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AN EFFICIENT METHOD FOR SOLVING THE STEADY EULER EQUATIONS* 

Meng-Si ng Li out 
National Aeronautics and Space Admlnlstratlon 

Lewis Research Center 
Cleveland, Ohio 44135 

Abstract 

The present paper shows an efflclent numerlcal 
procedure for solvlng a set of nonlinear partial 
differential equatlons, specifically the steady 
Euler equations. Solutions of the equations were 
obtalned by Newton's linearization procedure, com- 
monly used t o  solve the roots of nonllnear alge- 
braic equatlons. In application of the same 
procedure for solvlng a set of dlfferential equa- 
tions we give a theorem showing that a quadratlc 
convergence rate can be achleved. While the domain 
of quadratlc convergence depends on the problems 
studied and l s  unknown a prlorl. w e  show that 
first- and second-order derivatives of flux vectors 
determlne whether the conditlon for quadratic con- 
vergence is satisfied. The first derlvatlves enter 
as an impliclt operator for yielding new Iterates 
and the second derivatives Indicates smoothness of 
the flows considered. Consequently flows involving 
shocks are expected to requlre larger number of 
iteratlons. 

First-order upwind discretization In conjunc- 
tion with the Steger-Warming flux-vector splltting 
I s  employed on the implicit operator and a dlagonal 
dominant matrix i s  resulted. However the explicit 
operator is represented by first- and second-order 
upwind differencings, using both Steger-Warming's 
and van Leer's splittings. We dlscuss treatment 
of boundary conditions and solution procedures for 
solving the resulting block matrix system. With a 
set of test problems for one- and two-dimensional 
flows, w e  show detailed study as to the efftclency, 
accuracy, and convergence of the present method. 

Introductlon 

During the past decades, much progress has 
been made in the development of efflclent numerlcal 
methods for solvlng unsteady fluid dynamlcs equa- 
tions to yield tlme-asymptotlc steady solutions. 
The most noted algorlthms have been the expllclt 
schemes such as the predictor-corrector scheme by 
MacCormackl and more recently the appl lcatlon of  
Runge-Kutta method by Jameson et al. .2 and the 
impliclt AD1 schemes such as those due to Brlley 
and McDonald3 and Beam and W a r m l t ~ g . ~  
strategies have been utillzed to accelerate compu- 
tational efficiencles, e.g., multlgrld.5 vectorl- 
zation. etc. 

Varlous 

The present paper proposes a dlfferent 
approach wherein the steady-state solutlons are 
obtalned by solvlng the steady equations, rather 
than through the time marching approach as 
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mentioned above. W e  are motivated ln this research 
by asking ourselves the following questlons: 

( 1 )  Is time marchlng technlque more efficient? 

(2) Can a mathematical basis (even approxl- 
mated) be established t o  indicate fast convergence 
of a steady-equations solver? 

ferences between the unsteady- and steady-equations 
approaches? 

(3) How can it be done and what are the dif- 

Obviously the first question i s  general and 
the answer i s  dependent upon clrcumstances con- 
sidered. In fact i s  i s  well known that a space- 
marching approach i s  much more efflclent than the 
time-marching approach for solving steady, fully 
supersonlc problems. Therefore it I s  important t o  
investigate the detailed differences in concept 
and mathematlcs between the two approaches. W e  
note that thls research was motivated by the paper 
by MacCormack6 in whlch the idea of uslng Newton's 
method was mentioned while again unsteady equa- 
tions were used in applicatlons. In this paper we 
attempt t o  shed some light on the questlons (2) and 
(3) together wlth some applications t o  various 
problems. 

W e  apply the Newton method, whlch I s  commonly 
used for Iteratively solvlng roots of nonllnear 
algebraic equations. t o  find solutions t o  the 
steady Euler equations. Consequently quadratic* 
convergence can be achleved provided the iterative 
sequence i s  sufficlently close to the true solu- 
tions. Upwind differencing i s  used t o  approximate 
the derivatives and a dlagonal dominant matrlx 
system can be obtained, thereby stabilizln the 
iteration process. Several investigationst-9 
utllizing Newton's Iteration between two time 
levels and upwind-differencing, have shown great 
success in efficiently arrivlng tlme-asymptotic 
steady solutlons. It i s  noted that the present 
Newton linearization form i s  recovered If w e  let 
At = - in the implicit unsteady procedures, 
e.g., Beam-Warming's unfactored form.4 While 
some analytlcal slmilaritles may exist between the 
steady and unsteady approaches, w e  belleve that 
there are differences in detail which are manl- 
fested in the convergence hlstory. The iteration 
in general consists of two stages, the initial 
stage beginning wlth an arbltrary guess sets out 
t o  home in the domaln of Newton's quadratic con- 
vergence and the second stage locks in thls range 
with rapid convergence. 

