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SUMMARY

Aircraft icing flight research was performed In natural icing conditions

with a twin engine commuter type STOL aircraft. In-fllght measurements were

made of the icing cloud environment, the shape of the ice accretion on the

wing, and the corresponding increase in the wing section drag. Results are

presented for three icing encounters. On one flight, the wing section drag

coefficient increased 35 percent over the unlced baseline for cruise condi-

tions while a 43 percent increase was observed at an aircraft angle of attack
of 6.2 °.
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NOMENCLATURE

wing section drag coefficient

wing section llft coefficient

wing cord, l.g8 m, 6.5 ft

indicated airspeed, knots

true airspeed, knots

cloud liquid water content, g/m 3

Mach number (calculated using aircraft true airspeed)

cloud median volume diameter droplet size, _m

static air temperature, °C

Reynolds number (calculated using alrcraft true airspeed and wing

chord length)

aircraft angle of attack (referenced to waterline), deg

INTRODUCTION

The NASA Lewis Research Center's aircraft icing flight test program sup-

ports several program elements. One element of the program is to develop a

flight test data base consisting of icing cloud parameter measurements, ice

shapes, and aerodynamlc measurements. The data base will be used to validate



the simulated icing produced in the NASA Lewis Icing Research Tunnel and to

validate predictive computer codes. This paper presents In-fllght measurements

of the icing cloud parameters, the Ice shapes on the wing, and the correspond-

ing increases in wlng section drag caused by ice for three natural icing
encounters.

In-fllght wlng section drag measurements have been performed before for
alrfolls without ice. (refs. l and 2). The experiment consists of measuring

both total and static pressures across the wake. The pressures are then

related to the wlng section drag coefficient using the Jones equation (ref. 1).

While this flight experiment has been performed many times for airfoils without

ice, no reference was found of it ever being done for airfoils with natural ice

accretions on them. The presence of ice accretions on an airfoil can signifi-

cantly increase drag and decrease llft. Many airfoil icing experiments have

been performed in wind tunnels (refs. 3 and 4). A major icing wind tunnel

facility is the NASA Lewis Icing Research Tunnel (IRT). The IRT can produce
simulated icing conditions through the use of water spray bars and refrigerated

air flow. Because small differences in icing parameters can produce large dif-

ferences in ice shapes and hence large differences in the aerodynamic effects

of Ice (primarily at the warmer temperatures (see refs. 4 and 5)) simulation

techniques should duplicate natural conditions as accurately as possible.

Therefore a goal of current research is to compare wind tunnel simulated icing
conditions to natural icing conditions observed in flight. In detail, it Is

desired to compare (1) the icing cloud parameters such as cloud liquid water

content and water droplet sizes (2) the wing ice shapes resulting from the

conditions and (3) the change in the wing section drag coefficient.

To accomplish thls task and others the NASA Lewis Research Center iS

operating an icing research aircraft and using it to fly into known icing con-
dltlons. Work with this aircraft has resulted in three other reports to date

(refs. 6 to 8). These reports have dealt primarily with icing instrumentation
and overall aircraft performance loss due to ice. The experiment discussed in

this report was conducted with the icing research aircraft during the late

winter and spring of 1985 and was flown in the Cleveland, Ohio area.

In addition to the goal of improving simulated icing in the IRl, another

goal is to use the flight test data to compare with computer predicted results.
Several computer programs have been developed by NASA to predict droplet tra-

Jectories, ice accretions, and aerodynamic effects due to icing (ref. 9).

Whlle the goals are to make the comparisons described above, this paper pre-
sents only the flight test measurements of icing conditions, ice shapes, and

drag increases.

THE AIRCRAFT

The icing research aircraft is a twin engine commuter type STOL aircraft,
a DeHavilland DHC-6 Twin Otter. Maximum gross weight is 4990 kg (ll 000 Ib).

Normal cruise airspeed is about 259 km/hr (140 KTAS) between the altitudes of

1829 m (6000 ft) and 3048 m (lO 000 ft). Among the various ice protection

systems on the aircraft are pneumatic boots on the wings outboard of the engine
nacelles. The wing section itself has a NACA 6A series meanllne and a modified

NACA 0016 thickness distribution (ref lO) The wing has no sweep back and no
washout. The wing planform area is 39 m2 i420 ft2).



