

United States Department of Agriculture

Forest Service

Forest Products Laboratory

Research Paper FPL-RP-636

Status and Trends: Profile of Structural Panels in the United States and Canada

Henry Spelter David McKeever Matthew Alderman

Abstract

This paper provides an overview of the North American (United States and Canada) structural panel industry, which consists of softwood plywood and oriented strandboard (OSB). The paper describes the evolution of overall capacities, effective capacity utilization, and manufacturing costs. As part of that, it describes changes in industry operating parameters such as wood use and yield, employee productivity, adhesives usage, and energy consumption. The major end-use markets for these commodities and market share trends are described as they evolved over time. Trends in foreign trade are also covered. Softwood plywood capacity peaked in 1989 at around 24 million m³ (27 billion ft²) and has since dropped to 16 million m³ (18 billion ft²). By contrast, OSB capacity has grown almost continuously and reached 23 million m3 (26 billion ft2) in 2006, on its way to about 26 million (29 billion ft²) by 2008. Productivity as measured by output capacity per employee is about four times higher in an OSB plant than in a plywood mill. Since its inception, OSB product recovery (yield) has also improved by about 15%. These are two major reasons why OSB manufacturing costs are about 25% lower than those for plywood. Given OSB's higher profitability, most of the investment in the sector has been directed into that branch. The cyclical nature of structural panel demand combined with the tug and pull between plywood and OSB capacities have led to considerable cyclical volatility in prices and profits. Over the past 20 years, OSB has largely taken over the sheathing portion of the market for structural panels. Overall, the construction of new buildings and their upkeep and improvement are the largest market for structural panels in the United States. In 2003, about 23.3 million m³ (26.3 billion ft²) of structural panels were used for sheathing and exterior siding in these markets. The use of plywood

September 2006

Spelter, Henry; McKeever, David; Alderman, Matthew. 2006. Status and Trends: Profile of Structural Panels in the United States and Canada. Research Note FPL-RP-636. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 41 p.

A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726–2398. This publication is also available online at www.fpl.fs.fed.us. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

The USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250–9410, or call (800) 795–3272 (voice) or (202) 720–6382 (TDD). USDA is an equal opportunity provider and employer.

for sheathing in walls is now rare, somewhat higher in roofs, and highest in flooring. To adapt to the competition, plywood manufacturing has evolved toward more industrial uses and higher grades of panels where its appearance and properties give it an edge that offsets its higher costs. Based on analysis of existing market shares of other materials, it is theoretically possible that structural panel consumption could be increased by about 40% over current levels. This would have represented an additional 9.5 million m³ (10.7 billion ft²) of structural panel consumption in 2003. Imports are an increasing part of supply, with Brazil, Chile, and Canada supplying growing amounts of plywood while Brazil and Europe augment major import flows of OSB from Canada.

Keywords: structural panel industry capacity, oriented strandboard, plywood, employment, concentration ratios, resin use, wood use, historical evolution, end-use demand.

Units of Measure

This report is international in scope. Accordingly, we have used the International System (SI) of units. However, we often accompany these with customary American measures to facilitate understanding by those not accustomed to SI units. All dollar amounts are U.S. currency. Measurements in billions (10⁹) also use the U.S. system. All square feet are 3/8-in. basis.

Some conversions used in this report are as follows:

	Multiply by	To get
Volume		
1,000 ft ³	28.315	m ³
m ³	35.315	ft ³
1,000 ft ² , 3/8-in. basis	0.885	m ³
m ³	1.130	1,000 ft ² (3/8-in.)
gal	3.785	L
L	0.264	gal
Area		
1,000 ft ²	93	m ²
1 m ²	10.75	ft ²
Equivalence of volume	e of natural gas	with energy
1,000 ft ³	1.08	GJ
GJ	0.926	1,000 ft ³
1,000 ft ³	102	therms
therm	0.098	ft ³
Mass		
lb	0.453	kg
kg	2.2	lb
Length		
in.	2.54	cm
cm	0.394	in.

Contents

Page
Introduction1
Capacity and Cost Data1
OSB2
Capacity2
Industry Concentration
Employment
Wood Use4
Wax and Resin Use5
Energy Use5
Equipment Suppliers6
Costs and Profitability6
Plywood
Capacity
Industry Concentration9
Employment9
Wood Use9
Resin Use10
Energy Use10
Costs and Profitability10
Structural Panels
Trade11
Margin–Capacity Use Relationships12
End Use14
Life Cycle Context14
Structural Panel Demand14
New Residential Construction15
Residential Repair and Remodeling17
Nonresidential Buildings19
Total Potential for Structural Panels21
Conclusions and Implications
Literature Cited
Appendix—U.S. and Canadian Structural Panel Plants by
Region

Status and Trends: Profile of Structural Panels in the United States and Canada

Henry Spelter, Economist David McKeever, Research Forester Matthew Alderman, Economics Assistant Forest Producs Laboratory, Madison, Wisconsin

Introduction

The term "structural panels" refers to oriented strandboard (OSB) and softwood plywood. Their main use is in lightweight construction where they provide the rigid envelope that ties the other structural elements of wood-framed buildings together. High strength, stiffness, and resistance to moisture are the main performance criteria.

Originally, this function was performed by 12-in.-wide boards, but when moisture-resistant phenolic resins became available in the 1930s, 4-ft-wide plywood panels made of sheets of veneer became more economical. In turn, plywood was challenged by "strandboard" technology that began to appear around the late 1970s. Since then, the market has been dominated by the interplay of these two products.

Generally, OSB panels are intrinsically less costly to make. Plywood has the advantage of familiarity and appearance together with some properties, thickness swelling in particular, that are considered superior by many. The tension between the lower costs of OSB versus the perceived advantage of plywood has contributed to big cyclical swings in structural panel markets. This process typically unfolds when prices are high and investment is mostly funneled into the more profitable OSB segment. The ensuing capacity surge often exceeds immediate needs, causing a glut that drives prices down. Plywood prices follow to stay in the game, but its higher manufacturing costs lead to mounting losses that eventually cause reductions in capacity. The reduced supply then restores producer pricing power and the cycle repeats. Illustrative are the yearly changes over the past 20 years in overall structural panel capacity in which gains are mostly the result of new OSB plants, whereas losses are predominantly the result of plywood mill closures (Fig. 1).

This report explores the structure and evolution of this dynamic sector of the forest products industry and describes its capacities, input requirements, ownerships, end-use markets, and comparative economics.

Capacity and Cost Data

Capacity and cost-related data in this report were obtained from diverse sources.

Capacity and employment data were obtained from company announcements and trade association releases augmented by periodic surveys conducted by the authors.

Figure 1—Yearly changes in North American structural panel capacity, 1983–2006.

Production and trade data are those reported by the trade group APA–The Engineered Wood Association (Adair 2004).

Information on equipment attributes was obtained from vendors, again augmented by personal contacts and published trade reports.

Wood, adhesives, and other input usages were obtained from published trade reports and articles as well as through inquiries with vendors and producers.

We devised a model to track mill costs, the elements of which were obtained from the above sources of information together with prices obtained from chemical and timber market reports and data from the Bureau of Labor Statistics on prevailing wages. We validated our resulting cost estimates by reference to partial information on costs available from public company financial reports. For revenue modeling, we used prices reported by trade price reporting services (Random Lengths Publications, Inc. 2005; Madison's Canadian Lumber Reporter 2004; RISI 2005).

Profit margins were derivatives of the above two data streams. Accordingly, our estimates of profit margins are analytical constructs whose intent is to illustrate underlying trends in profitability. They shadow, but are not necessarily the same as, profit margins reported in financial filings of any particular company or industry.

OSB

Capacity

The Appendix lists North American (United States and Canada only) structural panel plant locations by capacity (in 1,000 m³) and ownership from 1990 to the present.

Oriented strandboard capacities are calculated on a basis of year-round operation except for major holidays, meaning approximately 360 days per year. This omits downtime for scheduled and random curtailments due to maintenance, breakdowns, installations of new equipment, log shortages, and damage due to occasional hurricanes or fires.

To determine the capacity-reducing effects of such normal and unavoidable stoppages, we analyzed downtime notices from January 2003 to January 2006, as relayed by the information broker Random Lengths. This period is representative of a normal operating environment because interruptions due to adverse market conditions were negligible. To further narrow the scope of curtailments to those that have their basis in purely technical causes, we also omitted closures tangentially related to market conditions, such as extended halts (lasting over 2 weeks) due to strikes or log shortages. We counted a total of 90 stoppages for maintenance, the average number of days for which was 6.1. These occurred at 43 sites. Therefore, the norm per plant was 2.1 stoppages over a 25-month period, or one stoppage per plant per year of 6.1 days duration.

Similarly, we found 30 instances of stoppages due to other random causes, averaging 7.6 days at 17 sites. It is problematic to translate this into an industry average because not all companies announce these events, and so the proper numerator is unknown. As an approximation, we took the 49 plants that reported curtailment for any reason as the basis of the stoppage rate, which comes to 0.6 per site over 25 months, or 0.3 per plant per year lasting an average of 7.6 days. We can normalize this to 2.3 days (7.6×0.3) lost per plant per year for the industry as a whole.

Based on these calculations, normal scheduled and unscheduled stoppages take effective capacity down to approximately 97.6% of the nameplate number (1 - (6.1 + 2.3)/360), a value that applies to the annual rate only because downtime for maintenance tends to be seasonal around the Christmas and New Year holidays.

A further depressing influence on capacity estimates is the entry of new plants. Such mills undergo a shakedown period that can last for over a year during which technical problems are sorted out. Although we have truncated nameplate capacities for startup years to account for a partial year of operation, we had no way of knowing each mill's startup experience and thus its initial effective capacity. This phenomenon was a more notable drag on apparent capacity utilization in the industry's early years when each new plant added a sizeable increment to total output capacity.

Figure 2—North American OSB capacity utilization, 1980–2005.

Figure 2 reviews historical rates of production as a percentage of capacity, or capacity utilization. As the industry matured, production tended to approach the full nameplate level, actually achieving it in 1993. From 1992 to 2005, the capacity utilization rate averaged 94.8%, close to but less than our calculated effective capacity of 97.6%. This was due mostly to cyclicality evidenced in operating rates as low as 88.5% in the economically challenging year of 1996 and again at 91.8% in 2001. In each instance, these troughs were followed by crests. In 2005 the rate rose to 96.5%, or essentially full use of effective capacity, given that our estimates of effective capacity contain some statistical uncertainty.¹

Capacity growth initially stems from the addition of new plants, but another important source is technology change that enables the work rate of existing capital stock to increase ("capacity creep").

The occurrence of this is best understood if we picture an OSB plant as a series of linked process centers, any of which can act as the overall bottleneck. However, in general plants are designed around their presses whose capabilities are the primary indicators of plant capacities. Besides its physical dimensions, the productivity of a press is determined by the press cycle defined as the amount of time it takes to process each batch of panels. This consists of dead time during which the press is loaded or unloaded and effective time during which heat and pressure are applied. Mat moisture content, press pressure and temperature, rates of press closure and decompression, and adhesive formulations are among the variables that have to be optimized to obtain the shortest press cycle time consistent with minimum required properties and low percentage of degrade.

When "structural particleboards" first appeared, press times in excess of 5 min were often the norm. This subsequently

¹We note that typical industry budgeting figures are based on 350 days per year.

Figure 4—Annual decrease in OSB press times, 1980–2008.

has been reduced, as can be approximated² by comparing each plant's evolving nameplate capacity with its press capacity per load, which in most cases stayed constant. From more than 5 min at the beginning, average contemporary total press cycles have dropped to approximately 3 min (Fig. 3). Press dwell times are lower still for continuous presses (just over 1 min).

Such advances in adhesive technology as faster curing agents and quicker reacting resins have contributed to shorter press cycles. Heat transfer has also been accelerated through optimization of mat moisture content gradients and in some cases by spraying water onto mat surfaces. Dead times too have been shortened through improvements in press-loading mechanics.

Faster speeds in continuous presses are due in part to the absence of dead time. More recently, press times have shortened about 30% to 50% by acceleration of heat transfer into the mat through the use of "pre-heaters," in which a mixture of hot air and steam injected into the mat raises its temperature to a precise target just prior to pressing (Schletz 2005).

These trends have been a notable feature of OSB technological development, but should not necessarily be extrapolated indefinitely because of limits on how quickly resins cure, how fast heat can be transmitted to mats, and how long press cycles have to be maintained to prevent high internal steam pressure from blowing panels apart. Figure 4 illustrates a recent gradual slowing in the rate of change in press times. Yearly reductions that averaged 2.5% to 3.5% in the mid-1990s have decelerated to just over 2% in the 2000s and are likely to slow to 1% by 2008, based on the most recent press dimensions and plant capacities. Steam injection may yet be applied to batch presses, but to date has mainly been used where exceptionally thick panels are made. Preheaters are harder to apply to batch presses because the variable waiting times before pressing would likely cause resin pre-cure problems. Barring new developments in these areas, overall capacity gains in the future are more likely to be linked either to new plants or to physical enlargements of existing presses.

Industry Concentration

The high investment required for an OSB plant favors ownership by well-capitalized companies. This has resulted in a high level of ownership concentration. In 1995, we counted 16 firms (some of which were co-owned) owning one or more mills. Among these, the top 6 accounted for 75% of the total. In 2006, the number of firms fell to 15 and the share of the top 6 had risen to 78% (Table 1). The increase stemmed from mergers and from shedding of OSB plants by some downsizing companies. The 2006 concentration ratio would be about 2% higher if the capacities of co-owned mills were assigned to their parent firms.

Employment

The properties of OSB are primarily determined by process variables rather than the grade of the wood. The relative homogeneity of OSB flakes and their small size simplifies sorting and handling, lending itself to automation and the need for fewer workers. On average, an OSB plant is staffed by about 130 to 140 people. This has increased little over the years despite the greater expansion in capacity of individual plants. As a consequence, the output per employee has tripled, from less than 1 million ft² a year (0.885 thousand m³) to 3 million ft² (2.7 thousand m³) (Fig. 5). Total employment rose from just under 1,000 in 1977 to over 9,400 in 2006. The average number of employees per OSB plant was 136 in 2006 compared with 125 in 1977. The plants with the highest output per employee are found in British Columbia and Alberta, whereas the older, smaller plants in the northern United States have the lowest.

²Capacity/press load (m³) × min/h × h/day × days/year divided by effective capacity (m³)/year.

Table 1—OSB (capacity	ownership
---------------	----------	-----------

	Capacity ^a (×1,000 m ³)				
Firm	1995	2000	2006		
Louisiana Pacific	3,9151	6,440 ¹	6,5051		
Weyerhaeuser	1,5032	3,553 ²	4,1302		
Georgia Pacific	1,1963	1,8453	2,6955		
Potlatch	1,0824	1,115	-		
Norbord	8155	1,5904	3,7433		
Huber	7216	1,2505	2,1206		
Grant	570	1,2206	1,280		
International Paper	545	955	-		
McMillan Bloedel	370	-	-		
Ainsworth	350	935	2,9254		
Forex	305	-	-		
Martco	260	300	453		
Langboard	215	211	450		
Malette	200	-	-		
Longlac	160	-	-		
Tolko	-	545	1520		
Slocan	-	470	-		
Canfor	-	-	635		
Peace Valley ^b	-	_	620		
Voyageur	-	400	-		
Willamette	-	350	-		
Tembec	-	200	-		
Kruger	-	160	170		
Footner ^b	-	30	810		
Jolina Capital	-	-	270		
Total	12,367	21,569	28,276		
Top 6 share	75%	74%	78%		

^aSuperscripts 1 to 6 indicate the rating of the company in the particular year.

^bJoint venture

Wood Use

We investigated wood use by analyzing company announcements regarding wood input. We also conducted surveys in 1997 and 2005. Finally, we analyzed data from the 2004 survey of wood purchase receipts reported by the Forest Resources Association (2000–2004). From these we gathered the data displayed in Figure 6, showing cubic meters of wood input per cubic meter of board output.

The variability among mills is large. This partly reflects ambiguity in the data, which were given in a variety of units. Green tons and cords are most common in the United States while cubic meters are standard in Canada. Placing them on a common basis required assumptions about wood moisture content, specific gravity, log size, and bark content that may not match a given mill's circumstances. Though this increases variability between plants, the errors should largely cancel for the group, leaving a good indication of average levels. Taken as a whole, the data show generally higher yields for OSB made from denser pine wood, due to lower

Figure 5—Average annual capacity per employee in OSB plants, 1980–2006.

Figure 6—Cubic meters of wood input per cubic meter of OSB output, 1977–2007. Blue diamonds signify northern (aspen) mills, red dots southern (mostly pine) mills.

compaction ratios, and a downward trend consistent with known advances in several process elements.