We show tn sectlon 1 a theorem indlcatlng 
quadratic convergence for the case of dlfferentlal 
equations. A condition for the domaln of quadratlc 
convergence, 42, indicates that whether an 

*Quadratic convergence means the e ror llell I s  5 reduced quadratically, i .e., llelln+l/llelln = C. 



approx imat ion l i e s  i n  R2 depends on r a t e  o f  
change and smoothness of f l o w  vectors ,  hence i s  
problem dependent. The choice o f  s p a t i a l  d i f f e r -  
encing i s  o f  p a r t i c u l a r  Importance f o r  t h e  present  
method and i s  g i ven  i n  sec t i on  2. Sect ion 3 g ives 
t reatment  o f  boundary condi t ions.  The a l g e b r a i c  
system o f  equations r e s u l t i n g  f r o m  sec t i ons  2 and 
3 i s  t hen  summarized; the s o l u t i o n  s t r a t e g i e s  a r e  
discussed i n  s e c t i o n  4. F i n a l l y  we show i n  sec- 
t i o n  5 t h e  convergence o f  ca l cu la ted  s o l u t l o n s  by 
comparing w i t h  exact  so lu t ions i n  one- and two- 
dimenslonal problems. The f l u x  s l i t t i n g s  by 
Steger and Warming11 and van Leery2 a re  employed. 
P e r t i n e n t  issues such as accuracy and convergence 
r a t e  a r e  discussed. 

1. Newton's Method 

We begin by consldering t h e  steady Euler  
equations i n  conservation-law form and Car tes ian 
coord inates:  

Y(U) = DxF t D G t D H = 0 ( l a )  
Y Z  

where Y = {'Y1,Y2.. . .,Y5} represents f i v e  (5 )  
p a r t i a l  d i f f e r e n t i a l  equations, each i s  a f u n c t i o n  
o f  t h e  conserva t i ve  var iab les U = {p(l,u,v,w,E)}. 
Here p i s  t h e  density, (u,v,w) a re  Car tes ian 
components o f  t h e  ve loc i t y ,  and E i s  t h e  sum o f  
s p e c i f i c  i n t e r n a l  and k i n e t i c  energy. The f l u x  
vectors  a r e  shown below f o r  completeness. 

I n  Eq. ( l a )  we choose the n o t a t i o n  

a a D - a x ,  o=a  D E - .  
X y - a y '  z az  

Also p e r f e c t  gas i s  assumed so t h a t  f l u x  vec to rs  
a re  homogeneous func t l on  o f  U o f  degree one. 

Assumlng U* i s  a r o o t  ( s o l u t i o n )  o f  
Y(U)  = 0, 1.e.. 

V(U*) = 0 ( 2 )  

Since t h e  system o f  equations i n  Eq. ( l a )  i s  non- 
l i n e a r  and coupled, t h u s  we a re  obl iged t o  use 
approximate method t o  I t e r a t i v e l y  a r r i v e  a t  
approximate s o l u t i o n  t o  U*. The Newton i t e r a t i v e  
method having quadrat ic  convergence f o r  s o l v i n g  
a l g e b r a i c  equations also can be extended t o  so lve 
d i f f e r e n t i a l  equations. The Newton procedure 
s t a r t s  by keeping the  f i r s t - o r d e r  term i n  Ta l o r ' s  
se r ies  expansion o f  rY(Un+l) and forces UntY t o  
s a t i s f y  Eq. ( l a ) .  We have 

( 3 )  
n 

ouyn 6~ = - Y(U ) , n = 0.1.2,. . . 

where dU = Unt' - Un. The d i f f e r e n t i a l  operator  
D Y working on 6U i s  g i ven  by 
U 

here t h e  Jacobian matr ices a r e  
and C = DuH.4 

i n g  t h e  new i t e r a t e  Untl and i s ,  i n  f a c t ,  iden-  
t i c a l  t o  t h a t  de r i ved  i n  Ref. 4 when A t  = I s  
taken the re .  

A = DuF, B = DUG, 

Equation ( 3 )  i s  t h e  bas ic  equat ion f o r  d e r i v -  

For the  quasi one-dlmensional Euler  equations, 

D F t S = O  (5) 
X 

where 

] K , K ( X )  Dx(area)/area 

The Newton procedure y i e l d s  

n n  n n n 
DuY 6U = D x ( A  dun) t Bn 6U = - (DxF t S) 

Here we d e f i n e  B as 

f 0 1 

2u 2 
-U 

- 1)U2 - yE] yE - 3(y - 1)U 2 / 2  

We t u r n  now t o  study t h e  convergence p roper t y  
o f  t h e  Newton method. Assuming t h a t  Y i s  
tw i ce  d i f f e r e n t i a b l e  and t h a t  t h e  r o o t  ( s o l u t i o n )  
U* t h a t  we a r e  seeking i s  a simple r o o t  ( m u l t l -  
p l l c i t y  = 1 ) .  Then we have DuY(U*) # 0 and 
DuY(U1 P 0 f o r  a l l  U i n  a c e r t a i n  neighborhood 
o f  U (see Ref. 10). 

Using ( , )  t o  denote p a r t i a l  d e r i v a t i v e s ,  we 
have 

ayi 
'i,j aU 3 

2 
a yi 1,j.k = 1.2,. . .,p '1,jk E aujauk 

* n 
Now expand Y ( U  ) about Y(U ) i n  T a y l o r ' s  se r ies  



f o r  1 = 1. 2, ..., P, where V l i e s  I n  the  
i n t e r v a l  Conta in ing U* and Un. Since 

We have 

We have, a f t e r  app ly ing  Eqs. ( 3 )  and ( 7 ) .  

L e t  cn be t h e  e r r o r  a t  t h e  n t h  i t e r a t i o n ,  

( 9 )  
n -  n * 

c = u  - u  

and denote 
s t i t u t i n g  Eq. ( 4 )  i n  Eq. (8 )  y j e l d s  

A = I a i j ) ,  B = { b j  1 .  C = { c i j ) .  Sub- 

(10) 

I n t e g r a t i n g  over an a r b i t r a r y  volume A a  = Ax by A z  
(here AX, Ay, Az a r e  n o t  taken t o  be g r i d  spac- 
i ngs )  and making use o f  t he  Gauss theorem, we f i n d  

where (,k) as be fo re  denotes d i f f e r e n t i a t i o n  w i t h  
respect  t o  uk. 

