rho_{i,k} * m2_{i,k}}$$
(34)

Exploratory Deep Gas

$$WELLSON_{i,r,k,t} = e^{(m_{0_{i,k}} + \sum_{r} m_{0_{i,r,k}} * REGr)} * DCFON_{r,k,t-}^{m_{1_{i,k}}} * (CASHFLOW_{t} * REMAINRES_{r,k,t})^{m_{2_{i,k}}} * WELLSON_{i,r,k,t-1}^{\rho_{i,k}} * e^{-\rho_{i,k} * (m_{0_{i,k}} + \sum_{r} m_{0_{i,r,k}} * REGr)} * DCFON_{r,k,t-2}^{-\rho_{i,k} * m_{1_{i,k}}} * (CASHFLOW_{t-1} * REMAINRES_{r,k,t})^{-\rho_{i,k} * m_{2_{i,k}}}$$

Developmental Deep Gas

$$WELLSON_{i,r,k,t} = e^{(m_{0,i,k}^{0} + \sum_{r} m_{0,i,r,k}^{0} * REGr)} * DCFON_{r,k,t-}^{m_{1,i,k}} * (CASHFLOW_{t} * REMAINRES_{r,k,t})^{m_{2,i,k}^{0}} * WELLSON_{i,r,k,t-1}^{\rho_{i,k}} * e^{-\rho_{i,k}^{0} * (m_{0,i,k}^{0} + \sum_{r} m_{0,i,r,k}^{0} * REGr)} * DCFON_{r,k,t-2}^{-\rho_{i,k}^{0} * m_{1,i,k}} * (CASHFLOW_{t-1} * REMAINRES_{r,k,t})^{-\rho_{i,k}^{0} * m_{2,i,k}}$$

Calculation of success rate

$$LSR_{i,r,t} = a0_{i,r} + a1_i * ln(CUMSUCWELLS_{i,r,t}) + a2_i * YEAR_t + \rho_i * ln\left(\frac{SR_{i,r,t-1}}{1 - SR_{i,r,t-1}}\right)$$

$$- \rho_i * \left[a0_{i,r} + a1_i * ln(CUMSUCWELLS_{i,r,t-1}) + a2_i * YEAR_{t-1}\right]$$
(37)

$$SR_{i,r,t} = \frac{e^{LSR_{i,r,t}}}{1 + e^{LSR_{i,r,t}}}$$
(38)

Calculation of successful onshore wells

$$\begin{aligned} & \text{SUCWELSON}_{i,r,k,t} = \text{WELLSON}_{i,r,k,t} * \text{SR}_{i,r,k}, \text{ for } i = 1, 2, r = \text{ onshore regions,} \\ & k = 1 \text{ thru } 7 \end{aligned} \tag{39}$$

Calculation of onshore dry holes

$$DRYWELON_{i,t,k,t} = WELLSON_{i,t,k,t} - SUCWELSON_{i,t,k,t} \text{ for } i = 1, 2,$$

r = onshore regions, k = 1 thru 7 (40)

Lower 48 Onshore Reserve Additions

New reserve discoveries

$$NRD_{r,k,t} = FR1_{r,k,t} * SW1_{r,k,t}$$
(41)

$$FR1_{r,k,t} = exp(\alpha_{r,k}) * exp(\beta 1_k * SW2_{r,k,t} + \beta 2_k * DEPTH_{r,k}) * UND_{r,k,t}^{\beta 3_k}$$

$$\mathbf{I}_{\mathbf{r},\mathbf{k},\mathbf{t}} = \mathbf{N}\mathbf{R}\mathbf{D}_{\mathbf{r},\mathbf{k},\mathbf{t}} * (\mathbf{R}\mathbf{S}\mathbf{V}\mathbf{G}\mathbf{R} - 1)$$
(43)

(42)

Reserve extensions

Inferred reserves

$$EXT_{\mathbf{r},\mathbf{k},\mathbf{t}} = FR2_{\mathbf{r},\mathbf{k},\mathbf{t}} * SW2_{\mathbf{r},\mathbf{k},\mathbf{t}}$$
(44)

$$FR2_{r,k,t} = exp(\alpha_{r,k}) * exp(\beta 1_k * SW2_{r,k,t}) * exp(\beta 2_{r,k} * DEPTH_{r,k,t}) * INFR_{r,k,t}^{\beta 3_{r,k}} * exp(\beta 4_k * year_t)
* FR2_{r,k,t-1}^{\rho_k} * exp(\alpha_{r,k}) * exp(\beta 1_k * SW2_{r,k,t-1}) * exp(\beta 2_{r,k} * DEPTH_{r,k,t-1})
* INFR_{r,k,t-1}^{\beta 3_{r,k}} * exp(\beta 4_k * year_{t-1})$$
(45)

Reserve revisions

$$FR3_{r,k,t} = REV_{r,k,t} / SW3_{r,k,t}$$
(46)

$$REV_{r,k,t} = (e^{B0_{r,k}} * ((INFR_{r,k,t} + BOYRES_{r,k,t}) / BOYRES_{r,k,t})^{B1_{r,k}} * e^{(B2*WHP_{r,k,t})} * e^{(B3*WHP_{r,t,t})} * e^{(B4*WHP_{r,k,t}/WHP_{r,k,t-1})} * e^{B5*CUMSW3_{r,k,t}}) - 1) * BOYRES_{r,k,t}$$
(47)

Total reserve additions

$$\mathbf{RA}_{\mathbf{r},\mathbf{k},\mathbf{t}} = \mathbf{NRD}_{\mathbf{r},\mathbf{k},\mathbf{t}} + \mathbf{EXT}_{\mathbf{r},\mathbf{k},\mathbf{t}} + \mathbf{REV}_{\mathbf{r},\mathbf{k},\mathbf{t}}$$
(48)

End-of-year reserves

$$\mathbf{R}_{\mathbf{r},\mathbf{k},\mathbf{t}} = \mathbf{R}_{\mathbf{r},\mathbf{k},\mathbf{t}-1} - \mathbf{Q}_{\mathbf{r},\mathbf{k},\mathbf{t}} + \mathbf{R}\mathbf{A}_{\mathbf{r},\mathbf{k},\mathbf{t}}$$
(49)

Lower 48 Onshore & Offshore Production to Reserves Ratio

$$PR_{t+1} = \frac{(R_{t-1} * PR_t * (1 - PR_t)) + (PRNEW * RA_t)}{R_t}$$
(50)

$$Q_{r,k,t+1} = [R_{r,k,t}] * [PR_{r,k,t} * (1 + \beta_{r,k} * \Delta P_{r,k,t+1})]$$
(51)

Associated-dissolved gas production

$$ADGAS_{r,t} = e^{\ln(\alpha 0)_r + \ln(\alpha 1)_r * DUM86_t} * OILPROD_{r,t}^{\beta 0_r + \beta 1_r * DUM86_t}$$
(52)

Cogeneration from EOR Production

Capacity for EOR Cogeneration

$$PRV_COGEN_{r,1} = PRV_STEAM_r * PRV_COGENPEN * COGFAC$$
(53)

$$INF_COGEN_{r,1} = INF_STEAM_r * INF_COGENPEN * COGFAC$$
 (54)

Electricity Generated from EOR Cogeneration

$$PRV_COGEN_{r,4} = PRV_COGEN_{r,1} * PRV_UTIL_{r,1,t,2} * \frac{24 * 365}{1000}$$
(55)

$$INF_COGEN_{r,4} = INF_COGEN_{r,1} * INF_UTIL_{r,1,t,2} * \frac{24 * 365}{1000}$$
(56)

Alaska Supply

Expected Costs

Drilling costs

 $DRILLCOST_{i,r,k,t} = DRILLCOST_{i,r,k,T_b} * (1 - TECH1) * *(t-T_b)$ (57)

Lease equipment costs

$$EQUIP_{r,k,t} = EQUIP_{r,k,T_b} * (1 - TECH2) * *(t - T_b)$$
(58)

Operating costs

B-7

$$OPCOST_{r,k,t} = OPCOST_{r,k,T_b} * (1 - TECH3) * *(t - T_b)$$
(59)

Canadian Gas Trade

Calculation of successful wells drilled in Western Canada

$$SUCWELL_{t} = e^{(\beta 0 + \beta 3)} * GPRICE_{t}^{\beta 2} * SUCWELL_{t-1}^{\rho} * e^{[-\rho * (\beta 0 + \beta 3)]} * GPRICE_{t-1}^{-\rho * \beta 2}$$
(60)

Finding rate and reserve additions

$$FRCAN_{t} = e^{-115.706} * CUMGWELLS_{t}^{-0.763412} * e^{-0.000278607 * SUCWELL + 0.066231 * YEAR}$$
(61)

 $RESADCAN_{t} = FRCAN_{t} * SUCWELL_{t}$ (62)

End-of-year reserves

$$RESBOYCAN_{t+1} = CURRESCAN_t + RESADCAN_t - OGPRDCAN_t$$
(63)

Remaining economically recoverable resources

$$\text{URRCAN}_{t} = \text{RESBASE}_{\text{resbasyr}} * (1. + \text{RESTECH})^{\text{T}} - \text{CUMRCAN}_{t-1}$$

Production to reserves ratio

$$\mathbf{PR}_{t+1} = \frac{\mathbf{Q}_t * (1 - \mathbf{PR}_t) + \mathbf{PRNEW} * \mathbf{RA}_t}{\mathbf{R}_t}$$
(65)

(64)

Offshore Supply

COSTING AND CASH-FLOW ROUTINES	
Geological and Geophysical Costs Per Year:	
$GNG_CAP_t = \frac{GNGCAP}{GNG_TIM}$, t = IYREXP to (IYREXP+GNG_TIM-1)	(66)
$GNG_EXP_{t} = \frac{GNGEXP}{GNG_TIM}, t = IYREXP to (IYREXP + GNG_TIM - 1)$	(67)
Exploration Drilling Costs Per Year	
EXPDCST _t = DNCEXP * $\frac{\text{EXPWEL}}{\text{EXPTIM}}$, t = IYREXP to (IYREXP + EXPTIM - 1)	(68)
Delineation Drilling Costs Per Year	
DELDCST _t = DNCDEL * $\frac{\text{DELWEL}}{\text{DELTIM}}$, t = IYRDEL to (IYRDEL + DELTIM - 1)	(69)
Pre-drilled Development Well Costs Per Year	
PREDCST _t = DNCPRE * $\frac{PREDEV}{PRETIM}$, t = IYRPRE to (IYRPRE + PRETIM - 1)	(70)
Pre-drilled Dry Development Well Costs Per Year	
PDRDCST _t = PREDRY * $\frac{\text{DELWEL}}{\text{PRETIM}}$, t = IYRPRE to (IYRPRE + PRETIM - 1)	(71)
Development Drilling Costs Per Year	
DEVDCST _t = DNCDEV * $\frac{\text{DEVWEL}}{\text{DEVTIM}}$, t = IYRDEV to (IYRDEV + DEVTIM - 1)	(72)
Dry Development Drilling Costs Per Year	
DDRDCST _t = DNCDRY * $\frac{\text{DEVDRY}}{\text{DEVTIM}}$, t = IYRDEV to (IYRDEV + DEVTIM - 1)	(73)
Production Structure Installation Costs Per Year	
STRYCST _t = STRCST * $\frac{\text{NSTRUC}}{\text{STRTIM}}$, t = IYRSTR to (IYRSTR + STRTIM - 1)	(74)
Template Installation Costs Per Year	
$TMPYCST_{t} = TEMCST * \frac{NTEMP}{TEMTIM}, t = IYRTEM$	(75)

B-9

Pipeline and Gathering System Installation Costs Per Year PIPECST _t =PIPECO, t = IYRPIP	(76)
Production Structure Abandonment Costs Per Year ABNDCST _t = ABNCST, t = IYRABN	(77)
Intangible Capital Investments Per Year	
$INTANG_{t} = EXPDCST_{t} + DELDCST_{t} + 0.7 * PERIT * PREDCST_{t} + PDRDCST_{t} + 0.7 * PERIT * DEVDCST_{t} + DDRDCST_{t} + 0.9 * PERIT * STRYCST_{t} + ABNDCST_{t} + GNG_EXP_{t}, t = 1 to IYRABN$	(78)
Tangible Capital Investments Per Year	
$TANG_{t} = PERT * PREDCST_{t} + 0.3 * PERIT * PREDCST_{t} + PERT * DEVDCST_{t} + 0.3 * PERIT * DEVDCST_{t} + PERT * STRYCST_{t} + 0.1 * PERIT * STRYCST_{t} + PIPECST_{t} + GNG_{t}, t = 1 to IYRABN$	(79)
Total Investments Per Year	
$INVEST_t = TANG_t + INTANG_t$, t = 1 to IYRABN	(80)
Gross Revenues Per Year REV _{OIL} = QOIL _t * OILPRC _t , t = 1 to IYRABN	(81)
$REV_GAS_t = QGAS_t * GASPRC_t$, t = 1 to IYRABN	(82)
$\text{REV}_{GROS}_{t} = \text{REV}_{OIL}_{t} + \text{REV}_{GAS}_{t}, t = 1 \text{ to } \text{IYRABN}$	(83)
Gravity Penalties Per Year GRAV_ADJ _t = QOIL _t * GRADJ _t , t = 1 to IYRABN	(84)
Transportation Costs Per Year TRAN_CST _t = QOIL _t * TARF_OIL _t + QGAS _t * TARF_GAS _t , t = 1 to IYRABN	(85)

Adjusted Revenues Per Year	
$REV_ADJ_t = REV_GROS_t - GRAV_ADJ_t - TRAN_CST_t$, $t = 1$ to IYRABN	(86)
Royalty Payments Per Year ROYALTY, = REV_ADJ, * ROYL_RAT, t = 1 to IYRABN	(87)
$ROYALTY_{t} = 0.00$, IF QCBOE $\leq RELIEF_{WDC}$	(88)
Net Producer Revenue Per Year	
$\text{REV}_{\text{PROD}_{\text{t}}} = \text{REV}_{\text{ADJ}_{\text{t}}} - \text{ROYALTY}_{\text{t}}, \text{ t} = 1 \text{ to IYRABN}$	(89)
G & A on Investments and Operation Costs	
$GNA_CST_t = TANG_t * GNATAN + INTANG_t * GNAINT, t = 1 to IYRABN$	(90)
	()
$GNA_OPN_t = OPCOST_t * OPOVHD, t = 1 to IYRABN$	(91)
Net Revenue from Operations Per Year	
$REV_NET_t = REV_PROD_t - OPCOST_t - GNA_CST_t - GNA_OPN_t$, t = 1 to IYRABN	(92)
Net Income Before Taxes Per Year	
NET_BTCF _t = REV_NET _t - INTANG _t - DEPR _t - GNGRC _t , t = 1 to IYRABN	(93)
Federal Tax Bill Per Year	
$FED_TAXS_t = NET_BTCF_t * FTAX_RAT, t = 1$ to IYRABN	(94)
Income Tax Credits Per Year	
FED_INTC _t = INVEST _t * XINTC, t = 1 to IYRABN	(95)
Net Income After Taxes Per Year	
INCLINCOME ATTER LAXES FEF LEAF	
NET_INCM _t = NET_BTCF _t - FED_TAXS _t + FED_INTC _t , t = 1 to IYRABN	(96)

$ANN_ATCF_t = NET_INCM_t - TANG_t + DEPR_t + GNGRC_t$, $t = 1$ to IYRABN	(97)
---	------

Discounted After-Tax Cash Flow Per Year

$$NPV_ATCF_{t} = \frac{ANN_ATCF_{t}}{DISCRT^{I}}, t = 1 \text{ to } IYRABN$$
(98)

RESERVES DEVELOPMENT AND PRODUCTION TIMING

Inferred Oil Rese	rve Additions	
IE DOOL TVDE	- 'OII' and IE OII DDICE	S MACD TOT

$$IF POOL I YPE_{ipool} = OIL, and IF OILPRICE_{iyr} \ge MASP_IOI_{ipool}$$

$$INFR_OIL_{iyr} = INFR_OIL_{iyr} + RSRV_OIL_{ipool}, iyr = Current Year, ipool = 1 to NFIELD$$
(99)

$$INFR_AGS_{iyr} = INFR_AGS_{iyr} + RSRV_GAS_{ipool}, iyr = Current Year, ipool = 1 to NFIELD$$
(100)

Inferred Gas Reserve Additions

IF POOLTYPE $_{ipool}$ = 'GAS', and IF GASPRICE $_{iyr} \ge MASP_TOT_{ipool}$ INFR_GAS $_{iyr}$ = INFR_GAS $_{iyr}$ + RSRV_GAS $_{ipool}$, iyr = Current Year, ipool = 1 to NFIELD (101)

$$INFR_CND_{iyr} = INFR_CND_{iyr} + RSRV_OIL_{ipool}, iyr = Current Year, ipool = 1 to NFIELD$$
(102)

Average Supply Price for Inferred Oil Reserves

IF POOLTYPE ipool = 'OIL', and IF OILPRICE_{ivr} > MASP_TOT ipool

$$MSP_INFO_{iyr} = \frac{MSP_INFO_{iyr} * INFR_OIL_{iyr} + MASP_TOT_{ipool} * RSRV_OIL_{ipool}}{INFR_OIL_{iyr} + RSRV_OIL_{ipool}}, iyr = Current Year, ipool = 1 to NFIELD (103)$$

Average Supply Price for Inferred Gas Reserves IF POOLTYPE $_{ipool}$ = 'GAS', and IF GASPRICE $_{iyr} \ge$ MASP_TOT $_{ipool}$

$$MSP_INFG_{iyr} = \frac{MSP_INFG_{iyr} * INFR_GAS_{iyr} + MASP_TOT_{ipool} * RSRV_GAS_{ipool}}{INFR_GAS_{iyr} + RSRV_GAS_{ipool}}, iyr = Current Year, ipool = 1 to NFIELD (104)$$

Wells Required for Inferred Oil Reserves IF POOLTYPE $_{ipool}$ = 'OIL', and IF OILPRICE $_{iyr} \ge MASP_TOT_{ipool}$ WEL_EXPO_{ivr} = WEL_EXPO_{ivr} + EXPL_WEL_{ipool}, iyr = Current Year, ipool = 1 to NFIELD (105)

WEL_DEVO _{iyr} = WEL_DEVO _{iyr} + DEVL_WEL _{ipool} , iyr = Current Year, ipool = 1 to NFIELD	(106)
WEL_DRYO _{iyr} = WEL_DRYO _{iyr} + DRY_HOLE _{ipool} , iyr = Current Year, ipool = 1 to NFIELD	(107)
Wells Required for Inferred Gas Reserves IF POOLTYPE $_{ipool}$ = 'GAS', and IF GASPRICE $_{iyr} \ge MASP_TOT_{ipool}$	
WEL_EXPG _{iyr} = WEL_EXPG _{iyr} +EXPL_WEL _{ipool} , iyr = Current Year, ipool = 1 to NFIELD	(108)
WEL_DEVG _{iyr} = WEL_DEVG _{iyr} + DEVL_WEL _{ipool} , iyr = Current Year, ipool = 1 to NFIELD	(109)
WEL_DRYG _{iyr} = WEL_DRYG _{iyr} + DRY_HOLE _{ipool} , iyr = Current Year, ipool = 1 to NFIELD	(110)
Number of Structures Required for Inferred Oil Reserves IF POOLTYPE _{ipool} = 'OIL', and IF OILPRICE _{iyr} ≥ MASP_TOT _{ipool} NUM_STRO _{iyr} = NUM_STRO _{iyr} + STRUC_NO _{ipool} , iyr = Current Year, ipool = 1 to NFIELD	(111)
Number of Structures Required for Inferred Gas Reserves IF POOLTYPE $_{ipool}$ = 'GAS', and IF GASPRICE $_{iyr} \ge MASP_TOT_{ipool}$ NUM_STRG $_{iyr}$ = NUM_STRG $_{iyr}$ + STRUC_NO $_{ipool}$, iyr = Current Year, ipool = 1 to NFIELD	(112)
Relative Price Differential for Oil Reserves Vs. Gas Reserves Development	
RATIO1 = $\frac{\text{OILPRICE}_{iyr} - \text{MSP_INFO}_{iyr}}{\text{OILPRICE}_{iyr}}$, iyr = Current Year	(113)
RATIO1 = $\frac{\text{GASPRICE}_{iyr} - \text{MSP_INFG}_{iyr}}{\text{GASPRICE}_{iyr}}, \text{ iyr} = \text{Current Year}$	(114)
$PRP_OIL_{iyr} = \frac{RATIO1}{RATIO1 + RATIO2}, iyr = Current Year$	(115)
Oil Well Drilling Activity RIGS _{iyr} = rig_B0 + rig_B1 * RIGS _{iyr-1} + rig_B2 * gasprice _{iyr} + rig_B3 * oilprice _{iyr}	(116)
$ExpWell_{iyr} = exp_B0 + exp_B1 * RIGS_{iyr}$	(117)

