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Abstract

The present paper shows an efficient numerical
procedure for solving a set of nonlinear partial
differential equations, specifically the steady
Euler equations. Solutions of the equations were
obtained by Newton's linearization procedure, com-
monly used to solve the roots of nonlinear alge-
braic equations. In application of the same
procedure for solving a set of differential equa-
tions we give a theorem showing that a quadratic
convergence rate can be achieved. While the domain
of quadratic convergence depends on the problems
studted and is unknown a priori, we show that
first- and second-order derivatives of flux vectors
determine whether the condition for gquadratic con-
vergence is satisfied. The first derivatives enter
as an implicit operator for ylelding new iterates
and the second derivatives indicates smoothness of
the flows considered. Consequently fiows involving
shocks are expected to require larger number of
iterations.

First-order upwind discretization in conjunc-
tion with the Steger-Warming flux-vector splitting
is employed on the implicit operator and a diagonal
dominant matrix is resulted. However the explicit
operator is represented by first- and second-order
upwind differencings, using both Steger-Warming's
and van Leer's splittings. We discuss treatment
of boundary conditions and solution procedures for
solving the resulting block matrix system. With a
set of test problems for one- and two-dimensional
flows, we show detajled study as to the efficiency,
accuracy, and convergence of the present method.

Introduction

During the past decades, much progress has
been made in the development of efficient numerical
methods for solving unsteady fluid dynamics equa-
tions to yield time-asymptotic steady solutions.
The most noted algorithms have been the explicit
schemes such as the predictor-corrector scheme by
MacCormack! and more recently the application of
Runge-Kutta method by Jameson et al.,2 and the
implicit ADI schemes such as those due to Briley
and McDonald3d and Beam and Warming.% Various
strategies have been utiliized to accelerate compu-
tational efficiencies, e.g., multigrid,5 vectori-
zation, etc.

The present paper proposes a different
approach wherein the steady-state solutions are
obtained by solving the steady equations, rather
than through the time marching approach as

*This work was initiated while the author was
a Visiting Associate Professor at The University
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mentioned above. We are motivated in this research
by asking ourselves the following questions:

(1) Is time marching technique more efficient?

(2) Can a mathematical basis (even approxi-
mated) be established to indicate fast convergence
of a steady-equations solver?

(3) How can it be done and what are the dif-
ferences between the unsteady- and steady-equations
approaches?

Obviously the first question is general and
the answer is dependent upon circumstances con-
sidered. In fact is is well known that a space-
marching approach s much more efficient than the
time-marching approach for solving steady, fully
supersonic problems. Therefore it is important to
investigate the detailed differences in concept
and mathematics between the two approaches. We
note that this research was motivated by the paper
by MacCormack® in which the idea of using Newton's
method was mentioned while again unsteady equa-
tions were used in applications. 1In this paper we
attempt to shed some 1ight on the questions (2) and
(3) together with some applications to various
problems.

We apply the Newton method, which is commonly
used for iteratively solving roots of nonlinear
algebraic equations, to find solutions to the
steady Euler equations. Consequently quadrat1c*
convergence can be achieved provided the iterative
sequence is sufficiently close to the true solu-
tions. Upwind differencing is used to approximate
the derivatives and a diagonal dominant matrix
system can be obtained, thereby stab111z1ng the
iteration process. Several investigations®t-9
utilizing Newton's iteration between two time
levels and upwind-differencing, have shown great
success in efficiently arriving time-asymptotic
steady solutions. It is noted that the present
Newton linearization form is recovered if we let
At = » in the implicit unsteady procedures,

e.g., Beam-Warming's unfactored form.4 While

some analytical similarities may exist between the
steady and unsteady approaches, we believe that
there are differences in detaii which are mani-
fested in the convergence history. The iteration
in general consists of two stages, the initial
stage beginning with an arbitrary guess sets out
to home in the domain of Newton's quadratic con-
vergence and the second stage locks in this range
with rapid convergence.

We show in section 1 a theorem indicating
quadratic convergence for the case of differential
equations. A condition for the domain of quadratic
convergence, Qp, indicates that whether an

*
Quadratic convergence means the e5ror lleil s

reduced quadratically, 1i.e., ||e||n+]/||e||n = C.



approximation 1lies in Qp depends on rate of
change and smoothness of flow vectors, hence is
problem dependent. The choice of spatial differ-
encing is of particular importance for the present
method and is given in section 2. Section 3 gives
treatment of boundary conditions. The algebraic
system of equattions resuiting from sections 2 and
3 s then summarized; the solution strategies are
discussed in section 4. Finally we show in sec-
tion 5 the convergence of calculated solutions by
comparing with exact solutions in one- and two-
dimensional problems. The flux s?l1tt1ngs by
Steger and Warmingll and van Leer!2 are employed.
Pertinent issues such as accuracy and convergence
rate are discussed.