By t h e  mean va lue theorem the  equation becomes 

where E,  n, c ,  E', ? I r  c AU. We understood 
t h a t  a i j ,  b i j ,  and c i j  on LHS were evaluated a t  
Un and a i j , k ,  b i  ,k, and c i j , k  on RHS a t  V. 
Assuming A a  smal l  and 

where 

Now f o r  maximum vec to r  norms and corresponding 
m a t r i x  norms we o b t a i n  

n 2  
IIcn+'II OD Q m IIc ( I m  

where m i s  chosen such t h a t  

(13a) 

where the  square m a t r i x  Q {q  ) i s  assumed 
i n v e r t i b l e  and p i s  t h e  numbetjof equations I n  C.  
For Euler  equations, Eq. (13a) g ives,  f o r  a l l  k 

1 & + 1  as 

(13b) 

A s i m i l a r  c o n d i t i o n  f o r  t he  one-dimensional 
equations i s  r e a d i l y  obtained. 

f o r  k = 1, 2, 3. 

THEOREM. Suppose t h a t  Y(U) = 0 has a r o o t  U* 
and t h a t  i n  the  sphere R2 = {U:mllU - U*ll, < 1). 
Assuming Y has f i r s t  and second d e r i v a t i v e s  such 
t h a t  Eq. (12) i s  s a t i s f i e d .  Then f o r  a l l  Uo&2. 
we have 

(b )  l l m  Un = U* , 
n-m 

( c )  t h e  convergence i s  quadra t i c  

( d )  U* i s  unique i n  R2 

Proof. Since I l m c o ~ ~ m  < 1, then by Eq. (12) 

3 



1 Hence U €R2. 

n = 1, 2, 3, . . .. 
By inductlon it follows UncR2, for 

Next, repeated use of Eq. (12) gives 

Then result b) follows lmnediately as n + m. 

Since Uo, U , U2, . . ., i s  a sequence whlch 
converges t o  u*, l.e., ~n + u*,  v + U* as n + m, 

there exists a constant C(U*) z 0 such that 
Eq. (12) yields 

" 

The sequence i s ,  by definition, sald to be quad- 
ratically convergent. 
for a solution in R2. 

in R2, then Y(V*) = 0. For 1 = 1 ,  2, . . ., p, 
w e  write 

Next w e  prove the uniqueness 

Suppose there exlsts another root V* # U* 

* (T i * )  * * *  u, - vi = u, t Y,(U ) - v + Y (V ) 

* *  
for V in an interval containing (U , V ) .  Hence 

Since this Inequality i s  true for all i, 

* *  * *  * *  
IIU - v IIm < Ilu - v ( I m  + Ilu - v I lm ~ ~ Y i , j ~ ~ m  

a contradiction, hence (d) i s  proved. 

From Eq. (14). one can readlly estimate the 
number of iterations required for an initial error 
to be reduced by 

We shall note that the domain Q2 i s  the 
estimates for the required closeness of approxlma- 
tion t o  the true solution in which Newton's quad- 
ratic convergence holds. It i s  function of the 
gradient of the flux vectors with respect to U, 
i.e., Jacobians, and smoothness of fluxes in the 
problems concerned. 

In general U* I s  of course unknown, the 
above conditions. 13(b) or 13(c), must be problem 
dependent and i s  difficult t o  verify beforehand. 
W e  shall demonstrate through test cases that in 
reality one need not start with close approxlma- 
tion. A relaxation procedure I s  used to move 
approximation progressively toward the domaln 
thereafter a distinctly faster convergence i s  
f ol 1 owed. 

~ 2 ;  

After solvlng a block matrix system (given in 
section 4). w e  update the approxlmation by the 
equation 

where the relaxation factor w in general can be 
a constant matrix varying with iteratlon. 
precise variation of w for whlch the iteratlon 
wlll remain stable i s  not known. A series of 
numerical experiments for various circumstances 
have been performed and thelr results will be pre- 
sented later. 

The 

W e  show now the dlfference between the 
time-marching and the present approaches. 
6U = 06u . Since w l s  constant, combination of 
Eqs. (3) and (15) gives 

Let n 

-n D,,Yn 6u = -Wyn 

Hence we see that the present iteratlon process 
bears no direct relatlon t o  the time-marching 
approach since a different impllclt operator hav- 
ing no tlme derivative term i s  Involved. However, 
llke the case of time-dependent approach, the 
solution satlsfles Y(U) = 0 as 6U + 0. 

2. Spatial Differencing 

Since there can be independent choices of 
types of differencdng for approximating the impli- 
clt operator on LHS and explicit operator on RHS 
of the Eqs. (3) or (6) insofar as stability i s  
malntalned, w e  shall describe them separately. 
The effects of mixed use of dlfferencing on the 
convergence rate and accuracy will be dlscussed in 
sectlon 5. It will become clear in what follows 
that It I s  imperative to use upwind dlfferencing 
on the impliclt operator. 