INSTRUMENTATION

Icing Instrumentation

Measurementswere madeof cloud liquid water content, median volume drop-

let diameter size, air temperature, and duration of the icing encounter. Icing

environment data was recorded on a digital tape recorder. See figure l for
icing instrument locations on the aircraft.

Instrumentation included:

LWC - Johnson and Williams heated wire probe produced by Cloud Technology.

MVD - Knollenberg Forward Scattering Spectrometer Probe (FSSP) produced by

Particle Measuring Systems, Inc. (set for a range of 2 to 32 _m)
OAT - I02CA2W total temperature probe produced by Rosemount Inc.

It should be noted that the LWC and MVD icing cloud parameters are diffi-

cult to measure. Accuracy is difficult to determine and absolute calibrations
are lacking. The instrumentation problem is very important, particularly for

droplet sizes, but it is beyond the scope of this paper (see refs. 5 and 6).

An important fact is that the above instruments were tested in the IRT and

found to be repeatable. Therefore flight versus tunnel comparisons can be
made.

Stereophotography System

A stereo camera system was developed for the icing research aircraft

(fig. 2). The system produced stereo pair photo images of the wing's iced

leading edge that enabled measurement of the ice surface through photogram-

metric analysis with a minimum acceptable resolution of ±0.0762 cm (±0.03 in.).

Iwo Hasselblad cameras were mounted in the nose of the aircraft behind optical

glass vlewports. The cameras' flelds of view encompassed a common portion of

the wing leading edge located ahead of the wake survey probe. To provide spa-
tial references in the photo-lmages needed for photogrammetrlc analysis, an

array of control points was painted on the wing leading edge section and the

wing fence. To increase contrast and character of the ice surface in the

image, a flash unit was mounted on the engine nacelle. The cameras and flash

were activated from a switch at the copilot's station. The system is described

more completely in reference II.

Wing Wake Survey Probe

A wake survey probe was used to measure wing section drag coefficient. It

was mounted on the wing behind the region where stereophotographs were taken.

The probe had separate pltot and static probe tips located I/4 chord aft of the

wing trailing edge at about 6g percent of the semlspan. The probe was driven

by a motor inside the wing and could traverse an arc of IBO ° through the wing
wake (fig. 3). Static and total pressures were measured by transducers located

in the cabin. An analog x-y-y plotter in the cabin was used to record the

pressure traces. During the icing flights, heaters in the probe kept the probe
free of Ice and a nitrogen purge system kept pressure lines clear of water.



Other Instrumentation

Altitude and airspeed were obtained from a pltot and static probe mounted

on a noseboom. The tip of this pltot probe was 2.62 m (8.6 ft) in front of the

aircraft nose. The position error associated with the noseboom static pressure

source was calibrated using the trailing cone method. The difference between

the noseboom and freestream static pressure was approximately 5.9 percent of

the measured impact pressure with noseboom pressure greater than freestream.

This percentage did not vary with angle of attack. The position error correc-
tion was factored into the calculation of the aircraft airspeed and altitude.

An angle of attack sensor was also added to the aircraft. This sensor
was mounted on the side of the nose on the baggage compartment door. It was

calibrated during steady level flight against an inclinometer on a floor rail.

The angle of attack sensor was made by Specialities Inc. (Model SLZ2303). It
should be noted that the engineering drawings for the aircraft indicate that

the wing is at a positive 2.5 ° incidence to the waterline of the aircraft (the

waterline is parallel to the floor llne). The angle of attack sensor was ref-
erenced to the waterline of the aircraft. In addition to the 2.5 ° incidence

of the wing, the local angle of attack of the wing at the section where drag
measurements were made could differ from that of the aircraft due to the three-

dimensional flow around the wing.

On this aircraft, it was unavoidable that the wake survey probe was placed

behind a region of the wing where ailerons were present. The aileron deflec-

tions were measured by means of a potentlometer mounted on the aileron control
cable.

The altitude, airspeed, temperature, aircraft angle of attack, and aileron

deflection were recorded manually from digital readouts during each wake survey
i_leasurement.

FLIGHT TES1 PROCEDURES

The aircraft was flown in clear air to establish an unlced baseline in

terms of wing section drag coefficient plotted against aircraft angle of
attack. This uniced baseline was used as a basis for comparison between the

iced versus unlced aircraft.