B-13

$$DevWell_{iyr} = dev_B0 + dev_B1 * ExpWell_{iyr-5} + dev_B2 * RIGS_{iyr} + rig_B3 * DevWell_{iyr-1}$$
(118)

$$WEL_LIMT_{iyr} = DevWell_{iyr}, iyr = Current Year$$
(119)

$$WEL_LIMO_{iyr} = PRP_OIL_{iyr} * WEL_LIMIT_{iyr}, iyr = Current Year$$
(120)

$$WEL_DRLO_{iyr} = \begin{cases} WEL_LIMO_{iyr} & \text{if WEL}_LIMO_{iyr} \le WEL_DEVO_{iyr}, \text{ iyr} = \text{Current Year} \\ WEL_DEVO_{iyr} & \text{if WEL}_LIMO_{iyr} \ge WEL_DEVO_{iyr}, \text{ iyr} = \text{Current Year} \end{cases}$$
(121)

$$WEL_LIMG_{iyr} = WEL_LIMIT_{iyr} - WEL_LIMO_{iyr}, iyr = Current Year$$
(122)

$$WEL_DRLG_{iyr} = \begin{cases} WEL_LIMG_{iyr} & \text{if WEL_LIMG}_{iyr} \leq WEL_DEVG_{iyr}, \text{ iyr} = \text{Current Year} \\ WEL_DEVG_{iyr} & \text{if WEL_LIMG}_{iyr} \geq WEL_DEVG_{iyr}, \text{ iyr} = \text{Current Year} \end{cases}$$
(123)

Booked Oil Reserve Additions

$$RTIO_OIL = \frac{WEL_DRLO_{iyr}}{WEL_DEVO_{iyr}}, iyr = Current Year$$
(124)

$$BKED_OIL_{iyr} = RTIO_OIL * INFR_OIL_{iyr}, iyr = Current Year$$
(125)

 $BKED_AGS_{iyr} = RTIO_OIL * INFR_AGS_{iyr}$, iyr = Current Year

Booked Gas Reserve Additions

$$\mathbf{RTIO}_{GAS} = \frac{\mathbf{WEL}_{DRLG}_{iyr}}{\mathbf{WEL}_{DEVG}_{iyr}}, \text{ iyr = Current Year}$$
(127)

 $BKED_GAS_{iyr} = RTIO_GAS * INFR_GAS_{iyr}, iyr = Current Year$ (128)

BKED_CND_{ivr} = RTIO_GAS * INFR_CND_{ivr}, iyr = Current Year

(129)

(126)

Oil Production Accounting

Beginning of the Year Reserves

$BEG_RSVO_{iyr} = XPVD_OIL + XPVD_CND, iyr = 1$	(130)
$BEG_RSVO_{iyr} = END_RSVO_{iyr-1}$, iyr = Current Year $\neq 1$	(131)
Production in the Year RATIO_RP _{ivr} = rp_B0 + rp_B1 * ln(iyr + ModelStartYear - rp_B2)	(132)
$PROD_OIL_{iyr} = \frac{BEG_RSVO_{iyr}}{RATIO_RP}$	(133)
Reserves Growth	
GRO_RSVO _{iyr} = (BEG_RSVO _{iyr} - PROD_OIL _{iyr}) * RES_GROW, iyr = Current Year	(134)
Reserve Additions ADD_RSVO _{iyr} = BKED_OIL _{iyr} + BKED_CND _{iyr} , iyr = Current Year	(135)
End of the Year Reserves END_RSVO _{iyr} = BEG_RSVO _{iyr} + GRO_RSVO _{iyr} + ADD_RSVO _{iyr} - PROD_OIL _{iyr} , iyr=Current Year	(136)
Gas Production Accounting	
Beginning of the Year Reserves	
BEG_RSVG _{iyr} = XPVD_GAS + XPVD_AGS, iyr = 1	(137)
$BEG_RSVG_{iyr} = END_RSVG_{iyr}$, iyr = Current Year $\neq 1$	(138)
Production in the Year	
$PROD_GAS_{iyr} = \frac{BEG_RSVG_{iyr}}{RATIO_RP}, iyr = Current Year$	(139)
Reserves Growth	

 $GRO_RSVG_{iyr} = (BEG_RSVG_{iyr} - PROD_GAS_{iyr}) * RES_GROW, iyr = Current Year$

B-15

(140)

Reserve Additions	
$ADD_RSVG_{iyr} = BKED_GAS_{iyr} + BKED_AGS_{iyr}$, iyr = Current Year	(141)

End of the Year Reserves

$$END_{RSVG_{iyr}} = BEG_{RSVG_{iyr}} + GRO_{RSVG_{iyr}} + ADD_{RSVG_{iyr}} - PROD_{GAS_{iyr}}, iyr = Current Year$$
(142)

Advanced Technology Impacts on Exploration

$$MASP_EXP_{ipool,new} = \frac{MASP_EXP_{ipool,old}}{ADT_EXPL}, ipool=1 \text{ to NFIELD}$$
(143)

$$MASP_TOT = MASP_TOT - (MASP_EXP_{ipool,old} - MASP_EXP_{ipool,new}), ipool = 1 to NFIELD$$
(144)

Advanced Technology Impacts on Drilling

$$MASP_DRL_{ipool,new} = \frac{MASP_DRL_{ipool,old}}{ADT_DRLG}, ipool = 1 \text{ to NFIELD}$$
(145)

$$MASP_TOT = MASP_TOT - (MASP_DRL_{ipool,old} - MASP_DRL_{ipool,new}), ipool = 1 to NFIELD$$
(146)

Advanced Technology Impacts on Operations

$$MASP_OPR_{ipool,new} = \frac{MASP_OPR_{ipool,old}}{ADT_OPER}, ipool = 1 \text{ to NFIELD}$$
(147)

 $MASP_TOT = MASP_TOT - (MASP_OPR_{ipool,old} - MASP_OPR_{ipool,new}), ipool = 1 to NFIELD$ (148)

Unconventional Gas Recovery Supply

Resource Base/Well Productivity

Legally Accessible Undrilled Locations Under Current Technology

$$CTUL = \left(BASAR*WSPAC_CT - DEV_CEL\right)*\left(1.0 - NOACCESS\right)$$
(149)

Legally Accessible Undrilled Locations Under Advanced Technology

$$ATUL = \left(BASAR*WSPAC_AT - DEV_CEL\right)*\left(1.0 - NOACCESS\right)$$
(150)

Weighted Average of the Expected Ultimate Recovery for Each (Entire) Basin

$$MEUR1_{1,1} = (.10 * RW10 + .20 * RW20 + .30 * RW30 + .40 * RW40)$$
(151)

Expected Ultimate Recovery for the Best 30% of the wells in the Basin

$$MEUR1_{iyr,2} = MEUR_{1,1} + ((((RW10*(1/3)) + (RW20*(2/3) - MEUR1_{1,1}))/DEVPER)$$

TECHYRS)(TECHYRS*(REDAM%/20) + (TECHYRS*(FRCLEN%/20))
+(TECHYRS*(PAYCON%/20)) + 1)) (152)

Expected Ultimate Recovery for the middle 30% of the wells in the Basin

$MEUR1_{iyr,3} = RW30$	(153)
Expected Ultimate Recovery for the Worst 40% of the Wells in the Basin	
$MEUR1_{iyr,4} = (MEUR1_{1,1}) - (((RW30_1 - RW40_1)/DEVPER) * TECHYRS) * (TECHYRS) * (REDAM\%/20)) = (REDAM\%/20) + (REDAM\%/20) + (REDAM\%/20) + (REDAM\%/20) + (REDAM\%/20)) = (REDAM\%/20) + (REDAM\%/20)$	(154)
+(TECHYRS*(FRCLEN%/20))+(TECHYRS)*(PAYCON%/20))+1)	(154)

Expected Ultimate Recovery adjusted for Technological Progress in the Development of New Cavity Fairways

$$MEUR2 = \begin{cases} MEUR1 * CAVFRWY\% \Leftarrow IF(NEWCAVFRWY = 1) \\ MEUR1 \Leftarrow IF(NEWCAVFRWY = 0) \end{cases}$$
(155)

Expected Ultimate Recovery adjusted for Technological Progress in the Commercialization of Enhanced Coalbed Methane

MEUR3 =	$\int MEUR2 * ENCBM\% \leftarrow IF(ENCBM = 1)$	(156)
WILCR3 -	$\int MEUR2 \leftarrow IF(ENCBM = 0)$	(130)

Technically Recoverable Wells

TRW1 =(ATUL*SCSSRT1*PLPROB21)	(157)

Undeveloped Resources

UNDEV_RES _{iyr} =(MEUR3 _{iyr} *TRW _{iyr})	(158)
---	-------

Reserves and Cumulative Production

RESNPROD _{iyr} =RESNPROD _{iyr-1} +RESADD _{iyr}	(159)
---	-------

Ultimate Recoverable Resources

URR _{iyr} =RESNPROD _{iyr} +UNDEV_RES _{iyr}	(160)
---	-------

Economics and Pricing

Discounted Reserves

DISCRES _{iyr} =(DIS_FAC*MEUR3 _{iyr})	(161)
---	-------

Expected Net Present Value Revenues

ENPVR _{iyr} =(WHGP _{iyr} +BASNDIF)*(DISCRES _{iyr})*1,000,000)	(162)
---	-------

Drilling and Completion Costs

$$DACC = \begin{cases} AVGDPTH*DCC_L2K + DCC_G\&G \Leftarrow IF(AVDPTH < 2000) \\ 2000*DCC_L2K + (AVGDPTH - 2000)*DCC_G2K) + DCC_G\&G \Leftarrow IF(AVDPTH \ge 2000) \end{cases}$$
(163)

Stimulation Costs

STIMC = SZONE*STM CST	(164)
BINNE BLONE BINLEDI	(101)

Pumping and Surface Equipment Costs

$$PASE = \begin{cases} BASET + 5*AVGDPTH \leftarrow IF(WATR_DISP = 1) \\ 10000 \leftarrow IF(WATR_DISP \neq 1) \end{cases}$$
(165)

Lease Equipment Costs

$$LSE_EQ = \begin{cases} \begin{bmatrix} WOMS_LE + WOML_WTR \leftarrow IF\{(WATR_DISP = 1)AND(MEUR3 < .5)\} \\ WOMM_LE + WOML_WTR \leftarrow IF\{(WATR_DISP = 1)AND(MEUR3 \ge .5)AND(MEUR3 \le 1.0)\} \\ WOML_LE + WOML_WTR \leftarrow IF\{(WATR_DISP = 1)AND(MEUR3 > 1.0)\} \\ \begin{bmatrix} WOMS_LE \leftarrow IF\{(WATR_DISP = 0)AND(MEUR3 < .5)\} \\ WOMM_LE \leftarrow IF\{(WATR_DISP = 0)AND(MEUR \ge .5)AND(MEUR3 \le 1.0)\} \\ \end{bmatrix}$$
(166)

General and Administrative Costs

$$GAA10 = RST^{*}(LSE_EQ + PASE + STIMC + DACC)$$
(167)

Total Capital Costs

$$TCC = (DACC + STIMC + PASE + LSE_EQ + GAA10)$$
(168)

Dry Hole Costs

$$DHC = (DACC + STIMC)^*((1/SCSSRT) - 1)$$
(169)

Capital and Dry Hole Costs per Mcf Adjusted for Access Restrictions

$$CCWDH = \begin{cases} (TTC + DHC)/(DISCRES*1000000) * \left(\frac{1 - NOACCESS + LEASSTIP*.06}{1 - NOACCESS}\right) & \Leftrightarrow If \{ACCESS = 0\} \\ (TTC + DHC)/(DISCRES*1000000) & \Leftrightarrow Else \end{cases}$$
 (170)

Variable Operating Costs

$$VOC = \begin{cases} WTR_DSPT*TECHYRS*(WDT\%/20)+WOMS*TECHYRS*(PUMP\%/20) \\ +GASTR*TECHYRS*(GTF\%/20)+OCWW\$ & \leftarrow IF(WAT_DISP > .4) \\ WTR_DSPT*TECHYRS*(WDT\%/20)+WOMS*TECHYRS*(PUMP\%/20) \\ +GASTR*TECHYRS*(GTF\%/20)+OCNW\$ & \leftarrow IF(WAT_DISP \le .4) \end{cases}$$
(171)

Variable Operating Costs with Enhanced Coalbed Methane

$$VOC2 = \begin{cases} VOC+((ECBM_OC+VOC)*(ENH_CBM\%))/(1+ENH_CBM\%) \Leftrightarrow IF(ECBMR=1) \\ VOC \Leftrightarrow IF(ECBMR \neq 1) \end{cases}$$
(172)

Fixed Operating and Maintenance Costs

$IF(WATR_DISP = 1)$	
$\overline{\text{DIS}_{FACT*WOMS}_{OMW} + \text{VOC*DISCRES*10000000}} \leftarrow \text{IF}(\text{MEUR3} < .5)$	
$DIS_FACT*WOMM_OMW + VOC*DISCRES*1000000 \Leftarrow IF(MEUR3 \ge .5)AND(MEUR3 \le 1.0)$	
$DIS_FACT*WOMM_OMW + VOC*DISCRES*1000000 \Leftarrow IF(MEUR3 > 1.0)$	
$FOMC = \begin{cases} I = 0 \\ IF(WATR_DISP = 0) \end{cases}$	
$.6*DIS_FACT*WOMS_OMW + VOC*DISCRES*1000000 \leftarrow IF(MEUR3 < .5)$	(173)
$.6*DIS_FACT*WOMM_OMW+VOC*DISCRES*1000000 \leftarrow IF(MEUR3 \ge .5)AND(MEUR3 \le 1.0)$	
$.6*DIS_FACT*WOMM_OMW + VOC*DISCRES*1000000 \leftarrow IF(MEUR3 > 1.0)$	

Total Costs

$$TOTL_CST = FOMC / (DISCRES*1000000) + CCWDH$$
(174)

Net Price

$NET_PRC = (1 - RST) * (WHGP + BASNDIF)$	(175)
--	-------

Net Profitability

NET_PROF = NET_PRC - TOTL_CST - MIN_ROI	(176)
---	-------

$$NET_PROFIT2 = \begin{cases} NET_PROFIT \leftarrow IF(NET_PROFIT > 0) \\ 0 \leftarrow IF(NET_PROFIT \le 0) \end{cases}$$
(177)

Model Outputs

Undeveloped Wells

$$UNDV_WELLS = \begin{cases} TRW * (ENV\% + (LOW\% / LOWYRS) * TECHYRS) \Leftarrow IF(NET_PROF2 > 0) AND(ENPRGS = 1) \\ TRW \Leftarrow IF(NET_PROF2 > 0) AND(ENPRGS = 0) \\ 0 \Leftarrow IF(NET_PROF2 = 0) \end{cases}$$
(178)

Expected Ultimate Recovery Adjusted for Profitability

$$MEUR4 = \begin{cases} MEUR3 \leftarrow IF(NET_PROF2 > 0) \\ 0 \leftarrow IF(NET_PROF2 = 0) \end{cases}$$
(179)

Drilling Schedule

$$DRL_SCHED = \begin{cases} 0 \leftarrow IF(HYP\% \neq 0) \\ 0 \leftarrow IF(HYP\% = 0)AND(NET_PROF2 = 0) \\ USLOW \leftarrow IF(HYP\% = 0)AND(NET_PROF2 > 0)AND(NET_PROF < LOW$) \\ SLOW \leftarrow IF(HYP\% = 0)AND(NET_PROF2 \ge LOW$)AND(NET_PROF < SMAL$) \\ MED \leftarrow IF(HYP\% = 0)AND(NET_PROF2 \ge SMAL$)AND(NET_PROF < MED$) \\ FAST \leftarrow IF(HYP\% = 0)AND(NET_PROF2 \ge MED$)AND(NET_PROF < LAR$) \\ SLOW \leftarrow IF(HYP\% = 0)AND(NET_PROF2 \ge LAR$) \end{cases}$$
(180)

Drilling Schedule Adjusted for Technological Advancement

$$DRL_SCHED2 = \begin{cases} DRL_SCHED + EMRG\% - EMERG\# \Leftarrow IF(DRL_SCHED > 0)AND(EMRG = 1) \\ DRL_SCHED \Leftarrow IF(DRL_SCHED > 0)AND(EMRG \neq 1) \\ 0 \Leftarrow IF(DRL_SCHED \le 0) \end{cases}$$
(181)

$$DRL_SCHED3 = \begin{cases} DRL_SCHED \Leftarrow IF(DRL_SCHED2 < DRL_SCHED) \\ DRL_SCHED2 \Leftarrow IF(DRL_SCHED2 \ge DRL_SCHED) \end{cases}$$
(182)

$$DRL_SCHED4 = \begin{cases} DRL_SCHED3* \left(\frac{1 - NOACCESS + LEASSTIP*.10}{1 - NOACCESS}\right) & \leftarrow If \{ACCESS = 0\} \\ Or \\ QRL_SCHED3 \leftarrow Else \end{cases}$$
(183)

New Wells

$$NW_WELLS = \begin{cases} \begin{bmatrix} IF(DRL_SCHED4 > 0) \\ (IF(YEAR > 1)AND(NW_WELLS_LAG > 0) \\ 1.3*NW_WELLS_LAG \leftarrow IF(UNDV_WELLS / DRL_SCHED4 > 1.3*NW_WELLS_LAG) \\ .7*NW_WELLS_LAG \leftarrow IF(UNDV_WELLS / DRL_SCHED4 < 0.7*NW_WELLS_LAG) \\ UNDV_WELLS / DRL_SCHED4 \leftarrow IF(UNDV_WELLS / DRL_SCHED4 \\ ((< 1.3*NW_WELLS_LAG)AND(> 0.7*NW_WELLS_LAG)))) \\ (IF(YEAR = 1)OR(NW_WELLS_LAG = 0) \\ UNDV_WELLS / DRL_SCHED4 \\ \hline IF(DRL_SCHED4 = 0) \\ 0 \end{cases}$$
(184)

$$NW_WELLS2 = \begin{cases} UNDV_WELLS \leftarrow IF(UNDV_WELLS < NW_WELLS) \\ NW_WELLS \leftarrow IF(UNDV_WELLS \ge NW_WELLS) \end{cases}$$
(185)

Reserve Additions from New Wells

$$DRA = NW_WELLS2 * MEUR4$$
(186)

Reserve Additions from New Growth

 $RGA = \begin{cases} RGR * PROV_RES+.025*(MEUR3 - MEUR2) \leftarrow IF(RES_GR = 1)AND(ENCBM = 1) \\ RGR * PROV_RES \leftarrow IF(RES_GR = 1)AND(ENCBM = 0) \\ 0 \leftarrow IF(RES_GR \neq 1) \end{cases}$ (187)

Total Reserve Additions

$R_ADD = DRA + RGA$	(188)
---------------------	-------

Proved Reserves for the Next Year

$PRO_RES + R_ADD - PROD \leftarrow IF((PROV_RES + R_ADD - PROD) > 0)$	
$PROV_RES2 = \begin{cases} 1 \text{ (Integral b)} & 1 (Integral$	(189)

Reserves-to-Production Ratio for the Next Year

$$RP_RAT2 = \begin{cases} RP_RAT - 1 \leftarrow IF(RP_RAT > 10) \\ RP_RAT \leftarrow IF(RP_RAT \le 10) \end{cases}$$
(190)

Production for the Next Year

$$PROD2 = \begin{cases} 0 \leftarrow IF(RP_RAT2 = 0) \\ PRO_RES / RP_RAT2 \leftarrow IF(RP_RAT2 \neq 0) \end{cases}$$
(191)

Undeveloped Wells for the Next Year

$$UNDV_WELLS2 = \begin{cases} \begin{bmatrix} IF(ENPRGS = 1) \\ TRW - NW_WELLS2 \\ \end{bmatrix} \\ \hline IF(ENPRGS \neq 1) \\ 0 \leftarrow IF(UNDV_WELLS = 0) \\ .1 \leftarrow IF(UNDV_WELLS \neq 0)AND(UNDV_WELLS - NW_WELLS = 0) \\ NW_WELLS2 \leftarrow IF(UNDV_WELLS \neq 0)AND(UNDV_WELLS - NW_WELLS \neq 0) \end{cases}$$
(192)

Appendix C. Bibliography

Aerospace Corporation. 1976. Alaska Natural Gas Transportation Systems Economic and Risk Analysis.