Wood yield efficiency is given by volume in-volume out factors at the various stages of processing, which can be summarized as

$$Yield = (LT \times FI \times DD \times CO \times PT \times SA \times DG)$$

where

LT is (1 – fractional loss to	o log trim and kerf)
FI (1 – fractional loss to	o fines)
DD (1 – fractional loss to	o drying)
CO (1 – fractional loss to	panel compaction)
PT (1 – fractional loss to	o panel trim)
SA (1 – fractional loss to	o sanding)
DG (1 – fractional loss to	o degrade and rejects)

Refinements of OSB technology have boosted yields in most of these areas. Log trim and kerf losses declined when long-log ring and disk flakers displaced 3-ft-wide disk flakers that were the norm among early mills. Ring flakers also tend to produce fewer fines.

Heat conditioning higher density hardwoods and frozen logs improved yields of uniform flakes. It also reduced resin use and permitted lower density boards. Dull knives are another cause of fines, and ampere meters attached to flakers that measure the current being drawn provided a timely way to monitor and replace dull knives.

In flake drying, the predominant three-pass dryers employ very high temperatures. This volatilizes some of the material and promotes breakage. Single pass and conveyor dryers used by a growing number of plants allow lower temperatures, thus reducing the risk of fire, flake breakage, and volatilization, along with lowering volatile organic compound (VOC) emissions.

For acceptable bonding between flakes, OSB panels need to be compressed beyond the original density of the wood, which results in volumetric loss in yield. However, longer flakes are stronger and stiffer than short flakes. Initially, flake lengths were in the 6- to 9-cm (2.5- to 3.5-in.) range to facilitate flake passage through the three-pass dryer environment. Around the 1980s, however, mills adopting singlepass and conveyor dryers began making 15-cm (6-in.) flakes. Longer flakes increase panel strength-to-weight ratios, allowing lower panel densities and reduced wood use.

Less panel trim has also contributed to wood savings. Continuous presses effectively eliminate trim at two of the four panel edges. Also, as batch presses were made bigger, the ratio of the periphery to the finished panel size decreased. We can track the impact of these changes by calculating the ratio of a 9-cm-wide (3.5-in.-wide) peripheral band to finished panel size from known press dimensions (Fig. 7).

These assorted improvements support the downward trend in wood use observed in our sample, and averaging data over several discrete intervals provides a clearer view (Fig. 8). On the whole, the wood input to panel output ratio declined from nearly 2 in 1977 to 1985 to 1.65 in 2000 to 2007, about a 15% improvement in yield.

Wax and Resin Use

The third major class of inputs to OSB production is wax and resins. Wax helps the resin adhere to the wood and improves water repellency. It is normally applied in a concentration of 1% to 1.5% by oven-dried (OD) weight (Table 2).

Most OSB plants in North America use phenol formaldehyde (PF) for adhesive. The industry initially used wide wafers, but their large shape tended to block the even spread of resin. To improve coverage efficiency, the resin was applied in powdered form so that some loose powder would eventually spread to surfaces that were initially shielded as the wafers tumbled in the blender. When narrower strands came into use, the necessity for this declined, and liquid PF became predominant because liquid resin is cheaper. Some plants still use powdered resin, usually in a range of 1.9% to 2.7% by OD weight, with an average in our sample of 2.3%. The dosage of liquid PF varies according to the grade of the board, but around 3.5% by OD weight is the norm for sheathing.

Figure 7—Composite trim recovery factor for all OSB plants, 1977–2007.

Figure 8—Composite OSB industry wood input–product output ratio, 1977–2007.

Table 2—Average OSB resin and wax consumption

		Average consumption of weight percentage of oven-dried wood		
			Сс	ore
Resin type	Samples	Face	PFa	PMDI ^b
Powder PF	9	2.30	2.35	_
Liquid PF	11	3.82	3.66	2.28
Wax	20	1.14	1.14	_

^aPF, phenol formaldehyde.

^bPMDI, polymeric diisocyanate.

Isocyanate resin is used for premium-grade boards such as I-beam webs and flooring. Isocyanate cures faster and tolerates higher mat moistures, so it is also used in some cases to speed production of sheathing. However, its cost per weight is higher and it has a tendency to stick to the press platens. Therefore, it is mainly used in the core layers of boards. Its application rate is about 2% per OD weight for normal commodity type products, but much higher for specialty items such as siding. It accounts for about 5% of overall resin use.

Energy Use

The large amount of residue in the form of dried fines, trim, and wet bark creates a ready source of fuel. One way bark residues have been employed is to pyrolyze them in a

	RT	O/RCO ^a	No R	No RTO/RCO		
Year	Samples	Energy use	Samples	Samples Energy use		
		Natural gas				
1997	5	1.10	8	0.06		
2005	8	0.56	4	0.06		
		Electricity (kWh/1,000	ft ²)		
1997	5	150	8	130		
2005	8	141	4	119		
		Diesel (gal/	1,000 ft ²)			
1997	13				0.24	
		Propane (ga	1/1,000 ft ²)			
1997	13				0.30	

Table 3—Average OSB energy use, 1997 and 2005

^aRTO, regenerative thermal oxidizers; RCO, regenerative catalytic oxidizers.

low-oxygen environment, creating synthetic gas, which then provides fuel for a secondary combustion chamber to supply heat to the conditioning vats and the presses. Dry fines and trim are mostly burned directly to provide heat for the dryers. Accordingly, most OSB plants were self-sufficient for heat energy, using natural gas or heating oil mainly as backup. Electricity to power equipment and liquid fuels to run rolling stock were the main purchased energy needs.

This changed around 1990 with tightened U.S. emission standards, which made it necessary to install energy intensive regenerative thermal oxidizers (RTOs) to incinerate VOCs and other emissions. In our 1997 survey, we found the use rate of natural gas to be 1.3 GJ/m³ (1.1 thousand ft³/1,000 ft²) of output (Table 3) in the mills that employed such equipment. Where such equipment was not used, gas purchases were insignificant. Electricity use was also slightly higher among the first group than among the second at 170 compared with 160 kWh/m³ (150 versus 141 kWh/1,000 ft²).

In our 2005 survey, the gas-use rate had abated to under 0.7 GJ/m³ (560 ft³/1,000 ft²). This decrease likely reflects the use of lower energy consuming regenerative catalytic oxidizers (RCOs). In locations using other means of emissions control, natural gas use continued to be minimal.

Propane and diesel usage were about the same for mills and not a large cost at 1 and 1.3 L/m^3 (0.24 and 0.30 gal/1,000 ft²) of output.

Equipment Suppliers

Equipment to the OSB industry is provided by a large number of vendors, but the number of suppliers for specific machinery is concentrated. These companies are also the source for much of the engineering research and development that has enabled the industry to grow. Table 4 contains a partial listing of some key suppliers for four equipment types. The list is not a count of all individual pieces of machinery but just the predominant vendor at a site.

Costs and Profitability

In rough order of importance, wood, adhesives, labor, energy, and wax constitute the main direct OSB manufacturing costs. General overhead and capital depreciation are the fixed components. Since OSB is priced mostly in U.S. dollars, Canadian firms have exchange rates as an added variable to consider when comparing revenues or costs with their U.S. counterparts. Table 5 contains historical unit costs of these items.

Labor costs include direct wages and indirect peripheral expenses. They reflect underlying wage increases of about 3.7%/year and growth in indirect benefits of about 7%/year over the period. These are partly offset by yearly productivity gains of about 2.3%, consistent with recent average industry gains for existing plants.

Wood costs are based on delivered prices of aspen in Minnesota. For cost calculations, we employed a usage rate of $1.8 \text{ m}^3/\text{m}^3$ of board, or a recovery rate of about 55%.

Resin and wax costs reflect a resin use rate of 23 kg/m³, or 3.6% by OD weight, and 8 kg/m³ of wax, or 1.2% by OD weight. Prices are based on costs of phenol and formalde-hyde as reported in Chemical Market Reporter, a price reporting publication.

Energy usage is based on an operating VOC incinerator unit at about 0.9 GJ/m³ (0.75 thousand $ft^3/1,000$ ft²).

These prices and usage rates were used to generate the costs shown in Table 6 for a 390 thousand m³/yr (440 million ft²) benchmark mill located in the northcentral United States.

Revenues were based on 7/16-in. northcentral sheathing prices, adjusted for discounts and product mix and converted to a 3/8-in. basis. The difference between these two data streams yields estimates of pre-tax margins. When compared with a sample of reports from company annual financial filings, these cost and revenue estimates show a standard deviation of 2.5% from those numbers.

The volatility in margins characteristic of OSB over much of its existence is evident in Table 6 for which the revenue side is mainly responsible. This stems partly from the industry structure, which has relatively few but high-volume plants, involving major capital investments in excess of U.S. \$100 million. As such they are designed to run around the clock, seven days a week, which leaves little room to expand output once a plant is fully operational. With little slack capacity and up to a 2-year lag in getting a new plant built, the ability to meet demand surges is limited. Especially over the 2003 to 2005 period, the result was a relatively fine balance between highly inelastic supply and similarly inelastic demand. When demand got ahead of supply, staggering price increases ensued followed eventually by equally apocalyptic collapses once the disequilibrium reversed.

Installation period	No. machinery sites by supplier							
		Flakers						
	CAE	Pallmann	Hombak	Others	Unknown			
77–84	17	0	4		10			
85–94	18	2	0		2			
95–07	26	4	0		7			
Total	61	6	4	0	19			
		Fo	ormers					
	Siempelkamp	Schenk	CMC Tex	Others	Unknown			
77–84	2	5	0	4	20			
85–94	7	7	0		8			
95-07	12	7	1		17			
Total	21	19	19 1		45			
	Dryers							
	MEC	Büttner	Koch	Others	Unknown			
77–84	6	0	0	5	19			
85–94	8	2	1	5	6			
95–07	6	8	5	4	15			
Total	20	10	6	14	40			
		Р	resses					
	Siempelkamp	Dieffenbacher	WIW	Others	Unknown			
77–84	11	3	4	2	11			
85–94	7	4	3	0	8			
95-07	15	4	3	1	14			
Total	33	11	10	3	33			

Table 4—North American OSB equipment suppliers, by period of installation

Table 5—Approximate costs of various OSB manufacturing inputs for a northcentral U.S. location, 2000–2006

	Cost (US\$/unit)						
Cost item	2000	2001	2002	2003	2004	2005	2006
Wood (m ³)	30	28	28	32	36	46	44
(cord)	68	65	64	72	81	104	100
Labor (h)	21.7	22.7	23.9	25.1	26.2	27.5	28.3
Liq PF (kg)	0.79	0.83	0.82	1.15	1.17	1.39	1.26
(lb)	0.36	0.38	0.37	0.52	0.53	0.63	0.57
Wax (kg)	0.82	0.82	0.82	0.87	0.88	1.01	0.97
(lb)	0.37	0.37	0.37	0.4	0.4	0.46	0.44
Nat gas (GJ)	4.1	4.9	3.8	5.3	6.1	7.6	7.4
(thousand ft ³)	4.5	5.2	4.1	5.8	6.6	8.2	8.0
Electricity (kWh)	0.036	0.043	0.045	0.055	0.058	0.060	0.062
Diesel (L)	0.26	0.25	0.23	0.28	0.35	0.48	0.53
(gal)	1.00	0.95	0.88	1.05	1.35	1.84	2.00

		-					
	Cost (US\$/m ³)						
	2000	2001	2002	2003	2004	2005	2006
Direct co	sts						
Wood	56	54	53	60	67	85	82
Labor	20	20	20	21	21	22	22
Resin	18	19	19	26	27	32	29
Wax	6	6	6	7	7	8	7
Energy	11	13	12	15	17	19	19
Supplies	14	14	14	15	15	15	15
Total direct	125	125	124	144	154	181	175
Fixed cos	ts						
General	6	6	6	6	6	6	6
Depreciation	23	21	20	21	20	20	20
Total fixed	29	27	26	27	26	26	26
Total costs	154	153	150	171	180	207	201
Company annual reports	_	151	144	170	187	208	-
Revenues	192	149	149	276	349	299	264
Company annual reports	-	157	158	273	356	315	_
Margin	19%	-2%	-1%	38%	49%	31%	24%
Company annual reports	-	4%	8%	38%	47%	34%	-

Table 6—OSB costs and revenues for benchmark northcentral U.S. mills, 2000–2006

Costs were relatively stable until 2003 when rising energy costs, and to a lesser extent, wood prices began to affect operations. Total costs increased by approximately a third between 2002 and 2005. Figure 9 contrasts estimates for eastern Canada and the southeast United States with the northcentral benchmark, using similar input parameters wedded to local wood and labor rates and adjusted to U.S. dollars in the case of Ontario. The substantial rise in Ontario costs reflects in large part the influence of the latter variable. The relative rise of northcentral to southeastern costs reflects the more rapid escalation of wood prices in the Great Lake states. The generally rising trends shared by all regions mainly mirror the inflation in energy and petroleum-derived adhesives.

As 2006 unfolds, it is evident that the current cycle is well into its downward phase. This reflects diminished prospects for demand on the one hand, as rising interest rates are beginning to slow house building, and increased supply on the other, as capacity, motivated by the previous high margins, begins to be brought on line.

Figure 9—Oriented strandboard (OSB) regional costs, 2000–2006.

Figure 10—Softwood plywood capacity, 1980–2006.

Plywood Capacity

Since the advent of OSB, plywood capacity has been in decline (Fig. 10). Plywood has traditionally depended on larger and higher grade logs. Beginning in the 1970s, declining availability and rising cost of such logs undercut plywood's economics. Faster lathe charging and peeling have lowered the limits on acceptable bolt sizes. Newer mills built largely in the South have adapted to smaller logs, enabling capacity there to hold up better. However, even that region's capacity has begun to fade due to pressures from OSB and imports. Among the regions we studied, the Canadian branch of the industry has had the most success in maintaining its capacity base.

Perhaps more surprising than its decline has been plywood's resilience. One helpful development in that regard was the growth of engineered laminated veneer lumber (LVL) assembled from sheets of veneer. This allowed a plywood operation to extract more value from a portion of its veneers than would have been possible from panel production alone. However, this diverts a portion of the wood from going through the entire process, confounding capacity utilization calculations. Plywood operations are normally constrained

Figure 11—North American plywood and OSB capacity utilization, 1988–2005.

Figure 12—Average annual capacity per employee in plywood plants, 1988–2005.

Firm	Share of capacity (%)
Georgia Pacific	31
International Paper	9
Weyerhaeuser	8
Boise Cascade	7
Roseburg	5
Tolko	4
West Fraser	4
Canfor	3
Hood	2
Plum Creek	2
Martco	2
Scotch Plywood	2
Hunt Plywood	2
Timber Products	1
Emerald Forest Product	ts 1
26 Others	18
Top 6 share	63

Table 7—Plywood	capacity
ownership, 2005	

by their dryers, and if that capacity is partly used for wood that does not get made into plywood, then utilization appears lower than it actually is. In that context, we note that average plywood capacity utilization has been lower than that of its OSB counterparts over the period 1988 to 2005 at 91.6% compared with OSB's 93.4%. By and large, however, their cyclical movements have tended to coincide (Fig. 11).

Industry Concentration

Plywood industry concentration is not as high as OSB's, but it has been an issue in the past. In 1973, the largest producer (Georgia Pacific) split in two (Georgia Pacific and Louisiana Pacific) to effect a reduction in industry concentration. By 2005 the latter had exited the plywood business in favor of OSB, leaving the former again as the dominant entity, though the significance of that is lessened in the context of rising OSB and imported Brazilian plywood volumes. A total of 41 firms compose the North American softwood plywood universe among which the top six account for 63% (Table 7).

Employment

Veneers have traditionally been graded according to visual criteria. That and the large size of each sheet necessitate considerable handling and sorting. It follows that labor input is also high. Staffing of plywood mills varies depending on a plant's product focus. The more specialty product-oriented a plant is, the greater the number of process steps that are involved. Overall, capacity per employee is about 0.7 million ft² (0.6 thousand m³) per year (370 ft² (0.3 m³)/h), up from about 0.61 ft² (0.5 thousand m³) per year (305 ft² (0.27 m³)/h) 17 years ago (Fig. 12). Among regions, southern mills have the highest productivity per employee at about 450 ft² (0.4 m³) per h due to their greater emphasis on commodity sheathing. Industry employment declined from 44,000 in 1988 to about 24,600 now.

Wood Use

In a full-process plywood mill, wood use efficiency depends in large measure on the size of the bolt being peeled. The larger the bolt, the smaller the share of roundup waste. Similarly, the residual core makes up a smaller proportion of the bolt. Other major generators of waste residues are the clipper, where defects along part of the ribbon of peeled veneer cause a good deal of otherwise sound wood to be lost, and the trim saws where panels are squared. Unlike the growing press sizes in OSB, plywood presses remain at the 4- by 8- or 4- by 10-ft dimensions where the trim loss is relatively high. One major point of departure from OSB is the much smaller compaction factor. Whereas an OSB panel has to be compacted by 30% to 40% to assure adequate bonding, plywood panels experience very little compaction, and thus veneers can be cut thinner than would otherwise be the case. Wood-use efficiency estimates are muddled by the diversion of some veneers to LVL, as also by the inflow of green veneer from outside vendors.