Now w e  split the Jacobian matrlx A as 

where A+ and A- are matrices derived from the 
corresponding 11+11 and "-I1 split fluxes, Ft and 
F- given by Steger and Warming,ll specifically 

+ 
A+ = 

- au 
These are the true Jacobians of relevant split 
fluxes and not identical t o  the matrices resulting 
from elgenvalue splitting, as given by: 

-+ 
A- = QI~'Q-~ 

where Q i s  a similarity matrix dlagonallzing A . 4  
The complete expresslon for A? and 82 in two- 
dimenslonal case i s  given ln Appendix A. 

Now w e  can write (omltting iteration index n 
hereafter) 

4 



1 Dx(A 6U) = [A-At6U t A'A-dU] t O(Ax) (le) 

Here w e  denote A- and A+ as backward and for- 
ward difference operators. Let 

IAI = A+ - A- 
Equation (18) becomes, for the jth grid point, 

for j = 1, 2, . . ., J. Substituting of Eq. (19) 
in Eq. (6) glves, for one-dimensional equatlons, 

DUY6U = T6U (20) 

where T i s  a block trldiagonal system {TI, 
T2, . . .. TJ] and 
+ AxBj. Ajtll. Also hereafter dU denotes { d u o ,  
6U1, . . ., 6Uj . . ., ~ U J .  dUJ+1}; d u o  and 
dUJt1 are evaluated at boundarles. 

Eqs. (12) and (13). w e  now write their counter- 
parts for the dlscretized algebralc system, 

Tj = l/Ax {-Aj-l, lAjl 

Following the same procedures In deriving 

/IT-lII i sc ret i zed Y i,jkllw' (21) 

It I s  obvious that whether the condltlon for quad- 
ratic convergence i s  satisfied and fast convergence 
can be realized depends on ( 1 )  the property of the 
matrix T resulting from discretlzatlon of the 
lmpllcit operator, and (2) the smoothness of flux 
vector as given in Y i  jk. Therefore a well- 
conditloned lmpllcit oberator i s  requlred. Since 
the first-order upwinding yields a matrix which I s  
diagonally dominant and hence well-condltloned. 
It also has mlnimum bandwith for coupling neigh- 
boring points, hence making boundary conditlons 
felt in each lteratlon step. Therefore we shall 
use only first-order upwindtng for the implicit 
operator whlle havlng the liberty of utilizing 
different dlfferencings for the explicit operator. 

We note that desplte the central differencing 
Possesses properties of belng slmple and hlgher- 
order accurate wlth the same bandwtth, it however 
leads to vanlshing of diagonal terms and hence 
losing dlagonal domtnance. Consequently the iter- 
atlve sequence will likely dlverge. 

expliclt operator. First-order and second-order 
upwindiny tjascd on flux splitting are employed on 
unlform grids, w e  have 

We turn now t o  the differencing of the 

and 

AX + 0 AX2] 

where E l s  the displacement operator. e = 0 and 
1 denote flrst- and second-order accuracy. Similar 
differencing can be made for DyG and DzH for 
multidlmensional flows. The flux spllttlngs proposed 
by Steger and Warmlngll and Van Leer12 are employed 
In our study. They are given here for completeness 
(for two-dlmensional case). 

Steger-Warming: 

t t t  Let F; = 2(y - I)A t A 1 3 + x 4  

where A; = (A, t lAil)/2, i = I ,  2, 3, 4 and x 
= A = u, A = u t c, and A = u - c; c = speed if 
souid. 3 4 

t t t  Now If Gi = 2(y - l)X1 t A3 t A4 and v i s  
substltuted for u in Ai  above, w e  have 

Van Leer: 

where 

5 



The formula f o r  6’ are obta lned by In te rchang ing  
u and v and elements 2 and 3 i n  F?. D i f f e r -  
ences o f  a n a l y t i c a l  p roper t l es  o f  both s p l i t t i n g  
a re  g i ven  i n  Ref. 12. We s h a l l  dtscuss t h e i r  d i f -  
ferences i n  ca l cu la ted  r e s u l t s  I n  sec t i on  5. 

Now s u b s t l t u t l n g  Eqs. (20) and (22) i n  
Eq. ( 6 ) .  we have t h e  block t r i d i a g o n a l  system 

T6U = - f (25) 

where f = { f l .  f2 ,  . . ., f j ,  . . ., f j )  and 

The system needs t o  be closed by boundary condi- 
t i o n s ,  t o  be discussed i n  the  nex t  sect ion.  

l n g  can be constructed. 
g r i d s  i n  two dimensions, x = 5 Ax, j = 0, 1, 2, . 
. ., J t 1 and y = k b y ,  k = 0, 1, 2, . . ., 
K t 1 and a = Ay/Ax. The r e s u l t i n g  b lock m a t r i x  
system i s  w r l t t e n  as 

M U  = - f (26a) 

For mul t ld lmenslonal  problem, s i m i l a r  upwind- 
Assumlng equal-spaclng 

where f o r  t y p e w r i t e r  ordering, 1.e.. on each 
constant y ,  we have 

6U = {6U 0 .6U 1’ . dJk” * 

(26b) 
f = { f  1’ f 2 ’ ’  . , fk ’ .  * . * f K )  

and each element i n  6U and f ,  

bU = k 

f = { f  

6UOk. bU1 k, . . . t 6Uj 9 . . .&U J+ 

k ’ f 2 k ’ ’  . ..f jk’. - * , f  Jk I ,  

k = 0.1 

k = l  

The m a t r l x  H has the  s t r u c t u r e  

M =  

Tk ‘k+ 

,kl ’ 

2,. . . , K t 1  

whlch agaln i s  o f  block t r i d l a g o n a l  form. The 
element matr ices BK and Tk a r e  found t o  be 
o f  b lock d iagonal  and block t r t d l a g o n a l  form 
respec t i ve l y ,  namely 

1 
Tk = - AX 

. . ,K+1 

( 2BbS 

f o r  k E 1, 2, . . ., K.  We note t h a t  Tk 1s a 
b lock  t r i d i a g o n a l  system (each constant  y)  w i t h i n  
a l a r g e  b lock  t r i d i a g o n a l  system H. One can a lso,  
by a l t e r i n g  the  t y p e w r i t e r  order lng,  c o n s t r u c t  
b lock t r i d i a g o n a l  system f o r  each constant -x  l i n e .  