Advanced Resources International: "Naturally Fractured Tight Gas Reservoir Detection Optimization", Quarterly Status Report for US DOE - METC, Contract number DE-AC21-93MC30086, May 23, 1997.

Allied Technology Group, Inc. 1996. "Model Quality Audit Report: Final Report - Oil and Gas Supply Module."

American Petoleum Institute. November 1996. "Joint Association Survey on 1995 Drilling Costs", Finance, Accounting, and Statistics Department, Washington D.C.

American Petoleum Institute. November 1997." *Joint Association Survey on 1996 Drilling Costs*", Finance, Accounting, and Statistics Department, Washington D.C.

Argonne National Laboratory, Environmental Assessment and Information Sciences Division. June 7, 1991 (revised draft). *National Energy Strategy Environmental Analysis Model (NESEAM): Documentation and Findings*, prepared for the DOE Office of Policy, Planning, and Analysis under contract W-31-109-Eng-38.

Arps, J.J. and T.G. Roberts. 1958. "Economics of Drilling for Cretaceous Oil on East Flank of Denver-Julesburg Basin," *Bulletin of American Association of Petroleum Geologists*, Vol. 42, No. 11 (November) pp. 2549-2567.

Attanasi, E.D., L.J. Drew, and D.H. Root. 1981. "Physical Variables and the Petroleum Discovery Process" in James Ramsey, ed., *The Economics of Exploration for Energy Resources* (Greenwich: JAI Press).

Attanasi, E.D. and Haynes, J.L. 1983. "Future Supply of Oil and Gas from the Gulf of Mexico", U.S. Geological Survey Professional Paper 1294, U.S. Geological Survey.

Bacigalupi, Suzan M., et al. October 1996."*Outer Continental Shelf: Estimated Oil and Gas Reserves, Gulf of Mexico, December 31, 1995*", Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Bailey, Ralph E. and Curtis, L.B. June 1984. "Enhanced Oil Recovery", National Petroleum Council report Submitted to the Secretary of Energy, National Petroleum Council, Washington D.C.

Baker, R.A., Gehman, H.M., James, W.R., and White, D.A. 1984. "Geologic Field Number and Size Assessments of Oil and Gas Plays," *The American Association of Petroleum Geologists Bulletin*, Vol 68, No. 4, pages 426-437.

Beach, C. and MacKimnon, J. 1978. "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors," *Econometrica*, Vol. 46, pages 51-58.

BehrenBruch, Peter. January 1995." *Deepwater Drilling & Production: Floating Production FacilitiesKey to Lower Cost Deepwater Development*", HP Petroleum, Oil and Gas Journal.

Beltramo, M., Manne a., Weyant J., The Energy Journal, 7 (July 1986), pp.15-32.

Bird, K.J. 1986. "A Comparison of the Play Analysis Techniques as Applies in Hydrocarbon Resource Assessments of the National Petroleum Reserve in Alaska and the Arctic National Wildlife Refuge," in

Rice, D.D., ed., Oil and Gas Assessment, Methods and Applications, American Association of Petroleum Geologists Studies in Geology, No. 21, Tulsa.

Bourgoyne Jr., A.T., et al. 1991. "*Applied Drilling Engineering*", Society of Petroleum Engineers (SPE) Textbook Series, Vol. 2, Second Printing, Society of Petroleum Engineers, Richardson, Texas.

Bowers, B., Kutney, R., "Trends in Crude Oil and Natural Gas Reserves Additions Rates and Marginal Supply Costs for Western Canada," *Journal of Canadian Petroleum Technology*, May-June 1989, vol 28 #3, pp. 88-94.

Brown, Kevin, J., "Towards A Continental Natural Gas Market: Historical Perspectives And Long-Term Outlook," *Canadian Energy Research Institute*, Study No. 26, March 1988.

Canadian Energy Research Institute, *Continental Natural Gas Market: Canadian Export Capacity in the* 90s, Study No. 32, October 1989.

Cazalet, E.G. 1977. *Generalized Equilibrium Modeling: The Methodology of the SRI-Gulf Energy Model*, Decision Focus Incorporated, Palo Alto, CA and Stanford Research Institute, Menlo Park, CA.

Chapman, L. Randy, et al. November 1995. "Platform/Pipeline Construction: Containing Field Abandonment Costs in the Gulf of Mexico", Oil and Gas Journal.

Cherniavsky, E.A., and Juang, L.L. October 1979. *Resource Submodels of the Long-Range Energy Analysis Program: Documentation*, Report to the Division of Long-range Analysis, Energy Information Administration, Washington.

Cherniavsky, E.A. May 1982. "Oil/Gas Supply Modeling Considerations in Long-range Forecasting," in Gass, S.I., *Oil and Gas Supply Modeling, Proceedings of a Symposium held at the Department of Commerce, Washington, D.C., June 18-20, 1980*, U.S. Department of Commerce, NBS Special Publication 631.

Cox, J., and Wright, A. 1976. "The Determinants of Investment in Petroleum Reserves and Their Implications for Public Policy," *American Economic Review*, Vol. 66, No. 1, pages 153-167.

Cranswick, Deborah and Regg, James. February 1997. "Deepwater in the Gulf of Mexico: America's New Frontier", OCS Report MMS 97 -0004, U.S. Minerals Management Service, New Orleans.

Davis, J.C., and Harbaugh, J.W. 1981. "A Simulation Model for Oil Exploration Policy on Federal Lands of the U.S. Outer Continental Shelf," in Ramsey, J., ed., *The Economics of Exploration for Energy Resources*, JAI Press, Greenwich.

Deacon, R., et al. 1983. *The Proposed California Crude Oil Severance Tax: An Economic Analysis*, The Economics Group, Inc., Santa Barbara.

Department of Revenue, State of Alaska. 1989, 1990, and 1991. *Petroleum Production Revenue Forecast*. Alaska.

Drew, L.J., Schuenemeyer, J.H., and Bawiec, W.J. 1982. *Estimation of the Future Rate of Oil and Gas Discovery in the Gulf of Mexico*, U.S. Geologic Survey Professional Paper, No. 252, Reston, VA.

DRI/McGraw-Hill, *Energy Review: Natural Gas Market Focus*, Standard & Poor's Corporation, Lexington, Massachusetts, 1990.

Dutton, Shirley P., Clift, Sigrid J., Hamilton, Douglas S., Hamlin, H. Scott, Hantzs, Tucker F., Howard, William E., Akhter, M. Saleem, Laubach, Stephen E.: "Major Low-Permeability-Sandstone Gas Reservoirs in the Continental United States" Bureau of Economic Geology - University of Texas and Gas Research Institute, 1993.

Eckbo, P.L., Jacoby, H.D., and Smith, J.L. 1978. "Oil Supply Forecasting: A Disaggregated Process Approach," *Bell Journal of Economics*, Vol. 9, No. 1, pages 218-235.

Energy and Environmental Analysis Inc., *Costs for LNG Imports Into the United States*, prepared for Gas Research Institute, GRI Contract #5087-800-1474, August 1988.

Energy and Environmental Analysis Inc. 1991. "Import and Supplemental Gas Supply," prepared for the Source and Supply Task Group of the National Petroleum Council Natural Gas Study.

Energy Information Administration: "Annual Energy Outlook 1999 - With Projections to 2020", Energy Information Administration, Office of Integrated Analysis and Forecasting, U.S. Department of Energy, December, 1998.

Energy Information Administration: "Annual Energy Outlook 1998 - With Projections to 2020", Energy Information Administration, Office of Integrated Analysis and Forecasting, U.S. Department of Energy, December, 1997.

Energy Information Administration: "Annual Energy Outlook 1997 - With Projections to 2015", Energy Information Administration, Office of Integrated Analysis and Forecasting, U.S. Department of Energy, December, 1996.

Energy Information Administration: "Annual Energy Outlook 1996 - With Projections to 2015", Energy Information Administration, Office of Integrated Analysis and Forecasting, U.S. Department of Energy, January, 1996.

Energy Information Administration: "US Crude Oil, Natural Gas, and Natural Gas Liquids Reserves - Annual Report 1997", Energy Information Administration, Office of Oil and Gas, U.S. Department of Energy, December, 1998.

Energy Information Administration: "US Crude Oil, Natural Gas, and Natural Gas Liquids Reserves - Annual Report 1996", Energy Information Administration, Office of Oil and Gas, U.S. Department of Energy, December, 1997.

Energy Information Administration: "US Crude Oil, Natural Gas, and Natural Gas Liquids Reserves - Annual Report 1995", Energy Information Administration, Office of Oil and Gas, U.S. Department of Energy, November, 1996.

Energy Research Associates, The Reemergence of LNG - A Global Perspective, Volume I, 1989.

Epple, D. 1975. *Petroleum Discoveries and Government Policy: An Econometric Study of Supply*, Ballinger Publishing Company, Cambridge, Mass.

Epple, D. 1985. "The Econometrics of Exhaustible Resource Supply: A Theory and an Application," in Sargent, T.J., ed., *Energy Foresight and Strategy*, Resources for the Future, Washington.

Erickson, E.W., and Spann, R.M. 1971. "Supply Response in a Regulated Industry: The Case of Natural Gas," *The Bell Journal of Economics and Management Science*, Vol. 2, No. 1, pages 94-121.

Erickson, E.W., Millsaps, S.W., and Spann, R.M. 1974. "Oil Supply and Tax Incentives," *Brookings Papers on Economic Activity*, Vol. 2, pages 449-493.

Executive Office of the President. 1977. Decision and Report to Congress on the Alaska Natural Gas Transportation System. Energy Policy and Planning.

Eyssell, J.H. "The Supply Response of Crude Petroleum: New and Optimistic Results," *Business Economics*, Vol. 13, No. 3, pages 15-28.

Farmer, Richard D., Harris, Carl M., Murphy, Frederic H., and Damuth, Robert J. 1984. "The Outer continental Shelf Oil and gas Supply model of the Energy Information Administration," *North-Holland European Journal Of Operation Research*, 18.

Fisher, F.M. 1964. *Supply and Costs in the United States Petroleum Industry*, Johns Hopkins University Press for Resources for the Futures, Baltimore.

Fisher, W.L., et al, 1988, An Assessment of the Natural Gas Resource Base of the United States, Bureau of Economic Geology, University of Texas at Austin, Austin, Texas.

Gas Research Institute, *Baseline Projection Data Book: The 1989 GRI Baseline Projection of U.S. Energy Supply and Demand to 2010*, Strategic Planning and Analysis Division, Washington, DC, 1990.

Frantz, Joe: "Technology Applications Improve Antrim Shale Well Recoveries and Economics", GRI Gas Tips, Gas Research Institute, Winter, 1995/1996, p.5-11.

Gas Research Institute: "Advanced Stimulation Technology: Success in the Anadarko Basin", GRI Gas Tips, Gas Research Institute, Baseline / Gas Resource Analytical Center, August, 1996.

Gas Research Institute: "Baseline Projection Data Book - 1998 Edition of the GRI Baseline Projection of US Energy Supply and Demand to 2015", Gas Research Institute, Baseline / Gas Resource Analytical Center, 1997.

Gas Research Institute: "Baseline Projection Data Book - 1997 Edition of the GRI Baseline Projection of US Energy Supply and Demand to 2015", Gas Research Institute, Baseline / Gas Resource Analytical Center, 1996.

Gas Research Institute: "GRI Baseline Projection of US Energy Supply and Demand - 1997 Edition, 'The Contribution of Technology,'" Gas Research Institute, Baseline / Gas Resource Analytical Center, August, 1996.

Gas Research Institute, "The Long-Term Trends in U.S. Gas Supply and Prices: The 1989 GRI Baseline Projection of U.S. Energy Supply and Demand to 2010," as published in *Gas Research Insights*, Strategic Planning and Analysis Division, Washington, DC, 1990.

Gas Research Institute (GRI). 1990. *Guide to the Hydrocarbon Supply Model*, prepared for the Gas Research Institute by Energy and Environmental Analysis, Inc., Washington, DC.

Goerold, W.T. 1987. Environmental and Petroleum Resource Conflicts: *A Simulation Model to Determine the Benefits of Petroleum Production in the Arctic National Wildlife Refuge, Alaska*. Materials and Society II(3).

Goerold, W.T. 1988. A Simulation Model to Determine the Probability of Finding Economically Producible Petroleum in the Arctic National Wildlife Refuge, Alaska, Proceedings Tenth Annual North American Conference. International Association for Energy Economics. Houston TX.

Grecco, M.G. April 1987. "Deepwater Development Economics". Offshore Technology Conference.

Griffin, James M., and Moroney, John R., *Texas Severance Tax Model - The Economic Impact of Severance Taxes: Results from an Econometric Model of the Texas Oil and Gas Industry*, 1985. Report to the Texas Mid Continent Oil and Gas Association.

Haines, Leslie. July 1996. "Going Deep: Startlng New Technologies and High Flow Rates Make the Deepwater Gulf of Mexico a World Class Frontier Play - and Our Last Best Hope", Oil and Gas Investor.

Hansen, J.J. and Kornbrath, R.W. 1986. *Resource Appraisal Simulation for Petroleum in the Arctic National Wildlife Refuge, Alaska.* State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys, Professional Report 90.

Harkrider, John D., Middlebrook, Mike L., Aud, William W., Marrer, Kenneth D., Teer, George A.: "Advanced Stimulation Technology: Success in the Anadarko Basin", GRI Gas Tips, Gas Research Institute, Spring, 1996, p.24-29.

Helfat, Constance E. September 1989. *Investment in Offshore Oil by Diversified Petroleum Companies*, Journal of Industrial Economics, Volume XXXVIII.

Hendricks, K., Novales, A. 1987. *Estimation of Dynamic Investment Functions in Oil Exploration*, Draft Manuscript.

Herron, E. Hunter. June 1982. *Unconventional-Gas Production Model*, Final Report prepared for the Brookhaven National Laboratory Associated Universities, Inc. by Gruy Federal Inc.

Huntington, H.G., Schuler, Glen E., et al., "North American Natural Gas Markets," *Energy Modeling Forum Stanford University*, February 1989.

Huntington, H.G., Schuler, Glen E., et al., "North American Natural Gas Markets: Selected Technical Studies," *Energy Modeling Forum Stanford University*, April 1989.

Huntington, H.G., Lyon, Thomas P., "Responses To Modeler Questionnaires, EMF 9: North American Natural Gas Markets," *Energy Modeling Forum Stanford University*, May 1987.

ICF-Lewin Energy, Inc. June 1998. "A Model for the Economic Analysis of U.S. Undiscovered Crude Oil Resources in the Lower-48 Offshore", Prepared for U.S. Department of Energy Under Contract No. DE-AC01-85FE60603.

ICF Resources Incorporated. August 1995. "Primary Recovery Predictive Model for Total Oil Recovery Information System (TORIS)".

ICF Resources Incorporated. January 1997. "Model Development for the Gas Systems Analysis Model: Draft Topical Report", Prepared for Federal Energy Technology Center, U.S. Department of Energy, Task 4, DE-AC21-92MC28138.

ICF Resources Incorporated. January 1997. "Internal Survey of Deepwater Offshore Gulf of Mexico Projects Slated for Development, Based on Data Gathered from Various Industry Sources".

ICF Resources Incorporated. July 1990. "Update and Analysis of Offshore Oil and Gas Exploration, Development, Production and Transportation Costs", Submitted to U.S. Minerals Management Service Under Contract No. 14-12-0001-30424.

ICF Resources Incorporated. June 1994. "Update of the Regional Cost Functions for the TORIS Predictive Models", Prepared for BDM-Oklahoma, Inc. Under Contract No. DE-AC22-94PC91008.

International Petroleum Encyclopedia, PennWell Publishing Co., Tulsa, OK, 1989.

Johnson, D. 1985. "Comparison of Alternatives for Deepwater Development in the Gulf of Mexico", SPE Paper 13779 presented at the Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, March 14-15.

Johnson, Ronald C., Finn, Thomas M., Crovelli, Robert A., and Balay, Richard H.: "An Assessment of In-Place Gas Resources in Low-Permeability Upper Cretaceous and Lower Tertiary Sandstone Reservoirs, Wind River Basin, Wyoming", US Geological Survey Open-File Report 96-264, Us Geological Survey, 1996.

Kalter, R.J., Tyner, W.E., and Hughes, D.W. 1975. *Alternative Energy Leasing Strategies and Schedules for the Outer Continental Shelf*, Cornell University, Department of Agricultural Economics, A.E.RES. 75-33, Ithaca, N.Y.

Kaufman, G.M., and Barouch, E. 1978. "The Interface Between Geostatistical Modeling of Oil and Gas Discovery and Economics," *Mathematical Geology*, 10(5).

Kaufman, G.M., Runggaldier, W., and Livne, Z. 1981. "Predicting the Time Rate of Supply from a Petroleum Play," in Ramsey, J., ed., *The Economics of Exploration for Energy Resources*, JAI Press, Greenwich.

Khazzoom, D.J. "The FPC Staff's Econometric Model of Natural Gas Supply in the United States," *The Bell Journal of Economics and Managements Science*, Vol. 2, No. 1, pages 51-93.

Khodaverdian, Mohamad, McLennan, John, Palmer, Ian, Vaziri, Hans: "Coalbed Cavity Completion Analysis Suggests Improvements", GRI Gas Tips, Gas Research Institute, Winter, 1995/1996, p.22-29.

Kibbee, Stephen. June 1996. "TLP Technology: SeaStar Minimal Platform For Small Deepwater Reserves", Atlantia Corporation, Oil and Gas Journal.

Kuuskraa, Vello A., Boyer, Charles M. III: "Economic and Parametric Analysis of Coalbed Methane", Hydrocarbons from Coal — AAPG Studies in Geology number38, 1993, p.373-394.

Le Blanc, Leonard. December 1995. "FORECAST'96: Operators Moving Into Era of Just-In-Time Production", Oil and Gas Journal.

Lerch, Chris, et al. February 1997."*Ram-Powell Partners See Big Picture With Integrated Modeling*", The American Oil and Gas Reporter, Shell Offshore.

LNG Digest, Volume 15, Number 11, "News Briefs," Energy Research Associates, New York, November 1989.

Lore, Gary L., et al. August 1996."Summary of the 1995 Assessment of the Conventionally Recoverable Hydrocarbon Resources of the Gulf of Mexico and Atlantic Outer Continental Shelf: As of January 1, 1995", U.S. Minerals Management Service, New Orleans.

Luneau, Barbara: "Accelerating Technology Development in the Greater Green River Basin", GRI Gas Tips, Gas Research Institute, Fall, 1995, p.4-10.

MacAvoy, P.W. and Pindyck, R.S. "Alternative Regulatory Policies for Dealing with the Natural Gas Shortage," *The Bell Journal of Economics and Management Science*, Vol. 4, No. 2, pages 454-498.

MacDonald, John J. and Smith, Robert S. February 1997. "Offshore Topsides: Decision Trees Aid Production Facility Design", Oil and Gas Journal.

Mansvelt Beck, F.W., and Wiig, K.M. 1977. *The Economics of Offshore Oil and Gas Supplies*, Lexington Books, Lexington, Mass.

Megill, R.E. 1988. Exploration Economics.