Overall, among our combined sample of 33 mills, we found the wood input needed to make a cubic meter of plywood to be 1.87 m³, or a yield factor of about 54%. We saw little difference between our 1997 and 2005 samples, but both showed a high variability with a standard deviation of $\pm 7\%$.

Resin Use

Liquid PF is the resin of choice in plywood manufacturing. Since the specific surface area to be bonded (the combined surfaces of the veneers relative to the surface of the panel) is smaller than for OSB, requirements for resin are also lower. On the other hand, as glue spreads cannot be tailored for specific areas, the overall coverage has to be based on the needs of the most deficient parts. Veneers have rougher surfaces and are variable in moisture and thickness, which necessitates greater resin usage than would be needed under ideal conditions. Resin application rates are varied mostly on a seasonal basis or in response to bonding problems detected at the hot press, although development in real time measurement of veneer attributes and controlling glue spread accordingly has been under development (Faust and Rice 1987).

Glue usage is measured by the weight of the resin solution in kilograms (pounds) per 1,000 ft² of glueline. Typical gross spreads (including waste) range from 11 to 18 kg (25 to 40 lb) per 1,000 ft² of a single glueline, depending on wood species, veneer quality attributes, ambient temperatures, and method of application specific to a mill. Everything else being the same, on a normalized 3/8-in. basis, the amount needed depends on the number of gluelines in an assembly, the panel thickness, and the panel mix. The actual PF resin solid content by weight of mixtures is usually on the order of 25% to 27%, the bulk of the rest being water with smaller amounts of glue extenders, fillers, and caustic soda. For a hypothetical product mix shown in Table 8, the average resin solids consumption would come to 11 kg (24 lb) per 1,000 ft² (3/8-in.).

The method of application also affects use. In its early history, the industry used manually fed rollers to coat the veneers with glue. This method resulted in high waste for veneers of uneven thickness because resin coverage would be inadequate over the thinner sections; as a result the entire piece would have to be discarded. Some older mills today still use such systems, but the bulk of the high-volume operations use automated spray or curtain-coating systems. An alternative method used by some mills is to foam the glue mixture and lay it down in parallel lines. This reportedly results in more even coverage and less resin use.

We measured resin usage by dividing the reported solids equivalent weight of purchase receipts by annual production. This resulted in an average rate of use of 12 kg (26 lb) of PF resins per 1,000 ft² (3/8-in. basis) of panel production. Along with that, 2 kg (5 lb) each of extenders and fillers
 Table 8—PF resin use rates by panel assemblies

Item	1	2	3	Total
Plies	3	4	5	
Panel thickness (mm)	9.5	11.9	19.1	
Number of gluelines	2	3	4	
Spread/1000 ft ² glueline				
(lb)	40	40	40	
(kg)	18	18	18	
Resin solids	27%	27%	27%	
Resin in spread				
(lb)	10.8	10.8	10.8	
(kg)	5	5	5	
Total resin in panel				
(lb)	21.6	32.4	43.2	
(kg)	9.8	14.7	19.6	
Use per 1000 ft ² , 3/8 in.				
(lb)	21.6	25.9	21.6	
(kg)	9.8	11.7	9.8	
Output percentage	20	60	20	
Plant average				
(lb)	4.3 +	15.6 +	4.3 =	24.2
(kg)	2.0 +	7.0 +	2.0 =	11.0

were used. By comparison, OSB requires approximately 20 kg (44 lb) of PF resin solids when applied in liquid form.

Energy Use

Most plywood mills peel their own veneers from roundwood, and some of the residues offer a ready supply of fuel. This furnishes much of their heating needs, and as in OSB, outside energy purchases are mainly limited to electricity and fuels for rolling stock. Mills that are primarily lay-up operations of veneer bought from outside suppliers tend to have large natural gas purchases for veneer drying, as do plants that employ RTOs. Natural gas usage on the average was nearly double in a plant running an RTO than in one that was not, according to our 1997 results. The usage intensity, however, was lower than for a similar OSB operation. Overall, natural gas among all responding mills averaged 0.39 ft³ per 1,000 ft² in 2005, little changed from 0.34 in 1997 (Table 9).

Electricity usage was similar to an OSB plant's, ranging from 133-to-146k = kWh/1,000 ft² in our two surveys.

Diesel and propane usage each averaged about 1 L (0.26 gal) between our two surveys.

Costs and Profitability

Table 10 contains a historical perspective on input costs for a benchmark plywood operation with values for a Louisiana/east Texas location. The most notable difference between this and Table 5 is the wood component. Bigger log sizes and higher grade requirements mean that wood costs about twice as much as the type of wood that is sufficient for OSB production. Table 11 applies these costs to usage rates for a 200 thousand m³ (230 million ft²) per year, 260 employee, mostly sheathing-oriented plywood mill. Labor costs are based on both hourly and salaried staff and include all employee benefits. Consistent with the higher labor requirements, labor costs are about three times higher than those for OSB.

Wood costs are based on a conservative 51% yield and typical delivered sawlog prices in Louisiana and east Texas. In contrast to most OSB plants, an added element that partially defrays these costs is revenue generated from salable residues (chips and cores).

Another difference is depreciation, as most plywood mills are 30 or more years old and thus have less capital costs to write off. This can be a double-edged sword, however, because if a mill remains technologically stagnant, it tends to get shut down.

Figure 13 plots these combined costs in relation to those for a southern OSB mill. The differential has remained

Table 9—Average plywood e	energy use, 1997	and 2005
---------------------------	------------------	----------

		• • •		••		
]	RTO ^a	No	RTO	Tota	al
		Energy	-	Energy		Energy
Year	Samples	use	Samples	use	Samples	use
		Natural gas	(ft ³ /1,000 f	t ²)		
1997	4	0.62	15	0.23	19	0.34
2005		na		na	14	0.39
		Electricity	(kWh/1,000	ft ²)		
1997	4	146	15	135	19	138
2005		na		na	13	146
		Diesel (gal/	(1,000 ft ²)			
1997					19	0.16
2005					14	0.32
		Propane (ga	al/1,000 ft ²)			
1997					19	0.20
2005					14	0.25

^a Regenerative thermal oxidizers.

relatively steady in percentage terms but climbed in absolute terms and in recent years has been about \$80/m³ (\$70/1,000 ft²) in favor of OSB.

Profit margins have followed the cyclical movements of OSB, but generally have been lower. For the 2000 to 2006 benchmark period, the average benchmark southern OSB margin was 26% compared with 12% for plywood.

Structural Panels

Trade

The largest share of trade in plywood and OSB takes place between the United States and Canada. In 2005, the United States supplied 77% and 74% of total Canadian plywood and OSB imports, respectively. Similarly, Canada supplied 94% of U.S. OSB imports, although only 24% of plywood imports. For Canada, U.S. destinations represented the majority of shipments, as only a small part goes to Europe and Asia. United States panel exports, on the other hand, are more diverse as Canada accounts for only 28% and 65% of U.S. plywood and OSB foreign sales.

Historically, Canada had been the leading exporter of plywood to the United States. However, in 2003, Brazil took over the top spot. Starting in 1998, the U.S. dollar rose sharply against the Brazilian real, resulting in increased U.S. purchasing power. This created an opportunity for Brazilian plywood manufacturers to gain a foothold in the American market. Imports from Brazil increased from 511 thousand m3 (578 million ft2) in 2003 to 1.128 million m³ (1.275 billion ft²) by 2004. In 2002, however, the real plateaued and since 2004 has appreciated significantly. For a period, the rise in plywood prices masked this effect. The average 2002 price of southern plywood (15/32 in.) rose from \$247 to \$398 in 2004, a 61% increase (Fig. 14, right scale). This in turn was similar to the rise in reals, which went from 721 in 2002 to 1169 in 2004 (Fig. 14, left scale). In 2005, however, the average price fell

Table 10—Approximate costs of various plywood manufacturing inputs for a	
southern U.S. location, 2000 to 2006	

	Cost (US\$/unit)							
Cost item	2000	2001	2002	2003	2004	2005	2006	
Wood (m ³)	66	59	62	64	65	70	70	
(ccf ^a)	187	167	175	180	185	198	198	
Labor (h)	18.7	19.7	20.6	21.7	22.9	23.9	24.7	
Liquid PF (kg)	0.81	0.83	0.85	1.18	1.20	1.41	1.27	
(lb)	0.36	0.38	0.38	0.53	0.54	0.64	0.58	
Fillers (kg)	0.26	0.28	0.28	0.28	0.29	0.29	0.27	
Extenders (lb)	0.12	0.13	0.13	0.13	0.13	0.13	0.12	
Natural gas (GJ)	4.1	4.9	3.8	5.3	6.1	7.6	7.4	
(1,000 ft ³)	4.5	5.2	4.1	5.8	6.6	8.2	8.0	
Electricity (kWh)	0.040	0.039	0.040	0.055	0.055	0.057	0.058	
Diesel (liter)	0.26	0.25	0.23	0.28	0.35	0.48	0.53	
(gal)	1.00	0.95	0.88	1.05	1.35	1.84	2.00	

^aHundred cubic feet.

Figure 13—Plywood (Southwest) and OSB (Southeast) total manufacturing costs, 2000–2006.

Figure 14—Average southern plywood prices, 1998–2006.

Table 11—Plywood	costs and	revenues	for ben	chmark
Southern U.S. mill,	2000-2000	6		

	Cost (US\$/m ³)							
Cost item	2000	2001	2002	2003	2004	2005	2006	
Direct costs								
Wood	130	116	121	125	128	137	137	
Residues	-18	-17	-17	-17	-18	-18	-18	
Labor	52	54	55	58	60	62	63	
Resin	12	12	12	16	17	20	18	
Extenders	2	2	2	2	2	2	2	
Energy	13	13	13	18	19	21	22	
Supplies	20	20	21	21	21	22	22	
Total direct	210	199	208	223	229	244	246	
Fixed costs								
General	7	6	6	6	6	7	7	
Depreciation	10	9	9	8	8	8	8	
Total fixed	17	15	15	15	15	15	15	
Total costs	227	214	222	237	244	259	261	
Revenues	238	233	220	289	356	316	285	
Margin	5%	7%	-1%	18%	32%	18%	8%	

Figure 15-U.S. plywood imports, 1998-2005.

to \$351, which translates to 855 reals, resulting in a 27% drop as opposed to a 12% decline in dollars. In addition, when the United States imposed an 8% tariff on Brazilian plywood in July of 2005, the effective total price for Brazilian exporters dropped an even greater 33%.

These developments have naturally altered Brazilian plywood competitiveness. In the quarter prior to the tariff, the United States imported 588 million ft² of non-Canadian plywood. In the quarter after, U.S. imports fell to 411 million ft², a 30% decline. Overall, in 2005, U.S. plywood imports from Brazil increased 14% from 2004, the smallest increase in 5 years.

In addition to domestic market share losses, the United States also lost markets in Europe to Brazilian competition. Over a decade ago, U.S. exports to Europe were about 0.9 million m³ (1 billion ft²) a year. By 2004, this had fallen to just 5 thousand m³ (6 million ft²). With a weaker dollar favoring the United States, this doubled in 2005, but to a still trivial 10 thousand m³ (12 million ft²).

Chile has also become a force in the plywood sector as the removal of tariffs in 2002 through the United States–Chile Free Trade Agreement increased its competitiveness. Chile's U.S. exports rose from almost nothing in 1998 to over 175 thousand m³ (200 million ft²) in 2005 (Fig. 15). However, the global rise in copper demand and prices, a product of which Chile is a major supplier, has boosted the currency, lessening Chilean competitiveness in other goods.

Similarly, with the depreciation of the dollar against the Brazilian real and the 8% tariff that the United States has imposed, the U.S. demand for Brazilian plywood should moderate in the short term.

Margin–Capacity Use Relationships

For the most part, softwood plywood and OSB are interchangeable commodities that compete in the same markets mostly on the basis of price. As a result, their pricing trends follow similar patterns, albeit at different levels because of differences in cost and felt value (Fig. 16).

Prices for basic commodities in general are determined by demand–supply balances. Plywood and OSB prices have exceptionally volatile histories largely because of inelastic supply and demand in the short run (2 years or less). On the supply side, the long lag in building new plants and the absence of much reserve capacity once a plant reaches its full potential limits the ability to meet surges in demand. On the consumption side, the highly cyclical and seasonal housing market promotes variability in demand while the paucity of ready alternatives limits user options. These make markets somewhat inflexible and prices subject to wide swings.

In general, manufacturing costs determine basic pricing trends in an industry while the demand–supply balances influence how far prices are above or below costs. The most readily available measure of supply tightness is the previously discussed capacity utilization rate. Table 12 summarizes North American combined OSB and plywood capacity and production and capacity utilization, along with OSB variable costs, prices and margins for 1988 to 2005.

When we collect the data in Table 12 into groups based on four levels of capacity utilization and average the utilization rates and margins within each group, we get the data summarized in Table 13 and illustrated in Figure 17. We empirically fitted the curve to the data in Figure 17 embodied in the following equation:

> Margin = (Capacity Utilization)²³ \div (Capacity Utilization - 0.61)

The data and the derived formula show a strong tendency to rise exponentially as the capacity utilization rate approaches 1. This translates to different effects on margins and prices over different levels of capacity use. That is, at higher levels of slack capacity, a given change in supply or demand has less effect on price than when the same occurs when capacity is tight.

This relationship can be used in either static or dynamic planning exercises to gauge the likely market effects of changes in supply or demand. For a static example, at capacity utilization of 0.95, a firm contemplating building a new mill that would decrease the aggregate utilization rate to 0.93 could determine the expected effect on margins. At 0.95, the expected margin given by the formula is 90% (90% over average industry variable costs). At 0.93, the expected margin drops to 59%. If industry average variable costs at the time are \$160, then the price under the first scenario would \$304 (160×1.9), while under the second it would be $$254 (160 \times 1.59)$. Part of the firm's decision rests upon whether the gain in volume and sales is enough to offset the loss in margin the firm's other plants would have to bear. A dynamic elaboration of that would take into account expected changes in manufacturing costs, demand, market

Figure 16—Southern plywood and northcentral OSB prices, 1988–2005.

Figure 17—Oriented strandboard (OSB) margin– structural panel capacity utilization relationship. Blue line signifies fitted relationship; red diamonds signify observed values.

Table 12—Structural	panel ca	apacity ai	nd prodı	uction	and
U.S. OSB costs and	prices, 1	988-2005	5		

Year	Capacity (million m ³)	Production (m ³)	Utilization rate	Prices (\$/m ³)	Variable costs (\$/m ³)	Margin (%)
1988	30.5	28.1	0.921	123	117	5
1989	31.2	27.9	0.893	166	123	35
1990	31.3	27.4	0.875	126	117	8
1991	30.7	24.9	0.810	142	113	26
1992	29.7	27.2	0.917	209	115	83
1993	29.6	27.9	0.945	226	121	86
1994	30.2	29.0	0.959	256	124	106
1995	31.3	29.3	0.935	236	135	76
1996	35.1	31.8	0.906	178	130	37
1997	36.7	32.7	0.892	138	139	0
1998	36.6	34.3	0.937	197	140	40
1999	37.4	35.6	0.951	252	130	94
2000	37.7	35.7	0.946	200	130	53
2001	37.8	34.5	0.912	154	128	20
2002	38.5	35.7	0.928	155	130	20
2003	38.8	36.2	0.932	285	147	94
2004	39.8	37.8	0.948	357	146	145
2005	40.1	38.2	0.951	312	159	96

growth, and other firms' capacities while the new mill is being built.

End Use Life Cycle Context

The evolution of products in markets is usually described in terms of a life cycle framework, which traces a pathway of growth, maturation, and possible decline. It begins with a product's emergence and early struggle to get accepted, which involves developing and testing a product, gaining code and regulatory approvals, building the first installations, cultivating a market, and so forth. This is followed by a growth spurt once its advantages are recognized and the product gains critical market size and acceptance. At the point where most market participants have adopted the innovation, normally around a 75% market share, the growth rate slows. Depending on the absence or advent of a better alternative, at that point it can stabilize or reverse.

Plywood and OSB have been engaged in these markets over the past 30 years. Plywood reached its zenith in the early 1970s when larger old-growth timber in the U.S. West was either exhausted or its availability restricted. This provided an opportunity for a composite-based alternative, first manifested in waferboard, which then morphed into OSB. To view the evolution of these products in this context, we created general approximations to the changing size of their market, represented by a combination of housing starts and gross domestic product, converted to panel equivalents. The production volumes of these products were then compared in ratio form to these benchmarks, resulting in the curves depicted in Figure 18.