1. Newton's Method

We begin by considering the steady Euler
equations in conservation-law form and Cartesian
coordinates:

¥(U) = DF + 0.6+ DH =0 (1a)

where ¥ = {¥y,¥p,. . .,¥5} represents five (5)
partial differential equations, each is a function
of the conservative variables U = {p(1,u,v,w,E)}.
Here p 1s the density, (u,v,w) are Cartesian
components of the velocity, and E 1is the sum of
specific internal and kinetic energy. The flux
vectors are shown below for completeness.

pU PV oW
pul +p pVU WU
F = puv , G=| pv2 +p |, H= oWV
pUW VW owe +p
(pE + p)u (pE + p)v (pE + p)w
(1b)

In Eq. (1a) we choose the notation

- 3
D, = . D=5 (1c)

2P

» Dy

o
>

Also perfect gas is assumed so that flux vectors
are homogeneous function of U of degree one.

Assuming U*
y(U) = 0, 1.e.,

is a root (solution) of

y(U*) = 0 (2)

Since the system of equations in Eq. (la) is non-
Tinear and coupled, thus we are obliged to use
approximate method to iteratively arrive at
approximate solution to uU*. The Newton iterative
method having quadratic convergence for solving
algebraic equations also can be extended to solve
differential equations. The Newton procedure
starts by keeping the first-order term in Taylor's
series expansion of ¥(UN*1) and forces UNtl o
satisfy Eq. (1a). We have

¥ - su--w)y, n=00,2,. .. (3)

where &U = Un+] - Un. The differential operator

Duw working on 48U 1is given by

n_ga n. n
Duw T (U) = (DxA + DyB + DZC) (4)

here the Jacobian matrices are A = DyF, B = DyG,
and C = DyH.4

Equation (3) is the basic equation for deriv-
ing the new iterate uM*1 and s, in fact, iden-
tical to that derived in Ref. 4 when at = » fis
taken there.

For the quasi one-dimensional Euler equations,

DF+S =< 0 (5)
where
0
S(Uy = [F-fPJl «K, KX = Dx(area)/area
0

The Newton procedure yields

p,'su" = 0 (A" 0" + 8" e st - (0 F +5)"

(6)

Here we define B as
0 1 0

- 35 _ 2
B = U = K -u 2u 0

ul(y - % - ¥E] vE - 3(y - Nu?/2 vy

We turn now to study the convergence property
of the Newton method. Assuming that ¥ is
twice differentiable and that the root (solution)
U* that we are seeking is a simple root (muiti-
plicity = 1). Then we have D ¥(U*) # 0 and
DuW(Ul # 0 for al1 U 1in a certain neighborhood
of U" (see Ref. 10).

Using (,) to denote partial derivatives, we
have

3y
w '_‘_—1
1,y au
17
azv1
¥ = 1,3,k = 1,2,. . .,p

*
Now expand ¥(U ) about W(Un) in Taylor's serfies

w,(u*) - w1(u") +:§: v1,J(u")<h; - u?)

1 * n * n
i 5322,(: "m«‘"’("a - UJ) . (Uk - Uk) (M




Ties in the
Since

for 1 =1,2, ..., P, where V
interval containing U* and UD.

:z: n * n+l :E: n * n
3 "LJ(”J‘“J >=J "1.3(”3'”::)

n n+l n
; "1.3(“3 - UJ)
We have, after applying Egs. (3) and (7),

n * n+l
;”’m(”;i Y% )
.- %jzzk: vhjk(V)(u;‘ - u})@ . u:> (8)

n

Llet ¢ be the error at the nth iteration,

-u (9)

and denote A = {ay3}, B = {b14}, € = {cyy}. Sub-

stituting Eq. (4) in Eq. (8) yitelds

n n n\ n+l 1 nn
;@xa” + Dyb1j + DZC1J>€J = - ZZJ:;!"i,Jk(v)cjek
(10)

Integrating over an arbitrary volume Ao = Ax Ay Az
(here ax, Ay, Az are not taken to be grid spac-
ings) and making use of the Gauss theorem, we find

JZ fcgﬂ(an dy dz + by, dx dz + ¢y dx dy)
1 nn
= - Ekzjzfcjck(aﬂ.k dy dz + b‘ij,k dx dz

+ C1j’k dx dy)(V)

where (,k) as before denotes differentiation with
respect to Uy.