Melancon, J. Michael, et al. January 1997. "*Gulf of Mexico Outer Continental Shelf Daily Oil and Gas Production Rate Projections from 1996 through 2000*", OCS Report MMS 97-0006, Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Melancon, J. Michael, et al. October 1990. "*Outer Continental Shelf: Estimated Oil and Gas Reserves, Gulf of Mexico, December 31, 1989*", Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Melancon, J. Michael, et al. October 1991. "*Outer Continental Shelf: Estimated Oil and Gas Reserves, Gulf of Mexico, December 31, 1990*", Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Melancon, J. Michael, et al. September 1992. "Outer Continental Shelf: Estimated Oil and Gas Reserves, Gulf of Mexico, December 31, 1991", Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Melancon, J. Michael, et al. August 1993. "Outer Continental Shelf: Estimated Oil and Gas Reserves, Gulf of Mexico, December 31, 1992", Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Melancon, J. Michael, et al. August 1994. "Outer Continental Shelf: Estimated Oil and Gas Reserves, Gulf of Mexico, December 31, 1993", Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Melancon, J. Michael, et al. August 1995. "Outer Continental Shelf: Estimated Oil and Gas Reserves, Gulf of Mexico, December 31, 1994", Resource Evaluation Office, U.S. Minerals Management Service, New Orleans.

Miers, John H. January 20, 1997. "*The Gulf of Mexico's Revival: Technology Gives Gulf Prospects World-Class Investment Appeal*", Amoco Exploration & Production Co., Houston, Oil and Gas Journal.

Moritis, Guntis. April 20, 1992. "EOR Increases 24% Worldwide; Claims 10% of U.S. production" [Biennial EOR Production Report], *Oil and Gas Journal*, page 51 and following.

Moritis, Guntis. June 29, 1992. "More Enhanced Oil Recovery Project Information Obtained," *Oil and Gas Journal*, page 70 and following pages.

Murphy, Frederic H. and William Trapmann. 1982. An Evaluation of the Alaskan Hydrocarbon Supply Model," *Oil and Gas Supply Modeling*, published by the National Bureau of Standards. Washington, DC.

National Energy Board, *Canadian Energy: Supply and Demand 1987-2005*, Minister of Supply and Services Canada, Ottawa, Canada, 1988.

National Energy Board, 1989 Annual Report, Minister of Supply and Services Canada, Ottawa, Canada, 1989.

National Petroleum Council. 1981. U.S. Arctic Oil and Gas. Energy and Environmental Analysis, Inc. Arlington, VA.

National Petroleum Council. December 1980. Unconventional Gas Sources, Vols 1-4.

National Petroleum Council. 1984. Enhanced Oil Recovery, Washington, D.C.

National Petroleum Council. 1991. *Field Development Assumptions and Costs in the Hydrocarbon Supply Model*, Energy and Environmental Analysis, Inc., Arlington, VA.

National Petroleum Council. December 1999. *Natural Gas: Meeting the Challenges of the Nation's Growing Natural Gas Demand*, Washington, DC.

National Petroleum Council. 1992. The Potential for Natural Gas in the United States, Washington, DC.

National Research Council. 1992. *The National Energy Modeling System*, Committee on the National Energy Modeling System, Washington, DC.

Natural Gas Week, "DOE OKs Gas Import/Export with Mexico," June 12, 1989

Nesbitt, D., and Phillips, R. September 1980. *Financial Statements and Producer Behavior in Generalized Equilibrium Models Such as LEAP*, Decision Focus Incorporated Report.

Nesbitt, D.M. 1988. *Methodology of the GRI North American Regional Gas Supply-Demand Model, Appendix A*, Decision Focus Incorporated, Los Altos, CA.

Nesbitt, D.M. 1991. *Insights from the North American Regional Gas (NARG) Supply-Demand Model*, Presentation to the Imports and Alaska Working Group of the National Petroleum Council Natural Gas Study.

Newendorp, Paul, D. 1975. *Decision Analysis for Petroleum Exploration*, The Petroleum Publishing Company, Tulsa, OK.

Offshore Data Services, Inc. June 1997." Database of Wells Drilled in the Deepwater Gulf of Mexico", Houston, Texas .

Offshore Special Report. May 1997. "How Offshore Drilling Units Evolved", Offshore Magazine, Pennwell Publications.

The Oil Daily Co., "Spot Prices on Interstate Pipeline Systems", Natural Gas Week, 1996-1997.

Pautz, James F., et al. 1992. *Enhanced Oil Recovery Projects Data Base*, NIPER-583, National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma.

Petroleum Economist, Volume LVI, Number 12, "Gas Set for 1990s Growth," Euromoney Publications pic, London, UK, December 1989.

Petroleum Economist, Volume LVI, Number 12, "Liquefied Natural Gas: Continued Market Expansion," Euromoney Publications pic, London, UK, December 1989.

Petroleum Information/Dwights LLC: "Production Data for the Rocky Mountain, Gulf Coast/Offshore, and Texas/Midcontinent Areas", Petroleum Information/Dwights LLC (CD-ROM), March 1997.

Petroleum Intelligence Weekly, Special Supplement Issue, "World LNG Trade Entering New Growth Phase," Petroleum & Energy Intelligence Weekly, Inc., November 13, 1989.

Platt's Oilgram News, Volume 68, Number 54, "MARAD Rebuff's Cabot's \$45-Million Attempt to Buy 3 LNG Tankers at Center of Dispute," McGraw-Hill, New York, March 19, 1990.

Platt's Oilgram News, Volume 68, Number 201, "LNG Ship Deal Jeopardized by New Lawsuit," McGraw-Hill, New York, October 16, 1990.

Potential Gas Agency: "Potential Supply of Natural Gas in the United States - Report of the Potential Gas Committee (December 31, 1996)", Potential Gas Agency, March 1997.

Potential Gas Committee. 1988a. *Potential Supply of Natural Gas in the United States*, Potential Gas Agency, Colorado School of Mines, Golden, Colorado.

Powell, Stephen G. September 1990. Arctic National Wildlife Refuge - How Much Oil Can We Expect?. Resources Policy.

Powell, Stephen G. 1990. A Risk Analysis of Oil Development in the Arctic National Wildlife Refuge. The Energy Journal, Volume 12, Number 3.

Prato, A.A., and Miller, R.R. 1981. "Evaluating the Energy Production Potential of the United States Outer Continental Shelf," *Land Economics*, Vol. 57, No. 1, pages 77-90.

Riva, Joseph P., Jr. November 19, 1992. *The Domestic Oil Status and a Projection of Future Production*, CRS Report for Congress, 92-826 SPR, Congressional Research Service, Washington, D.C.

Riva, Joseph P., Jr. October 5, 1992. *Domestic Oil Production*, CRS Issue Brief, Order Code IB87068, Congressional Research Service, Washington, D.C.

Rowse, J. "Allocation of Canadian Natural Gas to Domestic and Export Markets," *Canadian Journal of Economics*, 19 (August 1986), pp. 417-442.

Rowse, J. "Canadian Natural Gas Exports, Domestic Gas Prices and Future Gas Supply Costs", *The Energy Journal*, 8 (April 1987), pp. 43-62.

Roy, K.J. 1975. "Hydrocarbon Assessment Using Subjective Probability and Monte Carlo Methods," in *First IIASA Conference on Methods and Models for Assessing Energy Resources Conference*, Honolulu.

Roy, K.J., Procter, R.M., and McCrossam, R.G. 1975. "Hydrocarbon Assessment Using Subjective Probability," in Davis, J.C., Doveton, J.H., and Harbaugh, J.W., conveners, *Probability Methods in Oil Exploration: American Association of Petroleum Geologists Research Symposium Notes*, Stanford, University, pages 56-60.

Samuelson, P., "Spatial Price Equilibrium and Linear Programming," *American Economic Review*, 42, 1952.

Sproule Associates Ltd., "The Future Natural Gas Supply Capability Of The Western Canada Sedimentary Basin", *Report to Transcanada Pipelines Ltd.*, January 1990.

Stermole, Franklin J. and Stermole, John M. 1993. "*Economic Evaluation and Investment Decision Methods*", Eighth Edition, Investment Evaluations Corporation, Golden, Colorado.

Trapmann, William. 1991. "Relating Natural Gas Resource Estimates to the Outlook for the Market," paper presented at the 14th Annual International Conference of the International Association for Energy Economists.

Tyler, Roger, Kaiser, W.R., Scott, A.R., Hamilton, D.S., Ambrose, W.A.: "Geologic and Hydrologic Assessment of Natural Gas from Coal: Greater Green River, Piceance, Powder River, and Raton Basins", Bureau of Economic Geology - University of Texas and Gas Research Institute, Contract number 5091-214-2261, 1995.

U.S. Congress. Office of Technology Assessment. 1989. *Oil Production in the Arctic National Wildlife Refuge: The Technology and the Alaskan Oil Context*. OTA-E-394. Washington, D.C.

U.S. Department of Energy. July 1994."Costs and Indices for Domestic Oil and Gas Field Equipment and Production Operations: 1990 through 1993", Technical Report DOE/EIA-TR-0568, Energy Information Administration, Washington D.C.

U.S. Department of Energy. January 1996. "Documentation of the Oil and Gas Supply Module (OGSM)", DOE/EIA-M063(96), Energy Information Administration.

U.S. Department of Energy: "GASIS Gas Information System - A National Database of Geological, Engineering, Production and Ultimate Recovery Data for U.S. Oil and Natural Gas Reservoirs", Department of Energy, GASIS Release 1 CD-ROM, March 1997.

U.S. Department of Energy. May 1997. "The National Energy Modeling System: An Overview", DOE/EIA-0581, Energy Information Administration.

U.S. Department of Energy. 1978. *Midterm Oil and Gas Supply Modeling System Methodology Description*, DOE/EIA-0103/17 Energy Information Administration, Washington, DC.

U.S. Department of Energy. December 1982. *Outer Continental Shelf (OCS) Oil and Gas Supply Model, Volume 1, Model Summary and Methodology Description*, DOE/EIA-0372/1 Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1982. *Outer Continental Shelf (OCS) Oil and Gas Supply Model, Volume 1, Model Summary and Methodology Description*, DOE/EIA-0372/1, Energy Information Administration, Washington, DC.

U.S. Department of Energy, *The Petroleum Resources of Mexico*, DOE/EIA-0423, Energy Information Administration, Washington, DC, 1983.

U.S. Department of Energy. 1991. *Recommended Design for the National Energy Modeling System*, Energy Information Administration, NEMS Project Office, Washington, DC.

U.S. Department of Energy. 1986. *An Economic Analysis of Natural Gas Resources and Supply*, DOE/EIA-0481, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1987. *Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge*. SR/RNGD/87-01. Energy Information Administration. Washington, DC.

U.S. Department of Energy, 1988, *An Assessment of the Natural Gas Resource Base of the United States*, DOE/W/31109-H1, Office of Policy, Planning & Analysis, Washington, DC.

U.S. Department of Energy, *International Energy Annual 1988*, DOE/EIA-0219(88), Energy Information Administration, Washington, DC, 1988a.

U.S. Department of Energy, *Natural Gas Annual 1988*, DOE/EIA-0131(88), Energy Information Administration, Washington, DC, 1988a.

U.S. Department of Energy, Assessment of Costs and Benefits of Flexible and Alternative Fuel Use in the U.S. Transportation Sector; Technical Report Three: Methanol Production and Transportation Costs, DOE/PE-0093 Office of Policy Planning and Analysis, November 1989.

U.S. Department Of Energy. 1989. *Abandonment Rates of the Known Domestic Oil Resource*, DOE/BC--89/6/SP, Bartlesville Project Office, Bartlesville, Oklahoma.

U.S. Department of Energy. 1989. *An Examination of Domestic Natural Gas Resource Estimates*, SR/RNGD/89-01, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1989. *Federal Oil Research: A Strategy for Maximizing the Producibility of Known U.S. Oil*, DOE/FE-0139, Office of Fossil Energy, Washington, D.C.

U.S. Department of Energy. 1989a. *Annual Energy Review*, DOE/EIA-0384(89), Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1990. *The Domestic Oil and Gas Recoverable Resource Base: Supporting Analysis for the National Energy Strategy*, SR/NES/90-05, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1990. United States Crude Oil, Natural Gas, and Natural Gas Liquids Reserves. DOE/EIA-0216(90). Energy Information Administration. Washington, DC.

U.S. Department of Energy, *Development Costs of Undeveloped Non-associated Gas Reserves in Selected Countries*, Office of Policy Planning and Analysis, 1990.

U.S. Department of Energy, *Quarterly Sales and Prices Report*, Office of Fossil Energy, Office of Fuels Programs, various issues, 1990.

U.S. Department of Energy. 1990a. *United States Crude Oil, Natural Gas, and Natural Gas Liquids Reserves*, DOE/EIA-0216(90), Energy Information Administration, Washington, DC.

U.S. Department of Energy. May 1991. *Intermediate Future Forecasting System: Executive Summary*, DOE/EIA-M023(91) Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1991. *Alaska Oil and Gas Energy Wealth or Vanishing Opportunity?*. DOE/ID/01570-H1. Office of Fossil Energy. Washington, DC.

U.S. Department of Energy. 1991. *The Outlook for Natural Gas Imports: Supporting Analysis for the National Energy Strategy*, SR/NES/90-06, Energy Information Administration, Washington, DC.

U.S. Department of Energy. April 1992. *Model Methodology and Data Description of the Production of Onshore Lower 48 Oil and Gas Model*, Energy Information Administration, Office of Oil and Gas, Washington, DC.

U.S. Department of Energy. 2000. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1994. *Documentation of the Oil and Gas Supply Module (OGSM), Appendix: Model Developers Report*, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1992. Component Design Report - *Basic Framework & Onshore Lower 48 Conventional Oil and Gas Supply*. Energy Information Administration. Washington, DC.

U.S. Department of Energy. 1992. *Model Methodology and Data Description of the Production of Onshore Lower 48 Oil and Gas Model*, Draft Report, Energy Information Administration, Washington, DC.

U.S. Department of the Interior, 1981, *Estimates of Undiscovered Recoverable Conventional Resources of Oil and Gas in the United States*, United States Geological Survey Circular 860, United States Geological Survey, Reston, Virginia.

U.S. Department of the Interior, 1987, *Economics of Oil and Gas Production from ANWR for the Determination of Minimum Economic Field Size*, PT-87-015-3120-985, Bureau of Land Management, Division of Mineral Resources, Alaska State Office.

U.S. Department of the Interior, 1988, *National Assessment of Undiscovered Conventional Oil and Gas Resources*, USGS-MMS Working Paper, Open File Report 88-373, United States Geological Survey and Minerals Management Service, Reston, Virginia.

U.S. Department of the Interior, 1989, *Estimates of Undiscovered Conventional Oil and Gas Resources in the United States -- A Part of the Nation's Energy Endowment*, United States Geological Survey and Minerals Management Service, Denver, Colorado.

U.S. Department of the Interior, *Federal Offshore Statistics 1990*, Minerals Management Service (MMS).

U.S. Department of the Interior, *Estimates of Undiscovered, Economically Recoverable Oil & Gas Resources: for the Outer Continental Shelf, Revised as of January 1995* Minerals Management Service.

U.S. Department of the Interior, *Estimates of Undiscovered, Economically Recoverable Oil & Gas Resources: for the Outer Continental Shelf, Revised as of January 1999* Minerals Management Service.

U.S. Minerals Management Service. April 1996. "Deepwater Royalty Relief for New Leases: Interim Rule", 30 CFR Part 260, RIN 1010-AC14, Offshore Minerals Analysis Division.

U.S. Minerals Management Service World Wide Web Page. February 1997. "Database of 899 Producing Oil and Gas Fields in the Gulf of Mexico Outer Continental Shelf".

Van Meter, John E. May 1995."*Production Technology: Deciding When To Use A MOPU For Field Development*", Paragon Engineering Services, Oil and Gas Journal.

Van Poollen, H.K. and Associates, Inc. 1978. Documentation of Input Variables: Northern Alaska Hydrocarbon Model.

Walls, M.A. 1989. *Forecasting Oil Market Behavior: Rational Expectations Analysis of Price Shocks,* Resources for the Future Discussion Paper EM87-03. Washington.

Walls, Margaret A. October 1990. *Analyzing the Determinants of Offshore Oil and Gas Supply: A Factual and Methodological Assessment*, Final Report Prepared for the Reserves and Natural Gas Division of the Energy Information Administration under ORNL Subcontract No. 90X-SE635V.

Walls, Margaret A. 1990. *A Survey of Oil and Gas Supply Models*, Draft Report, Resources for the Future, Washington, DC.

Wharton Econometric Forecasting Associates, July 1988, *Canadian Energy Analysis Quarterly*, The WEFA Group, Toronto, Canada .

Wheatley, Richard. January 20, 1997. "Deepwater, Subsalt Prospects Open New Era for Gulf of Mexico Action", Oil & Gas Journal.

White, D.A., and Gehman, H.M. 1979. "Methods of Estimating Oil and Gas Resources," *The American Association of Petroleum Geologists Bulletin*, Vol. 63, pages 2183-2192.

White, D.A. 1980. "Assessing Oil and Gas Plays in Facies-Cycle Wedges," *The American Association of Petroleum Geologists Bulletin*, Vol 64, pages 1158-1178.

White, D.A. 1981. "A Play Approach to Hydrocarbon Resource Assessment and Evaluation," in Ramsey, J., ed., *The Economics of Exploration for Energy Resources*, JAI Press, Greenwich.

Williams, M.R. and Atkins, P.A. April 1987. "Simple Subsea Trees for Shallow Water: An Economical Alternative", Offshore Technology Conference.

Young, J.S. and Hauser, W.S. 1986. *Economics of Oil and Gas for ANWR for the Determination of Minimum Economic Field Size*. Bureau of Land Management. Division of Mineral Resource. Alaska State Office.

Appendix D. Model Abstract

1. Model Name

Oil and Gas Supply Module

2. Acronym

OGSM

3. Description

OGSM projects the following aspects of the crude oil and natural gas supply industry:

- production
- reserves
- drilling activity
- natural gas imports and exports
- 4. Purpose

OGSM is used by the Oil and Gas Division in the Office of Integrated Analysis and Forecasting as an analytic aid to support preparation of projections of reserves and production of crude oil and natural gas at the regional and national level. The annual projections and associated analyses appear in the Annual Energy Outlook (DOE/EIA-0383) of the Energy Information Administration. The projections also are provided as a service to other branches of the U.S. Department of Energy, the Federal Government, and non-Federal public and private institutions concerned with the crude oil and natural gas industry.

- 5. Date of Last Update 2002
- 6. Part of Another Model National Energy Modeling System (NEMS)
- Model Interface References

 Coal Module
 Electricity Module
 Industrial Module
 International Module
 Natural Gas Transportation and Distribution Model (NGTDM)
 Macroeconomic Module
 Petroleum Market Module (PMM)

8. Official Model Representative

- Office: Integrating Analysis and Forecasting
- Division: Oil and Gas Analysis
- Model Contact: Ted McCallister
- Telephone: (202) 586-4820
- 9. Documentation Reference

U.S. Department of Energy. 2002. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 2001. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 2000. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1999. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1998. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1997. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1996. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1995. *Documentation of the Oil and Gas Supply Module (OGSM)*, DOE/EIA-M063, Energy Information Administration, Washington, DC.

U.S. Department of Energy. 1994. *Documentation of the Oil and Gas Supply Module (OGSM), Appendix: Model Developers Report*, Energy Information Administration, Washington, DC.

10. Archive Media and Installation Manual NEMS2003

11. Energy Systems Described

The OGSM forecasts oil and natural gas production activities for six onshore and three offshore regions as well as three Alaskan regions. Exploratory and developmental drilling are treated separately, with exploratory drilling further differentiated as new field wildcats or other exploratory wells. New field wildcats are those wells drilled for a new field on a structure or in an environment never before productive. Other exploratory wells are those drilled in already productive locations. Development wells are primarily within or near proven areas and can result in extensions or revisions. Exploration yields new additions to the stock of reserves and development determines the rate of production from the stock of known reserves.

The OGSM also projects natural gas trade via pipeline with Canada and Mexico, as well as liquefied natural gas (LNG) trade. U.S. natural gas trade with Canada is represented by seven entry/exit points and trade with Mexico by three entry/exit points. The four currently existing LNG receiving terminals are represented as well as possible new construction of LNG regasification facilities in each coastal region.