There e x i s t s  many c l a s s l c a l  i t e r a t i v e  schemes 
f o r  s o l v i n g  a l a r g e  system; severa l  s t r a t e g i e s  a re  
discussed I n  Ref. 7. We s h a l l  o u t l i n e  p o s s i b l e  
candidates f o r  s o l v i n g  t h e  system. Eq. (26) .  t n  
s e c t i o n  4 a f t e r  t h e  boundary cond i t l ons  a re  
t rea ted .  We note here agaln cond i t l ons  on the  
boundary l i n e s  ( k  = 0, K t 1, j = 0, J t 1) must 
be Imposed t o  render t h e  system so lvab le .  

3. Boundary Condl t ion 

Boundary c o n d i t l o n s  a r e  t r e a t e d  i m p l l c i t l y  
and shown below f o r  var ious cases. 

(a )  supersonlc i n f l o w :  

unchanged a t  e x t e r i o r  p o i n t s ,  
A l l  v a r i a b l e s  a re  p resc r ibed  and remain 

( b )  superson 

A l l  var  
e.9.. 

6U = 0 

- t  
A F  = o  

c ou t f l ow :  

ables a r e  ex t rapo la ted  f rom i n t e r i o r ,  

A-U = 0 

A-F+ = o 
1 n f  1 ow: ( c )  subsonlc 

We p r e s c r i b e  p ,  u, and v and e x t r a p o l a t e  
p f rom neighbor lng i n t e r i o r  p o l n t s ,  e.9.. 
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Atp = 0 (31) 

(d) subsonic ou t f l ow :  

The pressure (p)  I s  f i x e d  and the  remainlng 
va r iab les  a r e  ex t rapo la ted  f rom I n t e r i o r ,  e.g., 

A - p  = 0 

A-V = 0 

This  case i s  more i nvo l ved  and needs some elabora- 
t l o n .  We i l l u s t r a t e  how t h e  boundary terms on LHS 
are  combined w i t h  t h e  nelghbor lng i n t e r i o r  terms. 
Since p I s  f i x e d ,  we have 

2 
U 
2 +E = - - 6p t ud(pu) ( f o r  1 - D problem) 

Applying t h e  e x t r a p o l a t i o n  (Eq. (32 ) ) ,  we f l n d  

J t l  

(33) 

Thus we r e l a t e d  6uJ+1 w i t h  6 U j  and t h e  c o e f f i -  
c l e n t  m a t r i x  o f  ~ U J  i s  modl f ied by absorbing the 
m a t r i x  i n  Eq. (33). 

( e )  s o l i d  sur face:  

We r e q u i r e  t h e  normal component o f  v e l o c i t y  
vanishes. 1.e.. 

v = o  (34) n 

and e x t r a p o l a t e  t h e  remainlng va r iab les  from 
I n t e r i o r .  

4. S o l u t i o n  Procedure 

Wi th t h e  boundary cond i t i ons  Implemented, the 
f i r s t  element of t h e  f i r s t  row and l a s t  element of 
t h e  l a s t  row i n  t h e  b lock t r i d l a g o n a l  m a t r i x  (T 
and H) a r e  e s s e n t i a l l y  e l im ina ted .  Since upwind 
scheme prov ldes d lagonal  dominance, and assumlng 
T(H) nonsingular ,  we can get  s o l u t l o n  f o r  each 
I t e r a t i o n .  

Whether t h i s  i t e r a t i o n  sequence w i l l  converge 
t o  t h e  t r u e  s o l u t i o n  ( U * )  depends on w e l l -  
condit ionedness o f  t he  m a t r l x  T(H) a t  each I t e r a -  
t i o n ,  1.e.. I f  T(H) i s  i l l - c o n d i t i o n e d ,  t h e  
i t e r a t i o n  may d i ve rge  q u i c k l y  and w i l l  n o t  have a 