By the mean value theorem the equation becomes

a,,.(§) b,,(n) ¢, +(Q)
Aj_:(_"ix_ c;\ﬂ(g) . _tAyL cgﬂ(n) R _1,12__ cg”(())

1 i ey Mg

= - ZkZ?<AX a1j,k(§ )CJ(E )ck(E )
* a3 P10 ndeg(n®)
‘= Cu,k(""g“')‘:(c'))

where %, n, Z, £', n', {' € Ac. We understood
that a4y, byy, and cyj5 on LHS were evaluated at
un  and a4y, ks byy k. and €43,k oOn RHS at V.
Assuming Ao sma]q and

cJ(E) = cj(n) = cJ(C) etc.

We have
n+1 ] nn
Z q1j‘j = EZZ qu k3K (11)
J k 3 !
where
a b c
S RS F R K
qij = Ax Ay Az
ALY
U3,k = 30,
Now for maximum vector norms and corresponding
matrix norms we obtain
"™ _ < mfc"? (12)
where m 1is chosen such that
p {l2@ -1
o ”a“k“ lo'l_<m foranl 1<ks<op
(13a)

where the square matrix Q = {q,,} is assumed

invertible and p 1s the numbe?Jof equations in C.
For Euler equations, Eq. (13a) gives, for all k

A_+B_+§___] 1 A 1 3 1 aC
AX Ay Az

> ax aU, " ay au, Y az au
Xk yk Z

2

~

ol klw

(13b)

A similar condition for the one-dimensional
equations is readily obtained,

-1
A
()

for k =1, 2, 3.

1 3A

3
AX aUk

(13¢)

3B
+ £m
3U, ” ®

Lo

THEOREM. Suppose that ¥(U) = 0 has a root u*
and that in the sphere @ = {U:m|u - U*”Q < 1}
Assuming ¥ has first and second derivatives such
that Eq. (12) 1s satisfied. Then for all U0eq,,
we have

(a) u"mz, n=1,2,...

*
by 1imu" = U,

N->co

(c) the convergence is quadratic

*
(d) U 1is unique in 92

Proof. Since "mcoum < 1, then by Eq. (12)

Ine'l < Ime%l2 < 1



Hence U1e9 .

o By induction it follows UneQZ, for

Next, repeated use of Eq. (12) gives

n
lel < m M me0)2 (14)

Then resuylt sb) follows immediately as n = o,
Since UO, ut, UZ, , s a sequence which
converges to U*, t.e., UN s> U*, Vo> U* as n o o,

there exists a constant C(U*) = 0 such that
Eq. (12) yields
2
Ll nee

The sequence is, by definition, said to be quad-
ratically convergent. Next we prove the uniqueness
for a solution in Q5.

Suppose there exists another root V¥ .Ut

in @, then ¥(V¥) =0. For 1=1,2, .. .,p,
we write

* * * * * *
L R (B <V1 W (V ))
* *
=0y - *jZ:“’LJ(V)(U; } V;>

* *
for V in an interval containing (U, V ). Hence

]

oy - vi] < oy - v e I - v*llmzjlvi':'(vq
Since this inequality is true for all 1,

T R 2 S ) I A

a contradiction, hence (d) is proved.

From Eq. (14), one can readily estimate the
number of iterations required for an initial error
to be reduced by 10-S.

n = 101 > tog S 0
g log (1/m”c "m)

We shall note that the domain @p 1s the
estimates for the required closeness of approxima-
tion to the true solution in which Newton's quad-
ratic convergence holds. It is function of the
gradient of the flux vectors with respect to U,
i.e., Jacobians, and smoothness of fluxes in the
problems concerned.

In general U* 4s of course unknown, the
above conditions, 13(b) or 13(c), must be problem
dependent and is difficult to verify beforehand.
We shall demonstrate through test cases that in
reality one need not start with close approxima-
tion. A relaxation procedure is used to move
approximation progressively toward the domain Q;
thereafter a distinctly faster convergence is
followed.