12. Coverage

- Geographic: Six Lower 48 onshore supply regions, three Lower 48 offshore regions, and three Alaskan regions.
- Time Units/Frequency: Annually 1990 through 2025
- Product(s): Crude oil and natural gas
- Economic Sector(s): Oil and gas field production activities and foreign natural gas trade

13. Model Features

- Model Structure: Modular, containing six major components
 - Lower 48 Onshore Supply Submodule
 - Unconventional Gas Recovery Supply Submodule

- Offshore Supply Submodule
- Foreign Natural Gas Supply Submodule
- Alaska Oil and Gas Supply Submodule
- Modeling Technique: The OGSM is a hybrid econometric/discovery process model. Drilling activities in the United States are determined by the discounted cash flow that measures the expected present value profits for the proposed effort and other key economic variables. LNG imports are projected on the basis of unit supply costs for gas delivered into the Lower 48 pipeline network.
- Special Features: Can run stand-alone or within the NEMS. Integrated NEMS runs employ short term natural gas supply functions for efficient market equilibration.
- 14. Non-DOE Input Data
 - Alaskan Oil and Gas Field Size Distributions U.S. Geological Survey
 - Alaska Facility Cost By Oil Field Size U.S. Geological Survey
 - Alaska Operating cost U.S. Geological Survey
 - Basin Differential Prices Natural Gas Week, Washington, DC
 - State Corporate Tax Rate Commerce Clearing House, Inc. State Tax Guide
 - State Severance Tax Rate Commerce Clearing House, Inc. State Tax Guide
 - Federal Corporate Tax Rate, Royalty Rate U.S. Tax Code
 - Onshore Drilling Costs (1.) American Petroleum Institute. *Joint Association Survey of Drilling Costs (1970-1999)*, Washington, D.C.; (2.) Additional unconventional gas recovery drilling and operating cost data from operating companies
 - Shallow Offshore Drilling Costs American Petroleum Institute. *Joint Association Survey of Drilling Costs (1970-1999)*, Washington, D.C.
 - Shallow Offshore Lease Equipment and Operating Costs Department of Interior. Minerals Management Service (Correspondence from Gulf of Mexico and Pacific OCS regional offices)
 - Shallow Offshore Wells Drilled per Project Department of Interior. Minerals Management Service (Correspondence from Gulf of Mexico and Pacific OCS regional offices)
 - Shallow and Deep Offshore Technically Recoverable Oil and Gas Undiscovered Resources -Department of Interior. Minerals Management Service (Correspondence from Gulf of Mexico and Pacific OCS regional offices)
 - Deep Offshore Exploration, Drilling, Platform, and Production Costs American Petroleum Institute, *Joint Association Survey of Drilling Costs (1995)*, ICF Resource Incorporated (1994), Oil and Gas Journals
 - Canadian Royalty Rate, Corporate Tax Rate, Provincial Corporate Tax Rate- Energy Mines and Resources Canada. *Petroleum Fiscal Systems in Canada*, (Third Edition 1988)

- Canadian Wells drilled Canadian Petroleum Association. *Statistical Handbook*, (1976-1993)
- Canadian Lease Equipment and Operating Costs Sproule Associates Limited. *The Future Natural Gas Supply Capability of the Western Canadian Sedimentary Basin* (Report Prepared for Transcanada Pipelines Limited, January 1990)
- Canadian Recoverable Resource Base National Energy Board. *Canadian Energy Supply and Demand 1990 2010*, June 1991
- Canadian Reserves Canadian Petroleum Association. *Statistical Handbook*, (1976-1993)
- Unconventional Gas Resource Data (1) USGS 1995 National Assessment of United States Oil and Natural Gas Resources; (2) Additional unconventional gas data from operating companies
- Unconventional Gas Technology Parameters (1) Advanced Resources International Internal studies; (2) Data gathered from operating companies

15. DOE Input Data

- Onshore Lease Equipment Cost Energy Information Administration. Costs and Indexes for Domestic Oil and Gas Field Equipment and Production Operations (1980 - 1999), DOE/EIA-0815(80-99)
- Onshore Operating Cost Energy Information Administration. *Costs and Indexes for Domestic Oil and Gas Field Equipment and Production Operations (1980 1999)*, DOE/EIA-0815(80-99)
- Emissions Factors Energy Information Administration
- Oil and Gas Well Initial Flow Rates Energy Information Administration, Office of Oil and Gas
- Wells Drilled Energy Information Administration, Office of Oil and Gas
- Expected Recovery of Oil and Gas Per Well Energy Information Administration, Office of Oil and Gas
- Undiscovered Recoverable Resource Base Energy Information Administration. *The Domestic Oil and Gas Recoverable Resource Base: Supporting Analysis for the National Energy Strategy*, SR/NES/92-05
- Oil and Gas Reserves Energy Information Administration. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, (1977-2000), DOE/EIA-0216(77-00)

16. Computing Environment

- Hardware Used: PC
- Operating System: Windows 95/Windows NT
- Language/Software Used: FORTRAN
- Memory Requirement: Unknown
- Storage Requirement: 992 bytes for input data storage; 180,864 bytes for output storage; 1280 bytes for code storage; and 5736 bytes for compiled code storage
- Estimated Run Time: 9.8 seconds

17. Reviews conducted

Independent Expert Reviews, Model Quality Audit; Unconventional Gas Recovery Supply Submodule - Presentations to Mara Dean (DOE/FE - Pittsburgh) and Ray Boswell (DOE/FE - Morgantown), April 1998 and DOE/FE (Washington, DC)

18. Status of Evaluation Efforts Not applicable

19. Bibliography

See Appendix C of this document.

Appendix E. Parameter Estimation

The major portion of the lower 48 oil and gas supply component of the OGSM consists of a system of equations that are used to forecast exploratory and developmental wells drilled. The equations, the estimation techniques, and the statistical results are documented below. Documentation is also provided for the estimation of the drilling, lease equipment, and operating cost equations as well as the associated-dissolved gas equations and the Canadian oil and gas wells equations. Finally, the appendix documents the estimation of oil and gas supply price elasticities for possible use in short run supply functions. The econometric software packages, SAS and TSP, were used for the estimations.

Lower 48 Estimated Wells Equations

The equations for onshore total and successful wells were estimated using time series data for the onshore Lower 48 over the time period 1970 through 1998. The equations were estimated with correction for first order serial correlation using version 4.4 of TSP.

```
LESTWELLS_{t} = b0 + b1 * LPOIL_{t} + b2 * LPGAS_{t} + \rho * LESTWELLS_{t-1} - \rho * (b0 + b1 * LPOIL_{t-1} + b2 * LPGAS_{t} +
```

```
Dependent variable: lnESTWELLS,
Number of observations:
                         29
 (Statistics based on transformed data)
                                         (Statistics based on original data)
           Mean of dep. var. = .773259
                                                Mean of dep. var. = 10.5283
      Std. dev. of dep. var. = .571719
                                           Std. dev. of dep. var. = .458516
    Sum of squared residuals = .327719
                                         Sum of squared residuals = .421251
       Variance of residuals = .012605
                                            Variance of residuals = .016202
                                         Std. error of regression = .127287
    Std. error of regression = .112270
                   R-squared = .967485
                                                         R-squared = .930147
          Adjusted R-squared = .964984
                                               Adjusted R-squared = .924773
               Durbin-Watson = 2.12057
                                                    Durbin-Watson = 1.92563
 \rho (autocorrelation coef.) = .935763
       Standard error of \rho = .056575
         t-statistic for \rho = 16.5402
              Log likelihood = 22.8104
                            Standard
 Parameter
              Estimate
                                         t-statistic
                                                       P-value
                            Error
                                          26.7603
              9.24194
                                                       [.000]
                            .345360
   b0
              .384673
                            .150670
    b1
                                          2.55308
                                                        [.011]
```

.104591

b2

.364478

3.48478

[.000]

$LESTSUCWELLS_{t} = b0 + b1 * LPOIL_{t} + b2 * LPGAS_{t} + \rho * LESTSUCWELLS_{t-1}$ - $\rho * (b0 + b1 * LPOIL_{t-1} + b2 * LPGAS_{t-1})$

Dependent variable: lnESTSUCWELLS, Number of observations: 29 (Statistics based on transformed data) (Statistics based on original data) Mean of dep. var. = 10.1632 Mean of dep. var. = 1.26568Std. dev. of dep. var. = .450947 Sum of squared residuals = .373656 Variance of residuals = .014371 Std. dev. of dep. var. = .645064 Sum of squared residuals = .333911 Variance of residuals = .012843 Std. error of regression = .113326 Std. error of regression = .119881 R-squared = .973012 R-squared = .935106 Adjusted R-squared = .970936 Adjusted R-squared = .930114 Durbin-Watson = 2.10554Durbin-Watson = 2.02018 ρ (autocorrelation coef.) = .887343 Standard error of ρ = .077178 t-statistic for ρ = 11.4974 Log likelihood = 22.8072 Standard

Parameter	Estimate	Error	t-statistic	P-value
b0	8.79205	.307779	28.5661	[.000]
b1	.401503	.144735	2.77406	[.006]
b2	.389798	.106397	3.66361	[.000]

Lower 48 RIGS Equations

Onshore

 $LRIGSL48_{t} = b0 + b1 * LRIGSL48_{t-1} + b2 * LREVRIG_{t-1} + \rho * LRIGSL48_{t-2} - \rho * (b0 + b1 * LRIGSL48_{t-2} + b2 * LREVRIG_{t-3})$

Equation Variable/Parameter	Output Variable/Parameter
LRIGSL48	LNRIGS
b0	С
b1	LNRIGS(-1)
b2	LNREVRIG(-1)
ρ	RHO

FIRST-ORDER SERIAL CORRELATION OF THE ERROR MAXIMUM LIKELIHOOD ITERATIVE TECHNIQUE NOTE: Lagged dependent variable(s) present MAXIMUM LIKELIHOOD ESTIMATION IS NOT IMPLEMENTED FOR LAGGED DEPENDENT VARIABLES DUE TO TREATMENT OF THE FIRST OBSERVATION. METHOD OF ESTIMATION IS CHANGED TO COCHRANE-ORCUTT ITERATIVE TECHNIQUE CONVERGENCE ACHIEVED AFTER 6 ITERATIONS Dependent variable: LNRIGS Current sample: 3 to 26 Number of observations: 24 (Statistics based on transformed data) Mean of dep. var. = 4.38969 Std. dev. of dep. var. = .234933 Sum of squared residuals = .058026 Variance of residuals = .276313E-02 Std. error of regression = .052566 R-squared = .954291 Adjusted R-squared = .949937 Durbin-Watson = 1.62731 Rho (autocorrelation coef.) = .439691Standard error of rho = .232287 t-statistic for rho = 1.89288 Log likelihood = 38.2445 (Statistics based on original data) Mean of dep. var. = 7.83784 Std. dev. of dep. var. = .389324 Sum of squared residuals = .058026 Variance of residuals = .276313E-02 Std. error of regression = .052566R-squared = .983357 Adjusted R-squared = .981772 Durbin-Watson = 1.62731 Estimated Standard Variable Coefficient Error t-statistic P-value С -3.37088 .762161 -4.42280 [.000] LNRIGS(-1) .803012 .053301 15.0655 [.000] LNREVRIG(-1) .312270 .051418 6.07313 [.000] 1.89288 RHO .439691 [.058]

Drilling Cost Equations

Drilling costs were hypothesized to be a function of drilling, depth, and a time trend that proxies for the cumulative effect of technological advances on costs. The equations were estimated in log-linear form using Three Stage Least Squares (3SLS) technique. The forms of the equations are:

Onshore Regions

$$\begin{split} \text{LDRILLCOST}_{r,k,t} &= & \ln(\delta 0)_{r,k} + \ln(\delta 1)_k + \delta 3 * \text{LESTWELLS}_t + \delta 4 * \text{LRIGSL48}_t + \delta 5 * \text{TIME}_t + \\ & \rho_k * \text{LDRILLCOST}_{r,k,t-1} - \rho_k * \left(\ln(\delta 0)_{r,k} \right) + \ln(\delta 1)_k + \\ & \delta 3 * \text{LESTWELLS}_{t-1} + \delta 4 * \text{LRIGSL48}_{t-1} + \delta 5 * \text{TIME}_{t-1} \right) \end{split}$$

Results

Mapping of variable names from the above equation to the following SAS output.

	Successful		Dry	
Variable/Parameter	Oil	Gas	Oil	Gas
LDRILLCOST	LNOILCST	LNGASCST	LNDOIL_C	LNDGAS_C
$\ln(\delta 0)_r$	REGOIL _r	REGGAS _r	REGDOIL _r	REGDGAS _r
$\ln(\delta 1)$	OILDPTH	GASDPTH	DO_DPTH	DG_DPTH
δ3	OGD_WELL	OGD_WELL	OGD_WELL	OGD_WELL
δ4	OGD_RIGS	OGD_RIGS	OGD_RIGS	OGD_RIGS
δ5 (1977-1997)	TECH1	TECH1	TECH1	TECH1
δ5 (1998-2000)	TECH2	TECH2	TECH2	TECH2
ρ	RHO_O	RHO_G	RHO_DO	RHO_DG

EQUATIONS: OIL GAS DOIL DGAS

INSTRUMENTS: REGION1 REGION6 REGION2 REGION3 REGION4 REGION5
YEAR(-1) LNOILCST(-1) LNGASCST(-1) LNDOIL_C(-1) LNDGAS_C(-1)
LNRIGS(-1) LNWELLS(-1) OIL_DPTH(-1) GAS_DPTH(-1) DOILDPTH(-1)
DGASDPTH(-1) LNPOIL LNPGAS

CONVERGENCE ACHIEVED AFTER 7 ITERATIONS

Number of observations = 820 E'PZ*E = 367.313 Standard Errors computed from heteroscedastic-consistent matrix (Robust-White)

Parameter REGOIL1 REGOIL2 REGOIL3 REGOIL4 REGOIL5 REGOIL6 OGD_RIGS OGD_WELL TECH1 TECH2 OILDPTH RHO_O REGGAS1 REGGAS3 REGGAS4 REGGAS5 GASDPTH RHO_G REGDOIL1 REGDOIL2 REGDOIL3 REGDOIL3 REGDOIL4 REGDOIL5 REGDOIL5 REGDOIL5 REGDOIL6 DO_DPTH RHO_DO REGDOIL6 DO_DPTH RHO_DO REGDGAS1 REGDGAS2 REGDGAS3	Estimate 43.3811 43.7288 43.6083 43.5965 43.8860 44.3143 365150 .696055 018699 017772 .231790E-03 .741813 43.4793 43.7806 43.6409 43.5936 43.9905 43.6409 43.5936 43.9905 43.8513 .241401E-03 .718273 43.0952 43.0952 43.0319 43.0583 43.0583 43.3859 43.8253 .247234E-03 .648979 43.1978 43.2389 43.0726	Standard Error 6.68122 6.68380 6.68436 6.68403 6.68403 6.68394 6.68132 .060253 .327445E-02 .322826E-02 .554909E-05 .014752 6.68130 6.68332 6.68286 6.68327 6.67932 6.68317 .532126E-05 .016328 6.68180 6.68444 6.68461 6.684410 6.68462 6.68145 .575148E-05 .017910 6.68176 6.68418 6.68418 6.68356	t-statistic 6.49298 6.54251 6.52393 6.52249 6.56589 6.63256 -5.32904 11.5522 -5.71071 -5.50528 41.7708 50.2853 6.50761 6.55073 6.55073 6.55073 6.55073 6.52279 6.58607 6.56145 45.3653 43.9913 6.44964 6.46170 6.43747 6.44190 6.49040 6.55924 42.9862 36.2362 6.46503 6.46885 6.44456	P-value [.000]
REGDGAS1 REGDGAS2	43.1978 43.2389	6.68176 6.68418	6.46503 6.46885	[.000] [.000]
			-	

Standard Errors computed from quadratic form of analytic first derivatives (Gauss) Equation: OIL Dependent variable: LNOILCST Mean of dep. var. = 12.6541 Std. error of regression = .159992 Std. dev. of dep. var. = 1.10148 R-squared = .979042 Sum of squared residuals = 20.9899 Durbin-Watson = 1.95003 [<.568] Variance of residuals = .025597 Equation: GAS Dependent variable: LNGASCST Mean of dep. var. = 12.7895 Std. error of regression = .179482 Std. dev. of dep. var. = 1.13764 R-squared = .975134 Sum of squared residuals = 26.4154 Durbin-Watson = 1.90601 [<.323] Variance of residuals = .032214 Equation: DOIL Dependent variable: LNDOIL_C Mean of dep. var. = 12.2531 Std. error of regression = .227375 Std. dev. of dep. var. = 1.21336 R-squared = .965533 Sum of squared residuals = 42.3936 Durbin-Watson = 1.93831 [<.501] Variance of residuals = .051699 Equation: DGAS Dependent variable: LNDGAS_C Mean of dep. var. = 12.3904 Std. error of regression = .222973 Std. dev. of dep. var. = 1.25330 R-squared = .968732 Sum of squared residuals = 40.7680 Durbin-Watson = 1.98926 [<.768] Variance of residuals = .049717

Onshore Lease Equipment Cost Equations

Lease equipment costs were hypothesized to be a function of total successful wells and a time trend that proxies for the cumulative effect of technological advances on costs. The form of the equation was assumed to be log-linear. The equations were estimated in log-linear form using Three Stage Least Squares (3SLS) technique. Where necessary, equations were estimated in generalized difference form to correct for first order serial correlation. The forms of the equations are:

Onshore Regions

$$\begin{split} LLEQC_{r,k,t} &= ln(\varepsilon 0)_{r,k} + ln(\varepsilon 1)_{k} * DEPTH_{r,k,t} + \varepsilon 2_{k} * LESUCWELL_{k,t} + \varepsilon 3_{k} * TIME_{t} + \rho_{k} * LLEQC_{r,k,t-1} - \rho_{k} * (ln(\varepsilon 0)_{r,k} + ln(\varepsilon 1)_{k} * DEPTH_{r,k,t-1} * \varepsilon 2_{k} * LESUCWELL_{k,t-1} + \varepsilon 3_{k} * TIME_{t-1}) \end{split}$$

Results

Variable/Parameter	Shallow Oil	Shallow Gas	Deep Oil	Deep Gas
LLEQC	LSO_LEQ	LSG_LEQ	LDO_LEQ	LDG_LEQ
$\ln(\varepsilon 0)_1$	SOREG1	SGREG1		
$\ln(\varepsilon 0)_2$	SOREG2	SGREG2	DOREG2	DGREG2
$\ln(\varepsilon 0)_3$	SOREG3	SGREG3	DOREG3	DGREG3
$\ln(\varepsilon 0)_4$	SOREG4	SGREG4	DOREG4	DGREG4
$\ln(\varepsilon 0)_5$	SOREG5	SGREG5	DOREG5	DGREG5
$\ln(\varepsilon 0)_6$	SOREG6	SGREG6		
ε1	SODEPTH	SGDEPTH	DODEPTH	DGDEPTH
ε2	SOWELL	SGWELL	DOWELL	DGWELL
ε3	TECH	TECH	TECH	TECH
ρ	SORHO	SGRHO	DORHO	DGRHO

Mapping of variable names from the above equation to the following TSP output.

