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Evolution of Multijunction Devices

• Need to make better use of spectrum, esp. in 0.7–1.4 
eV range

• How to do this…?
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Outline

• Approaches to next-generation high 
efficiencies: survey of the field

• The inverted mismatched 3-junction cell
• Adding a 4th junction
• Fabrication and testing of 4th junction
• How low a bandgap do we really need?
• Outlook



Our Palette: the III-V Alloys
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Lattice-Matched to Ge (and GaAs)

• The “standard” 3-junction device structure
– Lattice-matched: easy to grow good material… but
– Restricts available bandgap range

Junction #1
Junction #2
Junction #3

Device structure:

39%@236x  by
Spectrolab1

1 King et al, 20th Eur.Solar
Energy Conf. 2005 p.118
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Lattice-Matched to InP

• Another example - lattice matching to InP

Junction #1
Junction #2

Device structure:

31.8% @ 50x 
(three-terminal) 
by NREL1

1 Wanlass et al, 21st PVSC, 
1990, p.38
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Expanding our Range of Bandgap
Options

• New materials lattice-matched to GaAs: e.g. 
GaInNAs
– Need good PV materials

• Junctions grown separately, then stacked
– Mechanical stacking
– Wafer bonding

• Lattice-mismatched epitaxy



New Semiconductor: GaInNAs

• GaInNAs: lattice-matched, desired bandgap…
• But: short diffusion lengths >> poor device performance
• MBE may help growth1,2

• 5- or 6-junction structures may work around problems3,4

Junction #1

Junction #3

Device structure:

Junction #4

Junction #2

1 Ptak et al, 31st PVSC 
2005, p. 603

2 Jackrel et al, this meeting
3 Meusel et al, 19th 

Eur.PVSEC 2004 p.3587
4 King et al, 19th 

Eur.PVSEC 2004 p.3581
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Mechanically Stacked Junctions

• Extremely wide range of materials/bandgaps accessible:
high efficiencies; e.g. 32.6% for GaAs/GaSb back in 19901

• Not a single chip; multiple growths required

Junction #1

Device structure:

Junction #3

Fraas,1,2

Fraunhofer ISE
(33.5%@308x)3

1 Fraas et al, 21st PVSC 
1990, p. 190

2 Fraas et al, 31st PVSC 
2005, p. 751

3 Bett et al, 17th Eur.Solar
Energy Conf. 2001 p.84
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Wafer-bonded Stacked Junctions

• Wide range of materials/bandgaps accessible
• single chip / III-V integration with Si
• Multiple growths required; requires transparent conductive bond

Junction #1

Device structure:

Atwater et al1

Junction #3
Junction #4

Junction #2

1 Zahler et al, 29th PVSC 
2002, p. 1039
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Lattice-mismatched (“metamorphic”) 3J

• Promising approach, competitive with lattice-matched
• Challenge is to maintain materials quality of junctions grown 

after grade

Junction #1

Device structure:

Junction #3

Spectrolab1, 
Fraunhofer ISE2

EMCore3

1 Law et al, 31st PVSC, 
2005, p.575

2 Dimroth et al, Prog. 
Photovolt. 9, 2005, p.165

3 Stan et al, 31st PVSC,
2005, p. 770

grade
Junction #2
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Inverted Lattice-Mismatched Structure

• Only the bottom junction is grown mismatched
– Similar philosophy to Varian GaInP/GaAs/substrate/GaInAs design3

• Potential for very high efficiencies (38% achieved w.o. optimization)
• Some complexities but also opportunities in the processing…

Device structure:

Junction #1

Junction #3

Wanlass et al1,2

Junction #2
grade

1 Wanlass et al, 31st  PVSC 
2005, p. 530

2 Wanlass et al,this meeting
3 Schultz et al, 21st  PVSC 

1990, p. 148
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Processing of Inverted Structure
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Inverted LMM: Adding a 4th Junction

• Extend advantages of inverted 3-junction structure to higher efficiencies
• But: how far can we  grade? How far do we need to grade?

Device structure:

Junction #1

first grade
Junction #3

Junction #4

Junction #2

second grade
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4th Junction: Test Structure

• Accounts for effect of lattice-
mismatched growth 

• Bypasses complexities of growth 
and especially of measurement of 
the other three junctions

• Tried bandgaps from 0.88–0.74 eV

GaInAs Junction (0.7 eV)

GaInP Grade

GaInAs Junction (1 eV)

GaInP Grade
GaAs Junction (1.4 eV)

GaInP Junction (1.8 eV)

GaAs or Ge Substrate
(removed after growth)

Inverted 4 Junction
Design:

GaInAs Junction
(0.74-0.88 eV)
GaInP Grade

GaInP Grade

GaAs Substrate

4th Junction 
Test Structure:

GaInAs Isotype Layer
Simulated Junction (1 eV)
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X-ray Characterization of Strained Layers

• XRD analysis critical to getting the compositions 
correct
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TEM Characterization: 4th Junction
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Quantum Efficiency

• QE degrades with increasing mismatch (decreasing Eg)
(note -- still room for improvement in these devices)

• QE of 0.88 eV device approaches performance required 
(note -- QE achieved without significant depletion region)
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Current-Voltage Characteristics

• Eg=0.74eV junction leaky, others good
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Dependence of VOC on Band Gap

• Lowest-Eg junction degraded
• Higher-Eg junctions better 

(and should get closer to GaAs-like with concentration)
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Improvement of Voc with Concentration

• Voc does get closer to GaAs-like with concentration, 
as expected 
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4th-Junction Eg - is 0.7 eV Necessary?

• Good devices increasingly challenging as 
band gap decreases (i.e.mismatch increases)

• Can we get away with a higher 4th junction 
band gap?



Allowing Band Gap to Vary

• Can raise 4th junction 
Eg from 0.7 to 0.9 eV
and only lose 1.6% eff.

• Still 4% above 
GaInP/GaAs/1-eV 3j

• Real-world efficiency for 
the 0.9-eV option likely 
to be ~45%
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Device with 4th Junction Eg=0.9 eV
Why consider this over the 0.7-eV option:
• High-quality 0.9-eV junction easier to make
• Efficiencies:

– Only lose 1.6% efficiency compared to 0.7-eV option
– Still 4% above the 1.85/1.41/1.0eV 3-junction efficiency

• Grade layers can be thinner:
– Less time to grow
– Less source material used
– Less strain/wafer bowing

Concerns:
• 1.6 eV junction needed: can it be as good as GaAs?
• Tunnel junctions need to be demonstrated



Outlook

• A cornucopia of promising approaches to 
next-generation high efficiencies
– may be places for more than one, in different 

cost-performance niches
• Inverted multijunction approach 

– Extending to 4 junctions likely to boost 
efficiencies by several %, to ~45%

– 4-junction structure likely to use an 0.9-eV 
bottom junction



A Golden Age for Multijunctions!
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