Plywood had a long history prior to the period depicted in the charts, but its use as a structural building material began in earnest only around the 1930s. Accordingly, its introductory phase lasted about two decades. Similarly, structural particleboards bonded with phenolic resins date back to the 1950s but it was not until about 30 years later that the technology was refined to the point that it could be said to have broken out of its nascent phase.

Plywood's rapid market acceptance took place in the 1950s and 1960s and reached maturity by the late 1960s. It held there for about two decades, at which point it began to give way to OSB. The latter's own rapid growth phase can be dated from the early 1980s to the present. It is now nearing mature product status, but appears to have a market share residual growth potential of around 25% to 30% before it maxes out and its fluctuations become more directly tied to changes in its markets. This is somewhat less than the plywood residual share because of industrial uses where appearance is an important criterion and OSB is at a disadvantage.

With that as background, we examine current knowledge about the status of these products in their end-use markets.

Figure 18—Stages of plywood and OSB life cycle evolution, 1945–2005.

Table 13—Structural panel capacity utilization and U.S. OSB margins (price-variable cost), by capacity utilization class, 1988–2005

Capacity utilization (%)	Number	Average utilization (%)	Average margin (%)
<89	2	84.2	17
89–91.9	5	90.4	33
92–94.9	8	93.7	67
>95	3	95.4	99

This discussion focuses principally on current and potential use of structural panels for sheathing (including underlayment) and exterior siding applications. Not included are structural panel uses in industrial, packaging and shipping, and miscellaneous uses and the use of engineered lumber products.

Structural Panel Demand

The construction of new buildings and their upkeep and improvement form the largest market for structural panels in the United States. Three recently completed studies enumerated the types and amounts of wood products used in 2003 to build new residential structures, to repair and remodel residential structures, and to build, alter, and renovate low-rise nonresidential buildings (Wood Products Council 2005a; Wood Products Council 2005b; McKeever and others 2006).

Overall, an estimated 33.8 million m³ (38 billion ft², 3/8 in.) of structural panels were consumed in the United States in 2003 for all uses (Table 14). Of this, nearly one-half (49%) was for new residential construction (single family houses, and multifamily apartments). Total residential construction, which includes new construction and repair and remodeling but excludes manufactured housing, accounted for 63% of all structural panel consumption, low-rise nonresidential buildings 6%, and all other uses 31%. OSB was the structural panel in greatest demand. In 2003, nearly 20 million m³ (22 billion ft²) were consumed for all uses, compared to 13.8 million m³ (16 billion ft²) of softwood plywood.

New Residential Construction

New residential construction is the biggest market for wood building products in general, and for structural panels in particular. In 2003, an estimated 16.4 million m³ of structural panels were used to build new single-family and multifamily houses, of which about three-fourths was OSB (Table 14). New and planned increases in structural panel capacity, specifically OSB capacity, have caused some concern regarding possible markets for this added production. New residential construction, although already a large market for structural panels, can potentially absorb large additional volumes. To estimate how much more could be absorbed, we examined recent trends in market shares for major sheathing and siding applications in new single-family and new low-rise multifamily houses in 1995, 1998, and 2003 (Table 15).

Structural panels are the principal sheathing product in new residential floors, exterior walls, and roofs. Exterior siding, once an important use for structural panels, has eroded in recent years. Fascia and soffits and webs for wood I-joists also provide additional opportunities, but are relatively small and were not quantified here.

For flooring, structural panels had 49% of the single-family and 41% of the multifamily sheathing market in 2003 (Table 15). Shares in both were down from 1995 when 55% and 54% of all floors had structural panel sheathing. The declines were due to increases in concrete slab floor systems and nonstructural panel floor underlayment. The concrete slab is both a foundation and first-story floor system. Typically little if any wood is used in conjunction with concrete slabs. In recent years, nonstructural panels have also gained market share as underlayment over concrete slab floors to provide a more uniform surface for finished flooring. The percentage of concrete floors varies, but is typically around one-third of total floor area for single-family houses. Multifamily use of concrete slabs is usually higher.

Oriented strandboard has steadily eroded softwood plywood's share of the floor-sheathing market. Since 1976, OSB has increased from a negligible share to 61% in 2003 of the plywood–OSB mix. The share in multifamily houses has stabilized at around 55%. In the absence of any other structural sheathing products, any additional increases in structural panel market share must come at the expense of concrete slab floors.

In floor systems, we estimated the market potential for structural panels to be nearly 3 million m³ (3.4 billion ft²) for single-family houses and 0.4 million m³ (0.5 billion ft²) for multifamily buildings (Table 15). Market potential is defined here as the sum of the amounts of lumber and nonstructural panels currently being used as sheathing, converted to the equivalent amounts of structural panels, plus the amount of structural panels that would be required to displace concrete. Although unlikely, displacement of concrete slabs by a

Table 14—Structural panel consumption in the United States, 2003

	Construc	Market		
End use	Softwood plywood	OSB	Total	share (%)
Residential construction ^a				
New	4.5	11.9	16.4	49%
Repair & remodel	3.7	1.2	4.9	14%
Total residential	8.2	13.1	21.3	63%
Nonresidential construction ^b				
New & additions	1.3	0.3	1.6	5%
Alterations	0.4	0.1	0.5	1%
Total nonresidential	1.6	0.4	2.0	6%
Total buildings	9.8	13.4	23.3	69%
Total all other ^c	4.0	6.5	10.5	31%
Total	13.8	19.9	33.8	100%

^aExcludes manufactured housing.

^bLow-rise structures of four or fewer stories only.

^cIncludes industrial, packaging and shipping, and miscellaneous uses. Source: Adair 2004.

framed and sheathed wood floor system, or a "hybrid" wood sheathed–wood slab floor system, would result in 2.5 million m³ (2.8 billion ft²) of the additional structural panel demand.

In wall sheathing, structural panels had 67% of the singlefamily and 60% of the multifamily markets in 2003 (Table 15). This was significantly higher than previous years. In 1995, only about one-half of walls were sheathed by structural panels. Foamed plastic, once a major competitor, has lost share since 1995. It now has only a 12% share in single-family homes and 6% in multifamily units. In fact, walls with no sheathing at all have a greater share than foamed plastic in multifamily dwellings.

Trends in OSB use compared with softwood plywood have paralleled those in floor sheathing, but at a higher level. OSB's share of the single-family structural panel sheathing market increased from 63% in 1995 to 85% in 2003. Conversely, OSB use in multifamily houses fell from 77% to 69% during the same time period.

Overall market potential for structural panels in single-family and multifamily wall sheathing was estimated to be nearly 2.2 million m³ (2.5 billion ft²) in 2003 (Table 15). The single-family wall sheathing market accounted for nearly 94% of this potential.

In roof sheathing, structural panels are by far, and have been for many years, the product of choice. In 2003, structural panels accounted for 98% of the single-family and 99% of the multifamily roof sheathing market (Table 15). Small residual amounts of lumber sheathing are used, primarily under tile or metal roofs, as are slight amounts of other sheathing products.

··				Single Fa	milv	•				Multifa	milv	
				8	2003						2003	
Sheathing application	Inc	cidenc use (%	e of	Area	Amount used	Structural panel potential	- Inci u	idence se (%	e of	Area	Amount used	Structural panel potential
and building product	1995	1998	2003	(million m ²)	(1,000 m ³)	$(1,000 \text{ m}^3)$	1995	1998	2003	(million m ²)	(1,000 m ³)	$(1,000 \text{ m}^3)$
Floors												
Structural panels												
Softwood plywood	31	28	19	87.3	1,570.2	-	24	26	19	11.6	198.2	-
OSB	24	31	30	134.7	2,455.8	-	30	29	22	13.6	244.4	-
Total	55	59	49	222.0	4,025.9	—	54	55	41	25.1	442.6	-
Lumber	(a) ^a	2	(a)	2.2	41.7	41.6	(a)	(a)	(a)	(a)	(a)	(a)
Nonstructural panels ^b	9	11	13	58.6	425.4	730.0	7	10	16	9.8	67.4	142.5
Concrete slab ^c	35	28	37	117.8	-	2,226.6	39	35	43	15.3	_	280.1
Total	100	100	100	400.6	4,493.1	2,998.2	100	100	100	50.3	510.0	422.6
Walls												
Structural panels												
Softwood plywood	19	12	10	46.5	596.4	-	10	17	18	4.6	57.0	-
OSB	33	47	57	274.7	3,433.5	—	33	44	42	10.3	131.5	-
Total	52	60	67	321.1	4,029.9	-	43	61	60	14.9	188.4	_
Foamed plastic	29	21	12	56.0	704.5	703.0	34	15	6	1.6	20.4	20.3
All other												
Lumber	(a)	2	1	4.6	na ^b	57.2	(a)	3	6	1.4	na	17.7
Fiberboard	6	8	4	20.0	na	250.4	5	5	10	2.5	na	31.8
Foil-faced kraft	3	4	5	24.7	na	310.4	1	4	3	0.6	na	8.0
Cement, gypsum	2	1	2	9.7	na	121.1	8	6	6	1.5	na	18.8
Total	11	15	12	58.9	745.6	739.2	14	18	24	6.0	76.7	76.3
Noned	8	4	10	46.8	-	587.2	9	5	9	23		29.2
Total	100	100	100	482.8	5 479 9	2 029 3	100	100	100	24.9	285.6	125.9
Roofs	100	100	100	102.0	5,177.5	2,029.5	100	100	100	21.9	205.0	123.9
Structural nanels	62	73	76				80	72	70			
Softwood plywood	37	26	24	126.4	1 711 4	_	19	28	30	10.8	153.9	_
OSB	61	72	74	381.8	5,055,0	_	75	70	69	24.8	361.3	_
Total	98	99	98	508.1	6 766 4	_	94	98	99	35.6	515.2	_
All other	70	,,	70	500.1	0,700.1			70	,,,	55.0	515.2	
Lumber	1	1	1	49	na	65.1	1	(a)	1	0.2	na	26
Other	(a)	(a)	1	5.5	na	73.1	5	(u) 2	(a)	0.1	na	0.8
Total	(1	(u)	2	10.4	138.4	138.1	6	2	(1)	0.1	3 3	3.4
None	(a)	(a)	(a)	19	-	25.9	(a)	(a)	(a)	(a)	_	0.1
Total	100	100	100	518 5	6 904 8	164.0	100	100	100	35.9	518 5	3.5
Siding	100	100	100	510.5	0,901.0	101.0	100	100	100	55.7	510.5	5.5
Structural nanels												
Softwood plywood	4	1	1	3 5	68.9	_	2	2	(a)	0.1	17	_
OSB	5	2	3	10.6	182.5	_	2	3	(a)	0.1	1.7	_
Total	9	2	3	14.1	251.4	_	2 1	5	(a) 1	0.1	2.7	
Lumber	7	6	5	21.1	552.2	375.2		7	2	0.1	2.7	62
Hardboard	6	8	3	13.7	192.2	244 7	5	8	6	1.2	17.3	22.0
All other	0	0	5	15.7	172.4	244.7	5	0	0	1.2	17.5	22.0
Vinul motel	20	22	27	112.5	20	2 021 4	41	25	12	0.2	20	162.8
Masopry stucco	29 10	52 17	∠/ 61	113.J 254.2	na	2,021.4	41 10	23 12	43	9.5	lia	167.2
Other	40	4/	01	254.2	na	4,323.7	40	43 1	43 7	7.2 1.2	lia	104.5
Total	1 70	4 01	00	3.3 271 0	na	01.4	(a)	4 01	0	1.2	па	21./
Total	/ð 100	84 100	00 100	3/1.2 420-1	-	0,008.3	89 100	82 100	92	19.7	200	249.8 279.0
	100	100	100	420.1	990.0	1,228.3	100	100	100	21.3	28.8	5/8.0
Total, all applications	_	-	-	-	_	12,419.9						929.9

Table 15—Wood products	use and market potential for	or structural panels in new	residential construction, 2003

^aLess than 0.5%, 50,000 m², or 50 m³.

^bParticle board and MDF

^cIncludes lightweight concrete.

^dIncludes structural insulated panels (SIPs).

Sources: Wood Products 1999a, 2005a; Wood Products Promotion Council 1996.

As in other sheathing applications, the use of OSB has grown at the expense of softwood plywood. In single-family houses, OSB now has a 75% share of the structural panel roof sheathing market. OSB market share has fallen recently in multifamily houses from 80% in 1995 to 70% in 2003.

Little market potential exists for structural panels in roof sheathing. Displacing lumber and other assorted sheathing materials would result in a net gain of less than 0.2 million m^3 (0.2 billion ft²).

Wood products play a very small role in siding. Only about one-tenth of the new residential market was wood in 2003 (Table 15). Structural panels captured just 3% of the singlefamily and 1% of the multifamily siding markets. The rise in popularity of vinyl and metal siding experienced during the 1970s and 1980s has given way to a renewed interest in masonry and stucco. In 2003, nearly 60% of the exterior residential siding market was masonry–stucco siding products.

Softwood plywood and OSB siding use was nearly equal in single-family construction (1% and 3%, respectively), and equal in multifamily construction (less than 1% each) in 2003.

Since structural panels had such a small market share in 2003, the potential is large. Capturing the lumber and hardboard markets would result in a gain of 0.6 million m³ (0.7 billion ft²). Capturing the non-wood siding market is improbable, but could result in a gain of nearly 7 million m³ (7.8 billion ft²) (Table 15).

Overall, we estimate maximum market potential for structural panel sheathing and siding in new residential construction to be 13.3 million m³ (15 billion ft²) in 2003. Achieving this potential will be difficult at best. Exterior siding use is 57% of the total, or 7.6 million m³ (8.6 billion ft²) (Fig. 19). Because vinyl and brick have such low maintenance, convincing consumers to use structural panel siding would be a marketing challenge.

Floors have the second highest potential at 3.4 million m³ $(3.8 \text{ billion ft}^2)$ or about one-fourth of the potential. Nearly all of this is dependent on replacing concrete slab-on-grade floor systems. About one-half of new houses are built with wood floor systems on either a basement or crawlspace foundation. The remaining one-half has either a slab-ongrade or other type of floor system. In terms of floor area, more than one-third of all floors are concrete slab. Slab-ongrade floors are very popular in the southern United States because they are perceived to be a solution to environmental concerns over excessive moisture and insect and disease problems. Home owners must be convinced that modern wood floor systems perform as well as concrete and are a viable alternative to the slab-on-grade floor system. Anecdotal evidence from the Hurricane Katrina disaster indicates that houses with wood floor systems on crawlspace foundations weathered the storm better than those with slabon-grade floor systems. This has led some to believe

Figure 19—Structural panel market potential, new residential construction, 2003.

building codes in flood-prone areas will be modified to mandate wood-intensive crawlspace construction in lieu of slab on grade.

Exterior wall sheathing accounts for 2.2 million m³ (2.5 billion ft²), 16% of total potential. About 34% of this potential is dependent on replacing foamed plastic wall sheathing with structural panels, 38% on replacing all other types of wall sheathing, and 29% on sheathing currently unsheathed walls.

Roof market potential is negligible.

Additional potential exists in the fascia and soffit, and wood I-joist markets. Currently, about 7% of OSB production is classified as "other," which primarily consists of webbing for I-joists (Adair 2004).

In terms of construction type, new single-family construction accounts for 93% of total new residential potential. Achievement of all or part of this potential will be difficult and will require concerted promotional efforts, research into improved products, competitive pricing, and changes in building codes or building practices to more fully utilize the added structural panel potential.

Residential Repair and Remodeling

The residential repair and remodeling market is second only to residential construction in the amounts of structural panels consumed annually. In 2003, 4.9 million m³ (5.5 billion ft²) of structural panels were consumed. However, the percentage breakdown between softwood plywood and OSB is about 75/25, just the opposite of OSB (Wood Products Council 2005b). This reversal is due most likely to home owners' preference for more traditional wood products. As with residential construction, the repair and remodeling market too holds significant potential to increase the use of structural panels. To estimate how much more could

				2003	
Sheathing application and building product		e of use	Area covered $(1.000.000 \text{ m}^2)$	Amount used (1.000 m ³)	Structural panel potential (1.000 m ³)
	1997	2003	(-,,-,,,-,-,-,-,-,-,-,-,-,-,-,-,-	(-,)	(1,000)
Floors					
Structural panels	75	74	50	800.0	
	75	74 20	39	899.9	_
	22	20	16	2/3.2	_
Iotal	97	94	/5	1,1/3.1	-
Lumber	3	0	5	/8.2	//.9
Nonstructural panels ^a	na ^o	na		_	-
	na	na	-	-	-
	100	100	80	1,251.3	//.9
Structural panels	54	<i></i>	50	(01.2	
	54 26	20 20	53	681.2	-
USB	26	30	29	3/7.2	_
	80	86	82	1,058.3	-
Foamed plastic	/	2	5	60.7	60.6
All other					
Lumber Fileschaard	na	na	-	_	-
Fiberboard	na	na	-	_	-
Foll-faced kraft	na	na	-	_	-
Cement, gypsum board	na	na	-	-	-
lotal	13	9	9	115.9	115.6
None	na	na	-	-	-
	100	100	95	1,234.9	1/6.2
Structural panels	(\mathbf{c})	70	102	1 2 (0 2	
Softwood plywood	63	70	103	1,360.2	_
USB	24	23	34	4/0.0	-
	87	93	138	1,830.2	-
All other					
Lumber	na	na	-	-	-
Other	13	/	11	145.3	144.8
Total	13	/	110	145.3	144.8
	100	100	148	1,975.5	144.8
Exterior slding					
Structural panels	7	5	20	5(2.1	
	2)	28	563.1	-
	2	(a)	2	36.8	-
Iotal	9	6	31	599.8	-
	7	11	59	/97.0	1,156.6
Hardboard	5	2	9	122.4	1/1.6
All other	(0	(0)	215		(100 4
Vinyl, metal	68	60	315	_	6,190.4
Masonry, stucco	6	17	87	-	1,713.1
Other	5	5	26	-	515.3
	100	81	429	-	8,418.7
10tai	100	100	527	1,519.3	9,746.9
Total, all applications	-		-	-	10,145.8

Table 16—Wood products use, and market potential for structural panels in residential repair and remodeling, 2003

^aIncludes particleboard, hardboard, hardwood plywood, and cement/gypsum board.