The general procedure during icing flights was (I) accrete ice while meas-

uring the icing environment (2) exit the icing cloud and document the wing ice
shape with stereophotography (3) measure the increase in wing section drag with

the wake survey probe at several airspeeds and (4) take additional stereophoto-

graphs during clear air wake probe traverses to determine if sublimation or
erosion had altered the Ice shape.

Airframe ice was accreted at cruise flight cond_tlons (approximately

250 km/hr (135 KTAS)). While in icing, a relatively constant cruise airspeed

was maintained by slowly increasing power. Icing instrumentation continuously

measured icing cloud parameters during the encounter. The pneumatic deicer

boots on the wings were not activated during the encounter allowing ice to
build up on the wings. After a sufficient amount of ice had been accreted,

the aircraft was flown out of the icing cloud. Generally the quickest means

was to climb above the icing cloud.



At this point the stereo photographs and wake survey measurementswere
taken. During wake survey runs the airplane was flown steady and level with
constant airspeed and angle of attack. About three to six measurementswere
usually taken, each at a specified airspeed. Stereo photographs were taken
for each wake probe measurement.

During wake survey runs, no aileron inputs were intentionally made. The
ailerons were left in a trim position and the rudder was used if necessary to
maintain zero degree bank angle. However, the aileron trim position varied
with airspeed. There was slightly more deflection at the lower airspeeds.
(See table II). Positive deflections are down.

DATAREDUClION

The icing instrumentation data was recorded on digital tape. After the

flight the tape was read by an IBM 370 computer program which performed neces-
sary calculations and then plotted the data in corrected engineering units for

the desired time periods.

The analysis for the stereo photographs was performed by the Air Force's

Arnold Engineering and Development Center. From the stereo photographs, the

x-y-z coordinates of a definitive number of ice surface points were determined

along a roughly 0.6 m (2 ft) spanwlse section of the wing. The coordinates

were then projected onto a single chordwlse plane. Thus the ice accretion

profile generated was a "composite" plot (figs. 15, 24, and 33). The scatter

of the plotted points was indicative of each accretions roughness and spanwlse

variability. Reference II describes the equipment and data reduction methods
in more detail.

The wake survey probe data analysis was done on an IBM 370. First the

analog plot tracings from the flight tests were digitized and then a program

was used to reduce the digitized data sets. The program did the following:

converted raw data to engineering units; applied transducer calibrations; sub-

tracted reference pressures from the pressure transducer outputs; applied nose-

boom static pressure position error corrections; calculated vertical positions
of the total and static pressure probes; interpolated the static pressure data

in the wake to get static pressures that corresponded to total pressure meas-

urements; allowed the user to determine limits of integration; and finally

integrated the Jones equation (ref. 2) to determine wing section drag
coefficient.

Figures 4 and 5 show typical variations of measured dynamic pressure and

static pressure across the wake. Note that the static pressure varied consid-

erably across the wake because the probes were located close to the wing trail-

ing edge (I/4 chord). The wing has a chord of 1.981 m (6.5 ft) and a max

thickness which is 16 percent of the chord. The "zero" probe arm position was
defined as when the probe arm was parallel to the wing trailing edge. In this

position the probe tips were about 14 cm (5.5 in.) above the wing chord.



RESULTS

Baseline (No Ice) Measurements

An unlced baseline was established as a basis for comparison between iced

versus unlced cases. The baseline consisted of the wing section drag coeffi-

cient plotted against the aircraft angle of attack. This baseline is presented

in figure 6 and represents data from two flights in clear air. The drag coef-

ficient is plotted against angle of attack rather than llft coefficient because

(1) the wing section llft coefficient was not measured during icing encounters

and (2) the overall aircraft lift coefficient was altered by the presence of

ice accretions on the wing.

The wake survey probe was also run prior to this season and initial data

was published in reference 8. The data acquisition systems, transducers, and

data reduction programs were entirely different for the two seasons. The

earlier season employed a computerized data acquisition system that was not

available for the 1984/85 icing season. The baseline shown in reference B

does not fall on the baseline shown in figure 6. The reason for the discrep-

ancy is not completely known, however two reasons Justify the publication of
the new data. The first reason is that the new data agrees better with numer-

ical predictions from the Eppler airfoil analysis code (refs. 12 and 13).