After solving a block matrix system (given in
section 4), we update the approximation by the
equation

Un+1 - Un

+ wst" (15)
where the relaxation factor « 1n general can be
a constant matrix varying with iteration. The
precise variation of « for which the iteration
will remain stable is not known. A series of
numerical experiments for various circumstances
have been performed and their resuits will be pre-
sented later.

We show now the difference between the
time-marching and the present approaches. Let
6Un = w8 . Since w 1s constant, combination of
Eqs. (3) and (15) gives

Duw" e 80" = _oy"

(16)

Un+1 - Un + 60"

Hence we see that the present iteration process
bears no direct relation to the time-marching
approach since a different implicit operator hav-
ing no time derivative term is involved. However,
1ike the case of time-dependent approach, the
solution satisfies ¥w(U) =0 as &U ~» 0.

2. Spatial Differencing

Since there can be independent choices of
types of differencing for approximating the impli-
cit operator on LHS and explicit operator on RHS
of the Eqs. (3) or (6) insofar as stability is
maintained, we shall describe them separately.

The effects of mixed use of differencing on the
convergence rate and accuracy will be discussed in
section 5. It will become clear in what follows
that 1t 1s imperative to use upwind differencing
on the implicit operator.

Now we split the Jacobian matrix A as
(17a)

where A+ and A~ are matrices derived from the
corresponding "+" and "-" split fluxes, F* and
F- given by Steger and warm1ng,11 specifically

I+

+

@
-

A

(17b)

Q
c

These are the true Jacobians of relevant split
fluxes and not identical to the matrices resulting
from eigenvalue splitting, as given by:

~t + -1

AT = QATQ
where Q 4s a similarity matrix diagonalizing A.4
The complete expression for A* and B* 1in two-

dimensional case is given in Appendix A.

Now we can write (omitting iteration index n
hereafter)




D (A + U) = ‘z; [a"A*su + a*A"sU] + 0(ax) (18)

Here we denote A and A+ as backward and for-
ward difference operators. Let

[A] = AY - A”
Equation (18) becomes, for the jth grid point,

6Uj-]

1. +
DX(AGU) = Ax 'AJ_1' IAjI, Aj+1

sU, (19)

6Uj+1

for 3 =1,2, ..., 3. Substituting of Eq. (19)
in Eq. (6) gives, for one-dimensional equations,

DUWGU = T&U (20)

where T 4s a block tridiagonal system {Ty,

Too « - -2 Ty} and Ty = 1/8x {-A3-1, |Ajl

+ AxBj, Aj+1}. Also hereafter &U denotes {&U,,
sy, ..., SUy . ., 8Ug, 8U341); 8Up and
§Uj4q are evaluated at boundaries.

Following the same procedures in deriving
Eqs. (12) and (13), we now write their counter-
parts for the discretized algebraic system,

I7771_jasscretized Y e <M (21

It is obvious that whether the condition for quad-
ratic convergence is satisfied and fast convergence
can be realized depends on (1) the property of the
matrix T resulting from discretization of the
implicit operator, and (2) the smoothness of flux
vector as given in ¥4 Therefore a well-
conditioned implicit operator 1s required. Since
the first-order upwinding yields a matrix which is
diagonally dominant and hence well-conditioned.

It also has minimum bandwith for coupling neigh-
boring points, hence making boundary conditions
felt in each iteration step. Therefore we shall
use only first-order upwinding for the implicit
operator while having the 1iberty of utilizing
different differencings for the explicit operator.

We note that despite the central differencing
possesses properties of being simple and higher-
order accurate with the same bandwith, it however
leads to vanishing of diagonal terms and hence
losing diagonal dominance. Consequently the iter-
ative sequence will Yikely diverge.

We turn now to the differencing of the
explicit operator. First-order and second-order
upwinding basced on flux splitting are employed on
uniform grids, we have

+ -
DF = D (F +F7) (22a)
and
+ 1 [F+ e - + 7 % 1-0 2]
0F = Ax (A FFeo8 AETF ) +0 [(AX) » BX

(22b)

where E is the displacement operator. o = 0 and
1 denote first- and second-order accuracy. Similar
differencing can be made for DyG and D H for
multidimensional flows. The flux splittings proposed
by Steger and Warming!l and van Leer12 are employed
in our study. They are given here for completeness
(for two-dimensional case).