EQUATIONS: SOIL SGAS

INSTRUMENTS: REGION1 REGION2 REGION3 REGION4 REGION5 REGION6 SG_DPTH SO_DPTH SG_DPTH(-1) SO_DPTH(-1) YEAR LSG_LEQ(-1) LSO_LEQ(-1) LSUCWELL(-1) RPGAS RPOIL RPGAS(-1) RPOIL(-1)

Number of Observations = 150						
Parameter SOREG1 SOREG2 SOREG4 SOREG5 SOREG6 SODEPTH SOWELL TECH SORHO SGREG1 SGREG3 SGREG3 SGREG3 SGREG5 SGREG6 SGDEPTH SGWELL SGRHO	Estimate 33.7741 33.5586 33.5302 33.7847 33.7353 34.2506 .181898E-03 .141601 012422 .658138 32.8085 33.0401 33.0801 33.4552 33.6282 32.8046 .600314E-04 .141891 .665599	Standard Error 6.08076 6.07805 6.08331 6.08023 6.07598 6.07598 6.07598 1.04214E-04 .042041 .294173E-02 .062543 6.03814 6.03673 6.03622 6.03766 6.03247 6.03793 .815549E-05 .043189 .055584	3.36814 -4.22259 10.5229 5.43355 5.47318 5.48027 5.54108 5.57453 5.43309	P-value [.000]		
Standard E derivative	rrors computed s (Gauss)	from quadra	tic form of an	alytic first		
Equation: Dependent	SOIL variable: LSO_1	LEQ				
Mean of dep. var. = 11.2220 Std. dev. of dep. var. = .331759 Sum of squared residuals = .899774 Variance of residuals = .599849E-02 Std. error of regression = .077450 R-squared = .945171 Durbin-Watson = 1.90518 [<.859]						
Equation: SGAS Dependent variable: LSG_LEQ						
Mean of dep. var. = 10.2228 Std. dev. of dep. var. = .379077 Sum of squared residuals = 1.32409 Variance of residuals = .82729E-02 Std. error of regression = .093954 R-squared = .938205 Durbin-Watson = 2.22580 [<.999]						

EQUATIONS: DOIL DGAS

INSTRUMENTS: REGION2 REGION3 REGION4 REGION5 DG_DPTH DO_DPTH DG_DPTH(-1) DO_DPTH(-1) YEAR LDG_LEQ(-1) LDO_LEQ(-1) LSUCWELL(-1) RPGAS RPOIL RPGAS(-1) RPOIL(-1)

Number of Observations = 100

		Standard		
Parameter	Estimate	Error	t-statistic	P-value
DOREG2	19.9806	2.34600	8.51690	[.000]
DOREG3	19.9910	2.34584	8.52190	[.000]
DOREG4	20.0289	2.34601	8.53743	[.000]
DOREG5	20.0239	2.34668	8.53284	[.000]
DODEPTH	.262492E-04	.151868E-04	1.72842	[.084]
DOWELL	.332898	.019588	16.9950	[.000]
TECH	588957E-02	.116272E-02	-5.06534	[.000]
DGREG2	20.7534	2.38702	8.69425	[.000]
DGREG3	20.7847	2.38684	8.70805	[.000]
DGREG4	20.7550	2.38656	8.69663	[.000]
DGREG5	20.8759	2.38549	8.75119	[.000]
DGDEPTH	.163290E-04	.530570E-05	3.07763	[.002]
DGWELL	.143733	.028666	5.01403	[.000]
DGRHO	.703937	.055202	12.7519	[.000]

Standard Errors computed from quadratic form of analytic first derivatives (Gauss)

Equation: DOIL Dependent variable: LDO_LEQ

Mean of dep. var. = 12.0125 Std. dev. of dep. var. = .179325 Sum of squared residuals = .715547 Variance of residuals = .715547E-02 Std. error of regression = .084590 R-squared = .776599 Durbin-Watson = 1.89374 [<.882]

```
Equation: DGAS
Dependent variable: LDG_LEQ
```

```
Mean of dep. var. = 10.7517

Std. dev. of dep. var. = .145721

Sum of squared residuals = .228672

Variance of residuals = .228672E-02

Std. error of regression = .047820

R-squared = .891237

Durbin-Watson = 1.24518 [<.020]
```

Onshore Operating Cost Equations

Operating costs were hypothesized to be a function of drilling, depth, and a time trend that proxies for the cumulative effect of technological advances on costs. The form of the equation was assumed to be log-linear. The equations were estimated in log-linear form using Three Stage Least Squares (3SLS) technique. The forms of the equations are:

Onshore Regions

```
\begin{split} LOPC_{r,k,t} &= ln(\varphi 0)_{r,k} + ln(\varphi 1)_k * DEPTH_{r,k,t} + \varphi 2_k * LESUCWELL_{k,t} + \varphi 3_k * TIME_t + \rho_k * LOPC_{r,k,t-1} - \rho_k * (ln(\varphi 0)_{r,k} + ln(\varphi 1)_k * DEPTH_{r,k,t-1} * \varphi 2_k * LESUCWELL_{k,t-1} + \varphi 3_k * TIME_{t-1}) \end{split}
```

Results

Variable/Parameter	Shallow Oil	Shallow Gas	Deep Oil	Deep Gas
LOPC	LSOILC	LSGASC	LDOILC	LDGASC
$\ln(\varphi 0)_1$	SOREG1	SGREG1		
$\ln(\varphi 0)_2$	SOREG2	SGREG2	DOREG2	DGREG2
$\ln(\varphi 0)_3$	SOREG3	SGREG3	DOREG3	DGREG3
$\ln(\varphi 0)_4$	SOREG4	SGREG4	DOREG4	DGREG4
$\ln(\varphi 0)_5$	SOREG5	SGREG5	DOREG5	DGREG5
$\ln(\varphi 0)_6$	SOREG6	SGREG6		
φ1	SODEPTH	SGDEPTH	DODEPTH	DGDEPTH
φ2	SOWELL	SGWELL	DOWELL	DGWELL
φ3	TECH	TECH	TECH	TECH
ρ	SORHO	SGRHO	DORHO	DGRHO

Mapping of variable names from the above equation to the following TSP output

EQUATIONS: SOIL SGAS

INSTRUMENTS: REGION1 REGION6 REGION2 REGION3 REGION4 REGION5
SG_DPTH SO_DPTH SG_DPTH(-1) SO_DPTH(-1) RPGAS RPOIL RPGAS(-1)
RPOIL(-1) YEAR SUCWELL(-1) LSGASC(-1) LSOILC(-1)

Number of Observations = 120

Standard Errors computed from quadratic form of analytic first derivatives (Gauss)

Equation: SOIL Dependent variable: LSOILC

Mean of dep. var. = 9.51393 Std. dev. of dep. var. = .311544 Sum of squared residuals = .560455 Variance of residuals = .467046E-02 Std. error of regression = .068341 R-squared = .951571 Durbin-Watson = 1.80935 [<.779]

Equation: SGAS Dependent variable: LSGASC

Mean of dep. var. = 9.51859 Std. dev. of dep. var. = .288909 Sum of squared residuals = .179297 Variance of residuals = .149414E-02 Std. error of regression = .038654 R-squared = .981949 Durbin-Watson = 2.29087 [<1.00]

80

EQUATIONS: DOIL DGAS

Equation: DGAS

Dependent variable: LDGASC

Mean of dep. var. = 9.99262 Std. dev. of dep. var. = .119709 Sum of squared residuals = .076420

Variance of residuals = .070426 Std. error of regression = .030907 R-squared = .932548 Durbin-Watson = 2.08376 [<.977]

INSTRUMENTS: REGION2 REGION3 REGION4 REGION5 DG_DPTH DO_DPTH DG_DPTH(-1) DO_DPTH(-1) RPGAS RPOIL YEAR LDGASC(-1) LDOILC(-1) SUCWELL(-1)

Number of Observations =

	11011120						
		Standard					
Parameter	Estimate	Error	t-statistic	P-value			
DOREG2	16.4358		5.54064	[.000]			
DOREG3	16.2109	2.96659	5.46448	[.000]			
DOREG4	16.2038			[.000]			
DOREG5	16.4152	2.96584	5.53476	[.000]			
DODEPTH	108916E-04 .551732E-05	.118388E-04	919992	[.358]			
DOWELL	.551732E-05	.675628E-06	8.16621	[.000]			
TECH	321269E-02	.148901E-02	-2.15760	[.031]			
DORHO	.655473 15.8203	.062263	10.5275	[.000]			
DGREG2	15.8203	2.95966	5.34532	[.000]			
DGREG3	15.7774	2.95868	5.33259	[.000]			
DGREG4	15.7656	2.95892	5.32817	[.000]			
DGREG5	15.9259 .335244E-04	2.95919	5.38187	[.000]			
DGDEPTH	.335244E-04	.439767E-05	7.62323	[.000]			
DGWELL	.458022E-05	.500397E-06	9.15317	[.000]			
DGRHO	.379875	.096118	3.95220	[.000]			
	rrors computed	from quadra	tic form of ar	nalytic first			
derivative	derivatives (Gauss)						
Equation:							
-	variable: LDOI	T.C					
Dependente	Variabie: HDOI						
Mea	n of dep. var.	= 9.97100					
Std. dev	. of dep. var.	= .158303					
	ared residuals						
Varianc	e of residuals	= .194088E-02					
	of regression						
		= .921664					
	Durbin-Watson	= 1.81815 [<.	791]				

Lower 48 Onshore Well Equations

Each of the onshore wells equations were estimated using panel data, i.e., data across regions over time. For oil and shallow gas, this included data for each of the six onshore regions over the sample period 1978-1999; for deep gas, this included data for onshore regions 2 through 5 over the same time period. The estimation procedures employed tested and corrected for the two econometric problems of cross sectional heteroscedasticity and first order serial correlation. Where necessary, the estimation corrected for first-order serial correlation. The econometric software package used for all estimations was TSP Version 4.4.

Oil Exploratory

$\ln WELLSON_{i,r,k,t} = m0_{i,k} + m1_{i,k} \ln DCFON_{i,r,k,t-1} + m2_{i,k} \ln (CASHFLOW_t * \frac{r_UND_{r,k,t}}{UND_178_{r,k}}) + \rho_{i,k} \ln (CASHFLOW_t + \frac{r_UND_{r,k}}{UND_178_{r,k}}) + \rho_{i,k} \ln (CASHFLOW_t + \frac{r_UND_{r,k}}{UND_178_{$	WELLSON _{<i>i</i>,<i>r</i>,<i>k</i>,(<i>t</i>-1)}
$-\rho_{i,k}(m0_{i,k} + m1_{i,k} \ln DCFON_{i,r,k,t-2} + m2_{i,k} \ln(CASHFLOW_{t-1} * \frac{r_{-}UND_{r,k,t-1}}{UND_{-}78_{r,k}}))$	
<i>i</i> =1, <i>r</i> =1-6, <i>k</i> =1	
Dependent variable: LNWELLSON Number of observations: 126	
(Statistics based on transformed data) (Statistics based on Mean of dep. var. = .118976 Mean of dep. v	-

	Mean or dep.	var. = .1189/6	Mean	or dep. var. = $6.48/3$	30
Std.	dev. of dep.	var. = .498710	Std. dev.	of dep. var. = 2.5922	29
Sum of	squared resi	duals = 13.0170	Sum of squar	red residuals = 22.197	71
Vari	ance of resi	duals = .106697	Variance	of residuals = .18194	14
Std. er	ror of regre	ssion = .326645	Std. error o	of regression = $.42654$	18
	R-sq	uared = .642125		R-squared = .97421	L7
A	djusted R-sq	uared = .633325	Adjust	ed R-squared = .97358	33
	Durbin-W	atson = 1.38493	I	Ourbin-Watson = 1.1624	13
Rho (autoc	orrelation c	oef.) = .974045			
	Log likel	ihood = -44.6886	5		
	-				
		Standard			
Parameter	Estimate	Error	t-statistic	P-value	
m0	-4.11050	2.30789	-1.78106	[.075]	
ml	.658667	.146343	4.50086	[.000]	
m2	.647987	.171629	3.77551	[.000]	
ρ	.974045	.013188	73.8582	[.000]	

Oil Development

```
\ln WELLSON_{i,r,k,t} = m0_{i,k} + m1_{i,k} \ln DCFON_{i,r,k,t-1} + m2_{i,k} \ln (CASHFLOW_{t} * \frac{r_{-}UND_{r,k,t}}{UND_{-}78_{r,k}}) + \rho_{i,k} \ln WELLSON_{i,r,k,(t-1)} - \rho_{i,k}(m0_{i,k} + m1_{i,k} \ln DCFON_{i,r,k,t-2} + m2_{i,k} \ln (CASHFLOW_{t-1} * \frac{r_{-}UND_{r,k,t-1}}{UND_{-}78_{r,k}}))
```

Dependent variable: LNWELLSON Number of observations: 126

(Statistics based on transformed data)	(Statistics based on original data)		
Mean of dep. var. = .209870	Mean of dep. var. = 7.80525		
Std. dev. of dep. var. = .468331	Std. dev. of dep. var. = .948487		
Sum of squared residuals = 7.68401	Sum of squared residuals = 14.4782		
Variance of residuals = .062984	Variance of residuals = .118673		
Std. error of regression = .250966	Std. error of regression = .344490		
R-squared = .752121	R-squared = .873092		
Adjusted R -squared = .746026	Adjusted R-squared = .869972		
Durbin-Watson = 1.33747	Durbin-Watson = 1.06188		
Rho (autocorrelation coef.) = .973768			
Log likelihood = -11.4489			
Standard			

beandara						
Parameter	Estimate	Error	t-statistic	P-value		
WT	-19.3787	12.7311	-1.52215	[.128]		
SODDCF_1	1.67339	.778327	2.14999	[.032]		
CF_ORES	.997636	.141236	7.06359	[.000]		
RHO	.973768	.013409	72.6204	[.000]		

```
\ln WELLSON_{i,r,k,t} = m0_{i,k} + m00 * REG6 + m1_{i,k} \ln DCFON_{i,r,k,t} + m2_{i,k} \ln (CASHFLOW_t * \frac{r - UND_{r,k,t}}{UND_{-}78_{r,k}}) + \rho_{i,k} \ln WELLSON_{i,r,k,(t-1)}
             -\rho_{i,k}(m0_{i,k} + m00 * REG6 + m1_{i,k} \ln DCFON_{i,r,k,t-1} + m2_{i,k} \ln(CASHFLOW_{t-1} * \frac{r_{UND}_{r,k,t-1}}{UND 78_{r,k}}))
            i=1, r=1-6, k=3
Dependent variable: LNWELLSON
Number of observations: 126
(Statistics based on transformed data)
                                                (Statistics based on original data)
            Mean of dep. var. = .874096
                                                         Mean of dep. var. = 11.8714
      Std. dev. of dep. var. = 1.04666
                                                   Std. dev. of dep. var. = 2.43030
   Sum of squared residuals = 33.8060
                                                 Sum of squared residuals = 47.2647
       Variance of residuals = .279388
                                                 Variance of residuals = .390617
   Std. error of regression = .528572
                                                 Std. error of regression = .624994
                     R-squared = .783270
                                                                   R-squared = .936914
          Adjusted R-squared = .776106
                                                        Adjusted R-squared = .934829
                 Durbin-Watson = 1.98468
                                                              Durbin-Watson = 1.68344
Rho (autocorrelation coef.) = .931479
               Log likelihood = -101.968
                              Standard
Parameter Estimate
                                Error
                                               t-statistic
                                                               P-value
m0
             2.00949
                              1.89009
                                               1.06317
                                                               [.288]
                             .460843
             -1.51272
m00
                                               -3.28250
                                                                [.001]
            .256212
```

2.16464

1.74142

31.7857

[.030]

[.082]

[.000]

.118362

.128128

.029305

m1

m2

ρ

.223124

.931479

Shallow Gas Development

```
\ln WELLSON_{i,r,k,t} = m0_{i,k} + m00_r * REG_r + m1_{i,k} \ln DCFON_{i,r,k,t} + m2_{i,k} \ln (CASHFLOW_t * \frac{r_{-}UND_{r,k,t}}{UND_{-}78_{r,k}}) + \rho_{i,k} \ln WELLSON_{i,r,k,(t-1)} - \rho_{i,k}(m0_{i,k} + m00_r * REG_r + m1_{i,k} \ln DCFON_{i,r,k,t-1} + m2_{i,k} \ln (CASHFLOW_{t-1} * \frac{r_{-}UND_{r,k,t-1}}{UND_{-}78_{r,k}}))
i=2, r=1-6, k=3
```

Dependent variable: LNWELLSON Number of observations: 132

(Statistics based on transformed data) (Statistics based on original data) Mean of dep. var. = .377436Mean of dep. var. = 9.66442 Std. dev. of dep. var. = 2.31304 Std. dev. of dep. var. = 7.61400 Sum of squared residuals = 39.8986 Sum of squared residuals = 34.7313 Variance of residuals = .280091 Variance of residuals = .321763 Std. error of regression = .529236 Std. error of regression = .567241R-squared = .950614 R-squared = .994896Adjusted R-squared = .947826 Adjusted R-squared = .994608 Durbin-Watson = 2.06402Durbin-Watson = 1.93301 Rho (autocorrelation coef.) = .960851 Log likelihood = -100.463

		Standard		
Parameter	Estimate	Error	t-statistic	P-value
m0	-19.6781	2.61942	-7.51239	[.000]
$m00_2$	2.38009	.652606	3.64705	[.000]
m003	3.82728	1.01405	3.77425	[.000]
m004	3.70514	.741413	4.99740	[.000]
$m00_{5}$	3.68481	.645295	5.71028	[.000]
ml	1.43354	.143177	10.0124	[.000]
m2	.891069	.261191	3.41157	[.001]
ρ	.960851	.023548	40.8042	[.000]

Deep Gas Exploratory

```
\ln WELLSON_{i,r,k,t} = m0_{i,k} + m00_r * REG_r + m1_{i,k} \ln DCFON_{i,r,k,t-1} + m2_{i,k} \ln (CASHFLOW_t * \frac{r_-UND_{r,k,t}}{UND_-78_{r,k}}) + \rho_{i,k} \ln WELLSON_{i,r,k,(t-1)} - \rho_{i,k}(m0_{i,k} + m00_r * REG_r + m1_{i,k} \ln DCFON_{i,r,k,t-2} + m2_{i,k} \ln (CASHFLOW_{t-1} * \frac{r_-UND_{r,k,t-1}}{UND_-78_{r,k}}))
```

Dependent variable: LNWELLSON Number of observations: 84

(Statistics based on transformed data) (Statistics based on original data) Mean of dep. var. = 2.48656 Mean of dep. var. = 4.16816 Std. dev. of dep. var. = .865887 Std. dev. of dep. var. = 1.13827 Sum of squared residuals = 12.1810 Sum of squared residuals = 12.4260 Variance of residuals = .158195 Variance of residuals = .161376 Std. error of regression = .397738 Std. error of regression = .401717R-squared = .807740R-squared = .884812 Adjusted R-squared = .792759 Adjusted R-squared = .875837 Durbin-Watson = 1.86878 Durbin-Watson = 1.85192 Rho (autocorrelation coef.) = .416712 Log likelihood = -38.4730

		Standard		
Parameter	Estimate	Error	t-statistic	P-value
m0	-1.05695	.463644	-2.27965	[.023]
$m00_3$	-2.97762	.863622	-3.44783	[.001]
$m00_{4}$	-3.91130	1.08098	-3.61831	[.000]
$m00_{5}$	-3.82831	1.11250	-3.44118	[.001]
ml	.542708	.125775	4.31490	[.000]
m2	.683554	.132650	5.15308	[.000]
ρ	.416712	.127773	3.26135	[.001]

Deep Gas Development

```
\ln WELLSON_{i,r,k,t} = m0_{i,k} + m00_r * REG_r + m1_{i,k} \ln DCFON_{i,r,k,t-1} + m2_{i,k} \ln (CASHFLOW_t * \frac{r_-UND_{r,k,t}}{UND_-78_{r,k}}) + \rho_{i,k} \ln WELLSON_{i,r,k,(t-1)} - \rho_{i,k}(m0_{i,k} + m00_r * REG_r + m1_{i,k} \ln DCFON_{i,r,k,t-2} + m2_{i,k} \ln (CASHFLOW_{t-1} * \frac{r_-UND_{r,k,t-1}}{UND_-78_{r,k}}))
```

Dependent variable: LNDGDW Number of observations: 84

(Statistics based on transformed data) (Statistics based on original data) Mean of dep. var. = 5.96878 Mean of dep. var. = 18.3746 Std. dev. of dep. var. = 4.64393 Std. dev. of dep. var. = 12.6247 Sum of squared residuals = 44.3324 Sum of squared residuals = 45.7795 Variance of residuals = .575745 Variance of residuals = .594540 Std. error of regression = .758779 Std. error of regression = .771064R-squared = .975370R-squared = .996543 Adjusted R-squared = .973451 Adjusted R-squared = .996273 Durbin-Watson = 1.90480 Durbin-Watson = 1.86901 Rho (autocorrelation coef.) = .695235 Log likelihood = -93.6694

		Standard		
Parameter	Estimate	Error	t-statistic	P-value
m0	-21.4843	6.15762	-3.48906	[.000]
$m00_3$	687584	.191756	-3.58573	[.000]
$m00_4$	-2.49963	.244572	-10.2204	[.000]
$m00_{5}$	-2.65629	.296266	-8.96592	[.000]
ml	1.74053	.376262	4.62584	[.000]
m2	.520042	.149166	3.48633	[.000]
ρ	.695235	.078834	8.81901	[.000]