chance t o  ge t  i n t o  t h e  domain R2 given i n  t h e  
Theorem shown p rev ious l y .  How f a s t  i s  t h e  o v e r a l l  
convergence r a t e  w l l l  then be problem-dependent; 
problem w i t h  mlxed signs o f  elgenvalues i n  general 
w i l l  need l a r g e r  number o f  i t e r a t i o n s  than t h a t  
having on ly  one s ign.  Furthermore, f o r  a g iven 
se t  o f  I n i t i a l  guess (UO) and Imposed boundary 
cond i t l ons ,  i t  i s  n o t  p o s s i b l e  t o  est lmate a 
p r i o r 1  t h e  domain Rq i n  a non l i nea r  problem. 
Therefore i n  p r a c t i c e  t h e  e n t i r e  I t e r a t i o n  sequence 
may c o n s i s t  o f  two stages. The i n i t i a l  stage 
s t a r t s  ou t  an i n i t i a l  guess, which f r e q u e n t l y  i s  
assumed us ing  some phys i ca l  judgment, and moves 
s low ly  t o  ~2 by some s u i t a b l e  r e l a x a t i o n  s t r a t e -  
g ies.  We note t h a t  one need n o t  use Newton's 
method I n  t h i s  i n i t i a l  stage and l n  f a c t  some 
l i n e a r l y  convergent methods may be p r e f e r r e d  and a 
b e t t e r  i m p l i c i t  operator  perhaps i s  more impor tant .  
Nevertheless s ince Newtonls method (Eq. ( 3 ) )  com- 
b ined w i t h  r e l a x a t i o n  procedure (Eq. (14 ) )  i s  
a l ready  l o s i n g  f e a t u r e  o f  quadra t l c  convergence, 
hence conceptual ly  i t  may be thought as some lower- 
order method. Yet t h i s  has t h e  s i m p l i c i t y  o f  us lng  
on ly  one s o l u t i o n  procedure and quadra t l c  conver- 
gence (or n e a r l y )  i s  g o t t e n  n a t u r a l l y  once R2 
l s  reached. 

For one-dimenslonal problem, we w r i t e  t h e  
b lock t r i d i a g o n a l  m a t r i x  T I n  terms o f  lower and 
upper b lock  b id lagona l  matr ices L and U, 1.e.. 
LU f a c t o r i z a t l o n .  

T = LU (35) 

A d e s c r i p t i o n  o f  t he  procedure i s  g iven i n  Ref. 13. 
This I s  t h e  a l g o r i t h m  t h a t  we used t o  so lve one- 
dimensional t e s t  problems and may be an opt imal  
one cons ide r lng  number o f  t h e  a lgeb ra l c  operat ions 
and convergence r a t e  o f  t h e  o v e r a l l  i t e r a t l o n  
sequence. However f o r  two-dlmensional problems, 
i t  i s  n o t  a l l  t h a t  c l e a r  which s o l u t i o n  scheme f o r  
a l a r g e  m a t r l x  system, e.g.. d i r e c t  i n v e r s i o n  
versus i t e r a t i o n ,  i s  more s u i t a b l e  I n s o f a r  as 
e f f i c i e n c y  i s  concerned. We t u r n  next  t o  o u t l i n e  
some p o s s i b l e  s t r a t e g l e s  f o r  t h e  system Eq. (26) .  

(a )  Complete LU F a c t o r i z a t i o n  

Exac t l y  as above i n  Eq. (35) we w r i t e  

H = LU ( 36 

where L and U are  o f  t h e  form 

L =  

L1 

-8; L2  
* u =  

I 1  rl 

K-1 lK 1. 

The r e c u r s l v e  formula f o r  Lk and r k  a r e  g l ven  
I n  Ref. 13; I n v e r s i o n  and m u l t i p l i c a t l o n  o f  b lock  
matr ices a r e  requ i red  a long each constant-y l l n e .  
The d i r e c t  I nve rs ion  procedure may be t o o  c o s t l y  
t o  perform. I n  what f o l l o w s  we s h a l l  d iscuss some 
i t e r a t i v e  s t r a t e g l e s  which can be vlewed as m(>l) 
s u b i t e r a t i o n s  f o r  s o l v i n g  each Newton's I t e r a t i o n  
step. Obviously one need n o t  o b t a l n  converged 
s o l u t l o n  a t  each Newton's i t e r a t l o n  which a f t e r  
a l l  has n o t  y e t  produced " t r u e "  s o l u t i o n .  But t h e  
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optimal number for m I s  not known a prlorl and 
can be function of many factors, e.g., physical 
problem considered, grid size, etc. 
cation of the present method, w e  chose m = 1 for 
the two-dimensional shock reflectlon problem. 

(b) Line Relaxatton 

If the off-diagonal blocks in Eq. (27) are 
taken t o  the RHS of Eq. (26a). then w e  are left 
with a line-decoupled system, i.e., each constant-y 
llne is in effect Independent of each other In so 
far as solving Eq. (26a) l s  concerned. Exactly as 
Eq. (23) in form for each k(=l, 2, . . ., K )  llne. 
w e  now solve one-dimensional block system, hence 
appropriately called line-relaxation. Since each 
llne l s  treated as Independent, there I s  no 
sequence of sweeping (unlike LU factorlzatlon) and 
one can sweep In the same directlon for each Iter- 
atlon. 
up and down sweeps in successive sublterations, 
thereby mimlcing the complete LU factorlzatlon. 
Furthermore one may skip odd-numbered llnes in one 
sweep and fill in the even-numbered lines in the 
next sweep, i.e., so called the zebra scheme. 
Another possibility i s  the Gauss-Seidel updating 
whenever lastest solutions become available, hence 
yleldlng faster propagation of information. This 
line Gauss-Seidel relaxation was used in the pres- 
ent paper. 

(c) Point Relaxation 

the expense of slower propagatton of informatton. 
all off-diagonal blocks In M and Tk are put 
on RHS. An essentially point-decoupled, termed 
point relaxation, system l s  resulted. Similar In 
spirit t o  the zebra scheme, a checkerboard scheme 
can be employed in which points are solved by 
skipping lmnediate neighboring points In one sweep 
and filling in those just sklpped in the next 
sweep. 
updating. 