Steger-Warming:

+ + + +
Let F1 = 2(y - 1)x1 + ka + k4

- . -
F
+ + +
uF] + c(x3 - k4)
+
vF]

2
+ + L+ 2,. % + _
_9—2 Fy o+ cu(hg - ap) + €20y + x4)/2(y N

(23a)
where k: = ( gt Ing1)72, ¥ =1, 2, 3, 4 and
=\, =U, \, =u+c,and A, =U-cC; C = speed 3f

ﬁ 3 4
soufid.
Now if G; = 2(y - 1)x; + x+ + k+ and v 1is
substituted for u in x1 above, we have
R -
6y
uG
o 1 + +
G =
2y VG] + c(k3 - X4)
PN cv(at - ah) + 2t s xp)/2v - 1)
(27 ™ 37N <M VAR
(23b)
van Leer:
FraF, M>
(24a)
FF=F, M< -
and for |[M] < |
]
+ [0y = Du £ 2c)/y
F~ = FJ
1]v
[y - Du £ 2c1%/2(4% - 1) + V272

(24b)

where
+ 2
F1 = % pc(Mx 1) /4, Mx = u/c



+
The formula for G~ are obtained by 1nterchang1ng
u and v and elements 2 and 3 in F*, Differ-
ences of analytical properties of both spiitting
are given in Ref. 12. We shall discuss their dif-
ferences in calculated results in section 5.

Now substituting £qs. (20) and (22) in
£q. (6), we have the block tridiagonal system

TéU = - f (25)

where f = {fy, fj, - 3, ., 3} and

+

1 + - KN -
fJ = ax (A FJ + A Fj) 28X A A Q&_1 + Fj+1> + SJ

The system needs to be closed by boundary condi-
tions, to be discussed in the next section.

For multidimensional problem, similar upwind-
ing can be constructed. Assum1ng equal-spacing

grids in two dimensions, x = J ax, 3 =0, 1, 2, .
. ., 3 +1 and y =k ay, k =0,1, 2,
K+ 1 and o = Ay/ax. The resulting b1ock matr1x
system is written as
MU = - f (26a)
where for typewriter ordering, i.e., on each
constant y, we have
§U = {GUO,GU ,6Uk,. .,6UK+]}
(26b)
f=9(f ,f,.. .,f,. ..,
{ 12 fk fK}
and each element in &0 and f,
6Uk = {6U0k,6U1k, 6Ujk" 6UJ+1,k} ,
k =0,1,2,. . .,K+1
f = {flk’ka" .,ka,. . .,ka},
k =1,2,3,. . .,K
(26¢c)
The matrix M has the structure
- . _
-8, T, B, 1
+ -
B T, By
M= L, _
Bt Tk Bk
|_ B Tk Bk
(27)
which again is of block tridiagonal form. The

element matrices Bk and Tk are found to be
of block diagonal and block tridiagonal form
respectively, namely

o -
1k
Bt
+ 1 2k -
Bk =8y . k =0,1,2, . K+
+
| Bak
(28a)
and
[_a* 1A ] + o[BI, A ]
Aoks [Ayid 1kl
. ,
Mk, Mokl + o IByds Agy
Rk AL LA .
A By o Byle A
i A3y, Mgyl + o 1Byle Ay i |
(28b)
for k=1,2, ..., K. Wenote that Ty 1is a

block tridiagona] system (each constant y) within
a large block tridiagonal system M. One can also,
by altering the typewriter ordering, construct

block tridiagonal system for each constant-x line.

There exists many classical iterative schemes
for solving a large system; several strategies are
discussed in Ref. 7. We shall outline possible
candidates for solving the system, Eq. (26), in
section 4 after the boundary conditions are
treated. We note here again conditions on the
boundary lines (k =0, K + 1, j =0, J + 1) must
be imposed to render the system solvable.

3. Boundary Condition

Boundary conditions are treated implicitly
and shown below for various cases.