(See fig. 7). The second reason is that the primary Interest is in the rela-

tive effects of the ice on the drag rather than the absolute numbers.

Also found in reference B is flight test data showing the unlced wing

section llft coefficient as a function of aircraft angle of attack. This data

was acquired by wrapping a pressure belt around the wing and measuring surface

static pressures.

Icing Flight Measurements

Results are reported for three natural icing encounters for which there

were adequate icing condltlons and during which research instrumentation oper-
ated correctly, providing complete data sets. Data from each icing encounter

is presented separately. For each encounter the order of discussion is as fol-
lows: (1) the Iclng environment and flight conditions (2) the resulting ice

accretion on the wing and (3) the resulting drag increase caused by the Ice.

Table I summarizes the icing cloud conditions for each flight and table II
summarizes the test conditions for the individual wake survey measurements.

Flight 85-17

The icing conditions encountered on flight 85-17 caused an accretion
which was rime ice with a trough down the stagnation llne. The average cloud

liquid water content was 0.22 g/m 3. Because of this low LWC the aircraft
flew in these conditions for 65 mln before exiting the cloud. Figure 8 shows

the large variability of the liquid water content during the encounter. The

variability is interesting considering the fact that most icing simulations,
whether in the wlnd tunnel or on a computer, generally assume constant LWC for

practical reasons. The average droplet median volume diameter was 12.4 um.

lhe MVD varied little during the encounter compared to the LWC (see fig. 9).

The average static air temperature was -ll.5 °C and was relatively constant
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(fig. lO). The average true airspeed was 215 km/hr (ll6 kts) and varied as

shown in figure II. The average altitude was 1254 m (4114 ft). Note on

figure 12 that the aircraft descended into the icing cloud at the beginning

and then descended out of the cloud at the end when enough Ice had been

accreted. Figure 13 shows the aircraft angle of attack during the encounter.

Figure 14 presents a photograph of the Ice accretion on the wing. This

portion of the wlng was directly ahead of the area where wake survey measure-

ments were made. The photographs were originally color and were reprinted In
black and white. Some of the detail Is therefore lost. Note that the solid

white color is characteristic of rlme ice while the trough along the leading

edge is a glaze characteristic.

Figure 15 shows a cross sectional profile of the Ice accretion on the
leading edge of the wing which was generated from the stereophotography analy-

sis. As mentioned previously these data points represent locations of the ice

surface measured anywhere along a 0.6 m (2 ft) spanwlse section. Thus the

profile is a composite ice shape representing both the general shape and the

variability of the ice surface at different locations. The stereo profile is

most useful for quantifying the general size of the accretion.

Figure 16 presents the increase in wing section drag coefficient due to
the ice accretion. Wake Survey probe measurements from the icing flight are

compared to the unlced baseline. For the same aircraft angle of attack of 2°,

the iced drag coefficient shows an increase over the baseline of 15 percent.

A llne was fit through these data using the method of least squares. Curve

fit results are presented In table III.

Flight 85-24a

Flight 85-24a was an encounter with mixed icing (i.e., mix between rlme

and glaze icing). The average LWC was 0.45 g/m 3 (fig. 17). The average MVD

was 19.5 _m. Note on figure 1B that the FSSP laser probe was not working dur-

ing part of the icing encounter. The laser probe iced up during the first two

thirds of the encounter. The assumption is made that the MVD was the same

during the entire encounter since MVD's have been observed to be relatively

constant In stratlform clouds. Also the assumption Is made that the laser

probe was working correctly when It was not iced up. It is assumed that it

was not partially blocked by ice. From past experience laser probe icing
seems to cause total failure of the probe rather than produce merely erroneous

results. The exception to this is when large quantities of Ice accrete on the

laser pod shell and actually change the aerodynamic flow around the probe.

The amount of ice on the probe shell can be seen from the aircraft cabin and

was Judged to be acceptable in thls case. Considering the assumptions that

had to be made, the MVD measurement for flight BS-24a was the most uncertain

of the three flights.

The average statlc alr temperature was -14.8 °C (fig. lg). The average

true airspeed was 257 km/hr (139 kts) (fig. 20). The average pressure altl-

tude was 2008 m (65B8 ft) (fig. 21). The average aircraft angle of attack was

0.9 ° (fig. 22).