In the appli- 

However there may be advantages alternating 

To further reduce matrix operations, but at 

Again one can also combine Gauss-Seidel 

5. Results 

Computational tests of the present method 
were made for one- and two-dimensional flows. 
Four cases of one-dimenslonal nozzle flows were 
calculated with different inflow and outflow con- 
dltions. A calculation of oblique shock reflec- 
tion was also made. In all calculations presented 
here uniform grids were used. Inflow conditions 
were also asslgned t o  be the initial guess for the 
iterative process. The error i s  taken as the sum 
of relative absolute changes of all varlables at 
all grld points, i.e., 

error = 5 u / ( n o .  of grid polnts) 
grids 1 lull 

(37 

so that the convergence of the entire discretized 
system, rather than a slngle component (variable) 
1 s  measured. 

In each case calculated w e  shall present the 
results whlch were obtained by using combinations 
of ( 1 )  first- and second-order differencings and 
(2) Steger-Warming and Van Leer splittlngs on the 

RHS expllclt operator. Their effects on accuracy 
and convergence will be discussed accordingly. 

(a) One-dlmensional nozzle flows 

tributlons are given by: 

Divergent nozzle, 

Two geometrles were consldered, the area dls- 

area = 1.398 t 0.347 tanh (0.8 x - 4 ) ,  0 < x < 10 

(38a) 

Convergent-dlvergent nozzle, 

1.75 - 0.75 COS (X - 5)~/5 0 i x <_ 5 
area = 

1.25 - 0.25 COS (X - 5)~/5 5 5 x <_ 1 0  

(36b) 

We note that slnce the curvature of the convergent- 
divergent nozzle i s  discontinuous at the throat, 
the flow variables (p, p ,  u) have discontinuities 
in the flrst derlvatlve. The grid size (Ax) was 
0.1. 

Flgures 1 show the calculated pressure dis- 
tributions for fully supersonlc flow in the diver- 
gent nozzle, together with exact solution denoted 
by the solid line. Both flrst- and second-order 
methods gave virtually the same results. It I s  
evldent that a truly quadratic convergence was 
obtalned using the first-order dlfferenclng (error 
was reduced by 10-14 in seven iterations); here 
w is the relaxation factor appearlng in Eq. (15). 
However the second-order dlfferenclng appeared t o  
achieve quadratic convergence initially. but 
changed t o  much slower rate. Thls peculiar behav- 
ior was not understood and i s  currently under 
study. 

W e  now present the case with a shock, 1.e.. 
the outflow is subsonic, in Fig. 2. The first 
order upwlndlng produced monotonic behavior; the 
Steger-Warmlng splitting smeared the shock more 
than the Van Leer splitting did, but was about 
twice as fast in convergence rate. The dlfference 
in convergence rate could be attributed to the 
fact that the Implicit operator remalned unchanged 
(1.e.. Steger-Warming splitting) the expllcit 
operators used either splittjng. The w was set 
equal t o  0.5 initially and increased according t o  
the equatlons: 

w = w t '  0.1 n/no if MOD(n.no) = 0 

and 

w = min(w, 1.0) 

where no I s  the interval of iterations in which 
w l s  kept fixed. The formula was arbitrarily 
chosen; better convergence can be gotten when the 
relaxation process l s  better understood. The 
second-order differencing produced much sharper 
shock, but with unwanted oscillations at both 
upstream and downstream of the shock. 
gence rate was about half of the flrst-order 
method. 

The conver- 
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Next w e  looked at flows in the convergent- 
divergent nozzle. 
sonic case. Both splitting gave virtually 
identical results except differences in conver- 
gence; second-order differencing was clearly 
superior in accuracy and also nearly equal in 
convergence rate, contrary t o  the case in Fig. 1. 

Figures 4 display the case involving a shock; 
the first-order method clearly lacked spatial 
resolution. The Van Leer splitting gave much bet- 
ter results In the supersonic region but over- 
predicted in the inflow subsonic region. The 
second-order method obviously showed much improved 
accuracy, but at the expense of slower convergence 
rate. 
observed in both splittings; the discontinuity at 
the sonic point in the Steger-Warming splitting 
was evident and did not appear in the Van Leer 
splitting, which was designed t o  yield smooth 
transition of splitting at sonic point. 

reflection of a two-dimensional oblique shock wave 
wlth free stream Mach number 2.9 and shock angle 
29'. The computation domain was divided uniformly 
with 61 by 21 grids over 0.0 < x < 4.0, and 
0.0 < y < 1.0, the Steger-Warming flux splitting 
was used for calculating this case. Figure 5 
gives the pressure distributions at the wall, using 
the first-order upwindlng. The shocks evidently 
were smeared t o  a large extent. While the static 
pressure showed monotonic property, the total 
pressure (or a measure of entropy) displayed over- 
shoot followed by a recovery. The convergence 
history showed a drastic reduction in error after 
an initial stage. Figure 6 shows the results 
obtained by the use of second-order upwlndlng 
(boundary conditions remained first-order approxl- 
mation). Here w e  see an overexpansion in pressure 
just ahead of shock foot, followed by a smooth 
Increase. The spatial resolution was clearly much 
improved over the first-order method. The over- 
expansion was also accompanied by the increase of 
total pressure, not seen In the first-order method. 
The convergence history again showed two dlstinct 
stages, confirming the theorem and speculation 
given in section 1. The convergence history for 
the error t o  reduce 10-10 is roughly the same 
for both first- and second-order differencings. 
The Mach contours are depicted In Fig. 6(d). 