(a) supersonic inflow:

A1l variables are prescribed and remain
unchanged at exterior points,

s8U =0
(29)

(b) supersonic outflow:

Al1 variables are extrapolated from interior,
e.g.,

(30)

(c) subsonic inflow:

We prescribe p, u, and v and extrapolate
p from neighboring interior points, e.q.,




atp = 0 (31)

(d) subsonic outflow:

The pressure (p) is fixed and the remaining
variables are extrapolated from interior, e.g.,

Ap=20
Au=0 (32)
Av =0

This case is more involved and needs some elabora-
tion. We 11lustrate how the boundary terms on LHS
are combined with the neighboring interior terms.
Since p 15 fixed, we have

2

6pE=—L

2~ 8p + us(pu)

(for 1 - D problem)
Applying the extrapolation (Eq. (32)), we find

2
- g— dp + USpU

A1adUsa =| 321 322 33 .
pu
a a a
3 32 33 341 8p 341
0 a,, +ua ayn - u2a /2 §pk
12 N 13 11 d
={ 0 a + ua 2 dpU
22 21 a3 - U az]/z
0 a,, +ua $p
32 K] agy - u2a31/2 J
J+1
(33)
Thus we related &Uj,y with &Uj and the coeffi-

cient matrix of sUj
matrix in Eq. (33).

is modified by absorbing the

(e) solid surface:

We require the normal component of velocity
vanishes, 1.e.,

Vn =0 (34)

and extrapolate the remaining variables from
interior.

4. Solution Procedure

With the boundary conditions impliemented, the
first element of the first row and last element of
the last row in the block tridiagonal matrix (T
and M) are essentially eliminated. Since upwind
scheme provides diagonal dominance, and assuming
T(M) nonsingular, we can get solution for each
iteration.

Whether this iteration sequence will converge
to the true solution (U*) depends on well-
conditionedness of the matrix T(M) at each itera-
tion, 1.e., if T(M) is i11l-conditioned, the
iteration may diverge quickly and will not have a

chance to get into the domain @3 given in the
Theorem shown previously. How fast 1s the overall
convergence rate will then be problem-dependent;
problem with mixed signs of eigenvalues in general
will need larger number of iterations than that
having only one sign. Furthermore, for a given

set of initial guess (U9) and imposed boundary
conditions, 1t 1s not possible to estimate a

priori the domain Q2 1in a nonlinear problem.
Therefore in practice the entire iteration sequence
may consist of two stages. The initial stage
starts out an initial guess, which frequently is
assumed using some physical judgment, and moves
stowly to @7 by some suitable relaxation strate-
gies. We note that one need not use Newton's
method in this initial stage and in fact some
1inearly convergent methods may be preferred and a
better impiicit operator perhaps is more important.
Nevertheless since Newton's method (Eq. (3)) com-
bined with relaxation procedure (Eq. (14)) is
already losing feature of quadratic convergence,
hence conceptually it may be thought as some Tower-
order method. Yet this has the simplicity of using
only one solution procedure and quadratic conver-
gence (or nearly) is gotten naturally once

is reached.

For one-dimensional problem, we write the
block tridiagonal matrix T 1in terms of lower and
upper block bidiagonal matrices L and U, i.e.,
LU factorization.

T=1LU (35)

A description of the procedure is given in Ref. 13.
This 1s the algorithm that we used to solve one-
dimensional test problems and may be an optimal
one considering number of the algebraic operations
and convergence rate of the overall iteration
sequence. However for two-dimensional problems,
it 1s not all that clear which solutton scheme for
a large matrix system, e.g., direct inversion
versus iteration, is more suitable insofar as
efficiency 1s concerned. We turn next to outline
some possible strategies for the system Eq. (26).

(a) Complete LU Factorization

Exactly as above in Eq. (35) we write

M =LY (36)
where L and U are of the form
L Ln
8L, L I
L = . , U= .
&L Ik Tka
K-1 KJ n =

The recursive formula for Ly and Iy are given
in Ref. 13; inversion and muitiplication of block
matrices are required along each constant-y line.
The direct inversion procedure may be too costly
to perform. In what follows we shall discuss some
Aterative strategies which can be viewed as m(>1)
subiterations for solving each Newton's iteration
step. Obviously one need not obtain converged
solution at each Newton's tteration which after
all has not yet produced "true" solution. But the




optimal number for m A4s not known a priori and
can be function of many factors, e.g., physical
problem considered, grid size, etc. In the appli-
cation of the present method, we chose m =1 for
the two-dimensional shock reflection problem.