Lower 48 Onshore Success Rates

Exploratory and developmental success rate equations were estimated using pooled cross section/time series for the six onshore regions over the 1978-1998 time period. Since success rates are bounded between 0 and 1, the logistical form of the dependent variable was employed in the estimation. Estimation corrected for cross sectional heteroscedasticity and first order serial correlation. The form of the estimating equation is the same for both exploratory and development and is given by:

$$ln(\frac{SR_{i,r,t}}{1-SR_{i,r,t}}) = uO_{i,r} + uI_i lnCUMSUCWELLS_{i,r,t} + u2_i YEAR_t + \rho_i ln(\frac{SR_{i,r,t-1}}{1-SR_{i,r,t-1}}) - \rho_i (uO_{i,r} + uI_i lnCUMSUCWELLS_{i,r,t-1} + u2_i YEAR_{t-1})$$

Exploratory Success Rate

```
Dependent variable: \ln[\,SR_{\rm l,r,t}\,\,/\,(1-\,SR_{\rm l,r,t}\,)\,] Number of observations: 126
```

```
(Statistics based on transformed data)
                                          (Statistics based on original data)
          Mean of dep. var. = -.592305
                                                 Mean of dep. var. = -1.89733
     Std. dev. of dep. var. = .480823
                                            Std. dev. of dep. var. = .689322
   Sum of squared residuals = 24.5124
                                          Sum of squared residuals = 26.1424
      Variance of residuals = .209508
                                             Variance of residuals = .223439
                                          Std. error of regression = .472693
   Std. error of regression = .457720
                                                R-squared = .560102
Adjusted R-squared = .530024
                  R-squared = .152520
         Adjusted R-squared = .094573
              Durbin-Watson = 1.77160
                                                     Durbin-Watson = 1.71986
Rho (autocorrelation coef.) = .700128
             Log likelihood = -77.6700
                          Standard
```

		bcanaara		
Parameter	r Estimate	Error	t-statistic	P-value
u0 _{1.1}	-66.5787	23.7772	-2.80010	[.005]
u0 _{1,2}	-66.2847	23.7551	-2.79034	[.005]
u0 _{1,3}	-66.6297	23.7804	-2.80188	[.005]
u0 _{1,4}	-66.8373	23.7878	-2.80973	[.005]
u0 _{1,5}	-66.4170	23.8018	-2.79042	[.005]
u0 _{1,6}	-66.9183	23.8988	-2.80008	[.005]
ul	193080	.082515	-2.33993	[.019]
u2	.033820	.012223	2.76686	[.006]
ρ	.700128	.068339	10.2449	[.000]

Development Success Rate

u2

ρ

.036470

.658906

Dependent variable: $ln[SR_{2,r,t} / (1 - SR_{2,r,t})]$ Number of observations: 126 (Statistics based on transformed data) (Statistics based on original data) Mean of dep. var. = .945705Mean of dep. var. = 2.60106 Std. dev. of dep. var. = .347367 Std. dev. of dep. var. = .480625 Sum of squared residuals = 7.78649 Sum of squared residuals = 7.93766 Variance of residuals = .066551 Variance of residuals = .067843 Std. error of regression = .260467Std. error of regression = .257975 R-squared = .483842 R-squared = .725106 Adjusted R-squared = .448550 Adjusted R-squared = .706310 Durbin-Watson = 1.63320 Durbin-Watson = 1.62286 Rho (autocorrelation coef.) = .658906 Log likelihood = -5.10940Standard Parameter Estimate t-statistic P-value Error -69.4808 16.9452 -4.10033[.000] u0_{1,1} u0_{1,2} -70.2935 16.9688 -4.14252[.000] -70.3074 16.9515 -4.14756 [.000] u0_{1.3} -69.813916.9585 -4.11674[.000]u0_{1,4} [.000] u0_{1,5} -69.5172 17.0016 -4.08887u0_{1,6} -68.198717.0193 -4.00713[.000] -.105456 .054917 -1.92029 u1 [.055]

4.15902

9.27462

[.000]

[.000]

.876880E-02

.071044

Lower 48 Onshore Finding Rates

NEW FIELD WILDCAT FINDING RATE FOR LOWER 48 ONSHORE OIL

Oil discoveries per successful oil new field wildcat were hypothesized to be a function of drilling activity and the volume of remaining undiscovered resources. The coefficient on the resource base in the regression was permitted to vary across regions. The variables depth and the time trend were not included based on the results of a preliminary regression. The preliminary results also indicated the presence of heteroscadisticity and autocorrelation. The results presented below correct for these problems.

FORM OF FORECASTING EQUATION:

 $FR_{i,t} = e^{-269339*}R_{UND}f^{\beta}r^{*}e^{-0.005715\% FW_{t}}$ for r = 1 through 5. FIRST-ORDER SERIAL CORRELATION OF THE ERROR Dependent variable: LNFR1 Number of observations: 120 (NOTE: Region 6 not included in estimation.) (Statistics based on transformed data) (Statistics based on original data) Mean of dep. var. = -2.59266Mean of dep. var. = -3.28180Std. dev. of dep. var. = 2.38697 Std. dev. of dep. var. = 2.65368 Sum of squared residuals = 47.2363 Sum of squared residuals = 47.1465Variance of residuals = .420951 Variance of residuals = .421753 Std. error of regression = .648808 Std. error of regression = .649425R-squared = .930464 R-squared = .943633 Adjusted R-squared = .926118 Adjusted R-squared = .940110 Durbin-Watson = 1.93284Durbin-Watson = 1.92988Rho (autocorrelation coef.) = .224849Standard error of rho = .092236t-statistic for rho = 2.43775Log likelihood = -114.348Estimated Standard Variable Coefficient Error t-statistic P-value [.000] -26.9339 4.29611 WΤ -6.26935 .587722 3.33362 R_UND1 5.67210 [.000] .505347 [.000] R_UND2 2.93735 5.81254 .597694 5.67767 r und3 3.39351 [.000] .494264 3.03254 .527563 5.74820 [.000] R UND4 r und5 2.85992 5.78622 [.000] -.571516E-02 .171252E-02 [.001] NFW -3.33728 -6.88513 .213466 -32.2539 [.000] DUMMY LNFR1 = natural log of new field wildcat finding rate WT = overall constant R_UNDr = natural log of remaining undiscovered resources (coefficients vary by region) NFW = number of new field wildcats DUMMY = 1 if discoveries were "guesstimated", 0 otherwise (not included in

forecasting equation)

NEW FIELD WILDCAT FINDING RATE FOR LOWER 48 ONSHORE CONVENTIONAL GAS

Gas discoveries per successful gasl new field wildcat were hypothesized to be a function of drilling activity, well depth, and the volume of remaining undiscovered resources. The coefficient on the resource base in the regression was permitted to vary across regions. The time trend was not included based on the results of a preliminary regression. The preliminary results also indicated the presence of heteroscadisticity and autocorrelation. The results presented below correct for these problems.

FORM OF FORECASTING EQUATION:

$$FR1_{r,t} = e^{-21.7035} * R_UNDr_{r,t}^{\beta_r} * e^{-0.00516455*NFW_{r,t}+0.000129571*NFW_FT_{r,t}} * FR1_{r,t-1}^{0.145920} * e^{-0.145920*(-21.7035)} \\ * R_UNDr_{r,t-1}^{-0.145920*\beta_r} * e^{-0.145920*(-0.00516455*NFW_{r,t-1}+0.000129571*NFW_FT_{r,t-1})}$$

for r = 1 through 6.

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Dependent variable: LNFR1 Number of observations: 138

Mean of dep. var. =216048	Adjusted R-squared = .833108
Std. dev. of dep. var. = 2.52105	Durbin-Watson = 1.92241
Sum of squared residuals = 134.712	Rho (autocorrelation coef.) = .145920
Variance of residuals = 1.06072	Schwarz B.I.C. = 221.288
Std. error of regression = 1.02991	Log likelihood = -194.188
R-squared = .845290	

		Standard		
Parameter	Estimate	Error	t-statistic	P-value
WT	-21.7035	4.73362	-4.58496	[.000]
R_UND1	2.32999	.536208	4.34530	[.000]
R_UND2	1.95811	.440443	4.44576	[.000]
r_und3	2.13446	.488132	4.37271	[.000]
R_UND4	2.20902	.507742	4.35068	[.000]
R_UND5	2.06663	.489513	4.22182	[.000]
R_UND6	2.44430	.545646	4.47964	[.000]
NFW	516455E-02	.204831E-02	-2.52137	[.012]
NFW_FT	.129571E-03	.633813E-04	2.04431	[.041]
DUMMY	-7.44068	.366714	-20.2902	[.000]
RHO	.145920	.085721	1.70225	[.089]

LNFR1 = natural log of new field wildcat finding rate, FR1, where FR1 is equal new reserve discoveries divided by successful new field wildcats drilled WT = overall constant R_UNDr = natural log of remaining undiscovered resources in region r, for r=1-6 NFW = number of successful new field wildcats drilled NFW_FT = average depth of new field wildcat DUMMY = 1, if discoveries were "guesstimated", 0, otherwise. (not used in forecasting equation)

LOWER 48 ONSHORE OTHER EXPLORATORY FINDING RATES

The other exploratory finding rate equations for oil and natural gas were each estimated using a panel data set for the six onshore regions over the 1978-2000 time period. Equations were estimated with corrections for cross sectional heteroscedasticity and first order serial correlation.

OTHER EXPLORATORY FINDING RATE EQUATION FOR OIL

FORM OF FORECASTING EQUATION:

$FR2_{r,t} = e^{-75.5168} R _ IN$	$VFR_{r,t}^{0.573281}e^{-0.00316826*OEXPWL_{r,t}+0.035384*}$	$FR2_{r,t-1}^{0.778131}$
$e^{(-0.778131)*(-75.516)}$	$^{(68)}R_INFR_{r,t}^{-0.778131*0.573281}e^{-0.778131*(-1)}$	$-0.00316826*OEXPWL_{r,t}+0.035384*YEAR)$

for r = 1 through 6.

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Dependent variable: LNFR2 Number of observations: 144

Variance of residuals = .367662	<pre>(Statistics based on original data) Mean of dep. var. =504517 Std. dev. of dep. var. = 1.34277 Sum of squared residuals = 52.5306 Variance of residuals = .375218 Std. error of regression = .612551 R-squared = .798491 Adjusted R-squared = .794173 Durbin-Watson = 2.23205</pre>
Estimated Standard	

Variable Coefficient Error t	-statistic I	?-value
WT -75.5168 36.9216 -2	2.04533 [[.041]
R_INFR .573281 .161476 3	.55026	[.000]
OEXPWL316826E-02 .676785E-03 -4	4.68134 [[.000]
YEAR .035384 .018350 1	.92829	[.054]

LNFR2 = natural log of other exploratory finding rate
WT = overall constant
R_INFR = natural log of remaining inferred reserves
OEXPWL = successful other exploratory wells
YEAR = calendar year

OTHER EXPLORATORY FINDING RATE EQUATION FOR CONVENTIONAL GAS

FORM OF FORECASTING EQUATION:

$$FR2_{r,t} = e^{-61.0930} R _ INFR_{r,t}^{0.349387} e^{-0.00275498*OEXPWL_{r,t} + 0.000525444*OEXP _FT_{r,t} + 0.030048*YEAR} FR2_{r,t-1}^{0.802450} e^{(-0.802450)*(-61.0930)} R _ INFR_{r,t}^{-0.802450*0.349387} e^{-0.802450*(-0.00275498*OEXPWL_{r,t} + 0.0000525444*OEXP _FT_{r,t} + 0.030048*YEAR)}$$

for r = 1 through 6.

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Dependent variable: LNFR2 Number of observations: 132

Mean of dep. var. = 3.76883	Adjusted R-squared = .937784
Std. dev. of dep. var. = 2.52737	Durbin-Watson = 1.43192
Sum of squared residuals = 50.2993	Rho (autocorrelation coef.) = .802450
Variance of residuals = .399201	Schwarz B.I.C. = 138.012
Std. error of regression = .631824	Log likelihood = -123.363
R-squared = .940158	

		Standard		
Parameter	Estimate	Error	t-statistic	P-value
WT	-61.0930	30.8322	-1.98147	[.048]
R_INFR	.349387	.075475	4.62918	[.000]
OEXPWL	275498E-02	.736171E-03	-3.74232	[.000]
OEXP_FT	.525444E-04	.259261E-04	2.02670	[.043]
YEAR	.030048	.015468	1.94260	[.052]
RHO	.802450	.050412	15.9177	[.000]

LNFR2 = natural log of two-year weighted average FR2, i.e.,

FR2 = (extensions in t + extensions in t-1) divided by
 (other exploratory wells in t + other exploratory wells in t-1)

WT = overall constant
R_INFR = natural log of remaining inferred reserves
OEXPWL = successful other exploratory wells drilled
OEXP_FT = average depth of other exploratory wells
YEAR = calendar year

Lower 48 Onshore Crude Oil and Natural Gas Revisions

Reserve revisions are an extremely important source of reserve additions. For instance, over the period 1990-97, revisions added almost nine Tcf to conventional gas reserves in the onshore Gulf Coast Region alone. Unfortunately, the determinants of revisions are not well understood and thus projecting revisions is somewhat problematic.

In contrast to previous efforts that sought to project revisions per developmental well directly, this effort defines the dependent variable as

LN((REVISIONS+BOYRESERVES)/BOYRESERVES)

where BOYRESERVES are reserves at the beginning of the year. This formulation associates revisions with their base from which reserves are revised up or down.

The analysis also includes a measure of inferred reserves as an explanatory variable. Specifically, the variable is REMAIN which is defined as

```
LN((INFERRED_RESERVES+BOYRESERVES)/BOYRESERVES)
```

Revisions occur in part because of new information. In this spirit, previous efforts have attempted to associate revisions to current developmental drilling. This analysis notes that past developmental drilling may provide information that leads to current revisions. Accordingly, the analysis uses cumulative developmental drilling (including current drilling) as an explanatory variable. As a result, the equations forecast total revisions as opposed to revisions per well drilled.

The analysis also employs price as an explanatory variable. In the case of oil, the relationship was found to be nonlinear. This was not the case for natural gas.

General Form of the Equation:

```
\begin{aligned} REVISION_{r,k,t} &= (e^{B0_{r,k}} * ((R\_INFR_{r,k,t} + BOYRES_{r,k,t}) / BOYRES_{r,k,t})^{B1_{r,k}} \\ &\quad * e^{(B2*WHP_{r,k,t})} * e^{(B3*WHP_{r,t,t})} * e^{(B4*WHP_{r,k,t} / WHP_{r,k,t-1})} * e^{B5*CUMDWL_{r,k,t})}) - 1) \\ &\quad * BOYRES_{r,k,t} \end{aligned}
```

where

```
r = region
k = fuel (oil, gas)
t = year
R_INFR = remaining inferred reserves at beginning of year
BOYRES = beginning of year proved reserves
WHP = wellhead price
CUMDWL = cumulative number of development wells through the end of
year t
```

year t

Results: Crude Oil

Dependent variable: LN((REVISION+BOYRESERVES)/BOYRESERVES))

Number of observations: 144

Mean of dep. v Std. dev. of dep. v Sum of squared residu Variance of residu Std. error of regress R-squa Adjusted R-squa	ar. = 1.35983 als = 142.136 als = 1.11044 ion = 1.05377 red = .462477	Durbin-Wat Jarque-Bera t Ramsey's RES F (zero slop Schwarz B.I	<pre>est = .041794 son = 1.99243 est = .198033 ET2 = 1.91558 es) = 7.34196 c.C. = 243.148 cood = -203.389</pre>	[<.925] [.906] [.169] [.000]
	Estimated	Standard		
Variable	Coefficient	Error	t-statistic	P-value
REG1	541106	.153139	-3.53344	[.001]
REG2	248586	.054247	-4.58245	[.000]
REG3	-1.10624	.221213	-5.00079	[.000]
REG4	933665	.154836	-6.03004	[.000]
REG5	355171	.132484	-2.68085	[.008]
REG6	369608	.156335	-2.36421	[.020]
REMAIN1	.297223	.110831	2.68178	[.008]
REMAIN2	.113628	.062487	1.81843	[.071]
REMAIN3	.587352	.131341	4.47197	[.000]
REMAIN4	.504829	.096822	5.21399	[.000]
REMAIN5	.134031	.065475	2.04705	[.043]
REMAIN6	.190950	.118029	1.61783	[.108]
REALWHP	.738073E-02	.249324E-02	2.96030	[.004]
REALWHP_SQ	121759E-03	.481235E-04	-2.53013	[.013]
DELTA_WELLHEAD_PRICE	.041220	.013957	2.95340	[.004]
CUM_DEV_WELLS	.143406E-05	.221573E-06	6.47218	[.000]

REGr = B0: regional constant REMAINr = B1: measure of inferred reserves REALWHP = B2: wellhead price REALWHP_SQ = B3: wellhead price squared DELTA_WELLHEAD_PRICE = B4: ratio of wellhead prices in year t and t-1 CUM_DEV_WELLS = B5: cumulative developmental wells

Results: Conventional Natural Gas

Dependent variable: LN((REVISION+BOYRESERVES)/BOESERVES)) Number of observations: 114 Mean of dep. var. = .194646LM het. test = .166320 [.683] Std. dev. of dep. var. = 1.47659Durbin-Watson = 2.11519 [<.984] Sum of squared residuals = 109.717 Jargue-Bera test = 1.73406 [.420] Variance of residuals = 1.10825 Ramsey's RESET2 = .016533 [.898] Std. error of regression = 1.05273 F (zero slopes) = 8.80791 [.000] Schwarz B.I.C. = 195.098 R-squared = .554678 Adjusted R-squared = .491703 Log likelihood = -159.576Estimated Standard Coefficient Variable Error t-statistic P-value REG1 -1.17839.206320 -5.71145 [.000] REG2 .249514 -4.66916 [.000] -1.16502 REG3 -.738633 .210781 -3.50427 [.001] -1.19530 [.000] reg4 .297404 -4.01911 -.821210 REG5 -.102103 .124333 [.413] -.285817 .110373 -2.58955 [.011] REG6 REMAIN1 .740842 .156798 4.72480 [.000] REMAIN2 .141332 4.37036 .617670 [.000] remain3 .425990 .134749 3.16135 [.002] .906342 [.000] REMAIN4 .247037 3.66885 .315070 .039167 [.753] REMAIN5 .124313 .287130 [.024] REMAIN6 .125106 2.29509 REALWHP .017753 .887748E-02 1.99978 [.048] .540568E-05 CUM_DEV_WELLS .966544E-06 5.59279 [.000] CUM_DEV_WELLS_REG4 .107545E-04 -.260401E-04 -2.42131 [.017]

REGr = B0: regional constant REMAINr = B1: measure of inferred reserves REALWHP = B2: wellhead price CUM_DEV_WELLS = B5: cumulative developmental wells

Price Elasticities of Short Run Supply

As noted in chapter 4, the PMM and NGTDM calculate production levels through the use of short-run supply functions that require estimates of the price elasticities of supply. The section below documents the estimations.

Onshore Lower 48 Oil

Price elasticities were estimated using the AR1 technique in TSP which corrects for serial correlation using the maximum likelihood iterative technique of Beach and MacKinnon (1978). Equations for onshore regions 1 and 6 were estimated separately due to the regions' unique characteristics. The functional form is given by:

 $\begin{aligned} \text{LCRUDE}_t &= a0 + a1 * \text{LOILRES}_t + a2 * \text{LPOIL}_t + \rho * \text{LCRUDE}_{t-1} \\ &- \rho * (a0 + a1 * \text{LOILRES}_{t-1} + a2 * \text{LPOIL}_{t-1}) \end{aligned}$

where,

LCRUD	ЭE	= natural log of crude oil production
LOILRE	ES	= natural log of beginning of year oil reserves
LPOIL	=	natural log of the regional wellhead price of oil in 1987 dollars
ρ	=	autocorrelation parameter
t	=	year.