^bna, not available.

°Less than 0.5%, 50,000 m², or 50 m³.

^dIncludes lightweight concrete.

Sources: Wood Products Council 1999b, 2005b.

be absorbed, we examined recent trends in market shares in 1997 and 2003 for major sheathing and siding applications.

In 2003, structural panels captured 94% of floor sheathing (Table 16). The share was down slightly from 1997. These percentages are higher than for new residential construction because data on the use of concrete slabs for additions were not available. Lumber sheathing accounted for the remaining 6% of sheathing material.

Softwood plywood use for floor sheathing was nearly three times that of OSB, most likely due again to home owner's preference for more traditional wood products.

We estimated market potential for structural panels in floor systems to be only 78 thousand m³ (88 million ft²) in 2003. The potential would be higher if data for concrete slab floors were available (Table 16).

In the exterior wall sheathing market, structural panels captured an 86% share in 2003, up from 80% in 1997 (Table 16). Foamed plastic was the second most preferred sheathing product at 5%. Lumber and all other products combined accounted for the remaining 9%. The use of foamed plastic has declined since 1997 and appears to be following the same trend exhibited in new residential construction.

Softwood plywood captured about two times the structural panel market share as did OSB in 2003, similar to floor sheathing shares.

Overall market potential for structural panels in wall sheathing was estimated to be nearly 176 thousand m³ (200 million ft²) in 2003 (Table 16).

Structural panels captured 93% of the roof sheathing market in 2003, up 6% from 1997 (Table 16). Only small amounts of lumber and other miscellaneous sheathing products were used. Sheathing products for repairs and maintenance are often selected to match those already in the existing structure. Older houses typically use more lumber and plywood than OSB.

Softwood plywood was used three times more often than OSB for roof sheathing in 2003 (Table 16).

Displacing other sheathing materials would result in an increase of 145 thousand m³ (165 million ft²) for structural panels (Table 16).

Wood products play a small but important role in the exterior siding market, with structural panels accounting for 6% of exterior siding, lumber 11%, and hardboard 2%. Much of this was most likely used to match existing siding on the house (Table 16). Vinyl and metal siding captured 60% in 2003. Much of this was for re-siding existing houses. Masonry, stucco, and miscellaneous siding materials accounted for the remaining 21%. Nearly 95% of all structural panel siding used was softwood plywood, and OSB played a very minor role.

Since structural panels had a small market share in 2003, their potential market share is large. Capturing the lumber and hardboard markets would result in a gain of 1.3 million m³ (1.5 billion ft²) (Table 16). Capturing the nonwood siding market, principally vinyl and metal, is unlikely, but would result in a gain of an additional 8.4 million m³ (9.5 billion ft²). Overall, a potential market of 9.7 million m³ (11 billion ft²) exists for structural panel exterior siding in residential repair and remodeling.

In summary, we estimated maximum market potential for structural panel sheathing and siding use in residential repair and remodeling to be 10.1 million m³ (11.4 billion ft²) in 2003 (Table 17). Exterior siding accounted for nearly all of the potential at 9.7 million m³. As with new residential construction, achieving the market potential for structural panels is largely dependent on convincing consumers to switch from nonwood siding products to structural panels.

Nonresidential Buildings

Nonresidential construction is the third major component of the U.S. construction market for wood products. In 2003, the construction value of all nonresidential buildings was \$283 billion. Low-rise buildings of four or fewer stories had construction valued at \$269 billion (McKeever and others 2006).

Nonresidential buildings are a diverse lot. Our analysis is limited to low-rise nonresidential buildings because highrise buildings with five or more stories are severely restricted by the building code from using wood as a framing or structural material.

Nonresidential buildings use a mixture of wood and nonwood building materials and building methods. The choices of materials and methods used are dependent on many factors including building type, location, and size, cost differentials between competing materials, state and local building codes, architectural styles, and others. Also, wood may be used in specific applications even though the buildings may not be primarily built with wood, or specific applications may use wood more frequently than other applications.

The construction of new nonresidential buildings holds great potential for expanding the use of wood. In 2003, concrete and metal construction continued to dominate the nonresidential building construction market, accounting for nearly 80% of total construction. In recent years, wood-framed construction (defined as buildings with predominately wood-framed exterior walls, regardless of materials used in other applications) has made modest gains against concreteand steel-framed construction. Additional gains are possible.

The greatest potential for increasing wood market share in new nonresidential construction is to increase the share of wood-framed buildings at the expense of concrete- and

Table 17—Wood products use and market potential for
structural panels in low-rise nonresidential construction
2003

Sheathing application and building product	Amount used (1,000 m ³)	Structural panel potential (1,000 m ³)
Floors		
Structural panels		
Softwood plywood	128.0	314.3
OSB	38.3	378.4
Total	166.3	692.8
Lumber	na	_
Nonstructural panels ^a	0.9	4.3
Concrete slab	_	_
Total	167.2	697.1
Walls ^b		
Structural panels		
Softwood plywood	362.3	885.5
OSB	91.3	1,110.2
Total	453.6	1,995.7
Lumber	na	_
All other	4.5	16.6
None	na	_
Total	458.1	2,012.3
Roofs		
Structural panels		
Softwood plywood	735.6	922.4
OSB	175.2	1,273.1
Total	910.8	2,195.4
Lumber	na	_
All other	23.0	18.9
Total	933.8	2,214.4
Exterior siding		
Structural panels		
Softwood plywood	36.3	93.5
OSB	9.6	128.0
Total	45.9	221.5
Lumber	na	_
Hardboard	1.0	0.2
All other	na	-
Total	46.9	221.7
Total, all applications		
Structural panels		
Softwood plywood	1,262.2	2,215.7
OSB	314.4	2,889.7
Total	1,576.6	5,105.3
All other sheathing	29.3	40.1
Total	1.606.0	5.145.4

na, not available.

steel-framed buildings. Realistically, however, very little wood will ever penetrate the foundation and ground-level nonresidential floor market. Also, if wood were to replace concrete and metal, the usage rate (volume of wood used per square feet of floor area) would not be expected to exceed current wood usage rates for applications that are principally built from wood. So market potential is defined for nonresidential construction as the incremental amounts of wood that could be used if all concrete- and steel-framed buildings were built like wood-framed buildings. For example, in 2003, roof systems in small,³ wood-framed office buildings in the U.S. Midwest averaged about 2.50 m³ of structural panels per 100 m² (2.63 ft²/ft²) of finished floor area. Roof systems in small, concrete-framed office buildings averaged 0.75 m³ of structural panels per 100 m² (0.79 ft²/ft²) of finished floor area. Thus, wood-framed office buildings used 235% more structural panels per 100 m² of floor area for roofs than concrete-framed buildings. The structural panel potential for roofs would then be the total finished floor area in concrete buildings multiplied by 1.75 m³. A realistic limit to the maximum potential would be the amounts of these products that would be used if concrete and metal upper story floors, exterior and interior walls, roofs, and siding were built principally with wood at current wood usage rates.

In 2003 an estimated 1.6 million m³ of sheathing materials and exterior siding were used in the construction of lowrise nonresidential buildings (Table 17). Of this 98% was structural panels. Roofs accounted for more than one-half at 0.9 million m³ (1 billion ft²). This is because many concreteframed buildings have all wood or a combination of wood and steel roof systems. Exterior siding used just 2% of all structural panels.

An additional 5.1 million m³ (5.8 billion ft²) of structural panels could have been used in 2003 if all concrete- and steel-framed buildings had been built as wood-framed buildings (Table 17). Overall, less OSB is used in concrete- and steel-framed buildings than softwood plywood. But because OSB has a higher usage rate than softwood plywood in wood-framed buildings, market potential for OSB is greater by nearly 0.7 million m³ (0.8 billion ft²). Roofs had the greatest incremental market potential, accounting for 43% of total potential. Walls were a close second at 39%.

These potentials have to be placed in context of the limitations imposed by building and fire codes and embedded user preferences. Building codes in the United States place limits on the use of wood framing especially in nonresidential buildings. Building area, height, and intended usage ("occupancy") determine whether or not all, or part, of the building can be wood-framed and sheathed.

 $^{^{3}}$ Buildings with less than 4,645 m² (50,000 ft²) of finished floor area.

The International Building Code is now the dominant model code in the United States. It defines area and height limits for each building by occupancy and by various types of structural assemblies. However, area and height limits can be substantially increased through the addition of automatic fire protection sprinklers, the use of firewalls to subdivide large buildings, and through the provision for substantial frontage to the building to enable easy firefighting access. Using the most aggressive assumptions regarding sprinklers, use of fire-rated assemblies and building frontages to capture the maximum code-allowable gain for wood, we determined that almost 64% of total constructed nonresidential value could have been framed in wood in 2003. This results in a potential incremental increase in structural panel consumption of nearly 3 million m³ (3.3 billion ft²). This is about 40% below the estimated structural panel market potential if all concrete- and steel-framed buildings were built similarly to wood-framed buildings, but is a more realistic objective.

Total Potential for Structural Panels

The construction of new single-family houses and multifamily apartment buildings, their repair and remodeling, and new low-rise nonresidential buildings hold potential for increasing the use of structural panels. In 2003 about 23.3 million m³ (26.3 billion ft²) of structural panels were used for sheathing and exterior siding in these enduse markets. We estimated an additional potential 28.6 million m³ (32.3 billion ft²) if all sheathing and siding applications that didn't use structural panels in all residential construction were converted to structural panels, and if concrete- and steel-framed nonresidential buildings were built using the same techniques as wood-framed buildings (Table 18).

Much of this potential is dependent on consumer preference, particularly in the single-family construction and residential repair and remodeling exterior siding markets. Low- and no-maintenance products dominate exterior siding and will probably continue to do so. It is difficult to determine what part of the maximum market potential for structural panels is realistically achievable, given the environment set by various building and fire codes and building types where wood use would be incompatible with the structure's purpose. However, if through concerted promotion and research efforts, one-half of the residential floor, wall, and roof potential, one-fourth of the residential siding potential, and four-tenths of total nonresidential potential (based on building code analyses) had been achieved, structural panel consumption would have been an additional 9.5 million m³ (10.7 billion ft²) in 2003.

Conclusions and Implications

This report is written at a time when the business cycle for housing and its dependent industries, such as plywood and OSB, is in the midst of a down phase. Four years of strong economic growth, stimulated by extraordinarily easy credit,

Figure 20—Historical and current interest rate increases and one-family housing starts declines.

Table 18—Total market potential for structural panels, 2003

		Marke	t potential (mill	ion m ³)	
	Res	idential co	onstruction		
Application	New single family	New multi- family	Repair & remodeling	New non- residential	Total
Floors	3.0	0.4	0.1	0.7	4.2
Walls	2.0	0.1	0.2	2.0	4.3
Roofs	0.2	0.0	0.1	2.2	2.5
Siding	7.2	0.4	9.7	0.2	17.6
Total	12.4	0.9	10.1	5.1	28.6

have seen the prices of several classes of assets, such as real estate, inflate significantly. The growth in economic activity has also begun to push on the limits of capacity for some raw material sectors such as energy and metals. The resulting rise in prices in these sectors is beginning to spill over into the general economy in reaction to which central banks worldwide, and in the United States specifically, have been raising interest rates. This has begun to brake a credit-driven sector like housing, similar to the average response in five previous U.S. credit-tightening cycles (Fig. 20).

In this cycle, interest rates as represented by 10-year U.S. Treasury notes had effectively touched bottom in June 2005 and for the past 12 months have been gradually rising. By the standards of previous business cycles, as well as from hints by bank officials, the rate-boosting campaign should be nearing an end, but significant rate cuts appear to be still about 6 to 12 months away. As the illustration shows, the drag from the higher rates typically inhibits construction for 6 or so months and then keeps activity at those depressed levels for 6 to 12 more. Only when rate-cutting begins anew does housing activity get restimulated.

Given the strong dependency on construction described in previous sections, this means that consumption of structural panels will almost certainly decline in 2006 and also in 2007, just as about 5.75 million to 7.6 million m³

(6.5 billion to 8 billion ft²) of new OSB capacity over the period 2006 to 2009 is set to come on line. The consequence will be excess capacity for several years and, as suggested by Figure 17, depressed margins.

Given these prospects, industry participants have several options. One is to postpone or abandon some of the planned expansions. The ability to do this, however, is constrained because construction on many projects has already begun. On some others, contractual obligations have been entered into. By our estimates, eight plants, accounting for 6 million m³ (6.7 billion ft²) of capacity, fall into these categories, leaving a relatively small fraction with the option to bail out. A related option is to convert some capacity from commodity sheathing to specialty or other products. At least two existing sheathing mills are slated for conversion to siding and another is being retrofitted with a press capable of making thicker panels destined to be made into oriented strand lumber (OSL). Additionally, one new facility's design incorporates a press offering the option to make OSL. This could alleviate some of the excess capacity but almost certainly not enough to avoid an oversupply condition for several years.

The second option is to hope that enough older plants retire to offset the influx. Some of this is almost certain to happen. As of 2005, about 60% of U.S. plywood output was of sheathing-grade panels, which will bear the brunt of the impact of falling prices. Given the higher costs associated with plywood, some of this capacity would seem destined to exit. But plywood economics are buoyed by the growing need for LVL. In some respects, sheathing is a co-product of LVL-grade veneer production. The need for such material might motivate companies to keep plywood plants operating, much as some softwood sawmills continue in times of weak markets to supply pulp chips for more critical pulp operations.

That leaves a third option, which is to try to grow the market. As discussed in the section on potential for structural panels above, the greatest latent demand for panels is in siding. Siding is a competitive market where the amount of maintenance over a product's lifetime, its installation costs, and its appearance are the main considerations. Vinyl, aluminum, steel, brick, and stone, as well as wooden boards, fiber-cement boards, hardboard, plywood, and OSB are the main siding products.

On a cost continuum, wood-based panels occupy low- to mid-level positions along with vinyl and fiber-cement. Among structural panels, OSB siding is somewhat more cost competitive whereas plywood offers a more natural appearance. Both are vulnerable to moisture problems. Vinyl is regarded as the most maintenance-free product at this price range, and fiber-cement sidings also often come with a 50-year warranty. This suggests a need for research on the micro- and nanostructure of wood that would enable the production of natural wood fiber sidings with durability and moisture-resistant properties similar to vinyl- and cementbased products. Improvements in panel shrinkage properties could also open opportunities in other uses such as concrete forming.

Alternatively, North American producers could try to widen their marketing horizons to export markets. This is an opportunity in which currency exchange rates are critical. In part because of a large and persistent balance of trade deficit, the U.S. dollar has been weakening and is apt to weaken more as part of a necessary rebalancing of global trade flows. This affords an opportunity to U.S. producers to gain in overseas markets. Historically, the domestic market has been so large that U.S. producers have been content to focus solely on it, and most trade flows in recent years have been in the incoming direction on the import side of the ledger. North American and overseas panel size standards also differ, which means that a plant geared for 4- by 8-ft panels would have to sacrifice some volume to make smaller metric sizes. However, some far-seeing managers have built OSB plants with an extra size increment to allow seamless manufacturing of metric-sized panels without any loss in volume. Unfortunately, many of these plants were built in Canada, where the exchange rate trends are not as favorable. Still, the prospect of a weaker dollar should help reduce the trade imbalance in structural panels and reduce some supply pressure.