(b) Line Relaxation

If the off-diagonal blocks in Egq. (27) are
taken to the RHS of Eq. (26a), then we are left
with a line-decouplied system, 1.e., each constant-y
Tine 1s in effect independent of each other in so
far as solving Eq. (26a) is concerned. Exactly as
Eq. (23) in form for each k(=1, 2, . . ., K) line,
we now solve one-dimensional block system, hence
appropriately called line-relaxation. Since each
1ine is treated as independent, there is no
sequence of sweeping (unlike LU factorization) and
one can sweep in the same direction for each iter-
ation. However there may be advantages alternating
up and down sweeps in successive subtterations,
thereby mimicing the complete LU factorization.
Furthermore one may skip odd-numbered 1ines in one
sweep and f111 in the even-numbered 1ines in the
next sweep, 1.e., so called the zebra scheme.
Another possibility is the Gauss-Seidel updating
whenever lastest solutions become available, hence
yielding faster propagation of information. This
1ine Gauss-Seidel relaxation was used in the pres-
ent paper.

(c) Point Relaxation

To further reduce matrix operations, but at
the expense of slower propagation of information,
all off-diagonal blocks in M and Ty are put
on RHS. An essentially point-decoupled, termed
point relaxation, system is resulted. Similar in
spirit to the zebra scheme, a checkerboard scheme
can be employed in which points are solved by
skipping immediate neighboring points in one sweep
and f111ing in those just skipped in the next
sweep. Again one can also combine Gauss-Seidel
updating.

5. Results

Computational tests of the present method
were made for one- and two-dimensional flows.
Four cases of one-dimensional nozzie flows were
calculated with different inflow and outfliow con-
dittons. A calculation of oblique shock reflec-
tion was also made. 1In all calculations presented
here uniform grids were used. Inflow conditions
were also assigned to be the initial gquess for the
iterative process. The error is taken as the sum
of relative absolute changes of all variables at
all grid points, 1.e.,

P |8y

error =
7 1Y)

grids

{(no. of grid points)

(37)

so that the convergence of the entire discretized
system, rather than a single component (variable)
is measured.

In each case calculated we shall present the
results which were obtained by using combinations
of (1) first- and second-order differencings and
(2) Steger-Warming and Van Leer splittings on the

RHS explicit operator. Their effects on accuracy
and convergence will be discussed accordingly.

(a) One-dimensional nozzle flows

Two geometries were considered, the area dis-
tributions are given by:

Divergent nozzle,
area = 1.398 + 0.347 tanh (0.8 x -4), 0 < x <10
(38a)

Convergent-divergent nozzle,

1.75 - 0.75 cos (x - 5)n/5 0<x<5
area =
1.25 - 0.25 cos (x - 5)w/5 5§<x<10
(36b)

We note that since the curvature of the convergent-
divergent nozzle is discontinuous at the throat,
the flow variables (p, p, u) have discontinuities
in the first derivative. The grid size (Ax) was
0.1.

Figures 1 show the calculated pressure dis-
tributions for fully supersonic flow in the diver-
gent nozzle, together with exact solution denoted
by the solid 1ine. Both first- and second-order
methods gave virtually the same results. It is
evident that a truly quadratic convergence was
obtained using the first-order differencing (error
was reduced by 10-14 in seven iterations); here
w 1s the relaxation factor appearing in Eq. (15).
However the second-order differencing appeared to
achieve quadratic convergence initially, but
changed to much slower rate. This peculiar behav-
jor was not understood and is currently under
study.

We now present the case with a shock, i.e.,
the outflow is subsonic, in Fig. 2. The first
order upwinding produced monotonic behavior; the
Steger-Warming splitting smeared the shock more
than the Van Leer splitting did, but was about
twice as fast in convergence rate. The difference
in convergence rate could be attributed to the
fact that the implicit operator remained unchanged
(i.e., Steger-Warming splitting) the explicit
operators used either splitting. The o was set
equal to 0.5 initiaily and increased according to
the equations:

w=w+ 0.1 n/no if MOD(n,no) =0

and
w = min(w, 1.0)

where n, 1s the interval of iterations in which
o 1is kept fixed. The formula was arbitrarily
chosen; better convergence can be gotten when the
relaxation process is better understood. The
second-order differencing produced much sharper
shock, but with unwanted oscillations at both
upstream and downstream of the shock. The conver-
gence rate was about half of the first-order
method.




Next we looked at flows in the convergent-
divergent nozzle. Figures 3 show the fully sub-
sonic case. Both splitting gave virtually
identical results except differences in conver-
gence; second-order differencing was clearly
superior in accuracy and also nearly equal in
convergence rate, contrary to the case in Fig. 1.