Figures 3 show the fully sub- 

The dispersive error near the shock was 

Finally w e  turn to the problem of regular 

6. Concludlng Remarks 

We sumnarize that an efficient method has 
been proposed t o  find steady solution by solving 
the steady Euler equations. The iterative scheme 
necessary for solvlng a coupled nonlinear system 
was based on Newton's method and an updating 
(relaxation) procedure. A theorem was shown that 
the Newton method applied t o  the system of dlffer- 
entia1 equations gave a quadratic convergence pro- 
vided the approximation t o  the true solution Is 
sufficlently close. 
tives of flux vectors were shown t o  define the 
domain of the quadratic convergence (R2). 
differencing was necessary t o  construct the 
Implicit operator for providing the Iteration 
sequence. We employed the true Jacobians resulting 
from the Steger-Warming splittlng in approximating 
the implicit operator. 
Van Leer's splittlngs however were used on the 

The first and second deriva- 

Upwind 

Both Steger-Warming's and 

explicit operator, combined with the first- and 
second-order dlfferencings. One-dimensional nozzle 
flows and two-dimensional shock reflection problem 
were calculated, specific emphases were placed on 
the convergence rate and accuracy. 

We are continuing t o  make In-depth investiga- 
tion of the present method, specially as t o  the 
increase of efflciency and application t o  more 
complex problems. A high resolution scheme has 
been implemented14 and the results will be pre- 
sented elsewhere. 
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Appendix A 

We show the true Jacobians which are derived 
from the split flux vectors given by Steger and 
Warmingll in what follows. 

As defined previously 

Hence IF1 = F for u > c and IF1  = -F for 
u < -c. 

Let 

IAl E A+ - A- 

hence 

A' = (A 2 IA1)/2 

From Eq. (Al) we have 

Since the fluxes F and G are split acco 
Eqs. (23) and (24), a straightforward subst 
and differentiation yields, after tedious a 
for 1u1 < c: 

-d 
2c a = a E ,  a =  1 1  

a = +- R - a U  , B = ( y  - l)/y 

a = -aV 

12 

1 3  

"14 = a 

ding to 
tution 
gebra, 
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2 2 2 2  i21 = i a U 2  t 2au(-e t q /2 )  , q = u t v 

2 a22 = 2{+- Ru + c / y l  - 2au 

a23 = -2aUv 

iZ4 = 2 0 ~  

i31 = 7 Ruv + av(-e t $) 
a32 = +- Rv - auv 

a33 = 2 Ou t c/y - av 

( A S )  

2 

a34 = OV 

= E[ar(3U2 + V 2 )  + 3C]/2 
41 

= a(3U2 t v2) /2  t 3 ~ / 2  44 

where lltl and 11-11 correspond t o  u > 0 and u < 0. 
S i m i l a r  expression f o r  l B l  can be obta lned by 
i n te rchang ing  rows 2 and 3, columns 2 and 3, and 
u and v. 
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Figure 1. - Stat ic p ressure  and convergence h i s to ry  for  d ivergent nozzle,  k= 1.26. 
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6. Abstract 

The present paper shows an e f f i c i e n t  numerical procedure f o r  so l v ing  a se t  o f  
non l inear  p a r t i a l  d i f f e r e n t i a l  equations, s p e c i f i c a l l y  the steady Euler  equa- 
t i o n s .  
cedure, commonly used t o  so lve the roo ts  o f  non l inear  a lgeb ra i c  equat ions.  I n  
a p p l i c a t i o n  o f  the same procedure f o r  s o l v i n g  a se t  o f  d i f f e r e n t i a l  equat ions we 
g i v e  a theorem showing t h a t  a quadrat ic  convergence r a t e  can be achieved. Whi le 
the  domain o f  quadrat ic convergence depends on the  problems s tud ied  and i s  
unknown a p r i o r i ,  we show t h a t  f i r s t -  and second-order d e r i v a t i v e s  o f  f l u x  vec- 
t o r s  determine whether the  c o n d i t i o n  f o r  quadra t ic  convergence i s  s a t i s f i e d .  
The f i r s t  de r i va t i ves  en ter  as an i m p l i c i t  operator  f o r  y i e l d i n g  new i t e r a t e s  
and the second de r i va t i ves  i nd i ca tes  smoothness o f  the  f lows considered. Conse- 
quent ly  f lows invo lv ing  shocks a re  expected t o  r e q u i r e  l a r g e r  number o f  i t e r a -  
t i o n s .  F i r s t -o rde r  upwind d i s c r e t i z a t i o n  i n  con junc t ion  w i t h  the  Steger-Warming 
f l u x - v e c t o r  s p l i t t i n g  i s  employed on the  i m p l i c i t  operator  and a d iagonal  domi- 
nant m a t r i x  i s  resul ted.  However the  e x p l i c i t  operator  i s  represented by f i r s t -  
and second-order upwind d i f f e renc ings ,  us ing  bo th  Steger-Warming's and van Leer ' s  
s p l i t t i n g s .  We discuss t reatment  o f  boundary cond i t i ons  and s o l u t i o n  procedures 
f o r  so l v ing  the  r e s u l t i n g  b lock  m a t r i x  system. 
one- and two-dimensional f lows,  we show d e t a i l e d  study as t o  the  e f f i c i e n c y ,  
accuracy, and convergence o f  the  present method. 

So lu t ions  o f  the  equations were obtained by Newton's l i n e a r i z a t i o n  pro-  

Wi th a s e t  o f  t e s t  problems f o r  
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