The trends described herein also have significant ramifications for forest management. The decline in plywood output means that the market for larger peeler logs from big trees has shrunk. Similar products that can be made from small pulpwood-sized bolts means that the price premium enjoyed by bigger trees may decrease, shifting the economically optimum tree-growing rotations to shorter intervals. On the other hand, woodland managers have a new and growing utilization option for their harder to use, low-density tree species. Aspen, red maple, yellow poplar, sweetgum, sycamore, box elder, and other fast-growing, pioneer-type tree species can now generate revenue from OSB plants seeking these kinds of materials as input to their product.

Literature Cited

Adair, Craig. 2004. Regional production and market outlook—structural panels and engineered wood products, 2004–2009. APA Economics Report 170. Tacoma, WA: APA – The Engineered Wood Association. 59 p.

Faust, Timothy D.; Rice, J.T. 1987. Effects of variable glue application rate on bond quality and resin consumption. Forest Products Journal. 37(7–8):64–70.

Forest Resources Association. 2000–2004. Annual Pulpwood Statistics Summary Report. Rockville MD: Forest Resources Association. Madison's Canadian Lumber Reporter. 2004. Madison's Canadian lumber directory–45th ed. Vancouver, British Columbia: Madison's Canadian Lumber Reporter.

McKeever, David B.; Adair, Craig. 1998. Wood products used in new nonresidential building construction, 1995. Tacoma, WA: APA – The Engineered Wood Association. 60 p.

McKeever, David B.; Adair, Craig; O'Connor, Jennifer. 2006. Wood products used in the construction of low-rise nonresidential buildings in the United States, 2003. Tacoma, WA: APA – The Engineered Wood Association. 65 p.

Random Lengths Publications, Inc. 2005. The big book. Eugene, OR: Random Lengths Publications, Inc.

RISI. 2005. Crow's Weekly Market Report. Boston: RISI. http://www.risiinfo.com/corporate/

Schletz, Klaus-Peter. 2005. Mattenvorwärmung von Siempelkamp in der Praxis Erfolgreich. MDF-Supplement von Holz-Zentralblatt. DRW-Verlag Weinbrenner, Leinfelden-Echterdingen, Germany.

Spelter, Henry; McKeever, David B.; Durbak, Irene. 1997. Review of wood-based panel sector in United States and Canada. Gen. Tech. Rep. FPL–GTR–99. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 45 p.

Wood Products Promotion Council. 1996. Wood used in new residential construction 1995. Tacoma, WA: APA – The Engineered Wood Association. 95 p.

Wood Products Council. 1999a. Wood used in new residential construction—1998 and 1995. Tacoma, WA: APA – The Engineered Wood Association. 154 p.

Wood Products Council. 1999b. Wood products used in residential repair and remodeling—1997. Tacoma, WA: APA – The Engineered Wood Association. 146 p.

Wood Products Council. 2005a. Wood products used in new residential construction in the U.S. and Canada—2003. Tacoma, WA: APA – The Engineered Wood Association. 102 p.

Wood Products Council. 2005b. Wood products used in residential repair and remodeling in the U.S. and Canada— 2003. Tacoma, WA: APA – The Engineered Wood Association. 76 p.

Appendix—U.S. and Canadian Structural Panel Plants by Region

The following tables and maps show North American (United States and Canada only) structural panel plant locations by capacity (in 1,000 m³) and ownership from 1990 to the present.

U.S. M	lidwest (Mich	nigan, Minne	sota, W	isconsin)																	
Mill	Company	Former Nam	9		1990	1991	1992	1993	1994 、	, 3661	. 9661	. 2661	998 1	5 666	000	001 2	002 2	003	2004	2005	2006
I.D.	Name	or DBA	State	Town						Cap	acity (1,0	00 m³)									
Plywoo	ā									Ope	erating Mil	s									
4 E	3essemer Plywc	-	Mi	3essemer	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53
-	TOTAL				53	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53
OSB										Ope	ratina Mil	<u></u>									
-	Veyerhaeuser		Mi	Grayling	266	266	266	319	327	336	345	363	389	398	398	407	425	443	451	456	456
2 L	`ң		Μ	Vewberry	71	106	106	106	106	106	111	115	115	115	115	111	115	115	119	119	119
3 L	٩.		Μ	Sagola	319	319	319	319	319	310	310	332	332	332	332	332	332	336	341	345	345
11 A	Ainsworth	Potlatch	Mn	3emidji I	195	195	199	204	208	212	212	212	220	220	226	226	230	230	235	248	266
12 4	Ainsworth	Potlatch	Mn E	3emidji II	106	195	199	204	208	220	220	220	220	220	226	226	230	230	235	248	266
4 6	Ainsworth	Potlatch	Mn (Cook	168	168	186	212	212	215	215	215	215	221	221	310	372	381	381	381	381
10 4	Ainsworth	Potlatch	Mn (3r Rapids	301	301	301	301	301	310	310	310	310	310	314	314	327	332	332	332	332
13	Vorbord	Nexfor	Mn	Solway	230	230	230	239	239	266	294	310	327	327	327	336	345	385	389	389	398
8 L	٩.		Mn	Two-Harbors	115	115	115	115	115	119	119	119	119	119	119	119	124	124	128	133	133
7 L	٩.		Wi	Hayward I	204	204	204	204	204	212	221	221	221	221	221	221	221	221	230	230	230
9 9	٩.		Mi H	Hayward II	204	204	204	204	204	212	221	221	221	221	221	221	221	221	230	230	230
5 L	٩.		Ň	Tomahawk				106	124	124	124	124	124	124	124	124	124	124	124	124	124
-	TOTAL				2177	2301	2328	2531	2567 2	2643 2	2703	2763 2	2814 2	830 2	845 2	947 3	067	142	3195	3235	3279
TOTAL	PLYWOOD ANI	D OSB			2230	2354	2381	2584	2620 2	2697 2	2756 2	2816 2	2867 2	883 2	898 3	000	120 3	195 3	3248 3	3288	3332
											toomiole										
	-				001	001	001	001	001			001	150	150	150	150	150	150	150	150	150
OSB	7				1250	1250	1250	1380	1380 、	1390	1330	100	1320	320	320 1	320 1	330	510	1510	120	1560
Total en	nployment				1350	1350	1350	1480	1480	1490	1430	1450 '	470 1	470 1	470 1	470 1	480	. 099	1660	710	1710

Plywood OSB Total employment

U.S. Northeast	(Maine)																			
Mill Company	Former Name	۵		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
I.D. Name	or DBA	State	Town						Cal	pacity (1,	000 m ³)									ĺ
OSB									Clo	sed Mills										
L-P	G-P	Me	Woodland	137	137	137	137	177	177	190	190	142	243	243	243	243	239	239	89	
											:									
									Ó	erating M	s									
1 Huber		Me	Easton	164	164	164	164	164	164	164	164	177	177	177	177	221	239	239	239	239
2 L-P		Me	Houlton	164	164	177	177	217	230	230	230	230	230	239	239	239	243	248	248	248
TOTAL				465	465	478	478	558	571	584	584	549	650	659	659	704	721	726	575	487
TOTAL PLYWOOD	AND OSB			465	465	478	478	558	571	584	584	549	650	629	629	704	721	726	575	487
									Ë	nemvolu	+									
OSP 0				380	380	380	380	380	380	380	380	380	380	380	380	380	380	380	260	260
Total employment				380	380	380	380	380	380	380	380	380	380	380	380	380	380	380	260	260

U.S. Southo	central ((Alabama, N	Vissi	issippi, Tennesse	e)																
Mill Com	pany F	-ormer Name			1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
I.D. Nê	ame	or DBA	State	Town						Ca	pacity (1	,000 m³)									
Plywood										Ö	osed Mills										
Weyer	haeuser		Ms	Philadelphia	75	75	75	75		115	115	89									
Weyer	haeuser		A	Millport	111	115	115	115	115	128	140	140	140	140	140	142	147	37			
Weyer	haeuser I	McM-Bloedel	A	Pine Hill	119	122	124	142	142	142	142	142	142	142	142	142	142	142			
										d	erating N	lills									
6 Scotch	-		A	Fulton	235	235	235	235	251	257	257	257	257	257	257	266	266	266	266	266	266
5 G-P			A	Peterman/Monroe	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274	274
4 I-P	_	Union-Camp	A	Chapman	186	186	186	186	212	221	221	221	221	221	221	226	226	226	226	226	226
2 G-P			A	Talladega	274	283	289	289	289	289	289	289	289	289	289	289	285	285	285	285	285
11 G-P			Ms	Taylorsville	305	305	305	305	323	323	323	323	323	323	323	323	314	314	314	314	314
8 Hood I	ndust I	Delta Pine	Ms	Beaumont	124	124	124	155	161	178	178	150	178	178	177	177	177	177	177	177	177
12 G-P			Ms	Louisville	258	258	258	258	258	258	258	258	258	258	258		133	257	257	257	257
10 G-P			Ms	Gloster	248	248	248	248	248	257	261	261	261	261	261	266	252	252	252	26	252
9 Hood I	ndust	<u>-</u> Р	Ms	Wiggins	195	195	181	181	181	187	187	199	199	199	199	208	208	208	208	208	208
TOTAL					2405	2420	2415	2464	2456	2629	2645	2604	2543	2543	2542	2312	2423	2437	2259	2032	2259
800										ć	A solitors										
900										5	eraung iv	2									
- r -			A 4	Hanceville					236	310	310	310	310	310	319	319	319	323	323	345	345
 C-P Note 	7		4 4	I nomasville												Foo	007	104	077	011	
	<u> </u>		₹ ;	Fuguey												7	440	674	0 + +	044	44 0
14 Norbor	q		Ms	Guntown						89	310	363	363	363	363	363	363	363	381	385	385
13 G-P			Ms	Grenada	266	266	266	266	266	266	266	266	274	274	274	274	310	332	332	332	332
15 Huber			Tn	Spring City								195	319	319	319	319	327	327	345	345	345
TOTAL					266	266	266	266	502	664	885	1133	1266	1266	1274	1496	1739	1770	1823	1850	1850
TOTAL PLYW	/OOD AN	D OSB			2670	2686	2681	2729	2958	3293	3530	3736	3808	3808	3816	3807	4162	4207	4082	3882	4108
										L	-										
Plywood					3500	3500	3500	3500	3300	3600 ET	agoo 3600	11 3600	3400	3400	3400	3100	3400	3100	2900	2600	2900
OSB					120	120	120	120	250	370	370	500	500	500	500	630	630	630	630	630	630
Total employn	nent				3620	3620	3620	3620	3550	3970	3970	4100	3900	3900	3900	3730	4030	3730	3530	3230	3530