Region 1

Results

Variable	Estimated Coefficient	Standard Error	t-statistic
a0	977125	.680644	-1.43559
LOILRES	.814563	.114311	7.12584
LPOIL	.08385	.040682	2.06115
ρ	.334416	.297765	1.12309

SAMPLE: 1978 to 1990 NUMBER OF OBSERVATIONS = 13

Dependent variable: LCRUDE (Statistics based on transformed data) Mean of dependent variable = 3.03941 Std. dev. of dependent var. = .365187 Sum of squared residuals = .015765 Variance of residuals = .157651E-02 Std. error of regression = .039705 R-squared = .990477Adjusted R-squared = .988573 Durbin-Watson statistic = 1.58775 F-statistic (zero slopes) = 502.556 Log of likelihood function = 25.1414 (Statistics based on original data) Mean of dependent variable = 4.43559 Std. dev. of dependent var. = .142410 Sum of squared residuals = .015832 Variance of residuals = .158323E-02 Std. error of regression = .039790R-squared = .936035Adjusted R-squared = .923242Durbin-Watson statistic = 1.57879

Region 6

Results

Variable	Estimated Coefficient	Standard Error	t-statistic
aO	6.69155	2.14661	3.11727
LOILRES	123763	.255535	484329
LPOIL	.031845	.038040	.837163
ρ	.833915	.135664	6.14691

```
SAMPLE: 1978 to 1990
NUMBER OF OBSERVATIONS = 13
```

```
Dependent variable: LCRUDE
(Statistics based on transformed data)
  Mean of dependent variable = 1.13005
 Std. dev. of dependent var. = .605103
Sum of squared residuals = .013218
       Variance of residuals = .132176E-02
    Std. error of regression = .036356
                    R-squared = .997230
           Adjusted R-squared = .996676
     Durbin-Watson statistic = .896816
   F-statistic (zero slopes) = 1657.10
  Log of likelihood function = 25.7519
(Statistics based on original data)
  Mean of dependent variable = 5.78242
 Std. dev. of dependent var. = .061666
    Sum of squared residuals = .014455
       Variance of residuals = .144552E-02
    Std. error of regression = .038020
                    R-squared = .707387
     Adjusted R-squared = .648864
Durbin-Watson statistic = .892422
```

For onshore regions 2 through 5, the data were pooled and regional dummy variables were used to allow the estimated production elasticity to vary across the regions. Region 2 is taken as the base region. The form of the equation is given by:

$$\begin{aligned} \text{LCRUDE}_{t} &= a0 + a1 * \text{LOILRES}_{t} + a2 * \text{LPOIL}_{t} + a3 * \text{LPDUM3}_{t} + a4 * \text{LPDUM4}_{t} + \\ &a5 * \text{LPDUM5}_{t} + \rho * \text{LCRUDE}_{t-1} - \rho * (a0 + a1 * \text{LOILRES}_{t-1} + \\ &a2 * \text{LPOIL}_{t-1} + a3 * \text{LPDUM3}_{t-1} + a4 * \text{LPDUM4}_{t-1} + a5 * \text{LPDUM5}_{t-1}) \end{aligned}$$

where,

LPDUMr	=	DUMr*LPOIL
DUMr	=	a dummy variable that equals 1 if region=r and 0 otherwise
r	=	onshore regions 2 through 5
ρ	=	autocorrelation parameter
t	=	year.

Regions 2 through 5

Results

Variable	Estimated Coefficient	Standard Error	t-statistic
aO	1.38487	.646290	2.14279
LOILRES	.549313	.077877	7.05360
LPOIL	.105051	.032631	3.21932
LPDUM3	077217	.034067	-2.26660
LPDUM4	028657	.034318	835047
LPDUM5	089397	.032700	-2.73387
ρ	.867072	.080470	10.7751

SAMPLE: 1978 to 1990 NUMBER OF OBSERVATIONS = 52

```
Dependent variable: LCRUDE
(Statistics based on transformed data)
  Mean of dependent variable = .936528
 Std. dev. of dependent var. = .612526
    Sum of squared residuals = .109259
       Variance of residuals = .237519E-02
    Std. error of regression = .048736
                    R-squared = .994731
     Adjusted R-squared = .994159
Durbin-Watson statistic = 1.42150
   F-statistic (zero slopes) = 1602.00
  Log of likelihood function = 83.7253
(Statistics based on original data)
  Mean of dependent variable = 5.93153
 Std. dev. of dependent var. = .428916
    Sum of squared residuals = .110274
       Variance of residuals = .239725E-02
    Std. error of regression = .048962
R-squared = .988524
          Adjusted R-squared = .987277
     Durbin-Watson statistic = 1.40740
```

The estimated coefficient on LPOIL is the price elasticity of crude oil production for region 2. The elasticity for region r (r = 3,4,5) is obtained by adding the coefficient on LPDUM_r to the coefficient on LPOIL.

Lower 48 Dry Non-Associated Natural Gas

The data for onshore regions 1 through 6 were pooled and a single regression equation estimated with dummy variables used to allow the slope coefficients to vary across regions. Region 1 was taken as the base region. The equation was estimated using the non-linear two stage least squares procedure in TSP. The form of the equation is given by:

LPROD = A0 + (A1 + $\sum_{r} Ar * DUMr$) *LGASRES + (B1 + $\sum_{r} Br * DUMr$) * LPGAS + C*DEDSHR

where,

LPROD	=	natural log of natural gas production
LGASRES	=	natural log of beginning of year natural gas reserves
LPGAS	=	natural log of the regional wellhead price of natural gas in 1987 dollars
DEDSHR	=	natural log of the share of natural gas production that is accounted for by
		pipeline sales(included to capture the effect of open access on production)
DUMr	=	dummy variable that equals 1 if region $=$ r and 0 otherwise
r	=	onshore regions 2 through 6.

Results

Variable	Estimated Coefficient	Standard Error	t-statistic
A0	-3.02039	3.46358	872044
A1	.962078	.206360	4.66213
A2	.067699	.016754	4.04076
A3	.049399	.017549	2.81494
A4	.062093	.018170	3.41733
A5	.450603E-02	.016987	.265262
A6	.047330	.054670	.865738
B1	.852276	.326959	2.60668
B2	589608	.331977	-1.77605
В3	645398	.306376	-2.10623
B4	730398	.341712	-2.13747
B5	733917	.265693	-2.76228
B6	388545	.471104	822833
С	305243	.082627	-3.69421

SAMPLE: 1985 to 1990 NUMBER OF OBSERVATIONS = 36

```
Dependent variable: LPROD
Mean of dependent variable = 13.7972
Std. dev. of dependent var. = 1.08967
Sum of squared residuals = .089311
Variance of residuals = .405960E-02
Std. error of regression = .063715
R-squared = .997851
Adjusted R-squared = .996581
Durbin-Watson statistic = 2.42140
```

The price elasticity of natural gas production for onshore region 1 is given by the estimated parameter B1. The price elasticity for any other onshore region r (r = 2 through 6) is derived by adding the estimate for Br to the value of B1.

Offshore Gulf of Mexico Crude Oil

Price elasticities were estimated using OLS. The functional form is given by:

```
LCRUDE = a0 + a1 * LOILRES + a2 * LPOIL + a3 * LCRUDE(-1) + a4 * DUM
```

where,

LCRUDE	=	natural log of crude oil production
LOILRES	=	natural log of beginning of year oil reserves
LPOIL	=	natural log of the regional wellhead price of oil in 1987 dollars
LCRUDE(-1)	=	natural log of crude oil production in the previous year
DUM	=	a dummy variable that equals 1 for years after 1986 and 0 otherwise.

Results

Variable	Estimated Coefficient	Standard Error	t-statistic
a0	-6.48638	2.65947	-2.43897
LOILRES	.821851	.313405	2.62233
LPOIL	.115556	.051365	2.24969
LCRUDE(-1)	.974244	.137890	7.06538
DUM	.079112	.045683	1.73175

```
SAMPLE: 1978 to 1991
NUMBER OF OBSERVATIONS = 14
Dependent variable: LCRUDE
Mean of dependent variable = 5.65758
Std. dev. of dependent var. = .106897
Sum of squared residuals = .021640
Variance of residuals = .240446E-02
Std. error of regression = .049035
R-squared = .854325
Adjusted R-squared = .789581
Durbin-Watson statistic = 1.47269
Durbin's h = 1.04017
Durbin's h alternative = .725714
F-statistic (zero slopes) = 13.1954
Schwarz Bayes. Info. Crit. = -5.52974
```

```
Log of likelihood function = 25.4407
```

Pacific Offshore Crude Oil

Price elasticities were estimated using the AR1 procedure in TSP which corrects for first order serial correlation using a maximum likelihood iterative technique. The regression equation is given by:

 $\begin{aligned} \text{LCRUDE}_{t} &= a0 + a1 * \text{LOILRES}_{t} + a2 * \text{LPOIL}_{t} + \rho * \text{LCRUDE}_{t-1} - \rho * (a0 + a1 * \text{LOILRES}_{t-1} + a2 * \text{LPOIL}_{t-1}) \end{aligned}$

where,

LCRUDE	=	natural log of crude oil production
LOILRES	=	natural log of beginning of year crude oil reserves
LPOIL	=	natural log of the regional wellhead price of crude oil in 1987 dollars
ρ	=	autocorrelation parameter
t	=	year.

Results

Variable	Estimated Coefficient	Standard Error	t-statistic
a0	1.34325	.443323	3.02995
LOILRES	.310216	.067090	4.62390
LPOIL	.181190	.067391	2.68865
ρ	355962	.320266	-1.11146

```
SAMPLE: 1977 to 1991
NUMBER OF OBSERVATIONS = 15
Dependent variable: LCRUDE
(Statistics based on transformed data)
        Mean of dependent variable = 5.31728
       Std. dev. of dependent var. = .646106
          Sum of squared residuals = .209786
Variance of residuals = .017482
          Std. error of regression = .132220
                          R-squared = .971382
                 Adjusted R-squared = .966613
           Durbin-Watson statistic = 1.61085
         F-statistic (zero slopes) = 161.152
        Log of likelihood function = 10.6711
(Statistics based on original data)
        Mean of dependent variable = 4.001171
       Std. dev. of dependent var. = .231415
          Sum of squared residuals = .220359
             Variance of residuals = .018363
          Std. error of regression = .135511
R-squared = .711359
                 Adjusted R-squared = .663252
           Durbin-Watson statistic = 1.61258
```

Associated Dissolved Gas Equations

Associated dissolved gas production was hypothesized to be a function of crude oil production. The form of the equation was assumed to be log-linear. The equations were estimated in log-linear form using ordinary least squares (OLS) technique available in TSP. The forms of the equations are :

 $LADGAS_{r,t} = ln(\alpha 0)_r + ln(\alpha 1)_r * DUM86_t + (\beta 0_r + \beta 1_r * DUM86_t) * LOILPROD_{r,t}$

Results

Onshore Region 1

Method of estimation = Ordinary Least Squares

Dependent variable: LADGAS Current sample: 11 to 24 Number of observations: 14 Mean of dependent variable = 5.12499 Std. dev. of dependent var. = .164729 Sum of squared residuals = .038353 Variance of residuals = .319609E-02 Std. error of regression = .056534R-squared = .891278Adjusted R-squared = .882218 Durbin-Watson statistic = 1.75215 F-statistic (zero slopes) = 98.3730 Schwarz Bayes. Info. Crit. = -5.52297 Log of likelihood function = 21.4347 Estimated Standard Variable Coefficient Error t-statistic $ln(\alpha 0)$ 2.07491 .307892 6.73908 β0 .701885 .070766 9.91832 Onshore Region Method of estimation = Ordinary Least Squares Dependent variable: LADGAS Current sample: 35 to 48 Number of observations: 14 Mean of dependent variable = 6.49697 Std. dev. of dependent var. = .266043 Sum of squared residuals = .048056 Variance of residuals = .400467E-02 Std. error of regression = .063282 R-squared = .947773 Adjusted R-squared = .943420 Durbin-Watson statistic = 1.22587 F-statistic (zero slopes) = 217.764 Schwarz Bayes. Info. Crit. = -5.29744 Log of likelihood function = 19.8560 Estimated Standard Variable Coefficient Error t-statistic -3.07832 .649092 -4.74250 ln(α0) β0 1.56944 .106353 14.7568 3

Onshore Region

Method of estimation = Ordinary Least Squares

Dependent variable: LADGAS Current sample: 65 to 72 Number of observations: 8 Mean of dependent variable = 5.92117 Std. dev. of dependent var. = .188982 Sum of squared residuals = .013619 Variance of residuals = .226982E-02 Std. error of regression = .047643 R-squared = .945524 Adjusted R-squared = .936445 Durbin-Watson statistic = 2.19391 F-statistic (zero slopes) = 104.141 Schwarz Bayes. Info. Crit. = -5.85588 Log of likelihood function = 14.1514 Estimated Standard

Variable	Coefficient	Error	t-statıstıc
$ln(\alpha 0)$	-1.65468	.742561	-2.22834
β0	1.42210	.139354	10.2050
			Onchore Peak

Onshore Region ******

Method of estimation = Ordinary Least Squares

Current sample: 82 to 96 Number of observations: 15 Mean of dependent variable = 6.51049 Std. dev. of dependent var. = .080768 Sum of squared residuals = .065307 Variance of residuals = .502359E-02 Std. error of regression = .070877 R-squared = .284921 Adjusted R-squared = .229915 Durbin-Watson statistic = 1.28517 F-statistic (zero slopes) = 5.17980 Schwarz Bayes. Info. Crit. = -5.07564 Log of likelihood function = 19.4913

Dependent variable: LADGAS

	Estimated	Standard	
Variable	Coefficient	Error	t-statistic
$ln(\alpha 0)$	4.49271	.886765	5.06640
β0	.315372	.138569	2.27592

Onshore Region 5

Method of estimation = Ordinary Least Squares

Dependent variable: LADGAS Current sample: 107 to 120 Number of observations: 14

Mean of dependent variable	=	5.49207
Std. dev. of dependent var.	=	.176267
Sum of squared residuals	=	.169883
Variance of residuals	=	.014157
Std. error of regression	=	.118983
R-squared	=	.579402
Adjusted R-squared		
Durbin-Watson statistic	=	1.15658
F-statistic (zero slopes)	=	16.5308
Schwarz Bayes. Info. Crit.		
Log of likelihood function	=	11.0168

Variable Colln(α 0) 5.	stimated efficient 34284 47917	Standard Error .048562 .011785	t-statistic 110.021 4.06581
--------------------------------	---	---	-----------------------------------

Onshore Region 6

Method of estimation = Ordinary Least Squares

Dependent variable: LADGAS Current sample: 131 to 144 Number of observations: 14 Mean of dependent variable = 5.20320 Std. dev. of dependent var. = .126146 Sum of squared residuals = .030218 Variance of residuals = .302183E-02 Std. error of regression = .054971 R-squared = .853924 Adjusted R-squared = .810102 Durbin-Watson statistic = 1.16621 F-statistic (zero slopes) = 19.4859 Schwarz Bayes. Info. Crit. = -5.38435 Log of likelihood function = 23.1034 Estimated Standard Variable Coefficient Error t-statistic

$ln(\alpha 0)$	-12.1971	2.95896	-4.12210
ln(α1)	10.7230	3.27845	3.27075
β 0	2.99621	.508887	5.88778
β1	-1.83291	.565439	-3.24157

Offshore California

Method of estimation = Ordinary Least Squares

Current sample: 146 to 157 Number of observations: 12 Mean of dependent variable = 3.46459 Std. dev. of dependent var. = .235388 Sum of squared residuals = .130029 Variance of residuals = .016254 Std. error of regression = .127490 R-squared = .786657 Adjusted R-squared = .706654 Durbin-Watson statistic = 1.46033 F-statistic (zero slopes) = 9.83279 Schwarz Bayes. Info. Crit. = -3.69661 Log of likelihood function = 10.1222

Dependent variable: LADGAS

Variable	Estimated Coefficient	Standard Error	t-statistic
ln(α0)	-42.1148	14.1531	-2.97566
ln(a1)	43.1508	14.3122	3.01497
β0	10.7112	3.34207	3.20497
β1	-10.0929	3.38203	-2.98428

Offshore Gulf of Mexico

Method of estimation = Ordinary Least Squares

Dependent variable: LADGAS Current sample: 159 to 170 Number of observations: 12

	Estimated	Standard	
Variable	Coefficient	Error	t-statistic
ln(α1)	4.21386	1.49771	2.81354
β 0	1.07834	.466028E-02	231.391
β1	697473	.258646	-2.69663

Deep Water Offshore Capacity Calculations

Offshore Rig Capacity

rig B2

 $RIGS_{ivr} = rig_B0 + rig_B1 * RIGS_{ivr-1} + rig_B2 * gasprice_{ivr} * oilprice_{ivr}$

SHALLOW GULF OF MEXICO SUMMARY OUTPUT Regression Statistics Multiple R 0.940699806 R Square 0.884916126 Adjusted R Square 0.863991785 Standard Error 17.59934768 Observations 14 ANOVA df SS MS F Significance F Regression 2 26198.32115 13099.16057 42.29123074 6.84825E-06 Residual 11 3407.107426 309.7370387 Total 13 29605.42857 Coefficients Standard Err t Stat P-value 40.4116512718.684421722.1628526630.0534382270.6590185070.1279073695.1523107070.0003171010.3253568390.2262666531.437935440.178287245 rig_B0 rig_B1 rig_B2 DEEP GULF OF MEXICO SUMMARY OUTPUT Regression Statistics Multiple R 0.915805268 R Square 0.838699289 Adjusted R Square 0.809371887 Standard Error 7.233624408 Observations 14 ANOVA F df SS MS Significance F Regression 2 2992.7786 1496.3893 28.59780391 4.3853E-05 Residual 11 575.5785428 52.32532208 Total 13 3568.357143 Coefficients Standard Err t Stat P-value 1.2686465294.8557880050.261264810.7987153130.7462676460.1345995275.5443556390.000174227 rig_B0 rig Bl 0.127405993 0.072965835 1.746104769 0.108620602

Exploration Drilling Capacity

 $ExpWell_{ivr} = exp_B0 + exp_B1 * RIGS_{ivr-2}$ SHALLOW GULF OF MEXICO SUMMARY OUTPUT Regression Statistics Multiple R 0.865412882 R Square 0.748939457 Adjusted R Square 0.728017745 Standard Error 7.656151727 Observations 14 ANOVA F Significance F SS df MS Regression 1 2098.314375 2098.314375 35.79723582 6.38039E-05 Residual 12 703.3999111 58.61665926 13 2801.714286 Total Coefficients Standard Err t Stat P-value -12.92183034 7.48294464 -1.726837624 0.109823235 exp_B0 0.212515201 0.03551937 5.983079125 6.38039E-05 exp Bl DEEP GULF OF MEXICO SUMMARY OUTPUT Regression Statistics Multiple R 0.919628409 R Square 0.84571641 Adjusted R Square 0.823675897 Standard Error 0.597951585 Observations 9 ANOVA df SS MS F Significance F Regression 1 13.71939954 13.71939954 38.37099503 0.000447675 Residual 7 2.502822684 0.357546098 Total 8 16.22222222 Coefficients Standard Err t Stat P-value Intercept-0.953938927 0.583703816 -1.634285919 0.146215273 X Variable 1 0.125866051 0.020319222 6.194432583 0.000447675

Developmental Drilling Capacity

$DevWell_{iyr} = dev_B0 + dev_B1 * ExpWell_{iyr-5} + dev_B2 * RIGS_{iyr} + rig_B3 * DevWell_{iyr-1}$					
SUMMARY OUTPUT					
Regression Statisti Multiple R R Square Adjusted R Square Standard Error Observations	0.730 0.533 0.358 13.683 12				
ANOVA	df	SS	MS F	Signifi	cance F
Regression Residual Total	3 2	1711.117 1497.800 3208.917	570.37 3.0 187.225		0.092
Upper 95%	Coefficients	S Standard	Err t Stat	P-value	Lower 95%
dev_B0 37.126	-16.130	23.094	-0.698	0.505	-69.386
dev_B1 1.352	0.727	0.271	2.684	0.028	0.102
dev_B2 1.359	0.648	0.308	2.101	0.069	-0.063
dev_B3 0.799	0.264	0.232	1.139	0.288	-0.271