Innovation for Our Energy Future

Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology

22nd International Electric Vehicle Symposium Yokohama, Japan October 25-28, 2006

Ahmad Pesaran for Andrew Simpson and Tony Markel

Tony_Markel@nrel.gov

National Renewable Energy Laboratory

With support from the Lee Slezak
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
FreedomCAR and Vehicle Technologies Program

Presentation Outline

- Plug-in hybrid-electric vehicle (PHEV) as a solution
- Potential petroleum reduction from PHEVs
- Simulation of PHEV efficiency and cost
 - Baseline vehicle assumptions
 - Powertrain technology scenarios
 - Components models (cost, mass, efficiency)
- Results
 - Component sizing
 - Fuel Economy
 - Incremental cost
 - Payback scenarios
- Conclusions & Next Steps

A Plug-In Hybrid-Electric Vehicle (PHEV)

Vision of Future Transportation National Renewable Energy Laboratory Concept - Ahmad Pesaran VIllustration - Dean Armstrong VNREL/GR-540-40698

High Power ➤

Battery Advancement Affordable High Power, Acceptable High Energy

Affordable High Energy

Electric Vehicles Consumers Asking for Plug-In Capabilities Plug-In HEVs: Early Adopters

PHEVs: Major Consumer Adoption (low-range) (high-range)

Battery Electric Vehicles

Plug-In Hybrid Vehicles

Neighborhood Electric Vehicles

HEVs: Early Adopters

HEVs: Major Consumer Adoption

Fuel Cell Vehicles

Hybrid Electric Vehicles

Internal Combustion (ICE) Vehicles

ICE Vehicles

Gasoline, Ethanol Blends 🕨

Diesel, Biodiesel Blends ➤

B20, Biodiesel 🕨

Fuels

E85, Cellulosic Ethanol

Electricity >

Hydrogen >

PHEV Key Benefits and Challenges

KEY BENEFITS

Consumer:

- Lower "fuel" costs
- Fewer fill-ups
- Home recharging convenience
- Fuel flexibility

Nation:

- Less petroleum use
- Less greenhouse and regulated emissions
- Energy diversity/security

KEY CHALLENGES

- Recharging locations
- Battery life

- Component packaging
- Vehicle cost

Cost-Benefit Analysis

Potential Petroleum Reduction from PHEVs

PHEV Study Scope and Approach

Vehicle Configurations

- conventional automatic
- pre-transmission parallel hybrid: HEV or PHEV
- 2 technology scenarios
 - near term and long term

Approach

- Dynamic, power-flow simulation
- Calculates component sizes and costs
- Iterative mass-compounding
- Measures fuel/electricity consumption using NREL-proposed revisions to SAE J1711
- Battery definition is key input to the simulation

Key Study Assumptions

- Usable State of Charge window varies from 40% for HEV0 to 70% for PHEV60
 - Based on battery life of 15 years and daily travel distance probability
- Mid-size car platform (Malibu/Camry)
 - High volume vehicle
 - Performance equivalent to existing vehicles
 - No platform engineering and no engine technology improvements
 - » Isolate the PHEV technology impacts
- Battery attributes scale with Power/Energy ratio

Battery Definition as Key Input to Simulation

Input parameters that define the battery in BLUE

DOH = degree of hybridization

Battery Models (Scaleable)

Results: Battery Specifications

Results: Incremental Cost of Reduced Consumption

Reduction in Fuel Consumption vs Powertrain Cost Increment - Midsize Sedans

PHEV Energy Use

PHEV Onboard Energy Use: Long-Term Scenario

Powertrain Costs Comparison – Long Term

Powertrain Costs (incl. retail markups)

Near-term HEV Fuel Savings Offset Incremental Cost

Cumulative Vehicle plus Energy (Fuel/Elec.) Costs

Long-term Battery Cost Reductions Alone Insufficient For PHEV to Payback Relative to HEV

Cumulative Vehicle plus Energy (Fuel/Elec.) Costs

Both Higher Gas Prices and Lower Battery Costs Required for PHEV to Payback Relative to HEV

Cumulative Vehicle plus Energy (Fuel/Elec.) Costs

Why Consumers Might Pay More for PHEVs?

- 1. Green image, "feel-good factor"
- 2. Of-peak charging
- 3. Tax incentives
- 4. Reduced petroleum use, air pollution and CO₂
- 5. National energy security
- 6. Less maintenance
- 7. Reduced fill-ups
- 8. Convenience of home recharging (off-peak)
- Improved acceleration (high torque of electric motors)
- 10. Alternative business models

Conclusions

- 1. Systems simulation extremely important and valuable for quickly exploring the broad HEV/PHEV design spectrum.
- 2. Key factors in the HEV/PHEV cost-benefit equation include:
 - Battery costs
 - Fuel costs
 - Control strategy (particularly battery SOC window)
 - Driving habits (annual VMT and trip-length distribution)
- 3. Based on the assumptions of this study:
 - HEVs can reduce per-vehicle petroleum use by approximately 30%.
 - Per-vehicle petroleum use reduced by up to 50% for PHEV20s and 65% for PHEV40s.
 - Long-term powertrain cost increments are predicted to be \$2k-\$6k for HEVs,
 \$7K-\$11k for PHEV20s and \$11K-\$15k for PHEV40s
- 4. Based on overall costs (powertrain plus energy):
 - HEVs become the most cost-competitive EITHER if gasoline prices increase OR projected battery costs are achieved.
 - PHEVs become cost-competitive ONLY if projected battery costs are achieved AND fuel prices increase.
 - Tax incentives and/or alternative business models (e.g. battery lease) may be required for successful marketing of PHEVs