Worksholds Consolving Total advolution Total advolution Total advolution Consolving Total advolution Worksholds Worksholds Charkshings 142 <t< th=""><th>⊡ ∐</th><th>Company Name</th><th>or DBA</th><th>e Stat</th><th>e Town</th><th>1990</th><th>1991</th><th>1992</th><th>1993</th><th>1994</th><th>1995 C</th><th>1996 apacity ('</th><th>1997 1,000 m³)</th><th>1998</th><th>1999</th><th>2000</th><th>2001</th><th>N</th><th>7007</th><th>2002 2003</th><th>2002 2003 2004</th></t<>	⊡ ∐	Company Name	or DBA	e Stat	e Town	1990	1991	1992	1993	1994	1995 C	1996 apacity ('	1997 1,000 m³)	1998	1999	2000	2001	N	7007	2002 2003	2002 2003 2004
Wortheamer Norwitherer Norwitherer Norwitherer Norwitheamer	Plywc	po					ĺ	ĺ	ĺ	ĺ	U	losed Mill	s								
Workmenter Workmannen Workmannen 97 97 97 97 97 97 97 97 97 111 112 80 Primmente E. Primmente E. Discretion Component E. E. Discretion Component E. Discretion 233 244 244 24		Weyerhaeuse G-P	er Gt Northern	S G	: Jacksonville Cedar Springs	137 142	142	142													
		Weyerhaeuse	er e	δ	Plymouth	97	97	97	97	97	111	124	80								
I-P Champoint Cannon Le Champoint Cannon		Willamette	В-С В-С	Nc	Moncure	97	97	97	97	119	119	119	119	119	44						
G-P Sc Russehule 243 24		<u>-Р</u>	Champion Int	t Ga	Waycross	89	89	87	133	137	133	133	133	133	142	128					
3 Constant 1 F H woma 1 1/2 <th< td=""><td></td><td>G-P</td><td></td><td>Sc</td><td>Russelville</td><td>243</td><td>243</td><td>243</td><td>243</td><td>243</td><td>243</td><td>243</td><td>243</td><td>243</td><td>243</td><td>243</td><td></td><td></td><td></td><td></td><td></td></th<>		G-P		Sc	Russelville	243	243	243	243	243	243	243	243	243	243	243					
7 Contained 23 24 23 24 23 24 23 24 23 24 23 <	c	00000		Ū		101	901	301	~ ~ ~	077	0	perating N	Mills	100	100	100		100	106 106	106 106 100	
6 5 Wreer Prod Synfordid 5 Wreer Prod Synfordid 5 Wreer Prod Synfordid 5 9 7 7 </td <td>o ≁</td> <td>Cuasial G_P</td> <td></td> <td></td> <td>Hawthorne</td> <td>121</td> <td>071</td> <td>CC </td> <td>+ 572</td> <td>-4Z 257</td> <td>288</td> <td>326</td> <td>771</td> <td>332</td> <td>332</td> <td>332</td> <td></td> <td>33.7</td> <td>337 377</td> <td>337 377 377</td> <td>100 100 130 130 130 333 337 337 337</td>	o ≁	Cuasial G_P			Hawthorne	121	071	CC	+ 572	-4Z 257	288	326	771	332	332	332		33.7	337 377	337 377 377	100 100 130 130 130 333 337 337 337
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- LC	S Veneer Pro	d Snrindfield	- ď	Fitznerald	2			ç Y	101	40	49	40	49	40	49		49	49 49	40 40 40 40	40 40 40 40 40 40
0 0	, e	G-P	GA Kraft	o B B	Madison	274	274	310	319	319	319	319	324	324	324	324		324	324 325	324 325 325	325 325 325 325
8 6 P Ce Mark Springs 261 261 261 261 301 <td< td=""><td>6</td><td>. Ч-О</td><td></td><td>Ga</td><td>Monticello</td><td>274</td><td>274</td><td>274</td><td>274</td><td>230</td><td>239</td><td>239</td><td>239</td><td>239</td><td>239</td><td>239</td><td></td><td>239</td><td>239 307</td><td>239 307 307</td><td>239 307 307 307</td></td<>	6	. Ч-О		Ga	Monticello	274	274	274	274	230	239	239	239	239	239	239		239	239 307	239 307 307	239 307 307 307
10 C.P. Nc Winelyine 226 277 243 274 274 271 270 2	ω	G-P		Ga	Warm Springs	261	261	261	261	261	301	301	301	301	301	301		301	301 301	301 301 301	301 301 301 301
17 G-P No. White/lie 248 248 248 248 270 274 273 221 213	19	G-P		Nc	Dudley	226	227	227	243	292	301	301	301	301	301	301		301	301 324	301 324 324	301 324 324 324
16 Chester Vood Weyerhauser 56 Chester Vood Weyerhauser 56 Chester Vood Weyerhauser 56 Chester Vood Weyerhauser 56 Chester Vood Weyerhauser 57 212 212 212 212 212 212 212 213 <	17	G-P		Nc	Whiteville	248	248	248	248	270	274	274	288	288	288	288		288	288 288	288 288 288	288 288 288 288
14 G-P Sc Prosperity 159 218	16	Chester Wood	d Weyerhaeus	er Sc	Chester	208	212	212	212	212	212	212	212	212	212	212		212	212 212	212 212 212	212 212 212 212
23 G.P. Va Empona 261 281 <td< td=""><td>4</td><td>G-P</td><td></td><td>လို</td><td>Prosperity</td><td>199</td><td>218</td><td>218</td><td>218</td><td>218</td><td>218</td><td>218</td><td>218</td><td>218</td><td>218</td><td>218</td><td></td><td>218</td><td>218 221</td><td>218 221 221</td><td>218 221 221 221</td></td<>	4	G-P		လို	Prosperity	199	218	218	218	218	218	218	218	218	218	218		218	218 221	218 221 221	218 221 221 221
BE Old Dirty Dirty <thdirty< th=""> <thdirty< th=""> Dirty<</thdirty<></thdirty<>	ß	G-Р тота		Va	e Emporia	261	266	281	281	281	281	281	281	281	281	281		83	83 297	83 297 297	83 297 297 297 20 2027 2040 2040
Lungannon 106 106 106 106 106 106 106 106 106 106 101 111 124 124 124 124 124 123 233 233 233 233 233 233 233 233 233 233 233 236 2		IUIAL				3121	30.18	C/05	3014	3077	3245	3314	3291	3224	8015	3101	217	ž	2031	32 2031 2042	32 2031 2042 2042
L-P Va Dungamon 106 106 106 106 106 111 111 111 111 111 111 111 111 111 111 111 124 130 139 319 32 1 L-P Ga Authens 253 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 336 319 319 31 1 L-P Ga Contele 243 270 <	ß										O	losed Mill	s								
Langboard Ga Quitman 150 159 164 164 190 196 187 <		L-P		Va	Dungannon	106	106	106	106	106	111	111									
2 G-P F1 Hostord 283 283 283 283 283 283 283 288 286 266 229 319 329 2 Huber Ga Athens 233 253 253 253 253 266 270 </td <td></td> <td>Langboard</td> <td></td> <td>Ga</td> <td>Quitman</td> <td>150</td> <td>159</td> <td>164</td> <td>164</td> <td>190</td> <td>190</td> <td>168</td> <td>186</td> <td>187</td> <td>187</td> <td>187</td> <td>187</td> <td></td> <td>199</td> <td>199 199</td> <td>. 199 199 204</td>		Langboard		Ga	Quitman	150	159	164	164	190	190	168	186	187	187	187	187		199	199 199	. 199 199 204
1 L C F	c			Ē	l loofoord						0	perating N	Viills								
III L-F Ga Artients ZB3 ZB3 <thzb3< th=""> ZB3 ZB3 <t< td=""><td>N,</td><td>ہ ہے ۔ ق</td><td></td><td>ΞĊ</td><td>Hostord</td><td>0000</td><td>000</td><td>000</td><td>000</td><td>000</td><td>000</td><td>000</td><td>000</td><td>000</td><td></td><td>010</td><td>00</td><td>,</td><td>000</td><td></td><td></td></t<></thzb3<>	N,	ہ ہے ۔ ق		ΞĊ	Hostord	0000	000	000	000	000	000	000	000	000		010	00	,	000		
I. Nubbel Car Continence Z33 Z33 <thz33< th=""> Z33 Z33</thz33<>	= ;			ט פי	Athens	283	283	283	283	283	288	288	288	288	310	319	N C	<u>-</u>	323	323 323	3 323 323 341
0 Worldaudi -7 0 000000 -7 0 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 201	2	Morber	-	ט פֿר		502	502	502	202	502	502	502	007	007	007	767	3 6	- 0	1 301	1 301 301	1 301 301 301 0 266 222 254
18 G-P 00 Weyerhaeuser 111 111 111 124 124 124 168	04	l andhoard	<u>1</u>	טיי שיי פי	Duitman	243	2/0	710	210	2/1	210	2/1	2/0	7/0	2/10	7/0	7	þ	. 788	0 288 323	905 973 904
20 Weyerhaeuser Nc Eikin 199 199 204 221 230 257 291 316	- @	G-P		δZ	Dudlev	111	111	111	124	124	124	168	168	168	168	168	16	œ	3 168	8 168 168	8 168 168 168
21 L-P 292 336 336 354 376 7 Grant Sc Jainta/Milendale 22 332 336 336 376 319 311	2 2	Weverhaeuse	ľ	Z	Elkin	199	199	204	221	230	230	257	291	291	291	291	291		296	296 310	296 310 310
7 Grant Sc Fairfax/Allendale 13 Norbord Sc Joanna/Kinards 15 Grant Sc Joanna/Kinards 15 Grant Sc Joanna/Kinards 15 Grant Sc Maming/Clarendon 25 G-P V a Brookneal 24 Huber V a Stropkies 266 292 292 309 309 314 314 314 314 314 314 314 314 314 314	3	Ĺ,		Nc	Roxboro							292	332	336	336	354	376		398	398 398	398 398 398 398
13 Norbord Sc Joanna/Kinards 15 Grant Sc Manning/Clarendon 25 G-P Va Brookneal 239 288 305 319 316 314	7	Grant		Sc	Fairfax/Allendale																
15 Grant Sc Manning/Clarendon 25 G-P Va Brookneal 239 201 301 319 314 31	13	Norbord		Sc	Joanna/Kinards																
25 G-P Va Brookneal 239 288 305 319 319 319 319 24 Huber Va Crystal Hill 221 301 310 319 314	15	Grant		Sc	Manning/Clarendon																
24 Huber 221 301 310 319 314 </td <td>25</td> <td>G-P</td> <td></td> <td>Va</td> <td>Brookneal</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>239</td> <td>288</td> <td>305</td> <td>319</td> <td>319</td> <td>3</td> <td>റ</td> <td>9 336</td> <td>9 336 345</td> <td>9 336 345 354</td>	25	G-P		Va	Brookneal							239	288	305	319	319	3	റ	9 336	9 336 345	9 336 345 354
22 G-P Va Skippers 266 266 292 292 309 309 309 314 316 314 316 314 315	24	Huber		Va	Crystal Hill						221	301	301	310	319	319	3	6	9 336	9 336 336	9 336 336 389
26 G-P Ww Wit Hope 183 314 317 317 312 312 591 171 171 171 171 171 171 171 171 171 171 171 171 171 172 171 172	ដ	с-Р 1		Va	Skippers	266	266	292	292	292	309	309	309	314	314	314	ά	4	14 314	14 314 314	14 314 314 314
27 Weyerhaeuser Wv Sutton/Heaters 1612 3002 3064 3126 3192 3631 5015 6291 6729 6831 6991 711 TOTAL TOTAL PLYWOOD AND OSB 4738 6020 6139 6140 6269 6876 8330 9587 9953 9990 10092 988 OTAL PLYWOOD AND OSB 4738 6020 6139 6140 6269 6876 8330 9587 9953 9990 10092 988 Iywood 4300 4100 3900 4000 4000 3900 3700 3500 330 SB 1060 1060 1060 1060 1060 1070 1320 1740 1610 1590 1720 <	26	G-P		Ŷ	 Mt Hope 						183	314	314	314	314	314	ò	4	14 314	14 314 332	14 314 332 332
TOTAL 1612 3002 3064 3126 3192 3631 5015 6291 6729 6831 6991 71 OTAL PLYWOOD AND OSB 4738 6020 6139 6140 6269 6876 8330 9587 9953 9990 10092 98 Jwood 4300 4100 4100 3900 4000 4000 3900 370 3500 330 SB 1060 1060 1060 1060 1070 1320 1590 1590 1720 170 1200 1500 1720 <t< td=""><td>27</td><td>Weyerhaeuse</td><td>jt</td><td></td><td> Sutton/Heaters </td><td></td><td></td><td></td><td></td><td></td><td></td><td>168</td><td>420</td><td>434</td><td>443</td><td>496</td><td>2</td><td>13</td><td>13 513</td><td>13 513 531</td><td>13 513 531 540</td></t<>	27	Weyerhaeuse	jt		 Sutton/Heaters 							168	420	434	443	496	2	13	13 513	13 513 531	13 513 531 540
OTAL PLYWOOD AND OSB 4738 6020 6139 6140 6269 6876 8330 9587 9953 9990 10092 98 Employment 587 9953 9990 10092 98 58 50 33 50 550 550 550 550 550 550 550 55		TOTAL				1612	3002	3064	3126	3192	3631	5015	6291	6729	6831	6991	7	50	50 7296	50 7296 7469	50 7296 7469 7686
UIAL PLYWOOU ANU OSB 2330 900 1000 1000 1000 1000 1000 1000 10	F				L	1100	0000	0010	0110	0000	0100	0000	0101		0000	10000	000	c	10400	1001	10101 10011 10000
Employment Employment 3500 4100 4100 3900 4000 4000 3900 3700 3500 3500 3300 300 300 3700 3500 35	₹ 0					41.30	0770	0139	0140	6070	00/00	0330	1006	8803	2230	10032	200	V	2 10133	1 101 201 201	2 10133 101101 2010
ywood 2300 4000 4000 4000 4000 3900 3700 3500 3500 330 330 200 1060 1070 1320 1740 1610 1590 1590 1720 1720 1720 1720 1720 1720 1720 172											ш	mployme	ţ								
1060 1060 1060 1060 1070 1220 1740 1510 1590 1720 1720 1500 1590 1720 1720 1720 1720 1720 1720 1720 172	NV NO	po				4300	4100	4100	3900	4000	4000	4000	3900	3700	3500	3500	330	8	00 3300	00 3300 3400	00 3300 3400 3400
	SB					1060	1060	1060	1060	1070	1320	1740	1610 10	1590	1590	1720	172	0	0 1720	0 1720 1720	0 1720 1720 1720

U.S.	Southwest (Texas, Oklaho	ma	Arkansas, Lo	uisiana)		0.00	0		L ((000	1 0 0	0.00	0	0001	Feer		0001		L (() ()	0000
IIIN .D.I	Company Name	Former Name or DBA \$	State	Town	1990	1991	1992	1993	1994	1995 Ca	1996 pacity (1 ,	1997 , 000 m³)	1998	1999	2000	2001	2002	2003	2004	2005	2006
Plywc	poc									ö	sed Mills										
	L-P	Angelina	ř.	Lufkin, Keltys	168	168	142	142	150	155	155	111									
	vvIIIamette	Owene Illinoie	Ϋ́	l aylor Iaspar	133	180	130	180	120	133	133	54									
	Plum Creek	Riverwood	< c	Jovce	173	173	175	175	175	186	186	186	124								
	Temple		ř	Pineland	177	221	221	221	221	221	235	235	235	235	235						
	LP	G-P	ř	New Waverly	266	266	266	266	266	266	266	266	243	243	243						
	Willamette	Santiam	La ^	Ruston	133	155	155	155	155	155	155	155	155	155	155	20					
	Weyernaeuse	er 1 _D	ž ,	Dierks Bon Wier	001 243	111 242	111 1	111 512	80L	80L	80L	104	104 243	104 243	104 243	89 243	110				
	 - -	L-F I -P (form G-P)	<u>~ </u>	L Irania	230	230	240	240	230	240	240 210	245 212	240 177	177	242 771	24.0 177	177				
	Weyerhaeuse	Sr (round - 1)	3 Ş	Wright Cty	106	106	142	142	142	212 146	146	173	173	173	173	173	146	146	146	110	
	i :			:			1	1		d I	erating M	ills		1					-		
. .	Hunt Plywd	ī	La	Natalbany	133	137	137	137	137	137	137	137	137	137	137	137	137	137	137	137	137
4	BC	VanPly	La	Oakdale	230	230	252	252	264	266	266	266	266	266	221	221	221	177	177	168	168
ഗ	Martco		La L	Chopin	001	ľ	ľ	ľ			133	292	292	292	292	292	292	292	292	292	319
1 0	Hunt Plywa		Ľa	Pollock	201	91	19/	91	119	124	124	124	124	124	124	124	124	124	124	124	124
~ 0	weyernaeuse	er vvillamette	L a	Podson	5/1	5/1	5/1	5/1	766	181	181	181	181	181	181	181	181	181	181	181	181
n €		1 -D /form C-D)	י ר בי		502 010	202	243 201	243 201	200	502 C1C	507 010	07 010	502 010	C07	507 C1C	502 C1C	202	202	2010	200	200
5 5	Weverhaelise	ar Willamette	<u>n</u>	Zwolle	164	164	169	169	199	2000	200	200	133	212	212	212	212	212	212	212	212
12	BC	VanPlv	La C	Florien	261	263	263	263	270	274	266	266	266	266	274	274	274	252	252	252	252
15	G-P	L-P	Ě	Cleveland	266	266	266	266	266	230	199	266	266	266	266	266	288	288	288	288	288
16	<u> </u>	Champion Int	ř	Camden	279	279	279	279	279	310	310	319	319	319	319	319	319	319	319	319	319
17	<u>д-</u>	Champion Int	ř	Corrigan	264	266	266	266	266	292	292	301	301	301	301	301	292	292	292	292	292
22	Weyerhaeuse	er Willamette	Ar	Emerson	164	168	170	170	177	208	208	208	217	217	217	217	217	217	217	217	217
23	G-P		Ar	Crossett #1	279	279	279	279	292	292	292	292	292	292	292	301	301	301	301	310	310
24	С-Р 0		۶	Crossett #2	283	283	283	283	301	305	305	283	288	288	288	288	288	292	292	301	301
58	ч С		Ā	Fordyce	252	252	252	252	252	270	270	270	279 279	279	279	279	274	274	274	274 201	274
77	Noverhaaliee	ŗ	Ă,	Gurdon Mt Dipo	106	23U	243 106	243 106	707	707	707	707	707	202	707	707	707	2002	31U 248	375 076	075 076
707		5	Ē		5557	5653	5712	5712	-42 5944	6075	6180	6225	5799	5760	5733	5120 5120	4906	4538	4609	4619	4536
u C	-									č											
0	۹. -		Ļ	New Waverly	80	80	80	80	80	44 010	useu Mills 44										
			<u>`</u>		200	3 8			35	t (t (77									
	r q		Ϋ́	Corrigan	124	119	09 119	09 119	119	133	133	124									
										Ö	erating M	s									
7	Martco		La	LeMoyen	168	195	212	230	230	230	230	257	257	257	266	310	310	310	310	332	332
ო	Martco		La	Oakdale																	69
ø	Weyerhaeuse	er Willamette	La	Arcadia							177	283	288	310	310	310	310	310	327	327	327
÷	م ہ 		Ě	Jasper		ř	000	000	000	100	18	310	372	385	398	398	398 201	398 201	398	398	398
4	- - -	4	÷,	Silsbee	001	5,	283	283	283	301	301	301	301	301	301	301	305	305	266	266	266
200	Norbord	<u>م</u>	≚ è	Carthade	168	168	168	//L	212	212	212	212	248	266	376	285	283 308	283	292	330 308	343 208
5 2	Norbord	d-i	Ě	Jefferson							266	296	310	310	310	327	327	327	354 354	354	354
21	Huber		ð	Broken Bow															133	487	531
25	G-P		Ar	Fordyce												363	389	407	443	443	443
	TOTAL				637	721	951	978	1027	1040	1500	1828	1996	2182	2226	2677	2721	2739	2921	3340	3461
тота	'T PLYWOOD	AND OSB			6194	6375	6663	6690	6970	7115	7680	8053	7795	7941	7959	797	7627	7277	7530	7959	7997
										L	_										
Plywo	por				8400	8400	8400	8400	8400	En 8400	8800 8800	it 8600	2000	2700	7700	7100	6700	6300	6200	6200	5900
OSB					660	790	790	790	790	790	1170	930	950	950	950	1090	1090	1070	1230	1230	1390
Total	employment				0906	9190	9190	9190	9190	9190	0266	9530	8850	8650	8650	8190	7790	7370	7430	7430	7290