Figures 4 display the case involving a shock;
the first-order method clearly lacked spatial
resolution. The Van Leer splitting gave much bet-
ter results in the supersonic region but over-
predicted in the inflow subsonic region. The
second-order method obviously showed much improved
accuracy, but at the expense of slower convergence
rate. The dispersive error near the shock was
observed in both splittings; the discontinuity at
the sonic point in the Steger-Warming splitting
was evident and did not appear in the Van Leer
splitting, which was designed to yield smooth
transition of splitting at sonic point.

Finally we turn to the problem of regular
reflection of a two-dimensional oblique shock wave
with free stream Mach number 2.9 and shock angle
29°. The computation domain was divided uniformly
with 61 by 21 grids over 0.0 < x < 4.0, and
0.0 <y < 1.0, the Steger-Warming flux splitting
was used for calculating this case. Figure 5
gives the pressure distributions at the wall, using
the first-order upwinding. The shocks evidently
were smeared to a large extent. While the static
pressure showed monotonic property, the total
pressure (or a measure of entropy) displayed over-
shoot followed by a recovery. The convergence
history showed a drastic reduction in error after
an initial stage. Figure 6 shows the results
obtained by the use of second-order upwinding
(boundary conditions remained first-order approxi-
mation). Here we see an overexpansion in pressure
just ahead of shock foot, followed by a smooth
increase. The spatial resolution was clearly much
improved over the first-order method. The over-
expansion was also accompanied by the increase of
total pressure, not seen in the first-order method.
The convergence history again showed two distinct
stages, confirming the theorem and speculation
given in section 1. The convergence history for
the error to reduce 10-10 is roughly the same
for both first- and second-order differencings.
The Mach contours are depicted in Fig. 6(d).

6. Concluding Remarks

We summarize that an efficient method has
been proposed to find steady solution by solving
the steady Euler equations. The iterative scheme
necessary for solving a coupled nonlinear system
was based on Newton's method and an updating
(relaxation) procedure. A theorem was shown that
the Newton method applied to the system of differ-
ential equations gave a quadratic convergence pro-
vided the approximation to the true solution is
sufficiently close. The first and second deriva-
tives of flux vectors were shown to define the
domain of the quadratic convergence (Qp). Upwind
differencing was necessary to construct the
impiicit operator for providing the iteration
sequence. We employed the true Jacobians resulting
from the Steger-Warming splitting in approximating
the implicit operator. Both Steger-Warming's and
van Leer's splittings however were used on the

explicit operator, combined with the first- and
second-order differencings. One-dimensional nozzle
flows and two-dimensional shock reflection problem
were calculated, specific emphases were placed on
the convergence rate and accuracy.

We are continuing to make in-depth investiga-
tion of the present method, specially as to the
increase of efficiency and application to more
complex problems. A high resolution scheme has
been ‘bmp]emented‘4 and the results will be pre-
sented elsewhere.
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Appendix A
We show the true Jacobians which are derived
from the split flux vectors given by Steger and
warming!! 4n what follows.

As defined previously

F=F +F, 6=6 +6
A = af/au, B = 3aG/aU
(A1)
At = art/au, B* = act/au
IFl =F - F,  |6] =6 - &
Hence |F}| = F for u>c and |F| = -F for
u < -c.
Let
Al = A" - A7 (A2)
hence
+
AT = (At |A])/2 (A3)

From £q. (A1) we have

LY o RGN A IRt 8 B (U

Since the fluxes F and G are split according to
Eqs. (23) and (24), a straightforward substitution
and differentiation ylelds, after tedious algebra,
for Ju| <c:

a - :u
3=k, e =0
a, =t B ou, B=(vy-1)y
313 = ~aV
a“-u



52] =7 Bu + 2au(-e + g2/2) , g% = u? + V@
.. = 2{£Bu + c/v} - 2au’
22 -
3y, = -2auv
824 = 2ol
- ¢
a3, = ¥ Buv + avi-e + ? (A5)
a32 = %+ v - auv
A = #B8u+ c/y - avl
33 -
634 = aV
3, = Efa(3u® + v2) + 3c)/2

41

- {qz[t Bu + c/y] + 2c[u2 + c2/(y - 1)]}

3

dyq = V2 BU + C/Y] - va(3u® « v3) + 3¢)/2

I 2 2

a44 = a(3u” + v7)/2 + 3c/2
where "+" and "-" correspond to u >0 and u < 0.
Similar expression for |B| can be obtained by
interchanging rows 2 and 3, columns 2 and 3, and

u and v.
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