Figure 23 shows a photograph of the Ice accretion on the wing. The ice

is nearly clear in the center which is a glaze characteristic. Along the edges



of the accretion the lce Is more llke rime. One might wonder why fllght 85-17
was rlme lce and flight 85-24a was mixed lce when the temperature was colder
on flight 85-24a. The reasons are that flight 85-17 had a much lower LWC and
smaller droplet sizes so the freezing fraction was greater. Figure 24 pre-
sents the proflle generated from the stereo photographs.

Figure 25 shows the increase In wlng section drag coefficient due to the
Ice accretion. At an aircraft angle of attack of 2°, the drag coefficient

increased 23 percent over the baseline. Six measurements were taken with ice

on the wing. It is believed that measurements 4 to 6 are lower than they

should be due to Ice erosion and sublimation; therefore they were not included

In the figure. The change In the Ice shape was caused by the fact that after

sufficient ice had accreted on the aircraft It was flown out of the clouds,

Into the sun, to terminate icing. The sunlight hastened the sublimation of

the Ice even though the temperature was still cold. The general procedure was

to fly away from the sun, (when possible) In an attempt to shield the ice
accretion from the sun for as long as possible. Also to minimize sublimation,

measurements were begun with the low speed data points first and then followed

wlth the higher speed data points.

Flight 85-24b

Flight 85-24b was another mixed icing encounter. The aircraft was in
icing conditions for 20 mln. The average LWC was 0.46 g/m 3 (fig. 26). The

average MVD was 15.1 _m (fig. 27). Note that the laser probe Iced over

towards the end of the encounter when the LWC and icing rate were very high.

The average static air temperature was -14.3 °C (fig. 2B). The average true

airspeed was 259 km/hr (140 kts) (fig. 29). The variations In airspeed were

caused by turbulence in the icing cloud. Also, the pilot sometimes changed

altitude slightly to stay In the best icing conditions. The average altitude

was 1976 m (6483 ft) (fig. 30). The average aircraft angle of attack was 1.2 °

(fig. 31).

A photograph of the Ice accretion on the wlng Is shown In figure 32. The

corresponding profile generated from stereophotography analysis Is shown In
figure 33. The accretion is very similar to that of Flight 85-24a since the

environment was nearly the same, but thls accretion is slightly larger; with

small "horns" that were probably caused by the additional five minutes In icing
conditions.

The resulting increase In wlng section drag coefficient over the unlced
baseline Is presented In figure 34. Due to the larger ice accretion, the drag

increase Is greater for this case. At a 2° angle of attack, the drag increase

was 39 percent of the unlced baseline.

CONCLUSIONS

Three data sets have been collected which can be used to begin compari-

sons between natural icing In flight and simulated icing; either In an icing
research tunnel or using computer codes. Flight 85-24b Is the best data set

for comparison purposes because the largest Ice accretion and the largest drag
increase were observed on that flight. Flight 85-24a was very similar to
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85-24b except the ice accretion was slightly smaller and the drag rise less.
Flight 85-24a had the most uncertain MVD measurement of the three encounters.

Flight 85-17 had the most data points associated with the drag plot but

unfortunately the drag rise was rather small. Also the LWC was very low

(0.22 g/mJ), and the icing duration was very long (65 mln) making the
encounter difficult to simulate.

All three flights had highly variable LWC's during the encounter. This
variability could be compared to the constant icing conditions which are pro-

duced in an icing wind tunnel. All three flights had similar ice shapes which

are a mix between rime and glaze ice. This is primarily due to the tempera-

tures being relatively close. It would be highly desirable to document addi-

tional encounters which produce more pure rime and glaze ice accretions (i.e.,

ice formed at very cold temperatures and at temperatures very near freezing,

respectively). Also, flights are desired where the accretions are large. A
larger ice accretion takes on a more unique shape which is a function of the

physics involved. These larger shapes are then a more significant test when

comparing flight results to slmulated icing results, either in the wind tunnel
or on the computer.
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TABLEI. - SUMMARYOF ICINGCLOUDCONDITIONS