U.S. West (California, (Dregon, Washington)			1000	1001	1000	1000	1001	1001	1000	2007	1000	0007	0000	1000	0000	0000	0 F 00	100	000
IVIII COMPANY I.D. Name	or DBA	State	Town	1881	1991	1992	6881	1934	1880 Ca	pacity (1,	000 m ³)	1330	333	7000	7001	7002	5002	2 400	2 600	000
Plywood									ö	osed Mills										
<u>с</u> -р	Smith Wood Prod	ō	Coquille	80																
White Plywd	Cascade Plywd	۰ د ک	ebanon	221																
Murphy Plywd Bobemia	West Door & Plywd	ء د ک ڈ	Allwaukie Allo Crook	21																
	Weverhauser	δČ	Jorth Rend	‡ %																
Astoria Plywd		ō Č	vetoria	115	115															
Bohemia	Drain Plvwd	δō	Drain	119	119															
Willamette Indust	Santiam Lumber	ίČ	ehanon	142	7															
Kogap Mfg		δ	Aedford	310	310															
Stevenson Co-Plv	Stevenson Plvwd	Wa S	stevenson	111	111	111														
Pugent Sound Plywd		Wa T	acoma	124	124	80														
Custom Plywood Corp	Anacortes Veneer	Wa ⊿	nacortes	127	127	124														
Seneca Sawmill	US Plywd	ç	soseburg	181	177	177														
Roseburg	Interstate Container	Ca	ted Bluff	102	102	102														
Miller Redwood	Bate Lumber	⊿ ŏ	Aerlin	80	80	85	85													
Willamette Indust	Ч-1	ر م	/aughn	115	115	124	133													
Medford Corp		ō	Aedford	204	204	124	124													
Pac Western Forest In	d Crown Zellerbach	ې م	st. Helens	195	195	195	195													
RHD Elma	Elma Plywd	Wa E	Elma	71	81	81	81	81												
Stone Forest Indust	Hub City Plywd	or A	Vlbanv	177	177	177	177	177												
Linn Forest Products	Mid-Plvwd	ō	weet Home	99	99	99	66	66												
Willamette Indust	Santiam Lumber	ō	weet Home	155	155	155	155	155												
Brand-S	Leading Plvwd	ō	hilomath	124	124	124	124	124												
Textured FP	Ellison's Indust	Wa V	Vashougal	18	18	18	18	18	80	80										
Hardel Mutual Plvwd		Wa	Divmpia	133	133	133	127	161	143	80										
Fort Vancouver Plvwd	Vancouver Plvwd	Wa	ancouver	142	142	142	115	106	67	22										
Timber Products	Grants Pass Plywd	ō	Brants Pass	117	117	89	89	106	80	89										
BC	•	ہ م	Vhite City	142	142	142	142	142	173	180	180									
Lane Plywd	Willamette Plywd	ъ	iugene	164	164	164	164	93	93	93	93									
Roseburg #1		ō	Dillard	188	188	188	188	188	188	188	188	188	188							
Willamette Indust	Willamette Valley Lum	ō	Dallas	168	168	168	168	133	133	134	134	134	134	106						
Linnton Plywd Assn		٦ آ	ortland	96	96	89	66	42	53	66	99	99	66	99	66					
Fourply	Veneer Prod	ō	Brants Pass	133	133	106	106	106	106	106	71	71	71	71	71	27				
Roseburg #3	Umpqua Plywd	ò	Breen	195	195	177	177	204	204	204	204	204	204	204	204	204	170			
Weyerhaeuser	Willamette Indust	ō	oster	124	124	124	124	127	124	86	86	86	86	89	89	89	89	89		
		(1			o į	berating Mi	lls 	ļ	ļ	ļ	ļ	ļ	į	ļ	ļ	į
14 Koseburg #2		56	Jillard	0	961	901	168	108	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
17 IIIIDEI FLOGUCIS 13 Docobiura #6	Commille Divind	5 č	oranis Pass	801	801	801			701								100			
21 Darific Wood Lam	South Coast Lum	5 č	roduire tronkinge	551	122	111	106	111	111	111	124	124	261	PC 1	108 108	108	128	108 108	801 801	act
	Medford Veneer & Divini	כנ סֿכֿ סַ	White City	901	88	106	106	106		106	106	106	106	106	106	108	106	106	106	108
8 Emerald FP	Shellstrom Lumber	ьш ōč	TIMENE	133	133	133	138	168	177	171	121	171	171	171	171	17	221	221	221	212
12 Murphy	Sutherlin Plywd	i č	Sutherlin	149	127	127	127	133	133	133	133	133	133	133	133	133	133	133	99	111
18 TImber Products	White City Plywd #1	ō	Vhite Citv	53	53	58	69	66	72	76	76	76	76	76	76	76	76	76	78	78
9 McKenzie For Prod	Springfield For Prod	ې م	springfield	168	177	195	212	230	221	196	196	196	196	196	196	196	196	196	196	196
10 Rosboro Lumber)	о ō	springfield	89	89	89	89		66	66	99	99	99	99	99	99	99	99	66	99
16 Superior Plywd	Glendale Plywd	ō	Slendale	186	186	186	186	195	195	168	168	168	168	168	168	168	168	168	168	168
6 Freres Lumber	North Santiam Plywd	ō	Aill City	159	150	150	159	159	159	159	143	119	142	159	168	177	186	199	208	208
20 BC	Elk Lumber	⊿ ŏ	Aedford	288	288	288	286	310	319	338	341	177	341	341	341	341	341	341	341	341
11 Weyerhaeuser	Willamette Indust	о Б	Springfield	111	111	111	111	112	111	108	108	108	108	108	108	108	108	108	108	108
15 Roseburg #4		ŏ o	kiddle	416	416	363	381	381	381	381	381	381	381	381	381	381	381	381	381	381
7 Eagle Veneer		ı آ	larrisburg		31	42	42	42	42	42	42	42	42	42	42	42	49	49	49	46
5 Hardel Mutual Plywd		Ma	Chehalis	2	ç	ç	ç	ç	00	5	22	111	111 55	111	111 60	111	111	111	111	111
1 INIT BAKET PIYWO	Moodlow Divid		seiingnam Jocuitom	<u>5</u> 6	2 2	70	70	70	70	90	200	00	20	00	20	00	20	20	20	0 0 1
	Peninsula Plywd	Ma Ma	Pt Anneles	5 F	55	6 G G	23	6 / 77	6 / 7 /	6 / 7 /	64	64	C/	44	C/	C /	C 44	C 44	44	74
3 Olymnic Panel Prod	Simnson Timber	- eM	t Angeles Shelton			124	148	146	146	146	146	146	146	146	146	146	146	146	143	134
TOTAL		5		7234	6069	6064	5500	4891	4421	4246	3994	3591	3777	3582	3489	3387	3251	226 3	079 3	105
TOTAL PLYWOOD AND OS	B			7234	6069	6064	5500	4891	4421	4246	3994	3591	3777	3582	3489	3387	3251	226 3	079 3	105
																-				ĺ
					00101	00011			En En	nploymen	t	0010		0010						000
Total employment				13200	12100	11200	0066	8600	7800	7700	7200	6500	6300	6100	5900	5600	5300 1	300 5	300 5	300

U.S. West - Inlar	nd (California, Colo	rado, Oregon, Idal	ho, Mont	ana, Wa	shingto	(uc													
Mill Company	Former Name	State Town	1990	1991	1992	1993	1994	ر۔ 1995	1996 1996	1997 1 000 m³	1998	1999	2000	2001	2002	2003	2004	2005	2006
								Š											I
Flywood								כֿ	nsea mill	'n									
Roseburg	Interstate Contain	Ca Red Bluff	102	102	102														
Warm Spr FP	Jefferson Plywd	Or Warm Springs	75	75	75														
Crown Pacific	Brooks-Willamette	Or Redmond	159	159	159	155	133	133	115										
Potlach Corp		Id Pierce/Jaype	133	133	133	133	133	133	137	137	137	137	75						
Collins Pine	Weyerhaeuser	Or Klamath Falls	111	111	142	142	146	150	150	150	150	150	150	13					
BC		Id Emmett	150	150	159	159	164	177	159	159	159	159	159	97					
Stimson Lum	J Neils Lumber	Mt Libby	133	133	133	133	146	146	146	146	146	146	146	146	146				
								ŏ	perating N	Aills									
6 Potlach Corp	St Maries Plywd	Id St. Maries	127	127	133	133	133	140	140	140	140	140	140	140	140	140	128	124	124
8 Plum Creek	C & C Plywd Corp	Mt Kalispell	106	106	115	117	133	131	131	131	131	131	131	142	146	159	159	159	159
7 Plum Creek	Plum Creek Lum	Mt Columbia Falls	133	133	133	143	135	151	151	151	151	151	151	151	151	151	151	151	151
9 Stimson Lum	Champ Int Corp	Mt Bonner	310	310	310	310	310	142	142	142	142	142	142	142	142	142	142	97	97
1 BC		Or Elgin	140	140	140	140	150	156	161	165	165	165	165	165	165	165	165	165	165
5 BC		Wa Kettle Falls	168	177	186	190	204	204	208	208	208	208	208	208	208	208	208	208	208
2 SDS Lum Co	Bingen Plywd	Wa Bingen	71	71	71	99	99	99	99	99	99	99	66	66	53	53	53	53	53
4 Omak Wood P	rod Bico-Kinzua	Wa Omak	159	159	133	133	195	195	195	195	195	195	195			97	97	97	97
3 Yakima Res	BC	Wa Yakima	142	142	142	142	142	142	122	173	84	84			44	142	142	142	142
TOTAL			2218	2227	2264	2095	2189	2065	2024	1963	1874	1874	1728	1270	1195	1257	1245	1197	1197
OSB								ō	osed Mill	S									
г-Р		Co Kremmling	111	106															
г-Р		Id Chilco	119	111	111	111	111	133	133										
г-Р		Co Montrose	106	106	106	106	128	128	128	128	128	128	128	128	53				
TOTAL			336	323	217	217	239	261	261	128	128	128	128	128	53				
TOTAL PLYWOOD	AND OSB		2554	2550	2481	2312	2428	2326	2285	2091	2003	2003	1857	1398	1248	1257	1245	1197	1197
								ш	nplovme	ţ									
Plywood			3800	3800	3800	3400	3400	3200	3000	2900	2900	2900	2400	1900	2100	1700	1700	1700	1700
OSB			330	330	220	220	220	220	220	100	100	100	100	100	20				
Total employment			4130	4130	4020	3620	3620	3420	3220	3000	3000	3000	2500	2000	2170	1700	1700	1700	1700

Cana	da East (Sas	skatchewan, Ma	anitol	ba, Ontario, Q	uebec, N	Vew Bru	nswick)	-													
Mill	Company	Former Name			1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
D.	Name	or DBA	Prov	Town						ö	apacity (1	,000 m³)									
Plywou	po									ŏ	cerating N	Aills									
9	Weyerhaeuser	· MacMillan Bloed	Ont	Nipigon	23	23	23	34	34	34	34	34	34	35	35	35	35	35	35	35	35
2	Weyerhaeuser	 Saskfor McMillan 	Sas	Hudson Bay	71	71	71	75	73	75	75	75	75	75	75	91	91	91	91	91	91
	TOTAL				94	94	94	109	107	109	109	109	109	111	111	127	127	127	127	127	127
OSB										ŏ	osed Mills										
	Norbord		Que	LaSarre I	89	89	89	89	89	89	27										
	Weyerhaeuser		Sas	Huds Bay I	80	80	80	80	80	80	80	80	80	80	80	80					
	Weyerhaeuser	L	Sas	Huds Bay II	106	106	106	106	106	106 Or	106 Derating M	106 اiااد	106	106	106	106	53				
19	Weverhaeuser		Nhr	Miramichi	195	119				5	48	250	305	336	336	336	336	336	358	358	358
15	L-P		Que	Chambord	230	195		93	243	266	327	330	443	443	443	443	443	443	443	416	416
4	Norbord		Que	Val d'or	159	159	159	177	177	212	212	237	237	239	239	239	266	283	283	283	283
17	L-P		Que	St Michel	252	252	257	270	270	270	336	451	451	434	443	443	443	443	443	443	421
13	Norbord		Que	LaSarre II						99	177	239	248	248	248	248	266	310	310	310	310
16	L-P		Que	Maniwaki								310	487	531	531	531	531	531	531	531	531
18	Jolina Capital		Que	St Georges	142	142	142	142	142	142	177	177	177	177	177	177	195	221	239	239	239
1	Grant FP		Ont	Englehart I	177	177	177	177	195	195	239	239	239	239	239	239	243	248	257	257	257
10	Grant FP		Ont	Timmins	80	80	80	177	177	177	400	196	233	460	460	460	460	460	460	460	460
2 2	Ainsworth		Ont	Barwick								221	354	354	354	354	354	381	389	389	389
6	Weyerhaeuser		Ont	Wawa						142	341	341	354	363	372	381	389	398	407	407	407
12	Grant FP		Ont	Englehart II	279	279	279	283	310	310	381	381	381	381	381	381	389	398	416	416	416
8	Kruger		Ont	Longlac I	120	120	120	120	124	142	142	142	142	142	142	150	150	150	150	150	150
7	Kruger		Ont	Longlac II																	0
4	L-P		Man	Swan River							292	352	352	376	398	398	416	434	460	465	465
ო	Weyerhaeuser		Sas	Hudson Bay											221	487	504	504	504	504	504
-	Tolko Indust		Sas	Meadow lake														177	531	531	531
	TOTAL				1908	1797	1488	1713	1912	2195	3284	4052	4588	4907	5168	5452	5438	5717	6182	6160	6138
TOTAL	. PLYWOOD AI	ND OSB			2002	1891	1581	1822	2019	2304	3393	4160	4697	5018	5279	5578	5565	5844	6308	6286	6264
ī	-						000			Ē	nploymer	nt									
	D				300	300	300	300	300	300	300	300	400	400	400	400	400	400	400	400	400
Total el	mplovment				1740 1740	1540 1640	1600	1630 1630	1530 1630	1820	1320 2220	2530 2530	2650 2650	2650 2650	2410 2810	2820	2760 2760	2670 2670	2670 2670	2680 2680	2680 2680

Canac	da West (British	h Columbia, Alb€	erta)																		
Mill D.	Company Name	Former Name or DBA	Prov	Town	1990	1991	1992	1993	1994	1995 C a	1996 I pacity (1	1997 ,000 m³)	1998	1999	2000	2001	2002	2003	2004	2005	2006
Plywod	pc									ö	osed Mills										
-	Crestbrook		Alb	Fort MacLeod	26																
-	Weyerhaeuser	MacMillan Bloedel	ပ္ထ	Vancouver	106																
	Weyerhaeuser	MacMillan Bloedel	С В С	Port Alberni	159																
-	Victoria Plywd		ပ္ထ	Victoria	62	62															
	Fletcher Challenge	¢.	ပ္ထ	New Westminster	106	106															
	Evans FP		B	Vancouver	137	137															
-	West Coast Plywd		B	Vancouver	168	168	133														
	Slocan	Cantree	BC	New Westminster	133	133	115	97	97	97	97	97	97								
1	1	:	:						1	ŏ	erating N	/ills						-		-	
53	West Fraser	Zeidler	ЧР	Edmonton	106	106	124	150	155	155	177	177	177	204	212	221	235	235	235	235	235
ო	Tolko Indust	Riverside FP	ပ္ထ	Armstrong	159	159	177	195	195	195	199	199	199	210	207	208	257	266	350	350	350
11	Canfor	N Central Plywds	ပ္ထ	Prince George	150	150	150	155	150	150	150	150	150	150	150	150	159	168	168	168	168
, -	Ainsworth		ပ္ထ	Savona	49	49	58	71	71	99	66	112	115	127	127	127	127	127	131	131	131
-	Richmond Plywd		ပ္ထ	Richmond	177	177	171	177	209	209	209	209	209	209	133	209	168	168	165	165	165
10	West Fraser	Weldwood	ပ္ထ	Quesnel	146	150	150	150	150	150	150	150	150	168	178	178	178	178	178	178	178
6	West Fraser	Weldwood	B	Williams Lake	155	155	155	155	155	155	155	155	155	155	159	159	159	159	166	166	166
~	Tolko Indust	Riverside FP	ပ္ထ	Kelowna	124	111	111	111	111	111	124	128	128	127	133	133	133	133	138	138	138
4	Federated Co-op		B	Canoe	84	84	89	68	96	96	96	96	96	96	64	99	97	97	97	97	97
9	Tolko		B	Heffley Cr/Kamloo	133	133	133	106	106	146	146	146	146	146	146	146	146	146	165	165	165
5	Г-Р	Evans FP	B	Golden	142	142	135	135	135	135	135	99	99	80	85	89	106	106	112	112	112
15	Canfor	Slocan	ပ္ထ	Fort Nelson	106	133	159	159	165	165	165	172	175	235	246	246	267	267	267	267	267
	TOTAL				2428	2155	1859	1749	1794	1829	1869	1858	1865	1906	1841	1933	2033	2051	2174	2174	2174
										(
OSB										ŏ	erating N	1111s									
12	L-P		ပ္ထ	Dawson Creek	305	319	319	319	319	319	319	319	319	319	319	319	327	327	345	345	345
24	Weyerhaeuser		Alb	Edson	266	266	266	266	292	288	288	288	327	327	336	341	345	354	381	381	381
23	Weyerhaeuser		Alb	Drayton	230	235	310	310	310	310	310	310	313	313	313	313	319	327	345	345	345
5	Tolko Indust	Weyerhaeuser	Alb	Slave Lake	97			124	177	166	186	186	186	195	195	195	204	204	212	212	212
8	Ainsworth		B	100 Mile House					89	310	310	323	323	323	332	336	363	376	376	376	376
17 ,	Ainsworth		Alb	Gr Prairie I							398	478	482	484	496	513	566	566	580	580	580
19	Tolko Indust		Alb	High Prairie							354	420	420	434	482	496	496	504	602	602	602
14	Canfor	Slocan	ပ္ထ	Ft Nelson							221	376	381	381	416	460	469	500	500	504	562
16	Footner FP		dlb	High Level											27	266	531	708	708	708	717
13	Peace Valley OSB	Canfor L-P	BC	Ft St John																60	549
20	Talka Indust		ЧР	Slave Lake																	С
4	Aineworth			Gr Prairie II																	
2					000	0.00	100	0101	0077	0007	1000	0000	110	1660	1.000	0000	0000	1000	0101		
	IUIAL				898	819	894	1018	1180	1392	C382	6697	LG/2	9117	G187	3238	3020	3867	4049	4114	4008
ΤΟΤΑΙ		aso			3377	7074	752	7767	080	3001	4754	1557	4616	4682	4757	5170	5653	5010	6003	6788	6847
		200			1700	+ 107	21.72	1017	2000	1 7 70	1071	100+	0 0	7004	1014	2110	0000	00.00	6770	00700	7400
	7				1000	0007			0000	En	nployme	nt	0076	0000	0000	0000	0000	0000	0000	0000	0000
	p				4000 610	4200	0120	01200 610	740	740	1130	1130	3400 1150	1150	1300	1300	1300	1290	3300 1330	3300 1450	1450
Total er	molovment				5410	4670	3670	3810	3040	3940	4430	4430	4550	4450	4600	4600	4600	4590	4630	4750	4750
5						5	2220	200	0100	2100	2025	222			222	2200	222	2222	2222	201	F