Flight data

I. Average pressure altitude, m
2. Average true airspeed, km/hr
3. Average aircraft angle of

attack, deg
4. Average right aileron

deflection, deg
5. Start time of icing encounter

Flight number

85-17 85-24a 85-24b

Date

3115185 4/2/85 4/2/85

1254

215

2.4

-l .2

09:48

2008

257

0.9

-1 .l
09:55

1976

259

1.2

-0.9
I0:49

Icing cloud data

6. Average static temperature, °C

7. Average cloud liquid water
content, g/m 3

8. Average median volume droplet

diameter, pm
9. Duration of encounter, mln

lO. Extent of encounter, km

-ll .5

0.22

12.4

65

233

-14.8

0.45

19.5

15

64

-14.3

0.46

15.1

20

86

Ice accretion properties

II. Type of ice
12. Shape of ice (see photo and

profile)

Rime Mixed Mixed



TABLEII. - TES1CONDITIONSANDWINGSECTIONDRAGDATA

Flight Run True
airspeed,

km/hr

Math
number

Reynolds
number

Aircraft
angle of
attack,
a, deg

Aileron

deflection,

deg

Wing

Cd

85-12

85-21

85-17

85-24a

85-24b

l

2

3

4

5

6

7

8

9

lO

II
12

13

1
2
3
4
5
6
7
8
9

1
2

3

4

5

No ice on wing

294 0.246

249 .208

216 .IBl

189 .158

171 .143

153 .128

294 .245

247 .206

213 .178

186 .156
167 .139

154 .129

249 .208

278 0.234

239 .202

212 .179

194 .164

170 .144
158 .133

148 .125

142 .12

142 .12

9.85xi06

8.29

7.16

6.26

5.71

5.15

9.81

8.24

7.15

6.21
5.57

5.16
8.33

9.81xlO 6

8.41

7.44

6.84

5.99

5.57

5.21

4.98

4.99

Ice on wing

-0.2

l.l

2.7

4.6

6.3

8.8

-.4

l.l

2.7

4.6

6.6
9.2

.7

-0.I

1.4

2.5

3.9

5.6

7.1

8.5

II .3

II .3

-l .0
-.9

-I .4
-I .7

-I .7

-I .9

-I .0

-I .I

-I .5

-I .6

-2 .I

-2.3

-l .2

-0.9

-,9

-.9

-I .0

-.8

-.9

-.6

--.8

-.6

155

177

204

274

160

180

218

272

27!

221

192

178
216

273

0.133
.151
.175
.234
.137

0.155

.188

.234

.234

.190

.165

0.153

.186

.235

6.2xi06

6.38
7.38

9.87

5.71

6.03xi06

7.23

9.13

9.00

7.37

6.42

5.97xi06

7.24

9.15

7.8
4.9
2.8
-.1

7.8

6.3
2.9

.3

.5

2.7

4.9

6.2

2.6

.5

-l .l
-l .l

-.9

-.7

-,9

-l .4
-.8

-.7

-l .0

-l .l

-l .4

-l .l

-,8

0.0112
.0123

.0130

.0147

.0156

.0175

.0111

.0127

.Oil9

.0132

.0138

.0166

.0104

0.0118

.0129

.0140

.0142

.0156

.0164

.0177

.0185

.0190

0.0201

.0173

.0149

.0131

.0210

0.0200

.0159

.0142

.0133

.0139

.0168

0.0219
.0187
.0157



TABLE III.- CURVE FITS OF DRAG DATA

(LEAST SQUARES METHOD)

Clean wing

Ice flight 85-17

Ice flight 85-24a

Ice flight 85-24b

Cd = O.Oll4 + 0.00065 a

Cd = 0.0127 • 0.00098

Cd = 0.0136 _ 0.00098

Cd = 0.0155 ÷ 0.00107
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Figure 3. - Wakesurvey probeon right wing.
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wake - flight 85-12, run 9.
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Figure 8. -Variation in cloud liquid water content during icing
encounter - flight 85-17.

I
7O

_:E 20E,"

F 1"i_ 10 jr"_.',.I

._ E /
i,! I_.__._ I I J I J ,,,,J ,

0 10 20 30 40 50 60
Time, rain

Figure 9. - Cloud median volume droplet diameter during icing
encounter - flight 85-17.
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Figure 14. - Ice accretion on wing - flight 85-17.
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Figure 17. -Varialion in cloud liquid water content during icing
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Figure 23. - Ice accretionon wing - flight 85-24a.
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